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Abstract
Hidden Markov models (HMMs) have been extensively used in the univariate and multivariate literature. However, there has
been an increased interest in the analysis of matrix-variate data over the recent years. In this manuscript we introduce HMMs
for matrix-variate balanced longitudinal data, by assuming a matrix normal distribution in each hidden state. Such data are
arranged in a four-way array. To address for possible overparameterization issues, we consider the eigen decomposition of
the covariance matrices, leading to a total of 98 HMMs. An expectation-conditional maximization algorithm is discussed
for parameter estimation. The proposed models are firstly investigated on simulated data, in terms of parameter recovery,
computational times and model selection. Then, they are fitted to a four-way real data set concerning the unemployment rates
of the Italian provinces, evaluated by gender and age classes, over the last 16 years.
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1 Introduction

Multivariate longitudinal data have been widely analyzed
in the literature (Verbeke et al. 2014 and Verdam and Oort
2019). By focusing on balanced data, i.e. those where each
unit is observed in all times, they are usually presented in
the standard three-way format, where units, times and vari-
ables are arranged in software-ready manners. Because of
their three-way structure, multivariate balanced longitudinal
data have been recently arranged in a matrix-variate fash-
ion (Huang et al. 2019 and Viroli 2011b): for each unit
i = 1, . . . , I , we observe a P × T matrix, where P and T
denote the number of variables and times, respectively. Then,
such data have been used for model-based clustering via
matrix-variate mixture models (see e.g. Melnykov and Zhu
2019; Tomarchio et al. 2022, 2020 and Zhu and Melnykov
2021). This allows for both clustering units in homogeneous
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groups, defined according to similarities between matrix-
variate data, and separatelymodeling the association between
variables and times. Unfortunately, this procedure has two
side effects:

(a) using the time on either the rows or the columns of the
matrices reduces the types of longitudinal data structures
that can be arranged in a matrix-variate framework. For
instance, spatio-temporal data are used either to analyze
P variables observed at T times for R different loca-
tions (Viroli 2011b) or to evaluate one measurement on
R locations at T times on a set of I units (Viroli 2011a).
However, it is not possible to jointly consider P vari-
ables at R locations for T times on I units. A possible
solution could be to combine locations-times in a sin-
gle RT -dimension, as done by Viroli (2011a), but this
implies a loss in terms of interpretability as well as an
increase in the number of parameters of the estimated
models, given the higher dimensionality of the matrices.
Another example consists of two-factor data, which have
been commonly considered in longitudinal settings (see
e.g. Brunner and Puri 2001; Fitzmaurice and Ravichan-
dran 2008; Noguchi et al. 2012). Such data have been
recently used inmatrix-variatemixturemodels by Sarkar
et al. (2020) in a not-longitudinal way, given that the fac-
tors fill the two dimensions of the P × R matrices for
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the I units, and an additional dimension for the time is
required.
To summarize, it would be necessary tomove from three-
way to four-way arrays in order to properly consider and
model all the discussed data features.

(b) The matrix-variate clustering approaches mentioned in
(a) assume time-constant clustering, i.e. it is not possi-
ble for the sample units to move across clusters over time
and the evolution over time of the clustering structure is
completely overlooked. Time-varying heterogeneity is a
specific important feature of longitudinal data analysis
and, as such, appropriate modeling strategies should be
considered. Hidden Markov models (HMMs) have been
extensively used to address this longitudinal data pecu-
liarity (Altman 2007; Maruotti 2011; Bartolucci et al.
2012; Zucchini et al. 2017). Being (dependent) mixtures,
HMMs simultaneously allow for clustering units and for
modeling the evolution of the clustering over time.

To jointly consider the aspects in (a) and (b), in this
manuscript we introduce and discuss HMMs for matrix-
variate balanced longitudinal data (MV-HMMs), with a
specific application on the two-factor longitudinal case.
Such kind of data can be arranged in a four-way array of
dimension P × R × I × T . A side effect of working with
four-way data is the potentially large number of parame-
ters involved. This often occurs because of the (row- and
column-specific) covariance matrices, since P(P+1)/2 and
R(R + 1)/2 unique parameters must be estimated. One of
the most classical ways of addressing this overparameteriza-
tion issue involves the eigen decomposition of the covariance
matrices introduced by Celeux and Govaert (1995). This
decomposition offers remarkable flexibility and a geometric
interpretation in terms of volume, shape and orientation of the
hidden states (for other approaches available in the HMMs
literature, seeMaruotti et al. 2017 and Farcomeni et al. 2020).
By using the eigen decomposition of the covariance matri-
ces, we obtain a family of 98 parsimonious MV-HMMs that
will be described in Sect. 2.2, after the presentation of the
general model (Sect. 2.1). In this framework, model param-
eters can be estimated by a full maximum likelihood method
based on the Expectation Conditional Maximization (ECM)
algorithm (Meng and Rubin 1993), and recursions widely
used in the HMM literature (Baum et al. 1970). An itera-
tive Minorization-Maximization (MM) algorithm (Browne
and McNicholas 2014) is also adopted to update some of
the parameters related to a subset of the parsimonious MV-
HMMs, during the ECM algorithm.

In Sect. 3, we illustrate the proposal by a large-scale sim-
ulation study in order to investigate the empirical behavior
of the proposed approach with respect to several aspects,
such as the number of observed times, the number of hidden

states, the data dimensionality and the association structure
between factor-levels. We focus on goodness of clustering
andparameters recovery,with a focus on computational times
and model selection procedures. Furthermore, in Sect. 4 we
test the proposal by analyzing a sample taken from the Italian
National Institute of Statistics on the unemployment rate in
98 Italian provinces recorded for 16 years, also covering the
2008 crisis. We examine the unemployment rate arranged
as a two-factor design, i.e. taking into account gender and
age classes, by allowing some dynamics in the evolution
of unemployment. We obtain a flexible model by includ-
ing different associations across levels, changing according
to the inferred dynamics, and by accounting for unobserved
characteristics influencing changes in the province’s unem-
ployment patterns. For comparison purposes, we added two
competing approaches that could be used if our models were
not available, thus coercing the data in a three-way structure:
(i) mixtures of parsimonious matrix-variate normal distri-
butions and (ii) parsimonious multivariate normal HMMs.
Finally, Sect. 5 summarizes the key aspects of our proposal
along with future possible extensions.

2 Methodology

2.1 Themodel

Let {Xi t ; i = 1, . . . , I , t = 1, . . . , T } be a sequence of
matrix-variate balanced longitudinal observations recorded
on I units over T times, with Xi t ∈ R

P×R , and let
{Sit ; i = 1, . . . , I , t = 1, . . . , T } be a first-order Markov
chain defined on the state space {1, . . . , k, . . . , K }. As men-
tioned in Sect. 1, a HMM is a particular type of dependent
mixture model consisting of two parts: the underlying unob-
served process {Sit } that satisfies the Markov property, i.e.

Pr (Sit = sit |Si1 = si1, . . . , Sit−1 = sit−1)

= Pr (Sit = sit |Sit−1 = sit−1) ,

and the state-dependent observation process {Xi t } for which
the conditional independence property holds, i.e.

f
(
Xi t = Xi t |Xi1 = Xi1, . . . ,Xi t−1 = Xi t−1, Si1 =

= si1 . . . , Sit = sit

)
= f (Xi t = Xi t |Sit = sit ) ,

where f (·) is a generic probability density function (pdf).
Therefore, the unknown parameters in an HMM involve both
the parameters of the Markov chain and those of the state-
dependent pdfs. In detail, the parameters of the Markov
chain are the initial probabilities πik = Pr (Si1 = k), k =
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1, . . . , K , being K the number of states, and the transition
probabilities

πik| j = Pr (Sit = k|Sit−1 = j) , t = 2, . . . , T and

j, k = 1, . . . , K ,

where k refers to the current state and j refers to the
one previously visited. To simplify the discussion, we will
consider homogeneous HMMs, that is πik| j = πk| j and
πik = πk, i = 1, . . . , I . We collect the initial probabilities in
the K -dimensional vector π , whereas the time-homogenous
transition probabilities are inserted in the K × K transition
matrix �.

Regarding the conditional density for the observed pro-
cess, it will be given by a matrix-normal distribution, i.e.

φ (Xi t |Sit = k; θk)

=
exp

{
− 1

2 tr
[
�−1

k (X − Mk)�
−1
k (X − Mk)

′
]}

(2π)
PR
2 |�k | R2 |�k | P

2

, (1)

where Mk is the P × R matrix of means, �k is the P × P
covariance matrix containing the covariances between the
P rows, �k is the R × R covariance matrix containing the
covariances of the R columns and θk = {Mk,�k,�k}. For
an exhaustive description of the matrix-normal distribution
and its properties see Gupta and Nagar (2018).

2.2 Parsimonious models

As discussed in Sect. 1, away to reduce the number of param-
eters of themodel is to introduce parsimony in the covariance
matrices via thewell-known eigen decomposition introduced
by Celeux and Govaert (1995). Specifically, a Q×Q covari-
ance matrix can be decomposed as

�k = λk�k	k�
′
k, (2)

where λk = |�k |1/Q ,�k is a Q×Q orthogonal matrix of the
eigenvectors of�k and	k is the Q×Q diagonal matrix with
the scaled eigenvalues of �k (such that |	k | = 1) located on
the main diagonal. The decomposition in (2) has some useful
practical interpretations. From a geometric point of view, λk
determines the volume, �k governs the orientation, and 	k

denotes the shape of the kth state. From a statistical point
of view, as well-documented in Greselin and Punzo (2013),
Bagnato and Punzo (2021) and Punzo and Bagnato (2021),
the columns of �k govern the orientation of the principal
components (PCs) of the kth state, the diagonal elements in
	k are the normalized variances of these PCs, and λk can
be meant as the overall volume of the scatter in the space
spanned by the PCs of the kth state. By imposing constraints

on the three components of (2), the fourteen parsimonious
models of Table 1 are obtained.

Considering that we have two covariance matrices in (1),
this would yield to 14 × 14 = 196 parsimonious MV-
HMMs. However, there is a non-identifiability issue since
� ⊗ � = �∗ ⊗ �∗ if �∗ = a� and �∗ = a−1�. As
a result, � and � are identifiable up to a multiplicative
constant a (Sarkar et al. 2020). To avoid such issue, the
column covariance matrix � is restricted to have |�| = 1,
implying that in (2) the parameter λk is unnecessary. This
reduces the number of models related to � from 14 to 7,
i.e., I,	,	k,�	�′,�	k�

′,�k	�′
k,�k	k�

′
k . Therefore,

we obtain 14 × 7 = 98 parsimonious MV-HMMs.

2.3 Maximum likelihood estimation

To fit our MV-HMMs, we use the expectation-conditional
maximization (ECM) algorithm (Meng and Rubin 1993).
The ECM algorithm is a variant of the classical expectation-
maximization (EM) algorithm (Dempster et al. 1977), from
which it differs since the M-step is replaced by a sequence
of simpler and computationally convenient CM-steps.

Let S = {Xi t ; i = 1, . . . , I , t = 1, . . . , T } be a sample of
matrix-variate balanced longitudinal observations. Then, the
incomplete-data likelihood function is

L (
|S) =
I∏

i=1

π ′φ (Xi1)�φ (Xi2)� . . . φ (XiT−1)

�φ (XiT ) 1K ,

where φ (Xi t ) is a K × K diagonal matrix with conditional
densities φ (Xi t = Xi t |Sit = k) on the main diagonal, 1K is
a vector K ones and 
 contains all the model parameters.
In this setting, S is viewed as incomplete because, for each
observation,we do not know its statemembership and its evo-
lution over time. For this reason, let us define the unobserved
state membership zi t = (zit1, . . . , zitk, . . . , zit K )′ and the
unobserved states transition

zzi t =

⎡
⎢⎢⎢⎢⎢⎢⎣

zzit11 . . . zzit1k . . . zzit1K
...

...
...

zzit j1 . . . zzit jk . . . zzit j K
...

...
...

zzit K1 . . . zzit Kk . . . zzit K K

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

zitk =
{
1 if Sit = k

0 otherwise
and

zzit jk =
{
1 if Sit−1 = j and Sit = k

0 otherwise
.
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Table 1 Nomenclature, covariance matrix structure, and number of free parameters in �1, . . . ,�K for the parsimonious models obtained via the
eigen decomposition of the state covariance matrices. I is the identity matrix

Family Model Type Volume Shape Orientation # of free
parameters in
�1, . . . ,�K

Spherical EII λI Equal Spherical – 1

Spherical VII λk I Variable Spherical – K

Diagonal EEI λ	 Equal Equal Axis-Aligned Q

Diagonal VEI λk	 Variable Equal Axis-Aligned K + Q − 1

Diagonal EVI λ	k Equal Variable Axis-Aligned K (Q − 1) + 1

Diagonal VVI λk	k Variable Variable Axis-Aligned K Q

General EEE λ�	�′ Equal Equal Equal Q(Q + 1)/2

General VEE λk�	�′ Variable Equal Equal Q(Q + 1)/2 + K − 1

General EVE λ�	k�
′ Equal Variable Equal Q(Q − 1)/2 + K (Q − 1) + 1

General VVE λk�	k�
′ Variable Variable Equal Q(Q − 1)/2 + K Q

General EEV λ�k	�′
k Equal Equal Variable K Q(Q − 1)/2 + Q

General VEV λk�k	�′
k Variable Equal Variable K Q(Q − 1)/2 + K + Q − 1

General EVV λ�k	k�
′
k Equal Variable Variable K Q(Q + 1)/2 − K + 1

General VVV λk�k	k�
′
k Variable Variable Variable K Q(Q + 1)/2

Therefore, the complete data are Sc =
{
Xi t , zi t , zzi t ; i = 1,

. . . , I , t = 1, . . . , T
}
and the corresponding complete-data

log-likelihood is

lc (
|Sc) = lc1 (π |Sc) + lc2 (�|Sc) + lc3 (θ |Sc) , (3)

with θ = {θk; k = 1, . . . , K } and

lc1 (π |Sc) =
I∑

i=1

K∑
k=1

zi1k log (πk)

lc2 (�|Sc) =
I∑

i=1

T∑
t=2

K∑
k=1

K∑
j=1

zzit jk log
(
πk| j

)

lc3 (θ |Sc) =
I∑

i=1

T∑
t=1

K∑
k=1

zitk

{
− PR

2
log (2π) − R

2
log |�k | − P

2
log |�k |

− 1

2
tr

[
�−1

k (Xi t − Mk)�
−1
k (Xi t − Mk)

′]
}
.

In the following, by adopting the notation used in Tomarchio
et al. (2021a), the parameters marked with one dot will rep-
resent the updates at the previous iteration and those marked
with two dots are the updates at the current iteration. Further-
more, we implemented the ECMalgorithm used for fitting all
the 98 parsimonious MV-HMMs in the HMM.fit() func-
tionof theFourWayHMMpackage (Tomarchio et al. 2021b)
for the R statistical software (R Core Team 2019).

E-Step The E-step requires the calculation of the conditional
expectation of (3), given Sc and the current estimates of 
̇.
Therefore, we need to replace zitk and zit jk with their con-
ditional expectations, namely, z̈i tk and z̈zi t jk . This can be
efficiently done by exploiting a forward recursion approach
(Baum et al. 1970; Baum 1972; Welch 2003).

Let us start by defining the forward probability

γi tk = Pr (Xi1 = Xi1, . . . ,Xi t = Xi t , Sit = k) ,

that is the probability of seeing the partial sequence finish-
ing up in state k at time t , and the corresponding backward
probability

βi tk = Pr (Xi t+1 = Xi t+1, . . . ,XiT = XiT |Sit = k) .

It is known that the computation of the forward and back-
ward probabilities is susceptible to numerical overflow errors
(Farcomeni 2012). To prevent or at least to decrease the risk
of such errors, the well known scaling procedure suggested
by Durbin et al. (1998) can be implemented (for additional
details, see also Zucchini et al. 2017). Then, the updates
required in the E-step can be computed as

z̈i tk = γi tkβi tk

K∑
h=1

γi thβi th

and

z̈zi t jk = γi(t−1) jπk| jφ (Xi t |Sit = k) βi tk
K∑

h=1
γiT h

.
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CM-Step 1 Consider 
 = {
1,
2}, where 
1 =
{πk,�,Mk,�k; k = 1, . . . , K } and 
2 =

{
�k; k = 1,

. . . , K
}
. At the first CM-step, we maximize the expectation

of (3) with respect to 
1, fixing 
2 at 
̇2. In particular, we
obtain

π̈k =
∑I

i=1 z̈i1k
I

, π̈k| j =
∑I

i=1
∑T

t=2 z̈zi t jk∑I
i=1

∑T
t=2

∑K
k=1 z̈zi t jk

and

M̈k =
∑I

i=1
∑T

t=1 z̈i tkXi t∑I
i=1

∑T
t=1 z̈i tk

.

The update for �k depends on the parsimonious structure
considered. For notational simplicity, let Ÿ = ∑K

k=1 Ÿk be
the update of the within state row scatter matrix, where Ÿk =∑I

i=1
∑T

t=1 z̈i tk
(
Xi t − M̈k

)
�̇

−1
k

(
Xi t − M̈k

)′
is the update

of the row scatter matrix related to the kth state. The updates
for the 14 parsimonious structures of �k are:

– Model EII [�k = λI]. In this setting, maximizing Eq. (3)
reduces to the maximization of

− PRT I

2
log λ − 1

2λ
tr

(
Ÿ

)
.

Thus, we can obtain λ as

λ̈ = tr
{
Ÿ

}

PRT I
.

– Model VII [�k = λk I]. In this case, maximizing Eq. (3)
reduces to the maximization of

− PR

2

K∑
k=1

log λk

I∑
i=1

T∑
t=1

z̈i tk − 1

2

K∑
k=1

1

λk
tr

(
Ÿk

)
.

Thus, we can obtain λk as

λ̈k = tr
{
Ÿk

}

PR
∑I

i=1
∑T

t=1 z̈i tk
.

– Model EEI [�k = λ	]. Here, maximizing Eq. (3)
reduces to the maximization of

− PRT I

2
log λ − 1

2λ
tr

(
	−1Ÿ

)
.

Applying Corollary A.1 of Celeux and Govaert (1995),
we can obtain λ and 	 as

	̈ = diag
(
Ÿ

)
∣∣diag (

Ÿ
)∣∣ 1

P

and λ̈ =
∣∣diag (

Ÿ
)∣∣ 1

P

RT I
.

– Model VEI [�k = λk	]. In this setting, maximizing
Eq. (3) reduces to the maximization of

− PR

2

K∑
k=1

log λk

I∑
i=1

T∑
t=1

z̈i tk −
K∑

k=1

1

2λk
tr

(
	−1Ÿk

)
.

Applying Corollary A.1 of Celeux and Govaert (1995),
we can obtain 	 and λk as

	̈ =
diag

(
K∑

k=1
λ̇−1
k Ÿk

)

∣∣∣∣diag
(

K∑
k=1

λ̇−1
k Ÿk

)∣∣∣∣
1
P

and

λ̈k =
tr

{
Ÿk	̈

−1
}

PR
∑I

i=1
∑T

t=1 z̈i tk
.

– Model EVI [�k = λ	k]. In this case,maximizing Eq. (3)
reduces to the maximization of

− PRT I

2
log λ − 1

2λ

K∑
k=1

tr
(
	−1

k Ÿk

)
.

Also in this case, by using Corollary A.1 of Celeux and
Govaert (1995), we can obtain 	k and λ as

	̈k = diag
(
Ÿk

)
∣∣diag (

Ÿk
)∣∣ 1

P

and λ̈ =

K∑
k=1

∣∣diag (
Ÿk

)∣∣ 1
P

RT I
.

– Model VVI [�k = λk	k]. Here, maximizing Eq. (3)
reduces to the maximization of

− PR

2

K∑
k=1

log λk

I∑
i=1

T∑
t=1

z̈i tk −
K∑

k=1

1

2λk
tr

(
	−1

k Ÿk

)
.

Again, by using Corollary A.1 of Celeux and Govaert
(1995), we can obtain 	k and λk as

	̈k = diag
(
Ÿk

)
∣∣diag (

Ÿk
)∣∣ 1

P

and λ̈k =
∣∣diag (

Ÿk
)∣∣ 1

P

R
∑I

i=1
∑T

t=1 z̈i tk
.

– Model EEE [�k = λ�	�′]. In this setting, given that
�1 = · · · = �K ≡ �, maximizing Eq. (3) reduces to
the maximization of

− RT I

2
log |�| − 1

2
tr(�−1Ÿ).
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Applying Theorem A.2 of Celeux and Govaert (1995),
we can update � as

�̈ = Ÿ
RT I

.

– Model VEE [�k = λk�	�′]. In this case, it is con-
venient to write �k = λkC, where C = �	�′. Thus,
maximizing Eq. (3) reduces to the maximization of

− PR

2

K∑
k=1

log λk

I∑
i=1

T∑
t=1

z̈i tk −
K∑

k=1

1

2λk
tr

(
C−1Ÿk

)
.

Applying Theorem A.1 of Celeux and Govaert (1995),
we can update C and λk as

C̈ =

K∑
k=1

λ̇−1
k Ÿk

∣∣∣∣
K∑

k=1
λ̇−1
k Ÿk

∣∣∣∣
1
P

and λ̈k = tr
{
C̈−1Ÿk

}

PR
∑I

i=1
∑T

t=1 z̈i tk
.

– Model EVE [�k = λ�	k�
′]. Here, maximizing Eq. (3)

reduces to the maximization of

− PRT I

2
log λ − 1

2λ

K∑
k=1

tr(�′Ÿk�	−1
k ).

Given that there is no analytical solution for �, while
keeping fixed the other parameters, an iterative
Minorization-Maximization (MM) algorithm (Browne
and McNicholas 2014) is employed. In detail, a surro-
gate function can be constructed as

f (�) =
K∑

k=1

tr
{
Ÿk�	−1

k �′} ≤ S + tr
{
Ḟ�

}
,

where S is a constant and Ḟ = ∑K
k=1

(
	−1

k �̇
′
Ÿk

− ek	
−1
k �̇

′)
, with ek being the largest eigenvalue of Ÿk .

The update of � is given by �̈ = Ġ Ḣ
′
, where Ġ and Ḣ

are obtained from the singular value decomposition of
Ḟ. This process is repeated until a specified convergence
criterion is met and the update �̈ is obtained. Then, we
obtain the update for 	k and λ as

	̈k =
diag

(
�̈

′Ÿk �̈
)

∣∣∣diag
(
�̈

′Ÿk �̈
)∣∣∣

1
P

and λ̈ =

K∑
k=1

tr
(
�̈	̈

−1
k �̈

′Ÿk

)

PRT I
.

– Model VVE [�k = λk�	k�
′]. In this case, maximizing

Eq. (3) reduces to the maximization of

− PR

2

K∑
k=1

log λk

I∑
i=1

T∑
t=1

z̈i tk −
K∑

k=1

1

2λk
tr(�′Ÿk�	−1

k ).

Again, there is no analytical solution for�, and its update
is obtained by employing theMM algorithm as described
for the EVE model. Then, the updates for 	k and λk are

	̈k =
diag

(
�̈

′Ÿk �̈
)

∣∣∣diag
(
�̈

′Ÿk �̈
)∣∣∣

1
P

and λ̈k =
∣∣∣diag

(
�̈

′Ÿk �̈
)∣∣∣

1
P

R
∑I

i=1
∑T

t=1 z̈i tk
.

– Model EEV [�k = λ�k	�′
k]. Here, maximizing Eq. (3)

reduces to the maximization of

− PRT I

2
log λ − 1

2λ

K∑
k=1

tr(�′
kŸk�k	

−1).

An algorithm similar to the one proposed by Celeux
and Govaert (1995) can be employed here. In detail,
the eigen-decomposition Yk = Lk�kL′

k is firstly con-
sidered, with the eigenvalues in the diagonal matrix �k

following descending order and orthogonal matrix Lk

composed of the corresponding eigenvectors. Then, we
obtain the update for �k , 	 and λ as

�̈k = L̈k, 	̈ =

K∑
k=1

�̈k

∣∣∣∣
K∑

k=1
�̈k

∣∣∣∣
1
P

and λ̈ =

∣∣∣∣
K∑

k=1
�̈k

∣∣∣∣
1
P

RT I
.

– Model VEV [�k = λk�k	�′
k]. In this setting, maximiz-

ing Eq. (3) reduces to the maximization of

− PR

2

K∑
k=1

log λk

I∑
i=1

T∑
t=1

z̈i tk −
K∑

k=1

1

2λk
tr(�′

kŸk�k	
−1).

By using the same algorithm applied for the EEVmodel,
the updates for �k , 	k and λk are

�̈k = L̈k, 	̈ =

K∑
k=1

λ−1
k �̈k

∣∣∣∣
K∑

k=1
λ−1
k �̈k

∣∣∣∣
1
P

and

λ̈k =
tr

{
�̈k	̈

−1
}

PR
∑I

i=1
∑T

t=1 z̈i tk
.
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– Model EVV [�k = λ�k	k�
′
k]. For thismodel, we firstly

write Ck = �k	k�
′
k . Then, maximizing Eq. (3) reduces

to the maximization of

− PRT I

2
log λ − 1

2λ

K∑
k=1

tr(ŸkC
−1
k ).

The updates of this model can be obtained in a similar
fashion of the EVI model, except for the fact that Ck is
not diagonal. Thus, by employingTheoremA.1ofCeleux
and Govaert (1995) we can update Ck and λ as

C̈k = Ÿk
∣∣Ÿk

∣∣ 1
P

and λ̈ =

K∑
k=1

∣∣Ÿk
∣∣ 1
P

RT I
.

– Model VVV [�k = λk�k	k�
′
k]. In the case well-known

case, maximizing Eq. (3) reduces to the maximization of

− R

2

K∑
k=1

log |�k |
I∑

i=1

T∑
t=1

z̈i tk − 1

2

K∑
k=1

tr
(
�−1

k Ÿk

)
.

Applying Theorem A.2 of Celeux and Govaert (1995),
we update �k as

�̈k = Ÿk

R
∑I

i=1
∑T

t=1 z̈i tk
.

CM-Step 2 At the second CM-step, we maximize the expec-
tation of the complete-data log-likelihood with respect to

2, keeping 
1 fixed at 
̈1. The update for �k depends
on which of the 7 parsimonious structures is considered.
For notational simplicity, let Ẅ = ∑K

k=1 Ẅk be the update
of the within state column scatter matrix, where Ẅk =∑I

i=1
∑T

t=1 z̈i tk
(
Xi t − M̈k

)′
�̈

−1
k

(
Xi t − M̈k

)
is the update

of the column scatter matrix related to the kth state. In detail,
we have:

– Model II [�k = I]. This is the simplest model and no
parameters need to be estimated.

– Model EI [�k = 	]. In this setting, maximizing Eq. (3)
reduces to the maximization of

−1

2
tr

(
Ẅ	−1

)
.

Applying Corollary A.1 of Celeux and Govaert (1995),
we can obtain 	 as

	̈ = diag
(
Ẅ

)
∣∣diag (

Ẅ
)∣∣ 1

R

.

– Model VI [�k = 	k]. Here, maximizing Eq. (3) reduces
to the maximization of

−1

2

K∑
k=1

tr
(
Ẅk	

−1
k

)
.

Applying Corollary A.1 of Celeux and Govaert (1995),
we can update 	k as

	̈k = diag
(
Ẅk

)
∣∣diag (

Ẅk
)∣∣ 1

R

.

– Model EE [�k = �	�′]. In this case, given that �1 =
· · · = �K ≡ �, maximizing Eq. (3) reduces to the max-
imization of

−1

2
tr

(
Ẅ�−1

)
.

Applying Theorem A.2 of Celeux and Govaert (1995),
we can update � as

�̈ = Ẅ
∣∣Ẅ∣∣ 1

R

.

– Model VE [�k = �	k�
′]. In this setting, maximizing

Eq. (3) reduces to the maximization of

−1

2

K∑
k=1

tr
(
�′Ẅk�	−1

k

)
.

Similarly to the EVE and VVEmodels in the CM-Step 1,
there is no analytical solution for �, while keeping fixed
the other parameters. Therefore, the MM algorithm is
implemented by following the same procedure explained
for the EVEmodel and by replacing Ÿwith Ẅ. Then, the
update of 	k is

	̈k =
diag

(
�̈

′
Ẅk�̈

)

∣∣∣diag
(
�̈

′
Ẅk�̈

)∣∣∣
1
R

.

– Model EV [�k = �k	�′
k]. Here, maximizing Eq. (3)

reduces to the maximization of

−1

2

K∑
k=1

tr
(
�′
kẄk�k	

−1
)

.

Byusing the same approach of theEEVandVEVmodels,
and by changing Ÿ with Ẅ, we obtain the updates of �k

and 	 as
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Table 2 Average MSEs of the parameter estimates for the EII-II MV-
HMM. The average is computed among the MSEs of the elements of
each estimated parameter, over the K states and 50 data sets in each
scenario

Dimension K Parameter O1 O2
T1 T2 T1 T2

D1 2 M 0.0083 0.0040 0.0063 0.0033

� 0.0020 0.0016 0.0016 0.0012

π 0.0026 0.0029 0.0024 0.0031

� 0.0013 0.0004 0.0010 0.0005

4 M 0.0164 0.0084 0.0135 0.0069

� 0.0029 0.0010 0.0024 0.0013

π 0.0022 0.0017 0.0017 0.0021

� 0.0009 0.0006 0.0009 0.0004

D2 2 M 0.0083 0.0042 0.0064 0.0031

� 0.0003 0.0002 0.0003 0.0001

π 0.0045 0.0042 0.0029 0.0029

� 0.0018 0.0011 0.0012 0.0005

4 M 0.0131 0.0071 0.0130 0.0067

� 0.0004 0.0003 0.0004 0.0001

π 0.0017 0.0023 0.0019 0.0021

� 0.0009 0.0005 0.0009 0.0004

�̈k = L̈k and 	̈ =

K∑
k=1

�̈k

∣∣∣∣
K∑

k=1
�̈k

∣∣∣∣
1
R

.

– Model VV [�k = �k	k�
′
k]. In the full unconstrained

case, maximizing Eq. (3) reduces to the maximization of

−1

2

K∑
k=1

(
Ẅk�

−1
k

)
.

Applying Theorem A.2 of Celeux and Govaert (1995),
we update �k as

�̈k = Ẅk
∣∣Ẅk

∣∣ 1
R

.

2.3.1 A note on the initialization strategy

To start our ECM algorithm, we followed the approach of
Tomarchio et al. (2020), where a generalization of the short-
EM initialization strategy proposed byBiernacki et al. (2003)
has been implemented. It consists in H short runs of the algo-
rithm from several randompositions. The term “short”means
that the algorithm is run for a few iterations s, without wait-
ing for convergence. In this manuscript, we set H = 100

and s = 1. Then, the parameter set producing the largest
log-likelihood is used to initialize the ECM algorithm. In
both simulated and real data analyses this procedure has
shown stable results after multiple runs. Operationally, this
initialization strategy is implemented in the HMM.init()
function of the FourWayHMM package.

3 Simulated analyses

3.1 Overview

In this section, we examine different aspects of our MV-
HMMs through large-scale simulation studies. Given the
high number of models introduced, we will only focus on
two of them for the sake of simplicity. In detail, we consider
the EII-II MV-HMM, which provides an example of model
having the same covariance structure for � and �, and the
VVE-EV MV-HMM, which provides an example of model
having an opposite covariance structure for� and�. Further-
more, the EII-II MV-HMM is the also the most parsimonious
model, whereas theVVE-EVMV-HMM is one of themodels
for which the MM algorithm is used. For each model, sev-
eral experimental conditions are evaluated. Specifically, we
set I = 100 and consider two dimensions for the matrices
(labeled as D1 when P = R = 2 and D2 when P = 4 and
R = 8), two times (T1 = 5 and T2 = 10), two number of
hidden states (K = 2 and K = 4), and two levels of over-
lap (labeled as O1 and O2). Therefore, 2 × 2 × 2 × 2 = 16
scenarios are analyzed and, for each of them, 50 data sets
are generated by the considered MV-HMM. The parameters
used to generate the data are reported in Appendix A.

3.2 Discussion

First of all, we evaluate the recovery and the consistency
of the estimated parameters by computing the mean square
errors (MSEs). Considering the high number of parameters
that should be reported, we follow an approach similar to the
one used by Farcomeni and Punzo (2020), i.e. we calculate
the average among the MSEs of the elements of each esti-
mated parameter over the K states, allowing us to summarize
in a single number the MSE of each parameter. Further-
more, before showing the obtained results, it is important
to underline the well-known label switching issue, caused
by the invariance of the likelihood function under relabeling
of the model states (Frühwirth-Schnatter 2006). There are no
generally accepted labelingmethods, andwe simply attribute
the labels by looking at the estimated Mk .

Tables 2 and 3 report the average MSEs, computed after
fitting the EII-II and VVE-EV MV-HMMs, with the corre-
sponding K , to the respective data sets. Note that the column
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Table 3 Average MSEs of the parameter estimates for the VVE-EV
MV-HMM. The average is computed among the MSEs of the elements
of each estimated parameter, over the K states and 50 data sets in each
scenario

Dimension K Parameter O1 O2
T1 T2 T1 T2

D1 2 M 0.0095 0.0042 0.0069 0.0033

� 0.0083 0.0032 0.0076 0.0039

� 0.0025 0.0014 0.0022 0.0011

π 0.0032 0.0026 0.0025 0.0018

� 0.0015 0.0001 0.0007 0.0005

4 M 0.0135 0.0073 0.0113 0.0054

� 0.0101 0.0055 0.0098 0.0050

� 0.0038 0.0018 0.0034 0.0015

π 0.0020 0.0018 0.0022 0.0018

� 0.0008 0.0004 0.0008 0.0004

D2 2 M 0.0072 0.0037 0.0067 0.0035

� 0.0006 0.0004 0.0007 0.0003

� 0.0032 0.0016 0.0031 0.0016

π 0.0034 0.0027 0.0034 0.0022

� 0.0010 0.0006 0.0010 0.0004

4 M 0.0720 0.0225 0.0169 0.0095

� 0.0142 0.0061 0.0018 0.0008

� 0.0342 0.0171 0.0062 0.0033

π 0.0068 0.0031 0.0021 0.0019

� 0.0011 0.0007 0.0007 0.0004

covariance matrix � is not reported in Table 2 since it is not
estimated in the EII-II MV-HMM.

As we can see, the MSEs can be considered negligible in
all the considered scenarios. Regardless of the data dimen-
sionality, it is interesting to note that, for a fixed overlap, their
values become better with the increase of T . Note also that,
fixed T , their values generally improve as we move from
O1 to O2, thus confirming the lower separation among the
states. Additionally, when the VVE-EV MV-HMM is con-
sidered, it seems that the MM algorithm used for estimating
�k produces reliable values.

Another aspect that is interesting to evaluate is the com-
putational time required for fitting the MV-HMMs. In detail,
on each of the above data sets, all the 98MV-HMMs are now
fitted for the corresponding K , and their computational times
(in seconds) are illustrated by using the heat maps of Figs. 1
and 2.

Computation is performed on a Windows 10 PC, with
AMD Ryzen 7 3700x CPU, 16.0 GB RAM, using the R
64-bit statistical software, and the proc.time() function
of the base package is used to measure the elapsed time.
As it is reasonable to expect, the computational time grows
as T increases on each scenario, and it decreases when we
pass from O1 to O2, highlighting the easier estimation in the

latter case. Furthermore, the computational time roughly trip-
licates when we move from fitting MV-HMMs with K = 2
to MV-HMMs with K = 4 hidden states, and approximately
quadruplicates when we compare D1 to D2. It is interesting
to note that the EVE-VE and VVE-VE MV-HMMs, which
are the two models for which we use a MM algorithm for
estimating both covariance matrices, are the most time con-
suming, with a computational burden that seems to double
with respect to the other models. This is particularly evident
in the O2 scenarios.

The total computational time can be strongly reduced by
exploiting parallel computing. In detail, Table 4 shows the
overall time taken by fitting the 98 MV-HMMs sequentially
(default in R) and by parallelizing them on 14 cores. As we
can see, the computational burden is decreased by about 10
times, and all the models can be fitted in a reasonable fast
way (with some exceptions in the O1 scenarios).

Lastly, the capability of the Bayesian information cri-
terion (BIC; Schwarz et al. 1978) in identifying the true
parsimonious structure and the correct number of groups is
investigated. This is because, so far, we have fitted models
with K equal to the true number of states, and we need to
assess if the BIC, which is one of the most famous and used
tools in model-based clustering, accurately works. There-
fore, on each of the above data sets, the 98 MV-HMMs are
fitted for K ∈ {1, . . . , K ∗ + 1}, where K ∗ is the true num-
ber of states, and the number of times for which the true
parsimonious structure is selected by the BIC are reported in
Table 5. First of all, in each scenario, the true K ∗ has been
almost always selected by the best fitting model according
to the BIC, with only 6 exceptions for the VVE-EV model
with dimension D2, overlap O1, K = 4 states and T1 times,
and 3 exceptions for the VVE-EV with dimension D2, over-
lap O1, K = 4 states and T2 times. Additionally, we notice
that in almost all the cases the parsimonious structure of the
true data generating model has been identified by the BIC. In
those few cases where the BIC selects a wrong model, this is
because of an incorrect choice of the parsimonious structure
for one of the two covariance matrices � or �.

4 Real data example

4.1 Overview

In this section, we analyze data concerning the unemploy-
ment rate in the Italian provinces (NUTS3, according to the
European Nomenclature of Territorial Units for Statistics).
The data comes from the Italian National Institute of Statis-
tics (ISTAT), a public research organization and the main
producer of official statistics in the service of citizens and
policy-makers in Italy, and are freely accessible at http://
dati.istat.it/#. In detail, we investigate the I = 98 Italian
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Fig. 1 Heat maps of the average
computational time for fitting
the 98 MV-HMMs, computed
over 50 data sets generated by a
EII-II MV-HMM with D1 and
K = 2 (a), D1 and K = 4 (b),
D2 and K = 2 (c), D2 and
K = 4 (d)
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Fig. 2 Heat maps of the average
computational time for fitting
the 98 MV-HMMs, computed
over 50 data sets generated by a
VVE-EV MV-HMM with D1
and K = 2 (a), D1 and K = 4
(b), D2 and K = 2 (c), D2 and
K = 4 (d)
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Table 4 Average computational
times (in seconds) for fitting all
the 98 HHMs with K states over
the 50 data sets generated by the
EII-II MV-HMM and VVE-EV
MV-HMM on each scenario

Dimension MV-HMM Type K O1 O2
T1 T2 T1 T2

D1 EII-II Sequential 2 82.38 159.96 41.37 78.03

4 346.51 753.71 89.32 176.54

Parallel 2 9.65 15.53 6.64 9.42

4 29.87 60.01 10.39 17.34

VVE-EV Sequential 2 112.23 243.09 39.62 87.13

4 373.85 730.61 93.08 193.70

Parallel 2 10.55 20.23 5.21 8.84

4 31.12 59.62 9.43 17.27

D2 EII-II Sequential 2 289.68 548.37 75.23 146.05

4 285.00 531.69 202.20 374.94

Parallel 2 24.85 44.17 8.37 14.87

4 25.14 46.56 19.28 33.6

VVE-EV Sequential 2 268.88 529.20 85.49 149.50

4 981.04 2007.42 206.9 378.85

Parallel 2 22.99 43.48 9.10 13.70

4 78.09 167.51 20.68 39.08

Table 5 Number of times, over the 50 data sets generated by the two
MV-HMMs on each scenario, for which the true parsimonious structure
is selected by the BIC when all the 98 MV-HMMs are fitted for K ∈
{1, . . . , K ∗ + 1}
Dimension MV-HMM K O1 O2

T1 T2 T1 T2

D1 EII-II 2 47 48 49 49

4 46 50 50 50

VVE-EV 2 48 50 50 48

4 50 50 50 50

D2 EII-II 2 48 49 49 50

4 50 50 50 50

VVE-EV 2 50 50 50 50

4 45 49 50 50

provinces for which the unemployment rate is available from
the beginning of the data collection at the provincial level
(2004) to 2019. This implies that we are considering T = 16
years of data. Note that, to obtain a balanced dataset, some
provinces are not included in the analysis since they were
available for only few years.

For each province, the unemployment rate is recorded in
a two-factor format. The first factor, gender, has two levels
(i.e. P = 2): males and females. The second factor, age, has
three levels (i.e. R = 3) driven by the age class: 15–24, 25–
34 and 35–older. Therefore, the whole data set is presented
in a four-way array having dimension 2 × 3 × 98 × 16.

In analyzing this data set, several aspects are worth to be
investigated. The first concerns the existence of areas with
similar unemployment levels among the Italian provinces.

According to the existing literature on this topic (see, e.g.,
Cracolici et al. 2007, 2009), unemployment rates appear
to vary widely across the country, but when analyzed at
provincial level tend to be spatially clustered; in other terms,
provinces show a certain amount of spatial autocorrelation.
To include such information in the analysis, we implemented
tomatrix-variate longitudinal data an approach similar to that
introduced by Scrucca (2005). Specifically, Scrucca (2005)
proposed a clustering procedure based on the standard-
ized Getis and Ord measure of local spatial autocorrelation
(Getis and Ord 1992), herein labeled as G. He applied such
approach for the analysis of the unemployment rates of the
municipalities in the Umbria region (NUTS2), but similar
implementations have been also done in other applicative
fields (see, e.g. Holden and Evans 2010 and Appice et al.
2013). In our case, to implement this approach we

– computed a I × I symmetric spatial weight matrix which
takes values equal to 1 for neighbouring provinces and 0
otherwise. We define neighbours via the symmetric rela-
tive graph criterion (Toussaint 1980 and Jaromczyk and
Toussaint 1992).

– computed, for a fixed t , xi t = vec(Xi t ), where vec(·) is
the vectorization operator, thus transforming the P × R
matrices of each province into PR−dimensional vec-
tors. Then, we calculated G j (xi t ) for the j-th variable
( j = 1, . . . , PR) on the i-th unit (i = 1, . . . , I ) as in
Scrucca (2005). Such a procedure is repeated for each t ,
with t = 1, . . . , T . From an interpretative point of view,
high (low) positive values of G j (xi t ) indicate the pos-
sibility of a local cluster of high (low) unemployment
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Table 6 Parsimonious structure (Pars), number of states (K ) and value
of the information criterion (BIC) for the best among each competing
model according to the BIC

Model Pars K BIC

MV-HMMs VEE-EE 8 13890.34

M-HMMs VEE 8 13942.92

MVN-Ms VEE-VE 6 17451.99

rates concerning the i-th province and its neighborhood.
The obtained values, which contain both spatial and
unemployment information, are lastly re-arranged in the
original (for each province) P × R matrix-variate struc-
ture and used in the subsequent analyses.

Another aspect of interest is the strength of time depen-
dence as measured by the transition probability matrix, as
well as how the provinces move between the hidden states.
This latter aspect can be particularly of interest in light of the
great recession globally occurred in 2007–2009, and which
has led Italy to be one of the most affected countries.

As mentioned in Sect. 1, we compare the performance
of our models with those of two alternative approaches that
could be used if our models were not available:

1. mixtures of parsimoniousmatrix-variate normal distribu-
tions (MVN-Ms). To use such model, we collapsed the I
and T dimensions into an unique I T dimension, obtain-
ing a P × R × I T array. In doing this, we are removing
the modelization of the temporal structure of the data as
well as losing interpretability because of the coercion of
the data in a three-way array, leading to the issues dis-
cussed at the points (a) and (b) of Sect. 1. A total of 98
parsimonious models is still obtained;

2. parsimonious multivariate normal HMMs (M-HMMs).
To use these models, we vectorize the P × R matri-
ces of each province into PR−dimensional vectors, thus
obtaining a PR × I × T array. Thus, while in this way
we are still modeling the temporal structure of the data,
the estimated model has the disadvantages mentioned at
the point (a) of Sect. 1. Notice that, in this case we have
a total of 14 parsimonious models.

4.2 Discussion

All the competing models are fitted to the data for K ∈
{1, . . . , 9} and the corresponding results are reported in
Table 6.

Firstly, we notice that the overall best model according
to the BIC is the VEE-EE MV-HMM with K = 8 hidden
states. A similar number of states is also detected by the best
M-HMMs, having a VEE parsimonious structure but a worse

BIC than our best model. Conversely, K = 6 hidden states
are chosen for the best among the MVN-Ms which, despite
the similar parsimonious structure to our best model, has by
far the worst BIC value. Thus, the obtained results seem to
suggest that (i) the modelization of the temporal structure is
relevant for our data and (ii) the data coercion leads to worst
fitting performance.

By focusing on theVEE-EEMV-HMM, and before graph-
ically showing how the detected states cluster the Italian
provinces, useful insights can be gained by looking at its esti-
mated parameters. Specifically, the estimated mean matrices
for the hidden states are

M1 =
[−1.63 −1.55 −1.47
−1.48 −1.47 −1.49

]
,

M2 =
[−1.06 −1.18 −1.15
−1.04 −1.24 −1.16

]
,

M3 =
[−0.64 −0.82 −0.75
−0.58 −0.80 −0.62

]
,

M4 =
[
0.08 −0.04 −0.17
0.20 −0.08 0.06

]
,

M5 =
[
0.77 0.89 0.59
0.59 0.98 0.60

]
, M6 =

[
1.22 1.30 1.48
1.11 1.51 1.48

]
,

M7 =
[
1.82 2.25 1.89
1.67 1.93 1.53

]
, M8 =

[
2.47 2.71 3.08
2.41 2.91 2.34

]
.

As we can note, it is possible to sort the states according to
growing unemployment levels, both in the gender and ages
factors.More in detail, as wemove from the first to the eighth
state the unemployment levels rise, and each state becomes
worse than the previous ones under any point of view. We
can also observe that in the first four states the unemploy-
ment levels for males are lower or very similar than those of
females, whereas in the last four states an opposite behav-
ior seems to occur. It might be also interesting to report that
in the first and the fifth states the differences between the
two genders decrease as the age classes increase, whereas
in the seventh and eighth states (i.e. the worst states) such
differences become larger for growing age classes.

As for the gender-related covariance structure, we have
different volumes (̂λ1 = 0.11, λ̂2 = 0.13, λ̂3 = 0.19, λ̂4 =
0.32, λ̂5 = 0.37, λ̂6 = 0.30, λ̂7 = 0.33 and λ̂8 = 0.53) but
the following common orientation and shape matrices

	̂ =
[
1.16 0.00
0.00 0.86

]
and �̂ =

[
0.42 −0.91
0.91 0.42

]
.

We can note how the size of the state-scatter, as measured
by the volumes, roughly increases as we move from the best
to the worst states in terms of unemployment. Instead, there
is no need to make the model over-parametrized in terms
of shape and orientation because the states share the same
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PC-orientation (�) along with the normalized variances of
these PCs (diagonal elements of 	); refer to Sect. 2.2. When
these quantities are put together to form the state-dependent
covariance matrices, we obtain

�1 =
[
0.10 0.01
0.01 0.12

]
, �2 =

[
0.11 0.01
0.01 0.14

]
,

�3 =
[
0.17 0.02
0.02 0.21

]
, �4 =

[
0.29 0.04
0.04 0.35

]
,

�5 =
[
0.34 0.04
0.04 0.41

]
, �6 =

[
0.28 0.04
0.04 0.34

]
,

�7 =
[
0.30 0.04
0.04 0.36

]
, �8 =

[
0.49 0.06
0.06 0.59

]
.

We notice that, as we move from the first to the fifth states
the variances for both men and women grow. Additionally,
the last state has the largest variances for both genders.

As for the estimated age-based covariance matrices

�1, . . . ,�8 =
⎡
⎣
1.57 0.12 0.15
0.12 0.77 0.10
0.15 0.10 0.87

⎤
⎦ ,

we can note that the variance is higher for the 15–24 age
class, and it is relatively similar between the other two age
classes.

Lastly, it is worth analyzing the estimated transition prob-
ability matrix

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.95 0.04 0.00 0.00 0.00 0.00 0.00
0.00 0.02 0.95 0.03 0.00 0.00 0.00 0.00
0.00 0.00 0.03 0.93 0.04 0.00 0.00 0.00
0.00 0.00 0.00 0.02 0.93 0.05 0.00 0.00
0.00 0.00 0.00 0.00 0.07 0.86 0.07 0.00
0.00 0.00 0.00 0.00 0.00 0.11 0.86 0.03
0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.94

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Aswe can note by the estimated transition probabilitymatrix,
transitions between states mostly occur between adjacent
states, whereas they are null among distant states. Further-
more, it seems that the persistenceof staying in a state roughly
decreases as we move from the first to the seventh. However,
it increases for the last state, i.e. it appears more difficult for
the provinces clustered in the most troubled state to improve
their position.

We have also tested the null hypothesis that the lengths of
the segments within each state are geometrically distributed,
as assumed by HMMs. To this aim, we defined a simple
union-intersection multiple testing procedure based on the
intersection of K χ2 goodness of fit tests, which compare the
observed lengths of the segments with the theoretical ones
(for other similar tests see, e.g., Maruotti et al. 2021). The

obtained (unadjusted) p-values are then used to compute the
adjusted p-values - which are directly comparable with the
significance level α - according to the step-down procedure
by Holm (1979). We notice that the minimum among the
K adjusted p-values is 0.44; thus, we cannot reject the null
hypothesis for any reasonable value of α.

We now report information on how the provinces have
changed their state over the years and where the detected
states are geographically located. This can be better under-
stood by looking at the Italian provinces maps of Fig. 3,
that are colored according to state memberships. Note that
the provinces not included in the analysis are colored in gray.
For simplicity, we avoid to plot amap for each of the 16-years
of data, and we limit to report equidistant years covering the
entire time period considered.

Starting from the first year of analysis, i.e. 2004, in Fig-
ure 3a we can recognize several clusters of provinces that,
as we move towards the south, belong to states with higher
unemployment rates. After some years characterized by rela-
tively few changes among the states, the economic recession
produced its effects in the years 2008–2009, where a lot of
provinces, mainly located in the northern central part of the
country, started to perform badly (see Figure 3b). In the sub-
sequent years, there has been a certain amount of switches
among adjacent states, bringing some provinces to better
states and others to worse states (see Figure 3c), despite the
overall situation is still relatively distant from that in 2004 for
the majority of cases. However, when the last year of anal-
ysis is considered in Figure 3d, it is possible to perceive a
slight trend change, with signs of recovery especially for the
provinces located in the northern central part of the coun-
try. In any case, these positive indications are going to be
dramatically arrested by the COVID-19 pandemic, and its
effects will have serious repercussions in the next years.

5 Conclusions

In this manuscript we introduced parsimonious hidden
Markov models for matrix-variate balanced longitudinal
data. Being (dependent) mixture models, they allow the
recovery of homogenous latent subgroups and, simultane-
ously, provide meaningful interpretation on how the sample
units move between the hidden states over time. The par-
simony has been introduced via the eigen decomposition
of the state covariance matrices, producing a family of 98
MV-HMMs. An ECM algorithm has been illustrated for
parameter estimation. At first, the parameter recovery of our
algorithm has been evaluated under different scenarios, pro-
viding good results. This can be particularly interesting for
those MV-HMMs that use a MM algorithm at each step
of the ECM algorithm. Relatedly, we have analyzed the
computational times for fitting all the 98 MV-HMMs. The
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Fig. 3 Italian provinces map colored according to the estimated state memberships

computational burden of the MV-HMMs using MM algo-
rithm is definitely higher, even if we are able to fit all the
MV-HMMs in a reasonably fast way when parallel com-
puting is considered. The BIC has proven to be reliable in
detecting the true number of states in the data as well as the
parsimonious structure. The real data example has shown the
usefulness of our MV-HMMs. Firstly, when compared with
the two alternative approaches and, secondly, in the interpre-
tation of the detected different states at province level.

There are different possibilities for further work, some of
which are worth mentioning. First of all, we can extend our
MV-HMMs by using skewed or heavy tailed state dependent
probability density functions (Gallaugher and McNicholas
2017, 2019; Tomarchio et al. 2020, 2022), in order to model
possible features commonly present in the data. A further
avenue would deal with the regression setting (Viroli 2012),
where covariates shared by all units in the same hidden

state are used. This can be done both in a fixed and in ran-
dom covariates framework (Tomarchio et al. 2021a). Finally,
another possibility would be extending our models in order
to deal with unbalanced or missing data.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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Appendix

A Parameters used to generate data in
Sect. 3

A.1 Scenarios related to D1

As concerns the parameters used to generate the data when
K = 2, we set

– EII-II MV-HHM

�1 = �2 = 1.5I and

�1 = �2 = I,

– VVE-EV MV-HHM

�1 =
[
1.43 0.84
0.84 0.88

]
, �2 =

[
2.05 0.35
0.35 1.82

]
,

�1 =
[
0.70 0.33
0.33 1.58

]
, �2 =

[
1.68 −0.06

−0.06 0.59

]
,

while for both MV-HMMs we set π = (0.5, 0.5),

� =
[
0.60 0.40
0.20 0.80

]
, M1 =

[
1.00 1.50
0.50 1.00

]
.

The mean matrix of the second state (M2) is obtained by
adding a constant c to each element of M1, which depends
on the level of overlap. Specifically, we set c = 2 when O1

is considered, whereas c = 5 when O2 is examined.
When K = 4, the first two hidden states have the same

{�k,�k,Mk; k = 1, 2} as before. Clearly, the covariance
matrices of the third and fourth hidden states for the EII-
II MV-HMM are still equal to those of the first two states.
On the contrary, for the VVE-EV MV-HMM we have

�3 =
[
0.81 0.51
0.51 0.47

]
, �4 =

[
0.55 0.20
0.20 0.42

]
,

�3 =
[
1.45 −0.45

−0.45 0.82

]
, �4 =

[
0.71 −0.34

−0.34 1.57

]
.

Then, for both MV-HMMs we set π =
(
0.25, 0.25, 0.25,

0.25
)
and

� =

⎡
⎢⎢⎣

0.55 0.00 0.21 0.24
0.03 0.52 0.18 0.27
0.06 0.15 0.49 0.30
0.09 0.12 0.33 0.46

⎤
⎥⎥⎦ .

To obtain M3 and M4 we add c = 4 and c = −2 to each
element of M1, respectively, when O1 is considered. Other-

wise, when O2 is considered, we add c = 10 and c = −5 to
each element of M1, respectively.

A.2 Scenarios related to D2

As concerns the parameters used to generate the data when
K = 2, we set

– EII-II MV-HMM

�1 = �2 = �3 = �4 = 1.5I and

�1 = �2 = �3 = �4 = I,

– VVE-EV MV-HMM

�1 =

⎡
⎢⎢⎣

1.29 −1.16 −0.44 0.25
−1.16 1.24 0.59 −0.33
−0.44 0.59 0.69 −0.16
0.25 −0.33 −0.16 0.50

⎤
⎥⎥⎦ ,

�2 =

⎡
⎢⎢⎣

1.22 −0.61 0.14 −0.08
−0.61 0.97 0.26 −0.13
0.14 0.26 1.36 −0.25

−0.08 −0.13 −0.25 1.11

⎤
⎥⎥⎦ ,

�1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.67 0.76 −0.01 0.72 −0.04 −0.60 −0.09 0.39
0.76 1.27 0.65 0.67 0.07 −0.63 −0.49 0.44

−0.01 0.65 2.24 −0.28 0.14 0.32 −1.16 −0.25
0.72 0.67 −0.28 2.34 −0.45 −0.56 0.00 0.44

−0.04 0.07 0.14 −0.45 2.05 0.41 −0.17 0.00
−0.60 −0.63 0.32 −0.56 0.41 1.44 −0.18 0.04
−0.09 −0.49 −1.16 0.00 −0.17 −0.18 2.15 −0.11
0.39 0.44 −0.25 0.44 0.00 0.04 −0.11 1.55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.14 0.42 −0.01 −0.01 −0.02 −0.06 −0.19 −0.10
0.42 2.83 0.72 −0.49 −0.07 −0.44 −0.34 −0.66

−0.01 0.72 1.75 −0.04 −0.19 −0.14 1.05 −0.42
−0.01 −0.49 −0.04 1.58 0.02 0.44 −0.47 −0.17
−0.02 −0.07 −0.19 0.02 1.30 0.19 0.59 0.00
−0.06 −0.44 −0.14 0.44 0.19 1.66 −0.03 0.05
−0.19 −0.34 1.05 −0.47 0.59 −0.03 2.78 0.81
−0.10 −0.66 −0.42 −0.17 0.00 0.05 0.81 1.66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

while for both MV-HMMs we set π and � as in Sect. A.1,
and

M1 =

⎡
⎢⎢⎣

0.51 −0.71 0.90 −0.84 −0.20 −0.63 0.09 −0.43
−1.09 −1.71 −1.63 −1.04 −1.38 −1.85 −1.95 −1.76
1.43 1.57 1.34 1.22 1.88 1.50 1.38 1.01
0.64 0.29 0.01 0.03 0.83 0.61 0.09 0.80

⎤
⎥⎥⎦ .

Similarly to Sect. A.1, we add constants c to each element of
M1 to obtain M2. In detail, for both models we set c = 0.5
when O1 is considered, whereas c = 5when O2 is examined.

When K = 4, the first two hidden states have the same
{�k,�k; k = 1, 2} andM1 as before. Clearly, the covariance
matrices of the third and fourth hidden states for the EII-II
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MV-HMM are still equal to those of the first two states. On
the contrary, for the VVE-EV MV-HMM we have

�3 =

⎡
⎢⎢⎣

1.85 −1.47 −0.60 0.33
−1.47 1.80 0.75 −0.42
−0.60 0.75 0.96 −0.34
0.33 −0.42 −0.34 0.57

⎤
⎥⎥⎦ ,

�4 =

⎡
⎢⎢⎣

1.86 −0.89 0.16 −0.10
−0.89 1.52 0.39 −0.20
0.16 0.39 1.94 −0.48

−0.10 −0.20 −0.48 1.44

⎤
⎥⎥⎦ ,

�3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.48 0.06 0.39 0.25 −0.21 0.13 −0.10 0.36
0.06 0.96 0.45 −0.07 0.14 0.37 −0.01 −0.67
0.39 0.45 1.36 1.06 −0.90 −0.05 −0.28 0.09
0.25 −0.07 1.06 2.31 −0.34 0.70 −0.38 −0.01

−0.21 0.14 −0.90 −0.34 2.07 0.44 0.56 −0.28
0.13 0.37 −0.05 0.70 0.44 2.75 0.02 −0.65

−0.10 −0.01 −0.28 −0.38 0.56 0.02 1.66 −0.29
0.36 −0.67 0.09 −0.01 −0.28 −0.65 −0.29 2.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.52 0.58 −0.16 0.24 0.35 0.18 0.35 −0.21
0.58 1.88 −0.23 0.77 0.69 0.17 0.12 −0.79

−0.16 −0.23 0.44 0.32 0.37 −0.14 0.00 0.27
0.24 0.77 0.32 1.70 0.43 0.56 0.25 −0.23
0.35 0.69 0.37 0.43 1.84 0.22 0.23 0.04
0.18 0.17 −0.14 0.56 0.22 2.58 0.60 0.41
0.35 0.12 0.00 0.25 0.23 0.60 1.90 0.61

−0.21 −0.79 0.27 −0.23 0.04 0.41 0.61 2.85

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then, for both MV-HMMs we set π , � as described in
Sect. A.1. Also in this case, we add constants c to each
element of M1 to obtain the other three mean matrices.
Specifically, when O1 is considered, we set c = 1, c = −1.5
and c = 2 for the EII-II MV-HMM and c = 0.5, c = −0.5
and c = 1 for the VVE-EV MV-HMM. Conversely, when
O2 is considered, we fix c = 5, c = 10 and c = −5 for both
MV-HMMs.
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