On the Satisfiability of Smooth Grid CSPs

Vasily Alferov =

National Research University Higher School of Economics, Saint Petersburg, Russia

Mateus de Oliveira Oliveira &
University of Bergen, Norway

—— Abstract

Many important NP-hard problems, arising in a wide variety of contexts, can be reduced straightfor-
wardly to the satisfiability problem for CSPs whose underlying graph is a grid. In this work, we
push forward the study of grid CSPs by analyzing, from an experimental perspective, a symbolic
parameter called smoothness.

More specifically, we implement an algorithm that provably works in polynomial time on grids
of polynomial smoothness. Subsequently, we compare our algorithm with standard combinatorial
optimization techniques, such as SAT-solving and integer linear programming (ILP). For this
comparison, we use a class of grid-CSPs encoding the pigeonhole principle. We demonstrate,
empirically, that these CSPs have polynomial smoothness and that our algorithm terminates in
polynomial time.

On the other hand, as strong evidence that the grid-like encoding is not destroying the essence
of the pigeonhole principle, we show that the standard propositional translation of pigeonhole
CSPs remains hard for state-of-the-art SAT solvers, such as minisat and glucose, and even to
state-of-the-art integer linear-programming solvers, such as Coin-OR CBC.

2012 ACM Subject Classification Theory of computation — Discrete optimization
Keywords and phrases Grid CSPs, Smoothness, SAT Solving, Linear Programming
Digital Object Identifier 10.4230/LIPIcs.SEA.2022.18

Supplementary Material Software: https://github.com/AutoProving/GridCSPs
archived at swh:1:dir:04dab414£88c68d273bc136840c6286e26e0d0b7

Funding Mateus de Oliveira Oliveira: Research Council of Norway, Grant Numbers 288761 and
326537.

1 Introduction

In this work, we consider constraint satisfaction problems (CSPs) where variables are arranged
on an m X n-grid, and where the domain of each variable is the set {1,...,k}. Constraints
are local, in the sense that they can only relate pairs of variables that correspond edges of
the grid. In our work, these CSPs are called (m,n, k)-grid CSPs, or simply as grid CSPs
when the parameters m, n, k are not relevant.

Grid CSPs have a wide variety of applications, ranging from board games to the simulation
of Turing machines running for a given number of steps. From a complexity-theoretic
perspective, the problem of determining whether a given grid CSP is satisfiable can be
solved in polynomial time for k£ < 2 by a straightforward reduction to 2-SAT. On the other
hand, for k > 3 the problem becomes NP-complete. Indeed, several natural NP-complete
problems reduce straightforwardly to the satisfiability problem for grid CSPs with constant-
size domains, including problems arising in the context of pattern recognition [20, 22], image
processing [5, 20], tiling systems [15, 21], formal language theory [9, 12, 16, 20], and many
others. Since the satisfiability problem for grid-like CSPs is NP-complete, and can be used
to model many classes of interesting problems, the identification of subclasses of grid CSPs
that can be solved efficiently is a fundamental quest.

© Vasily Alferov and Mateus de Oliveira Oliveira;

licensed under Creative Commons License CC-BY 4.0
20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Ugar; Article No. 18; pp. 18:1-18:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:vasily.v.alferov@gmail.com
mailto:mateus.oliveira@uib.no
https://orcid.org/0000-0001-7798-7446
https://doi.org/10.4230/LIPIcs.SEA.2022.18
https://github.com/AutoProving/GridCSPs
https://archive.softwareheritage.org/swh:1:dir:04dab414f88c68d273bc136840c6286e26e0d0b7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2

On the Satisfiability of Smooth Grid CSPs

We approach this quest by leveraging on the notion of smoothness, a complexity measure
defined in [6] in the context of the picture satisfiability problem. In particular, we consider
a similar notion of smoothness for grid-CSPs and prove analytically that the satisfiability
problem for polynomially-smooth instances is solvable in polynomial time. From an experi-
mental perspective, we implement our algorithm and evaluate the performance of our solver
on a class of grid-CSPs encoding the pigeonhole-principle, which essentially states that there
is no bijection between a set of n + 1 and a set of n elements. In particular, we confirm
experimentally that grid-CSPs encoding the pigeonhole principle has polynomial smoothness.
In particular, our algorithm was able to solve both positive instances (that require mapping
n pigeons to n holes), and negative instances (that require mapping n + 1 pigeons to n holes)
in time O(n3).

In an influential work, Haken showed that a family of propositional formulas H,,, encoding
the pigeonhole principle requires resolution refutations of exponential size [3, 10]. Super-
polynomial lower bounds for this principle have been shown for a variety of proof systems,
including constant-depth Frege proof systems [13, 14, 19]. It turns out that the formulas
arising from Haken’s encoding of the pigeonhole principle are also hard in practice to state-of-
the-art SAT-solvers based on the technique of conflict-driven clause-learning (CDCL) [7, 17].
Indeed, it has been shown that certain variants of CDCL-based SAT solvers, such as those
introduced in [7, 17], are equivalent in power to resolution-based proof systems [2, 4, 11, 18].

We give strong evidence that our encoding of the pigeonhole principle as grid CSPs
preserves its inherent difficulty by showing empirically that the most direct propositional
translation of our grid CSPs into SAT instances remain hard for two of the most well known
SAT solvers based on the CDCL paradigm (minisat [7] and glucose [1]). Going further, we
show experimentally that the most straightforward integer linear-programming formulation
of our grid CSPs is hard to the state-of-the-art integer linear programming solver Coin-OR,
CBC solver [8].

Our theoretical and experimental results give strong evidence that the smoothness of
grid-CSPs is a parameter that may be valuable in the study of combinatorial problems
involving constraints based on the pigeonhole principle.

2 Preliminaries

We denote by N = {0, 1, ...} the set of natural numbers (including zero), and by N = N\ {0}
the set of positive natural numbers. For each ¢ € Ny, we let [¢] = {1,2,...,¢} and
[c] ={0,1,...,¢—1}.

Let ¥ be an alphabet and w € Ny. A (X, w)-layer is a tuple B = (¢,r, T, 1, F, ¢, $), where
¢ C [w] is a set of left states, r C [w] is a set of right states, T C £ x ¥ x r is a set of
transitions, I C ¢ is a set of initial states, F' C r is a set of final states and ¢, ¢ € {0,1} are
Boolean flags satisfying the two following conditions:

1. if 1 = 0 then I = {;

2. if $ =0 then F = (.

In what follows, we may write £(B), r(B), T(B), I(B), F(B), «(B) and ¢(B) to refer to the
sets £, r, T', I and F and to the Boolean flags ¢ and ¢, respectively.

We let B(X,w) denote the set of all (X, w)-layers. Note that, B(X, w) is non-empty and
has at most 200=1w*) elements. Let n € N,. A (2, w)-ordered decision diagram (or simply,
(X, w)-0ODD) of length n is a string D = By --- B, € B(X,w)™ of length n over the alphabet
B(3, w) satisfying the following conditions:

V. Alferov and M. de Oliveira Oliveira

1. for each i € [n — 1], {(Bjt1) = r(By);
2. (B1) =1 and, for each i € {2,...,n}, «(B;) = 0;
3. ¢(B,) =1 and, for each i € [n — 1], ¢(B;) = 0.

We note that Condition 2 guarantees that only the first layer of an ODD is allowed to have
initial states. Analogously, Condition 3 guarantees that only the last layer of an ODD is
allowed to have final states.

The size of an ODD D = B ... B, is defined as size(D) = |[¢(B1)| + 37, |r(B;)|. For
each n € N, we denote by B(3Z,w)°" the set of all (X, w)-ODDs of length n. The width of
an ODD D = By --- B,, € B(X,w)°" is defined as w(D) = max{|¢(B1)|, ..., |¢(Bn)|, |r(Bn)|}-
We remark that w(D) < w.

Let D=DBy---B, € B(Z,w)° and s = 01 -0y, € £". A walid sequence for s in D is a
sequence of transitions ((p1,01,q1),- .-, (Pn,0n, qn)) such that p,11 = q; for each i € [n — 1],
and (p;,04,q;) € T(B;) for each i € [n]. Such a valid sequence is called accepting for s
if, additionally, p; € I(B1) and q,, € F(B,). We say that D accepts s if there exists an
accepting sequence for s in D. The language of D, denoted by £(D), is defined as the set of
all strings accepted by D, i.e. L(D) = {s € £™: s is accepted by D}.

A (X, w)-layer B is called deterministic if the following conditions are satisfied:

1. for each p € ¢(B) and each o € %, there exists at most one right state q € r(B) such that

(p,0,q) € T(B);

2. if «(B) =1, then I(B) = ¢(B) and |¢(B)| = 1.

On the other hand, a (X, w)-layer B is called complete if, for each p € ¢(B) and each o € &,
there exists at least one right state q € #(B) such that (p,,q) € T(B). We let B(X,w) be
the subset of B(X, w) comprising all deterministic, complete (3, w)-layers.

An ODD D = B;--- B, € B(E,w)°" is called deterministic (complete, resp.) if, for each
i € [n], B; is a deterministic (complete, resp.) layer. We remark that, if D is deterministic,
then there exists at most one valid sequence in D for each string in ¥". On the other hand,
if D is complete, then there exists at least one valid sequence in D for each string in X.
For each n € N, we let g(Z, w)°™ be the subset of B(X,w)°"™ comprising all deterministic,
complete (3, w)-ODDs of length n.

We say that an ODD D = By ... B, in B([k], w)°™ has non-determisitic degree d if all,
but at most one, layers of D are deterministic. Additionally, if there is a j such that B; is
not deterministic, then for each state ¢ € ¢(B;), and each symbol o € [k], there is at most d
states ¢’ € r(B;) such that (¢,0,q¢") € T(B;).

The following lemma can be proved by applying the standard power set construction
followed by a standard minimization algorithm for ODDs, and by observing that only subsets
of size at most d belonging to each frontier are relevant.

» Lemma 1. Let D be an ODD in B([k],w)°™ be an ODD of nondeterministic degree d.
Then one can construct in time n - w9 ® a deterministic ODD D' with minimum number of
states with the property that L(D') = L(D).

We will also need the following lemma stating that ODD representatives for synchronized
products of languages accepted by two given ODDs can be computed efficiently.

» Lemma 2 (Synchronized Product of Automata). Let D and D’ be ODDs in B([k], k)°™. Let
V ={Vi,...,V,} be a set where for each i € [n], V; C [k] x [k]. Then one can construct in
time O(k? -n) an ODD D ®y D' accepting the following language over [k] x [k].

L(D®y D" ={(01,01)...(on,00) | 01...0n € L(D), 0 ...00, € L(D"),(0;,0}) € Vi}.

18:3

SEA 2022

18:4

On the Satisfiability of Smooth Grid CSPs

3 Smooth Grid Constraint Satisfaction Problems

Let m,n and k be positive integers. An (m,n, k)-grid CSP is specified by a pair (V, H) where
V = {Vij}icim—1],je[n] is a collection of sets V; ; C [k] x [k] called local vertical constraints,
and H = {H; j}icim],jen—1] is a collection of sets H; ; C [k] x [k] called local horizontal
constraints. A solution for (V,H) is an m x n matrix M € [k]™*" which satisfies all local
vertical and horizontal constraints. More precisely, such a solution M satisfies the following
conditions.

1. For each (¢,7) € [m — 1] x [n], the pair (M; ;, M;+1,;) belongs to V; ;.

2. For each (i,7) € [m] x [n — 1], the pair (M; ;, M; j41) belongs to H; ;.

Let m and n be positive integers. We endow the set [m] x [n] = {(¢,4) | i € [m],j € [n]}
with a lexicographic order < that sets (i,7) < (i, j') if either ¢ < ¢/, or ¢ = ¢ and j < j'. We
write (4,) < (¢, ") to denote that (i, j) = (¢',5") or (i,5) < (¢, 5'). For each (i, 7) € [m] x [n],
we let

S(m,n,i,5) ={(@",5") € [m] x [n] = (¢',5') < (i,5)}

be the set of all positions in [m] x [n] that are (lexicographically) smaller than or equal to
(i,7). Given (m,n,k)-grid CSP (V,H), we say that a function M : S(m,n,i,j) — [k] is an
(i, j)-partial (V, H)-solution if the following conditions are satisfied.

1. (Mi’,jHMi’—&-l,j/) S Vi/,j/ for each (i/,j/), (i/ + l,j/) in S(m,n,i,j).
2. (Mi’,jHMi’,j/+1) S Hilﬁj/ for each (i/,j/), (i/,j, + 1) in S(m, n,i,j).

Note that for simplicity, we write M; ; in place of M (7,7) to designate an entry of M.
Intuitively, an (i, j)-partial (V, H)-solution for N is a function that colors the positions of N
up to the entry (i, j) with elements from ¥ in such a way that the vertical and horizontal
constraints imposed by V and H respectively are respected. If (4, j1) and (4, j) are positions
in S(m,n,1,j) with j1 < ja, then we let M; 5, ;,) = M j,...M; j, be the string over [k] formed
by all entries at the i-th row of M between positions j; and js. Now let (i,7) € S(m,n,i,j)
with (4,7) > (1,n). The (4, j)-boundary of M is defined as follows.

Mi,[l,n] lf] =n.
0;4(M) = 1)
Mi,[l,j] . Mi—l,[j-‘rl,n] lf] <n.

In other words, if j = n, then (M) is the string consisting of all entries in the i-th row
of M. On the other hand, if j < n, then 9(M) is obtained by concatenating the string
corresponding to the first j entries of row ¢ with the last (n — j) entries of row (¢ — 1). The
notion of boundary of a partial solution is illustrated in Figure 1.

w
= oo

o]~ <.
w
—
&)

Figure 1 An (i, j)-partial solution M where ¢ = 3 and j = 4. The grey entries form the boundary
of M. Therefore 0; ;(M) = 3123312.

The (i, j)-feasibility boundary of (V, H), denoted by 9; ;(V, H), is defined as follows.

0, iV, H) ={0; ;(M) | M is an (i, j)-partial (V,H)-solution}. (2)

V. Alferov and M. de Oliveira Oliveira

Note that a (V, H)-solution exists if and only if 9y, ,,(V,H) is non-empty.

» Definition 3. We say that an (m,n, k)-grid CSP (V,H) is s-smooth if for each i € [m] and
each j € [n], there is a deterministic ODD D of size at most s such that L(D) = 0; ;(V,H).

In [6] a similar notion of smoothness has been defined in the context of the picture
satisfiability problem. The crucial difference is that our grid CSPs are a much more general
combinatorial object, since the vertical constraints V; ; and the horizontal constraints H; ;
may depend on the position (i, j), whereas in the context of pictures, all vertical (horizontal)
constraints are required to be identical over the whole grid. The main result from [6]
established that the satisfiability problem for pictures of polynomial smoothness is solvable
in polynomial time. In this section, we generalize this result to the context of general grid
CSPs.

The following lemma states that given an (m,n, k)-grid CSP (V,H), one can construct
and initial ODD D(H, 1) € B([k], k)°™ accepting precisely those strings in [k]™ that satisfy
all local horizontal constraints in the first row of H.

» Lemma 4. Let (V,H) be an (m,n,k)-grid CSP. There is a deterministic ODD D(H,1) €
B([k], k)°™ such that

[,(D(H,].)) = {01 ...0p € [k]n : (JjanJrl) € Hl,j fO’f‘ eachj € [TL— 1]}

Proof. We let D(H,1) = B; ... B, be the ODD in B([k], k)°" where

1. ¢(B;) = r(B;) = k| for each j € [n],
2. I(B1) = {1} and I(B;) = 0 for each j € {2,. n},
3. F(B,) = k] and F(B;) =0 for eachje{l n— 1},

4. T(Bj) ={(o,0",0") : (0,0") € Hy,}.
Then it should be clear that a string s = 0105 .. .0, belongs to L(D(H,1)) if and only if

<(O—13 g2, 02) CIE (Un—la On, Un)>

is an accepting sequence for s in D(H,1). By construction, this happens if and only if
(O’j,Uj+1)€H17j for eachjE [’ﬂ*l] |

» Lemma 5. Let k and w be a positive integers, V. C [k] x [k] and D be a deterministic ODD
in B([k],w)°™. Then one can construct in time O(n - w*) an ODD Up(D,V,1) accepting the
following language

L(Up(D,V,1)) ={aw : 3b € [k], bw € L(D), (b,a) € V}.

Proof. Let k and w be positive integers, B be a layer in B([k],w) and V' C [k] x [k]. We let
[(B,V) be the layer in B([k], k - w) defined as follows.

1. /((B,V)) =4€(B) and I(I(B,V)) = I(B).

2. (I(B,V)) = «(B) and ¢(I(B,V)) = ().

3.r((B, V) ={j-w+j] 67"(), " € [k]}-

4. F((B,V))={j-w+j : je F(B)’J € [k]}.

5. T((B,V))={(,b,7-w+0b) : Jaclk],(i,a,j) € T(B),(a,b) € V}.

Additionally, we let (B, V') be the layer in B([k], k - w) defined as follows.

1. r(¢(B,V)) =r(B) and F(¢(B,V)) = F(B).
2. 1(x(B,V)) = «(B) and ¢(x(B,V)) = ¢(B).

18:5

SEA 2022

18:6

On the Satisfiability of Smooth Grid CSPs

3. ((x(B,V)) = {i-w+i : i€ l(B), i e[k}

I(x(B,V)) =0.
5 T(t (B,V)={G-w+7i,a,7) : Ja € [k], (i a,j) € T(B)}.

Now, let D = By ... B, be a deterministic an ODD in B([k], w)°™ and let

P

D/ = [(B17 V)t(BQ, V)B3 “ee Bn

be the ODD obtained from D by replacing By with [(By,V) and By with t(Bg, V). Then
one can verify that

L(D') = {aw : e [k], bw € L(D), (b,a) € V}.

Additionally, D’ has non-deterministic degree at most k. Now we set the ODD Up(D,V, 1)
as the minimum deterministic ODD such that £(Up(D,V,1)) = L£(D’). Since D’ has
non-deterministic degree at most &, we have that Up(D,V, 1) can be constructed in time
O(n - wk). <

» Lemma 6. Let k and w be a positive integers, V,H C [k] x [k], D be a deterministic
ODD in B([k],w)°", and j € [n — 1]. Then one can construct in time O(n - w*) an ODD
Up(D,V, H,j) accepting the following language

L(Up(D,V,H,j)) ={ubav : Jc € [k],ubcv € L(D), |ub|=j —1, (b,a) € H, and (c,a) € V}.

Proof. Let k and w be positive integers, B be a layer in B([k],w) and V|, H C [k] x [k]. We
let [(B,V, H) be the layer in B([k],k - w) defined as follows.

L((B,V,H)) =4£(B) and I({(B,V,H)) = I(B).

W((B,V,H)) = «(B) and ¢((B,V,H)) = ¢(B).
r((B,V,H))={j-w+j : jer(B), j €[k]}
F((B,V.H))={j-w+j : jeF(B),j €[k}

T((B,V,H)) ={(i,b,7 - w+b) : Ja € k], (i,a,7) € T(B),(a,b) € V}.

Additionally, we let v(B,V, H) be the layer in B([k], k - w) defined as follows.

-l

1. »(v(B,V,H)) =r(B) and F(¢(B,V,H)) = F(B).

2. (¢(B,V,H)) = (B) and ¢(x(B,V, H)) = ¢(B).

3. {(x(B,V,H)) ={i-w+1i : i €lB), i € [k]}

4. I(«(B,V,H)) = 0.

5. T(¢(B,V,H))={(i-w+7,a,j) : Ja€[k],(i,a,j) € T(B)}.

Now, let D = By ... B, be a deterministic an ODD in B([k],w)°™ and j € [n — 1]. Let
D/ = B1 [(Bj,‘/,H)l'(BjJ,_l,‘/,H)...Bn

be the ODD obtained from D by replacing B; with [(B;,V, H) and Bj 1 with ¢(Bj41,V, H).
Then one can verify that

L(D") = {ubav : Jc € [k],ubcv € L(D), |ub| =j—1, (b,a) € H, and (c,a) € V}.

Additionally, D’ has non-deterministic degree at most k. Now we set the ODD Up(D,V, H, j)
as the minimum deterministic ODD such that £(Up(D,V, H,j)) = L(D’). Since D’ has
non-deterministic degree at most k, we have that Up(D,V, H, j) can be constructed in time
O(n - wk). <

V. Alferov and M. de Oliveira Oliveira

The following corollary is a consequence of Lemmas 5 and 6.

» Corollary 7. Let (V,H) be an (m,n,k)-grid CSP, and let D be an ODD in B([k],w)°™.
1. If L(D) = 0;,n(V,H) for some i € [m — 1], then

E(UP(D, Vigi1, 1)) = 5¢+1,1(V;H)~
2. If L(D) = 0;,;(V,H) for some i € [m] and some j € [n — 1], then

LUp(D, Vi ji1,Hiji1,5 +1)) = 05 j+1(V, H).

Algorithm 1 Decision algorithm for grid-like CSPs.
Data: An (m,n,k)-grid CSP (V,H).
Result: Yes if (V,H) is satisfiable. NO otherwise.
D+ D(H, 1),
fort:=2...mdo

D; < Up(D;_1,Vi—11,1);

for j=2...ndo

‘ D; <= Up(D;, Vi1, H; 5,7);
end

end
Return Yes if £(D,,) # 0 and No otherwise.

The algorithm described in Algorithm 1 can be used to determine whether a given (m,n, k)-
grid like CSP (V, H) is satisfiable. It turns out that the sequence of ODDs Dy, ..., D,, can
be used to construct an actual solution in case it exists. The description of the construction
is given below in Algorithm 2.

Algorithm 2 Construction of a solution of a satisfiable grid-like CSP.

Data: ODDs Dy, ..., D,, constructed in Algorithm 1 where £(D,,) # 0.
Result: A solution for the (m,n, k)-grid like CSP (V, H) input to Algorithm 1.
Let s be a string in L£(D,,). ;
M, < s;
fori=m-—1...1do

Let s € L(D;) be such that s ®y M;1 belongs to L(D; @y D;t1).;

M; + s;
end

Return the (m,n, k)-matrix M whose rows are My, ..., M,,. ;

From Corollary 7 and Algorithms 1 and 2, we infer the following theorem.

» Theorem 8. Let (V,H) be an s-smooth (m,n,k)-grid CSP. Then one can determine
whether (V,H) has a solution using Algorithm 1 in time sO*) . mOW) . nOM " In case a
solution exists, it can be constructed within the same time bounds using Algorithm 2.

4 Experiments

In this section, we evaluate the performance of our algorithm and compare it with two
general-purpose SAT solvers (minisat and glucose) and the integer-programming solver
Coin-OR CBC.

18:7

SEA 2022

18:8

On the Satisfiability of Smooth Grid CSPs

We start by defining the notion of Pigeonhole grid-CSPs, a CSP with uniform vertical
and horizontal constraints over an alphabet of size 5 encoding the pigeonhole principle. A
more contrieved version of this CSP was studied in [6], under the name of pigeonhole pictures.
It was proved in [6] that these pigeonhole pictures have polynomial smoothness, and that
the straightforward propositional translation of these CSPs is hard for the bounded-depth
Frege proof system.

In this section, we defined a simpler notion of pigeonhole grid CSP than the one employed
in [6]. The simplicity of our definition is due to the fact that in our setting local constraints
may vary according to the position in the grid, while in [6] local constraints were required to
be uniform. Both the fact that these CSPs have polynomial smoothness and the fact that they
are hard to bounded Frege are inherited from the corresponding results in [6]. In this section,
we confirm empirically both of these theoretical results. Additionally, we show empirically
that the straightforward integer-programming formulation of the Pigeonhole grid-CSP is
hard for state-of-the-art integer programming tools such as Cplex and Coin-OR CBC.

4.1 The Pigeonhole Grid CSP

For each two positive integers m and n we define an (m,n,5)-grid CSP
PHP(m,n) = (V(m,n), H(m,n))

encoding the principle that m pigeons are placed into n holes. Clearly such a CSP should be
satisfiable if and only if m < n. To make the definition more intuitive, instead of defining the
local vertical and horizontal constraints as subsets of [5] x [5], we let ¥ = {bb, bg, gb, gg, 7}
and assume that these local constraints are defined as subsets of ¥ x Y. First, for each
i € [m — 1] and any j € [n], we let the local vertical constraint V; ; be equal to the following
relation.

V = { (b, yb), (xb,r7), (rr,zg), (xg,y9) | =,y € {b,g} }.

Now, there are three types of local horizontal constraints. For ¢ € [m], we set H; 1 equal
to the relation

Hiepp = { (bx,by), (bx,rr), (rr,gy) = z,y € {b,g} }. (3)

For each i € [m] and each j € [n — 2|, we set H; ; equal to the relation.

Hmiddle = { (b%by); (bl’,’f”f‘), (’T’T‘,gy), (gxuqy) LY S {b7g} } (4)

Finally, for each i € [m], we set H; ,—1 equal to the relation

Hyighy = { (bx,r7), (rr,9y), (92,9y) : @,y € {b,g} }. (5)

Intuitively, if M is a solution for PHP(m, n) then M has one row for each pigeon and one
column for each hole. The M; ; = rr indicates that the i-th pigeon is placed at the hole j.
On the other hand, M; ; = bz for some x € {g, b} indicates that the i-th pigeon is placed in
some hole greater than j, while M; ; = gz for some = € {b, g} indicates that the i-th pigeon
is placed in some hole smaller than j. Analogously, if M; ; = zb for some = € {b, g}, then the
pigeon that is placed at the j-th hole is greater than ¢, while if M; ; = xg, then the pigeon
that is placed at the j-th hole is smaller than .

V. Alferov and M. de Oliveira Oliveira

Note that the way in which the horizontal constraints are defined guarantees that exactly
one pigeon must occur in each row of a solution. This is because there is no allowed pair
(zy,z'y’) where z is blue and 2’ is green. Therefore in a solution, each row must have at
least one entry with value rr. Additionally, the vertical constraints guarantee that that at
most one pigeon will occur in each column. Indeed, if some pigeon occurs in a position (4, 5)
then the second color in each entry below (i, j) must be green, while the second color of each
entry above (i, j) must be blue. Therefore no two pigeons are allowed to appear on the same
column of a satisfying assignment. In Figure 2 we depict a solution to the pigeonhole CSP
PHP(4,4), while one can readily check that the CSP PHP(4, 3) has no solution.

bb|IT|8b|8b I'T(8b|8b
. bb|b8|bb | T ..y |b8&|bb|IT
1) bb |b8|IT| 88 11) b&|rr(gg

Ir|88[88|88 bg|bg

Figure 2 i) A solution to the pigeonhole CSP PHP(4,4). i) A maximal partial solution to
PHP(4, 3). In this last case, it is not possible to assign a value to the entry (4,3) of the matrix in
such a way that both the constraints V3 3 and Hy o are satisfied.

» Theorem 9 (Follow from results in [6]). Let PHP(m,n) be the pigeonhole grid CSP defined
above.

1. PHP(m,n) has a solution if and only if m < n.

2. The smoothness of PHP is bounded by m®®) - n.

3. For each fizred d € N, PHP(m 4+ 1,m) require depth-d Frege proofs of superpolynomial size.

4.2 Solving Pigeonhole Pictures with the ODD solver

Since the PHP(m, n) has smoothness upper bounded by m©W .n, there is no visible difference
between the performance of the solver on barely-satisfiable instances PHP(m,m) and the
performance of the solver on barely-unsatisfiable instances PHP(m + 1,m). This is confirmed
empirically in Figure 3.

‘
e nxn

% 1.000 | — (n+1) xn | n | wD) | mxm,s | (m+1)xm,s

R 50 | 51 2.172 2.220

g 100 | 101 17.834 17.780

= 500l i 150 | 151 60.715 60.552

i 200 | 201 | 145.587 144.179

& 250 | 251 | 291.692 286.952

of : 300 | 301 | 511754 505.581

0 200 100 350 | 351 | 818.724 813.929

" 400 | 401 | 1241.258 1236.734

Figure 3 (a) Performance of the ODD solver on PHP(m, m) and on PHP(m + 1, m). The running
times grows as O(m?). The plots corresponding to both cases almost match. (b) Execution times
(in seconds) and maximum width of minimized deterministic ODDs occurring during the execution
of the ODD algorithm. Note that the maximum width is identical in both test cases.

18:9

SEA 2022

18:10

On the Satisfiability of Smooth Grid CSPs

4.3 Experiments with SAT Solvers

First we describe the straightforward translation from (m,n, k)-grid CSPs to CNFs. We
note that the obtained CNFs have width at most k. Given such a CSP (V,H), the formula
¥(V,H) has a variable z;;, for each (i,75) € [m] x [n], and each o € [k]. Intuitively, the
variable z;;, is true if the position (7, j) of a solution is set to o. The following set of clauses
specifies that in a satisfying assignment, precisely value is associated with entry (i, j).

OneSymbol(M, i, j) = \/ Tijs N /\ (Tijs V Tijs') (6)
s€[k] s,s'€lk],s#s’

The next set of clauses expresses the fact that no pair (o,0’) ¢ H; ; occurs in consecutive
horizontal positions at row i.

Horizontal(M, i) = /\ (Tijo V Ti(j+1)07) (7)
(O',U’)QHi,j,jE[TL—l]}

Similarly, the following set of of clauses expresses the fact that that no pair (o,0’) ¢ Vi ;
occurs in consecutive vertical positions at column j.

Vertical(M, j) = /\ (Tijo V T(ix1)j07) (8)
(0,0")¢Vi 5 i€[m—1]}

Finally, we set the formula (M) as follows.

m n
YV, H) = /\ Horizontal(M, i) A /\ Vertical(M, j) A /\ OneSymbol (M, i, j) (9)
i=1 j=1 ij

10t F E
108 i i n ODD, s | Minisat, s | Glucose, s
= 40 1.072 0.319 0.370
g 102} y 70 | 5744 1.024 1.123
g ot g] 100 | 17.834 2.683 9.057
) 130 | 39.440 19.997 39.525
5 100 7 :hgfiszt 7 160 | 73.322 73.149 136.082
o1l lueeee | 190 | 125.788 | 251.317 241.092
& | - 1] 220 | 195.433 | 348.214 336.554
0 200 400 250 | 291.692 | 495.185 | 1038.347

n

Figure 4 Performances of ODD, Minisat and Glucose solvers on Pigeonhole picture of size n x n.

The test cases corresponding to the CNF translation of the grid CSPs PHP(m,m) and
PHP(m + 1,m) were given as input to the SAT solvers Minisat 2.2' and Glucose 4.12.

The performance of these solvers on the barely satisfiable case is plotted on Figure 4.
The timeout for each experiment was set at 3600 seconds. As it can be seen, Glucose solver
times out for n > 250, and Minisat times out for n > 350. The performance of SAT solvers
seems to be exponential, while ODD solver performs clearly in polynomial time.

! http://www.minisat.se/Main.html
2 https://www.labri.fr/perso/lsimon/glucose/

http://www.minisat.se/Main.html
https://www.labri.fr/perso/lsimon/glucose/

V. Alferov and M. de Oliveira Oliveira

103 | E 10% v :
B] 5| A
£ 10%} E g
= F B = B i
S F g e 10%k E
g 1001 E g i 1
g k 1 s 10! E E
g 100 e E g -]
= B —— Real 1 =100 —— Real [
10-! ; —— Regression E 10-1 B —— Regression |
L I - = T B
0 100 200 0 100 200
n n
(a) Minisat. (b) Glucose.

Figure 5 Exponential regressions for SAT solver running times.

Based on the results of the tests, the empirical exponential approximations were estimated
for running times of Minisat and Glucose solvers. For Minisat, it is O*(1.033™), while for
Glucose it is O*(1.041™). The regressions are plotted on Figure 5.

Interestingly, the amount of memory used by the ODD solver is significantly larger than
the amount of memory used by SAT solvers. As it is clearly shown on Figure 6, both
amounts are polynomial, but the degree of the polynomial for the ODD solver is larger. SAT
solvers most probably use linear amount of memory in terms of the formula length (which
is quadratic with respect to m). However, the ODD-based solver needs to store ODDs for
all layers in order to be able to restore the solution, so the amount of memory used by this
solver on this test is cubic.

10
Y r———opp 1 n | ODD, Mb | Minisat, Mb | Glucose, Mb
% — Minisat 40 27.273 21.082 22.202
= —— Glucose 70 121.126 61.706 65.559
= 108 1 < | 100 323.002 123.988 144.478
g 130 677.117 9226.307 239.545
g 160 | 1227.509 318.518 370.232
190 | 2007.272 485.630 500.627
10° [i 1| 220 | 3077.601 702.075 739.147
10! 10? 250 | 4458.830 969.132 934.675

m

Figure 6 Memory used by ODD, Minisat and Glucose solvers on Pigeonhole picture of size m x m.

A more expressive difference is achieved for the barely unsatisfiable case, PHP(m + 1, m).

The performance is plotted in figure 7. Both solvers time out in this case even for for
n = 14. Therefore, we can conclude that CNF encodings corresponding to PHP(m + 1,m)
are extremely hard for the tested SAT solvers.

18:11

SEA 2022

18:12

On the Satisfiability of Smooth Grid CSPs

10* 7 ‘ E

rl— ODD 1
103 | —— Minisat . m | ODD, s | Minisat, s | Glucose, s
2 | Glucose | 5 0.152 0.158 0.169
g 107} E 6 0.163 0.041 0.070
g ol 1 7| 0074 0.125 0.123
51 g e 8 0.072 0.226 0.174
E 100 |] 9 | o0.077 2.436 1.277
g | 10 | 4.169 37.477 5.043
107" E 11 0.072 903.836 24.553
L ! w !] 12 | 0119 | 3598.044 217.029

0 5 10 15 20
m

Figure 7 Performances of ODD, Minisat and Glucose solvers on Pigeonhole picture of size
(m 4+ 1) x m. Both SAT solvers timed out for m > 14, while the ODD solver run without problems
in all test sizes (up to m < 400).

4.4 Integer Programming Translation

The ILP encoding of grid CSPs is done in a similar way to the CNF encoding. More precisely,
a variable z; ; s € {0,1} is created for each (i,7) € [m] x [n] and each s € [k]. Then, the
following constraints are added:

OneSymbol(M,1i,5) = Z Tijs =1 (57)
s€(k]
Horizontal(M, i, j,0,0") = ije + @i(j41)er < 2, if (0,0") ¢ H, ; (6")
Vertical(M,4,j,0,0") = @ijo + T(it1)jor < 2, if (0,0") ¢ Vi (7)
- T T]
10* f|— ODD 4
'|— CBC
103 | — Regression - n | ODD,s | CBG s
2 & e 10 | 0.068 2.565
S 102t 4 20 | 0219 | 10.489
% g | 30 | 0471 | 23.465
g 10t 5 40 | 1072 | 85323
& L0 i] 50 2.172 | 177.186
60 | 3.584 | 383.363
10-1 1] 70 | 5.744 | 698.603
& | | | | e 80 | 9.105 | 1522.991

|
20 40 60 80 100

m

Figure 8 Performances of ODD and CBC solvers on Pigeonhole picture if size m x m.

V. Alferov and M. de Oliveira Oliveira

The resulting ILP instances were given to the Coin-OR CBC? solver. The performance is
plotted on Figure 8. For m x m instances the solver timed out for m = 90. The running
time of the solvers grows clearly as an exponential function. On each of the test cases, the
running time of the ILP sover is several orders of magitude above the running time of the
ODD-based solver. For the ILP solver empirical exponential approximation of O*(1.093™)
was also built. The regression is shown on Figure 8. As in the case of SAT solvers, for the
barely unsatisfiable case the ILP solver timed out much earlier (for m = 21). The results for
m < 20 are plotted on Figure 9.

Fl I |

L8 || ——0DD i
I|— CBC] m | ODD, s CBC, s
T 102} i 6 | 0163 0.942
g : - 8 | 0072 2.422
2 qotL] 10 | 4.169 8.201
g 1 12| om9| 3946
B 100 E 14 | 0120 | 51.762
g] 16 | 0.217 | 2046.332
1074 E 18 | 0.167 | 622.360
N : 15 o0 20 | 5.060 | 1543.712

Figure 9 Performances of ODD and CBC solvers on Pigeonhole picture if size (m + 1) x m.

5 Conclusion

In this work, we have lifted the notion of smoothness for pictures (grid-CSPs with uniform
vertical and horizontal constraints) to the context of general grid CSPs, where the vertical
and horizontal constraints at each position (i,5) may depend on (4,j). We have shown
that the satisfiability problem for grid-CSPs of polynomial smoothness can be solved in
polynomial time. Additionally, we have given evidence for the relevance of the concept of
smoothness in practical situations by demonstrating empirically that the class for pigeonhole
grids can be solved in cubic time.

This opens up the possibility of applying our algorithm to grid CSPs involving constraints
where one particular object can appear at most once in any row/column, such as the problem
of placing r towers in an m X n chess grid in such a way that no tower attacks each other. It
can be shown in this case that the ODDs occurring in the execution of the algorithm have
size polynomial in m,n and 7.

—— References

1 Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,
27(1):1840001:1-1840001:25, 2018. doi:10.1142/50218213018400018.

2 Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, pages 319-351, 2004.

3 https://github.com/coin-or/Cbc

18:13

SEA 2022

https://doi.org/10.1142/S0218213018400018
https://github.com/coin-or/Cbc

18:14

On the Satisfiability of Smooth Grid CSPs

10

11

12

13

14

15

16

17

18

19

20

21

22

Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
274-282. IEEE, 1996.

Samuel R Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Resolution
refinements that characterize DLL algorithms with clause learning. Logical Methods in
Computer Science, 4, 2008.

Alessandra Cherubini, Stefano Crespi Reghizzi, Matteo Pradella, and Pierluigi San Pietro.
Picture languages: Tiling systems versus tile rewriting grammars. Theoretical Computer
Science, 356(1):90-103, 2006.

Mateus de Oliveira Oliveira. Satisfiability via smooth pictures. In International Conference
on Theory and Applications of Satisfiability Testing, pages 13—28. Springer, 2016.

Niklas Eén and Niklas Soérensson. An extensible SAT-solver. In Theory and applications of
satisfiability testing, pages 502—-518. Springer, 2003.

John Forrest and Robin Lougee-Heimer. Cbc user guide. In Emerging theory, methods, and
applications, pages 257-277. INFORMS, 2005.

Dora Giammarresi and Antonio Restivo. Recognizable picture languages. International Journal
of Pattern Recognition and Artificial Intelligence, 6(2&3):241-256, 1992.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning
can effectively P-simulate general propositional resolution. In Proc. of the 23rd National
Conference on Artificial Intelligence (AAAI 2008), pages 283-290, 2008.

Changwook Kim and Ivan Hal Sudborough. The membership and equivalence problems for
picture languages. Theoretical Computer Science, 52(3):177-191, 1987.

Jan Krajicek. Lower bounds to the size of constant-depth propositional proofs. The Journal
of Symbolic Logic, 59(01):73-86, 1994.

Jan Krajicek, Pavel Pudldk, and Alan Woods. An exponential lower bound to the size of
bounded depth frege proofs of the pigeonhole principle. Random Structures & Algorithms,
7(1):15-39, 1995.

Michel Latteux and David Simplot. Recognizable picture languages and domino tiling.
Theoretical computer science, 178(1):275-283, 1997.

Hermann A Maurer, Grzegorz Rozenberg, and Emo Welzl. Using string languages to describe
picture languages. Information and Control, 54(3):155-185, 1982.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation
Conference, pages 530-535. ACM, 2001.

Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence, 175(2):512-525, 2011.

Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Computational complezity, 3(2):97-140, 1993.

Azriel Rosenfeld. Picture languages: formal models for picture recognition. Academic Press,
2014.

David Simplot. A characterization of recognizable picture languages by tilings by finite sets.
Theoretical Computer Science, 218(2):297-323, 1999.

Gift Stromoney, Rani Siromoney, and Kamala Krithivasan. Abstract families of matrices and
picture languages. Computer Graphics and Image Processing, 1(3):284-307, 1972.

	1 Introduction
	2 Preliminaries
	3 Smooth Grid Constraint Satisfaction Problems
	4 Experiments
	4.1 The Pigeonhole Grid CSP
	4.2 Solving Pigeonhole Pictures with the ODD solver
	4.3 Experiments with SAT Solvers
	4.4 Integer Programming Translation

	5 Conclusion

