
University of Bergen
Department of informatics

Finding Common Grounds: The

Moral Machine Case

Author: Anum Rehman

Supervisor: Ana Ozaki

March, 2023

Acknowledgements

First of all, I would like to thank my supervisor, Ana Ozaki for her guidance and sup-

port throughout my thesis. Her invaluable involvement and encouragement is highly

appreciated. .

I am indebted to her for all the solution-oriented discussions, sharing of ideas, patience,

and regular follow-up. Her aid helped me in shaping up my work, aligned it with my

interests, resulted in a smooth journey.

I also would like to thank my co supervisor, Philip Andreas Turk, who always facili-

tated my queries with the best possible answers.

I highly value the support that I received from my family and friends in fulfilling my

dream.

Last but not least, I thank my beloved husband, Shoaib for providing me with his

endless support and encouragement. I could not have undertaken this journey without

his love and cooperation. I would like to thank University of Bergen for providing me the

platform, resources to attain this academic achievement and turning me into a valuable

part of the society.

Anum Rehman

Bergen, 2023

UNIVERSITY OF BERGEN

Faculty of Mathematics and Natural Sciences

Department of Informatics

Abstract

Autonomy is when one tackles to gain a sense of oneself as a detached, self-governing

individual. With the rapid development of Artificial Intelligence, there comes a concern

about how autonomous systems will make principled decisions. It demands imagining

several potential outcomes for the future, anticipating possible problems and setting a

course of actions to minimize the danger to the society; while good factors reliability. We

need to consider the dynamic standards of dangers and reliabilities. These change from

one society to another, lead to disagreement, as these differ in various ways. The goal

is to design an autonomous system in a way which can reach mutual understanding and

settlement while resolving friction.

In this project, I am going to study and implement an algorithm to build common

ground using horn expressions. Python programming language is used for its imple-

mentation. It resolves incoherence while giving optimal coherent constraints that meet

all the agents’ requirements, what we call a common ground. This algorithm combines

incoherent behaviour rules represented in propositional Horn.

I improve the algorithm with a proposal to resolve conflict. It is a settlement of

internal conflicts which can enhance the potential of autonomy. It enforces parties to

negotiate based on a framework of negotiations. Additionally, I reduce a number of

known limitations in the algorithm for reaching a common ground.

I study and explore the Moral Machine experiment. It is an online experimental

platform, designed to explore the moral dilemmas faced by autonomous vehicles. Moral

dilemmas are important. These help to investigate individuals with their moral standing,

in terms of the choices they make when presented with conflicting situations.

We apply the implemented algorithm on the moral recommendation extracted from

Moral Machine experiment, where each recommendation is represented as a Horn clause.

1

For example, human agents strongly prefer sparing more lives to fewer in case vehicle

brakes fail. This dataset is gathered from all over the world. It is highly expected to see

some disagreement based on users’ geographical location and demographic information

such as country, education, social status, religious and political attitudes. For testing

algorithm, we use combinations of different countries and discuss the results.

2

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research goals . 2

1.3 Plan . 4

2 Background 6

2.1 Syntax . 6

2.1.1 Horn Expression . 7

2.2 Semantics . 8

2.2.1 Entailment and Satisfiability . 8

2.3 First Steps for Finding Common Grounds 10

2.3.1 Agents in Artificial Intelligence 10

2.3.2 Background Knowledge . 12

2.3.3 Coherence . 14

2.3.4 Conflict . 16

2.3.5 Common Ground Postulates . 18

2.3.6 Non-Redundant Horn Expression 20

2.3.7 Acyclic Horn Expression . 21

2.3.8 Theorems . 22

2.3.9 Dependency Graph . 22

2.4 The Original Common Ground Algorithm 24

2.4.1 Description . 24

2.4.2 Examples . 25

3 Finding Common Grounds 28

3.1 Cyclic and Redundant Expressions . 28

3.2 Resolving Conflicts . 30

3.3 Improved version of Algorithm . 30

3.4 Description of Algorithm . 32

3

3.5 Examples . 33

4 Implementation 37

4.1 Coherence . 37

4.2 Cyclic Behavior and Redundancy . 40

4.3 Conflict . 44

4.3.1 Resolve Conflict . 45

4.4 Resolve Incoherence . 46

4.5 Finding Common Ground Algorithm . 48

5 Experiment 50

5.1 Moral Machine Experiment . 50

5.2 Findings of Moral Machine Survey . 53

5.3 Moral Machine Dataset . 56

5.4 Preprocessing of Data . 60

5.5 Results . 63

5.5.1 Comparison between the United States and China 63

5.5.2 Comparison of Scandinavian countries 66

5.5.3 Comparison of Clusters . 69

6 Related Work 72

7 Conclusion 76

Bibliography 79

A Generated code from Protocol buffers 82

4

List of Figures

1.1 Example of a driving scenario . 3

2.1 Truth table of Logical disjunction (OR) 9

2.2 Truth table of Logical Conjunction (AND) 9

2.3 Truth table of unsatisfiable fromula . 9

2.4 Dependency Graph . 23

2.5 A dependency graph with no safe clause 25

2.6 A dependency graph with safe clauses . 26

4.1 Output for cyclic Horn expression . 42

4.2 Output for acyclic Horn expression . 43

4.3 Output of Safe pairs function for Horn expression 47

5.1 Trolley Problem . 51

5.2 Sample scenario of Moral Machine experiment 52

5.3 Moral Machine Map . 53

5.4 Countries clusters of Moral Machine . 54

5.5 Clusters’ Tendencies of Moral Machine 55

5

List of Tables

5.1 Random row of Moral Machine Dataset 57

5.2 Example of grouping scenarios . 61

5.3 Horn Expression for the United States and China 64

5.4 Horn Expression for the United States and China after resolving conflicts 65

5.5 Common ground for the United States and China 66

5.6 Horn Expression for Scandinavian Countries 67

5.7 Horn Expression for the Scandinavian Countries after resolving Conflicts 68

5.8 Common Ground for the Scandinavian Countries 68

5.9 Horn Expression for Norway, France and India 69

5.10 Horn Expression for Norway, France and India after resolving Conflicts . 70

5.11 Common Ground for Norway, France and India 70

5.12 Summary of the Study Case . 71

6

Listings

4.1 Structure for Entailment . 38

4.2 Structure for Derivation . 39

4.3 Structure for Coherence . 39

4.4 Structure for Cycles in Horn expression 41

4.5 Structure for Redundancy . 44

4.6 Structure of Conflict in Horn expression 45

4.7 Structure for Resolving Conflict in Horn expression 46

4.8 Structure for Finding Common ground Algorithm from Horn expression 49

A.1 Extract antecedents and consequents of clause 82

A.2 Extract Symbols from Horn expression 82

A.3 Excludents of an atom . 83

A.4 Structure for derivation of two clauses 83

A.5 Structure for Non-redundancy of a Horn Expression 84

A.6 Structure for conflict in a pair of clauses 84

A.7 Structure for Safe pairs in Horn expression 85

A.8 Structure for Weaker version of clause 86

A.9 Structure for filtering data of Moral Machine dataset 86

A.10 Structure for extracting rules from Moral Machine dataset 87

7

Chapter 1

Introduction

This chapter introduces the motivation and context for this thesis, leading to its research

questions and research goals, followed by a summary of prior and related works.

1.1 Motivation

“Ethics is knowing the difference between what you have a right to do and

what is right to do.” – said Potter Stewart

Ethical decisions inspire trust, fairness, responsibility, and care for others. The process

of ethical decision-making recognizes these conditions. It requires a review of all available

options, eliminate unethical views and choose the best ethical alternative.

Determining what is ‘good’ means that one needs to know what are the underlying

values. Each person and socio-cultural environment prioritizes and interprets moral and

societal values differently [1]. Most people can act in ways that enhance or decrease the

quality of their lives or the lives of others. They generally know the difference between

helping and harming. However, when facing certain dilemmas or decisions, each person

draws on their standards based on their values, which results in people making different

decisions in similar situations [1]. Commonly, ethical differences are the result of individ-

ual interpretations of the situation at hand, which can lead to conflicting situations.

This implies that when we tend to design a system that is intelligent enough to make

decisions, we ought to consider many environmental factors and the possibility of the

1

emergence of conflicts. The more decisions such systems make for us, the more we need

to ensure that the decisions they make have a positive individual and societal ethical

impact [2].

A moral autonomous system is an agent who completes a task by using a decision-

making model. It follows an ethical framework by adhering to a moral principle in

an ethical context. Systems capable of some level of autonomous operation should be

built to respect the moral norms and values of the society in which they operate [3].

These should function without any assistance, which is one of the ultimate goals of

artificial intelligence. The main concern is the standards these have to perceive as norms

and values. For this, we need to reinforce a set of rules. These rules should deal with

inconsistency and disagreement while reaching a common mutuality, that a system can

follow. This mutuality must have respected all stakeholders’ recommendations as much

as it is possible for the system.

To illustrate artificial intelligence ethical dilemma, consider autonomous vehicle sit-

uations presented by Massachusetts Institute of Technology researchers in the Moral

Machine Experiment. The experiment is designed to explore the multidimensional moral

dilemmas faced by autonomous vehicles. Autonomous vehicles have the potential to

improve the quality and productivity of the time spent in cars, increase the safety and ef-

ficiency of the transportation system, and transform transportation into a utility available

to anyone, anytime [4].

1.2 Research goals

Main goal of the thesis is to understand and implement an algorithm for building common

grounds, by resolving inconsistency among rules. This algorithm has been developed to

solve the problem of normative incompatibility using a propositional Horn expression,

which is the combination of Horn clauses.

This is a study of the problem of reaching a settlement among the rules of conduct an

autonomous system should obey. Our algorithm combines possibly incoherent behavior

rules represented in propositional Horn expressions. In the algorithm, we assume that

each stakeholder with an interest in governing the behavior of a system contributes with

a set of rules, which the system should implement. However, these rules are possibly

under-specified and might be incoherent with each other. This algorithm “corrects” the

rules with exceptions raised by stakeholders and finds a mutually acceptable common

2

ground. The algorithm has some specific notions related to Horn expressions such as

coherence, conflict, acyclicity, and redundancy. These are to be fulfilled to end up with a

full common ground. Any autonomous system can adapt that full common ground and

work in normative limits by considering social and moral tendencies.

In the thesis, we also propose some changes to the algorithm while reducing the

limitations of algorithm for reaching a full common ground. These changes improve the

applicability of the algorithm. After that, we implement the common ground algorithm.

We use our algorithm and test it on the Moral Machine data set [5]. Moral Machine is a

platform for gathering a human perspective on moral decisions made by self-driving cars,

where self-driving cars have to make decisions in life-threatening situations. These show

moral dilemmas, where a driverless car must choose the lesser of two evils. For example,

what should a self-driving car do if it has to decide between the lives of passengers or

pedestrians in the event of collision? Should it consider the age of the people? Or the

number of people involved? Are humans more important than animals? Should one child

be saved instead of two adults? These are some of the scenarios that are at the center of

discussion in the Moral Machine experiment.

Figure 1.1: Example of a driving scenario

https://MoralMachine.mit.edu/

In Figure 1.1, we see that if an Autonomous Vehicle such as a self-driving car faces

breaks failure and the car does not intervene, pedestrians would be killed and if the

car intervenes, passengers would be killed. In this experiment, both pedestrians and

passengers have some specific attributes such as being old or young and having high

3

https://MoralMachine.mit.edu/

social status (e.g., doctor or pregnant women) or low social status (e.g., criminal or

jobless person). This experiment has 13 such dilemmas that user has to decide. This

platform gathered 40 million decisions in ten languages from millions of people in 233

countries and territories, which is the data set of the Moral Machine experiment [5]. We

use this dataset and test our algorithm by incoherence and conflicts.

Our main contributions are:

• analysis of common ground algorithm and the necessary changes to minimize the

main limitations of Algorithm 1 (Ozaki et al. [6]).

• discussion of existence of conflicting rules in concrete dataset such as the one in the

Moral machine experiment and how these can be resolved.

• an implementation of our algorithm for finding common grounds.

• the case study of moral recommendation in Moral Machine experiment.

• test algorithm on Moral Machine dataset (after extracting rules) and analysis of

results for different countries.

1.3 Plan

Thus far, this chapter introduces the motivation and research goal of the work described

in this thesis. The remaining structure is as follows:

Chapter 2 presents an overview of the background. This includes a brief description

of the syntax and semantics needed to describe the algorithm. It has an explanation

of the notions with examples that are used in the algorithm such as Horn expression,

coherence, and conflict. It also covers a brief introduction of the original version of the

algorithm, with some related theorems and lemmas.

Chapter 3 encompasses research around extended changes in the algorithm like the

resolution of conflict, cycles and redundancy. It describes how changes have been used to

support the algorithm. It also covers the new version of the common ground algorithm,

along with the elaborations of examples.

Chapter 4 presents the implementation of the algorithm. It explains the architecture

of all the active component. It also covers how the technical work is implemented in

Python programming language.

4

Chapter 5 presents a case study of the Moral machine experiment while explain-

ing the Moral machine dataset and preprocessing the data to make it suitable for our

algorithm. It also contains discussion on how we applied the developed algorithm in

the previous sections to find common grounds for Horn expressions representing moral

recommendations. The moral recommendations are taken from the dataset of the Moral

Machine Experiment. We use combinations of different countries to test our algorithm.

Chapter 6 presents a literature review of works related to the problem we are at-

tempting to solve.

Chapter 7 presents a summary of the work while discussing some limitations and

challenges. It also contains suggestion of potential directions for further development.

5

Chapter 2

Background

In this chapter, we present a brief overview of the main concepts this thesis is based upon.

We start with basic details of the syntax. Following this, we continue with a discussion

on essential notions like Horn expression, coherence, conflict, and common ground. We

also use examples to explain these notions.

Additionally, we discuss some theorems, lemmas and postulates needed to develop an

understanding about the algorithm for finding common ground (Ozaki et al. [6]). We

discuss notions and terms, both mathematically and in simple language. Finally, we

give a brief introduction to the original version of the common ground algorithm [6] and

explain how it works using examples.

2.1 Syntax

Syntax is a formal description of the structure of expressions in any given language. It is

important to remember, whenever we talk about syntax, it reflects symbols. We are not

mentioning their meaning, which is the role of semantics.

In propositional logic, we say an atom is a boolean variable or a propositional symbol

that can be true or false. A literal is an atom or its negation.

• A positive literal is just an atom (e.g., x).

• A negative literal is the negation of an atom (e.g., ¬x).

6

In propositional logic, we apply the following operators on formulas. All literals are

formulas and we can build more complex formulas using operators as follows. Assume f

and g are formulas. Then:

• Negation: ¬f
• Conjunction: f ∧ g

• Disjunction: f ∨ g

• Implication: f→ g

are also formulas.

2.1.1 Horn Expression

In propositional logic, a clause is a finite disjunction of literals (atoms or their negations)

such as (l1 ∨ l2 . . . ∨ ln), where l1, l2 . . . ln can be positive or negative literals.

A Horn clause is a clause containing at most one positive literal.

• Example of a Horn Clause: (¬ Child ∨ ¬ Mail ∨Boy)

• Not a Horn Clause: (Rain ∨ Sleet ∨ Snow)

Equivalently, we can write a Horn clause in implication form using equivalence

(A ∨ ¬B ≡ A← B) which is more common in logic programming. We can write

(¬ Child ∨ ¬ Mail ∨Boy) as (Child ∧Mail)→ Boy

where we know that Child and Mail are negative literals and Boy is a positive literal.

There are two types of Horn clauses.

• Definite Horn Clause: Horn clause with exactly one positive literal. For example,

(p1 ∧ p2 . . . ∧ pn → q).

• Horn Constraints: Horn clause without a positive literal. For example, (p1 ∧
p2 . . . ∧ pn)→ False or it can be written as (p1 ∧ p2 . . . ∧ pn)→ ⊥.

For a definite Horn clause ϕ, we define antecedents written as ant(ϕ) to be the set of

all atoms such that their negation occurs in ϕ, while the concludent con(ϕ) is the positive

literal in ϕ. Definite Horn clauses have only one concludent. Let ϕ be the Horn clause as

(p1 ∧ p2 . . . ∧ pn)→ q then ant(ϕ) := {p1, p2 . . . pn} and con(ϕ) := q. A Horn expression

is a (finite) collection of Horn clauses. It is called definite Horn expression if all clauses

in it are definite.

7

2.2 Semantics

Semantics is a formal description of the meaning of programs in a given language. There

are various types of meanings that might be assigned, but the basic one we use in propo-

sitional logic is truth and falsity.

Semantics is a set of truth functions that take in a set of variables along with some

logical connective and return either true or false For example in a truth table, each row

corresponds to a particular truth function, whatever a truth function assigns to a string

X, it must assign the opposite value to the string (¬X), and that (A ∧ B) is assigned

true if and only if both A and B are assigned true.

The semantics is given by interpretations. An interpretation function I (f) returns:

• true(1) (says that it satisfies f)

• false(0) (says that it does not satisfy f)

For example, we have three variables a, b, c and formula f is defined as a∨ b∧ c, suppose
in interpretation, a, b are false and c is true, then in interpretation I , given formula is

not true.

2.2.1 Entailment and Satisfiability

In simple words, we say a sentence A entails another sentence B if, whenever A is true,

B must also be true.

Formally, we say a set of premises ∆ logically entails a conclusion Φ (written as

∆ |= Φ) if and only if every interpretation that satisfies the premises also satisfies the

conclusion. For example:

{p} |= {p ∨ q}

{p} ⊭ {p ∧ q}

{p,q} |= {p ∧ q}

we can check for logical entailment by comparing tables of all possible interpretations.

8

Figure 2.1: Truth table of Logical disjunction (OR)

In Figure 2.1 we can see that when we eliminate all rows that do not satisfy premises,

we are only left with the rows where conclusion is also satisfied that means p |= p ∨ q.

Figure 2.2: Truth table of Logical Conjunction (AND)

Similarly, in Figure 2.2 if we eliminate all rows that do not satisfy premises p, we

have one row where conclusion p∧q is not satisfied, means p ⊭ p∧q. Here we keep rows

where premises, p and p both are satisfied, we have a row, where conclusion p∧q is also

satisfied, means {p,q} |= p ∧ q. In Horn logic, a Horn expression F entails a clause ϕ

(F |= ϕ), if every interpretation that satisfies F also satisfies ϕ.

A sentence is said to be satisfiable Iff under some circumstances it can be true, on

logical grounds. In propositional logic, a proposition p is “satisfiable” if its truth value

is true for some assignments and is “unsatisfiable” if the truth value is false for all the

assignments. We can say from both tables 2.1 and 2.2, p∨q and p∧q both are satisfiable

because some assignments are true in both cases.

Figure 2.3: Truth table of unsatisfiable fromula

9

Here in table 2.3, (p ∧ ¬ p) is unsatisfiable because none of the values are true. A

popular Theorem is related from the explanation of logical entailment and satisfiability.

Theorem 1. ∆ |= Φ if and only if ∆ ∪ {¬ Φ} is unsatisfiable [7].

Proof: Suppose that ∆ |= Φ. If an interpretation satisfies ∆, then according to the

definition of entailment it must satisfy Φ, this implies it cannot satisfy ¬Φ. Therefore,

∆ ∪ {¬ Φ} is unsatisfiable.

Conversely, suppose that ∆ ∪ {¬ Φ} is unsatisfiable. Then every interpretation that

satisfies ∆ must fail to satisfy ¬Φ, that is, it must satisfy Φ. Therefore, ∆ |= Φ [7].

Note: We can determine logical entailment by determining satisfiability. We are going

to use that relation later in the thesis.

2.3 First Steps for Finding Common Grounds

First is to get an idea about agents that are going to use in further details. Then provide

the notion of common ground along with some essential terms to define it.

2.3.1 Agents in Artificial Intelligence

In artificial intelligence, an intelligent agent is anything that perceives its environment,

takes actions autonomously to achieve goals, and may improve its performance with

learning and knowledge [8]. An agent could be, a coupling of a computational engine

with physical sensors and actuators, called a robot, where the environment is a physical

setting. It also can be a program that acts in a purely computational environment, a

software agent [9]. These are autonomous entities, and we relate them whenever we want

to design a system having a certain level of autonomy. The best examples of intelligent

agents are self-driving cars, Siri and Alexa, that are virtual assistants.

In the thesis, I take in consideration multiple agents. Each agent is associated with its

own set of behavior rules, which it wants to be implemented in the environment. In order

to illustrate the main ideas and approaches that we follow in building our algorithm,

consider an example from Ozaki et al. [6].

10

Example 2.3.1. A police robot (an intelligent agent) that patrols the streets and detects

potentially illegal activity in a vicinity of a private house. Assume that the police robot

has detected smoke and a child who is smoking. The robot has made the following

deduction:

A child is smoking in a forbidden-to-smoke area.

Now assume we have stakeholders, which we may also refer to as “agents”, with the

following recommendations. The first agent puts forward the rule: “If there is an illegal

activity, the police should be informed”. In symbols:

illegalActivity→ policeCall (2.1)

The second agent points out that it is a child who is smoking. So parents are the

ones who should decide if the police should be informed. Police officers do independent

judgment as a part of best serving the public. More specifically, we have the rule, “If there

is an illegal activity conducted by a child, then parents should be called”. In symbols:

(illegalActivity ∧ child)→ parentsAlert (2.2)

The agents agree that smoking in a forbidden-to-smoke area (for example, a bus stop)

is an illegal activity. If this happens, either the police should be called or the parents

should be alerted. They agree not to call both. It can be written as a Horn constraint:

(parentsAlert ∧ policeCall)→ ⊥ (2.3)

Calling police and alerting parents is pointless. Since the police is obliged to call the

parents of the minor.

In this example, there is a clear incoherence, but not necessarily a conflict between

the two agents. One thinks that the police should be called, and other agent thinks that

the parents should be alerted. We consider this incoherence because the second agent

reasons using a more specific rule than the first. Rules could be even further specialized

and taken into account the case in which the child is not under parental supervision (for

example, alone in the supermarket or home alone).

Consider the rule: “If there is an illegal activity done by a child who is unsupervised,

then the police should be called”. In symbols:

(illegalActivity ∧ child ∧ unsupervised)→ policeCall (2.4)

11

A common ground between (2.1) and (2.2) can be reached by transforming (2.1) into

(illegalActivity ∧ adult)→ policeCall (2.5)

An interesting fact about (2.5) is that it is coherent with both (2.2) and (2.4). When

there are two applicable rules but one is more specialized [6]. So far, we have a basic

sense behind the common ground. That is reaching a common mutuality, that a system

can follow and it has given equal consideration to all agents.

2.3.2 Background Knowledge

Background Knowledge is a limitation about the facts of the world. For example, we can

say “we cannot stay healthy while eating unhealthy” or “a person cannot be at work and

home at the same time”.

Suppose we have a statement that says, “John Lasagna will be a little late for the

party. He died yesterday” [10]. From the basic constraints about the world, we know

that John cannot attend the party because he is dead. Therefore, only one part of the

sentence can be true. Symbolically it can be written as:

(isDead ∧ attendsParty)→ ⊥ (2.6)

Above equation 2.6 is background knowledge in this scenario, as a Horn constraint.

In above example 2.3.1, equation 2.3 is background knowledge of an agent, where

parentAlert and policeCall are not recommended together. Similarly, each agent would

refer to its unique background knowledge with a set of rules.

In formal language, consider i number of agents in a scenario, and each agent is

associated with its own set of recommendations. These are defined as definite Horn

expressions (a finite collection of definite Horn clauses). These recommendations are

represented as definite Horn expressions, denoted by Fi for each agent i. These also have

the background knowledge with a set of Horn constraints. The background knowledge B
for F1, . . . ,Fn is defined as a set of Horn constraints, built from atoms/literals occurring

in F1, . . . ,Fn, representing pairwise disjointed constraints (e.g., a person cannot be a

child and an adult, or a child and a teenager) [6].

12

Excludents of atom/Literal

Suppose we have background knowledge B as a collection of Horn constraints and Horn

expression F as a collection of definite Horn clauses.

Mathematically, for a given atom p occurring in B and F , excludent is defined as

pB = {q | B |= (p ∧ q)→ ⊥)} [6] (2.7)

elements of p are called excludents of p. We assume that for every p occurring in F the

set, p is not empty. It means that for each atom p, there is some background knowledge

in B as a Horn constraint. So excludents of that p will contain all the atoms that are

mutually disjoint with p in B. Whenever p is written in a clause, it assumes to be pointing

towards an atom in p, which means “not p”. We explain using examples.

Example 2.3.2. The background knowledge of the agents in Example 2.3.1 can be

modeled as [6]:

(parentsAlert ∧ policeCall)→ ⊥,
(child ∧ adult)→ ⊥,
(child ∧ teen)→ ⊥,
(supervised ∧ unsupervised)→ ⊥.

(2.8)

so, from this background knowledge, we can extract excludents of any atom using the

above definition of excludents.

In our notation, we can say,

child = {adult, teen}

supervised = {unsupervised}

parentsAlert = {policeCall}

(2.9)

Example 2.3.3. From the equation 2.6, we concluded background knowledge as

(isDead ∧ attendsParty)→ ⊥ (2.10)

from here, we can define excludent as:

is dead = {attends party} (2.11)

13

Notions of ϕ−p, ϕ+p and ϕq\p

Consider having background knowledge B as a collection of Horn constraints and Horn

expression F as a collection of definite Horn clauses. Suppose p be an atom occurring in

F , and ϕ be a clause in F .

We define:

• ϕ+p: a clause after adding p to antecedents of ϕ.

• ϕ−p: a clause after removing p from antecedents of ϕ.

• ϕq\p: the result of replacing q ∈ ant(ϕ) by p.

We explain using an example.

Example 2.3.4. Suppose we have a clause ϕ in a Horn Expression, defined as

ϕ : (illegalActivity ∧ child) → policeCall

Let p and q be two atoms in a Horn Expression defined as “unsupervised” and “child”

respectively. Here antecedent is ant(ϕ) = {illegalActivity, child}, then we can define

• ϕ+p: (illegalActivity ∧ child ∧ unsupervised) → policeCall.

• ϕ−q: illegalActivity → policeCall

• ϕq\p: (illegalActivity ∧ unsupervised) → policeCall

2.3.3 Coherence

The word “coherent” comes from the Latin word meaning “to stick together ”[11]. The

collection of arguments has coherence if all the parts have logical connections and all

the arguments, collectively, flow together well without any inconsistency. Arguments and

strategies have coherence when both are making sense together and having a consistent

relationship with each other.

In Horn logic, coherence is a property of a Horn clause or a Horn expression. It occurs

when, in a set of rules, one should not be able to infer an atom and any of its excludents

at the same time. If it occurs, such expression will be called incoherent. In simple words,

if union of antecedents of one of the two clauses is taken, and the concludents include

both an atom and its excludents then these two clauses are incoherent.

14

Example 2.3.5. From example 2.3.1, there are two clauses as:

illegalActivity→ policeCall

(illegalActivity ∧ child)→ parentsAlert.

the defined background knowledge is:

(parentsAlert ∧ policeCall)→ ⊥ ∈ B.

If union of the antecedent of the clauses is taken then it implies both policeCall and

parentsAlert. This is not possible according to defined background knowledge. There-

fore, these two clauses are incoherent. Furthermore, if these two clauses are in a Horn

expression then the Horn expression would be incoherent.

But if we have two clauses like

(illegalActivity ∧ child)→ policeCall

(illegalActivity ∧ child)→ parentsAlert.

now it is obvious that we cannot combine antecedents of both clauses, as per background

knowledge,

child = {adult, teen}

We take the excludents of a symbol in the antecedent of a clause and generate weaker

versions of second clause by adding these excludents to its antecedent. Now this combi-

nation of clauses should become coherent (that is the key point of this Algorithm to solve

incoherence).

If we find any of the rules by agents or incoherent, then it is understood to not include

respect for both agents equally. We have to be with one, which is more specific and set

well together with other agents.

Notion of derivation is introduced before defining coherence in a formal language.

Notions of Derivation

Let ϕ and ψ be definite Horn clauses and F be a definite Horn expression and ϕ, ψ ∈ F .
We write ψ ⇒F ϕ if ϕ is a consequence of ψ, or in other words, there is a derivation of ϕ

15

with respect to ψ and F . we have a condition from Ozaki et al. [6] that is used to check

if the derivation of one clause, with respect to another clause, exists or not.

ψ ⇒F ϕ Iff F ∪ ant(ψ) |= ant(ϕ) (2.12)

Definition 1. Let F be a definite Horn expression. A definite Horn clause ϕ is coherent

with a Horn expression F if F \ {ϕ} ̸|= ϕ and

• there is no ψ ∈ F such that ψ ⇒F ϕ or ϕ⇒F ψ while con(ψ) ∈ con(ϕ) (note that

con(ψ) ∈ con(ϕ) implies con(ϕ) ∈ con(ψ)).

The set F is coherent if all ϕ ∈ F are coherent with F (and incoherent otherwise) [6].

In simple words, a clause ϕ is coherent with the Horn expression F if it satisfies the

following:

• If ϕ is removed from the Horn expression, the remaining expression still entails ϕ.

• There is not any other clause ψ in the Horn expression such that ϕ and ψ have

mutual derivative for each other, while concludents of ψ belong to excludents of

concludents of ϕ in F or vice versa.

• Verify all the clauses in the Horn expression. If all the clauses satisfy the condition

then the given Horn Expression F is coherent.

Above mentioned steps will be used while implementing coherence in the next chapter.

2.3.4 Conflict

Conflict is a fundamental human and social attribute. A completely conflict-free,

pleasant-sounding society is impossible. In simple words, conflict may be defined as

incompatibility of interests, goals, values, needs, expectations, or social ideologies [12].

According to Michel Nicholson, who was an English Journalist, “conflict is an activity

which takes place when individuals or groups wish to carry out mutually inconsistent

acts concerning their wants, needs, or obligations”. Conflict examples in the real world

can be a dispute between friends or family members, labor strikes, competitive sports, or

war.

16

In our scenario, if agents have behavior rules that seem to have clear friction. All

cannot be considered equally, leads to conflict. These are not easily resolvable for reaching

a mutual agreement.

In Horn logic, conflict is a property of a set of definite Horn clauses. The notion of

conflict is stronger than the notion of coherence. A conflict is an incoherence that cannot

be easily resolved [6]. A scenario is going to be used for narrating the conflict example,

has already been used in case of coherence.

Example 2.3.6. Suppose the rules defined by different agents are given as:

(1) illegalActivity→ parentsAlert,

(2) illegalActivity→ policeCall,

(3) (illegalActivity ∧ child)→ parentsAlert.

the background knowledge is defined as:

(parentsAlert ∧ policeCall)→ ⊥

Now we see the set with the first two rules, (1) and (2) is in conflict. While the set

with the last two rules, (2) and (3) is not. This can be solved by adding an excludent

of one of the antecedents of the more specific rule to the other’s antecedents. In case

of (1) and (2), both rules have same antecedents and different concludents. It means

both rules are in complete opposition. The pairs of rules that can be in conflict when

we cannot find a “suitable” atom to add to the antecedent of an incoherent rule, as a

way to further specify it and avoid incoherence. The “suitable” atoms are chosen from

the excludents of the atoms in the antecedents of the more specific rule involved in the

incoherence. Whenever we find conflict in rules, it is considered to be difficult to reach a

mutual agreement or a common ground while respecting all agents equally.

Now, we can define conflict in formally.

Definition 2. Let F be a definite Horn expression. We say that F is in conflict if we

can find any pair of clauses (ϕ, ψ) ∈ F such that

• ϕ⇒F ψ and con(ϕ) ∈ con(ψ) (i.e., F is incoherent); and

• there is no r ∈ ant(ϕ) \ ant(ψ) with q ∈ r s.t. ψ+q is coherent with F \ {ψ} [6].

If we can find one or more such pairs then Horn expression is in conflict.

In simple words, a Horn expression is in conflict if two clauses ϕ, ψ exist in the Horn

expression that meets the following two conditions:

17

• If ϕ, ψ have incoherence for each other, then the Horn expression is incoherent.

• If we take the relative complement (set difference) of antecedents of both clauses,

we cannot find any atom such that, we add an excludent of that atom to one of the

clause’s antecedents, this clause becomes coherent with the Horn expression. That

can happen in two cases:

✸ First, if the complement set is empty, that means both rules have the same

antecedents.

✸ Secondly, if the complement set is not empty. We can find an atom, by adding

atoms’ excludent to the clause’s antecedents, it does not become coherent with

the Horn expression. It means (ψ+q is coherent with F \ {ψ}) is not satisfied.

• At the end, if we successfully get any of two clauses from the Horn expression

involved in a conflict, then the Horn expression is in conflict for sure.

2.3.5 Common Ground Postulates

We now define the notion of common ground. We also discuss and motivate the postulates

that characterize a common ground.

Definition 3. Let F1, . . .Fn be definite Horn expressions, each associated with a stake-

holder i ∈ {1, . . . , n}. Let B be a set describing background knowledge. A formula F is a

common ground for F1, . . .Fn and B if it satisfies each of the following postulates:

(P1) F is coherent;

The first postulate is intuitive: the learned set of rules should be coherent with

the background knowledge. If they were not so, the theory would recommend, for

example, two mutually exclusive courses of action for the same situation. In the

scenario defined above, if police is called for illegalActivity then parents cannot

be alerted. These cannot occur together based on background knowledge.

(P2) if
⋃n

i=1Fi is coherent, then F ≡
⋃n

i=1F1;

(P2) ensures that if the union of rules provided by stakeholders is coherent then

this should be the common ground.

18

(P3) for all i ∈ {1, . . . , n} and all ϕ ∈ Fi, we have that F ̸|= ant(ϕ)→ p with p ∈ con(ϕ);

The motivation for (P3) we find in [13]: “the essence of morality is to treat the

interests of others as of equal weight with one’s own”, which we here interpret as

a requirement that all agent’s rules are considered equally informative and should

not be entirely overridden. (P3) ensures that a rule that is in strict opposition to

what an agent recommends is not in the common ground. For example, suppose

we have two agents with recommendations:

(1) illegalActivity→ parentsAlert,

(2) illegalActivity→ policeCall,

As these are in opposition, both cannot be parts of common ground. We have to

neglect one or find some other way.

(P4) for each ϕ ∈ F , there is ψ ∈ ⋃n
i=1Fi with {ψ} |= ϕ;

(P4) guarantees that a rule in a common ground can always be “traced back” to a

rule from an agent. A random rule should not ”sneak in” to the common ground,

without being explicitly supported by an agent.

(P5) for all i ∈ {1, . . . , n} and all ϕ ∈ F , there is (a non-trivial) ψ ∈ F such that

{ϕ} |= ψ

The fifth postulate ensures that some part of a stakeholder’s rule is in a common

ground, though, in a “weaker” form. In other words, a non-trivial part of each

stakeholder’s rules should be in common ground. Here, ”weaker” refers to adding

a variable to the antecedent of the rule. For example: (illegalActivity ∧ child) →
parentsAlert is a weaker form of illegalActivity→ parentsAlert .

(P6) for all ϕ ∈ F , if there is p ∈ ant(ϕ) such that, for all q ∈ p, F ∪ {ϕq\p} is coherent
and there is i ∈ {1, . . . , n} such that Fi |= ϕq\p then Fi ̸|= ϕ−p.

(P6) avoids unintended rules becoming part of the common ground. It means the

rules offered by agents that are not relevant in the given scenario should be avoided

while reaching a common ground. Below is an example to explain this case.

19

Example 2.3.7. Consider Horn expressions as

F1 = {ϕ = illegalActivity→ policeCall,

ψ = lowBattery→ charge}
F2 = {φ = (illegalActivity ∧ child)→ parentsAlert}.

background knowledge is defined as before:

(parentsAlert ∧ policeCall)→ ⊥

in order to resolve the incoherence in F1∪F2, one can replace ϕ with (illegalActivity ∧
child)→ policeCall. Without (P6), the rules

(illegalActivity ∧ lowBattery)→ policeCall,

(illegalActivity ∧ charge)→ policeCall

could also be used to replace ϕ as they satisfy (P1)-(P5). Though, these rules are

unintended since lowBattery and charge are unrelated with incoherence in F1 ∪ F2.

2.3.6 Non-Redundant Horn Expression

In common usage, redundancy refers to the repetition of the same idea or item of infor-

mation within a phrase, clause, or sentence. Redundancy refers to needless repetition. It

occurs when two or more words or ideas of the same meaning use together. For example,

‘adequate enough’ [14]. The redundant data can be either a whole copy of the original

data or select pieces of data.

In propositional logic, an argument is redundant if it contains two or more rules

with the same meaning. Alternatively, if one or more rules can be eliminated from the

expression with the lost if essential information. Non-redundancy is containing only what

is needed for something to work.

Definition 4. In Horn expression, we have a set of clauses where each clause refers to

a specific rule. Mathematically, we say a Horn expression F is non-redundant if, for all

ϕ ∈ F , it is not the case that

F \ {ϕ} |= ϕ [6]

20

If a clause from Horn expression is removed then the remaining expression should not

entail that clause. If in case, by removing a clause ϕ, the Horn expression still entails

that clause, it means we have any other clause in the expression that is a redundancy of

that clause ϕ. For a Horn expression to be non-redundant, all of its clauses should satisfy

this condition.

Example 2.3.8. Suppose a Horn expression with rules defined as:

illegalActivity→ parentsAlert,

(illegalActivity ∧ child)→ parentsAlert.

This Horn expression is redundant because

(illegalActivity → parentsAlert) |= (illegalActivity ∧ child)→ parentsAlert)

The second clause is an unnecessary repetition of the first clause.

2.3.7 Acyclic Horn Expression

Acyclicity is the state of being acyclic, containing no cycles.

Definition 5. In Horn logic, a Horn expression is acyclic if there is no sequence of

clauses ϕ1, . . . , ϕn ∈ F such that con(ϕi) ∈ ant(ϕi+1), for all 1 ≤ i < n, and ϕ1 = ϕn.

In simple words, if there is a sequence of clauses or rules, such that the concludent

of one clause is contained in the antecedents of the other clause. This forms to have a

chain from one clause to another. When the first clause is the same as the last clause. It

becomes a closed chain, which refers to a cycle.

A Horn expression with such sequence is called cyclic, otherwise acyclic. This is

explained with an example given below.

Example 2.3.9. Suppose a Horn Expression F =
⋃7

i=1 ϕi, and clauses ϕi are defined as:

ϕ1 = {p→ q}, ϕ2 = {(p ∧ u)→ s},
ϕ3 = {(t ∧ u)→ p}, ϕ4 = {q → r},
ϕ5 = {r → p}, ϕ6 = {s→ q},
ϕ7 = {(t ∧ u)→ q}.

21

In the first step, we see, ϕ1 → ϕ4 as con(ϕ1) ∈ ant(ϕ4), so (ϕ1, ϕ4) is making a

sequence together using definition of acyclic Horn expression. Next we see ϕ4 → ϕ5 as

con(ϕ4) ∈ ant(ϕ5), so (ϕ4, ϕ5), combined into a sequence as (ϕ1, ϕ4, ϕ5). Lastly, we see

con(ϕ5) ∈ ant(ϕ1) combined into a sequence as (ϕ1, ϕ4, ϕ5, ϕ1)

This is a closed sequence, making a cycle. First clause in this sequence is same as of

first clause.Therefore, F is a Cyclic Horn Expression. Horn expression can also be

treated as a directed graph in order to trace cycles. Where (ant(ϕi), con(ϕi)) are vertices

of the graph, and we draw edges based on the condition if con(ϕi) ∈ ant(ϕi+1). Then we

check for the cycles in a directed graph.

2.3.8 Theorems

We have defined notions of conflict, non-redundant and acyclic Horn expression, Now

we relate three important theorems that are used as essential conditions, for a common

ground to exist.

Theorem 2. [6] There are non-redundant, not in-conflict, but cyclic Horn expressions

for which no common ground exists.

Theorem 3. [6] There are acyclic, non-redundant, but in-conflict Horn expressions for

which no common ground exists.

Theorem 4. [6] There are acyclic, not in conflict, but redundant Horn expressions for

which no common ground exists.

From these theorems, we conclude that it is necessary for a Horn expression to be

acyclic, non-redundant, and not in conflict, for a common ground to exist. If any of these

three conditions are removed then a common ground may not exist. From now on, we

consider a Horn expression non-redundant, acyclic and having no conflict. We discuss

incoherence and how can it be resolved to find a common ground.

2.3.9 Dependency Graph

A dependency graph is a data structure formed by a directed graph. It describes the de-

pendency of an entity on other entities within the same system. The underlying structure

of a dependency graph is a directed, where each node points to a dependent node [15].

22

For example, a graph with nodes A,B,C,D and edges (A,B), (A,C), (B,D), which

looks like:

Figure 2.4: Dependency Graph

From Figure 2.4, we can derive the relation: A depends on B and C, while B depends

on D. We can alternatively say that A is the parent node of B and C, while B is the

parent node of D, and A has no parent in this graph.

Similarly, in Horn logic, we use dependency graphs, where nodes are clauses and edges

are dependencies of clauses towards each other.

Formally, we define, the dependency graph as:

Definition 6. Let ϕ and ψ be definite Horn clauses and let F be a definite Horn expres-

sion The dependency Graph of F is the directed graph (V,E), where

• V is the set of all pairs (ψ, ϕ) such that ψ ⇒F ϕ and con(ψ) ∈ con(ϕ) and,

• E is the set of all ((ψ′, ϕ′), (ψ, ϕ)) such that ϕ′ ̸= ϕ and ϕ′ occurs in a derivation of

ϕ w.r.t. ψ and F .

We say that v′ ∈ V is a parent for v ∈ V if (v′, v) ∈ E.

We say that the pair (ψ, ϕ) is safe for F , if (ψ, ϕ) has no parent in the dependency

graph of F .

This is how, we draw dependency graphs and search for safe pairs of clauses to resolve

incoherence in a Horn expression. For this, we can relate a lemma from Ozaki et al. [6].

Lemma 1. Let F be an acyclic Horn expression. If F is incoherent, then there are

ψ, ϕ ∈ F such that (ψ, ϕ) is safe.

From this it is concluded that if Horn expression F is incoherent then at least one

safe pair is guaranteed to exist.

23

Weaker Version of a Clause

We also introduce the notion of “Weaker Version of a Clause” before defining

the algorithm. Suppose there is a clause ϕ, we modify it to ϕ′, by adding atoms to the

antecedent of a clause ϕ. The resulting clause ϕ′ is such that {ϕ} |= ϕ′ but {ϕ′} ̸|= ϕ. It

may refer to ϕ′ as the result of ‘weakening’ ϕ, or simply say that ϕ′ is a ‘weaker’ version

of ϕ

For example, ϕ′ : (p ∧ q ∧ s)→ r is weaker version of ϕ : (p ∧ q)→ r

2.4 The Original Common Ground Algorithm

We have defined and explained all the essential notions and related theorem, and now we

can define the original version of the common ground Algorithm from Ozaki et al. [6].

Algorithm 1 Building coherent F

Input: Horn expression sets F1, . . .Fn and B.
Output: A common ground for F1, . . .Fn and B or ∅

1: F := F1 ∪ . . . ∪ Fn

2: if F is cyclic or redundant or in conflict then

3: return ∅ (A common ground may not exist).

4: end if

5: while F is incoherent do

6: Find ψ, ϕ ∈ F such that (ψ, ϕ) is safe.

7: Replace ϕ by all ϕ′ ∈ {ϕ+p | p ∈ l, l ∈ ant(ψ) \ ant(ϕ)} coherent with F \ {ϕ}
8: end while

9: return F

2.4.1 Description

We now explain the algorithm in simple words using steps.

• It takes a finite number of definite Horn expressions F1, . . .Fn and background

knowledge B as input.

24

• It verifies that F =
⋃n

i=1Fi is not in conflict, not redundant, and not acyclic. If

any of the condition is satisfied, then a common ground may not exist

• At each iteration of the “while” loop (Line 5), Algorithm 1 first selects clauses

ψ, ϕ ∈ F such that (ψ, ϕ) is safe (Line 6), using dependency graphs, and By Lemma

1, we know that at least one safe pair is guaranteed to exist.

• When it finds the safe pair then in Line 7, it resolves incoherence by replacing ϕ

with all weaker versions of this clause that are coherent with the Horn expression

being constructed.

• After exiting the while loop it returns a coherent expression. This is what we call

a common ground for this Horn expression F .

2.4.2 Examples

Example 2.4.1. Consider F1 −F7 as F =
⋃7

i=1Fi is not in conflict, not redundant but

cyclic and incoherent. We draw a dependency graph using the definition.

F1 = {p → q︸ ︷︷ ︸
φ1

},

F2 = {(r ∧ s) → q︸ ︷︷ ︸
φ2

},

F3 = {r → p︸ ︷︷ ︸
φ3

},

F4 = {(q ∧ t) → p︸ ︷︷ ︸
φ4

},

F5 = {q → r︸ ︷︷ ︸
φ5

},

F6 = {(p ∧ u) → r︸ ︷︷ ︸
φ6

}.

φ2 ⇒F φ1 : (r ∧ s) → q, r → p, p → q,
φ4 ⇒F φ3 : (q ∧ t) → p, q → r, r → p
φ6 ⇒F φ5 : (p ∧ u) → r, p → q, q → r

φ1

φ2

φ3

φ4

φ5

φ6

φ2,φ1 φ4,φ3

φ6,φ5

Figure 2.5: A dependency graph with no safe clause

This illustrates there is no pair of safe clauses, so there is no common ground for

the Horn expressions. According to Lemma 1, if the theory is incoherent and the Horn

expression is acyclic (which also means avoiding cycles in the dependency graph) then

there is a safe pair of clauses in it. It is clear from example that if a Horn expression

is either in conflict, cyclic or redundant, then there is no need to search for safe clauses

25

for resolving incoherence. Reason is the nonexistence of common ground according to

algorithm.

Example 2.4.2. Consider F1 − F7 as in We have that F =
⋃7

i=1Fi is not in conflict,

not redundant, acyclic, but incoherent.

F1 = {p→ s}, F2 = {(p ∧ u)→ s},
F3 = {(t ∧ q)→ s}, F4 = {t→ p},
F5 = {(t ∧ u)→ p}, F6 = {s→ q},
F7 = {(p ∧ t)→ q}.

We draw a dependency graph using the definition.

F1 = {p → s︸ ︷︷ ︸
φ1

},

F2 = {(p ∧ u) → s︸ ︷︷ ︸
φ2

},

F3 = {(t ∧ q) → s︸ ︷︷ ︸
φ3

},

F4 = {t → p︸ ︷︷ ︸
φ4

},

F5 = {(t ∧ u) → p︸ ︷︷ ︸
φ5

},

F6 = {s → q︸ ︷︷ ︸
φ6

},

F7 = {(p ∧ t) → q︸ ︷︷ ︸
φ7

},

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ2 ⇒F φ1 : (p ∧ u) → s, p → s
φ3 ⇒F φ1 : (p ∧ u) → s, t → p, p → s
φ5 ⇒F φ4 : (t ∧ u) → p, t → p,
φ7 ⇒F φ6 : (p ∧ t) → q, p → s, s → q,

φ2,φ1

φ3,φ1φ5,φ4

φ7,φ6

Figure 2.6: A dependency graph with safe clauses

The nodes (ϕ2, ϕ1) and (ϕ5, ϕ4) have no parent. Algorithm 1 iterates twice, each time

selecting one of these pairs (the order does not change the result). It returns a common

ground F∗ for F1, . . . ,F7, which is union of:

F∗
1 = {(p ∧ u)→ s}, F2 = {(p ∧ u)→ s},
F3 = {(t ∧ q)→ s}, F∗

4 = {(t ∧ u)→ p},
F5 = {(t ∧ u)→ p}, F6 = {s→ q},
F7 = {(t ∧ u)→ q}.

26

Example 2.4.3. It is important to ensure if the input of Algorithm 1 is non-redundant

then the output is also non-redundant. We illustrate this with the following example.

Consider
F1 = {(q ∧ r)→ s, (p ∧ q ∧ r)→ s},
F2 = {(p ∧ q)→ s}.

In this case Algorithm 1 would resolve the incoherence by replacing the clause in F2

by (p ∧ q ∧ r)→ s. The latter rule is redundant because it is implied by F1.

27

Chapter 3

Finding Common Grounds

In this chapter, we are going to discuss changes in the original version of common ground

algorithm (that has been explained in the previous chapter) by reducing some limitations.

In the original algorithm 1, we could only find a common ground for a horn expression

that are not in conflict, acyclic, and non-redundant according to theorems 2, 3 and 4.

These are the basic limitations of the algorithm. Now changes are going to be introduced

in the algorithm to address cyclic and redundant horn expressions. Additionally, if a

conflict exists, algorithm can resolve the conflict with specified conditions. We discuss

and explain each feature separately, and then define the new version of the algorithm.

3.1 Cyclic and Redundant Expressions

As per definition, a horn expression is cyclic if any collections of clauses in the horn

expression is forming a cycle. Similarly, if there is a repetition in clauses then the horn

expression is redundant. According to stated theorems 2 and 4, a common ground is not

guaranteed to exist if the horn expression is either cyclic or redundant.

Cycles are detected and removed from a horn expression to improve the algorithm. For

removing cycles, all main clauses are deleted which cause the cycle. The remaining clauses

would make an acyclic horn expression which is good for finding a common ground. At

this point, it is unclear which specific clause needs to be removed to make the expression

acyclic. In general, removal of any clause from the cycle would make the expression

acyclic. In this case, we might lose some important information from the agents that is

crucial for horn expression. This is just a proposed way of making expression acyclic. To

28

achieve maximum efficiency, it would be good idea to set preferences on removal of clauses

for removing cycles. In practice, it is very rare to find a cycle in the Horn expression. In

this thesis, case study of Moral machine experiment has been conducted where we do not

find any cycle in the horn expression (from the dataset of moral machine experiment).

Similarly, we remove the redundant clauses from the horn expression if redundancy exists.

Examples are given below to provide explanation.

Example 3.1.1. Suppose a Horn expression F =
⋃5

i=1 ϕi, and clauses ϕi are defined as:

ϕ1 = {p→ q}, ϕ2 = {(p ∧ u)→ s},
ϕ3 = {q → r}, ϕ4 = {r → p}
ϕ5 = {s→ q}.

there is a sequence of classes as (ϕ1, ϕ3, ϕ4, ϕ1), which is making a cycle.

p→ q (ϕ1), q → r (ϕ3), r → p (ϕ4).

In this case, algorithm removes the last clause ϕ4 of the sequence which is completing

a cycle. The remaining horn expression is acyclic. Horn clauses are usually not ordered,

so in practice one can use a preference ordering to select the clause to be removed.

Example 3.1.2. Suppose a Horn expression F =
⋃5

i=1 ϕi, and clauses ϕi are defined as:

ϕ1 = {p→ q}, ϕ2 = {(p ∧ u)→ s},
ϕ3 = {(p ∧ s)→ q}, ϕ4 = {(r ∧ s)→ p},
ϕ5 = {s→ q}, ϕ6 = {(r ∧ s ∧ t)→ p}

we can see that ϕ3 is implied by ϕ1 and ϕ6 is implied by ϕ4.

p→ q (ϕ1) |= (p ∧ s)→ q (ϕ3)

(r ∧ s)→ p (ϕ4) |= (r ∧ s ∧ t)→ p (ϕ6)

In this case, algorithm removes all the clauses that are redundant. These are ϕ3 and

ϕ6 in the given horn expression. The remaining horn expression is non-redundant.

29

3.2 Resolving Conflicts

A Horn expression is in conflict if there is a pair of clauses in it that is in conflict. A

common ground is not guaranteed to exist if there is a conflict in the Horn expression. So,

resolution of conflicts is a way to deal with this limitation. To resolve conflict, we propose

a solution containing some specific conditions. A collection of symbols is assumed which

is occurring with clauses in the horn expression. It is denoted by C and each clause in

the horn expression F has an associated symbol in C. Additionally, a second background

knowledge is assumed other than B, that is denoted by B. It consists of a set of definite

horn clauses built from symbols occurring in C. As background knowledge contains basic

constraints about the world. B actually consists of the clauses, imply from a specific

symbol to generalized symbol.

For example, there is a symbol p in C and a clause ϕ:- p =⇒ q in B. ϕ can be

interpreted as q is the generalized form of p. As a real-life example:

child =⇒ humanBeing

norway =⇒ scandinavianCountry

Resolution of conflict is based on the idea of finding a pair of clauses that are in conflict.

According to definition 2, a weaker form of a clause is generated using generalized symbols

from the background knowledge B. If there is still conflict in the horn expression after

using generalized symbols, then generalized symbols are replaced with specific form of

symbols from C. The algorithm keeps checking the expression until the horn expression

has no conflicts. New version of the algorithm is introduced next, along with examples

to explain it.

3.3 Improved version of Algorithm

30

31

Algorithm 2 Building coherent F

Input: Horn expression sets F1, . . .Fn, B, B and C.
Output: A common ground for F1, . . .Fn, B, B and C if F1, . . .Fn are acyclic, non-
redundant and not in conflict. Otherwise a common ground after removing cycles, re-
dundancies and resolving conflict from F1, . . .Fn

1: F := F1 ∪ . . . ∪ Fn

2: while F is cyclic do

3: Find cycle ω := {ϕ1, . . . , ϕn} ∈ F
4: remove ϕn (see description of algorithm) from F
5: end while

6: while F is redundant do

7: Find ϕi ∈ F such that F \ {ϕi} |= ϕi

8: remove ϕi from F
9: end while

10: F∗ := F
11: while there is ϕi, ϕj in F such that (ϕi, ϕj) is in conflict do

12: if ϕj in F∗ then

13: Replace ϕj in F by ϕ+s
j where cj → s ∈ B

14: else

15: Replace (ϕi, ϕj) in F by (ϕ
ci/s
i , ϕ

cj /s
j) 2.3.2 where ci , cj ∈ C

16: end if

17: end while

18: while F is incoherent do

19: Find ψ, ϕ ∈ F such that (ψ, ϕ) is safe.

20: Replace ϕ by all ϕ′ ∈ {ϕ+p | p ∈ l, l ∈ ant(ψ) \ ant(ϕ)} coherent with F \ {ϕ}
21: end while

22: return F

3.4 Description of Algorithm

Above mentioned algorithm is described in the following steps.

• Algorithm takes a finite number of definite Horn expressions F1, . . .Fn, background

knowledge B, second background knowledge B and collection of symbols C as input.

✵ Here in F1, . . .Fn, there are definite horn clauses as rules offered by n agents.

✵ Background knowledge B consists of horn constraints, built from symbols oc-

curring in F1, . . .Fn. Each clause is formed by an atom and its excludent.

For example, a person cannot be both, a child or an adult, will occur in B as

(child ∧ adult)→ ⊥.

✵ C consists of a finite collection of symbols. Each symbol is associated with

a clause in horn expression. Symbols in C might not be unique which means

multiple clauses can have similar symbols.

✵ Background knowledge B consists of a finite number of definite horn clauses

built from symbols in C. Each clause has only one antecedent and one con-

cludent. Antecedent is a symbol from C and the concludent is a general-

ized symbol of the antecedent. For example a chair is furniture and a mo-

bile phone is an electronic device will occur in B as chair → furniture and

mobilePhone→ electronicDevice.

• Algorithm 2 gives output as a common ground for F1, . . .Fn, B, B and C if F1, . . .Fn

are acyclic, non-redundant and not in conflict. Otherwise, it returns a common

ground after removing cycles, redundancies and resolving conflict from F , if any of

these conditions exists.

• From line 2 to 5, algorithm checks for cycles in F using definition 5. If a cycle exists,

then there exists a sequence of clauses making a cycle. We assume the sequence is

ordered and last edge is completing the cycle which can refer to as the back edge.

We remove that last clause of sequence from F . It uses while loop for cycles and

removes all possible cycles.

• From lines 6 to 9, algorithm uses while loop to check for redundancy in F using

definition 4 and removes redundant clauses.

• From line 10 to 17, algorithm deals with conflict. It follows the following steps.

32

✵ In line 10, a copy of F is generated to keep track of updated clauses.

✵ In line 11, while loop checks for conflict in all possible pair combinations of

clauses in F .

✵ When it finds a conflicting pair then it creates the weaker version of the second

clause of the pair on line 13. It also checks if the weaker version of the second

clause of the pair has been generated before or not. It searches the correspond-

ing symbol c of the clause (that is going to be updated) from C and clause φ

from background knowledge B that has c as antecedent. We weaken the second

clause by adding concludent of φ to its antecedent. In background knowledge

B, clauses are as implications from a specific symbol to a generalized symbol.

Therefore, conflict is resolved by generalized symbols.

✵ In case, a new conflict is emerged after resolving conflict by generalized symbol.

It updates both clauses of the pair using specific symbols on line 15. It keeps

checking until there is no conflicting pair left.

• From line 18 to 21, algorithm checks for incoherence and resolve it. For this, at

each iteration of the while loop, it first selects clauses ψ, ϕ ∈ F such that (ψ, ϕ) is

safe in line 19. After finding a safe pair, it resolves incoherence by replacing (second

clause of pair) ϕ with all weaker versions of this clause that are coherent with the

Horn expression in line 20.

• At the end, algorithm returns F that is a common ground for F1 ∪ . . . ∪ Fn.

3.5 Examples

Examples 3.1.1 and 3.1.2, showed how Algorithm 2 works to resolve cyclic and redundant

horn expressions respectively. Here is an example of Algorithm 2 dealing with conflict.

Example 3.5.1. Consider a Horn expression F =
⋃2

i=1 ϕi, and clauses ϕi are defined as:

ϕ1 := illegalActivity→ parentsAlert,

ϕ2 := illegalActivity→ policeCall

collection of symbols C is defined as

33

C := {child, adult}

both background knowledge B and B are defined as:

B := {(parentsAlert ∧ policeCall)→ ⊥,

(child ∧ adult)→ ⊥,

(under18 ∧ above18)→ ⊥}

B := {child→ under18, adult→ above18}

In C there are symbols for each clause. It indicates that in ϕ1, illegalActivity is done by

the child and in ϕ2, illegalActivity is done by the adult. B shows that under18 and above18

are the generalized symbols for child and adult respectively.

Here F is acyclic, non-redundant but in conflict. We have a pair (ϕ1, ϕ2) that is

in conflict according to background knowledge B. Now algorithm 2 resolves conflict

by generating a weaker version of ϕ2 using generalized symbols. corresponding symbol

of ϕ2 in C is adult′ so it searches for the clause in B for generalized symbol that is

(adult→ above18). So above18 is the generalized symbol here and clause is weakened it.

ϕ2 : (illegalActivity ∧ above18)→ policeCall

Updated horn expression F appears as:

ϕ1 := illegalActivity→ parentsAlert,

ϕ′
2 := (illegalActivity ∧ above18)→ policeCall

This is not in conflict. It still has incoherence that needs to be resolved to find a

common ground. Algorithm 2 searches for the safe pair (ϕ2, ϕ1) and resolve incoherence

by weakening the clause using background knowledge B and expression is updated as:

ϕ′
1 := (illegalActivity ∧ under18)→ parentsAlert

ϕ′
2 := (illegalActivity ∧ above18)→ policeCall

34

This is a common ground for F . It concludes that both agents agreed on the conditions

that if ‘illegalActivity’ is done by a person who is ‘above18’ then call the police. If the

person is ‘under18’ then alert parents. In this example, algorithm resolved conflict using

generalized symbols which did not cause any further conflict. Now consider another

example where algorithm needs to resolve conflict using specified symbols.

Example 3.5.2. Consider an illegal activity that is done by the child, and is detected by

a police robot. There are three different agents with different recommendations. Agents’

recommendations are based on the location, in which the illegal activity by the child is

detected. These recommendations are defined as a Horn expression F =
⋃3

i=1 ϕi and

clauses ϕi are defined as:

ϕ1 := illegalActivity→ parentsAlert,

ϕ2 := illegalActivity→ policeCall,

ϕ3 := illegalActivity→ teacherNotify

collection of symbols C is defined as

C := {houseRegion, shoppingMall, school}

both background knowledge B and B are defined as:

B := {houseRegion→ privatePlace,

shoppingMall→ publicPlace}

school→ publicPlace}

B := {(parentsAlert ∧ policeCall)→ ⊥,

(parentsAlert ∧ teacherNotify)→ ⊥,

(policeCall ∧ teacherNotify)→ ⊥,

(school ∧ houseRegion)→ ⊥,

(school ∧ shoppingMall)→ ⊥,

(houseRegion ∧ shoppingMall)→ ⊥}

C indicates that in ϕ1, ‘illegalActivity’ done by the child is detected with in the premises

of a house. In ϕ2, ‘illegalActivity’ done by the child is detected in the shopping mall and

35

in ϕ3, ‘illegalActivity’ done by the child is detected in the school. B shows ‘publicPlace’

is generalized symbol for school and shopping mall while ‘privatePlace’ is the generalized

symbol for house area.

Here F is acyclic, non-redundant but in conflict. There are two pairs (ϕ1, ϕ2) and

(ϕ1, ϕ3) that are in conflict according to background knowledge B. It resolves the conflict
by weakening the second clauses of both pairs (that are ϕ2 and ϕ3) using generalized

symbols from B. Both ϕ2 and ϕ3 have same generalized symbols. The resulting F is:

ϕ1 := illegalActivity→ parentsAlert,

ϕ′
2 := (illegalActivity ∧ publicPlace)→ policeCall,

ϕ′
3 := (illegalActivity ∧ publicPlace)→ teacherNotify

Algorithm 2 again searches for conflicting pairs and finds a pair that is (ϕ2, ϕ3),. These

both clauses have been updated before by generalized symbols. Therefore, algorithm uses

specific symbols now. For this, it weakens both clauses by replacing generalized symbols

with specific symbols. The resulting horn expression is:

ϕ1 := illegalActivity→ parentsAlert,

ϕ′′
2 := (illegalActivity ∧ shoppingMall)→ policeCall,

ϕ′′
3 := (illegalActivity ∧ school)→ teacherNotify

Now F is not in conflict, but still have incoherence. For resolving incoherence, it finds

two safe pairs (ϕ2, ϕ1)) and (ϕ3, ϕ1). It generates the weaker version of ϕ1 using any of

the safe pairs and updates F as:

ϕ′
1 := (illegalActivity ∧ houseRegion)→ parentsAlert,

ϕ′′
2 := (illegalActivity ∧ shoppingMall)→ policeCall,

ϕ′′
3 := (illegalActivity ∧ school)→ teacherNotify

which is a common ground for F . It concludes that all three agents agreed on the

conditions that if ‘illegalActivity’ done by the child with in the premises of the house,

parents should be alerted. If it is conducted within the area of a shopping mall, then

police should be called and if it is in the school area then teacher should be notified.

36

Chapter 4

Implementation

One of the main goals of this thesis is to write an implementation of the updated common

ground algorithm 2. Selection of programming language is an important consideration for

writing an efficient implementation of the algorithm. Python, a powerful programming

language has been chosen. It has several benefits due to availability of loads of libraries

and packages. For example, a library called Sympy is used for symbolic mathematics,

Networkx to study large complex networks as graphs and so on.

In the following chapter, an overview of the design adopted for the implementation is

presented. It also gives a brief description of the most essential auxiliary structures and

functions. To implement the algorithm, a design has been adopted where each feature is

implemented step by step in the form of functions. Mathematical definitions are used in

implementing the features. All these definitions have been discussed in previous chapters.

My implementation code is available on GitHub ©.

4.1 Coherence

Definition of coherence is recalled, to implement coherence:

Let F be a definite Horn expression. A definite Horn clause ϕ is coherent with a

Horn expression F if F \ {ϕ} ̸|= ϕ and

• there is no ψ ∈ F such that ψ ⇒F ϕ or ϕ⇒F ψ while con(ψ) ∈ con(ϕ) (note
that con(ψ) ∈ con(ϕ) implies con(ϕ) ∈ con(ψ)).

The set F is coherent if all ϕ ∈ F are coherent with F (and incoherent otherwise).

37

https://git.app.uib.no/anum.rehman/finding-common-grounds.git

Definition is divided into two conditions, Entailment and Derivation:

• Entailment

Implementation follows the following steps for entailment.

✵ A function is defined which takes the Horn expression as input. It checks for

each clause. If that clause is removed from the expression, then the remaining

expression should not entail that clause. Function entails is imported directly

from the library Sympy [16] to check entailment, using the satisfiability con-

dition by theorem 1.

✵ If the condition is true for all the clauses then the given Horn expression is

satisfying the entailment condition.

1 from sympy.logic.inference import entails

2

3 def check_Hornexpr_entailment(F):

4 count = 0

5 for clause in F:

6 F_without_clause = [x for x in F if x is not clause]

7 if not entails(clause, F_without_clause):

8 count +=1

9 if count == len(F):

10 return True

11 else:

12 return False

Listing 4.1: Structure for Entailment

• Derivation

The following part is implemented for derivation:

there is no ψ ∈ F such that ψ ⇒F ϕ or ϕ⇒F ψ while con(ψ) ∈ con(ϕ)

The following condition is recalled to check deviation:

ψ ⇒F ϕ Iff F ∪ ant(ψ) |= ant(ϕ)

Right-hand side of this condition is used, to check derivation. Implementation

follows the following steps.

38

✵ A function is defined which takes a clause as input and returns antecedents

and concludents of the clause. The complete code can be seen here in Ap-

pendix A.1. A second function is defined which takes atom as input and get

all its excludents, using given background knowledge (Appendix A.3). To get

all atoms in background knowledge, a function extract symbols extracts all

distinct atoms from any expression (Appendix A.2).

✵ A third function is defined which takes two clauses as input. It checks if the

derivative of one clause with respect to other exists or not (Appendix A.4).

All possible pair combinations of the clauses in F are checked, to verify the

derivation condition. If condition is true for all pairs, then the derivation

condition is satisfied for coherence.

1 def check_Hornexpression_derivation(F):

2

3 count = 0

4 combinations = generate_combinations(F)

5 for comb in combinations:

6 if not clauses_derivation(comb[0], comb[1], F) and not

7 clauses_derivation(comb[1], comb[0], F) or comb[0] == comb[1] :

8 count += 1

9 if count == len(combinations):

10 return True

11 else:

12 return False

Listing 4.2: Structure for Derivation

• Both entailment and derivation functions are combined to check the coherence of

the Horn expression.

1 def HornExpression_coherence(F, background_know):

2

3 if check_Hornexpr_entailment(F) and check_Hornexpression_derivation(F):

4 return True

5 else:

6 return False

Listing 4.3: Structure for Coherence

39

4.2 Cyclic Behavior and Redundancy

Horn expression should be acyclic to find a common ground. There is a need to check if

any cycle formed by clauses, to check the cyclicity. In Algorithm 2, cycles are removed if

exists. Implementation of this part contains the following steps.

• A function check cycle is defined that detects cycles and removes these from F . A
function DiGraph from Networkx [17] is used to draw directed graphs from clauses

of the Horn expression. Antecedents and concludents of the clauses act as nodes of

the directed graph, while edges are drawn as implications occur in F .

• A built-in function, is directed acyclic graph from Networkx [18], is used to check

the cyclic behavior of the graph.

• If there is no cycle in the graph then the function returns the Horn expression as

it is. If there is a cycle then it uses control loop to check for all possible cycles in

the expression. It uses a built-in function find cycle from Networkx [19] to find the

cycle from graph, which returns a list of edges of the cycle along with direction,

forward or backward. It is an ordered list of edges where last edge of the list should

meet the first edge to complete the cycle. Last edge of the list is removed to make

the sequence of clauses acyclic. It does the same for each iteration of control loop

until all cycles are removed and return an acyclic Horn expression,

40

1 def check_cycle(F):

2

3 fig, ax = plt.subplots(figsize=(6, 6))

4 G = nx.DiGraph()

5 for clause in F:

6 G.add_node(clause.args[1])

7 G.add_node(clause.args[0])

8 G.add_edge(clause.args[0],clause.args[1])

9

10 #draw graphs to check cycles

11 options = {"edgecolors": "tab:gray", "node_size": 2550, "alpha": 0.9,"font_size":

13}↪→

12 pos = nx.shell_layout(G)

13 nx.draw(G, pos, **options, with_labels = True,

node_color="tab:pink",arrowsize=20, edge_color = 'green')↪→

14 plt.axis("off")

15 plt.show()

16

17 #detect cycle in graph

18 if nx.is_directed_acyclic_graph(G):

19 print('\n---------This expression has no cycles---------\n')

20 return F

21

22 else:

23 while not nx.is_directed_acyclic_graph(G):

24 cycle = nx.find_cycle(G, orientation="original")

25 print('This expression has cycle: ', cycle)

26 tuple_clause = cycle[-1][:-1]

27 print(tuple_clause)

28 clause_to_remove = Implies(tuple_clause[0], tuple_clause[1])

29 expr_without_cycle = [x for x in F if x != clause_to_remove]

30

31 print('\n---')

32 print('\nHorn Expression after removing cycle is: ')

33 return expr_without_cycle

34

Listing 4.4: Structure for Cycles in Horn expression

We use an example to show how its implementation works.

Example 4.2.1. Consider Horn Expression F =
⋃5

i=1 ϕi, and clauses ϕi are defined as:

ϕ1 = {p→ q},
ϕ2 = {(p ∧ u)→ s},
ϕ3 = {q → r},
ϕ4 = {r → p}
ϕ5 = {s→ q}.

41

It has a sequence of clauses as (ϕ1, ϕ3, ϕ4, ϕ1) which makes a cycle.

p→ q (ϕ1), q → r (ϕ3), r → p (ϕ4).

Algorithm removes the clause of the sequence that is completing a cycle. It might be

ϕ4 or ϕ1 depending on the order in which edges are occurring. In the code, the function

takes this Horn expression, draws a directed graph, checks for cycles, and removes those.

The result of implementation appears as:

Figure 4.1: Output for cyclic Horn expression

This shows that the function has removed the cycle by removing clause ϕ1 : p→ q.

Consider a Horn expression with no cycle Clauses are defined as:

ϕ1 = {p→ q}, ϕ2 = {(p ∧ u)→ s}, ϕ3 = {q → r}, ϕ4 = {s→ q}

Similarly function takes this Horn expression, draws a directed graph, checks for cycles,

and returns the same expression if there is no cycle. The result of implementation appears

as:

42

Figure 4.2: Output for acyclic Horn expression

As we know, the Horn expression should be non-redundant to find a common ground.

Algorithm 2 remove redundancy if exists in the Horn expression. We remind the definition

to check redundancy.

A Horn expression F is non-redundant if, for all ϕ ∈ F , it is not the case that

F \ {ϕ} |= ϕ

Implementation of redundancy part has the following steps.

• A function called non redundant expr is defined. It takes F as input and checks if

expression is redundant or not using above definition.(Appendix A.5).

• A second function name check redundancy is defined. It keeps checking for re-

dundant clauses using control loop. Meanwhile, it keeps removing the redundant

clauses and updates the expression F until it becomes non-redundant. If the given

expression is already non-redundant, it is returned as it is.

43

1 def check_redundancy(F):

2 if non_redundant_expr(F):

3 print('-------This Horn Expression is already Non-Redundant-------')

4 return T

5 else:

6 for clause in F:

7 expr_without_clause = [x for x in F if x != clause]

8 if entails(clause, expr_without_clause):

9 F = expr_without_clause

10 while non_redundant_expr(F):

11 print('-------This Horn Expression is Non-Redundant now------')

12 return T

Listing 4.5: Structure for Redundancy

4.3 Conflict

Definition of conflict is recalled, to implement conflict.

Let F be a definite Horn expression. We say that F is in conflict if we can find

any pair of clauses (ϕ, ψ) ∈ F such that

• ϕ⇒F ψ and con(ϕ) ∈ con(ψ) (i.e., F is incoherent); and

• there is no r ∈ ant(ϕ) \ ant(ψ) with q ∈ r s.t. ψ+q is coherent with F \ {ψ}.

There are two conditions in a conflict, incoherence and conflict condition. Following

steps are followed for implementation:

• A function named check conflict clauses is defined. It checks conflict condition only

for a pair of clauses. It takes a pair of clauses, Horn expression F , and background

knowledge B as input. It extracts antecedents of both clauses. It checks if there is

any atom in differences of both clauses’ antecedents, where exlcudents are coherent

with F \ {ψ}. If not then these clauses are not in conflict. The complete code can

be seen here in Appendix A.6

• second function named check conflict expr is defined to check conflict of whole

horn expression F . It checks both conditions coherence and conflict condition for

all possible pair combinations of the clauses. If condition is true for any of the pairs,

F would assume to be in conflict.

44

1 def check_conflict_expr(F, background_know):

2

3 count = 0

4 combinations = generate_combinations(F)

5

6 for clause in combinations:

7 con_clause1 = next(iter(extract_ant_con(clause[0])[1]))

8 con_clause2 = next(iter(extract_ant_con(clause[1])[1]))

9

10 if check_conflict_clauses(F, clause[0], clause[1], background_know) and

clauses_derivation(clause[0], clause[1], F) and con_clause1 in

get_excludents(background_know, con_clause2):

↪→

↪→

11 count +=1

12

13 if count > 0:

14 return True

15 else:

16 return False

Listing 4.6: Structure of Conflict in Horn expression

4.3.1 Resolve Conflict

As we know that F should not be in conflict to find a common ground. Algorithm 2

resolves the conflict, where implementation contains the following steps.

• A function resolve conflict is defined. It takes Horn expression F , both background

knowledge B, B and collection of symbols C as input.

• It uses a control loop to look for conflict in the Horn expression. In each iteration,

it checks conflicts in all possible pair combinations of clauses in F . It resolves the

conflict by weakening second clause of the pair using generalized symbols from B.
It uses specific symbols where clauses with generalized symbols are still in conflict.

Meanwhile, it keeps updating the expression (using generated copy of expression)

by weakened clauses and checking the expression for conflict. At the end, it returns

a Horn expression with distinct clauses.

45

1 def resolve_conflict(F, background_know, col_symbols, background_know_2):

2 copy_expr = copy.deepcopy(F)

3

4 while check_conflict_expr(copy_expr, background_know):

5 dict_of_clauses = {i : copy_expr[i] for i in range(0, len(copy_expr))}

6 for i in generate_combinations(dict_of_clauses):

7 clause1 = dict_of_clauses[i[0]], clause2 = dict_of_clauses[i[1]]

8 con_clause1 = next(iter(extract_ant_con(clause1)[1]))

9 con_clause2 = next(iter(extract_ant_con(clause2)[1]))

10

11 if check_conflict_clauses(copy_expr, clause1, clause2, background_know)

and clauses_derivation(clause1, clause2, copy_expr) and con_clause1

in get_excludents(background_know, con_clause2):

↪→

↪→

12

13 for region in background_know_2:

14 if clause2 in F:

15 if col_symbols[i[1]] in region.args:

16 update_ant = clause2.replace(clause2.args[0],

And(clause2.args[0], region.args[1]))↪→

17 else:

18 if

clause1.args[0].atoms().intersection(region.args[1].atoms())

==

clause2.args[0].atoms().intersection(region.args[1].atoms()):

↪→

↪→

↪→

19 clause1 = clause1.subs(region.args[1], col_symbols[i[0]])

20 clause2 = clause2.subs(region.args[1], col_symbols[i[1]])

21 copy_expr[i[0]] = clause1

22 copy_expr[i[1]] = clause2

23 return [*set(copy_expr)]

Listing 4.7: Structure for Resolving Conflict in Horn expression

4.4 Resolve Incoherence

A Horn expression should be fully coherent for common ground to exist. If there is in-

coherence then it can be resolved according to Algorithm 1. A safe pair is searched and

weaken version of a clause of pair is generated for resolving incoherence. Its implemen-

tation contains the following steps.

• As any pair of clauses is safe if it has no parent in the dependency graph of the

Horn expression F . From lemma 1, a safe pair is guaranteed to exist in case of

incoherence. These steps are followed to search safe pairs:

✵ A function named get safe pairs is defined. It returns safe pairs if F is in-

coherent and returns False if there are no safe pairs (means F is coherent).

46

Networkx is used to sketch dependency graphs from the Horn expression. Ac-

cording to definition of dependency graphs 6, nodes are the pairs of clauses

(ψ, ϕ) such that ψ ⇒F ϕ and con(ψ) ∈ con(ϕ) while edges are a set of all pairs

of clauses ((ψ′, ϕ′), (ψ, ϕ)) such that ϕ′ ̸= ϕ and ϕ′ occurs in a derivation of ϕ

w.r.t. ψ and F .

✵ A built-in function predecessors [20] from Networkx is used in drawing the

dependency graph. It provides the predecessor nodes in a directed graph.

Then implementation searches for the nodes with no predecessors. These are

the safe pairs. The complete code can be seen in Appendix A.7.

Example 4.4.1. Consider F =
⋃7

i=1Fi is not in conflict, not redundant,

acyclic, but incoherent.

F1 = {p→ s}, F2 = {(p ∧ u)→ s},
F3 = {(t ∧ q)→ s}, F4 = {t→ p},
F5 = {(t ∧ u)→ p}, F6 = {s→ q},
F7 = {(p ∧ t)→ q}.

This Horn expression is used in our implementation. It draws a dependency

graph, check predecessors in the graph and gives nodes that have no parent.

The implementation result from this Horn expression looks like this:

Figure 4.3: Output of Safe pairs function for Horn expression

47

Dependency Graph shows nodes (5,4) and (2,1) which have no predecessor. Both

(F5,F5) and (F2,F1) are safe pairs.

• It generates a weak version of a clause from safe pairs of clauses after finding safe

pairs. It has the following steps:

✵ A function named weaker version clause is defined. It takes F and clauses

of safe pairs as input. Following part of the algorithm is used to generate a

weaker version:

If we have ψ, ϕ ∈ F such that (ψ, ϕ) is safe. Replace ϕ by all ϕ′ ∈ {ϕ+p |
p ∈ l, l ∈ ant(ψ) \ ant(ϕ)} coherent with F \ {ϕ}.

The function takes the second clause and modifies it by adding an atom to the

antecedents of the clause such that it becomes coherent. The complete code

can be seen in Appendix A.8.

• All features of Algorithm 2 has been implemented. Now we implement the final

structure of the algorithm to find a common ground for a given Horn expression F .

4.5 Finding Common Ground Algorithm

To implement the algorithm 2, a function named find common ground is defined. It takes

a Horn expression F , both background knowledge B, B and collection of symbols C as

input and returns a common ground for F . This function contains the following steps.

• Firstly, it checks for cycles and removes cycles using the implemented function

check cycle that returned acyclic expression.

• Secondly, it gives a non-redundant expression while removing redundancies using

check redundancy function.

• Thirdly, it checks for conflict in F and resolve it using implemented functions

check conflict expr and resolve conflict.

• In the end, a while loop is used for coherence of F . It checks for the coherence

of Horn expression using implemented functions HornExpression coherence. If it is

incoherent then it searches for the safe pair. It uses get safe pairs and generates

48

a weaker version of the clause using weaker version clause. Horn expression is up-

dated according to updated clauses (weakened clauses). That is a common ground

for F .

1 def find_common_ground(F, background_know, background_know_2, col_symbols):

2

3 F = check_cycle(F)

4 F = check_redundancy(F)

5

6 if not check_conflict_expr(F, background_know):

7 print('\n-------------- F is not in conflict--------------\n')

8 else:

9 F = resolve_conflict(F, background_know, col_symbols, background_know_2)

10 print('\n-------------- Conflict is resolved --------------\n', F)

11

12 while not HornExpression_coherence(F, background_know):

13 print('\n-------------- Resolving Incoherence --------------\n')

14

15 for safe_pair in get_safe_pairs(F):

16 clause1 = safe_pair[0], clause2 = safe_pair[1]

17 weaker_version, indices = weaker_version_clause(F, clause1, clause2)

18 F = [weaker_version if F.index(x) in indices else x for x in F]

19

20 print('\n-------------- Expression is coherent now --------------\n')

21 return F

Listing 4.8: Structure for Finding Common ground Algorithm from Horn expression

49

Chapter 5

Experiment

This chapter begins by presenting the Moral Machine experiment. It follows by analyzing

the moral machine dataset and applying common ground algorithm 2 on this dataset. A

study is performed on dataset along with preprocessing to make the dataset suitable for

the algorithm. In preprocessing, rules are extracted from dataset in the form of definite

horn clauses that makes a horn expression. To prepare data, both background knowledge

and collection of symbols are defined accordingly. Finally, the results of the algorithm’s

application on the dataset are presented.

5.1 Moral Machine Experiment

The use of self-driving cars on the roads, will soon become a reality, but questions like

responsibility and priorities are still unanswered. Awad’s research group set up “The

Moral Machine Experiment”, an online platform. This is an online experimental platform

designed to explore the moral dilemmas faced by autonomous vehicles. This platform

gathered 40 million decisions in ten languages from millions of people in 233 countries

and territories. Its objective is to quantify societal expectations about ethical principles

and to use those as guidance for machine behavior [21].

The study deals with the expectations that people have from the ethical behavior of

AI. The goal of this experiment is to measure the moral preferences which adopted in

case of accidents with self-driving cars. Car manufacturers and policymakers are currently

struggling with setting a benchmark for these moral dilemmas due to the complex nature.

It is challenging to solve it by a simple normative ethical set of principles.

50

We imagine at some point in future, shall be driving down the highway in a self-driving

vehicle, boxed in on all sides by other vehicles. Inevitably, we might find ourselves stuck in

a life-threatening situation where our car would not stop with in time to avoid a collision.

It has a choice, either collide with one of the fellow vehicles, endangering other passenger

or its own. What should a self-driving vehicle do in such context? If we are driving a

traditional non-autonomous vehicle, whichever way we choose, it would be considered a

reaction to the situation as opposed to a deliberate decision—an instinctual, potentially

panicked reaction with no forethought or malice. A programmed, self-driving vehicle

would, at some point, take a life to save another. Which subject needs to be saved,

whereas morality dictates saving both lives? The moral machine experiment is all about

finding answers to such morally grim questions [22].

In the moral machine experiment, participants are asked to form judgments about

variations of the well-known trolley problem. It is a thought experiment in ethics about

a fictional scenario. An onlooker has the choice to save five persons in danger of being

hit by a trolley, by diverting the trolley to kill just one person.

Figure 5.1: Trolley Problem

The variations replace trolleys with autonomous vehicles, and people on tracks with

passengers and pedestrians. The Moral Machine takes the idea to test nine different

comparisons shown to polarize people: should a self-driving vehicle prioritize humans

over pets or passengers over pedestrians, etc.

In the main interface of the Moral Machine, users are shown unavoidable accident

scenarios with two possible outcomes. These depend on whether the automated vehicles

swerves or stays on course. Users can click on the outcome that they find preferable.

A sample scenario given below depicts what the Moral Machine presents to get human

perspective.

51

Figure 5.2: Sample scenario of Moral Machine experiment

In the left case of 5.2, self-driving car in case of brake failure continues ahead and

drive through a pedestrian crossing ahead. This results in

Dead : 2 boys 1 girl 2 criminals

In the right case of 5.2, self-driving car with brake failure swerves to other lane and

drives through a pedestrian crossing. This results in:

Dead : 1 elderly woman1 elderly man 1 female doctor 1 male doctor 1 female

executive

Each dilemma presents two potential negative outcomes. Each results in loss of lives.

The number, gender, and age, along with other factors of surrounding characters and

environment in each outcome, are variable at each occurrence. For each scenario, a choice

for the preferred outcome has to be made. At the end of the experiment, a summary of

decisions exercised is presented. It accompanies by a comparison and an optional survey.

Moral Machine follows an exploration strategy to generate accident scenarios. It

focuses on nine factors which are staying on course (vs. swerving) and saving humans

(vs. pets), passengers (vs. pedestrians), more lives (vs. fewer lives), men (vs. women),

young (vs. the old), pedestrians who cross legally (vs. jaywalk), healthy (vs. sick), high

social status (vs. low social status). Additional characters are included in some scenarios

(e.g., criminals, pregnant women, doctors) These are not linked to any of the above

mentioned nine factors. These characters mostly served to make scenarios less repetitive

for the users. Participants can complete a survey after completing a thirteenth accident

52

session. Survey also collects, among other variables, demographic information such as

gender, age, income, and education, religious and political attitudes. Participants are

geolocated. Their coordinates can be used in a clustering analysis. It helps to identify

groups of countries or territories with homogeneous vectors of moral preferences [5].

The researchers found that countries’ preferences differ widely, but these also cor-

relate highly with culture and economics. For example, participants from collectivist

cultures like China and Japan are less likely to spare the young over the old. Researchers

hypothesized, the high respect given to elders. [23].

5.2 Findings of Moral Machine Survey

The Moral Machine compiled nearly 40 million individual responses from around the

world. The researchers analyzed the data as a set. They break out participants into

subgroups defined by age, education, gender, income, and political and religious views.

The team finds few significant moral differences based on said characteristics.

Figure 5.3 represents a world map highlighting the locations of Moral Machine visitors.

Each point represents a location from which at least one visitor made at least one decision

[5]. The number of visitors or decisions from each location is not represented.

Figure 5.3: Moral Machine Map

53

However, research finds clusters of preferences based on cultural and geographic af-

filiations. Geolocation allowed us to identify the country of residence of Moral Machine

respondents. It aids to seek clusters of countries exhibiting homogeneous vectors of moral

preferences. It divides the world into three dominant clusters as Western, Southern, and

Eastern as shown in Figure 5.4 [5].

Figure 5.4: Countries clusters of Moral Machine

The first cluster, labeled as Western cluster, contains North America and many Euro-

pean countries of Protestant, Catholic, and Orthodox Christian cultural groups. The

internal structure within this cluster also exhibits notable face validity, with a sub-

cluster containing Protestant/Scandinavian countries. It has a sub-cluster containing

Commonwealth/English-speaking countries.

The second cluster called Eastern, contains many far eastern countries. Such as

54

Japan and Taiwan, belongs to the Confucianism cultural group, and Islamic countries

like Indonesia, Pakistan, and Saudi Arabia.

The third cluster (a broadly Southern cluster) consists of the Latin American countries

of Central and South America. It also has countries that are characterized in part by

French influence e.g., metropolitan France, French overseas territories, and territories

that were at some point under French leadership. Latin American countries are cleanly

separated in their own sub-cluster within the Southern cluster.

The research analysts used the following Spiderweb chart to interpret the survey data:

Figure 5.5: Clusters’ Tendencies of Moral Machine

Overall, the researchers found three elements that people most agreed on. Majority of

people believe in saving the lives of humans over animals, many rather than few and young

rather than old. It is not simple. The degree of respondents’ agreement or disagreement

to above said principles, varies by different groups and countries. Research finds Asia

and the Middle East countries like China, Japan, and Saudi Arabia, prefer to spare

younger rather than older character. People from these countries also care relatively less

about sparing high net-worth individuals compared to people who answered from Europe

55

and North America. The respondents in southern countries have a relatively stronger

preference for saving young people over the old and shielding higher-status characters.

Similarly, countries in the Southern cluster exhibit a much weaker preference for saving

humans over pets, compared to the other two clusters. Only the (weak) preference for

sparing pedestrians over passengers and the (moderate) preference for sparing the lawful

over the unlawful appear to be shared to the same extent in all clusters [5]. There are also

some striking peculiarities, like the strong preference for sparing women and the strong

preference for sparing fit characters in the Southern cluster.

Based on the initial Moral Machine findings, morality differs, depending on several

factors. These may be race, culture, religion, country, economy, and so on. This is for

sure that morality debate will continue along with the prosperity in automation (self-

driving vehicles and consumer devices). Whether the Moral Machine settles the ethical

debate to some extent, but it began an enhancement in ethical discussions for the world

to consider.

5.3 Moral Machine Dataset

This includes a discussion about the dataset of Moral Machine. It is going to be used

in our Common ground Algorithm. The data is collected from the respondents of ex-

periments from all over the world. We do a brief look at a random row of the data and

explain what each column shows. The data file contains forty-one columns. The last

twenty columns represent the number of characters of each type in each outcome. For

example, the columns “Man” and “Woman” represent the number of men and Women

characters in each outcome (both are zero in this example).

56

ResponseID 2224g4ytARX4QT5rB
ExtendedSessionID 213978760 9992828917431898.0
ScenarioOrder 7
Intervention 0
PedPed 0
Barrier 1
CrossingSignal 0
AttributeLevel Less
ScenarioType Utilitarian
DefaultChoice More
NonDefaultChoice Less
DefaultChoiceIsOmission 0
NumberOfCharacters 4
Saved 1
UserCountry3 USA
Man 0
Woman 0
Pregnant 0
Stroller 1
OldMan 0
OldWoman 0
Boy 0
Girl 0
Homeless 0
LargeWoman 0
LargeMan 0
Criminal 0
MaleExecutive 0
FemaleExecutive 0
FemaleAthlete 1
MaleAthlete 0
FemaleDoctor 1
MaleDoctor 0
Dog 0
Cat 1

Table 5.1: Random row of Moral Machine Dataset

A quick look at this example, shows the row contains a baby stroller, a female athlete,

a female doctor, and a cat as characters involved in the scenario. Each type has only

one character, but each of these cells could take a value between 0 and 5. It has crucial

restriction of total number of characters in each outcome (cell) is between 1 and 5. This

57

number is captured in the column “NumberOfCharacters”. Further details about the

remaining columns is given below:

• ResponseID : a unique, random set of characters that represents an identifier of

the scenario.

• ExtendedSessionID : a unique, random set of characters that represents an iden-

tifier of the session.

• ScenarioOrder : it takes a value between 1 and 13, representing the order in

which the scenario was presented in the session.

• Intervention : represents the decision of the automated vehicles (STAY or

SWERVE) that would lead to this outcome [0: the character would die if the au-

tomated vehicles stays, 1: the character would die if automated vehicles swerves].

This is not the actual decision taken by the user, but rather a part of the structural

characterization of the scenario.

• PedPed : every scenario has either pedestrians vs. pedestrians or pedestrians vs.

passengers (or passengers vs. pedestrians). This column provides information about

not just this outcome, but about the combination of both outcomes in the scenario;

whether the scenario pits pedestrians against each other or not [1: pedestrians vs.

pedestrians, 0: pedestrians vs. passengers (or vice versa)]

• Barrier : a structural column that describes whether the potential casualties in

this outcome are passengers or pedestrians [1: passengers, 0: pedestrians]. This

column was used to calculate PedPed.

• CrossingSignal : a structural column which represents whether there is a traffic

light in this outcome, and light color if yes [0: no legality involved, 1: green or

legally crossing, 2: red or illegally crossing]

• Saved : this resembles the actual decision made by the user [1: user decided to

save the characters in this outcome, 0: user decided to kill the characters in this

outcome].

• NumberOfCharacters : takes a value between 1 and 5, the total number of

characters in this outcome. This is the sum of numbers in the last 20 columns

(character columns).

• UserCountry3 : This column consists of alpha-3 ISO code of the country from

58

which the user accessed the website

• ScenarioType : This column has 7 values, corresponding to 7 types of scenarios

(6 attributes + random). These are “Utilitarian”, “Gender”, “Fitness”, “Age”,

“Social Status”, “Species”, and “Random”.

• AttributeLevel : is dependent on the scenario type. Each scenario type (except

random) has two levels:

✵ -Gender : [Males: characters are males, Females: characters are females]

✵ -Age: [Young: characters in this outcome are younger (Boy/Girl + Man/-

Woman) than in the other outcome, Old: characters in this outcome are older

(Elderly Man/Woman and Man/Woman)].

✵ -Fitness : [Fit: characters in this outcome are more fit (Male/Female Athlete

and Man/Woman), Fat: characters in this outcome are less fit (Large Man/-

Woman and Man/Woman)].

✵ -Social Status : [High: characters in this outcome have higher social status

(Male/Female Executives, Pregnant women), Low: characters have a lower

social status (Homeless, Criminal)]

✵ -Species : [Humans: characters in this outcome are humans, Pets: characters

in this side are pets (Dog/Cat)]

✵ -Utilitarian: [More: there are more characters in this outcome, Less: there

are fewer people in this outcome]. In fact, the characters on the ”More” side

are the same characters on the ”Less” side, in addition to at least one more

character.

✵ -Random: it has one value [”Rand”: characters in both outcomes are randomly

generated].

• DefaultChoice, NonDefaultChoice : The default Choice depends on the Sce-

nario Type. For the following Scenario Types: [“Gender”, “Fitness”, “Age”, “Social

Status”, “Species”, “Utilitarian”], the default choice is [“Male”, “Fit”, “Young”,

“High”, “Humans”, “More”], while the non-default choice is [“Female”, “Fat”,

“Old”, “Low”, “Pets”, “Less”].

• DefaultChoiceIsOmission : Omission here means no intervention (Intervention

59

= 0), and the default choice is as described in the ”DefaultChoice” column. When

DefaultChoiceIsOmission = 1 it means that based on the scenario type, characters

that hold the default choice (that is, males for gender, fit for fitness, young for

age,. . . etc.) will be the ones killed if the automated vehicles does nothing (omission

or no intervention). On the other hand, if DefaultChoiceIsOmission = 0, then the

characters that hold the non-default choice will be the ones killed if the automated

vehicles does nothing (i.e., the characters holding the default choice will be the ones

killed if the car swerves (i.e., intervenes)).

After explaining the columns, we get back to the example scenario discussed above.

It represents the dilemma in where four (4) passengers are in the automated vehicle and

five (5) pedestrians who are crossing legally. There is a barrier in front of the AV. If

the automated vehicle stays, then it will hit the barrier and kill the four (4) passengers.

If it swerves, then it will save the passengers. The user chooses automated vehicle to

SWERVE and thus has decided to spare the four passengers.

5.4 Preprocessing of Data

Now we have explained the dataset and in order to use this dataset for our algorithm we

need to prepare the dataset for the algorithm. This means we extract rules (preferences

from participants) from the dataset in the form of definite horn clauses that we can use

as a Horn expression.

Our preprocessing consists of the following steps:

• After loading the data file, we drop rows where the column ‘ScenarioType’ has value

‘random’ and rows where there is a column with a ‘none’ value.

• We convert the value of UserCountry3 from the alpha-3 ISO code to the full of the

name country. For example, FRA would appear as france.

• Dataset contains 233 countries. It is not possible to use the data for all countries.

We filter the dataset to analyze specific countries and focus on some scenarios types

for readability of the rules created for our experiment for finding common grounds.

The filtration is as follows:

✵ We define a function that accesses the dataset and list of countries as input.

It uses this list to select only the data from these countries.

60

✵ We use the data where only pedestrians are involved. That means we ignore

the scenarios where the combination of passengers and pedestrians is used.

✵ We use the data, where either the traffic light is green or red. That means we

ignore the scenarios where no lights are involved. Here ‘red’ means that the

traffic signal has been violated and ‘green’ means it has been respected. In

other words, subjects are law-abiding.

✵ We ignore columns of IDs, and columns representing the number of characters

of each type in each outcome. Then we are left with the columns ‘Cross-

ingSignal’, ‘ScenarioType’, ‘AttributeLevel’ and ‘UserCountry3’. We group

the dataset according to these columns to check the frequency of each scenario

as saved or not saved (by the ‘saved’ column). We ignore duplicate rows.

For example, in the dataset, we have rows where there is “utilitarian” as

ScenarioType, “less” as AttributeLevel, “green light” as CrossingSignal, and

USA as UserCountry3 and 1 or 0 as saved or Not saved. The goal is to see for

a specific scenario how many participants believe that the characters involved

would be saved or sacrificed. In this way, each scenario would be associated

with 2 rows, one saved as 0 and one with saved as 1, with the respective

frequencies. We keep scenarios with a higher frequency. Table 5.2 contains

the information of the scenarios after grouping.

CrossingSignal 1 1
ScenarioType Utilitarian Utilitarian
AttributeLevel Less Less
UserCountry3 USA USA
Saved 1 0
Frequency 200 300

Table 5.2: Example of grouping scenarios

In Table 5.2, 200 people are in favor to save the people involved in this scenario,

while 300 people are willing to sacrifice. By frequency, we ignore the data of

lower frequency. After dropping lower-frequency rows, is the filtered data for

our algorithm. The complete code can be seen here in Appendix A.9.

• The next step is to extract rules from the filtered dataset. For this, a function is

defined that treats each row of the dataset as a rule. Columns CrossingSignal, Sce-

narioType, AttributeLevel and UserCountry3 are used as antecedents of rules while

Saved column is consequent (as value Saved and not Saved). The collection of rules

61

from a country form a Horn expression that represents the moral recommendations

of a country regarding these attributes. For each row, the associated country name

from column UserCountry3 is served as a distinct symbol in the collection of sym-

bols C. The complete code of extracting rules can be seen here in Appendix A.10.

The resulting rules would appear as:

ϕ1 = {(green ∧ gender ∧male)→ saved},
ϕ2 = {(green ∧ species ∧ pets)→ not saved},
ϕ3 = {(red ∧ fitness ∧ fat)→ not saved},

For each country, the associated country name is a distinct symbol (for each rule)

representing the view of that country. These distinct symbols collectively make C.
For ϕ1, ϕ2, ϕ3, we have C = [france, denamrk, china]

• We define both background knowledge as B and B according to symbols involved in

rules. For, B we need specific and generalized symbols.Here C is countries’ names

as specific symbols because for each row in the dataset there is a country name.

Generalized symbols are countries clusters involved in the moral machine dataset,

i.e., east,west, south. For, B we define definite clauses that are implying specific

symbols to generalized symbols as the countries lie in a cluster. In B, clauses are

like:
spain→ west,

india→ east,

france→ south

india→ east

Where antecedents are from C. Background knowledge B is a set of Horn constraints

for the symbols involved in F . As both attribute levels of the same scenario cannot

occur together, they are excludents of each other. Clauses in B are like:

(young ∧ old)→ ⊥
(female ∧male)→ ⊥
(more ∧ less)→ ⊥
(green ∧ red)→ ⊥

We have prepared our dataset as horn expression F . Both background knowledge B
and B and collection of symbols C have been generated. Now we can use Common

ground Algorithm 2 to find common ground for any collection of countries.

62

5.5 Results

This section focuses on testing the algorithm on prepared dataset of Moral Machine

experiment. More details about the experimental results are provided. For testing, we

use different countries to find common ground.

There are rules in the form of clauses for different countries. It is quite possible that

there are multiple rules with the same antecedents but different concludents for different

countries. For example, according to Moral machine experiment, tendency to save young

people is higher in the southern cluster as compared to the eastern. If France is selected

from the south and China from the east, then following are the rules for saving young

people. Here age is scenario type, and the pedestrian crossing signal is green (that means

pedestrians are crossing legally).

ϕ1 = (green ∧ age ∧ young)→ saved, c1 = france

ϕ2 = (green ∧ age ∧ young)→ not saved, c2 = china

This case would have a conflict because the same scenario is saved and not saved in the

dataset. First an analysis is performed for case of two largest economies in the world:

the United States and China. Then, a group of Scandinavian countries are considered.

These countries are highly expected to have similar moral recommendations. Finally, a

group with a mix of two European countries and an Asian country is evaluated.

5.5.1 Comparison between the United States and China

There are many countries in the dataset which can be used for our experiment. First, the

comparison is performed between two largest economies in the world, the United States

and China.

Table 5.3 is the Horn expression that is prepared after preprocessing of the data for

the United States and China. In the dataset, there are six (6) scenario types. Each

scenario has two attribute levels. There are twelve (12) horn rules for each country. In

each scenario, red and green (pedestrians) crossing signals lights are considered. In total,

there is a Horn expression of 24 clauses for each country. These are the rules in Horn

expression along with symbols as country names. The generalized symbol for the United

States is west and for china is east.

63

1 green ∧ age ∧ old→ not saved united states
green ∧ age ∧ old→ not saved china

2 green ∧ age ∧ young→ saved united states
green ∧ age ∧ young→ saved china

3 green ∧ fitness ∧ fat→ saved united states
green ∧ fitness ∧ fat→ saved china

4 green ∧ fitness ∧ fit→ saved united states
green ∧ fitness ∧ fit→ saved china

5 green ∧ gender ∧ female→ saved united states
green ∧ gender ∧ female→ saved china

6 green ∧ gender ∧male→ saved united states
green ∧ gender ∧male→ saved china

7 green ∧ socialStatus ∧ high→ saved united states
green ∧ socialStatus ∧ high→ not saved china

8 green ∧ socialStatus ∧ low→ not saved united states
green ∧ socialStatus ∧ low→ not saved china

9 green ∧ species ∧ human→ saved united states
green ∧ species ∧ human→ saved china

10 green ∧ species ∧ pets→ not saved united states
green ∧ species ∧ pets→ not saved china

11 green ∧ utilitarian ∧ less→ not saved united states
green ∧ utilitarian ∧ less→ not saved china

12 green ∧ utilitarian ∧more→ saved united states
green ∧ utilitarian ∧more→ saved china

13 red ∧ age ∧ old→ not saved united states
red ∧ age ∧ old→ not saved china

14 red ∧ age ∧ young→ saved united states
red ∧ age ∧ young→ not saved china

15 red ∧ fitness ∧ fat→ not saved united states
red ∧ fitness ∧ fat→ not saved china

16 red ∧ fitness ∧ fit→ not saved united states
red ∧ fitness ∧ fit→ not saved china

17 red ∧ gender ∧ female→ not saved united states
red ∧ gender ∧ female→ not saved china

18 red ∧ gender ∧male→ not saved united states
red ∧ gender ∧male→ not saved china

19 red ∧ socialStatus ∧ high→ saved united states
red ∧ socialStatus ∧ high→ not saved china

20 red ∧ socialStatus ∧ low→ not saved united states
red ∧ socialStatus ∧ low→ not saved china

21 red ∧ species ∧ human→ saved united states
red ∧ species ∧ human→ saved china

22 red ∧ species ∧ pets→ not saved united states
red ∧ species ∧ pets→ not saved china

23 red ∧ utilitarian ∧ less→ not saved united states
red ∧ utilitarian ∧ less→ not saved china

24 red ∧ utilitarian ∧more→ saved united states
red ∧ utilitarian ∧more→ saved china

Table 5.3: Horn Expression for the United States and China

64

As per findings, United States and China have three conflicts. These are highlighted

as rule numbers 7, 14 and 19. The application of algorithm results in resolution of all the

conflicts and finding common ground by resolving incoherence if exists. First resolving

conflicts is discussed. In case of rules 7 and 19, the United States prefers to save people

with high social status on both red and green signal. It includes both law-abiding and

non-law-abiding pedestrians. This is not practiced in case of China. This is a clear

conflict between the United States and china for protecting people with high social status.

Similarly, in case of rule 14, the United States prefers to save young people when there

is a red signal. Whereas, China does not give young people preference if they cross on

the red pedestrian signal. The algorithm would solve the conflict using generalized and

specific symbols from background knowledge B. After resolution of conflicts, there would

be no repetitive rules for both countries. It means if there is no symbol associated with

the rule then the rule is true for all the countries involved in the dataset.

1 green ∧ age ∧ old→ not saved
2 green ∧ age ∧ young→ saved
3 green ∧ fitness ∧ fat→ saved
4 green ∧ fitness ∧ fit→ saved
5 green ∧ gender ∧ female→ saved
6 green ∧ gender ∧male→ saved
7 green ∧ socialStatus ∧ high→ not saved

green ∧ socialStatus ∧ high ∧west→ saved
8 green ∧ socialStatus ∧ low→ not saved
9 green ∧ species ∧ human→ saved
10 green ∧ species ∧ pets→ not saved
11 green ∧ utilitarian ∧ less→ not saved
12 green ∧ utilitarian ∧more→ saved
13 red ∧ age ∧ old→ not saved
14 red ∧ age ∧ young ∧west→ saved

red ∧ age ∧ young→ not saved
15 red ∧ fitness ∧ fat→ not saved
16 red ∧ fitness ∧ fit→ not saved
17 red ∧ gender ∧ female→ not saved
18 red ∧ gender ∧male→ not saved
19 red ∧ socialStatus ∧ high ∧west→ saved

red ∧ socialStatus ∧ high→ not saved
20 red ∧ socialStatus ∧ low→ not saved
21 red ∧ species ∧ human→ saved
22 red ∧ species ∧ pets→ not saved
23 red ∧ utilitarian ∧ less→ not saved
24 red ∧ utilitarian ∧more→ saved

Table 5.4: Horn Expression for the United States and China after resolving conflicts

65

Now the conflict is resolved, and the algorithm resolves incoherence that was present

in rule 7, 14 and 19.

1 green ∧ age ∧ old→ not saved
2 green ∧ age ∧ young→ saved
3 green ∧ fitness ∧ fat→ saved
4 green ∧ fitness ∧ fit→ saved
5 green ∧ gender ∧ female→ saved
6 green ∧ gender ∧male→ saved
7 green ∧ socialStatus ∧ high ∧ not west→ not saved

green ∧ socialStatus ∧ high ∧west→ saved
8 green ∧ socialStatus ∧ low→ not saved
9 green ∧ species ∧ human→ saved
10 green ∧ species ∧ pets→ not saved
11 green ∧ utilitarian ∧ less→ not saved
12 green ∧ utilitarian ∧more→ saved
13 red ∧ age ∧ old→ not saved
14 red ∧ age ∧ young ∧west→ saved

red ∧ age ∧ young ∧ not west→ not saved
15 red ∧ fitness ∧ fat→ not saved
16 red ∧ fitness ∧ fit→ not saved
17 red ∧ gender ∧ female→ not saved
18 red ∧ gender ∧male→ not saved
19 red ∧ socialStatus ∧ high ∧west→ saved

red ∧ socialStatus ∧ high ∧ not west→ not saved
20 red ∧ socialStatus ∧ low→ not saved
21 red ∧ species ∧ human→ saved
22 red ∧ species ∧ pets→ not saved
23 red ∧ utilitarian ∧ less→ not saved
24 red ∧ utilitarian ∧more→ saved

Table 5.5: Common ground for the United States and China

This is the common ground that the algorithm has found after resolving all incoherence

for the United States and China. In table 5.5, blue color shows coherence resolved and

red color shows resolution of conflict.

5.5.2 Comparison of Scandinavian countries

Data of three Scandinavian countries are used in the second experiment. Those countries

are Norway,Denmark and Sweden. It is expected that these share similar moral

preferences countries due to similar cultural trends.

66

1 green ∧ age ∧ old→ not saved norway, denmark, sweden
2 green ∧ age ∧ young→ saved norway, denmark, sweden
3 green ∧ fitness ∧ fat→ saved norway, denmark, sweden
4 green ∧ fitness ∧ fit→ saved norway, denmark, sweden
5 green ∧ gender ∧ female→ saved norway, denmark, sweden
6 green ∧ gender ∧male→ saved norway, denmark, sweden
7 green ∧ socialStatus ∧ high→ saved norway, denmark, sweden
8 green ∧ socialStatus ∧ low→ saved norway

green ∧ socialStatus ∧ low→ saved denmark
green ∧ socialStatus ∧ low→ not saved sweden

9 green ∧ species ∧ human→ saved norway, denmark, sweden
10 green ∧ species ∧ pets→ not saved norway, denmark, sweden
11 green ∧ utilitarian ∧ less→ not saved norway, denmark, sweden
12 green ∧ utilitarian ∧more→ saved norway, denmark, sweden
13 red ∧ age ∧ old→ not saved norway, denmark, sweden
14 red ∧ age ∧ young→ saved norway, denmark, sweden
15 red ∧ fitness ∧ fat→ not saved norway, denmark, sweden
16 red ∧ fitness ∧ fit→ not saved norway, denmark, sweden
17 red ∧ gender ∧ female→ not saved norway, denmark, sweden
18 red ∧ gender ∧male→ not saved norway, denmark, sweden
19 red ∧ socialStatus ∧ high→ not saved norway, denmark, sweden
20 red ∧ socialStatus ∧ low→ not saved norway, denmark, sweden
21 red ∧ species ∧ human→ saved norway, denmark, sweden
22 red ∧ species ∧ pets→ not saved norway, denmark, sweden
23 red ∧ utilitarian ∧ less→ not saved norway, denmark, sweden
24 red ∧ utilitarian ∧more→ saved norway, denmark, sweden

Table 5.6: Horn Expression for Scandinavian Countries

Indeed, there is no significant number of conflicts or incoherence in the Horn ex-

pressions associated with these countries. There is only one conflict case. Norway and

Denmark prefer to save people with low social status when the traffic light is green,

while Sweden penalizes people with low social status. In contrast with the United States,

where people with high social status are saved even if they cross on the red signal. All

the Scandinavian countries penalizes them for such action.

All countries are from the same cluster. Therefore, conflict should be resolved by

specific symbols (country name) not by generalized symbol (cluster name). Because rules

with generalized symbols would still be in conflict. Table 5.7 depicts rules which are not

in conflict, non-redundant, and acyclic but incoherent. This is the case when Algorithm 1

can find a common ground.

67

8a green ∧ socialStatus ∧ low ∧ norway→ saved
8b green ∧ socialStatus ∧ low→ saved
8c green ∧ socialStatus ∧ low ∧ sweden→ not saved

Table 5.7: Horn Expression for the Scandinavian Countries after resolving Conflicts

Now we have incoherence for 8b and 8c that would be resolved by algorithm. Common

ground would be the following rules. All other rules that had no conflict, would remain

the same in common ground.

1 green ∧ age ∧ old→ not saved
2 green ∧ age ∧ young→ saved
3 green ∧ fitness ∧ fat→ saved
4 green ∧ fitness ∧ fit→ saved
5 green ∧ gender ∧ female→ saved
6 green ∧ gender ∧male→ saved
7 green ∧ socialStatus ∧ high→ saved
8a green ∧ socialStatus ∧ low ∧ norway→ saved
8b green ∧ socialStatus ∧ low ∧ not sweden→ saved
8c green ∧ socialStatus ∧ low ∧ sweden→ not saved
9 green ∧ species ∧ human→ saved
10 green ∧ species ∧ pets→ not saved
11 green ∧ utilitarian ∧ less→ not saved
12 green ∧ utilitarian ∧more→ saved
13 red ∧ age ∧ old→ not saved
14 red ∧ age ∧ young→ saved
15 red ∧ fitness ∧ fat→ not saved
16 red ∧ fitness ∧ fit→ not saved
17 red ∧ gender ∧ female→ not saved
18 red ∧ gender ∧male→ not saved
19 red ∧ socialStatus ∧ high→ not saved
20 red ∧ socialStatus ∧ low→ not saved
21 red ∧ species ∧ human→ saved
22 red ∧ species ∧ pets→ not saved
23 red ∧ utilitarian ∧ less→ not saved
24 red ∧ utilitarian ∧more→ saved

Table 5.8: Common Ground for the Scandinavian Countries

68

5.5.3 Comparison of Clusters

In our last experiment, countries from three different clusters are selected. These clusters

divided by the authors of the Moral Machine Experiment. The following example takes

India from the eastern cluster, France from the southern cluster, and Norway from the

western cluster. Above selected three countries has the following Horn expression:

1 green ∧ age ∧ old→ not saved norway, india, france
2 green ∧ age ∧ young→ saved norway, india, france
3 green ∧ fitness ∧ fat→ saved norway, india, france
4 green ∧ fitness ∧ fit→ saved norway, india, france
5 green ∧ gender ∧ female→ saved norway, india, france
6 green ∧ gender ∧male→ saved norway

green ∧ gender ∧male→ not saved india
green ∧ gender ∧male→ saved france

7 green ∧ socialStatus ∧ high→ saved norway, india, france
8 green ∧ socialStatus ∧ low→ saved norway, india, france
9 green ∧ species ∧ human→ saved norway, india, france
10 green ∧ species ∧ pets→ not saved norway, india, france
11 green ∧ utilitarian ∧ less→ not saved norway, india, france
12 green ∧ utilitarian ∧more→ saved norway, india, france
13 red ∧ age ∧ old→ not saved norway, india, france
14 red ∧ age ∧ young→ saved norway

red ∧ age ∧ young→ not saved india
red ∧ age ∧ young→ saved france

15 red ∧ fitness ∧ fat→ not saved norway, india, france
16 red ∧ fitness ∧ fit→ not saved norway, india, france
17 red ∧ gender ∧ female→ not saved norway, india, france
18 red ∧ gender ∧male→ not saved norway, india, france
19 red ∧ socialStatus ∧ high→ not saved norway

red ∧ socialStatus ∧ high→ not saved india
red ∧ socialStatus ∧ high→ saved france

20 red ∧ socialStatus ∧ low→ not saved norway, india, france
21 red ∧ species ∧ human→ saved norway, india, france
22 red ∧ species ∧ pets→ not saved norway, india, france
23 red ∧ utilitarian ∧ less→ not saved norway, india, france
24 red ∧ utilitarian ∧more→ saved norway, india, france

Table 5.9: Horn Expression for Norway, France and India

These countries have conflicts that are highlighted on rules 6, 14 and 19 in Table

5.9. Basically, Norway and France both have conflicts with India. In particular on line

69

14, India (and also China), does not prefer to save young people on red signal (crossing

illegally) while Norway and France do. There are two conflicts in this case.

On line 6, India penalizes males while France and Norway make no gender distinction

when the pedestrian is crossing on the green signal (crossing legally). All the three

countries penalize pedestrians of both genders when they cross on the red signal.

The last scenario is on line 19, where these countries deviate. This is the one where

pedestrians with high social status cross on the red signal. Like the United States,

France saves them, while both India and Norway penalizes pedestrians. In total, there

are six conflicts in this Horn expression. The use of algorithm which resolves conflicts

and modifies these rules as following, while all other rules come out as these are:

6a green ∧ gender ∧male ∧west→ saved
6b green ∧ gender ∧male ∧ east→ not saved
6c green ∧ gender ∧male→ saved
14a red ∧ age ∧ young ∧west→ saved
14b red ∧ age ∧ young ∧ east→ not saved
14c red ∧ age ∧ young→ saved
19a red ∧ socialStatus ∧ high ∧west→ not saved
19b red ∧ socialStatus ∧ high ∧ east→ not saved
19c red ∧ socialStatus ∧ high→ saved

Table 5.10: Horn Expression for Norway, France and India after resolving Conflicts

Incoherence and conflicts exist in the same part after resolution of conflicts.

This is showed in table 5.11 where one incoherence is of 6b with 6c rule one. Similarly,

for 14b and 14c. For rule 19, there are two incoherences. If any of the incoherence is

solved either 19a with 19c or 19b with 19c, then a common ground is established for these

three sets of rules.

6a green ∧ gender ∧male ∧west→ saved
6b green ∧ gender ∧male ∧ east→ not saved
6c green ∧ gender ∧male ∧ not east→ saved
14a red ∧ age ∧ young ∧west→ saved
14b red ∧ age ∧ young ∧ east→ not saved
14c red ∧ age ∧ young ∧ not east→ saved
19a red ∧ socialStatus ∧ high ∧west→ not saved
19b red ∧ socialStatus ∧ high ∧ east→ not saved
19c red ∧ socialStatus ∧ high ∧ not east→ saved

Table 5.11: Common Ground for Norway, France and India

70

For 19c, incoherence could be resolved by either 19a or 19b, so possible antecedents

could be either not east or not west.

In summary, this case study confirmed the expectation. It states that countries with

more cultural similarities would have more similar moral recommendations. The attribute

that caused significant divergences was the social status, followed by age, and then gender.

Table 5.12 presents the number of rules weakened in our experiments.

Countries Conflicts Incoherences

US, China 3 3
Scandinavia 2 1
Clusters 6 3

Table 5.12: Summary of the Study Case

71

Chapter 6

Related Work

Related work pertaining to conflict resolution among rules has been carried in many

different fields. Unlike our work, these fields may not be particularly concerned about

the machine ethics contexts. These typically attempt to solve the conflict problem in

bigger picture rather than finding practically implementable options, which we propose.

Most related work has been highlighted below.

Formal legal reasoning

Resolving of legal conflicts between rules expressed in logic is studied for example

in Ju et al. [24]. The legal approach to solving conflicts is to use a hierarchy of more

specific rules overriding more general ones, more recent rules overriding older rules and

establishing a hierarchy among law issuing institutions. Here we adopt that more specific

rules override more general ones. Horty [25, 26] considers a logic framework for formal

understanding of common law and discusses when and how rules (which in his framework

are also of the form antecedent, conclusion) can be changed in the common law. Such

change, in common law, must satisfy two so called Raz/Simpsons conditions: (1) rule

modifications can consist of the addition of further restrictions and (2) the modified

rule must support the same conclusion as the original rule. Our algorithm supports the

Condition 1 by design. A weaker form of Condition 2 is guaranteed by P3.

A logic-based approach to conflict resolution

In the paper [27], Robert Kowalski presents an approach to conflict resolution that

unifies logic, goal-reduction and condition-action rules in a cognitive model of the in-

telligent agent. He investigated two applications to illustrate and test the power and

72

generality of his approach. These applications are known as the prisoner’s dilemma and

the Agha-Malley proposed solution of the Israeli-Palestinian conflict.

He states simple steps to reconcile a conflict between two inconsistent goals [27]. These

steps are:

• Find higher-level goals which do not conflict.

• Find alternative, consistent ways of satisfying higher-level goals.

• Infer positive and negative consequences of alternatives.

• Estimate the utilities of consequences.

• Estimate the probabilities of any unknown and uncertain conditions in the alterna-

tives.

• Choose alternatives which come as close as possible to maximizing the expected

utility of the consequences.

This methodology of conflict resolution—by identifying alternative ways of satisfying

higher level goals – is like one proposed by van Lamsweerde et al. (1998). Later one use

to manage conflicts in the requirements engineering stage of software development.

Multi-agent systems

Norms can be viewed as a powerful means to regulate and influence the behavior of

the agents. These are developed by specifying obligations, permissions, or prohibitions

in each context. In Vasconcelos et al. [28], numerous techniques are presented that have

been proposed to detect and resolve normative conflicts in multi-agent systems. A set

of these are specified to use at design time, while others at runtime. In addition, some

of these can solve only direct normative conflicts, while others are able to solve indirect

conflicts. The strategies used by the analyzed proposals. These can be divided into

two kinds: norm prioritization and norm update. In “norm prioritization”, one norm

overrides another in specific circumstances. “Norm update” results in one of the norms

in conflict to be updated.

Institutional facts The work described in [29, 30] deals with normative conflicts

between independent institutions that are under the same governance scope. It can

resolve direct normative conflicts at design time. Conflicts may occur when an action is

permitted in one institution but not in the other at the same time. The strategy adopted

to resolve conflicts is based on inductive learning. The method consists of revising a

logic program that represents a formal model, containing the rules of a specific normative

73

system. In this approach, a precedence order is established among the institutions. The

revision method is applied to the norms of the less important institution of the conflicting

pair of institutions. The approach is very similar to lex superior. However, in this work

the organization with lower precedence is not overridden but changed to be consistent

with the organization with higher precedence.

Deontic logic approach The work described in [31] is able to resolve direct and

indirect normative conflicts at design time among norms associated with different roles.

When there is a normative conflict between two roles, and it is possible that an agent

plays these roles simultaneously. Here requires a judgment of priorities between these. It

helps to decide which norms to adopt in a given situation. It determines a total order

between the roles. For instance, if there is a conflict between roles r1 and r2 and the

judgment of priorities states that r1 > r2. In such cases all norms associated with r1 take

precedence over the norms associated with r2. The judgment of priorities may depend

on the individual (especially in moral dilemmas) or may be derived from the hierarchy of

roles (sub-roles, sub-ideal-roles). The authors also consider an action is not obligatory if

there is no norm that explicitly obligates it.

Normative conflict graph The work presented in [32] is able to resolve direct and

indirect normative conflicts at runtime. This research presents a model of normative

agents. These agents have a set of norms and a set with a partial ordering over the

social contexts. This set determines the importance of complying with norms imposed by

different social contexts. Therefore, a norm can be prioritized. The authors argue that

when two norms are in conflict, the agent should determine which norm to violate. Its

implementation should ensure maximum compliance with the remaining set of norms. To

resolve conflicts, agents may prune some edges of the normative conflict graph based on

their social context preferences. Agents can also perform the norm pruning considering

the norm modality (obligation, permission, or prohibition). For instance, an agent can

prefer to comply with obligations rather than prohibitions. Similarly, a normative agent

can also have a set with a partial ordering over norm modalities.

Owl-Polar The work described in [33] can resolve direct and indirect normative con-

flicts at design time. The strategies to solve conflicts use a policy refinement method. It

consists of determining an order of norm overruling after determining norm precedence

based on standard techniques. The work in [34] states the strategies, such as lex superior,

lex posterior and lex specialis may be adopted to resolve conflicts among OWL-POLAR

policies. The lex posterior strategy can only be adopted when the conflicting norms have

been issued by the same authority. The reason is the temporal relationships between

74

different authorities which may be misleading. The lex specialis can only be applied

when a more specific norm can be considered an exception to other, and the conflicting

norms belong to the same organization. The authors present a subsumption reasoning

algorithm that verifies if one norm is a specialization of other.

75

Chapter 7

Conclusion

We discussed the original version of common ground algorithm. It was used by the authors

to prove that for non-redundant, acyclic, and not in conflict Horn expressions, a common

ground is guaranteed to exist. We improved the algorithm by reducing its common

ground’s limitation. If there is a cycle or redundancy in the Horn expression, a practical

way to deal with the limitations is by taking away the clauses that are causing it. It makes

the expression acyclic and non-redundant. The original version of algorithm can resolve

incoherence but unable to handle with conflicts. We also proposed a strategy to resolve

the conflict if it exists in the Horn expression. For conflict resolution, we introduced

constraints like collection of symbols C associated with clauses in the Horn expression and

another background knowledge B besides the background knowledge B already mentioned

in the original version of the algorithm. Both background knowledge contains basic

constraints about the world. The main difference is that B contains horn constraints while

B contains definite horn clauses with single antecedent, from the collection of symbols C.
We resolve the conflict by making rules weakened, as we did for resolving incoherence. For

resolution of conflict, we proposed weakened of clauses by using background knowledge

B and symbols C, while incoherence was resolved by using B.

We also implemented the improved version of common ground algorithm in Python

programming language. An explanation of the design, adopted for implementation of

each feature, is also provided. We explored the phenomena of Moral Machine experiment

and analyzed its dataset. During analysis, we performed preprocessing of the dataset

by putting defined conditions in order, to prepare it for the algorithm. We generated

rules from the dataset. These were used as a Horn expression. We also produced both

background knowledge and collection of symbols from the dataset. As each rule in the

76

dataset is expressing a decision from a candidate of Moral Machine experiment. We used

countries’ names as specific symbols for each row in the dataset and a distinct country

name is associated with it.

We conducted an experiment by testing the algorithm on our prepared dataset of

the Moral Machine experiment. Three different combinations of countries were used and

found common ground. First analyzed the case of two largest economies in the world:

United States and China. Three different conflicts were found based on social status and

age. Conflict resolution leads to three incoherence. There were resolved and common

ground was established by the algorithm. In the second experiment, a group of Scandi-

navian countries are selected. Similar moral recommendations were expected. Conflict

was only found in the scenario of social status. For the third experiment, countries from

three different clusters were considered. These clusters are divided by the authors of the

Moral Machine experiment. In the third experiment, conflicts were found in scenarios of

age and social status for both green and red traffic signal. In summary, our case study

confirmed the expectation. Countries with more cultural similarities would have more

similar moral recommendations.

Our experiments show that how the ideas that are developed can be used to improve

the algorithm on a concrete dataset. As future work, it would be interesting to use the

algorithm for other datasets. As our proposed improvements of algorithm has limitations.

One of the limitations is to remove cycles from the Horn expression. We removed a clause

of a cycle. In this way there is a possibility that we can lose some important agent’s

recommendation that should have been part of the expression as compared to any other

clause of expression. It would be practical to set preferences on removal of clauses. It

optimizes our implementation even though the acyclicity requirement can be seen as not

a very strong condition. It would also be interesting to explore how preferences can be

set over the conditions of a common ground, or to avoid any of the known conditions.

If any of the three conditions (acyclicity, non-redundancy, no conflict) is removed then

there is no algorithm that is guaranteed to produce a common ground. There are certain

challenges in approaches to conflict resolution. Like, it can only deal with datasets where

symbols associated with rules as we had countries names as symbols in Moral Machine

case. It would be interesting to investigate how to deal with the datasets that do not

have corresponding symbols while having conflicts.

77

78

Bibliography

[1] Dignum, V. Responsible Artificial Intelligence; Springer International Publishing,

2019.

[2] Bjørgen, E. P.; Madsen, S.; Bjørknes, T.; Heimsæter, F. V.; H̊avik, R.; Linderud, M.;

Longberg, P.; Dennis, L. A.; Slavkovik, M. Cake, Death, and Trolleys: Dilemmas

as benchmarks of ethical decision-making. Conference on AI, Ethics, and Society,

AIES. 2018; pp 23–29.

[3] Bremner, P.; Dennis, L. A.; Fisher, M.; Winfield, A. F. On Proactive, Transparent,

and Verifiable Ethical Reasoning for Robots. Proceedings of the IEEE 2019, 107,

541–561.

[4] Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and Decision-Making for Au-

tonomous Vehicles. Annual Review of Control, Robotics, and Autonomous Systems

2018, 1, 187–210.

[5] Awad, E.; Dsouza, S.; Kim, R.; Schulz, J.; Henrich, J.; Shariff, A.; Bonnefon, J.;

Rahwan, I. The Moral Machine Experiment. Nature 2018, 563 .

[6] Ozaki, A.; Rehman, A.; Turk, P.; Slavkovik, M. Finding Common Ground for Inco-

herent Horn Expressions. 2022; https://arxiv.org/abs/2209.06455.

[7] Genesereth, M. Logical Entailment. https://www.slideserve.com/napoleon/

logical-entailment, 2014.

[8] Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice

Hall, 2010.

[9] Poole, D.; Mackworth, A. Artificial Intelligence: Foundations of Computational

Agents, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017.

[10] Mayes, G. R. Logical Consistency and Contradiction. https://www.csus.edu/

indiv/m/mayesgr/phl4/handouts/phl4contradiction.htm.

79

https://arxiv.org/abs/2209.06455
https://www.slideserve.com/napoleon/logical-entailment
https://www.slideserve.com/napoleon/logical-entailment
https://www.csus.edu/indiv/m/mayesgr/phl4/handouts/phl4contradiction.htm
https://www.csus.edu/indiv/m/mayesgr/phl4/handouts/phl4contradiction.htm

[11] Baldwin, E. Coherence. https://poemanalysis.com/literary-device/

coherence/, 2022.

[12] Dennen, J. Introduction: On Conflict. The Sociobiology of Conflict. London:

Chapman Hall, 1990, pp. 1- 19. 2005, Relation: http://www.rug.nl/Rechten/

date submitted:2000 Rights: University of Groningen. Faculty of Law.

[13] Hare, R. M. Applications of Moral Philosophy ; Macmillan Education UK: London,

1972; pp 109–115.

[14] Patterson, A. examples-of-redundancy. https://www.writerswrite.co.za/19-

examples-of-redundancy/, 2014.

[15] Dependency Graph. https://deepsource.io/glossary/dependency-graph/, Ac-

cessed: 2022-10-26.

[16] Source code for sympy.logic.inference. http://man.hubwiz.com/docset/

SymPy.docset/Contents/Resources/Documents/ modules/sympy/logic/

inference.html#satisfiable, Last updated on Apr 10, 2019.

[17] NetworkX-Developers. https://networkx.org/documentation/stable/

reference/classes/digraph.html.

[18] Acyclic directed Graphs. Copyright 2014, NetworkX Developers. Last updated on

Jun 21, 2014, Created using Sphinx 5.3.0.

[19] find graph cycles. https://networkx.org/documentation/stable/reference/

algorithms/generated/networkx.algorithms.cycles.find cycle.html, Copy-

right 2004-2022, NetworkX Developers. Created using Sphinx 5.3.0.

[20] Networkx graphs predecessors. https://networkx.org/documentation/stable/

reference/classes/generated/networkx.DiGraph.predecessors.html, Copy-

right 2004-2022, NetworkX Developers. Created using Sphinx 5.3.0.

[21] Lassen, I. M. S. The Amorality of the Moral Machine. https://dataethics.eu/

the-amoral-of-the-moral-machine/, 2019.

[22] Krishna, S. The moral machine: Who lives, who dies, you decide!

https://analyticsindiamag.com/the-moral-machine-who-lives-who-dies-

you-decide/, 2022.

80

https://poemanalysis.com/literary-device/coherence/
https://poemanalysis.com/literary-device/coherence/
https://www.writerswrite.co.za/19-examples-of-redundancy/
https://www.writerswrite.co.za/19-examples-of-redundancy/
https://deepsource.io/glossary/dependency-graph/
http://man.hubwiz.com/docset/SymPy.docset/Contents/Resources/Documents/_modules/sympy/logic/inference.html#satisfiable
http://man.hubwiz.com/docset/SymPy.docset/Contents/Resources/Documents/_modules/sympy/logic/inference.html#satisfiable
http://man.hubwiz.com/docset/SymPy.docset/Contents/Resources/Documents/_modules/sympy/logic/inference.html#satisfiable
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://networkx.org/documentation/stable/reference/classes/digraph.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cycles.find_cycle.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cycles.find_cycle.html
https://networkx.org/documentation/stable/reference/classes/generated/networkx.DiGraph.predecessors.html
https://networkx.org/documentation/stable/reference/classes/generated/networkx.DiGraph.predecessors.html
https://dataethics.eu/the-amoral-of-the-moral-machine/
https://dataethics.eu/the-amoral-of-the-moral-machine/
https://analyticsindiamag.com/the-moral-machine-who-lives-who-dies-you-decide/
https://analyticsindiamag.com/the-moral-machine-who-lives-who-dies-you-decide/

[23] Hao, K. Should a self-driving car kill the baby or the grandma? De-

pends on where you’re from. ://www.technologyreview.com/2018/10/24/139313/a-

global-ethics-study-aims-to-help-ai-solve-the-self-driving-trolley-problem/, October

24, 2018.

[24] Ju, F.; Nygren, K.; Xu, T. Modeling legal conflict resolution based on dynamic logic.

Journal of Logic and Computation 2020, 31, 1102–1128.

[25] Horty, J. Constraint and Freedom in the Common Law. Philosophers Imprint 2015,

15, 1–27.

[26] Horty, J. The Logic of Precedent: Constraint and Freedom in Common Law

Reasoning ; Cambridge University Press: USA, 2023; Forthcoming, access at

http://www.horty.umiacs.io/articles/2022-7-15-logic-precedent.pdf.

[27] Kowalski, R. A Logic-Based Approach to Conflict Resolution. 2003,

[28] Vasconcelos, W. W.; Kollingbaum, M. J.; Norman, T. J. Normative conflict reso-

lution in multi-agent systems. Autonomous Agents and Multi-Agent Systems 2009,

19, 124–152.

[29] Li, T. Normative Conflict Detection and Resolution in Cooperating Institutions.

2014,

[30] Li, T. Normative Conflict Detection and Resolution in Cooperating Institutions.

Proceedings of the Twenty-Third International Joint Conference on Artificial Intel-

ligence. 2013; p 3231–3232.

[31] Cholvy, L.; Cuppens, F. Solving Normative Conflicts by Merging Roles. Proceedings

of the 5th International Conference on Artificial Intelligence and Law. New York,

NY, USA, 1995; p 201–209.

[32] Oren, N.; Luck, M.; Miles, S.; Norman, T. An Argumentation Inspired Heuristic for

Resolving Normative Conflict. 2008.

[33] Aphale, M. S.; Norman, T. J.; Şensoy, M. Goal-Directed Policy Conflict Detection

and Prioritisation. Coordination, Organizations, Institutions, and Norms in Agent

Systems VIII. Berlin, Heidelberg, 2013; pp 87–104.

[34] Sensoy, M.; Norman, T.; Vasconcelos, W.; Sycara, K. OWL-POLAR: A Framework

for Semantic Policy Representation and Reasoning. Web semantics: science, services

and agents on the World Wide Web 2012, 12-13, 148–160.

81

Appendix A

Generated code from Protocol buffers

1 def extract_ant_con(clause):

2

3 if type(clause.args[0]) == And:

4 antacedent = set(clause.args[0].args)

5 else:

6 antacedent = {clause.args[0]}

7

8 consequent = clause.args[1].atoms()

9

10 return antacedent, consequent

Listing A.1: Extract antecedents and consequents of clause

1 def extract_symbols(F):

2 atoms= []

3 for clause in F:

4 atoms.append(list(clause.args[0].atoms()))

5

6 flat_list = [item for sublist in atoms for item in sublist]

7 symbol_list = list(set(flat_list))

8

9 return symbol_list

Listing A.2: Extract Symbols from Horn expression

82

1 def get_excludents(background_know, atom):

2

3 excludent_atoms = []

4

5 symbol_background_know = extract_symbols(background_know)

6

7 for symbol in symbol_background_know:

8 clause = Implies((symbol & atom), False)

9

10 if clause in background_know:

11 excludent_atoms.append(symbol)

12

13 return excludent_atoms

Listing A.3: Excludents of an atom

1 def clauses_derivation(clause1, clause2, F):

2

3 count = 0

4 ant_clause1 = extract_ant_con(clause1)[0]

5 ant_clause2 = extract_ant_con(clause2)[0]

6 copy_expr = copy.deepcopy(F)

7 copy_expr.extend(ant_clause1)

8

9 for atom in ant_clause2:

10 if entails(atom, copy_expr):

11 count +=1

12

13 if count == len(ant_clause2):

14 return True

15 else:

16 return False

Listing A.4: Structure for derivation of two clauses

83

1 def non_redundant_expr(F):

2

3 count = 0

4 for clause in F:

5

6 #hornexpression without that clause

7 expr_without_clause = [x for x in F if x != clause]

8

9 if not entails(clause, expr_without_clause):

10 count +=1

11

12 if count == len(F):

13 print('\n-------------This expression is Non-Redundant-------------\n')

14 return True

15 else:

16 return False

Listing A.5: Structure for Non-redundancy of a Horn Expression

1 def check_conflict_clauses(F, clause1, clause2, background_know):

2

3 ant_clause1 = extract_ant_con(clause1)[0]

4 ant_clause2 = extract_ant_con(clause2)[0]

5

6 #remove ant of clause 1 from ant of clause 2

7 ant_diff = [x for x in ant_clause1 if x not in ant_clause2]

8

9 if len(ant_diff) != 0:

10 for atom in ant_diff:

11 excludent_atom = get_excludents(background_know, atom)

12

13 for i in excludent_atom:

14 add_ant_to_clause = Implies((clause2.args[0] & i), clause2.args[1])

15 F_without_clause = [x for x in F if x != clause2]

16

17 if check_clause_coherence(F_without_clause, add_ant_to_clause):

18 return False

19 else:

20 return True

Listing A.6: Structure for conflict in a pair of clauses

84

1 def get_safe_pairs(F):

2 G = nx.DiGraph()

3 clauses = list(itertools.combinations(F, 2))

4 inverted_clauses = [t[::-1] for t in clauses]

5

6 indices = list((i+1,j+1) for ((i,_),(j,_)) in

itertools.combinations(enumerate(F), 2))↪→

7

8 selected_clauses = []

9 options = {"edgecolors": "tab:gray", "node_size": 2550, "alpha": 0.9,"font_size":

13, }↪→

10

11 for i in range(len(clauses)):

12 if clauses[i][0].args[1] in get_excludents(background_know,

clauses[i][1].args[1]) and

(clauses_derivation(clauses[i][0],clauses[i][1],F) or

clauses_derivation(clauses[i][1],clauses[i][0],F)):

↪→

↪→

↪→

13 selected_clauses.append(clauses[i])

14 G.add_node((indices[i][1], indices[i][0]))

15

16 inverted_clauses = [t[::-1] for t in selected_clauses]

17 s_clauses = generate_combinations(inverted_clauses)

18

19 for clause in s_clauses:

20 if next(iter(extract_ant_con(clause[0][1])[1])) in

extract_ant_con(clause[1][1])[0] and

bool(extract_ant_con(clause[0][0])[0] &

extract_ant_con(clause[1][0])[0]):

↪→

↪→

↪→

21

22 G.add_edge((F.index(clause[0][0])+1, F.index(clause[0][1])+1),

23 (F.index(clause[1][0])+1, F.index(clause[1][1])+1))

24

25 elif next(iter(extract_ant_con(clause[1][1])[1])) in

extract_ant_con(clause[0][1])[0] and

bool(extract_ant_con(clause[0][0])[0] &

extract_ant_con(clause[1][0])[0]):

↪→

↪→

↪→

26

27 G.add_edge((F.index(clause[1][0])+1, F.index(clause[1][1])+1),

28 (F.index(clause[0][0])+1, F.index(clause[0][1])+1))

29

30 pos = nx.shell_layout(G)

31 nx.draw(G, pos, with_labels = True, **options,

node_color="tab:pink",arrowsize=20, edge_color = 'green')↪→

32 plt.axis("off")

33 plt.show()

34 non_safe_pairs = []

35 safe_pairs = []

36 for node in G:

37 if not list(G.predecessors(node)):

38 safe_pairs.append((F[node[0]-1], F[node[1]-1]))

39 print('Safe pair is: ',node)

40 else:

41 non_safe_pairs.append(node)

42

43 if len(non_safe_pairs) == G.number_of_nodes():

44 print('There is no safe clause')

45 return False

46 else:

47 return safe_pairs

Listing A.7: Structure for Safe pairs in Horn expression

85

1 def weaker_version_clause(F, clause1, clause2):

2

3 ant_clause1 = extract_ant_con(clause1)[0]

4 ant_clause2 = extract_ant_con(clause2)[0]

5

6 ant_diff = [x for x in ant_clause1 if x not in ant_clause2]

7 if len(ant_diff) == 0:

8 return weaker_version_clause(F, clause2, clause1)

9 else:

10 excludent_atom = get_excludents(background_know, ant_diff[0])

11 for i in excludent_atom:

12 weaker_clause = Implies(clause2.args[0] & i, clause2.args[1])

13 F_without_clause = [x for x in F if x != clause2]

14

15 if check_clause_coherence(F_without_clause, weaker_clause):

16 indices = [i for i, x in enumerate(F) if x == clause2]

17 return weaker_clause, indices

18 else:

19 return False

Listing A.8: Structure for Weaker version of clause

1 def get_filtered_data(df, countries_list):

2

3 dataset = df[(df.UserCountry3.isin(countries_list))]

4

5 dataset = dataset[dataset.PedPed == 1]

6 dataset = dataset[(dataset.CrossingSignal == 1) | (dataset.CrossingSignal == 2)]

7

8 dataset = dataset.groupby(['CrossingSignal','ScenarioType','AttributeLevel',

9 'UserCountry3','Saved']).size().reset_index(name='Count')

10

11 dataset = dataset[dataset.duplicated(subset=['ScenarioType','AttributeLevel'],

keep=False)]↪→

12

13 drop = []

14 for i, g in dataset.groupby(dataset.index // 2):

15 count = g['Count'].tolist()

16 drop.append(g.index[g['Count'] == min(count)].tolist())

17

18 drop_list = [item for sublist in drop for item in sublist]

19 filtered_data = dataset.drop(index=drop_list)

20

21 return filtered_data

Listing A.9: Structure for filtering data of Moral Machine dataset

86

1 def get_clauses(data):

2

3 clauses = []

4 symbols_col = []

5

6 for index, row in data.iterrows():

7 if row["CrossingSignal"] == 1:

8 row["CrossingSignal"] = symbols('green')

9 else:

10 row["CrossingSignal"] = symbols('red')

11 row["ScenarioType"] = symbols(row["ScenarioType"])

12 row["AttributeLevel"] = symbols(row["AttributeLevel"])

13 row["UserCountry3"] = symbols(row["UserCountry3"])

14 if row["Saved"] == 1:

15 row["Saved"] = symbols('saved')

16 else:

17 row["Saved"] = symbols('not_saved')

18 clauses.append(Implies((row["CrossingSignal"] & row["ScenarioType"] &

row["AttributeLevel"]), (row["Saved"])))↪→

19

20 symbols_col.append(row["UserCountry3"])

21

22 return clauses, symbols_col

Listing A.10: Structure for extracting rules from Moral Machine dataset

87

	Introduction
	Motivation
	Research goals
	Plan

	Background
	Syntax
	Horn Expression

	Semantics
	Entailment and Satisfiability

	First Steps for Finding Common Grounds
	Agents in Artificial Intelligence
	Background Knowledge
	Coherence
	Conflict
	Common Ground Postulates
	Non-Redundant Horn Expression
	Acyclic Horn Expression
	Theorems
	Dependency Graph

	The Original Common Ground Algorithm
	Description
	Examples

	Finding Common Grounds
	Cyclic and Redundant Expressions
	Resolving Conflicts
	Improved version of Algorithm
	Description of Algorithm
	Examples

	Implementation
	Coherence
	Cyclic Behavior and Redundancy
	Conflict
	Resolve Conflict

	Resolve Incoherence
	Finding Common Ground Algorithm

	Experiment
	Moral Machine Experiment
	Findings of Moral Machine Survey
	Moral Machine Dataset
	Preprocessing of Data
	Results
	Comparison between the United States and China
	Comparison of Scandinavian countries
	Comparison of Clusters

	Related Work
	Conclusion
	Bibliography
	Generated code from Protocol buffers

