
https://doi.org/10.1007/s00224-022-10085-w

Second-Order Finite Automata

Alexsander Andrade de Melo1 Mateus de Oliveira Oliveira2

Accepted: 30 April 2022

Abstract
Traditionally, finite automata theory has been used as a framework for the repre-
sentation of possibly infinite sets of strings. In this work, we introduce the notion
of second-order finite automata, a formalism that combines finite automata with
ordered decision diagrams, with the aim of representing possibly infinite sets of sets
of strings. Our main result states that second-order finite automata can be canonized
with respect to the second-order languages they represent. Using this canonization
result, we show that sets of sets of strings represented by second-order finite automata
are closed under the usual Boolean operations, such as union, intersection, differ-
ence and even under a suitable notion of complementation. Additionally, emptiness
of intersection and inclusion are decidable. We provide two algorithmic applications
for second-order automata. First, we show that several width/size minimization prob-
lems for deterministic and nondeterministic ODDs are solvable in fixed-parameter
tractable time when parameterized by the width of the input ODD. In particular, our
results imply FPT algorithms for corresponding width/size minimization problems
for ordered binary decision diagrams (OBDDs) with a fixed variable ordering. Previ-
ously, only algorithms that take exponential time in the size of the input OBDD were
known for width minimization, even for OBDDs of constant width. Second, we show
that for each and one can count the number of distinct functions computable
by ODDs of width at most and length in time 1 , for a suitable

. This improves exponentially on the time necessary to explicitly enu-
merate all such functions, which is exponential in both the width parameter and in
the length of the ODDs.

An extended abstract of this work corresponding to an invited talk at CSR 2020 appeared at [14].

Mateus de Oliveira Oliveira
mateus.oliveira@uib.no

Alexsander Andrade de Melo
aamelo@cos.ufrj.br

1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

2 University of Bergen, Bergen, Norway

Published online: 22 June 2022

Theory of Computing Systems (2022) 66:861–909

/
© The Author(s) 2022, corrected publication 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-022-10085-w&domain=pdf
http://orcid.org/0000-0001-7798-7446
mailto: mateus.oliveira@uib.no
mailto: aamelo@cos.ufrj.br

Keywords Second-order finite automata Ordered decision diagrams
Fixed-parameter tractability

1 Introduction

In its most traditional setting, automata theory has been used as a framework for
the representation and manipulation of (possibly infinite) sets of strings. This frame-
work has been generalized in many ways to allow the representation of sets of more
elaborate combinatorial objects, such as trees [10], partial orders [36], graphs [6], pic-
tures [19], etc. Such notions of automata have encountered innumerous applications
in fields such as formal verification [5, 20], finite model theory [16], concurrency
theory [34], parameterized complexity [11, 12], etc. Still, these generalized notions
of automata share in common the fact that they are designed to represent (possibly
infinite) sets of isolated objects.

In this work, we combine traditional finite automata with ordered decision dia-
grams (ODDs) of bounded width to introduce a formalism that can be used to
represent and manipulate sets of sets of strings, or alternatively speaking, classes
of languages. We call this combined formalism second-order finite automata. We
will show that the width of an ODD is a useful parameter when studying classes
of languages from a complexity-theoretic point of view. Additionally, we will use
second-order finite automata to show that several computational problems involv-
ing ordered decision diagrams are fixed-parameter tractable when parameterized
by width.

Given a finite alphabet and a number , a -ODD is a sequence
1 2 of -layers. Each such a layer has a set of left-states (a

subset of 1), a set of right-states (also a subset of 1), and a set of
transitions, labeled with letters in , connecting left states to right states. We require
that for each 1 1 , the set of right-states of the layer is equal to
the set of left states of the layer 1. The language of an ODD is the set of
strings labelling paths from its set of initial states (a subset of the left states of 1)
to its final states (a subset of the right states of). Since the number of distinct

-layers is finite, the set of all -layers can itself be regarded as
an alphabet. A finite automaton over the alphabet is said to be a second-
order finite automaton if each string 1 in the language accepted
by is a valid ODD. In this case, the second language of is defined as the class
2 of languages accepted by ODDs in . We say

that a class of languages is regular-decisional if there is some second-order finite
automaton such that 2 .

Canonical Forms for Second Order Finite Automata Our main result (Theorem 10)
states that second-order finite automata can be effectively canonized with respect
to their second languages. More specifically, there is an algorithm that maps each
second-order finite automaton to a second-order finite automaton 2 , called
the second canonical form of , in such a way that the following three properties
are satisfied. First, 2 and have the same second language. That is to say,

862 Theory of Computing Systems (2022) 66:861–909

2 2 2 . Second, any two second-order finite automata and with
identical second languages are mapped to the same canonical form. More formally,
2 2 2 2 . Third, 2 .

Here, is the unique deterministic, complete, normalized1 ODD with minimum
number of states with the same language as . Intuitively, the language of 2
consists precisely of the set of canonical forms of ODDs in the language of .
For this reason, we say that Theorem 10 is a canonical form of canonical forms
theorem. From a complexity-theoretic point of view, 2 can be constructed in

time 2nSt 2 2
, where nSt is the number of states of . Additionally this

construction can be sped up to time 2nSt 2 log
if all ODDs in are

deterministic and complete (Observation 11).
We note that canonizing a second-order finite automaton with respect to its

second language 2 is not equivalent to canonizing with respect to its language
. For instance, let and be distinct ODDs such that . Let

and be second-order finite automata with and . Then
the languages of and are distinct () even though their second
languages are equal (2 2).

At a high level, what our canonization algorithm does is to eliminate ambigu-
ity in the language of a given second-order finite automaton. More specifically,
any two ODDs and with in the language of a second-order
finite automaton correspond to a single ODD in the language
of 2 . This implies almost immediately that the collection of regular-decisional
classes of languages is closed under union, intersection, set difference, and even
under a suitable notion of complementation. Furthermore, emptiness of intersection
and inclusion for the second languages of second-order finite automata are decid-
able (Theorem 13). It is interesting to note that non-emptiness of intersection for the
second languages of second-order finite automata can be tested in fixed-parameter
tractable time, where the parameter is the maximum width of an ODD accepted by
one of the input automata (Observation 14). Finally, closure under several operations
that are specific to classes of languages, such as pointwise union, pointwise intersec-
tion and pointwise negation, among others can also be obtained as a direct corollary
(Corollary 16) of a technical lemma from [15].

Main Technical Tool Let be the set of all -ODDs and be
the set of all deterministic, complete -ODDs. The main technical tool of this
work (Theorem 9) states that the transduction can

is 2 2 -regular. In other words, there is an NFA with 2 2

states accepting the language . Additionally, the trans-
duction can , whose domain is restricted to
deterministic, complete ODDs, is 2 log -regular.

Most results of our work follow as a consequence of Theorem 9. If we do not take
complexity theoretic issues into account, then some of our decidability results also

1By normalized we mean that the states of the ODD are numbered according to their lexicographical order.
In this way is syntactically unique and not only unique up to isomorphism.

863Theory of Computing Systems (2022) 66:861–909

follow by employing other notions of canonizing relations (see Section 7 for further
discussion on this topic). Nevertheless, the transductions can and can

enjoy special properties that make them attractive from a complexity theoretic point
of view. In particular, as we will see next, these transductions have applications in
the fixed-parameter tractability theory of computational problems related to ordered
decision diagrams ODDs. It is worth noting that ODDs comprise the well studied
notion of ordered binary decision diagrams (OBDDs) with fixed variable ordering
as a special case. And indeed, the width parameter has relevance in several contexts,
such as learning theory [17], the theory of pseudo-random generators [18], the theory
of symbolic algorithms [15], and structural graph theory [13]. Additionally, Theorem
9 implies that the set of all minimized, determinis-
tic, complete ODDs accepting the language of some ODD in is regular
(Corollary 12), and therefore, can be accepted by some deterministic finite automa-
ton . This result may be of independent interest since the fact that the canonical
form has minimum number of states among all deterministic, complete ODDs
with the same language as is a relevant complexity theoretic information about
the language . One interesting consequence of this result is that there is a bijec-
tion from the set of accepting paths of and the class of languages accepted by
ODDs in . Additionally, the ODD corresponding to each such a path p has
minimum number of states among all deterministic, complete ODDs accepting the
language p .

Algorithmic Applications Although ODDs of constant width constitute a simple
computational model, they can already be used to represent many interesting func-
tions. It is worth noting that for each width 3, the class of functions that can
be represented by ODDs of constant width is at least as difficult to learn in the PAC-
learning model as the problem of learning DNFs [17]. Additionally, the study of
ODDs of constant width is still very active in the theory of pseudo-random genera-
tors [18]. Our main results can be used to show that several width/size minimization
problems for nondeterministic and deterministic ODDs can be solved in fixed param-
eter tractable time when parameterized by width. For instance, we show that given
an ODD of length and width over an alphabet , one can compute in time
2 2 an ODD of minimum width such that . A more
efficient algorithm, running in time 2 log can be obtained if the input
ODD is deterministic (Theorem 20). Our algorithm is in fact more general and can
be used to minimize other complexity measures, such as number of states and num-
ber of transitions among all ODDs belonging to the language of a given second-order
finite automaton (Theorem 19).

Our algorithm for width minimization of ODDs parameterized by width naturally
can be used to minimize the width of ordered binary decision diagrams (OBDDs),
since OBDDs with a fixed variable ordering correspond to ODDs over a binary
alphabet. Width minimization problems for OBDDs have been considered before in
the literature [3, 4], but previously known algorithms are exponential on the size of
the OBDD even for OBDDs of constant width, and even in the case of when one is
not allowed to vary the order of the input variables. Our FPT result shows that width

864 Theory of Computing Systems (2022) 66:861–909

minimization for OBDDs of constant width with a fixed variable ordering can be
achieved in polynomial time.

As a second application of our main results, we show that the problem of counting
the number of distinct functions computable by ODDs of a given width and a given

length can be solved in time 22
2 1 . This running time can be improved

to 22
log 1 if we are interested in counting the number of functions com-

putable by deterministic, complete ODDs of width and length (Corollary 24).
We note that this restricted case is relevant because ordered binary decision diagrams
(OBDDs) defined in the literature are usually deterministic and complete. Our results
imply that counting the number of functions computable by OBDDs of width with
a fixed variable ordering can be solved in time polynomial in the number of variables.
This improves exponentially on the approach of explicit enumeration without repeti-
tions, which takes time exponential in . This result is obtained as a consequence of
a more general theorem analyzing the complexity of the problem counting functions
represented by ODDs of a given length in the language of a given second-order finite
automaton (Theorem 22).

The reminder of this paper is organized as follows. Next, in Section 2, we define
some basic concepts and state well-known results concerning finite automata and
ordered decision diagrams. Subsequently, in Section 3, we formally define the notion
of second-order finite automata and state our main results (Theorem 9 and Theorem
10). In Section 4, we state several closure properties for second-order finite automata.
In Section 5, we discuss several algorithmic applications of our main results. In
Section 6 we prove Theorem 9. Finally, in Section 7 we draw some concluding
remarks and establish connections with related work.

2 Preliminaries

2.1 Basics

We denote by
.

0 1 the set of natural numbers (including zero), and by
.

0 the set of positive natural numbers. For each , we let
.

1 2 and
.

0 1 1 . For each finite set , we let
.

denote the power set of . For each two sets and , each function
and each subset , we let denote the restriction of to ,

i.e. the function such that for each .

2.1.1 Alphabets and Strings

An alphabet is any finite, non-empty set . A string over an alphabet is any finite
sequence of symbols from . The empty string, denoted by , is the unique string of
length zero. We denote by the set of all strings over , including the empty string
, and by

.
the set of all non-empty strings over . A language over

is any subset of . In particular, for each , we let be the language of all
strings of length over . We say that an alphabet is ordered if it is endowed with

865Theory of Computing Systems (2022) 66:861–909

a total order . Such an order is extended naturally to a lexicographical
order on the set . Unless stated otherwise, we assume that each
alphabet considered in this paper is endowed with a fixed total order.

2.1.2 Finite Automata

A finite automaton (FA) over an alphabet is a tuple , where
is a finite set of states, is a set of initial states, is a set of final

states and is a set of transitions. The size of is defined as
.

log . We denote the number of states of by nSt
.

, and the
number of transitions of by nTr

.
.

Let , and . We say that reaches from if either and
, or if 1 for some and there is a sequence

0 1 1 1 2 2 1 ,

of transitions such that 0 , and 1 1 for each 1 .
We say that accepts if there exist states and such that reaches
from . The language of is defined as the set

.
is accepted by

of all finite strings over accepted by . For , we say that a language is
-regular if there exists a finite automaton with at most states such that .
We say that is deterministic if contains exactly one initial state, i.e. 1,

and for each and each , there exists at most one state such that
is a transition in . We say that is complete if it has at least one initial

state, and for each and each , there exists at least one state
such that is a transition in . We say that is reachable if for each state

, there is a sequence of transitions from some initial state of to . If is
a reachable finite automaton, then for each state , we let lex denote the
lexicographically first string that reaches from some initial state, according to the
order . We say that is normalized if for some , and if
and only if lex lex for each .

In what follows, we may write , , and to refer to the sets
, , and , respectively.
The following theorem, stating the existence of canonical forms for finite

automata, is one of the most fundamental results in automata theory.

Theorem 1 For each finite automaton , there exists a unique finite automaton
with minimum number of states such that is deterministic, complete,

normalized, and satisfies .

We note that given a (possibly non-deterministic) finite automaton , the canon-
ical form of can be obtained by the following process. First, one applies
Rabin’s power-set construction to in order to obtain a deterministic, complete
finite automaton that accepts the same language as . Subsequently, by using

866 Theory of Computing Systems (2022) 66:861–909

Hopcroft’s algorithm [25] for instance, one minimizes in order to obtain a deter-
ministic finite automaton that accepts the same language as and has the
minimum number of states. At this point, the finite automaton is unique up to
renaming of states. Thus, as a last step, one obtains the canonical form by
renaming the states of in such a way that the normalization property is satisfied.
Note that the automaton is finally syntactically unique. In particular, for each
two finite automata and , if and only if .

2.2 Ordered Decision Diagrams

2.2.1 Layers

Let be an alphabet and . A -layer is a tuple
.

,
where is a set of left states, is a set of right states,
is a set of transitions, is a set of initial states, is a set of final states and

0 1 are Boolean flags satisfying the two following conditions:

1. if 0, then ;
2. if 0, then .

In what follows, we may write , , , , , and to
refer to the sets , , , and and to the Boolean flags and , respectively.

We let denote the set of all -layers. Note that is non-
empty and has at most 2

2
elements. Therefore, may be regarded as

an alphabet.

2.2.2 Ordered Decision Diagrams

Let be an alphabet and . A -ordered decision diagram (or simply,
-ODD) of length is a string

.
1 of length over the

alphabet satisfying the following conditions:

1. for each 1 , 1 ;
2. 1 1 and, for each 2 , 0;
3. 1 and, for each 1 , 0.

Intuitively, Condition 1 expresses that for each 1 , the set of right states
of can be identified with the set of left states of 1. Condition 2 guarantees
that only the first layer of an ODD is allowed to have initial states. Analogously,
Condition 3 guarantees that only the last layer of an ODD is allowed to have final
states.

Let 1 be a -ODD of length , for some . We let
len

.
denote the length of , nSt

.
1 denote the

number of states of , nTr
.

1 denote the number of
transitions of ,

w
.
max 1

denote the width of . We remark that w .

867Theory of Computing Systems (2022) 66:861–909

For each subset and each positive integer , we denote
by the set of all -ODDs of length whose layers belong to the set .
Additionally, for each subset , we denote by

.
the set

of all -ODDs whose layers belong to the set . In particular, we denote by
the set of all -ODDs of length , and we denote by the

set of all -ODDs.

2.2.3 Length Typed Subsets of k

Let be an alphabet and . In this work, it is convenient to assume that subsets of
are typed with their length. This can be achieved by viewing each subset

as a pair of the form . We let be the set of all
length typed subsets of . Given length typed sets 1 and 2 , we define

1 2
.

1 2 , 1 2
.

1 2 , 1 2
.

1 2 , 1 2
.

1 2 , and for maps and
, we let

.
and 1 . 1 .

2.2.4 Language Accepted by an ODD

Let be an alphabet, , 1 be an ODD in and
1 be a string in . A valid sequence for in is a sequence of transitions

p1 1 q1 p q

such that p 1 q for each 1 , and p q for each .
Such a valid sequence is called accepting for if, additionally, p1 is an initial state
in 1 and q is a final state in . We say that accepts if there exists an
accepting sequence for in . The language of is defined as the (length-typed) set

.
is accepted by

of all strings accepted by . Note that every string accepted by has length .
In Fig. 1, we depict an ODD 0 1 2 5 whose language is the length-

typed set 5 1 5 0 1 5
1 5 0 mod 2 of all

binary strings of length 5 with an even number of occurrences of the symbol ‘1’. For
instance,

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0

is an accepting sequence in for the string 01010, which has two occurrences of the
symbol ‘1’.

2.2.5 Deterministic and Complete ODDs

Let be an alphabet and . A -layer is called deterministic if the
following conditions are satisfied:

1. if 1, then and 1;
2. for each p and each , there exists at most one right state q

such that p q .

868 Theory of Computing Systems (2022) 66:861–909

Fig. 1 Example of ODD 0 1 2 5 whose language consists of all binary strings of length 5 with
an even number of occurrences of the symbol ‘1’

A -layer is called complete if the following conditions are satisfied:

1. if 1, then ;
2. for each p and each , there exists at least one right state q

such that p q .

We let be the subset of comprising all deterministic, complete
-layers.

Observation 2 Let be an alphabet, and .

1. The alphabet has 2 log layers.
2. The alphabet has 2

2
layers.

Proof 1. Let be an alphabet, and 0 1 . We note that there are at
most

1 1 2 2 log

deterministic complete layers with left states, right states and transitions
labeled by symbols in . Indeed, there are ways of choosing left states,
out of the set 1 , ways of choosing right states out of the set
1 , 1 ways of choosing the initial set of states together with
the initial flag (because if 0 and 1 if 1,
due to determinism), 1 2 ways of choosing the subset of final states
together with the final flag (because 0 if 0 and
is an arbitrary subset of if 1), and ways of choosing the
transition relation (because there are left states, and for each such state
and each symbol there are ways of choosing the unique transition with
label leaving). Therefore, we have that 0

1 2 2 log 2 log .
2. By a similar analysis we can conclude that for each alphabet , and each

0 1 there are at most at most

1 2 1 2 2 2
2

(possibly nondeterministic) layers with left state, right states, and transi-
tions labeled with symbols from . The essential differences are that in the

869Theory of Computing Systems (2022) 66:861–909

nondeterministic case, there are 1 2 ways of choosing the set of initial
states together with the initial flag (because if 0, and
may be an arbitrary subset of if 1), and that there are 2
ways of choosing the transition relation (because there are left states,
and for each such a state and each symbol there are 2 ways of
choosing the set of transitions with label leaving). Therefore, we have that

0 1 2 2
2

2
2
.

Let and 1 . We say that is deterministic
(complete, resp.) if for each , is a deterministic (complete, resp.) layer. We
remark that if is deterministic, then there exists at most one valid sequence in
for each string in . On the other hand, if is complete, then there exists at least
one valid sequence in for each string in .

For each , we denote by the subset of comprising
all deterministic, complete -ODDs of length . We denote by the
subset of comprising all deterministic, complete -ODDs.

2.2.6 Isomorphism of ODDs

Let be an alphabet, , and let 1 and 1 be two
ODDs in . An isomorphism from to is a sequence

.
0

of functions that satisfy the following conditions:

1. 0 0 0 is a bijection from 0 to 0 ;
2. 0 0 is a bijection from 0 to 0 ;
3. for each , is a bijection from to ;
4. is a bijection from to ;
5. for each , each left state p , each symbol and each right

state q , p q if and only if 1 p q .

We remark that if 0 is an isomorphism from to , then the
sequence 1 . 1

0
1 is an isomorphism from to , where 1

denotes the inverse function of for each 1 . We say that and
are isomorphic if there exists an isomorphism between and . The following
proposition is immediate.

Proposition 3 Let be an alphabet, , and let and be two -
ODDs. If and are isomorphic, then .

2.2.7 Normalized ODDs.

Let be an alphabet, , and let be a -layer. We say that is reach-
able if for each right state q , there exist a symbol and a left state
p such that p q is a transition in . If is reachable, then we let

be the function such that for each right state q ,

q
.
min p p q ,

870 Theory of Computing Systems (2022) 66:861–909

where the minimum is taken lexicographically, i.e., for each two left states p p

and each two symbols , we have that p p if and only if
p p , or p p and . (Recall we are assuming that the alphabet is
endowed with a fixed total order .) We say that is well-ordered if it
is a reachable, deterministic layer such that for each two right states q q ,
we have that q q if and only if q q . We say that is contiguous
if 1 and 2 for some 1 2 . Then, we say that is
normalized if it is both well-ordered and contiguous.

Let and 1 be an ODD in . We say that is
reachable/well-ordered/contiguous/normalized if for each , the layer is
reachable/well-ordered/contiguous/normalized. Note that is normalized if and only
if it is both well-ordered and contiguous.

2.2.8 Minimized ODDs

Let be an alphabet, , and let 1 be a deterministic, complete

ODD in . We say that is minimized if for each and each

1 , with , we have that nSt
nSt . In other words, is minimized if no deterministic, complete ODD with the
same language as has less states than . The following theorem is the analog of
Theorem 1 in the realm of the theory of ordered decision diagrams.

Theorem 4 Let be an alphabet, , and let be an ODD in .

There exists a unique minimized ODD 2 such that is
deterministic, complete, normalized and satisfies . Additionally, if

then .

We call the ODD of Theorem 4 the canonical form of . We note that
is unique not only up to isomorphism, but also unique up to equality. In par-

ticular, this implies that for each alphabet , each , and each two
ODDs and with , we have that

. The construction of follows a similar process to the construc-
tion of canonical forms of OBDDs with a fixed variable, or equivalently, read-once
oblivious branching programs [37].

2.3 Regular Transductions

Let 1 and 2 be two alphabets. In this work, a 1 2 -transduction is a binary
relation t 1 2 where for each t. We let

Im t
.

2 1 t

be the image of t, and we let

Dom t
.

1 2 t

871Theory of Computing Systems (2022) 66:861–909

be the domain of t. We say that a 1 2 -transduction t is functional if, for each
string 1 , there exists at most one string 2 such that t.

Let 1, 2 and 3 be three (not-necessarily distinct) alphabets. If t is a 1 2 -
transduction and t is a 2 3 -transduction, then the composition of t with t is
defined as the 1 3 -transduction

t t
.

1 3 2 t and t .

For each language 1 , we let

d
.

be the 1 1 -transduction derived from . Then, for each language 1 and
each 1 2 -transduction t, we let

t
.

Im d t 2 t

be the image of under t.

2.3.1 Tensor Product

Let 1 a be a alphabets and . For each a , let 1 be
a string of length over the alphabet . The tensor product of 1 a is defined
as the string

1 a
.

1 1 a 1 1 a

of length over the alphabet 1 a. For each a , let be a
language over . The tensor product of 1 a is defined as the language

1 a
.

1 a 1 a for each a .

2.3.2 Regular transductions

For , we say that a 1 2 -transduction t is -regular if the language

t
.

t 1 2

is -regular. The following proposition states some straightforward quantitative
properties of regular transductions.

Proposition 5 Let 1 2 and 3 be three alphabets, t be an -regular 1 2 -
transduction, t be a -regular 2 3 -transduction, and let 1 be a -
regular language, for some . The following statements hold.

1. The languages Im t and Dom t are -regular.
2. The composition t t is -regular.
3. The transduction d is -regular.
4. The language t is -regular.

Proof Let t be a finite automaton with states and language t t , t be
a finite automaton with states and language t t , and let be a finite

872 Theory of Computing Systems (2022) 66:861–909

automaton with states and language . Note that, such automata t, t

and exist, since by hypothesis t is -regular, t is -regular and is -regular,
respectively.

1. We let Im t and Dom t be the finite automata over the alphabets 2 and
1, respectively, defined exactly as t except for their transition sets, which is

defined as follows:

Im t 1 t , and

Dom t 2 t .

Clearly, Im t and Dom t have at most states each. Moreover, Im t accepts
a string 2 if and only if there exists a string 1 such that t .
Analogously, one can verify that Dom t accepts a string 1 if and only if
there exists a string 2 such that t . Therefore, the language
of Im t is Im t Im t , and the language of Dom t is Dom t

Dom t .
2. We let t t be the finite automaton over the alphabet 1 3, with state set

t t t t , initial state set t t t t , final
state set t t t t and transition set

t t 2

t t .

We remark t t is a finite automaton with at most () states. Moreover,
t t accepts a string 1 3 if and only if there exists 2

such that t and t . Therefore, the language of t t is
t t t t .

3. We let d be the finite automata over the alphabet 1 1 defined exactly
as except for its transition set, which is defined as follows:

d .

Clearly, d has at most states. Moreover, d accepts a string
1 1 if and only if and t . Therefore, the language of d

is d d .
4. We let t be the finite automaton over the alphabet 1 3 such that t

Im d t . Based on (2)–(4), t is a finite automaton with at most
states and with language t t Im d t .

3 Second-Order Finite Automata

In this section, we formally define the main object of study of this work, namely, the
notion of second-order finite automata.

Definition 6 (Second-Order Finite Automata) Let be an alphabet and . A
finite automaton over the alphabet is called a -second-order finite
automaton (SOFA) if .

873Theory of Computing Systems (2022) 66:861–909

In other words, a -second-order finite automaton is a finite automaton
over the alphabet such that each string 1 in is a -
ODD, for some .

From now on, for every -second-order finite automaton , we may refer to
as the first language of . Since each string is a -ODD, we

can also associate with a second language, denoted by 2 , which consists of
the set of languages accepted by ODDs in . More precisely, the second language
of a -second-order finite automaton is defined as the set

2
.

.

Note that 2 is a possibly infinite subset of . We say that a subset
is regular-decisional if there is a second-order finite automaton

such that 2 .

Lemma 7 Let be an alphabet and . For each , there exists
a -second-order finite automaton with 1 states such that

.

Proof Let be the -second-order finite automaton over the alphabet , with
state set , initial state set , final state set

1 and transition set
1 0 0 .

Since each transition is labeled with some element from , it should be clear that
. Now, let and 1 2 be an ODD in . Then

it should be clear that the sequence of transitions 1 1 1 2 2

1 is an accepting sequence in . This implies that .

The following Corollary is an immediate consequence of Lemma 7 and Observa-
tion 2.

Corollary 8 Let be an alphabet, and .

1. The -SOFA has 2
2
states and .

2. The -SOFA has 2 log states and

.

Example 1 The Even Language

In Fig. 2, we depict a 0 1 2 -second-order finite automaton whose second
language consists of all (length-typed) sets

Even 1 0 1 1 0 mod 2

of all binary strings of length with an even number of occurrences of the symbol ‘1’,
for each . Note that, for each , accepts a unique 0 1 2 -ODD of
length , whose language is Even . In particular, the language Even5 is represented
by the ODD depicted in Fig. 1, which is accept by upon following the sequence of
states 0 1 1 1 2.

874 Theory of Computing Systems (2022) 66:861–909

Fig. 2 A 0 1 2 -second-order finite automaton with second language 2 Even

Example 2 The Hypercube Language.

The hypercube of dimension can be defined as the graph with vertex set
0 1 and edge set

0 1 .

Intuitively, vertices of the hypercube are strings in 0 1 and edges are pairs
of strings from 0 1 that differ in exactly one position. From a formal language
standpoint, the edge set of the graph can be encoded by the language

1 1 ,

Note that, is a language over the alphabet 0 1 2.
In Fig. 3, we depict a 0 1 2 2 -second-order finite automaton whose second

language is 2 . Similarly to the second-order finite automa-
ton illustrated in the previous example, for each , accepts a unique
0 1 2 2 -ODD of length , whose language is . In particular, the language
5 is represented by the ODD 5 depicted in Fig. 4, which is accept by upon

following the sequence of states 0 1 1 1 2.

3.1 Main Results

The main result of this work (Theorem 10) states that second order finite automata
can be canonized with respect to their second languages. In other words, there is an
algorithm that sends each SOFA to a SOFA 2 with 2 2 2 in
such a way that 2 2 for any SOFA with the same second language as
. Indeed, 2 satisfies the following interesting property: 2

875Theory of Computing Systems (2022) 66:861–909

Fig. 3 A 0 1 2 2 -second-order finite automaton with second language 2

. Here, for each ODD , denotes the unique deterministic, com-
plete, normalized and minimized ODD with the same language as , as specified
in Theorem 4. In other words, the first language of 2 is precisely the set of
canonical forms of ODDs in the first language of .

We note that even though and 2 have the same second language, i.e.
2 2 2 , the first languages of and 2 may differ. In other words,

it may be the case that 2 . As a simple example for this observa-
tion, let be an ODD in for some alphabet and . Let
be the second order finite automaton such that . Then the language

2 is distinct from whenever . Therefore, can-
onization of a finite automaton with respect to its second language 2 cannot
be achieved by simply canonizing with respect to its first language according
to Theorem 1.

The proof of our main result is a direct consequence of the following theorem,
stating that the traditional minimization and canonization algorithm for ODDs can be
simulated in terms of functional regular transductions.

Fig. 4 The 0 1 2 2 -ODD 5, with language 5 5 5 , accepted by upon following the
sequence of states 0 1 1 1 2

876 Theory of Computing Systems (2022) 66:861–909

Theorem 9 (Canonization as Transduction Theorem) Let be an alphabet and let
.

1. The functional transduction can is
2 2 -regular.

2. The functional transduction can is
2 log -regular.

Intuitively, the transduction can is obtained as a composition of regular
transductions that simulate the application of the usual steps in the canonization of
a single ODD: determinization, elimination of unreachable states, merging of equiv-
alent states and normalization. The transduction can is obtained by a similar
process, except that one may skip the application of the determinization transduc-
tion, yielding in this way, a more efficient construction. Due to its technical nature,
the proof of Theorem 9 will be postponed to Section 6. Next, we show how Theorem
9 can be used to provide a canonization procedure for second order finite automata.
Later, in Section 5, we will provide some algorithmic applications of this theorem in
the realm of the theory of ODDs of bounded width.

Theorem 10 (Canonical Form of Canonical Forms Theorem) Let be an alphabet
(endowed with a total order), , and let be a -SOFA.

One can construct in time 2nSt 2 2
a deterministic, complete, normalized

2 -SOFA 2 satisfying the following properties.

1. 2 ;
2. 2 2 2 ;
3. For each and each -SOFA , if 2 2 , then

2 2 .

Proof Let be a -SOFA and can be the -
transduction specified in Theorem 9. Then, the image of under the transduction
can is the language can . Here, for each
ODD , 2 denotes the unique ODD with minimum
number of states such that is deterministic, complete, normalized and satisfies

, as specified in Theorem 4. Since can is 2 2 -
regular, it follows from Proposition 5.(4), that one can construct a 2 -SOFA

† with nSt 2 2 states such that † can . Now,
let † be the unique finite automaton with minimum number of states such that

† is deterministic, complete, normalized and satisfies † † , as

specified in Theorem 1. Then † can be constructed in time 2nSt 2 2
by

applying the standard power-set construction to †, followed by a DFA minimiza-
tion algorithm, such as Hopcroft’s algorithm. Now, by defining 2 as † , we
have that 2 , and therefore, Condition 1 is satisfied.
This immediately implies that 2 2 2 , since each ODD
has the same language as its canonical form in 2 . Therefore, Condi-
tion 2 is also satisfied. Finally, 2 2 for any -SOFA satisfying

877Theory of Computing Systems (2022) 66:861–909

2 2 , since for any two ODDs and ,
if and only if . Therefore, Condition 3 is also satisfied.

Let be a -SOFA. We call the 2 -SOFA 2 specified in Theo-
rem 10 the second canonical form of . We note that if all ODDs in the language
are deterministic and complete, then 2 is actually a -SOFA, and a faster
canonization algorithm can be obtained, since in this case, the transduction can
used in the proof of Theorem 10 can be replaced by the transduction can ,
which is 2 log -regular.

Observation 11 If is a -SOFA such that , then 2

is also a -SOFA and can be constructed in time 2nSt 2 log
.

An immediate consequence of Theorem 9 and of Proposition 5.(1) is that for each
alphabet , and each , the set of canonical forms of ODDs in is a
regular set. The same holds for the set of canonical forms of ODDs in .

Corollary 12 Let be an alphabet and .

1. The language Im can is 2 2 -
regular.

2. The language Im can is 2 log -
regular.

4 Closure Properties

4.1 Basic Closure Properties

Theorem 10 implies that regular-decisional subsets of are closed under
Boolean operations such as union, intersection and even a suitable notion of bounded
width complementation. These closure properties are formally stated in Theorem 13
below. Let be an alphabet and . We denote by

Det
.

the set of all sets of strings accepted by some deterministic, complete -ODD.
Moreover, given a subset , we denote by

.
Det the

width- complement of .

Theorem 13 Let be an alphabet, , and let , 1 and 2 be -
second-order finite automata. The following statements hold.

1. There is a 2 -second-order finite automaton intersec2 1 2 such that

2 intersec2 1 2 2 1 2 2 .

878 Theory of Computing Systems (2022) 66:861–909

2. There is a 2 -second-order finite automaton union2 1 2 such that

2 union2 1 2 2 1 2 2 .

3. There is a 2 -second-order finite automaton diff2 1 2 such that

2 diff2 1 2 2 1 2 2 .

4. There is a -second-order finite automaton such that

2 Det .

5. For each , there is a 2max -second-order finite automaton
compl2 such that

2 compl2 2 .

6. It is decidable whether 2 1 2 2 .
7. It is decidable whether 2 1 2 2 .

Proof Let 1 2 1 and 2 2 2 be the second canonical forms speci-
fied in Theorem 10 of the automata 1 and 2, respectively. It is well-known that
regular languages are closed under intersection, union and complementation [26].
Consequently, there exist finite automata intersec1 1 2 , union1 1 2 and
compl1 2 over the alphabet 2 , such that

intersec1 1 2 1 2

union1 1 2 1 2 and compl1 2 2 2 .
Clearly,

union1 1 2 1 2 .

Thus, union2 1 2 union1 1 2 is a 2 -second-order finite automaton
with second language

2 union2 1 2 2 1 2 2 .

Moreover, owing to the fact that any two ODDs with the same language have the
same canonical form, one can verify that

intersec1 1 2 1 2 .

Thus, intersec2 1 2 intersec1 1 2 is a 2 -second-order finite
automata with second language

2 intersec2 1 2 2 1 2 2 .

Furthermore, we have that diff2 1 2 intersec2 1 compl1 2 is a 2 -
second-order finite automata with first language

diff2 1 2 1 compl1 2 1 2 2

1 2 .

Thus, since ODDs with the same language have the same canonical form, the second
language of diff2 1 2 is

diff2 1 2 2 1 2 2 .

879Theory of Computing Systems (2022) 66:861–909

Based on Lemma 7, we let be the -second-order finite
automaton over the alphabet , where . One can readily verify that
2 Det .
Now, let 2 be the second canonical form specified in Theorem 10 of

the automaton . For each , we let compl2 diff2 .
It is straightforward that compl2 is a 2max -second-order finite
automaton with second language

2 compl2 2 .

Finally, we note that deciding whether 2 1 2 2 is equivalent to deciding
whether 1 2 . Similarly, we have that deciding whether 2 1

2 2 is equivalent to deciding whether 1 2 , which in turn is equivalent
to deciding whether

1 2 2 1 compl1 2 .

Therefore, since disjointness of regular languages is a decidable problem [26], we
obtain that the problems of verifying whether 2 1 2 2 and verifying
whether 2 1 2 2 are both decidable.

We note that all binary operations described in Theorem 13 are also defined
when 1 is a 1 -second-order finite automaton and 2 is a 2 -second-
order finite automaton, for distinct positive integers 1 and 2. Indeed, it suffices
to view both finite automata as max 1 2 -second-order finite automata. We
also note that the SOFAs intersec2 1 2 , union2 1 2 and diff2 1 2 are
actually -SOFAs if all ODDs in the languages 1 and 2 are deter-
ministic and complete, since in this case one can use the more efficient construction
given in Observation 11. Finally, it is worth remarking that non-emptiness of inter-
section of the second languages of SOFAs is not only decidable, but can be achieved
in fixed-parameter tractable time (Observation 14).

Observation 14 Let be an alphabet, and and 1 and 2 be -
SOFAs.

1. One can determine whether 2 1 2 2 in time 2 2 nSt 1
nSt 2 .

2. If all ODDs in 1 and 2 are deterministic and complete, then one one
can can determine whether 2 1 2 2 in time 2 log nSt 1
nSt 2 .

Proof Since can is 2 2 -regular, for each 1 2 , one can con-
struct from a finite automaton with 2 2 nSt states such that

can . Therefore, testing whether
2 1 2 2 is equivalent to testing whether 1 2 , which

can be done in time 2 2 nSt 1 nSt 2 . If the languages of the automata
1 and 2 only contain deterministic, complete ODDs, then one can apply a sim-

ilar argument using the transduction can instead of can to infer that

880 Theory of Computing Systems (2022) 66:861–909

non-emptiness of intersection for the languages 2 1 and 2 2 can be tested in
time 2 log nSt 1 nSt 2 .

4.2 Closure Properties Specific for Language Classes

In this subsection, we show that regular-decisional classes of languages are also
closed under operations that are specific to language classes. Let 1 and 2 be alpha-
bets, and 1 2 be a map from 1 to 2. Given languages 1 and

2 , we let

for each

and

1 1 for each .

The following lemma from [15] states that several operations that are effective
for regular languages may be realized on ODDs using maps that act layerwisely.
Below, for ODDs 1 2 and 1 2 , we let

1 1 2 2 .

Lemma 15 (Simulation Lemma (see Lemma 2 of [15])) Let 1 and 2 be alphabets,
1 2 , and 1 2 be a map from 1 to 2. There exist maps

1. 1 1 2 2 1 2 1 2 ,
2. 1 1 2 2 1 2 1 2 ,
3. 1 1 2 2 1 2 1 2 ,
4. 1 1 2 1 ,
5. 1 2 2 1 2 ,

6. 1 1 1 1 ,

such that for each 1 1 -ODD 1 2 , each 2 2 -ODD

1 2 , and each deterministic, complete 1 1 -ODD 1 2 ,
the following hold.

1.
.

1 1 2 2 is a 1 2 1 2 -
ODD such that

.

2.
.

1 1 2 2 is a 1 2 1 2 -
ODD such that

.

3.
.

1 1 2 2 is a 1 2 1 2 -
ODD such that

.

4.
.

1 2 is a 2 1 -ODD such that

.

881Theory of Computing Systems (2022) 66:861–909

5. 1
.

1 1 1 2 1 is a 1 2 -ODD such that

1
1 .

6.
.

1 2 is a deterministic, complete 1 -ODD
such that

.

Lemma 15 immediately implies implies that the collection of regular-decisional
classes of languages is effectively closed under several pointwise operations, as stated
in the next corollary.

Corollary 16 Let 1 and 2 be alphabets, 1 2 , 1 2 be a map
from 1 to 2, be a 1 1 -SOFA, and be a 2 2 -SOFA.

1. Pointwise union. There is a SOFA such that

2 len len .

2. Pointwise intersection. There is a SOFA ,

2 len len .

3. Pointwise tensor product. There is a SOFA ,

2 len len .

4. Pointwise map. There is a SOFA such that

2 .

5. Pointwise inverse map: There is a SOFA 1 such that

2
1 1 .

6. Pointwise negation: There is a SOFA such that

2 len .

Proof The proof follows directly from the fact that regular languages are closed
under maps, together with Lemma 15. The SOFAs , 1 , and
are obtained from by replacing each transition with the transitions

, 1 , and respectively. For the binary oper-
ations, we first compute a finite automaton over the alphabet 1 1

2 2 that accepts a string 1 1 2 2 if and
only if 1 2 is accepted by and 1 2 is accepted by

. Subsequently we define , and by replacing each transition
of with the transitions , ,

and respectively.
We exemplify how Lemma 15 can be used to complete the proof with the first

item. The others follow an analogous argument. From the construction of , we
have that and are such that len len if and only
if belongs to . Since , we

882 Theory of Computing Systems (2022) 66:861–909

have that 2 len
len .

5 Algorithmic Applications

In this section, we show that Theorems 9 and Theorem 10 can be used to provide
novel algorithmic applications in the realm of the theory of ODDs of bounded width,
and therefore also in the realm of the theory of ordered binary decision diagrams
(OBDDs) of bounded width. In Section 5.1 we will show that several minimization
problems for deterministic and nondeterministic ODDs can be solved in fixed param-
eter tractable time when parameterized by width. Subsequently, in Section 5.2 we
will show that the problem of counting the number of distinct functions computable
by some ODD of length and width can be solved in time 1 for a
suitable .

5.1 Width and Size Minimization of Nondeterministic ODDs

Models of computation comprised by ODDs of constant width have been studied
in a variety of fields, such as symbolic computation, machine learning and property
testing [3, 21, 33, 35]. In this section, we show that width minimization for ODDs
is fixed-parameter tractable in the width parameter. Additionally, the space of ODDs
where the minimization will take place may be selected as the language of a
given second-order finite automaton . Furthermore, if such a minimum width ODD

with exists in , then one can furthermore impose that has
minimum number of states or minimum number of transitions.

As important special cases, if we set to be the finite automaton accepting the
language the minimization occurs in the space of all (possibly nondeter-
ministic) ODDs of width at most , while by setting to be the finite automaton
accepting the language , the minimization takes place over the space of
deterministic, complete ODDs of width at most .

Lemma 17 Let be an alphabet, , be a -ODD, and be a
-SOFA. One can construct in time 2 2 nSt an acyclic -

SOFA with 2 2 nSt states such that
.

Proof Let be a -SOFA, and . Consider the 2
-transduction t . Note that t is a singleton, and there-

fore, it is 1 -regular, since the language t is accepted by
a finite automaton with 1 states 0 . Here, 0 is the unique ini-
tial state and is the unique final state. Indeed, let 1 2 . Note
that this canonical form can be constructed in time 2 by applying the
standard minimization algorithm for a single ODD (Theorem 4). Then, for each
0 1 , the automaton has a unique transition leaving , namely, the transition

883Theory of Computing Systems (2022) 66:861–909

1 . It should be clear that 1 1 2 2

. is the only string accepted by .
Now consider the transduction can . Since this transduction is 2 2 -

regular (Theorem 9), it follows from Proposition 5.(2) that the transduction

can t

is 2 2 -regular, and therefore, the language

Dom can t

is 2 2 -regular. Additionally, an automaton accepting
Dom can t can be constructed in time 2 2 . This implies
that one can construct in time 2 2 nSt a finite automa-
ton with 2 2 nSt states accepting the language
Dom can t . Since all ODDs
accepted by have length , we may assume that this automaton is acyclic,
where the set of states is partitioned into a sequence of levels, and transitions can
only exist from a given level to the next level in the sequence.

Let be a commutative, associative binary operation (typically
max or), and be a weighting function. Then the weight of an
ODD is defined as 1 .

Proposition 18 Let be a fixed weighting function on the alphabet
and be one of the operations or max. Let be a

-SOFA and . Then, in time log log , one can determine
whether there is an ODD of weight at most in , and if yes, construct an ODD

of minimum weight. The time complexity can be improved to log
if is acyclic.

Proof Let be the weighted directed graph with vertex set ,
edge set , and weighting function

such that for each edge , min
. Then there is an ODD of weight at most if and only

if the weight of a shortest (weighted) path from some initial state to some final
state of is at most . Let 0 1 be such a shortest path. Then any ODD

1 2 where 1 for all is a valid solution.
Using standard algorithms, the time for computing a shortest path is upper bounded
by log log log log . If by is acyclic, then
this running time can be improved to log log .

By combining Lemma 17 with Proposition 18 we obtain the following theorem.

Theorem 19 Let be an ODD in and let be a -SOFA. One can
determine in time 2 2 nSt whether there is an ODD such
that . Suppose such an ODD exists.

884 Theory of Computing Systems (2022) 66:861–909

1. One can construct in time 2 2 nSt an ODD of
minimum width such that .

2. One can construct in time 2 2 nSt log an ODD
with minimum number of states such that .

3. One can construct in time 2 2 nSt log an ODD
with minimum number of transitions such that .

Proof 1. In Proposition 18, set , , max , and
for each set w . Then for each ,

w . Therefore, by Proposition 18, one can construct in time
2 2 nSt an ODD of minimum width such that

.
2. In Proposition 18, set , 1 , , and

for each set . Then for each
, nSt . Therefore, by Proposition 18, one can construct

in time 2 2 nSt log an ODD with minimum number
of states such that .

3. In Proposition 18, set , 2 , , and
for each set . Then for each ,

nTr . Therefore, by Proposition 18, one can construct in time
2 2 nSt log an ODD with minimum number of
transitions such that .

Let . Then by plugging in Theorem 19, the following theorem,
which can be used to address several minimization problems for ODDs over the space
of ODDs in .

Theorem 20 Let be an ODD in and let . One can
determine in time 2 2 whether there is an ODD such that

. Suppose such an ODD exists.

1. One can construct in time 2 2 an ODD of minimum width
such that .

2. One can construct in time 2 2 log an ODD with minimum
number of states such that .

3. One can construct in time 2 2 log an ODD with minimum
number of transitions such that .

5.2 Counting Functions Computable by ODDs of a GivenWidth.

Let be an alphabet and . Each ODD can be regarded as
a representation of a function 0 1 . More precisely, for each ,

1 if and only if . We say that is the function computed by .
In this subsection, we analyze the problem of counting the number of functions

of type 0 1 that can be computed by some ODD of width over the
alphabet . We note that to solve this problem it is not enough to count the number

885Theory of Computing Systems (2022) 66:861–909

of ODDs in . The caveat is that several ODDs in may represent
the same function. Fortunately, we can solve the issue of multiple representatives
for a given function by resorting to our canonical form of canonical forms theorem
(Theorem 10).

It is well known that the problem of counting the number of strings of length
accepted by a given deterministic finite automaton can be solved in time polyno-
mial in and in the number of states of . Below we state a more precise upper
bound.

Proposition 21 Let be a deterministic finite automaton over an alphabet . Then,
for each , one can count in time nSt 2 log the number of
words of length accepted by .

Proof Let . Since is deterministic, 0 for some state
0. Additionally, there is a bijection from the set words of length accepted by to

the set accepting sequences of transitions connecting the initial state 0 to some final
state in .

We start by constructing a matrix such that for each and
each , the entry is equal to the number of valid sequences of transitions
of length from to some final state in . In particular, 0 0 is the number
of valid sequences of transitions of length from 0 to some final state in . The
matrix is constructed by induction on . In the base case, . In this case,
we set 1 if , and set 0 otherwise. Now, let 1
and assume that the value 1 has been determined for every . Then,
for each , we let 1 . In other words,
is defined as the sum of all for which is a transition in for some

.
Since, there are at most words of length , we have that each entry of

can be represented using log bits. Additionally, the computation of each entry
involves the summation of entries, which in overall can be performed in time

log . Since the matrix has 1 nSt entries, the whole matrix can
be constructed in time nSt 2 log .

Theorem 22 Let be a -second order finite automaton. For each , one

can count in time 2nSt 2 2 2 the number of functions 0 1
computable by some ODD of length in .

Proof By Theorem 10, one can construct in time 2nSt 2 2
a deterministic

second-order finite automaton 2 (with at most 2nSt 2 2
states) such that

2 . This implies that for each language 2 ,
there is a unique ODD 2 such that . Therefore, counting
the number of functions of type 0 1 computable by some ODD in
amounts to counting the number of ODDs of length accepted by 2 . By setting

2 and 2 in Proposition 21, and by using the facts that

886 Theory of Computing Systems (2022) 66:861–909

2nSt 2 2
and 2 2 , we have that this counting problem can be

solved in time 2nSt 2 2 2.

If all ODDs in the language of are deterministic and complete then one can
adapt the proof of Theorem 22 by using Observation 11 and by setting
in order to obtain a more efficient counting algorithm.

Observation 23 Let be a -second order finite automaton such that
. For each , one can count in time 2nSt 2 log 2 the number

of functions 0 1 computable by some ODD of length in .

By combining Lemma 7 with Theorem 22 and Observation 23, we obtain the
following corollary.

Corollary 24 Let be an alphabet, , , and .

1. One can count in time 22
2 2 the number of functions 0 1

computable by some ODD in .
2. One can count in time 22

log 2 the number of functions 0 1
computable by some ODD in .

Proof By Lemma 7, one can construct SOFAs and with 1 and
1 states respectively such that , and . Since

2
2
, it follows from Theorem 22 that one can count the number of

functions 0 1 computable by ODDs in in time 22
2 2.

Analogously, since 2 log , it follows from Observation 23 that one can
count the number of functions 0 1 computable by ODDs in in time
22

log
.

6 Proof of the Canonization as Transduction Theorem

In this section, we prove Theorem 9, which states that for each alphabet , and each
the following holds.

1. The functional transduction can is
2 log -regular.

2. The functional transduction can is
2 2 -regular.

Although the complete proof of Theorem 9 is quite technical, it is possible to give
an intuitive overview of the main steps in the proof. More specifically, we will show
that the transduction can can be cast a composition

can
.
d rea 2 mer 2 nor 2 , (1)

of regular transductions satisfying the following properties.

887Theory of Computing Systems (2022) 66:861–909

1. d is a functional 2 log -regular -trans-
duction that sends each ODD to itself. This transduction is used
to limit the domain of can to deterministic, complete -ODDs.

2. rea is a functional 2 log -regular -transduc-
tion that sends each ODD to a reachable ODD
with . This transduction simulates the process of eliminating
unreachable states from .

3. mer is a functional 2 log -regular -transduc-
tion that sends each reachable, deterministic, complete ODD to a
minimized, deterministic, complete ODD with .
This transduction simulates the process of merging equivalent states in a ODD.

4. nor is a functional 2 log -regular -transduc
tion that sends each deterministic, complete ODD to its nor-
malized version . This transduction simulates the process
of numbering the states of an ODD according to their lexicographical order.
This guarantees that the ODD is unique not only up to isomorphism, but also
syntactically unique.

Intuitively, the regular transductions above simulate the steps used in the stan-
dard ODD minimization algorithm. By using Proposition 5.(2), we have that the
transduction can is 2 2 -regular. The fact that each of the five trans-
ductions above is functional implies that can is also functional. Additionally,
it is straightforward to note that Dom can . Finally, a pair of
ODDs belongs to can if and only if is deterministic, complete,
minimized, normalized and . In other words, if and only if is the
canonical form of Theorem 4.

Now, the transduction can can be obtained as the composition

can
.
d det can 2 . (2)

Here, det is a functional 2-regular 2 -transduction that
sends each ODD to a deterministic, complete ODD 2
with . This transduction simulates the application of the stan-
dard power set construction to the states of a ODD, and blows the width of the
original ODD at most exponentially. Since can is 2 log -regular, we
have that can 2 is 2 2 -regular. This implies that can is also
2 2 -regular.

Next, in Section 6.1, we will define two elementary types of regular transduc-
tions: the multimap transductions and the compatibility transductions. Subsequently
we will define det , rea , mer and nor using these elemen-
tary transductions. The determinization transduction det will be defined in
Section 6.2 and its properties analyzed in Lemma 27. The reachability transduction
rea will be defined in Section 6.3, and its properties analyzed in Lemma 30.
The merging transductionmer will be defined in Section 6.4, and its properties
analyzed in Lemma 36. The normalization transduction will be defined Section 6.5

888 Theory of Computing Systems (2022) 66:861–909

and its properties analyzed in Lemma 39. Finally, in Section 6.6 we will combine
Observation 26 with these four lemmas to conclude the proof of Theorem 9.

6.1 Basic Transductions

Let be an alphabet and be a binary relation over . For each
and each string 1 , we say that is -compatible if 1
for each 1 . We let

cp
.

is -compatible

be the -compatibility transduction, i.e. the -transduction that sends each -
compatible string to itself.

Let 1 and 2 be two alphabets and 1 2 be a relation. We let

mm
.

1 1 1 2

for each

be the -multimap transduction. If 1 2 is a map, then we write mm to
denote the transduction mm , where

.
1 .

Proposition 25 Let , 1 and 2 be three alphabets, and let and
1 2 be binary relations. The following statements hold.

1. The transduction mm is 2-regular.
2. The transduction cp is 2 -regular.

Proof 1. We let mm be the finite automaton with state set mm

, initial state set mm , final state set mm

and transition set mm

. Clearly, has exactly two states, namely and . More-
over, for each two strings 1 and 2 , mm accepts the string

1 2 if and only if and for each ,
where 1 , 1 and .

2. We let cp be the finite automaton over the alphabet , with state set
cp , initial state set cp , final state

set cp and transition set cp

. Clearly, cp

has at most 2 states. Moreover, it is not hard to check that, for each ,
cp accepts a string 1 if and only if 1 for each

1 . Therefore, the language of cp is cp cp .

The next observation is a direct consequence of Proposition 5.(3) and Corollary 8.

Observation 26 Let be an alphabet and .

1. d is 2 2 -regular.
2. d is 2 log -regular.

889Theory of Computing Systems (2022) 66:861–909

6.2 Determinization Transduction

In this subsection, we define the determinization transduction det , which intu-
itively simulates the application of the well known power-set construction to the
layers of a -ODD.

For each , we let 2 be the bijection that sends each
subset to the natural number

.
2 . In particular, we remark

that 0 and 2 for each .
Let be an alphabet, , , and . We let

N be the set of all right states of that are reachable from some left state
in by reading some symbol in . More formally,

N .
q p p q .

For each alphabet and each , we let pw 2
be the map that sends each layer to the deterministic, complete layer
pw 2 defined as follows:

pw
. if 1

otherwise;
pw

.
;

pw
. N if 1

N otherwise;

pw
. if 1

otherwise;
pw

.
;

pw
.

;
pw

.
.

Let be an alphabet, , and let . Since is a bijection, there
exists precisely one right state q pw , namely q N , such
that q pw for each subset with pw and
each symbol . Furthermore, note that pw 1 implies 1. Thus,
if pw 1, then pw pw . As a result, pw is
indeed a deterministic, complete layer in 2 .

Now, for each alphabet and each positive integer , we define the
-transduction det

.
mm pw . The next lemma

states that det sends each ODD to a deterministic, complete
ODD that has the same language as .

Lemma 27 (Determinization Transduction) For each alphabet and each positive
integer , the following statements hold.

1. det is functional.
2. Dom det .
3. For each pair det , if , then 2

and .

890 Theory of Computing Systems (2022) 66:861–909

4. det is 2-regular.

Proof First, we note that Dom det . This follows from the fact
that pw is a map from the alphabet to the alphabet 2 . Thus, for each

and each string 1 , there exists exactly one string
over 2 such that det , namely the string pw

pw 1 pw . Consequently, Dom det . Moreover, by the
uniqueness of the string pw with det for each

, we obtain that det is a functional transduction.
Now, let 1 for some . Since is a bijection,

for each 1 , pw 1 pw if and only if 1 .
Furthermore, pw and pw for each . Thus,
owing to fact that , pw pw 1 pw 2 .

More specifically, pw is a deterministic, complete ODD in 2 . Indeed,
this follows from the fact that pw is a deterministic, complete -layer for
each . Thus, it just remains to prove that pw . Let 1
be a string in .

First, suppose that . Then, there exists an accepting sequence

p1 1 q1 p q

for in . Let 0 1 and, for each , let 1 N 1 1 .
Note that 1 for each . Furthermore, for each , we have that
q , i.e. q N 1 , otherwise p q . Therefore,

0 1 1 1

is an accepting sequence for in pw , and we obtain that pw .
Conversely, suppose that pw . Then, there exists an accepting sequence

0 1 1 1

for in pw , where 0 1 and 1 N 1 1 for each .
Thus, let p 1 and q such that p q . Moreover, for each

1 , let p 1 and q such that q p 1 and p q .
We note that for each , there exist left states and right states p 1 and q 1
as described above, otherwise 1 1 would not be a transition in

pw 1 . Therefore,

p1 1 q1 p q

is an accepting sequence for in , and . Finally, the fact that det is
2-regular follows from the fact that det

.
mm pw is an instantiation of

a multimap transduction and that multimap transductions are 2-regular (Proposition
25.(1)).

6.3 Reachability Transduction

In this subsection, we define the reachability transduction, which intuitively simu-
lates the process of eliminating unreachable states from the frontiers of each layer of

891Theory of Computing Systems (2022) 66:861–909

an ODD. It is worth noting that unlike the determinization transduction, that can be
defined using a map that acts layerwisely, the reachability transduction will require
the use of a compatibility transduction. The issue is that reachability of a given state
in a given belonging to a given ODD is a property that depends on which lay-

ers have been read before . To circumvent this issue, the action of the reachability
transduction on a ODD can be described in three intuitive steps. First, we use a
multimap transduction to expand each layer of the ODD into a set of annotated lay-
ers. Each annotation splits states of a layer into two classes: those that are deemed
to be useful, and those that should be deleted. Subsequently, we use a compatibility
transduction to ensure that only sequences of annotated layers with compatible anno-
tations are considered to be legal. The crucial observation is that each ODD has
a unique annotated version where each two adjacent annotated layers are compatible
with each other. Finally, we apply a mapping that sends each annotated layer to the
layer obtained by deleting the states that have been marked for deletion. The resulting
ODD is then the unique ODD obtained from by eliminating unreachable states.

Let be an alphabet, and . A reachability annotation for
is a pair of functions 0 1 and 0 1 that satisfies

the following conditions:

1. if 1, then, for each left state p , p 1 if and only if p ;
2. for each right state q , q 1 if and only if there exists p and

such that p 1 and p q .

Let be an alphabet, , and let 1 . A
reachability annotation for is a sequence 1 1 that satisfies the
following conditions:

1. for each , is a reachability annotation for ;
2. for each 1 , 1.

Proposition 28 Let be an alphabet and . Every ODD
admits a unique reachability annotation.

Proof First, we observe that for each layer and each function
0 1 , there exists exactly one function 0 1 such that

is a reachability annotation for .

Let and 1 , such that 1 for each
1 , and 1 1 and 0 for each 2 . Based on the

previous observation, we prove by induction on that the following statement holds:
there exists a unique sequence 1 1 such that 1 for each

1 , and is a reachability annotation for for each .

Base case. Consider 1. Since 1, the function 0 1 is
uniquely determined. Indeed, by definition, for each left state p , p

1 if p , and p 0 otherwise. Thus, there exists a unique sequence
such that is a reachability annotation for .

892 Theory of Computing Systems (2022) 66:861–909

Inductive step. Consider 1. Let 1 1 be the string obtained from
1 by removing the layer . It follows from the inductive hypothesis

that there exists a unique sequence 1 1 1 1 such that
1 for each 2 , and is a reachability annotation for for each

1 . In particular, we note that the function 1 is uniquely determined.
Furthermore, based on the previous observation, for each function
0 1 , there exists a unique function 0 1 such that is a
reachability annotation for . Therefore, since must be equal to 1, there
exists a unique sequence 1 1 such that 1 for each

1 and is a reachability annotation for for each .

Let be an alphabet and . We denote by the set consisting of all
triples such that is a layer in and is a reachability anno-
tation for . Additionally, we denote by the map
that sends each triple to the layer
obtained from by removing the left states p with p 0, the right states
q with q 0, and the transitions incident with such left and right states.
More formally, for each triple , we let ,
where is the layer belonging to defined as follows:

.
p p 0 ;

.
q q 0 ;

.
p q p 0 ;

.
;

.
;

.
;

.
.

We let be the map that for each , sends

each ODD 1 to the ODD

.
1 1 1 ,

where 1 1 denotes the unique reachability annotation for (see
Proposition 28).

Proposition 29 Let be an alphabet, and . Then,

is a reachable ODD in such that .

Proof Assume that 1 and 1 , for some ,
where for each and 1 1 is the
unique reachability annotation of . First, we prove that is reachable.
Note that for each and each q ,

q p with p 1 and such that p q

p and such that p q .

This implies that for each , is a reachable layer since .
Therefore, is a reachable ODD. Now, we prove that

. It is immediate from the definition of that

893Theory of Computing Systems (2022) 66:861–909

. On the other hand, it is not hard to check that for each string , every
accepting sequence for in is also an accepting sequence for in .
Consequently, .

To prove that preserves determinism, it is enough to note that
for each . As a result, since is deterministic, so is .

Finally, since is complete, by definition, for each and each p

, there exists a symbol and a right state q such that p q .
This implies that for each and each p , there exists a symbol and
a right state q such that p q . Therefore, is also
complete.

For each alphabet and each positive integer , we let RR
and RC be the relations defined

as follows.

RR
.

.

RC
.

.

Now, for each alphabet and each positive integer , we define rea as
the -transduction

rea
.
mm RR cp RC mm .

The next lemma states that rea is a transduction that sends each ODD
to a reachable ODD that has the same language as ,

and that preserves the determinism and completeness properties.

Lemma 30 (Reachability Transduction) For each alphabet and each positive
integer , the following statements hold.

1. rea is functional.

2. Dom rea .
3. For each pair rea , and is reachable.
4. rea is 2 log -regular.

Proof We note that rea consists of all pairs of non-empty strings
over the alphabet satisfying the conditions that and that, if

1 and 1 for some , then there exists a reach-
ability annotation for the layer such that for
each , and 1 and 1 for each 1 . Addi-
tionally, based on Proposition 28, each -ODD admits a unique reachability
annotation. As a result, we obtain that Dom rea . More-
over, ; thus, by the uniqueness of , the transduction
rea is functional. Finally, it follows from Proposition 29 that for each pair

rea , is a reachable ODD in that has
the same language as .

894 Theory of Computing Systems (2022) 66:861–909

The fact that rea is 2 log -regular follows from Proposition 5.(2)
together with the fact that the multimap transductions mm RR and mm

are 2-regular (Proposition 25.(1)), and that the transduction cp RC is
2 log -regular (Proposition 25.(2)), given that RC

and that 2 log .

6.4 Merging Transduction

In this subsection, we define the merging transduction, which intuitively simulates
the process of merging equivalent states in the frontiers of each layer of an ODD
. As in the case of the reachability transduction, the merging transduction will be

defined as the composition of three elementary transductions. First, we use a mul-
timap transduction to expand each layer of the ODD into a set of annotated layers.
Each annotation partitions each frontier of the layer into cells containing states that
are deemed to be equivalent. Subsequently, we use a compatibility transduction to
ensure that only sequences of annotated layers with compatible annotations are con-
sidered to be legal. As in the case of the reachability transduction, it is possible to
show that each ODD has a unique annotated version where each two adjacent
annotated layers are compatible with each other. Finally, we apply a mapping that
sends each annotated layer to the layer obtained by merging all states in each cell of
each partition to the smallest state in the cell. The result is a minimized ODD with
same language as .

Let be an alphabet, , and be a partition of . Two
(not necessarily distinct) left states p p are said to be -equivalent if, for each
symbol , there exists a right state q such that p q is a transition
in if and only if there exists a right state q such that p q is a
transition in , and q and q belong to the same cell of . We remark that each
left state p is trivially -equivalent to itself.

A merging annotation for is a pair , where is a partition of and
is a partition of , that satisfies the following two conditions:

1. if 1, then whenever and
, and whenever or ;

2. for each two left states p p , p and p belong to the same cell of if and
only if p and p are -equivalent.

Let be an alphabet, , and let 1 . A merg-
ing annotation for is a sequence 1 1 that satisfies the following
conditions:

1. for each , is a merging annotation for ;
2. for each 1 , 1.

Proposition 31 Let be an alphabet and . Every deterministic, complete
-ODD admits a unique merging annotation.

895Theory of Computing Systems (2022) 66:861–909

Proof First, we claim that for each layer and each partition of ,
there exists a unique partition of such that is a merging annotation for
. Indeed, any two left states p p belong to the same cell of if and only

if they are -equivalent. Thus, the partition is uniquely defined as the set of all
maximal subsets of pairwise -equivalent left states.

Let and 1 , be such that 1 for
each 1 , 0 for each 1 and 1. Based on the
previous claim, we prove by induction on that the following statement holds for
each 0 1 : there exists a unique sequence
such that is a merging annotation for for each , and

1 for each 1 . In particular, this implies that the ODD
admits a unique merging annotation 1 1 .

Base case. Consider 0. Then . Since 1, the partition
is uniquely determined. Indeed, if both

and , and otherwise. Thus, there exists a
unique sequence such that is a merging annotation for .

Inductive step. Consider 1 1 . We show that there is a unique
sequence

such that is a merging annotation for for each ,
and 1 for each 1 . It follows from the inductive
hypothesis that there exists a unique sequence 1 1
such that is a merging annotation for for each 1 ,
and 1 for each 1 1 . Now, let be
the merging annotation of with the property that 1 . Such
a merging annotation exists (since 1) and is unique since

is uniquely determined by . This concludes the proof of the inductive
step, and therefore of the proposition.

Let be an alphabet, and 1 . For each
, we say that a string 1 is accepted by from a left state p if

there exists a sequence p q p q of transitions such that p p,
q and, for each , p q . For each and
each left state p , we let

p
. 1 is accepted by from p .

Proposition 32 Let be an alphabet, , 1 be a deterministic,

complete ODD in , and let 1 1 be the unique merging
annotation for . For each and each two left states p p , p and p

belong to the same cell of if and only if p p .

Proof The proof is by induction on . Base case. Consider 0. Then .
By definition, two left states p p belong to the same cell of if and only

896 Theory of Computing Systems (2022) 66:861–909

if p and p are -equivalent. In other words, p and p belong to the same cell of
if and only if, for each symbol , there exists a final state q such that
p q if and only if there exists a final state q (possibly q q)
such that p q . Consequently, p and p belong to the same cell of if
and only if p p .

Inductive step. Consider 0. Since 1 and 1, it
follows from the inductive hypothesis that any two right states q q belong
to the same cell of if and only if 1 q 1 q . Moreover, note
that for each left state p ,

p

q

1 p q 1 q . (3)

Let p p . We will prove that p p belong to the same cell of if and only if
p p . The proof is split in two parts.

First, suppose that p and p belong to the same cell of . Then p and p are
equivalent. In other words, for each symbol , there exists q such
that p q if and only if there exists q such that p q

and q and q belong to the same cell of . Using the induction hypothesis,
we have that for each pair q q belonging to the same cell of , 1 q

1 q . Therefore, using (3), that p p .
Now, in order to prove the converse, suppose for contradiction that p and p do

not belong to the same cell of and that p p . Since is a
deterministic, complete layer, for each symbol , there exists exactly one right
state q such that p q . Similarly, for each symbol , there
exists exactly one right state q such that p q . Consequently,
for some symbol , the right states q and q associated with , and p and p ,
respectively, belong to distinct cells of . Then, it follows from the induction hypoth-
esis that 1 q 1 q . Assume without loss of generality that

1 q 1 q , and let 1 q 1 q .
Based on (3), we have that p but p . This implies that

p p , contradicting our initial supposition.

Let be an alphabet and . We denote by the set consisting of all
triples such that is a deterministic, complete layer in , and
is a merging annotation for . Additionally, we denote by

the map that sends each triple to the layer
obtained from by identifying, for each ,

all states belonging to with the smallest state that belongs to . More formally,
for each triple , we let , where is the
deterministic, complete layer belonging to defined as follows:

.
min ;

.
min ;

.
min min p q p q ;

.
;

.
;

.
;

.
.

897Theory of Computing Systems (2022) 66:861–909

Let be the map that for each , sends
each deterministic, complete ODD 1 to the deterministic,
complete ODD

.
1 1 1 ,

where 1 1 denotes the unique merging annotation for (see
Proposition 31).

Let be an alphabet, and . We recall that since is a
deterministic, complete ODD, we have that for each string 1 , there
is a unique valid sequence p1 1 q1 p q for in . Thus, for each
string and each , we let q

.
q denote the unique right state

q that belongs to the valid sequence for in . Moreover, we let

.
q q

denote the equivalence class of with respect to and .

Proposition 33 Let be an alphabet, , 1 , and
let q be a right state in such that q q for some string and some

1 . For each string 1 and each string , we
have that q if and only if 1 .

Proof Let 1 and 1 . Also, let

p1 1 q1 p q

be the unique valid sequence for in . We note that p1 1 and p 1 q.
Suppose that p 1 . By definition, there is a sequence

p 1 1 q 1 p q

of transitions such that p 1 p 1, q and, for each 1 ,
p q . Thus, p1 1 q1 p q p 1 1 q 1
p q is an accepting sequence for the string 1 in , and therefore

1 .
Conversely, suppose that 1 . Then, there exists a unique accepting

sequence

p1 1 q1 p q p 1 1 q 1 p q

for 1 in . By the uniqueness of this sequence, we have that p1 p1 and
q q for each . In particular, p 1 q q. Therefore, q .

Proposition 34 Let be an alphabet, , and let and be two deter-
ministic, complete ODDs in . If , then

for each and each .

898 Theory of Computing Systems (2022) 66:861–909

Proof For the sake of contradiction, suppose that
but, for some string 1 and some ,

.
Assume without loss of generality that

. Then, let 1 . Consider
p 1 q and p 1 q . We note that , oth-
erwise would be different from . Moreover, since
p 1 p 1, we obtain by Proposition 32 that

1 p 1 1 p 1 .

Assume without loss of generality 1 p 1
1 p 1 . Let 1 p 1 1 p 1 .
Since is deterministic, there exists a unique valid sequence for the string

1 in , and by definition this sequence must contain the left state
p 1. Consequently, it follows from Proposition 33 and from the fact that is not
accepted by from p 1 that

1 . (4)

On the other hand, is accepted by from p 1. As a result, we obtain
by Proposition 33 that 1 . In addition, we have that
1 since . This further

implies that 1 p 1 , where p 1 denotes q .
However, since , it follows from Proposition 33 that

1 , (5)

which, along with (4), implies that .

Proposition 35 Let be an alphabet, and . If is
reachable, then is a minimized ODD such that .

Proof Assume that 1 , for some , and let 1 1
be the unique merging annotation for . First, we prove that

. Let 1 . Suppose that . Then, there exists an accept-
ing sequence p1 1 q1 p q for in . For each , let be
the unique cell of that contains q . Then, we have that

p1 1 min 1 min 1 min 2 min 1 min

is an accepting sequence for in . As a result, we obtain that
. Now, suppose that . Then, there exists

an accepting sequence p1 1 q1 p q for in . We note
that for each , there exists a right state q such that q and q belong to
a same cell of and p q , where p1 p1 and p q 1 for each
2 . Thus, there exists an accepting sequence p1 1 q1 p q

for in . Therefore, .
Now, we prove that is minimized if is reachable. Thus, assume that
is reachable. This implies that is also reachable and thus, for each

899Theory of Computing Systems (2022) 66:861–909

and each q , q q for some .
Then, for each , let and let 1 be
strings such that for each and

each with . Also, let 1 be a minimized
ODD such that . We note that is reachable. Thus, for each
and each q , q q for some . Moreover, we have that

, otherwise would not be minimized. Then, for each , we
let be the mapping such that for each ,

q q . It follows from Proposition 34 that is a bijection.

Consequently, we obtain that 0 is a isomorphism between
and , where 0 1 1 1 1 is the trivial bijection that
sends the unique left state in 1 1 1 to the unique left state in 1 .
Therefore, is minimized.

For each alphabet and each positive integer , we let MR
and MC be the following

relations.

MR
.

and

MC
.

.

For each alphabet and each positive integer , we define the
-transduction mer as

mer
.
mm MR cp MC mm .

The next lemma states thatmer is a transduction that sends each deterministic,
complete ODD to a minimized deterministic, complete ODD

that has the same language as .

Lemma 36 (Merging Transduction) For each alphabet and each positive integer
, the following statements hold.

1. mer is functional.

2. Dom mer .
3. For each pair mer , if is a reachable ODD, then

, and is minimized.
4. mer is 2 log -regular.

Proof We note that mer consists of all pairs of non-empty strings
over the alphabet satisfying the conditions that and that, if

1 and 1 for some , then there exists a merging
annotation for the layer such that for each

, and 1 and 1 for each 1 . Additionally,
based on Proposition 31, each -ODD admits a unique merging annotation.

900 Theory of Computing Systems (2022) 66:861–909

As a result, we obtain that Dom mer . Moreover, if
mer , then ; thus, by the uniqueness of , the
transduction mer is functional. Finally, it follows from Proposition 35 that for
each pair mer such that is a reachable ODD in , we
have that is a minimized ODD in that has the same
language as .

The fact that mer is 2 log -regular follows from Proposition 5.(2)
together with the fact that the multimap transductionsmm MR andmm

are 2-regular (Proposition 25.(1)), and that the transduction cp MC is
2 log -regular (Proposition 25.(2)), given that MC

, and that 2 log .

6.5 Normalization Transduction.

In this subsection, we define the normalization transduction, which intuitively sim-
ulates the process of numbering the states in each frontier of each layer of an ODD

according to their lexicographical order. This transduction can be defined as the
composition of three elementary transductions. First, we use a multimap transduc-
tion to expand each layer of the ODD into a set of annotated layers. Each annotation
relabels the left and right frontier vertices of the layer in such a way that the layer
itself is normalized. Subsequently, we use a compatibility transduction that defines
two consecutive annotated layers to be compatible if and only if the relabeling of the
right-frontier of the first is equal to the relabeling of the left frontier of the second.
It is possible to show that each reachable ODD gives rise to a unique sequence
of annotated layers where each two consecutive layers are compatible. Finally, we
apply a mapping that sends each annotated layer to the layer obtained sending the
numbers in the frontiers to their relabeled versions. The resulting ODD is isomorphic
to the original one, and therefore besides preserving the language, it also preserves
reachability and minimality.

Let be an alphabet, , and let . For each two bijections
and , we denote by the -

layer obtained from by applying the bijection to the left frontier of and by
applying the bijection to the right frontier of . More formally, is
the -layer defined as follows:

.
p p ;

.
q q ;

.
p p ;

.
q q ;

.
p q p q ;

.
;

.
.

We note that since , also belongs to .
Let be an alphabet, . A normalizing isomorphism for a reachable layer

is a pair of bijections and
such that the layer is normalized. Let and 1 be

a reachable ODD in . A normalizing isomorphism for is a sequence

901Theory of Computing Systems (2022) 66:861–909

0 1 such that for each , 1 is a normalizing isomorphism
for .

Proposition 37 Let be an alphabet and . Every reachable ODD in
admits a unique normalizing isomorphism.

Proof First, we claim that for each reachable, layer and each bijection
, there exists a unique bijection such that

is normalized. Indeed, consider , where
denotes the identity function. Then, let be a bijection such that
for each two right states q q , we have that q q if and only if

q q . One can readily verify that is normalized. Furthermore,
since is deterministic, is an injection from to , i.e., for each two
distinct right states q q , we have that either q q or q

q . In other words, describes a total order on . Therefore, is the
unique bijection from to such that is normalized.

Let and 1 be an ODD such that is a
reachable layer for each , 1 for each 1 , 1 1
and 0 for each 2 . Based on the previous claim, we prove by
induction on that the following statement holds: there exists a unique sequence

0 1 such that (1) 0 1 1 is a bijection, (2)
is a bijection for each , and (3) 1 is a normalized layer for

each .

Base case. Consider 1. Since 1 is deterministic, 1 1. Thus, the
bijection 0 1 1 is trivially uniquely determined. As a result,
there exists a unique sequence 0 1 satisfying the required conditions (1)–(3).

Inductive step. Consider 1. Let 1 1 be the string obtained
from 1 by removing the layer . It follows from the induc-
tive hypothesis that there exists a unique sequence 0 1 1 such that
0 1 1 is a bijection, is a bijection for

each 1 , and 1 is a normalized layer for each 1 . In par-
ticular, we note that the bijection 1 is uniquely determined. Furthermore, based
on the previous claim, there exists a unique bijection
such that 1 is normalized. Therefore, there exists a unique sequence

0 1 satisfying the required conditions (1)–(3).

Proposition 38 Let be an alphabet, and . If is a
reachable, deterministic ODD and 0 1 is the unique normalizing
isomorphism for , then 0 1 1 1 is a normalized ODD such
that .

Proof It immediately follows from the definition of normalizing isomorphism that
is normalized. Finally, we note that is an isomorphism from to . Therefore,

by Proposition 3, .

902 Theory of Computing Systems (2022) 66:861–909

For each finite set , we denote by
.

is a bijection the
set of all bijections from to . For each alphabet and each we define
the following set.

is normalized .

We let be the map that sends each triple
to the layer . Moreover, we let NR

and NC be the following relations.

NR
.

.

NC
.

.

Finally, for each alphabet , and each positive integer , we let nor be
the -transduction

nor
.
mm NR cp NC mm .

The next lemma states that nor is a transduction that sends each reachable, determin-
istic, complete ODD to as normalized, deterministic, complete ODD

that has the same language as .

Lemma 39 (Normalization Transduction) For each alphabet and each positive
integer , the following statements hold.

1. nor is functional.

2. Dom nor is reachable .
3. For each pair nor , if is reachable then ,

and is normalized.

Proof We note that nor consists of all pairs of non-empty strings
over the alphabet satisfying the conditions that and that, if

1 and 1 for some , then there exists a sequence
of permutations 0 1 such that for each , 1

and 1 . Additionally, based on Proposition 37, each reach-
able, deterministic -ODD admits a unique normalizing isomorphism. As a
result, we obtain that Dom nor is reachable . More-
over, if d nor , then 0 1 1 1 ,
where 0 1 denotes the unique normalizing isomorphism of ;
thus, by the uniqueness of , the transduction d nor is functional.
Finally, it follows from Proposition 38 that for each pair nor such
that is a reachable ODD in , we have that is a normalized ODD in

that has the same language as .
The fact that nor is 2 log -regular follows from Proposition

5.(2) together with the fact that the multimap transductions mm NR and
mm are 2-regular (Proposition 25.(1)), and that the transduction cp NC

is 2 log -regular (Proposition 25.(2)), given that NC
, and that 2 log .

903Theory of Computing Systems (2022) 66:861–909

6.6 Putting All Steps Together

In this subsection we combine Observation 26 with Lemma 27, Lemma 30, Lemma
36 and Lemma 39 to prove our Canonization as Transduction Theorem (Theorem 9).
Consider the transduction

can
.
d rea mer nor .

Since each of the four transductions in the composition is at most 2 log -
regular, we have that can is 2 log -regular. Since each these
four transductions is functional, the transduction can is functional. Since
Dom d and the image of each of the three first trans-
ductions is contained in the domain of the next transduction (from left to right),
we have that Dom can . Now, let be a pair of ODDs
in can . Then there exist ODDs 1 and 2 such that 1 rea ,

1 2 mer , and 2 nor . Since each of these transductions
is language preserving, we have that 1 2 . Since

, we have that is by definition deterministic and complete. By Lemma
30, 1 is deterministic, complete and reachable. By Lemma 36, 2 is determinis-
tic, complete and minimized. Finally, by Lemma 39, is deterministic, complete,
minimized and normalized. Since for each ODD , there is a unique deterministic,
complete, minimized and normalized ODD with the same language as , we
have that . This shows that can .

Now, consider the transduction

can
.
d det can 2 .

Since can is 2 log -regular, we have that can 2 is 2 2 -
regular. This implies that can is also 2 2 -regular. Since
Dom det and Im det is included in Dom can 2 , we have that
Dom can . Now, let be a pair of ODDs in can .
Then there is an ODD 1 2 such that 1 det and

1 can 2 . By Lemma 27, we have that 1 is complete, determin-
istic and 1 . Additionally, 1 . Since 1

1 , we have that 1 . This shows that
can .

7 Conclusion

In this work, we have introduced the notion of second-order finite automata, a for-
malism that combines traditional finite automata with ODDs of bounded width in
order to represent possibly infinite classes of languages. Our main result (Theorem
10) is a canonical form of canonical forms theorem. It states for each second-order
finite automaton , one can construct a canonical form 2 whose language

2 is precisely the set of canonical forms of ODDs
in . Here, the canonical form of an ODD is the usual deterministic,

904 Theory of Computing Systems (2022) 66:861–909

complete, normalized ODD with minimum number of states having the same lan-
guage as . In this sense, the ODDs in 2 carry useful complexity theoretic
information about the languages they represent in the class 2 2 2 .

Our canonization result immediately implies that the collection of regular-
decisional classes of languages is closed under union, intersection, set difference,
and a suitable notion of bounded-width complementation. This result also implies
that inclusion and non-emptiness of intersection for regular-decisional classes of
languages are decidable. Furthermore, non-emptiness of intersection for the second
languages of second-order finite automata 1 and 2 can be solved in fixed parame-
ter tractable time when the parameter is the maximum width of an ODD accepted by
1 or 2.
We also provided two algorithmic applications of second-order automata to the

theory of ODDs. First, we have shown that several width/size minimization problems
for ODDs can be solved in fixed-parameter tractable time when parameterized by the
width of the input ODD. This implies corresponding FPT algorithms for width/size
minimization of ordered binary decision diagrams (OBDDs) with a fixed ordering.
Previous to our work, only exponential algorithms were known. Finally, we have
shown that second-order finite automata can be used to count the exact number of dis-
tinct functions computable by -ODDs of a given width and a given length

in time 22
2 1 , and in time 22

log 1 if only deterministic, com-
plete ODDs are considered. It is worth noting that the naive process of enumerating
functions while eliminating repetitions takes time (and space) exponential in both
and in .

Regular Canonizing Relations Most results in this work are obtained as a conse-
quence of Theorem 9, which states that the relation can

is a regular relation. It is worth noting that aside from complex-
ity theoretic considerations, Theorem 10 and Theorem 13 have identical proofs if we
replace can with any regular canonizing relation for in
the sense we will define below. Nevertheless, when taking complexity considerations
into account, and also when considering our applications in Section 5, the fact that the
transductions can and can are 2 2 -regular and 2 log -
regular respectively play an important role. Additionally, some of our results use
explicitly the fact the canonical form has minimum number of states among all
deterministic, complete ODDs with the same language as .

Say that a relation is canonizing for
if the following three conditions are verified.

1. is functional and the domain of is equal to .
2. For each , .
3. implies that for each

with .

The notion of a relation that is canonizing for can be defined
analogously. An interesting question is whether there are canonizing relations with
significantly better complexity than the ones of can and can . More

905Theory of Computing Systems (2022) 66:861–909

specifically, is there some canonizing relation for that is -regular for
2 2 where is a function depending only on the size of the alphabet?

Similarly, is there some canonizing relation for that is -regular for some
2 log ? In view of Observation 14, a canonizing relation of complex-

ity 2 would imply that emptiness of intersection regular-decisional
classes of languages can be realized in polynomial time even when is logarith-
mic in the size of the input second-order finite automata representing these classes of
languages.

Connectionswith the Theory of Automatic Structures Finite automata operating with
ODDs and tuples of ODDs were first considered in [15] as a formalism to pro-
vide a uniform representation of classes of finite relational structures of bounded
ODD-width. The technical results from [13] rely on two observations. First, that the
relation is regular (Propo-
sition 6.3 of [13]). Second, that the relation

is regular (Proposition 6.6 of [13]). Similar observations
have been used in [32] to study second-order finite automata using the framework
of the theory of automatic structures [1, 2, 31]. In particular, some of our decidabil-
ity and closure results have been rederived in [32] using this framework, and some
new applications of second-order finite automata to partial-order theory have been
obtained.

As pointed out in [32], the fact that automatic structures are closed under
first-order interpretations [8, 23, 31] has also applications in our framework. For
instance, one can infer that the relation is automatic from the fact that

is automatic, together with the fact that for each two ODDs ,
the inclusion is defined by the first-order formula

. Similarly, the relation
can be inferred to be automatic

from the fact the equality is defined by the first-order formula
. Since relations definable in this

way can be accepted by finite automata of size , for some function , the
interplay between automatic structures and first-order logics may be useful in the
development of algorithms that decide properties of ODDs in in time
fixed-parameter linear time , although the functions obtained
by a direct application of this approach may be very large. We refer to [22] for an
updated survey on the theory of automatic structures.

Jain, Luo and Stephan have introduced the notion of automatic indexed classes of
languages as a tool to address some problems in computational learning theory [29].
An indexed class of languages is said to be automatic if the relation

is automatic. The fact that is regular
immediately implies that any regular-decisional class of languages corresponds to an
automatic class of languages. Indeed, given a second-order finite automaton , the
second language of , 2 , is an automatic class of
languages where each is regarded as an index, and is regarded as
the language indexed by . Henning Fernau conjectured that if is

906 Theory of Computing Systems (2022) 66:861–909

an automatic class of languages where each index is a finite string and all
strings in have the same length, then this class is regular-decisional (i.e. is equal
to the second language of some second-order finite automaton). This conjecture has
recently been confirmed by Kuske in [32]. Similar connections can be established
with the framework of uniform classes of automatic structures [39], which are defined
with basis on the notion of automatic structures with advice. In this context, an ODD

may be regarded as an advice string, while the language may be regarded
as the set of strings associated with the advice . This point of view is particularly
relevant when ODDs are used to represent relations, as done for instance in [13].

In view of the connections discussed above, our framework provides a suitable
parameterization for problems arising in the realm of the theory of automatic classes
of languages [29] and in the realm of the theory of uniformly automatic classes of
structures [39]. The intuition is that the size of the representation for the whole class
of languages/structures (i.e, the size of the second-order finite automaton given at
the input) is completely dissociated from the complexity of the languages/structures
being represented in the class (i.e. the ODD-width necessary to represent lan-
guages/structures in the class). Since the concepts in [29, 39] have applications in the
fields of learning theory [7, 24, 27, 28] and algebra [9, 30, 38, 39], an interesting line
of research would be the investigation of potential applications of our fixed-parameter
tractable algorithms to problems in these fields.

907Theory of Computing Systems (2022) 66:861–909

Acknowledgements We thank Henning Fernau and Dietrich Kuske for interesting discussions at CSR
2020. Alexsander A. de Melo acknowledges support from the Brazilian agencies CNPq/GD 140399/2017-
8 and CAPES/PDSE 88881.187636/2018-01. Mateus de O. Oliveira acknowledges support from the Trond
Mohn Foundation and from the Research Council of Norway (Grant Nr. 288761).

Funding CNPq/GD 140399/2017-8, CAPES/PDSE 88881.187636/2018-01, Trond Mohn Foundation,
Research Council of Norway (Grant Nr. 288761). Open access funding provided by University of Bergen
(incl Haukeland University Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baranyi, V., Grädel, E., Rubin, S.: Automata-based presentations of infinite structures. Finite and
Algorithmic Model Theory 379, 1 (2011)

2. Blumensath, A., Grädel, E.: Automatic structures. In: Proc. of the 15th Annual IEEE Symposium on
Logic in Computer Science (LICS 2000), pp. 51–62. IEEE Computer Society (2000)

3. Bollig, B.: On the width of ordered binary decision diagrams. In: Zhang, Z., Wu, L., Xu, W., Du,
D. (eds.) Proc. of the 8th International Conference on Combinatorial Optimization and Applications
(COCOA 2014) volume 8881 of Lecture Notes in Computer Science, pp. 444–458. Springer (2014)

http://creativecommons.org/licenses/by/4.0/

908 Theory of Computing Systems (2022) 66:861–909

4. Bollig, B.: On the minimization of (complete) ordered binary decision diagrams. Theory Comput.
Syst. 59(3), 532–559 (2016)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree model checking.
Electron. Notes Theor. Comput. Sci. 149(1), 37–48 (2006)

6. Bozapalidis, S., Kalampakas, A.: Graph automata. Theor. Comput. Sci. 393(1–3), 147–165 (2008)
7. Case, J., Jain, S., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learners with feedback queries. J.

Comput. Syst. Sci. 80(4), 806–820 (2014)
8. Case, J., Jain, S., Stephan, F., Stephan, F.: Automatic functions, linear time and learning. Log. Methods

Comput. Sci. (2013)
9. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Log. Methods Comput. Sci.

3(2), 4 (2007)
10. Courcelle, B.: On recognizable sets and tree automata. In: Algebraic Techniques, pp. 93–126. Elsevier

(1989)
11. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf.

Comput. 85(1), 12–75 (1990)
12. Courcelle, B., Durand, I.: Verifying monadic second order graph properties with tree automata. In:

Rhodes, C. (ed.) Proc. of the 3rd European Lisp Symposium (ELS 2010), pp. 7–21. ELSAA (2010)
13. De Melo, A.A., De Oliveira Oliveira, M.: On the width of regular classes of finite structures. In:

Fontaine, P. (ed.) Proc. of the 27th International Conference on Automated Deduction (CADE 2019),
volume 11716 of Lecture Notes in Computer Science, pp. 18–34. Springer (2019)

14. De Melo, A.A., De Oliveira Oliveira, M.: Second-order finite automata. In: Fernau, H. (ed.) Proc. of
the 15th International Computer Science Symposium in Russia (CSR 2020), volume 12159 of Lecture
Notes in Computer Science, pp. 46–63 (2020)

15. De Melo, A.A., De Oliveira Oliveira, M.: Symbolic solutions for symbolic constraint satisfac-
tion problems. In: Calvanese, D., Erdem, E., Thielscher, M. (eds.) Proc. of the 17th International
Conference on Principles of Knowledge Representation and Reasoning (KR 2020), pp. 49–58 (2020)

16. Ebbinghaus, H.-D., Flum, J.: Finite automata and logic: A microcosm of finite model theory. In: Finite
Model Theory, pp. 107–118. Springer (1995)

17. Ergün, F., Kumar, R., Rubinfeld, R.: On learning bounded-width branching programs. In: Maass,
W. (ed.) Proc. of the Eigth Annual Conference on Computational Learning Theory (COLT 1995),
pp. 361–368. ACM (1995)

18. Forbes, M.A., Kelley, Z.: Pseudorandom generators for read-once branching programs, in any order.
In: Thorup, M. (ed.) Proc. of the 59th IEEE Annual Symposium on Foundations of Computer Science
(FOCS 2018), pp. 946–955. IEEE Computer Society (2018)

19. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern Recognit. Artif. Intell.
6(2&3), 241–256 (1992)

20. Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke, E.M., Kur-
shan, R.P. (eds.) 2nd International Workshop on Computer Aided Verification (CAV 1990), volume
531 of Lecture Notes in Computer Science, pp. 176–185. Springer (1990)

21. Goldreich, O.: On testing computability by small width obdds. In: Serna, M.J., Shaltiel, R., Jansen,
K., Rolim, J.D.P. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, Proc. of the 13th International Workshop, APPROX 2010, and 14th International
Workshop, RANDOM 2010, volume 6302 of Lecture Notes in Computer Science, pp. 574–587.
Springer (2010)

22. Grädel, E.: Automatic structures: twenty years later. In: Inproceedings of the 35Th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’20, pp. 21–34. New York, NY,USA, Association
for Computing Machinery (2020)

23. Hodgsonl, B.R.: Décidabilité par automate fini. Annales des sciences mathématiques du Québec 7(1),
39–57 (1983)

24. Hölzl, R., Jain, S., Stephan, F.: Learning pattern languages over groups. Theor. Comput. Sci. 742,
66–81 (2018)

25. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In: Theory of machines
and computations, pp. 189–196. Elsevier (1971)

26. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory Languages, and Computation.
Pearson/Addison Wesley (2007)

27. Howar, F., Steffen, B.: Active automata learning in practice - an annotated bibliography of the years
2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic

909Theory of Computing Systems (2022) 66:861–909

Software Analysis: Potentials and Limits - International Dagstuhl Seminar 16172, volume 11026 of
Lecture Notes in Computer Science, pp. 123–148. Springer (2018)

28. Jain, S., Kinber, E.B.: Automatic learning from positive data and negative counterexamples. In: Stoltz,
G., Vayatis, N., Zeugmann, T. (eds.) Algorithmic Learning Theory - 23rd International Conference,
ALT 2012, Lyon, France, October 29-31 Proceedings, volume 7568 of Lecture Notes in Computer
Science, pp. 66–80. Springer (2012)

29. Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst. Sci. 78(6), 1910–
1927 (2012)

30. Kartzow, A., Schlicht, P.: Structures without scattered-automatic presentation. In: Bonizzoni, P., Brat-
tka, V., Löwe, B. (eds.) Proc. of the 9th Conference on Computability in Europe (CiE 2013), volume
7921 of Lecture Notes in Computer Science, pp. 273–283. Springer (2013)

31. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: International Workshop on
Logical and Computational Complexity (LCC 1994), volume 960 of Lecture Notes in Computer
Science, pp. 367–392. Springer (1995)

32. Kuske, D.: Second-order finite automata: Expressive power and simple proofs using automatic struc-
tures. In: Moreira, N., Reis, R. (eds.) Proc. of the 25th International Conference on Developments in
Language Theory (DLT 2021), volume 12811 of Lecture Notes in Computer Science, pp. 242–254.
Springer (2021)

33. Newman, I.: Testing membership in languages that have small width branching programs. SIAM J.
Comput. 31(5), 1557–1570 (2002)

34. Priese, L.: Automata and concurrency. Theor. Comput. Sci. 25(3), 221–265 (1983)
35. Ron, D., Tsur, G.: Testing computability by width two obdds. In: Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques, pp. 686–699. Springer (2009)
36. Thomas, W.: Automata theory on trees and partial orders. In: Bidoit, M., Dauchet, M. (eds.) Proc. of

the 7th International Joint Conference on Theory and Practice of Software Development (TAPSOFT
1997), volume 1214 of Lecture Notes in Computer Science, pp. 20–38. Springer (1997)

37. Wegener, I.: Branching programs and binary decision diagrams. SIAM (2000)
38. Zaid, F.A.: Algorithmic solutions via model theoretic interpretations. Ph.D. Dissertation RWTH

Aachen University (2016)
39. Zaid, F.A., Grädel, E., Reinhardt, F.: Advice automatic structures and uniformly automatic classes.

In: Goranko, V., Dam, M. (eds.) Proc. of the 26th EACSL Annual Conference on Computer Science
Logic (CSL 2017), volume 82 of LIPIcs, pp. 35:1–35:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Second-Order Finite Automata
	Abstract
	Introduction
	Canonical Forms for Second Order Finite Automata
	Main Technical Tool
	Algorithmic Applications

	Preliminaries
	Basics
	Alphabets and Strings
	Finite Automata

	Ordered Decision Diagrams
	Layers
	Ordered Decision Diagrams
	Length Typed Subsets of k
	Language Accepted by an ODD
	Deterministic and Complete ODDs
	Isomorphism of ODDs
	Normalized ODDs.
	Minimized ODDs

	Regular Transductions
	Tensor Product
	Regular transductions

	Second-Order Finite Automata
	Main Results

	Closure Properties
	Basic Closure Properties
	Closure Properties Specific for Language Classes

	Algorithmic Applications
	Width and Size Minimization of Nondeterministic ODDs
	Counting Functions Computable by ODDs of a Given Width.

	Proof of the Canonization as Transduction Theorem
	Basic Transductions
	Determinization Transduction
	Reachability Transduction
	Merging Transduction
	Normalization Transduction.
	Putting All Steps Together

	Conclusion
	Regular Canonizing Relations
	Connections with the Theory of Automatic Structures

	References

