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where the quark/gluon likelihood ratio is computed analytically, to single-logarithmic ac-
curacy, in perturbative QCD, and one where the Lund declusterings are used to train a
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learning models usually being superior. We carry out a study in the asymptotic limit of
large logarithm, allowing us to gain confidence that this superior performance comes from
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1 Introduction

Quarks and gluons, the constituents of the proton, are fundamental entities of essential
relevance for physics at the Large Hadron Collider (LHC) at CERN. While these particles
are ubiquitous at hadron colliders, they are never observed directly, but rather fragment and
hadronise immediately into collimated sprays of colourless hadrons. These decay products
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are referred to as jets and are generally defined through the application of a sequential
recombination algorithm (see e.g. [1, 2]).

As most of the jets observed at collider experiments arise from the fragmentation of a
light parton, a detailed understanding of their properties is crucial for experimental analy-
ses. In this context, many experimental studies make use of tools that reliably identify the
flavour of jets, e.g. to enhance signals from new physics (decaying predominantly to quarks)
from QCD backgrounds (producing predominantly gluon jets). Since quark and gluon
branch into one another, it is highly non-trivial to even define what is meant by a “quark
jet” or a “gluon jet” (see, for example, the discussion in ref. [3], as well as refs. [4, 5]). As a
direct consequence, it is delicate to introduce a properly-defined flavoured jet algorithm [6].

Over the past decade, jet substructure, the study of the internal dynamics of jets, has
proven a useful approach to study the decay of heavy particles at and above the electroweak
scale, providing a promising avenue to search for signs of new physics beyond the Standard
Model (see [2, 7, 8] for recent reviews). While jet substructure has applications in many
directions including for example precision measurements in QCD and the study of the
quark-gluon plasma produced in heavy-ion collisions, recent years have seen an increasing
interest in leveraging progress in deep learning to a range of jet tagging problems [9–18].

Several jet substructure techniques have been introduced to address the question of
quark/gluon discrimination. This includes jet-shape based observables like jet angulari-
ties [19, 20], energy-energy correlation functions [21] or the jet charge [22–24], counting
observables like the charged track multiplicity or the Iterative Soft Drop multiplicity [25],
as well as a series of recent deep-learning-based approaches using a range of network ar-
chitectures and inputs [26–30]. Other techniques, such as jet topics [4, 31, 32], are based
on a statistical ensemble of events and are directly meant to obtain separate distributions
for quarks and gluons. These are not discussed here as we instead target quark/gluon
discriminants working on individual jets.

Recently, the Lund Jet Plane has been introduced [33] as a powerful technique to
tackle a wide range of jet substructure applications. For example, the primary Lund plane
density has been measured by the ATLAS [34] and ALICE [35] collaborations highlighting,
for example, differences between general-purpose Monte-Carlo event generators. This Lund
plane density is amenable to precision calculations in perturbative QCD [36], showing an
agreement with the ATLAS measurement. Finally, Lund-plane variables can be used as
inputs to machine-learning tagger [30, 33].

In this paper, we will use the Lund plane approach to study quark/gluon discrimi-
nation. We will do this using both an analytic approach and machine-learning tagging
methods. In both cases, we will build two taggers: one based on information from pri-
mary Lund declusterings only, and a second based on the full Lund declustering tree. Our
analytic approach is based on a resummed calculation of the likelihood ratio at the single-
logarithmic accuracy, i.e. matching the logarithmic accuracy obtained in ref. [36] for the
primary Lund plane density. We note that likelihood ratios have already been relied upon
in the context of boosted-jet discrimination, for example, shower deconstruction [37–39].
Our machine-learning taggers follow the guidelines from refs. [30, 33]. One of the main
novelties of this work is that we will aim to gain a first-principles understanding of the
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behaviour of the neural network by comparing it with our analytic discriminants in specific
limits where the analytic approach is known to be optimal. This provides cross-validation
of both approaches, shedding light on the importance of subleading effects in the analytic
tagger and providing information on the convergence of deep-learning methods.

The paper is organised as follows. In section 2 we describe the Lund plane which will
serve as framework for this study. We describe the analytic strongly angular-ordered Lund-
plane discriminant in section 3, both for the primary Lund plane and for the full clustering
tree. We discuss the inclusion of clustering logarithms in section 4. The baseline machine
learning models used in our comparisons are described in section 5, and we provide a
validation of the analytic discriminants against these models using a toy shower in section 6.
Finally, we perform an in-depth comparison of the performance and resilience of a wide
range of methods on full Monte Carlo simulations in section 7, showing that our approaches
are either better or on par with state-of-the-art methods both in terms of discriminating
power and in terms of resilience.

The code implementing our analytic quark-gluon discriminant based on Lund declus-
terings is available at https://gitlab.com/gsoyez/lund-quark-gluon.

2 Lund plane(s) and baseline discriminants

In order to fix once and for all the notations to be used throughout this paper, we briefly re-
mind the reader of how the primary Lund plane declusterings are constructed [33]. We also
introduce a generalisation beyond the primary plane that instead keeps the full declustering
tree that we exploit later in this paper.

Primary Lund declusterings. For a given jet, we first recluster its constituents with
the Cambridge/Aachen algorithm [40, 41].1 We then build the list of primary declusterings
as follows:

1. start with j being the full reclustered jet;

2. undo the last step of the clustering, j → j1 + j2, giving two subjets j1 and j2. We
assume without loss of generality that j1 is the “harder branch” i.e. that pt1 > pt2.

3. We define the set of coordinates T = {∆, kt, z, ψ, . . . } for this branching:

∆ =
√

(y1 − y2)2 + (φ1 − φ2)2, kt = pt2∆,

z = pt2
pt1 + pt2

, ψ = tan−1 y2 − y1
φ2 − φ1

. (2.1)

4. Iterate by going back to step 2 with j ← j1.

This produces a tuple, ordered from the first declustering to the last,

Lprimary = [T1, . . . , Ti, . . . , Tn] (2.2)

that we refer to as the primary Lund declusterings associated with the jet j.
1The reason why we use the Cambridge/Aachen algorithm instead of other algorithms of the generalised-

kt family [42] algorithm, is discussed in section 2.4 of ref. [33].
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The averaged primary Lund plane density is then simply defined as the average number
of declusterings for a given ln ∆ and ln kt:

ρ(∆, kt) = 1
Njets

d2N

d ln ∆ d ln kt
. (2.3)

This quantity has been measured by the ATLAS collaboration in ref. [34] (see also ref. [43]
for a preliminary ALICE measurement) and studied analytically in ref. [36].

Lund declustering tree. Instead of focusing only on following the hardest branch
through the declustering, one can retain the full Cambridge/Aachen tree structure yielding
an associated tree of Lund variables:

Ltree(j) = [(T (j),Ltree(j1),Ltree(j2))] (2.4)

where the tree, Ltree(j), associated with a jet j has a set T (j) of Lund coordinates associated
with the branching j → j1 + j2, with pt1 > pt2, as well as sub-trees Ltree(j1) and Ltree(j2)
associated with j1 and j2 respectively. Note that this structure can be flattened into a tuple

Ltree(j) = [(T1, ihard,1, isoft,1) , . . . , (Ti, ihard,i, isoft,i) , . . . , (Tn, ihard,n, isoft,n)] , (2.5)

where ihard,i (resp. isoft,i) indicate the index in the tuple for the next branching along the
hard (resp. soft) branch, or 0 in the lack thereof.

Iterated Soft Drop multiplicity. The iterated Soft Drop multiplicity [25] can be
straightforwardly defined from the tuple of primary Lund declusterings as the number of
declusterings satisfying a given Soft Drop [44, 45] condition zi > zcut(∆i/R)β with R the jet
radius and zcut and β the Soft Drop parameters, with β < 0. A standard choice is to take
β = −1 so as to effectively use Soft Drop to impose a cut on z∆ which is similar to a kt scale.
In this paper, we define the iterated Soft Drop multiplicity as the number of primary declus-
terings above a fixed kt cut. This is motivated by the fact that a dimensionful kt cut is more
adequate than a cut on z∆ to separate between a perturbative region (kt > kt,cut) and a
non-perturbative region (kt < kt,cut).2 The use of a kt cut will also be used with all the other
methods introduced in this paper, allowing for a direct comparison of their performance.

Analytically, one can show that the Iterated Soft Drop multiplicity is the optimal
quark-gluon discriminant in the double-logarithmic approximation (see below for a proof).

Baseline discriminant: the average Lund-plane density. The baseline approach
we will consider throughout this paper is the one that was introduced in ref. [33]. We first
compute the average primary Lund plane densities ρq,g(∆, kt) separately for the quarks
and gluons samples, respectively. For a given jet with Lund declusterings {(∆i, kt,i)}, we
then define a likelihood ratio

Ldensity =
∏
i

ρg(∆i, kt,i)
ρq(∆i, kt,i)

. (2.6)

In practice, the average densities ρq,g(∆, kt) are computed in bins of ln ∆ and ln kt.
2The fundamental physics motivation behind this choice is that, in a resummed calculation in perturba-

tive QCD, the scale entering the strong coupling is typically the kt of the emission.
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This approach has already shown to give good results when applied to discriminating
boosted W bosons from QCD jets. The application to quark-gluon discrimination con-
sidered in this paper is actually simpler as it does not involve a separate isolation and
treatment of a hard two-prong decay as was the case in [33] for boosted W tagging.

Eq. (2.6) would be an optimal discriminant if the Lund plane declusterings were inde-
pendent. We know that this is not the case in practice due to effects such as the energy lost
by the leading parton, flavour changes and clustering effects, as discussed in [36]. However,
we still expect this approach to yield a better performance than the Iterated Soft Drop
multiplicity as it captures some aspects of the quark and gluon radiation patterns beyond
the soft-collinear approximation. Throughout this paper, we will consider quark-gluon tag-
ging using the average Lund plane density as a reference approach from which we want to
build more performant discriminants.

3 Analytic discriminants in the Lund-plane with strong angular ordering

3.1 Generic considerations

In this section, we introduce a series of quark-gluon discriminants based on a first-principles
treatment of the Lund plane declusterings in perturbative QCD. The performance of these
new tools will be assessed later in sections 6 and 7.

The core idea is to explicitly compute the likelihood ratio

L = pg(L)
pq(L) , (3.1)

for a set of Lund declusterings L — either primary-only or including the full tree — where
pq,g(L) denotes the probability to observe the given set of Lund declusterings assuming the
jet is either initiated by a quark or by a gluon.3 For this procedure to be infrared-and-
collinear safe, we only consider emissions above a given (relative) transverse momentum
cut, i.e. require kt ≥ kt,cut.

In the (double-logarithmic) soft-collinear limit, emissions are independent and the
single-emission probability for quarks and gluons only differ by the overall colour factor
(CF for a quark, CA for a gluon). For n primary emissions Ti, one therefore has

LLL =
∏
i

pg(Ti)
pq(Ti)

=
(
CA
CF

)n
. (3.2)

This shows that the likelihood ratio is only a (monotonic) function of n and hence that the
iterated Soft Drop multiplicity is the optimal discriminant at leading (double) logarithmic
accuracy. In this limit, additional, non-primary, declusterings in the full Lund tree all come
with a factor CA and therefore do not contribute to eq. (3.2).

In what follows, we want to extend this result to single-logarithmic accuracy, as what
was done in [36] for the average primary Lund plane density. For this, several single-
logarithmic effects have to be taken into account: (i) corrections to the running of the

3Throughout this paper, we do not distinguish between quarks and anti-quarks.
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strong coupling, (ii) collinear effects stemming either from splittings where the flavour of
the leading parton changes or from finite z splittings, (iii) clustering effects where the exact
Cambridge/Aachen clustering has to be taken into account for multiple soft emissions at
commensurate angles, and (iv) effects of multiple soft emissions at large angles.

In the (soft-collinear) limit where emissions are independent, running coupling effects
— (i) in the above list — do not change the double-logarithmic result in eq. (3.2) as both
the quark and gluon probabilities are multiplied by αs taken at the same scale, namely
the (relative) kt of the emission. Running-coupling corrections will nevertheless appear
together with the other single-logarithmic contributions and this is discussed below.

Next, the effect of soft-wide-angle radiation — (iv) in the above list — depends on the
details of the hard process that underlines the samples of quark and gluon jets. These con-
tributions would, for example, be different in “quark jets” in qg → Zq and qq → qq events
(see e.g. the discussion in refs. [3, 46]). In this paper, we will focus on universal aspects
in the collinear limit and therefore neglect these contributions which scale like the square
of the jet radius. (For phenomenological applications in section 7, we will therefore use
R = 0.4.) Beyond the small-radius limit, soft-wide-angle effects would have to be included.
In this case, one should consider the approach where one has to discriminate a specific
“quark-enriched” signal process from a specific “gluon-enriched” background process. This
study goes beyond the scope of this paper. It would nevertheless be interesting, in a follow-
up study, to investigate if the analytic techniques developed in this paper could be used to
assess the process-dependence of quark-gluon tagging, potentially in combination with the
concept of jet topics [31].

In a similar spirit, fixed-order (e.g. NLO) corrections to the underlying hard process
would also be process-specific and, as such, fall beyond the scope of this paper. That said,
if we were to address a process-specific tagging using our analytic techniques, NLO effects
would become relevant in two cases. Firstly, in the context of our resummed approach,
the would start contributing one order beyond our single-logarithmic approach. Secondly,
exact fixed-order corrections would impact the region of large quark and gluon tagging
efficiencies (see e.g. the discussion in ref. [5]).

Clustering effects are delicate to handle in an analytic calculation as even in the large-
Nc limit they, in principle, require the full matrix angular dependence for an arbitrary
number of emissions strongly-ordered in energy. Since we can expect that collinear effects,
and flavour-changing contributions in particular, are numerically dominant in the context
of quark-gluon discrimination, we will as a first step neglect clustering effects. In other
words, in this section we work in the regime where emissions are strongly ordered in angle
and derive a quark-gluon discriminant either using only primary emissions, section 3.2, or
using the full clustering tree, section 3.3.

We come back to the question of clustering logarithms in section 4. We will see
explicitly in our Monte Carlo simulations in section 7 that clustering effects have a smaller
numerical impact on quark-gluon discrimination than the collinear enhancements.
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3.2 Optimal discriminant for primary Lund declusterings

We start by considering only the primary Lund plane declusterings {(∆i, kt,i)} with kt ≥
kt,cut. For these, we want to compute the likelihood ratio

Lprimary = pg({∆i, kt,i, zi, . . . })
pq({∆i, kt,i, zi, . . . })

, (3.3)

at single logarithmic accuracy in perturbative QCD, in the limit where the emissions are
strongly ordered in angle, i.e. that ∆1 � ∆2 � · · · � ∆n. In this limit, we should include
in eq. (3.3) the contributions associated either with the running of the strong QCD coupling
effects, or with any hard-collinear effect.

The quark and gluon probability distributions can be computed iteratively starting
from the first (largest-angle) splitting. A key point to take into account is the fact that
collinear branchings can change the flavour of the leading branch, either through a g → qq̄

splitting, or through a q → qg splitting where the emitted gluon is harder than the final
quark. At each splitting, we should therefore keep track of the flavour of the leading parton
as well as of its splitting fraction z and its relative transverse momentum kt. It is convenient
to introduce a matrix

p
(i)
ab ≡

(
p(qi|q0) p(qi|g0)
p(gi|q0) p(gi|g0)

)
, (3.4)

where p(bi|a0) denotes the probability that the harder branch has flavour b after the ith
declustering, given that it started (at step “0”) with a jet of flavour a. This matrix is
initialised as p(0)

ab = δab and is recursively constructed from step i− 1 to step i for each of
the i = 1, . . . , n Lund declusterings.

Assuming that just before branching i the jet has flavour a, the probability after
branching i should include two effects: (i) the probability that the splitting has the observed
kinematic properties ∆i, zi, . . . , potentially including a change of the leading flavour, and
(ii) a Sudakov factor implementing the fact that no emission has occurred between the
previous angle ∆i−1 and ∆i (with ∆0 ≡ R), and with kt > kt,cut. This Sudakov resums
the virtual corrections between ∆i−1 and ∆i. This leads to the recursion

p
(i)
ab = αs(kti)

π∆i

(
P̃qq(zi) P̃qg(zi)
P̃gq(zi) P̃gg(zi)

)(
S

(i−1,1)
q 0

0 S
(i−1,1)
g

)
p

(i−1)
ab . (3.5)

In this expression, the splitting kernels P̃ab are directly related to the Altarelli-Parisi split-
ting functions with the extra requirement that since the declustering procedure follows the
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hardest branch one should impose zi < 1
2 :4

P̃qq =Pgq(z)Θ
(
z <

1
2

)
=CF

1+(1−z)2

z
Θ
(
z <

1
2

)
, (3.6a)

P̃gq =Pqq(z)Θ
(
z <

1
2

)
=CF

1+z2

1−z Θ
(
z <

1
2

)
, (3.6b)

P̃qg = [Pqg(z)+Pqg(1−z)]Θ
(
z <

1
2

)
= 2nfTR[z2 +(1−z)2]Θ

(
z <

1
2

)
, (3.6c)

P̃gg = [Pgg(z)+Pgg(1−z)]Θ
(
z <

1
2

)
= 2CA

[1−z
z

+ z

1−z +z(1−z)
]

Θ
(
z <

1
2

)
. (3.6d)

The Sudakov factors, S(i−1,i)
q,g , between the angle of the last splitting ∆i−1 and the angle of

the current splitting ∆i is computed as

S
(i−1,i)
f = exp

[
−
∫ ∆i−1

∆i

d∆
∆

∫
dz
αs(ptiz∆)

π
Pf (zi)Θ(ptiz∆ > kt,cut)

]
, (3.7)

with Pf the total splitting function for a parton of flavour f and pti the transverse mo-
mentum (with respect to the beam) of parton i before splitting. The kt of the emission is
taken as ptiz∆ which is equivalent to our definition in eq. (2.1) in the collinear limit.5 This
Sudakov is evaluated at next-to-leading logarithmic (NLL) accuracy with ∆i � ∆i−1, and
we find

S
(i−1,i)
f = exp

{
− Cf

2παsβ2
0

[
(1− λi−1) ln 1− λi−1

1− λcut
− (1− λi) ln 1− λi

1− λcut
− λi + λi−1

− αsβ1
β0

(1
2 ln2(1− λi)−

1
2 ln2(1− λi−1) + λi − λi−1

1− λcut
ln(1− λcut)

)
+
(
αsK

2π −
αsβ1
β0

)(
λi − λi−1
1− λcut

− ln 1− λi−1
1− λi

)]}
, (3.8)

with αs ≡ αs(pt,jetR),

λi−1 = 2αsβ0

(
ln R

x∆i−1
−Bf

)
, β0 = 11CA − 4nfTR

12π , (3.9a)

λi = 2αsβ0

(
ln R

x∆i
−Bf

)
, β1 = 17C2

A − 5CAnf − 3CFnf
24π2 , (3.9b)

λcut = 2αsβ0 ln pt,jetR
kt,cut

, K =
(

67
18 −

π2

6

)
CA −

5
9nf , (3.9c)

Bq = −3
4 Bg = −11CA − 4nfTR

12CA
, (3.9d)

4We have chosen notations where the indices of the P̃ kernels represent the flavour of the hard branch,
so as to make the matrix product in eq. (3.5) more obvious. As a consequence, these indices do not
always match with the standard indices in the Altarelli-Parisi kernels where the indices instead refer to
the flavour of the emitted parton with momentum fraction z. Finally, our probability distributions are
taken differentially in ∆i and zi. The specific choice of variables is however irrelevant for the problem of
quark-gluon classification as it cancels in the likelihood ratio.

5Conversely, the value of pti can be deduced from ∆i, kti and zi using pti = kti/(zi∆i).
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and x defined as the momentum fraction of the total jet momentum carried by the subjet j
before branching i. We note that in the rare occurrences where the Lund declusterings are
not ordered in angle — which cannot be ruled out with the Cambridge/Aachen declustering
procedure — we set the Sudakov to Sf = 1. We also point out that the contribution from
hard-collinear splitting to the above expressions have been computed by setting an upper
bound eBf on the z integration in (3.7). This is correct at NLL accuracy. Although it has
the drawback to insert uncontrolled subleading corrections — compared to the traditional
expression which can be recovered by keeping only the first non-trivial term in Bf — it
has the advantage of having a clean endpoint, i.e. Sf = 1 for λi−1 ≤ λcut.

If we introduce the short-hand notations P̃ (i)
ab and S(i,i−1)

ab ≡ δabS
(i,i−1)
a for the full split-

ting matrix and Sudakov matrix, the probabilities after including all the Lund declusterings
takes the form

p(final) = S(n+1,n)P̃ (n)S(n,n−1) . . . P̃ (i)S(i,i−1) . . . P̃ (1)S(1,0)p(0), (3.10)

where the leftmost factor in the right-hand side takes into account the fact that there are no
more emissions between the angle of the last declustering, ∆n, and the smallest angle acces-
sible after the last splitting: ∆n+1 ≡ ∆min = kt,cut/ptn with ptn the transverse momentum
(with respect to the beam) of the leading parton after the last declustering. Eq. (3.10) has
the simple physical interpretation of successive primary branchings, producing the factors
P̃ (i), interleaved with Sudakov factors, S(i,i−1), which resum virtual corrections between
two primary emissions. Finally, the probabilities associated with an initial quark or gluon
jet are given by

pq({∆i, kt,i, zi, . . . }) = p(final)(q|q0) + p(final)(g|q0), (3.11a)
pg({∆i, kt,i, zi, . . . }) = p(final)(q|g0) + p(final)(g|g0), (3.11b)

translating the fact that we are inclusive over all flavours of the final leading parton.
The probabilities in eqs. (3.11) can be directly inserted in (3.3) to obtain a quark-

gluon discriminant. It is, by construction, the optimal discriminant at single-logarithmic
accuracy in the limit where the declusterings are strongly ordered in angle. Since the above
procedure keeps track of the flavour and momentum fraction x of the leading parton at
each step, it takes into account the possible correlations between the different declusterings,
hence going beyond the independent-emission assumption used with the average Lund plane
density (section 2, eq. (2.6)).

3.3 Extension to the full clustering tree

While non-primary (secondary, tertiary, . . . ) declusterings have no impact at leading-
logarithmic accuracy, they start carrying information at our single-logarithmic accuracy.
Generalising the approach from the previous section to the full clustering tree is mostly a
technical step. This time, we therefore settle to compute

Ltree = pg(Ltree)
pq(Ltree)

(3.12)

in the strongly angular-ordered limit.
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This is again done recursively over the full (de-)clustering tree. For this, consider a
declustering jparent → jhard + jsoft, with kinematic variables T , i.e. with an angle ∆, a soft
momentum fraction z and relative transverse momentum kt. The probabilities associated
with the parent jet can be deduced from those of the subjets as follows:

pq(Lparent) = Sq(∆prev,∆)
[
P̃qq(z)pq(Lhard)pg(Lsoft) + P̃gq(z)pg(Lhard)pq(Lsoft)

]
(3.13a)

pg(Lparent) = Sg(∆prev,∆)
[
P̃gg(z)pg(Lhard)pg(Lsoft) + P̃qg(z)pq(Lhard)pq(Lsoft)

]
(3.13b)

where ∆prev is the angle at which the last declustering before the one under consideration
happened (with ∆prev = R for the first declustering). As in section 3.2, S(∆prev,∆) is a
Sudakov factor imposing that no other emission with kt > kt,cut occurred since the last
declustering at an angle ∆prev, cf. eq. (3.8).6 The splitting kernels P̃ab are the same as in
eq. (3.6). These expressions have the same form as eq. (3.5) except that, at each step, they
also include the probability for the soft branch.

This recursion is applied until each branch can no longer be declustered in which case,
if the last splitting has occurred at an angle ∆last, one then just includes a factor

pq(L = ∅) = Sq(∆last,∆min), (3.14a)
pg(L = ∅) = Sg(∆last,∆min), (3.14b)

where, as for the primary case, ∆min = kt,cut/pt for a final branch of momentum pt.

4 Beyond strong angular ordering: including clustering logarithms

4.1 Generic considerations

We conclude this section on analytic methods by discussing the inclusion of clustering
logarithms in our approach. These logarithms arise from situations where we have at least
two emissions with commensurate angles and the exact Cambridge/Aachen clustering has
to be considered in order to label the emissions as primary, secondary, ternary, etc. When
the emissions at commensurate angles are strongly ordered in energy, this leads to single-
logarithmic contributions (see e.g. [36]).

In practice, the Cambridge/Aachen clustering can produce clusterings which are not
in agreement with the naive physical expectation. Consider for example a quark-initiated
jet with two gluon emissions. The harder emission is emitted from the quark and comes
with a colour factor CF . The softer emission can either be seen as emitted from the quark,
with a colour factor CF , or as emitted from the gluon, with a colour factor CA. When the
two emission angles are similar, the actual Cambridge/Aachen clustering will sometimes
cluster the second gluon in the C2

F contribution with the first gluon, yielding a secondary
Lund declustering, or, conversely, cluster the second gluon from the CFCA contribution
with the hard quark, yielding a primary declustering.

6Although we have only made explicit the angular dependence, the Sudakov factors also depend on the
prong momenta.
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In order to compute these contributions, we need the full angular structure of the
matrix elements for an arbitrary number of emissions at commensurate angles. When
computing the average Lund plane density, this can be addressed, at least in the large-Nc

limit, by a Monte Carlo integration similar to the one used to resum non-global logarithms
in [47]. (See [48] for an approach valid at finite Nc.)

In our quark-gluon-discrimination application, one would have to keep track of all the
possible colour configuration with which an emission can be radiated by the full set of
emissions at larger transverse momentum (or, at our accuracy, at larger energies). This
is beyond what can be practically achieved. Instead, we will adopt a simplified approach
where we apply a matrix-element correction which only describes correctly situations where
(any number of) pairs of emissions are at commensurate angles. This is similar in spirit
to the NODS scheme introduced in [49] to implement subleading-Nc corrections in parton
showers.7

4.2 Clustering logarithm with the full Lund tree

Since clustering logarithms have an explicit dependence on radiation in/from different
leaves, we first consider the situation where the quark-gluon tagging is done using the
full Lund declustering tree. The case where only primary radiation is considered will be
discussed in section 4.3 below.

In our approximation where we only allow for two emissions at commensurate angles,
we then consider two declusterings T1 ≡ {∆1, kt1, z1, ψ1} and T2 ≡ {∆2, kt2, z2, ψ2}, with
∆1 ∼ ∆2 � 1. Since clustering corrections happen for two emissions at similar angles
and we only aim at describing the configurations where we have only pairs of particles
at commensurate angles, we can assume that T1 and T2 correspond to consecutive Lund
declusterings and that all the other emissions are at widely different angles. We can further
assume that T1 happens before T2 in the sequence of declusterings, i.e. ∆1 > ∆2. Our
approach is to modify the emission probability in eq. (3.12) for T2 to include corrections
due to the presence of T1.

There are two main kinematic configurations to consider: either T1 and T2 are both
reconstructed as consecutive “primary” emissions from the same hard branch, or T2 is
reconstructed as a “secondary” emission from T1.8 In the “primary” case, we can either
have z2 � z1 (kt2 � kt1) or z2 � z1 (kt2 � kt1), while in the “secondary” case we can
assume z2 � z1 (kt2 � kt1). This is illustrated by the Lund diagrams in figure 1. At
single-logarithmic accuracy, the clustering correction is computed in the flavour channel
where both emissions are gluons. The distinction between the primary and secondary
cases is decided by the Cambridge/Aachen clustering. In both cases, if CR is the colour
factor of the common hard branch, the matrix element corresponding to a given clustering

7Note the key difference that the NODS method produces the correct behaviour at large-Nc for any
number of emissions at commensurate angles. The matrix-element correction only applies to subleading-Nc

corrections. In our case, the correct behaviour is only guaranteed for pairs of emissions at commensurate
angles even in the large-Nc limit.

8Primary and secondary are here counted from the hard branch common to both emissions, even if this
one can be anywhere in the Lund tree.
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Figure 1. Schematic representation of the three kinematic configurations affected by clustering
logarithms. We consider two consecutive declusterings T1 and T2 with T2 occurring after T1 in the
Lund sequence. If T2 is reconstructed as “primary” (i.e. in the same plane as T1) it can either be
much softer (case (a)) or much harder (case (b)) than T1. Case (c) describes the situation where
T2 is reconstructed as a secondary emission from T1, and hence can be considered much softer.

sequence will have a contribution proportional to C2
R and one proportional to CRCA. In

the strongly-angular-ordered limit, only the first term (C2
R) contributes to the “primary”

clustering and only the second term (CRCA) to the “secondary” clustering. The gluon-
emission diagrams shown in figure 1 represent the two contributions for each clustering
case. The first particles to cluster are highlighted in blue.

Let us first handle the case where T1 and T2 are both “primary” emissions. Say the
parent parton has a colour factor CR. If z1 � z2, the CR d2∆2/∆2

2 behaviour which
corresponds to the collinear limit in section 3.3 should be replaced by the full soft-gluon
radiation squared matrix element[

CA
2

1
∆2

12
+ CA

2
∆2

1
∆2

12∆2
2

+
(
CR −

CA
2

) 1
∆2

2

]
d2∆2, (4.1)

where ∆2
12 = ∆2

1 + ∆2
2 − 2∆1∆2 cos(ψ2 − ψ1) is the angle between the two emitted gluons.

This means that, in the gluon emission part of eq. (3.5), we should apply a correction factor

Ωprim = 1 + CA
2CR

(
∆2

2
∆2

12
+ ∆2

1
∆2

12
− 1

)
. (4.2)

It is straightforward to show that the “primary” case with z1 � z2, gives the same cor-
rection Ωprim. As expected, Ωprim → 1 when ∆1 � ∆2 (or when ∆1 � ∆2) so that
the strongly-ordered limit is recovered. Since both emissions are primary, we never have
∆12 � ∆1,∆2.

We now turn to the “secondary” case where T2 is emitted from the soft branch of T1.
Here, ∆2 is the angle between the emissions T1 and T2, i.e. ∆2 ≡ ∆12, and we denote by
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Figure 2. Clustering correction factors Ωprim (primary) and Ωsec (secondary) for quark (left)
and gluon (right) leading partons. The black regions correspond to the kinematic regions where
emissions are not clustered in the indicated Lund plane.

∆02 = ∆2
1 + ∆2

2 − 2∆1∆2 cos(ψ2 − ψ1) the angle between T2 and the hard branch of T1. In
the collinear limit this would correspond to a factor CA/∆2

2 which has to be replaced by
the full angular structure

CA
2

1
∆2

2
+ CA

2
∆2

1
∆2

02∆2
2

+
(
CR −

CA
2

) 1
∆2

02
, (4.3)

yielding a correction factor

Ωsec = 1
2

(
1 + ∆2

1
∆2

02
+ ∆2

2
∆2

02

)
+ CR
CA

∆2
2

∆2
02
. (4.4)

Without surprise, Ωsec → 1 if ∆2 � ∆1, recovering the strongly-ordered case. The correc-
tion factors Ωprim and Ωsec are plotted in figure 2. We see that they are indeed localised
around the region where both emissions have commensurate angles. They tend to be larger
for quarks than for gluons.

It is interesting to notice that the above correction which accounts for clustering log-
arithms introduces a dependence on the azimuthal angle ψ. It is the only dependence on
ψ at the single logarithmic accuracy.

In principle, the Sudakov factors should also receive single-logarithmic corrections due
to clustering effects. Since clustering logarithms only affect flavour-diagonal emissions of
two soft gluons (at least within our approximations), it is however relatively straightforward
to convince oneself that these corrections only lead to a reshuffling of some contributions be-
tween different factors in the overall probability distribution and can therefore be neglected.
This can be understood as follows. Suppose one has a parton emitting a gluon “1” at an
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angle ∆1. In our approach, that the previous emission occurred at an angle ∆0 and that
the following emissions on the hard and soft branches occur at angles ∆2,hard and ∆2,soft
respectively. In the strongly-ordered limit, emission “1” is involved in three contributions
to the Sudakov: one between ∆1 and ∆0, one between ∆2,hard and ∆1, and one between
∆2,soft and ∆1. Within our approximation, if we want to compute the corrections to the
Sudakov at angles commensurate with ∆1, we can assume that all the other emissions are
at widely separate angles, i.e. ∆2,hard,∆2,soft � ∆1 � ∆0. To compute the overall Sudakov
factor, summed over the three regions described above, one should integrate the exact ma-
trix element, including the full angular structure. Within our approximation where we only
target correctness for two emissions at commensurate angles, this integral is proportional to
CR log(∆0/∆2,hard) + CA log(∆1/∆2,soft), which is the same as the strongly-ordered limit.

In practice, inserting corrections factors due to clustering logarithms in eq. (3.13)
requires some care as it depends whether the Lund declustering, T , that it implements
comes from following the hard or the soft branch at the previous declustering. First, at our
single-logarithmic accuracy, clustering corrections are only non-trivial for two successive
gluon emissions. Then, say that the previous branching, happening at an angle ∆prev is
denoted by Tprev. If T follows Tprev along the harder branch, we only apply a correction
for the contributions where Tprev did not have a flavour change. The correction is then
applied only for the flavour-diagonal contribution with a colour factor CR being CF or CA
depending on the flavour of the hard parton. Conversely, if T follows Tprev along the softer
branch, only the flavour-diagonal term in pg(Lparent) receives a correction with a colour
factor CR given by the flavour of the hard branch at the branching Tprev.

It is interesting to note that the correction factors Ωprim and Ωsec explicitly depend
on the azimuthal angles of the declusterings, which is new compared to the strongly-
angular-ordered case. If we want to consider only the ∆, z and kt variables for each Lund
declusterings (see the discussion in section 7 below), we can integrate out the φ dependence,
averaging over the domain allowed by the fact that the declustering T1 is undone before
T2. We denote these azimuthally-averaged correction factors by Ω̄prim and Ω̄sec. They only
depend on the ratio x = ∆2/∆1 and are found to be

Ω̄prim
x<1/2= 1 + CA

CR

x2

1− x2 (4.5a)

x>1/2= 1 + CA
2CR

 1 + x2

|1− x2|
1− 2

π tan−1
(

1+x
|1−x|

√
2x−1
2x+1

)
1− 2

π tan−1
(√

2x−1
2x+1

)
 (4.5b)

Ω̄sec
x<1/2= 1 + CR

CA

x2

1− x2 (4.5c)

x>1/2= 1
2 +

[
sgn(1− x2)

2 + CR
CA

x2

|1− x2|

] 1− 2
π tan−1

(
1+x
|1−x|

√
2x−1
2x+1

)
1− 2

π tan−1
(√

2x−1
2x+1

) . (4.5d)

4.3 Clustering logarithms with primary radiation only

Our last analytic step is to include the effect of clustering logarithms in the Lund quark-
gluon discriminant which only uses primary declusterings. We do this in an approximation
where we only allow for pairs of emissions to be at commensurate angles.
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As for the full Lund tree, two types of corrections should be included: corrections
to the matrix element for the radiation of two soft gluons at commensurate angles, and
potential corrections to the Sudakov factor. Corrections to the real radiation are trivial:
the splitting factors P̃qq(zi) and P̃gg(zi) in eq. (3.5) should be multiplied by a factor Ωprim
(eq. (4.2)), respectively with CR = CF and CR = CA.

Since we are no longer including a Sudakov factor for the soft branch, our previous
argument saying that the overall Sudakov factor was not affected by clustering effects no
longer holds. Let us therefore again consider a gluon emission “1” at an angle ∆1 and
relative transverse momentum kt1. In the soft-gluon limit, the total Sudakov factor at
(relative) transverse momentum scales smaller than kt1 should use the full matrix element
for radiation from the system including both the parent parton and emission “1”, i.e.

− logS(i−1,i)
f =

∫ kt1

kt,cut

αs(kt)
π2

∫
d2∆2

[(
CR −

CA
2

) 1
∆2

2
+ CA

2
1

∆2
12

+ CA
2

∆2
1

∆2
2∆2

12

]
× [1−Θ(∆12 < ∆1)Θ(∆12 > ∆2)] , (4.6)

where the square bracket in the second line imposes that “2” is clustered as a primary
emission. This gives a correction compared to the strongly-angular-ordered case which is
found to be9

− δ logS(i−1,i)
f = (CA − CR)ξ

[∫ kt1

kt,cut

αs(kt)
π

]
, (4.7)

with ξ = 0.323006. Note that this contribution happens to vanish when the parent parton
is a gluon (CR = CA).

5 Machine learning approaches

5.1 Primary Lund plane and LSTM

A natural approach to adopt is the Deep-Learning technique used in the original study of
the primary Lund Plane [33], which was already showing an excellent discriminating power
in the context of boosted W tagging. Here we only consider the long short-term memory
(LSTM) [50] network architecture as it showed the best performance in [33].

In practice, we input the list of Lund declusterings {(ln ∆i, ln kti)} to an LSTM of
dimension 128 connected to a dropout layer (with rate 20%), with a final dense layer of
dimension two and softmax activation. The network weights are initialised with a He
uniform variance scaling initialiser [51], and the training is performed using an Adam opti-
misation algorithm [52] with a batch size of 128, a learning rate of 0.0005 and a categorical
cross-entropy loss function. Our model is implemented using TensorFlow v2.1.0.

The data sample is split into a training sample (80%), a validation sample (10%) and
a testing sample (10%). We train over a maximum of 50 epochs, with an early stopping
when the performance does not increase over four epochs.

9This result is essentially the same as the O(α2
s) clustering logarithms contribution to the primary Lund

plane density found in [36] (see eq. (3.25) there).
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For each configuration, we have run five independent trainings. For the quality mea-
sures reported below, the central value is obtained by averaging over the five runs and the
uncertainty band is taken as their envelope.

5.2 Full Lund tree and Lund-Net

In order to take full advantage of the information contained in secondary leaves of the Lund
plane, we consider the Lund-Net model introduced in ref. [30] and its associated code [53].

As input, we transform the tree of Lund declusterings into a graph, with the kine-
matic variables T of a declustering serving as attributes of a node on the graph. The
Cambridge/Aachen clustering sequence is used to form bidirectional edges along the nodes
connected in the Lund tree.

The graph architecture uses an EdgeConv operation [54], which applies a multi-layer
perceptron (MLP) to each incoming edge of a node, using combined features of the node
pairs as inputs, producing a learned edge feature. This initial shared MLP consists of
two layers, each consisting of a dense network with batch normalisation [55] and ReLU
activation [56], which are followed by an aggregation step taking an element-wise average
of the learned edge features of the incoming edges as well as a shortcut connection [57].
The same MLP is applied to all nodes, leading to updated node features but keeping
the structure of the graph unchanged. The Lund-Net architecture consists of six such
EdgeConv blocks stacked together, and the number of channels of the MLPs are (32, 32),
(32, 32), (64, 64), (64, 64), (128, 128) and (128, 128). Their output is concatenated for each
node, and processed by a MLP with 384 channels, to which a global average pooling is
applied to extract information from all nodes in the graph. This is followed by a final
fully connected layer with 256 units and a dropout layer with rate 10%, with a softmax
output giving the result of the classification. The Lund-Net model is implemented with
the Deep Graph Library 0.5.3 [58] using the PyTorch 1.7.1 [59] backend, and training is
performed for 30 epochs, using an Adam optimiser [52] to minimise the cross entropy loss.
An initial learning rate of 0.001 is used, which is lowered by a factor 10 after the 10th and
20th epochs. As for the LSTM approach, the data sample is randomly split in 80/10/10%
training/validation/testing samples, and we take the average and envelope of five runs.

In this paper, the inputs for each Lund declustering include, by default, ln ∆, ln kt, ln z
and ψ. In section 6 which probes the collinear limit of our discriminants, the azimuthal
angle is irrelevant and therefore not included in any of our approaches. Furthermore, in
section 7.4 we discuss the effect of adding particle-ID information to the inputs, and in
section 7.5 we discuss the effect of the azimuthal angle ψ. When imposing a cut on the
(relative) transverse momentum, only the Lund declusterings with kt above the cut are
included in the data sample.

6 Validation in a pure-collinear (toy) parton shower

Before turning to a full Monte Carlo-based assessment of the discriminating performance
of the tools introduced in the previous sections, we provide a cross-validation between the
analytic and deep-learning approaches. To do this, we use a setup in which our analytic
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approach in sections 3.2 and 3.3 corresponds to the exact likelihood-ratio discriminant.
This is achieved by generating events directly in the strong-angular-ordered limit, where
our analytic approach from section 3 becomes exact: for simplicity, we use a fixed-coupling
approximation, a fixed initial jet pt of 1TeV (with R=1)10 and a fixed cut on emissions
kt,cut = 1GeV. We generate pure-quark and pure-gluon samples by starting the simulation
with either an initial hard quark or an initial hard gluon. We simulate branchings using
the full Altarelli-Parisi splitting functions, keeping track at each emission of the angle ∆
and energy fraction z of the emission. In the strict collinear limit, a parton of momentum
pt branches in two partons of momenta (1 − z)pt an zpt, so the transverse momentum of
each parton in the cascade — or, equivalently, its fraction of the initial jet pt — can be
deduced from the angles (∆i) and momentum fractions (zi) at each branching. In practice,
we have used (a slightly adapted version of)11 the microjet code [60] to simulate events
with strong angular ordering. The Lund declusterings are taken directly from the event
trees, without any reclustering with the Cambridge/Aachen jet algorithm. This guarantees
the absence of clustering logarithms.

Our analytic approaches to quark-gluon discrimination are applied as described in
sections 3.2 and 3.3 except for two details: (i) they have been adapted to use a fixed-
coupling approximation, and (ii) the Sudakov factor in eq. (3.7) has been computed keeping
the full splitting function so as to guarantee that the resulting probability distributions
match exactly that of the generated sample, including corrections strictly beyond our
single-logarithmic approximation. With a fixed-coupling approximation, the calculation of
the Sudakov exponent is relatively straightforward and expressions are given in appendix A
for completeness.

With this setup in mind, we want to check that the machine learning (ML) approach
using an LSTM network trained on primary Lund declusterings (section 5.1) converges to
the same performance as what is given by the analytic approach in section 3.2. Similarly,
we expect that the Lund-Net approach from section 5.2, trained on full Lund trees, gives
the same performance as that of the analytic discriminant based on the full Lund tree
in section 3.3. We also want to check that these new tools offer a better discriminating
power than what is obtained using either the Iterated Soft Drop multiplicity or the average
primary Lund plane density (see section 2).

In practice, we use a sample of 106 events generated with our adapted version of the
microjet code, with αs fixed either to 0.1 or to 0.5. These samples are either used to
compute the analytic discriminant,12 eqs. (3.3) or (3.12) or as inputs to train/validate/test
our neural-network-based models. For the methods using machine-learning, the event
sample is split in 80/10/10% training/validation/testing samples. This is repeated five

10Since we work in the pure collinear limit, the jet radius just plays the role of a reference scale for the
logarithms of the angles, i.e. large-angle corrections scaling like powers of R are absent. The precise value
of R is therefore irrelevant and we chose R = 1 for simplicity.

11Our adaptation compared to the original work in [60] mostly consists in imposing a kt cutoff (instead of
a small cut on z, as well as to keep the full tree of the generated cascade rather than just the final particles.

12For αs = 0.1, our analytic results have been obtained with a sample size of 107 events instead of the
default sample of 106 events. This shows no visually observable differences on the results presented here.
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Figure 3. Area under the ROC curve (AUC) as a function of dimension of the network. The
networks converge to the optimal (analytic) discriminant above ≈ 32 nodes, proving that the
networks learned all the features of the microjet samples.

times for 5 different subdivisions and we take the average and envelope of these five runs
respectively as an estimate of the performance and of the associated uncertainty. The
quark and gluon efficiencies, εq and εg, are defined as the fraction of the events in the
quark and gluon samples, respectively, which pass a cut on the analytic likelihood ratio or
on the network discriminant.

Since the analytic models reproduce the exact likelihood ratio for these collinear sam-
ples, they are expected to provide the optimal discriminants. We first study how the area
under the ROC curve (AUC) evolves as a function of the dimension of the LSTM or Edge-
Conv block in our machine-learning setup, varied between 2 and 256 nodes,13 compared to
the expected exact analytic result. This is shown in figure 3. Here, the AUC is defined as
the area under the (εq, εg) curve, meaning that a lower AUC means a better discriminating
power. It is remarkable that for a network dimension of 32 or above, the neural network is
able to reproduce the expected optimal discriminant to within at most 1%, for both values
of αs. If we look at the full ROC curves, figure 4, we see again the same level of agree-
ment. The larger uncertainty at smaller quark efficiencies is expectable as only a fraction
of the background events pass the tagger. Based on figures 3 and 4, we note a hierar-
chy between the classifiers with Lund-based methods performing better than the Iterated
SoftDrop multiplicity and, among the Lund-based methods, the ones using the full tree
information performing better that the ones using only primary declusterings. Improving
the (logarithmic) accuracy of the analytic approach and exploiting more jet substructure

13For Lund-Net, the dimension refers to the size of the first MLP in the initial EdgeConv block, keeping
the scaling of the successive layers identical to the one in section 5.2.
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Figure 4. The ROC curves for the analytic and ML classifiers for the microjet sample. For this
sample, our analytic approach is exact, showing that the neural networks capture the full (single-
logarithmic) information in the training sample.

information both lead to a performance increase. Furthermore, the performance differences
are enhanced as one opens up the phase space to include more emissions (or increase αs).

To further investigate the . 1% difference between the Lund-Net and analytic results
for αs = 0.5, we show in figure 5 the performance this time as a function of the size of the
training sample (keeping the size of the validation and testing samples to 105 jets). The
shaded band around the analytic expectation represent the statistical fluctuations obtained
by splitting the full 106 event sample in 10 subsamples of 105 events, running our analytic
discriminant independently on each subsample. For a testing sample size of 105 jets and
εq = 0.1, we only keep ∼ 0.1%, i.e. ∼ 100, of the gluon jets which is compatible with the
∼ 10% observed statistical uncertainty. One sees that within the statistical uncertainties,
the performance of the Lund-Net approach matches that of the analytic expectation for a
training sample of 4×105 events or more. This is seen both for the AUC, figure 5a and for
the ROC curves, figure 5b. In the latter case, the convergence is slightly slower at small
εq = 0.1, as one could have expected.

Before we close this section, we note that additional tests targetting the asymptotic
single-logarithmic limit of full Monte Carlo simulations will be carried on in section 7.6.
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Figure 5. Convergence of the ML-based Lund taggers as a function of the training sample size
for the AUC (a) and ROC curve (b). The ML testing phase is always performed on the same 100k
events and the shaded band around the analytic results is the fluctuations across different samples of
100k events. The optimal performance is reached for training sample sizes of 400k events and above.

7 Full Monte Carlo simulations

7.1 Setup

We now move to testing the performance of Lund-plane-based quark-gluon discriminants
with full Monte Carlo samples. For our reference quark and gluon samples, we simulated
respectively Z+q and Z+g events with Pythia v8.24 [61, 62] with multi-parton interactions
enabled with the Monash13 tune [63]. For the Z + q sample, only light quark flavours (u,
d and s) have been included. The Z boson is set to decay to invisible neutrinos. Jets
are then reconstructed on the remaining final-state using the anti-kt algorithm [42] with
R = 0.4, as implemented in FastJet [64, 65]. We select at most the two hardest jets
within |y| < 2.5 and keep only the ones with 500 < pt < 550GeV. For each selected jet,
we recluster its constituents with the Cambridge/Aachen algorithm and we construct the
Lund declusterings following the recipe described in section 2. The studies described below
are performed with quarks and gluon samples of 106 jets each.

To probe the resilience of our quark-gluon discriminants against various effects we
have generated additional event samples. The first one uses the same setup as above with
hadronisation and multi-parton interactions switched off, hence probing the influence of
non-perturbative effects. The second uses dijet events, qq → qq with light quark flavours
and gg → gg, and is meant to probe the dependence on the hard process. The third one
uses the same setup as the reference sample (Z+jet with non-perturbative effects enabled),
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this time generated with Herwig v7.2.0 [66, 67] so as to probe the dependence on the Monte
Carlo generator.

Since our goal in this paper is to address “universal” aspects of quark-gluon tagging
(recall the discussion in section 2), one can consider that varying the Monte Carlo generator
and the hard process yielding the quark and gluon samples provide a picture of how much
freedom there is beyond these universal aspects. For a practical analysis where one would
consider specific signal and background processes, this discussion would have to be revisited
and it would be interesting to include samples including full NLO matrix elements matched
with parton shower, using tools such as MC@NLO [68], Powheg [69–71] or Sherpa [72, 73].

We test a total of six quark-gluon discriminants: the Iterated Soft Drop multiplicity
(nSD) and the discriminant based on the average Lund plane density (Lund density), both
described in section 2, our new analytic discriminants using either the primary declusterings
only (analytic(prim), sections 3.2 and 4.3) or the full declustering tree (analytic(tree),
sections 3.3 and 4.2), and the deep-learning approaches using either only the primary
Lund declusterings (Lund+LSTM (prim)) or the full Lund tree (Lund-Net (tree)) both
described in section 5.

For the analytic models, clustering contributions are included with their dependence
on the azimuthal angle ψ. We further discuss the influence of clustering logarithms and of
the azimuthal angle ψ in section 7.5 below. Our analytic models are only considered in the
presence of a kt cut on the Lund declusterings, guaranteeing infrared-and-collinear safety.

As in the previous section, for the methods using machine learning, the event sample
is subdivided into 8×105 training jets, 105 evaluation jets and 105 testing jets. We use five
different subdivisions of the full sample to assess the uncertainties on the performance. For
the discriminant based on the average Lund plane density, we use the first 9×105 events to
build a (binned) estimate of ρq.g(∆, kt) and the 105 remaining events as a testing sample.

7.2 Tagging performance

We first look at the performance of our taggers. In this section we use our reference Monte
Carlo sample, i.e. Z+jet events generated with Pythia with hadronisation and multi-parton
interactions enabled. Figure 6 shows the area under the ROC curve as a function of the kt
cut applied on Lund declusterings, and figure 7 shows the ROC curves themselves for two
specific choices of the cut: no cut (figure 7a) or kt > 1GeV (figure 7b).

Leaving aside for now the methods based on deep learning, we see the expected pattern.
First, the average Lund density brings a small improvement compared to the Iterated
SoftDrop approach. It is interesting to notice that while the performance of the Lund
density approach flattens as the kt cut is lowered, that of ISD gets worse at small kt
cuts. Since the Iterated SoftDrop multiplicity and our analytic approaches are based on
perturbative QCD arguments, one might have anticipated their performance degradation
for low values of the kt cut. In particular, since our analytic models include the running of
the strong coupling with kt, they become unstable as we approach the Landau pole. The
average Lund density approach however directly uses the Pythia sample to estimate the
likelihood and is therefore free of these effects.
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Figure 6. Area under the ROC curve (AUC) obtained using Z+jet events simulated with Pythia.
All the Lund-plane based quark-gluon discriminants studied in the paper are shown: the Iterated
Soft Drop multiplicity (nSD), the likelihood based on the average primary Lund-plane density, and
our new analytic and ML-based discriminants using either primary Lund branchings of the full
Lund declustering tree. The AUC is plotted as a function of the minimum transverse momentum,
kt, cut imposed on the Lund declusterings.

Let us now focus on our analytic discriminants. Compared to the average density
we see a ∼ 5% improvement in the AUC when using only the primary declusterings,
reaching 9% for kt,cut = 1GeV. As visible in figure 7b, this improvement increases towards
smaller quark efficiency where it can reach 30−50% for εq in the 0.2−0.5 range. Adding
the information from the full clustering tree, this improvement in AUC increases slightly,
reaches e.g. ∼ 12% for kt,cut = 1GeV. Looking at the ROC curve, this improvement is
seen mostly at large εq with limited impact at smaller εq. As for ISD, the performance of
our analytic models worsens for small kt cuts, below 1GeV. This is most likely due to a
breakdown of the perturbative approach.

If we now turn to the Lund methods using deep learning, we see a clear improvement
in discriminating power for all kt cuts and across all values of the quark efficiency. The
AUC is reduced (i.e. improved) by 20−40% for a cut on kt below 1GeV and the gluon
rejection factor is improved by a factor between 2 and 3 for εq in the 0.2−0.5 range.

A striking feature of the machine-learning-based approaches in figures 6 and 7, espe-
cially compared to the results shown in the collinear sample in section 6, is that they show
a substantial performance improvement compared to the analytic models. There can be
several explanations for this. Of course, since our analytic approach is purely perturba-
tive, differences can be of non-perturbative origin. This is certainly the case at very small
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(b) kt > 1GeV.

Figure 7. ROC curves corresponding to the AUC showed in figure 6. The left plot corresponds
to all Lund declustering being included while for the right plot a kt cut of 1GeV has been applied.
Since the methods anchored in perturbative QCD are meant to be effective in the region where
perturbative QCD applies, they are only shown on the right plot.

values of kt,cut where our perturbative approach breaks down when the performance of the
machine-learning-based approaches keeps improving. However, the gain is already visible
at values of the kt cut close to 10GeV, where non-perturbative corrections are relatively
small. From a pure perturbative perspective, there are at last three possible explanations
as to why the machine learning approaches may outperform our analytic discriminant.

First, our treatment of clustering logarithms is only correct for pairs of emissions at
commensurate angles so we should expect corrections even in the single-logarithmic limit.

Secondly, our analytic discriminant works in the limit of small angles, where quark-
gluon discrimination can be thought of as universal (at least within our single-logarithmic
approximation). The deep-learning methods will learn additional information, starting at
the single-logarithmic accuracy, from radiation at large angle. Since this information is
process-dependent, one should expect this gain in performance to come at the expense of
an enlarged sensitivity to the hard process. We will come back to this point in section 7.3.

Lastly, there can be effects of subleading perturbative corrections that are not included
in our analytic approach. These can either be subleading logarithmic corrections beyond
single logarithms, or finite, fixed-order, corrections which would induce additional correla-
tions between the Lund declusterings that are neglected at our analytic accuracy but that
the neural network training would pick. In section 7.6, we show that if we take a more
asymptotic regime, the gap between the analytic and deep-learning approaches shrink,
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strongly suggesting that the differences seen in figures 6 and 7 is not dominated by our
simplified treatment of clustering logarithms.

We should also point out that subleading logarithmic corrections, or fixed-order correc-
tions, are not fully included in Monte-Carlo event generators like Pythia. The improvement
seen with deep-learning approaches should therefore be taken with caution.14

Of course, to this list of perturbative effects, one should also add non-perturbative
corrections which, while beyond the reach of our analytic approach, are captured by the
neural networks.

7.3 Resilience

The discriminating power of a quark-gluon tagger is not necessarily the only quality feature
we may want to require. Indeed, our extraction of the tagging performance is obtained for
a specific event sample which can have its own limitations or simply be different from the
event sample used in later practical applications.

Ideally, one would want a tagger to be resilient, i.e. to show a degree of insensitivity
to potential mismodelling aspects or to specific details of an event sample. For example, if
we want to be able to describe a tagger from first-principles perturbative QCD, we would
want to limit its sensitivity to the modelling of non-perturbative effects. In a similar spirit,
we want to limit the sensitivity of a tagger to the details of the event generator used to
obtain the event sample. More specifically, in the context of quark-gluon discrimination,
we want our taggers to be insensitive to the details of the (hard) processes contributing
to the signal and background(s) we try to separate. This last point is intimately related
to the intrinsic ill-defined nature of quark-gluon tagging. In this context, resilience can be
seen as a measure of universality.15

In this section, we therefore investigate the resilience of our tagger against the three
effects listed above: (i) non-perturbative effects, (ii) the choice of the hard process and,
(iii) the choice of a Monte Carlo event generator. The first is probed by comparing our
reference sample to a sample generated at parton level, i.e. with hadronisation and multi-
parton interactions switched off (see section 7.1 for details). For the second we use either
our reference Z + jet sample or a sample of dijet event, and for the third, we compare our
default Pythia8 sample to a Herwig7 sample.

For the analytic models, we apply them directly to the different event samples, ob-
taining in each case the quark and gluon efficiency as a function of the cut on the model’s
output, i.e. either the Iterated Soft Drop multiplicity, or the analytic likelihood ratio for
the “Lund density” approach or for our new primary or full analytic discriminants. For

14It is tempting to argue that Monte Carlo event generators implement a more precise kinematics than the
approximate one used in our analytic approach. For example, the Sudakov factor in the analytic calculations
only retains the contributions up to single logarithms. For the fixed-coupling toy microjet sample used in
section 6, we had instead kept the full z dependence of the splitting function in the Sudakov factor. We
have checked that the effect of keeping the full splitting instead of keeping only the terms relevant at the
single-logarithmic accuracy is, at most, 0.5%. This is clearly insufficient to explain the differences between
the analytic and machine-learning approaches observed here.

15The idea of being resilient against details of the hard process however extends to tagging applications
beyond quark-gluon discrimination.
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machine-learning approaches, we have trained the networks on our reference Pythia8 Z+jet
sample with hadronisation and multi-parton interactions, and applied the resulting network
to the other event samples.

For a given fully-specified tagger, i.e. a tagging method and cut on its output (a.k.a.
a working point), one obtains quark and gluon efficiencies ε(ref)q,g and ε(alt)q,g , respectively for
the reference and alternative event samples. The resilience of the taggers is then simply
defined as the inverse of the relative change between the two samples:

ζ =

(2(ε(alt)q − ε(ref)q )
ε
(alt)
q + ε

(ref)
q

)2

+
(

2(ε(alt)g − ε(ref)g )
ε
(alt)
g + ε

(ref)
g

)2−1

. (7.1)

With this choice, a bigger ζ corresponds to a more resilient tagger. We should then select a
working point at which we evaluate the performance and resilience of a tagger. In practice,
we take the point at which the tagging performance, defined as the significance εq/

√
εg, is

maximal for the reference sample. This is typically realised for ε ∼ 0.3−0.5. The resulting
performance (significance) and resilience are denoted by Πbest and ζbest, respectively. Ide-
ally, we therefore seek for a tagger with large Πbest and ζbest. We have tested that selecting
instead a fixed quark efficiency, e.g. εq = 0.5, produces similar results.16 That said, while
quantitative arguments can be made about the relative discriminating performance of our
taggers, it is more delicate to reach such a precise quantitative discussion of resilience. The
discussion below therefore tries to remain mostly at a qualitative level, i.e. noting that
taggers with larger resilience are likely to have less modelling uncertainties. It would be
interesting — and clearly beyond the scope of this paper — to perform a dedicated study
of resilience.

We want to study how resilience and performance behave for our discriminants, varying
the kt cut on Lund declusterings. Our results are presented in figure 8, for the three types
of resilience we want to investigate: resilience against the specifics of the hard process
(figure 8a), resilience against non-perturbative effects (figure 8b), and resilience against
the choice of the event generator (figure 8c). To guide the eye, the results corresponding to
a kt cut of 1GeV are represented with filled symbols, with all the other results using open
symbols. For all three resiliences, the usual trade-off is observed: as we increase the kt cut,
performance decreases and resilience increases. Overall, our analytic models and our Deep
Learning results show a similar behaviour, although a given performance-resilience point is
achieved for a different kt cut for different taggers. Our analytic models however appear as
slightly more resilient to non-perturbative effects than their machine-learning equivalents.

Compared to the Iterative Soft Drop and Lund density approaches, one sees that the
analytic model typically bring a gain in performance without sacrificing in resilience.

Focusing on the results with a kt cut of 1GeV, it is interesting to see that the machine-
learning-based techniques reach a larger performance, as already seen in figures 6 and 7, at
the expense of having a smaller resilience. This hints towards the interpretation that this

16In general, one can argue that the lower εq values should be ignored because they are subject to large
statistical fluctuations. The large and low εq values are also impractical because they do not yield a large
discriminating power.
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Figure 8. Plots of performance as a function of resilience for different discriminants. The curves
are obtained by scanning over a range of accessible kt,cut values. The filled symbols correspond to
a kt cut of 1GeV. Different plots correspond to different probes of resilience: (a) probes the sample
dependence (replacing the Z+jet sample with a dijet sample, (b) probes non-perturbative effects
(using parton-level simulations instead of full simulations with hadronisation and multi-parton inter-
actions) and (c) probes the effect of the Monte Carlo generator (using Herwig 7 instead of Pythia 8).

gain in performance is obtained by the neural networks exploiting information (i) going
beyond the “universal” collinear behaviour (worse resilience against the choice of hard
process), (ii) in non-perturbative effects (worse resilience against hadronisation and MPI),
and (iii) specific to the modelling of the events (worse resilience against the choice of event
generator). In all three cases, increasing the kt cut by a few hundred MeVs would result
in a behaviour very similar to the one of the analytic model, both in terms of performance
and in terms of resilience.

Finally, if all one cares about is performance, machine-learning discriminants using
the full information in the Lund tree show the best result, albeit at the expense of a poor
resilience. This should at least be kept in mind when using a quark-gluon discriminant for
potentially different applications, or when assessing uncertainties associated with a tagger.
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7.4 Comparison with other approaches

In this section, we compare the performance of our Lund-plane-based taggers to that of
other existing taggers.

We therefore select our taggers based on the full Lund tree: the Lund-Net tagger with
no kt cut and the analytic discriminant (“analytic(tree)” in previous figures) with a kt cut
of 1GeV (referred to as “Lund NLL” in this section), and compare them to a series of
pre-existing discriminants. We first consider benchmark jet shapes:

• angularities [19, 20], defined as the following sum over the jet constituents λα =
(∑i∈jet pt,i∆Rαi,jet)/(Rα

∑
i∈jet pt,i). We work with α = 1, sometimes referred to as

width or girth.

• energy-energy correlation functions [21], defined as the following sum over pairs of
jet constituents EECβ = (∑i,j∈jet pt,ipt,j∆R

β
ij)/[Rβ(∑i∈jet pt,i)2]. In this case, we will

set β = 1/2.

• to probe the effect of a kt cut similar to the one we introduce in the Lund plane
techniques, we have considered the case where the angularities and energy-correlation
function are defined on the Lund declusterings (primary and secondary) above a given
kt cut. We recall that in this case, we expect that the Iterative Soft Drop multiplicity
and our analytic Lund-tree discriminant are respectively optimal at leading and next-
to-leading logarithmic accuracy in QCD.

In all cases, a cut is applied on one of these jet shapes and the full ROC curve is obtained
by varying the cut. We then consider a series of recent machine-learning-based quark-gluon
discriminants (for which we also apply a cut on the network output):

• Particle-Net described in ref. [28], based on point clouds. In practice, we have di-
rectly used the ParticleNet code available from [74], modifying the provided keras
example to use our event sample. We have used a batch size of 1000 and kept the
best model over a training of 50 epochs. Note that this model includes the particle
ID in the network inputs.

• Particle-Flow Networks (PFN) from ref. [27]. This includes the rapidity, azimuth
(both relative to the jet axis) and transverse momentum information of each jet
constituent. Each particle is mapped into a per-particle latent space. The sum over
all particles of these spaces is then mapped onto a final discriminating variable. We
have also considered the so-called PFN-ID approach where the particle IDs are also
included. In practice, we have used the code provided in the EnergyFlow package [75],
modifying the examples to use our event samples and training over 60 epochs.

• Energy-Flow Networks (EFN) also from [27] and again only adapted from the example
given in the EnergyFlow package to our needs. The approach is similar to that of
the PFN above except that the latent space uses IRC-safe information through a
weighting proportional to the pt of each particle.
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Finally, we also consider the Lund-Net approach, labelled “Lund-Net(+ID)” where each
Lund tuple (ln ∆, ln kt, ln z,Ψ) is supplemented by one additional integers for each of the
two subjets j1 and j2 and determined as follows: if the subjet has a single constituent we
use the PDG ID of the constituent, otherwise we set the integer to 0. The idea is similar
to having particle identification added from the PFN to the PFN-ID approach.17

Our findings are presented in figure 9, for the signal significance (top row), and for
the trade-off between significance and resilience against the choice of Monte-Carlo event
generator (bottom row). Focusing first on the signal significance for analytic discriminants,
figure 9a, we see relatively different patterns between the shape-based observables λ1 and
EEC0.5 and the Lund-based observables, with the performance peaking at larger values
of the quark efficiency in the latter case, with shape-based observables reaching a better
overall performance. However, computing the EEC and λ using the Lund declusterings with
a kt above 1GeV, i.e. with the same input information in all cases, we see that our analytic
Lund discriminant shows indeed an improvement at all quark efficiencies compared to the
shape-based discriminants. A similar pattern is seen in the resilience plot on figure 9c with
the Lund analytic model with a 1-GeV kt cut being intermediate between the jet shape
with a 1-GeV kt cut and with no kt cut. It is interesting to notice that the addition of
particle ID information to the Lund-Net approach improves the performance at low kt cut,
or with no kt cut at all, but changes neither the performance nor the resilience once a larger
kt cut is applied. This is most likely due to the fact that all the input subjets have more
than one constituent and hence the ID information is 0. This contrasts with the findings in
ref. [30], where the addition of the jet mass had a negative impact on resilience at large kt
cuts. At low resilience (large significance), the jet shapes give a slightly better performance
vs. significance behaviour than our Lund-plane approach. Focusing instead on the AUC
— the bottom-right table in figure 9 — we see that our analytic Lund-tree approach does
a better job than the other jet shapes (i.e. a lower AUC), including jet shapes computed
on the full set of constituents.

Moving to machine-learning-based models, figure 9b, we see a significance pattern
mostly similar across different models. The performance of Lund-based models is on par
with the one obtained from Particle-Net. Compared to energy/particle flow approaches,
our Lund-based results show a slightly better performance than the EFN and PFN results,
but fall slightly lower than the performance of PFN-ID. Adding the particle ID informa-
tion using our Lund-Net(+ID) approach recovers a performance similar to the PFN-ID
approach, although with a marginally smaller average peak performance. If we instead
look at the AUC, we see that the Lund-Net(+ID) reaches the best performance (lowest
AUC), marginally better that the PFN-ID and Lund-Net approaches, then followed by the
Particle-Net model. While the PFN-ID method shows a small performance improvement
at mid signal efficiency, the Lund-Net(+ID) setup has a small advantage at small and large
signal efficiencies.18 The observed differences are however of a size similar to the statisti-

17In an experimental context, complete particle-ID information would not be available. One could however
separate charged tracks from neutral energy deposits in calorimeters, with potential additional information
such as heavy quarks or electromagnetic v. hadronic calorimeters.

18Including the particle ID information in a more coherent way, e.g. as a separate information that is fed
to the final dense layers, one might be able to make up the difference with PFN-ID at mid quark efficiencies.
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model AUC
nSD (kt>1GeV) 0.1658
Lund NLL (kt>1GeV) 0.1441
EEC0.5 (all kt) 0.2074
EEC0.5 (kt>1GeV) 0.2150
λ1 (all kt) 0.2270
λ1 (kt>1GeV) 0.2371
Lund-Net 0.0858 ± 0.0007
Lund-Net(+ID) 0.0835 ± 0.0005
Particle-Net 0.0871 ± 0.0009
PFN 0.0994 ± 0.0009
PFN-ID 0.0853 ± 0.0005
EFN 0.1080 ± 0.0010

Figure 9. Comparison of the Lund-plane-based approaches with other models. Explicit plots of
the signal significance εq/

√
εg are shown in the upper plots, first for analytic discriminants, figure

(a), then for machine-learning-based approaches, figure (b). The bottom panel, figure (c), shows
the corresponding performance v. resilience plot, where the resilience is measured with respect to
the choice of Monte Carlo generator (cf. section 7.3). The table on the bottom-right corner gives
the area under the ROC curve (AUC) for the different models (lower is batter). For the ML-based
models, the uncertainty is half the difference between the minimal and maximal values obtained
over 5 different runs.
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Figure 10. Plots showing the ratio of the ROC curve with and without azimuthal-angle dependence
and/or clustering logarithms. The plots of the left column include only primary declusterings
while the plots of the right column include the full declustering tree. The bottom plots include
declusterings above a 1-GeV kt cut, while the top plots include all relative transverse momenta. In
all cases, the ROC curve is normalised to the ML Results including azimuthal-angle dependence.

cal fluctuations observed in our simulations (only shown, on the significance plot, for the
Lund-Net(+ID) and PFN-ID for the sake of readability).

Finally, from figure 9c, we see a similar degree of resilience for all machine-learning-
based approaches. Again, it would be interesting to train energy/particle flow networks or
the ParticleNet network on Lund declusterings above a certain kt cut (or using another cut
definition) to study the performance versus resilience trade-off in a broader perspective.

7.5 Effect of clustering logarithms and of azimuthal angles

All the results presented so far have included the dependence on the Lund azimuthal angles
ψi. Since it is known that these are not properly described at single-logarithmic accuracy
by the standard dipole showers (including Pythia8) [76], we want to briefly investigate
their impact on discriminating power. Additionally, from our analytic perspective, the
dependence on the Lund azimuthal angles ψi only comes in through the clustering loga-
rithms. This therefore gives us an explicit opportunity to investigate the numerical impact
of including clustering logarithms into our analytic discriminants.

In figure 10, we show the background rejection, 1/εg, including either only primary
declusterings (left column) of the full declustering tree (right column), as obtained using
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our reference Pythia 8 Z+jet sample with hadronisation and multi-parton interactions.
The top row, with only machine-learning results, corresponds to the case without a kt cut
while the bottom row, with both ML and analytic results, includes only the declusterings
with kt ≥ 1GeV. To increase readability, we show in all cases, the ratio relative to what is
obtained with the corresponding ML model — LSTM or Lund depending on whether only
the primary or all the declusterings are used — including the ψ dependence.

We first discuss the ML results, presented in figure 10 either with (solid, black) or with-
out (dashed, green) ψ information. We see that including the ψ information brings a 5−15%
performance gain, mostly at intermediate quark efficiency. This gain is larger at lower kt
where non-perturbative effects are larger. When a 1-GeV kt cut is imposed, we also show
the results of our analytic quark-gluon taggers, again using either primary-only information
(left column), or using the full declustering tree (right column). In each case, three results
are given: including the ψ angles (solid, blue), not including the ψ angles but including the
(ψ-averaged) clustering logarithms from eq. (4.5) (dashed, red), or including neither the ψ
angles, nor the clustering logarithms (dotted, magenta). We again see a ∼ 10% increase in
performance brought by the inclusion of azimuthal angles. The fact that these performance
gains are of similar magnitude in the deep-learning and analytic approaches indicates that
our simplified treatment of clustering logarithms is a decent approximation.

Finally, when the azimuthal angles are not included, we see that the influence of
clustering logarithms is small.

7.6 Asymptotic single-logarithmic limit

In this final study, we want to further study the differences between the analytic and
ML results. Our aim is here to take a limit where subleading effects decrease. Since
our analytic approach technically resums double and single logarithms of log(ptR/kt,cut),
we want to proceed in a similar way as for the NLL-accuracy tests in [76], i.e, take the
limit αs(ptR) → 0, log(ptR/kt,cut) → ∞ while keeping αs(ptR) log(ptR/kt,cut) constant.
The main idea behind this limit is that subleading-logarithmic contributions as well as
fixed-order contributions are suppressed as αs → 0.

Generating and analysing events over an exponentially increasing range of scales poses
a series of numerical challenges which, in practice, make it unreachable for standard Monte
Carlo event generators like Pythia8. We have therefore used instead the PanScales e+e−

code developed precisely to overcome these challenges in ref. [76]. We have therefore
generated e+e− → Z → qq̄ (quark) events and e+e− → H → gg (gluon) events with a
centre-of-mass energy Q, fixing αs(Q) log(Q/kt,cut) = 0.32 and taking αs(Q) to be either
0.04, 0.02, 0.01, corresponding to L = log(Q/kt,cut) of either 8, 16, or 32. In all cases, we
have used the PanLocal shower in its antenna variant with the β parameter set to 1/2.
Subleading colour corrections are included using the Nested Ordered Double-Soft (NODS)
scheme as described in [49]. This produces event samples with a single-logarithmic accuracy
with the exception of the subleading-Nc corrections for which the NODS method only
guarantees the correct behaviour for (any number of) pairs of emissions at commensurate
angles. We reconstruct the e+e− Lund declusterings in each of the event hemispheres.
The e+e− reconstruction follows an almost-trivial adaptation of the hadronic collisions
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Figure 11. Dependence of (a) the AUC, and (b) the ROC curve on L = log(Q/kt,cut) fixing αsL =
0.32. The results are obtained with an e+e− parton-level setup using the PanLocal PanScales shower
which is NLL-accurate. Different curves show different methods and we see that the analytic and ML
models converge to one another as we tale the asymptotic limit L→∞, αs → 0, αsL = constant.
For the plots on the right column, we take the ratio of the ROC curves to the Lund-Net results.

technique described in section 2, except perhaps for the reconstruction of the azimuthal
angle ψ which is described in details in [76].

Both our analytic methods and the approaches based on Machine Learning can be
straightforwardly applied to these new sets of events. We therefore study the same set of
quark-gluon discriminants as in section 7.2. The contribution from clustering logarithms
is included in our analytic models and information from the Lund azimuthal angles is
included both in the analytic and ML approaches.

Our results are presented in figure 11 for the AUC, figure 11a and for the ROC curves,
figure 11b. For the latter, we have normalised the gluon rejection rate ε−1

g to the Lund-
Net rejection rate. One can see from these plots that the difference between the analytic
and Machine-Learning-based methods decrease when increasing L (decreasing αs) at fixed
αsL. This is true separately for the approaches using only primary declusterings (“ana-
lytic(prim)” and “Lund+LSTM”) and for the approaches using the full declustering tree
(“analytic(tree)” and “Lund-Net”). At the same time, the performance gain compared to
the Iterated SoftDrop multiplicity increases.

Before closing this section, we want to address a last point about the azimuthal angle
dependence and single-logarithmic accuracy. It has been pointed out in ref. [76] that, due to
non-physical recoil effects, dipole showers such as Pythia or Dire, would generate a spurious
dependence on ψ, potentially biasing the assessment of quark-gluon classification. Using

– 32 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
7

the machinery described in this section, we have studied potential differences between the
Pythia shower and the PanScales showers which are free of this effect [76]. Within the few-
percent accuracy of our studies we have not been able to isolate a clearly-visible impact of
this effect.

8 Conclusions

This paper addresses the question of quark/gluon discrimination using the Lund-plane
approach to characterise the substructure of jets. Our main result is that it is possible to
compute the quark-gluon likelihood ratio from the first principles in QCD. The calculation
is done at the single-logarithmic accuracy, including all collinear contributions as well
as clustering effects for any number of pairs of emissions at commensurate angles. This
automatically provides us with an optimal quark/gluon tagger at the same accuracy.

As expectable, this tagger shows an improved performance either compared to using the
average Lund plane density to build the likelihood ratio, or compared to the Iterated Soft
Drop multiplicity which corresponds to the optimal quark/gluon discriminant at leading
(double) logarithmic accuracy. Most of the improvement (. 10% for the AUC compared
to nSD) is already captured when including only primary declusterings, but the effect
of additional declustering in subsidiary Lund planes (∼ 3%) is clearly visible, especially
at larger quark efficiencies. The gain in performance can be attributed to the better
treatment of the kinematics of each emission, e.g. through the full Altarelli-Parisi splitting
functions, through the full antenna pattern for emissions at commensurate angles, and to
a better treatment of the correlations between emissions, e.g. by taking into account the
energy of the emitting parton or by including clustering effects. Furthermore, this gain in
performance is accompanied by a gain in resilience against effects beyond our perturbative
calculation. In this context, we have studied three specific effects: the dependence against
non-perturbative effects, the dependence against the specific choice of quark/gluon enriched
samples used as benchmarks, and the choice of Monte Carlo event generator.

In section 7.4, we have compared our Lund-based approach to other typical
quark/gluon taggers using jet substructure, like angularities or energy correlation functions.
Focusing for simplicity on the case where all the taggers are applied to Lund decluster-
ings with a kt above 1GeV to reduce non-perturbative effects, we see that the Lund-based
likelihood approach gives a gain in performance, especially at large quark efficiency, while
maintaining a similar degree of resilience.19

The second set of results in this paper is the extensive study of quark/gluon taggers us-
ing deep-learning techniques combined with Lund declustering information. When applied
to the full set of declusterings in a jet, our ML-based tagger reaches a performance (and
resilience) comparable to that obtained with Particle-Flow networks [27], and marginally
better than what is achieved by Particle-Net [28]. Compared to the analytic results, our
ML-tagger gives a clearly visible performance gain, even when considering declusterings
above a given kt cut. This gain in performance, however, comes at a price in all the forms

19If the jet shapes are computed on the full jet, they yield a larger significance at smaller quark efficiency
at the expense of a reduced resilience against non-perturbative effects.
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of resilience we have studied, especially the sensitivity to hadronisation and multi-parton
interactions.

One of the key points of this paper is the direct comparison between the analytic
and deep-learning approaches. Since our tagger targets the optimal discriminant in the
single-logarithmic approximation one can directly compare its performance with that of
the deep-learning models. We first did that in the strongly angular-ordered limit where
our analytic calculation is exact. The results in section 6 indicate a convergence of the deep-
learning taggers to the optimal performance as long as the size of the network is taken large
enough. Beyond the collinear limit, where our analytic treatment is only approximate, the
deep-learning approach shows a better performance. However, if we move progressively
to the single-logarithmic asymptotic limit (αs → 0 at fixed αs log(Q/kt,cut) the difference
between the two approaches drastically reduces as we showed in section 7.6. At the same
time, the gain in performance compared to leading-logarithmic-accurate taggers — i.e. the
average Lund density and the Iterated Soft Drop multiplicity — increases.

The above observations strongly suggest that the gain in performance observed for
deep-learning taggers (in addition to our analytic tagger) in phenomenological Monte Carlo
applications come predominantly either from subleading effects (beyond single logarithms),
from large-angle soft emissions (not included in our analytic calculation), or from non-
perturbative effects.

This points towards several interesting physics considerations. First, subleading log-
arithmic effects, albeit present in data, are not properly included in any parton shower
Monte Carlo generator today. Conclusions regarding subdominant logarithmic effects
should therefore be taken carefully. In this context, it would be interesting in the future
to further investigate potential differences between standard dipole showers (like Pythia)
which are known to have failures at the single-logarithmic accuracy, or even at leading-log
for subleading colour effects, and the PanScales showers which are NLL-accurate.

Then, large-angle soft emissions are process-dependent and should therefore be treated
carefully when applied outside the configurations where they have been tested and cali-
brated. In the future, it would be interesting to see if an analytic treatment similar to the
one adopted in this paper could allow for quantitative assessment of the process-dependence
of quark/gluon discrimination (see also ref. [46] for a Monte-Carlo-based study).

Finally, non-perturbative effects come with non-negligible modelling uncertainties
and should therefore also be taken carefully. The ability to progressively reduce non-
perturbative effects by increasing the kt cut-off on Lund declusterings could help further
investigating the impact of non-perturbative effects, and the associated systematic uncer-
tainties, in a practical context.

In conclusion, we have seen that Lund-plane declusterings were useful to define a
variety of quark/gluon discriminants, bridging regions targetting high discriminating
performance and regions where a high-precision degree of control can be reached from
first-principles QCD.
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A Sudakov factors with exact splitting functions

In section 6, we have used an event sample generated in the strong-angular-ordered limit to
compare the performance of our analytic discriminants (also in the limit of strong angular
ordering, see section 3 to that of deep-learning-based discriminants. To guarantee that the
analytic approach reproduces the exact likelihood ratio, we have kept the full Altarelli-
Parisi splitting functions in the Sudakov (using a fixed-coupling approximation). If we
have a hard parton of momentum xpt (with pt the initial transverse momentum of the jet)
and flavour f , and compute the Sudakov factor between an angle ∆i−1 and ∆i, we find:

− logS(i−1,i)
f = 2αsCf

pi

[
log2 x1

2 − log2 x2
2 +Bf log x2

x1
+ Li2(x1)− Li2(x2) + δRf

]
, (A.1)

with

x1 = kt,cut
x∆i−1pt

, Bq = −3
4 , (A.2)

x2 = kt,cut
x∆ipt

, Bg = −11CA − 4nfTR
12CA

, (A.3)

and

δRq = 3
2(x2 − x1), (A.4)

δRg = 3
2(x2 − x1) +

(1
2 −

nfTR
CA

)[
(x2 − x1)− 1

2(x2
2 − x2

1) + 2
9(x3

2 − x3
1)
]
. (A.5)
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