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Abstract: Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used to
model problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general
abstract estimates based on the theory of functional a posteriori error estimates, for which guaranteed
upper bounds for the primal and dual variables and two-sided bounds for the primal-dual pair are obtained.
We improve on the abstract results obtained with the functional approach by proposing four different ways
of estimating the residual errors based on the extent the approximate solution has conservation properties,
i.e.: (1) no conservation, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation.
This treatment results in sharper and fully computable estimates when mass is conserved either at the grid
level or exactly, with a comparable structure to those obtained from grid-based a posteriori techniques. We
demonstrate the practical effectiveness of our theoretical results through numerical experiments using four
different discretization methods for synthetic problems and applications based on benchmarks of flow in
fractured porous media.
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1 Introduction
Mixed-dimensional partial differential equations (mD-PDEs) arise when partial differential equations interact
on domains of different topological dimensions [43]. Prototypical examples include models of thin inclusions
in elastic materials [8, 16, 22], blood flow in human vasculature [25, 33, 37], root water uptake systems [36],
and flow in fractured porous media [3, 7, 30]. The latter example has an appealing mathematical structure,
in that the model equations allow for a hierarchical representation where each subdomain (matrix, fractures,
fracture intersections, and intersection points) only has direct interaction with subdomains of topological
dimension one higher or one lower [17]. Such hierarchical mD-PDEs are the topic of the current paper.

mD-PDEs are intrinsically linked to the underlying geometric representation, which, in a certain sense,
generalizes the usual notion of the domain. One can then define sets of suitable functions (and function
spaces) on this geometry, and these sets are then naturally interpreted as mixed-dimensional (mD) functions.
Exploiting this concept, one can generalize the standard differential operators to mappings between mD
functions and thus obtain an mD calculus. The fact that this mD calculus inherits standard properties of
calculus, particularly partial integration (relative to suitable inner products), a de Rham complex structure,
and a Poincaré-Friedrichs inequality, was recently established using the language of exterior calculus on
differential forms [19].

The inherent geometric generality of hierarchical mD-PDEs also demand the same level of abstraction
of a posteriori error estimation techniques. This requirement makes error estimates of the functional type
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Fig. 1: Example geometries falling within the context of hierarchical mixed-dimensional geometries studied herein. Left
figure corresponds to a 2d benchmark problem [29] while the two remaining correspond to 3d benchmark problems [14].

particularly well-suited for the task [42, 47, 55–57, 59]. The most attractive feature of this approach is that
error estimates are derived using purely functional methods [57]. The bounds are therefore agnostic to the
way approximated solutions are obtained in the energy space, and the only undetermined constants arise
from Poincaré-type inequalities [38].

However, unlike other types of error estimates [6, 46, 61, 63, 66], this generality makes standard
functional estimates of limited applicability to hierarchical elliptic mD-PDEs due to the following reasons:
(1) for general fracture networks, the mixed-dimensional Poincaré constant is not easily computable, and
(2) since Poincaré constants are proportional to the diameter of the physical domain, residual estimators
cannot exhibit superconvergent properties.

To circumvent the aforementioned issues, we exploit the fact that Poincaré-type inequalities imply
weighted norms [50, 53], and use spatially-dependent weights to control the residual norms. We show both
theoretically and numerically that this treatment leads to sharper estimates when approximations to the
exact solution satisfy mass conservation in a given partition of the domain.

In view of the preceding discussion, our aim is therefore to obtain a posteriori error estimates for the
approximate solution to the mD scalar elliptic equation [17, 19, 45], where the mD Laplace equation for
geometries such as those illustrated in Figure 1, is described in detail in Section 3.

We remark that while a broad range of a posteriori error techniques are available for mono-dimensional
problems, existing error bounds for mD models are far more scarce. Moreover, the ones available, are
restricted to specific cases (e.g., in the context of mortar methods [13, 52, 64, 65] and fractured porous media
[21, 32, 40]) with far less geometric generality than what we present here. Thus, for practical problems, a
posteriori error bounds for mD geometries have until now essentially not been available.

The rest of the paper is structured as follows: Section 2 is devoted to introducing the model problem,
functional spaces, and variational formulations for the case of a single 1d fracture embedded in a 2d matrix.
The section is concluded by providing a first upper bound for the primal variable. In Section 3, we generalize
the results from Section 2 to the case of fracture networks and introduce the necessary tools to perform the
a posteriori analysis in an mD setting. After reviewing necessary tools from functional analysis in Section 4,
in Section 5, we provide our main results starting from a generic abstract estimate and then considering
specific cases depending upon the degree of accuracy at which residual terms are approximated. In Section 6,
we introduce the approximated problem using mixed-finite element methods and thus make the estimates
concrete. Section 7 deals, respectively, with numerical validations and practical applications of the derived
bounds. Finally, in Section 8, we present our concluding remarks.

2 Upper bounds for a single fracture
In this section, we introduce the model problem together with functional spaces and the variational
formulations for the case of a single 1d line embedded in a 2d matrix, as illustrated in Figure 2. Furthermore,
a first upper bound for the primal variable is derived following the classical functional approach. We remark
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Fig. 2: A horizontal 1d fracture embedded in a 2d matrix. Left: Subdomains and interfaces. Right: Boundary conditions.
For the fracture, the purple square denotes a no-flux boundary condition, whereas the green square a Dirichlet boundary
condition. Note that 𝜕𝜕1Ω2, Γ1, Ω1, Γ2, 𝜕𝜕2Ω2, all coincide spatially. For illustrative purposes, however, they are placed in
different locations.

that the case of a single fracture embedded in a matrix has been analyzed before. For example, [21] and [32]
proposed error estimators based on the residual approach, whereas [40] obtained guaranteed a posteriori
error estimates using the approach of Vohralík [63].

2.1 The model problem for a single fracture

Before writing the set of equations describing general fracture networks, let us first introduce the governing
equations of a simpler configuration; that is, a unit square domain 𝑌𝑌 ⊂ R2 decomposed as a 1d fracture
Ω1 embedded in a 2d matrix Ω2, as shown in the left Figure 2. Interfaces Γ1 and Γ2, at each side of Ω1,
establish the link between Ω2 and Ω1. The model presented below is well-established for these problems,
and we point the reader to the references for further justification of this system [17, 39, 45].

The strong form of the governing equations in Ω2 reads

∇ · 𝑢𝑢2 = 𝑓𝑓2, in Ω2, (1a)
𝑢𝑢2 = −𝒦𝒦2∇ 𝑝𝑝2, in Ω2, (1b)

𝑢𝑢2 · 𝑛𝑛2 = 𝜆𝜆1, on 𝜕𝜕1Ω2, (1c)
𝑢𝑢2 · 𝑛𝑛2 = 𝜆𝜆2, on 𝜕𝜕2Ω2, (1d)
𝑢𝑢2 · 𝑛𝑛2 = 0, on 𝜕𝜕𝑁𝑁 Ω2, (1e)

𝑝𝑝2 = 𝑔𝑔𝐷𝐷𝐷2, on 𝜕𝜕𝐷𝐷Ω2. (1f)

Here, (1a) is the mass conservation equation, 𝑢𝑢2 is the matrix velocity, and 𝑓𝑓2 an external source. The
fluid velocity is given by the standard Darcy’s law (1b), where 𝒦𝒦2 is the matrix permeability; a bounded,
symmetric, and positive-definite 2 × 2 tensor, and 𝑝𝑝2 is the fluid pressure.

Equations (1c) and (1d) require that at each side of the internal boundary of Ω2, the normal component
of 𝑢𝑢2 to match the interface (mortar) fluxes 𝜆𝜆1 and 𝜆𝜆2. To fix the direction of the normal vector on internal
boundaries, we require 𝑛𝑛2 pointing from the higher- to the lower-dimensional subdomain. No flux conditions
are prescribed in (1e), where 𝑢𝑢2 · 𝑛𝑛2 represents the outer normal flux across 𝜕𝜕𝑁𝑁 Ω2. Finally, Dirichlet
boundary conditions are imposed in (1f), where 𝑔𝑔𝐷𝐷𝐷2 is a prescribed function on the Dirichlet boundary.
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In the fracture Ω1, the equations are given by

∇1 · 𝑢𝑢1 − (𝜆𝜆1 + 𝜆𝜆2) = 𝑓𝑓1, in Ω1, (2a)
𝑢𝑢1 = −𝒦𝒦1∇1 𝑝𝑝1, in Ω1, (2b)

𝑢𝑢1 · 𝑛𝑛1 = 0, on 𝜕𝜕𝑁𝑁 Ω1, (2c)
𝑝𝑝1 = 𝑔𝑔𝐷𝐷𝐷1, on 𝜕𝜕𝐷𝐷Ω1. (2d)

In (2a), ∇1 · (·) = 𝑑𝑑
𝑑𝑑𝑑𝑑 (·) = ∇1(·) are the divergence and gradient operators acting in the tangent space of

Ω1, 𝑢𝑢1 is the tangential fracture velocity, the term in parentheses represents the jump in normal fluxes from
the adjacent interfaces Γ1 and Γ2 onto Ω1, and 𝑓𝑓1 is an external source.

The tangential velocity 𝑢𝑢1 is again expressed via Darcy’s law (2b), where in a slight abuse of notation,
we use 𝒦𝒦1 to refer to the tangential component of the fracture permeability, which is again assumed to
be positive and bounded from above. Finally, (2c) and (2d) are the Neumann and Dirichlet boundary
conditions, respectively. Again, we use 𝑔𝑔𝐷𝐷𝐷1 to denote a prescribed function on the Dirichlet part of the
fracture boundary.

To close the system of equations, we must specify a constitutive relationship for the interface fluxes.
Here, we use a Darcy-type law [39], where mortar fluxes are linearly related to pressure jumps

𝜆𝜆1 = −𝜅𝜅1 (𝑝𝑝1 − 𝑝𝑝2) , on Γ1, (3a)
𝜆𝜆2 = −𝜅𝜅2 (𝑝𝑝1 − 𝑝𝑝2) , on Γ2, (3b)

with 𝜅𝜅1 and 𝜅𝜅2 representing the effective normal permeability on Γ1 and Γ2, respectively. We restrict
our analysis to the case where 𝜅𝜅1 and 𝜅𝜅2 are non-degenerate. Thus, following [17], we further require the
existence of two constants 𝛾𝛾1 and 𝛾𝛾2 such that 0 < 𝛾𝛾1 ≤ 𝜅𝜅−1

𝑗𝑗 ≤ 𝛾𝛾2 < ∞ for 𝑗𝑗 ∈ {1, 2}.

2.2 Functional spaces and variational formulations

Let us now present the primal weak formulation of the single fracture model from the previous section. To
this aim, consider first the energy space with vanishing traces on Dirichlet boundaries

𝐻𝐻1
0 (Ω𝑖𝑖) = {𝑞𝑞𝑖𝑖 ∈ 𝐻𝐻1(Ω𝑖𝑖) : tr𝜕𝜕𝐷𝐷Ω𝑖𝑖

𝑞𝑞𝑖𝑖 = 0}, (4)

and the product spaces

𝐻𝐻1(Ω) = 𝐻𝐻1(Ω1) × 𝐻𝐻1(Ω2) and 𝐻𝐻1
0 (Ω) = 𝐻𝐻1

0 (Ω1) × 𝐻𝐻1
0 (Ω2). (5)

Furthermore, let ⟨·, ·⟩Ω𝑖𝑖
and ⟨·, ·⟩Γ𝑗𝑗

denote respectively the 𝐿𝐿2–inner products on Ω𝑖𝑖 and Γ𝑗𝑗 , and ‖·‖Ω𝑖𝑖

and ‖·‖Γ𝑗𝑗
the relevant 𝐿𝐿2–norms. Finally, we denote by 𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2] ∈ 𝐻𝐻1(Ω) two functions extending

the boundary data into the domains, and thus satisfying tr𝜕𝜕𝐷𝐷Ω𝑖𝑖
𝑔𝑔𝑖𝑖 = 𝑔𝑔𝐷𝐷𝐷𝐷𝐷. We now state the primal weak

problem as:

Definition 1 (Primal weak formulation for a single fracture). Let 𝑝𝑝 = [𝑝𝑝1, 𝑝𝑝2] and 𝑔𝑔 = [𝑔𝑔1, 𝑔𝑔2] ∈ 𝐻𝐻1(Ω). Then
find 𝑝𝑝 ∈ 𝐻𝐻1

0 (Ω) + 𝑔𝑔 such that

2∑︁
𝑖𝑖=1

⟨𝒦𝒦𝑖𝑖 ∇𝑖𝑖 𝑝𝑝𝑖𝑖, ∇𝑖𝑖 𝑞𝑞𝑖𝑖⟩Ω𝑖𝑖
+

2∑︁
𝑗𝑗=1

⟨︀
𝜅𝜅𝑗𝑗

(︀
𝑝𝑝1 − tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2

)︀
, 𝑞𝑞1 − tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

⟩︀
Γ𝑗𝑗

=
2∑︁

𝑖𝑖=1
⟨𝑓𝑓𝑖𝑖, 𝑞𝑞𝑖𝑖⟩Ω𝑖𝑖

, ∀ 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2] ∈ 𝐻𝐻1
0 (Ω). (6)

Refer to Appendix A.1 for the derivation of the primal weak form from the strong form in Section 2.1. We
see directly from equation (6) that the primal weak form has a minimization structure subject to the stated
conditions on 𝒦𝒦𝑖𝑖 and 𝜅𝜅𝑗𝑗 , and well-posedness follows by standard arguments.
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A dual weak form for the model problem, with explicit representation of the subdomain velocities and
mortar fluxes, can also be constructed. We first define the space 𝐻𝐻(div; Ω𝑖𝑖, 𝜕𝜕𝑋𝑋Ω) as the space of 𝐿𝐿2-vector
functions on Ω𝑖𝑖 with weak divergence in 𝐿𝐿2(Ω𝑖𝑖) and zero trace on the part of the boundary indicated by
𝜕𝜕𝑋𝑋Ω. Then, we denote the product spaces of 𝐻𝐻(div)-functions that are zero on Neumann, and on Neumann
and internal boundaries as:

𝑉𝑉 = 𝐻𝐻(div; Ω1, 𝜕𝜕𝑁𝑁 Ω1) × 𝐻𝐻(div; Ω2, 𝜕𝜕𝑁𝑁 Ω2), (7)
𝑉𝑉0 = 𝐻𝐻(div; Ω1, 𝜕𝜕𝑁𝑁 Ω1) × 𝐻𝐻(div; Ω2, 𝜕𝜕𝑁𝑁 Ω2 ∪ 𝜕𝜕1Ω2 ∪ 𝜕𝜕2Ω2). (8)

Furthermore, we define the 𝐿𝐿2-product spaces on the domains:

𝐿𝐿2(Ω) = 𝐿𝐿2(Ω1) × 𝐿𝐿2(Ω2), 𝐿𝐿2(Γ) = 𝐿𝐿2(Γ1) × 𝐿𝐿2(Γ2). (9)

With these spaces in hand, we consider the standard linear extension operators from internal boundaries
onto domains denoted ℛ𝑗𝑗 := 𝐿𝐿2(Γ𝑗𝑗) → 𝐻𝐻(div; Ω2, 𝜕𝜕𝑁𝑁 Ω2), such that ℛ𝑗𝑗 satisfies for all 𝜆𝜆𝑗𝑗 ∈ 𝐿𝐿2(Γ𝑗𝑗)

tr𝜕𝜕𝑗𝑗Ω2 (ℛ𝑗𝑗 𝜆𝜆𝑗𝑗) · 𝑛𝑛2 =

{︃
𝜆𝜆𝑗𝑗 on 𝜕𝜕𝑗𝑗Ω2

0 on 𝜕𝜕Ω ∖ 𝜕𝜕𝑗𝑗Ω2
. (10)

The precise choice of the extension operator ℛ𝑗𝑗 is not important; however, the natural choice based on
the solution of an auxiliary elliptic equation is reasonable [17]. We naturally extend the definition of
ℛ𝑗𝑗 to ℛ := 𝐿𝐿2(Γ) → 𝑉𝑉 by requiring that for [𝜆𝜆1, 𝜆𝜆2] ∈ 𝐿𝐿2(Γ), then [𝑢𝑢1, 𝑢𝑢2] = ℛ𝜆𝜆 satisfies 𝑢𝑢1 = 0 and
𝑢𝑢2 = ℛ1𝜆𝜆1 + ℛ2𝜆𝜆2.

The above constructions allow us to represent subdomain fluxes as

𝑢𝑢 = 𝑢𝑢0 + ℛ𝜆𝜆𝜆 (11)

where 𝑢𝑢0 ∈ 𝑉𝑉0 and 𝜆𝜆 ∈ 𝐿𝐿2(Γ). This motivates the construction of a compound 𝐻𝐻(div)-type spaces, as

𝐻𝐻(div; Ω, Γ) = 𝑉𝑉0 × 𝐿𝐿2(Γ). (12)

This construction will become key when we generalize to more complex geometries in the next section.

Remark 1 (On the regularity of 𝐻𝐻(div; Ω, Γ)). It is worth remarking that the restriction of space 𝐻𝐻(div; Ω, Γ)
to the domain Ω2 has slightly enhanced regularity relative to the standard space 𝐻𝐻(div; Ω2), as this latter
space has normal traces which do not lie in 𝐿𝐿2(Γ1) nor 𝐿𝐿2(Γ2).

Definition 2 (Dual weak formulation for a single fracture.). Let 𝑢𝑢0 = [𝑢𝑢0,1, 𝑢𝑢0,2], 𝜆𝜆 = [𝜆𝜆1, 𝜆𝜆2], 𝑝𝑝 = [𝑝𝑝1, 𝑝𝑝2].
Then find (𝑢𝑢0, 𝜆𝜆𝜆𝜆𝜆 ) ∈ 𝐻𝐻(div; Ω, Γ) × 𝐿𝐿2(Ω) such that

⟨︀
𝒦𝒦−1

2 (𝑢𝑢0,2 + ℛ1𝜆𝜆1 + ℛ2𝜆𝜆2), 𝑣𝑣0,2
⟩︀

Ω2
+

⟨︀
𝒦𝒦−1

1 𝑢𝑢0,1, 𝑣𝑣0,1
⟩︀

Ω1

−
2∑︁

𝑖𝑖=1
⟨𝑝𝑝𝑖𝑖, ∇𝑖𝑖 · 𝑣𝑣0,𝑖𝑖⟩Ω𝑖𝑖

= −
2∑︁

𝑖𝑖=1
⟨𝑔𝑔𝐷𝐷𝐷𝐷𝐷, tr 𝑣𝑣0,𝑖𝑖 · 𝑛𝑛𝑖𝑖⟩𝜕𝜕𝐷𝐷Ω𝑖𝑖

, ∀ 𝑣𝑣0 = [𝑣𝑣0,1, 𝑣𝑣0,2] ∈ 𝑉𝑉0, (13a)

⟨︀
𝒦𝒦−1

2 (𝑢𝑢0,2 + ℛ1𝜆𝜆1 + ℛ2𝜆𝜆2), ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2
⟩︀

Ω2
− ⟨𝑝𝑝2, ∇2 · (ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2)⟩Ω2

+
2∑︁

𝑗𝑗=1

⟨
𝜅𝜅−1

𝑗𝑗 𝜆𝜆𝑗𝑗 , 𝜈𝜈𝑗𝑗

⟩
Γ𝑗𝑗

+ ⟨𝑝𝑝1, 𝜈𝜈1 + 𝜈𝜈2⟩Ω1
= 0, ∀ 𝜈𝜈 = [𝜈𝜈1, 𝜈𝜈2] ∈ 𝐿𝐿2(Γ), (13b)

⟨∇2 · (𝑢𝑢0,2 + ℛ1𝜆𝜆1 + ℛ2𝜆𝜆2), 𝑞𝑞2⟩Ω2
+ ⟨∇1 · 𝑢𝑢0,1, 𝑞𝑞1⟩Ω1

− ⟨𝜆𝜆1 + 𝜆𝜆2, 𝑞𝑞1⟩Ω1

=
2∑︁

𝑖𝑖=1
⟨𝑓𝑓𝑖𝑖, 𝑞𝑞𝑖𝑖⟩Ω𝑖𝑖

, ∀ 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2] ∈ 𝐿𝐿2(Ω). (13c)

Refer to Appendix A.2 for the derivation.

Remark 2 (Well-posedness). The variational formulation from Definition 2 can be classified as a saddle point
structure, for which well-posedness results have been established for fracture networks, see e.g. Theorem 2.5
from [17].
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2.3 A first a posteriori error estimate for the primal variable

Having the functional spaces and weak formulations formally introduced, in this section, we provide a first
upper bound for an approximation to the primal variable 𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2] ∈ 𝐻𝐻1

0 (Ω) + 𝑔𝑔 for the case of a single
fracture in the energy norm

|||𝑞𝑞|||2 :=
2∑︁

𝑖𝑖=1

⃦⃦
⃦𝒦𝒦

1
2
𝑖𝑖 ∇𝑖𝑖 𝑞𝑞𝑖𝑖

⃦⃦
⃦

2

Ω𝑖𝑖

+
2∑︁

𝑗𝑗=1

⃦⃦
⃦𝜅𝜅

1
2
𝑗𝑗

(︀
𝑞𝑞1 − tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

)︀⃦⃦
⃦

2

Γ𝑗𝑗

. (14)

Theorem 1 (A first upper bound for the primal variable). Let 𝑝𝑝 ∈ 𝐻𝐻1
0 (Ω) + 𝑔𝑔 be the solution to the primal

weak form (6) with 𝜕𝜕𝐷𝐷Ω1 non-empty. Then for any 𝑞𝑞 ∈ 𝐻𝐻1
0 (Ω) + 𝑔𝑔, it holds that

|||𝑝𝑝 − 𝑞𝑞||| ≤
2∑︁

𝑖𝑖=1
𝜂𝜂DF,Ω𝑖𝑖

+
2∑︁

𝑗𝑗=1
𝜂𝜂DF,Γ𝑗𝑗

+
2∑︁

𝑖𝑖=1
𝜂𝜂R,Ω𝑖𝑖

, ∀ [𝑣𝑣0, 𝜈𝜈] ∈ 𝐻𝐻(div; Ω, Γ), (15)

with

𝜂𝜂DF,Ω1 =
⃦⃦
⃦𝒦𝒦− 1

2
1 (𝑣𝑣0,1 + 𝒦𝒦1∇1 𝑞𝑞1)

⃦⃦
⃦

Ω1
, (16a)

𝜂𝜂DF,Ω2 =
⃦⃦
⃦𝒦𝒦− 1

2
2 (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2 + 𝒦𝒦2∇2 𝑞𝑞2)

⃦⃦
⃦

Ω2
, (16b)

𝜂𝜂DF,Γ1 =
⃦⃦
⃦𝜅𝜅

− 1
2

1 (𝜈𝜈1 + 𝜅𝜅1 (𝑞𝑞1 − tr𝜕𝜕1Ω2 𝑞𝑞2))
⃦⃦
⃦

Γ1
, (16c)

𝜂𝜂DF,Γ2 =
⃦⃦
⃦𝜅𝜅

− 1
2

2 (𝜈𝜈2 + 𝜅𝜅2 (𝑞𝑞1 − tr𝜕𝜕2Ω2 𝑞𝑞2))
⃦⃦
⃦

Γ2
, (16d)

𝜂𝜂R,Ω1 = 𝐶𝐶Ω1‖𝑓𝑓1 − ∇1 · 𝑣𝑣0,1 + 𝜈𝜈1 + 𝜈𝜈2‖Ω1
, (16e)

𝜂𝜂R,Ω2 = 𝐶𝐶Ω2‖𝑓𝑓2 − ∇2 · (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2)‖Ω2
, (16f)

where 𝐶𝐶Ω1 and 𝐶𝐶Ω2 are the permeability-weighted Poincaré-Friedrichs constants for Ω1 and Ω2:

𝐶𝐶Ω𝑖𝑖
:= sup

𝑞𝑞∈𝐻𝐻1
0,𝐷𝐷

(Ω𝑖𝑖)

‖𝑞𝑞‖Ω𝑖𝑖⃦⃦
⃦𝒦𝒦

1
2
𝑖𝑖 ∇𝑖𝑖𝑞𝑞

⃦⃦
⃦

Ω𝑖𝑖

. (17)

Proof. Refer to Appendix B for the proof.

Remark 3 (Nature of the estimators). The upper bound (15) is a guaranteed upper bound for the deviation
between the primal solution 𝑝𝑝 ∈ 𝐻𝐻1

0 (Ω) + 𝑔𝑔 and an arbitrary approximation 𝑞𝑞 ∈ 𝐻𝐻1
0 (Ω) + 𝑔𝑔 in the energy

space. There are three types of contributions to the upper bound: (i) diffusive flux estimators (16a) and
(16b) measuring the difference between the approximate fluxes 𝑣𝑣0 + ℛ𝜈𝜈 ∈ 𝑉𝑉 and fluxes obtained from
𝐻𝐻1

0 (Ω)-potentials 𝑞𝑞, (ii) domain coupling estimators (16c) and (16d) measuring how close the approximate
normal fluxes 𝜈𝜈 ∈ 𝐿𝐿2(Γ) are to the jump in 𝐻𝐻1

0 (Ω)-potentials 𝑞𝑞, and (iii) residual estimators (16e) and (16f)
measuring the difference between the exact source term and the divergence of the approximate flux plus the
jump in adjacent approximate normal fluxes. An important detail is that the approximate cross-domain
fluxes 𝜈𝜈1 and 𝜈𝜈2 enter into the residual estimators of both the higher- and lower-dimensional subdomain.

Remark 4 (Sharpness of the estimates). The estimates above are in principle sharp, as can be shown by
standard arguments [57]. However, in practice, we will often have access to additional information about
the approximate solution (most commonly if it is derived with a local conservation property). This allows
for improvements in the residual estimators (16f) and (16e), as we will show in Section 5.2.

It is clear that even for this fairly simple configuration, the variational formulations (and the analysis in
general) can be quite cumbersome. The situation escalates in complexity when intersecting fractures (see
Figure 3) are part of the geometric configuration, in particular as the proof of Theorem 1 relies on all
subdomains having some non-vanishing Dirichlet boundary. Indeed, when floating subdomains (e.g., fully
embedded fractures or isolated rock domains) are present in the fracture network, the standard procedure
used in Theorem 1 can no longer be applied directly. Thus, in the remainder of the paper, we deal with
these challenges in a more general framework.
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Fig. 3: Mixed-dimensional geometric decomposition of a fracture network. Left: The domain 𝑌𝑌 is decomposed into two
2d matrices (Ω9 and Ω10), four 1d fractures (Ω5, Ω6, Ω7, and Ω8), one 0d fracture intersection point (Ω4), and three 0d
fracture end-points (Ω1, Ω2, Ω3). Note that we allow fractures and other lower-dimensional subdomains to form parts of
the boundary of the domain (e.g., Ω5 with its endpoints Ω1 and Ω2). Center: Interfaces between subdomains. Right: Sub-
domain boundaries. Internal boundaries are depicted in red, whereas fracture’s boundaries touching the ambient boundary
are depicted in green.

3 Extension to fracture networks
In this section, we extend the single fracture model to account for several subdomains as part of a general
fracture network. Our vocabulary is motivated by the physical case of 𝑛𝑛 = 3, where the surrounding rock is
composed of simply connected 3d subdomains, fractures are simply connected planar 2d subdomains, the
intersection between such fractures are 1d lines, and the intersection between fracture intersections are 0d
points (see Figure 3 for an example with 𝑛𝑛 = 2).

We start with the classical description and then introduce the mD notation. The rest of the section is
devoted to introducing key tools that are necessary to perform the analysis in an mD setting.

3.1 Mixed-dimensional geometric representation

The derivation of a posteriori estimates for generic fracture networks greatly benefits from an mD decom-
position of the domain of interest, and we therefore follow the approach of [17]. We start by considering
an 𝑛𝑛–dimensional contractible domain 𝑌𝑌 ⊂ R𝑛𝑛, 𝑛𝑛 ∈ {2, 3}, decomposed into 𝑚𝑚 planar, open and non-
intersecting subdomains Ω𝑖𝑖 of different dimensionality 𝑑𝑑𝑖𝑖 = 𝑑𝑑(𝑖𝑖), such that 𝑌𝑌 = ∪𝑚𝑚

𝑖𝑖=1Ω𝑖𝑖 (see left Figure 3).
The partitioning is constrained such that any 𝑑𝑑-dimensional subdomain (for 𝑑𝑑 𝑑 𝑑𝑑) is always either the
intersection of the closure of two or more subdomains of dimension 𝑑𝑑 + 1, or a cut in a domain of dimension
𝑑𝑑 + 1. This hierarchical structure excludes e.g., a 1d line or a 0d point embedded directly in a 3d domain.

We adopt a structure where neighboring subdomains one dimension apart are connected via interfaces,
denoted by Γ𝑗𝑗 for 𝑗𝑗 ∈ {1, . . . , 𝑀𝑀}. To be precise, let Γ𝑗𝑗 be the interface between subdomains indexed by
𝚥𝚥 and 𝚥𝚥 of dimension 𝑑𝑑 and 𝑑𝑑 + 1, respectively. Then Γ𝑗𝑗 = Ω𝚥𝚥 (see center Figure 3), and furthermore, we
denote the adjacent boundary of Ω𝚥𝚥 by Γ𝑗𝑗 = 𝜕𝜕𝑗𝑗Ω𝚥𝚥. We emphasize that while the internal boundary 𝜕𝜕𝑗𝑗Ω𝚥𝚥

is defined to spatially coincide with the interface Γ𝑗𝑗 , which in turn coincides with the lower-dimensional
subdomain Ω𝚥𝚥, their distinction is crucial to define variables properly.

To keep track of the connections from subdomains to interfaces, we introduce the sets 𝒮𝒮𝑖𝑖 and 𝒮𝒮𝑖𝑖,
containing the indices of the higher-dimensional (respectively lower-dimensional) neighboring interfaces
of Ω𝑖𝑖, as illustrated in the right panel of Figure 3. These sets are dual to 𝚥𝚥 and 𝚥𝚥 defined in the previous
paragraph, thus for all 𝑗𝑗 ∈ 𝒮𝒮𝑖𝑖, it holds that 𝚥𝚥 = 𝑖𝑖, while for all 𝑗𝑗 ∈ 𝒮𝒮𝑖𝑖, it holds that 𝚥𝚥 = 𝑖𝑖.
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We will be interested in defining functions on the above stated partition of the domain and the interfaces.
This motivates us to define the disjoint unions

Ω =
𝑚𝑚⨆︁

𝑖𝑖=1
Ω𝑖𝑖 and Γ =

𝑀𝑀⨆︁
𝑗𝑗=1

Γ𝑗𝑗 . (18)

A complete mixed-dimensional partitioning, including both subdomain and interfaces, is given by Ω ⊔ Γ.
In order to speak of boundary conditions, we introduce the decomposition of the boundary of Ω. Let 𝜕𝜕Ω

be partitioned into its Neumann, Dirichlet, and internal parts. That is, we define 𝜕𝜕Ω = 𝜕𝜕𝑁𝑁 Ω ∪ 𝜕𝜕𝐷𝐷Ω ∪ 𝜕𝜕𝐼𝐼Ω,
where 𝜕𝜕𝑁𝑁 Ω = ∪𝑚𝑚

𝑖𝑖=1𝜕𝜕𝑁𝑁 Ω𝑖𝑖, 𝜕𝜕𝐷𝐷Ω = ∪𝑚𝑚
𝑖𝑖=1𝜕𝜕𝐷𝐷Ω𝑖𝑖, and 𝜕𝜕𝐼𝐼Ω = ∪𝑚𝑚

𝑖𝑖=1 ∪𝑗𝑗∈𝒮𝒮𝑖𝑖
𝜕𝜕𝑗𝑗Ω𝑖𝑖. Finally, to ensure the existence

of a unique solution, we require 𝜕𝜕𝐷𝐷Ω ̸= ∅.

3.2 The model problem for a fracture network

Let us now present the model problem valid for 𝑚𝑚 subdomains of dimensionality 0 to 𝑛𝑛, and 𝑀𝑀 interfaces of
dimensionality 0 to 𝑛𝑛 − 1. Our model summarizes the derivations given in recent literature [17, 34, 45]. For
all domains Ω𝑖𝑖, we consider a scalar pressure 𝑝𝑝𝑖𝑖 together with a flux 𝑢𝑢𝑖𝑖 in the tangent space of the domain.
On all interfaces Γ𝑗𝑗 , we consider a scalar coupling flux 𝜆𝜆𝑗𝑗 , oriented as positive for flow from the higher
dimensional domain Ω𝚥𝚥. We will, in this section, assume sufficient regularity that the strong form makes
sense, and return to the weak formulation in later sections. The governing equations from the previous
section then generalize as

∇𝑖𝑖 · 𝑢𝑢𝑖𝑖 −
∑︀

𝑗𝑗∈𝑆𝑆𝑖𝑖
𝜆𝜆𝑗𝑗 = 𝑓𝑓𝑖𝑖, in Ω𝑖𝑖, 𝑖𝑖 ∈ {1, . . . , 𝑚𝑚}, (19a)

𝑢𝑢𝑖𝑖 = −𝒦𝒦𝑖𝑖∇𝑖𝑖 𝑝𝑝𝑖𝑖, in Ω𝑖𝑖, 𝑖𝑖 ∈ {1, . . . , 𝑚𝑚}, 𝑑𝑑𝑖𝑖 ̸= 0, (19b)
𝜆𝜆𝑗𝑗 = −𝜅𝜅𝑗𝑗

(︀
𝑝𝑝𝚥𝚥 − 𝑝𝑝𝚥𝚥

)︀
, on Γ𝑗𝑗 , 𝑗𝑗 ∈ {1, . . . , 𝑀𝑀}, (19c)

𝑢𝑢𝚥𝚥 · 𝑛𝑛𝚥𝚥 = 𝜆𝜆𝑗𝑗 , on 𝜕𝜕𝑗𝑗Ω𝚥𝚥, 𝑗𝑗 ∈ {1, . . . , 𝑀𝑀}, (19d)
𝑢𝑢𝑖𝑖 · 𝑛𝑛𝑖𝑖 = 0, on 𝜕𝜕𝑁𝑁 Ω𝑖𝑖, 𝑖𝑖 ∈ {1, . . . , 𝑚𝑚}, (19e)

𝑝𝑝𝑖𝑖 = 𝑔𝑔𝐷𝐷𝐷𝐷𝐷, on 𝜕𝜕𝐷𝐷Ω𝑖𝑖, 𝑖𝑖 ∈ {1, . . . , 𝑚𝑚}. (19f)

In (19a), the summation captures the contribution of fluxes from the adjacent interfaces to Ω𝑖𝑖, and can
be seen as a generalization of the second term in (2a). Note that for 𝑑𝑑𝑖𝑖 = 𝑛𝑛, the set 𝑆𝑆𝑖𝑖 = ∅, and thus the
jump operator, evaluates to zero in the highest-dimensional domains. Conversely, in (19a), the differential
term ∇𝑖𝑖 · 𝑢𝑢𝑖𝑖 is void whenever 𝑑𝑑𝑖𝑖 = 0, as there is no tangent space to a point in all subdomains, and indeed,
we will not consider the 𝑢𝑢𝑖𝑖 defined on these domains, which justifies why equation (19b) are not applied to
0d domains.

We are now ready to recast the model problem in mD notation, building on the product space structures
introduced in Section 2.2. Let us start by defining the mD pressure as the ordered collection of subdomain
pressures p := [𝑝𝑝𝑖𝑖] ∈ 𝐶𝐶Ω, i.e. scalar functions on Ω. We now decompose the fluxes as in (11), so that

𝑢𝑢𝑖𝑖 = 𝑢𝑢0,𝑖𝑖 +
∑︀

𝑗𝑗∈𝒮𝒮𝑖𝑖
ℛ𝑗𝑗𝜆𝜆𝑗𝑗 (20)

such that 𝑢𝑢0,𝑖𝑖 satisfies 𝑢𝑢0,𝑖𝑖 · 𝑛𝑛𝑖𝑖 = 0 for all 𝑗𝑗 ∈ 𝒮𝒮𝑖𝑖, and where the reconstruction operator is generalized as
ℛ𝑗𝑗 : 𝐶𝐶Γ𝑗𝑗 → 𝐶𝐶Ω𝚥𝚥 satisfying:

tr𝜕𝜕𝑗𝑗Ω𝚥𝚥
(ℛ𝑗𝑗 𝜆𝜆𝑗𝑗) · 𝑛𝑛𝚥𝚥 =

{︃
𝜆𝜆𝑗𝑗 on 𝜕𝜕𝑗𝑗Ω𝚥𝚥

0 on 𝜕𝜕Ω𝚥𝚥 ∖ 𝜕𝜕𝑗𝑗Ω𝚥𝚥

. (21)

This allows us to define the mD flux as the internal (tangential) domain fluxes and (normal) interface
fluxes u := [𝑢𝑢0,𝑖𝑖, 𝜆𝜆𝑗𝑗 ] ∈ 𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ, i.e. the pairing of sections of the tangent bundle 𝑇𝑇Ω together with
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scalar functions on Γ. By the subscript 𝐶𝐶0𝑇𝑇Ω, we indicate that both 𝑢𝑢𝑖𝑖 · 𝑛𝑛𝑖𝑖 = 0 on all 𝜕𝜕𝑗𝑗Ω𝑖𝑖, where 𝑗𝑗 ∈ 𝒮𝒮𝑖𝑖,
and also 𝑢𝑢𝑖𝑖 · 𝑛𝑛𝑖𝑖 = 0 on 𝜕𝜕𝑁𝑁 Ω𝑖𝑖.

We now define a generalized divergence operator D · (·) : 𝐶𝐶0𝑇𝑇 Ω × 𝐶𝐶Γ → 𝐶𝐶Ω which acts on the mD flux
in accordance with the left-hand side of (19a):

D · u = D · [𝑢𝑢0,𝑖𝑖, 𝜆𝜆𝑗𝑗 ] = q, (22)

where q = [𝑞𝑞𝑖𝑖] ∈ 𝐶𝐶Ω is a scalar function for each domain Ω𝑖𝑖, defined by:

𝑞𝑞𝑖𝑖 := ∇𝑖𝑖 ·
(︁

𝑢𝑢0,𝑖𝑖 +
∑︀

𝑗𝑗∈𝒮𝒮𝑖𝑖
ℛ𝑗𝑗𝜆𝜆𝑗𝑗

)︁
−

∑︀
𝑗𝑗∈𝒮𝒮𝑖𝑖

𝜆𝜆𝑗𝑗 (23)

Similarly, we define an mD gradient operator D (·) : 𝐶𝐶Ω → 𝐶𝐶𝐶𝐶Ω × 𝐶𝐶Γ acting on the mD pressure in
accordance with the right-hand sides of equations (19b) and (19c):

D p = D [𝑝𝑝𝑖𝑖] = v, (24)

where v = [𝑣𝑣0,𝑖𝑖, 𝜈𝜈𝑗𝑗 ] ∈ 𝐶𝐶𝐶𝐶Ω × 𝐶𝐶Γ has the same structure as the mD flux (but without the boundary
conditions), such that for all 𝑖𝑖 ∈ {1, . . . , 𝑚𝑚} and 𝑗𝑗 ∈ {1, . . . , 𝑀𝑀}, it holds that

𝜈𝜈𝑗𝑗 := 𝑝𝑝𝚥𝚥 − 𝑝𝑝𝚥𝚥, 𝑣𝑣0,𝑖𝑖 := ∇𝑖𝑖 𝑝𝑝𝑖𝑖 −
∑︀

𝑗𝑗∈𝒮𝒮𝑖𝑖
ℛ𝑗𝑗𝜈𝜈𝑗𝑗 . (25)

Recalling that the full flux 𝑣𝑣𝑖𝑖 is recovered from equation (20), we note that the second term above is simply
the gradient on each subdomain. We will, in Section 3.3, further justify the terminology “divergence” and
“gradient” due to the fact that these operators satisfy an integration-by-parts property with respect to the
suitable inner products, and are thus adjoints (subject to appropriate boundary conditions).

Material parameters are collected into the mD permeability K : 𝐶𝐶𝐶𝐶Ω × 𝐶𝐶Γ → 𝐶𝐶𝐶𝐶Ω × 𝐶𝐶Γ, defined such
that for

− Kv = −K [𝑣𝑣0,𝑖𝑖, 𝜈𝜈𝑗𝑗 ] = u, (26)

then from the model given in equation (19), we recognize the desired relationships

𝜆𝜆𝑗𝑗 = −𝜅𝜅𝑗𝑗𝜈𝜈𝑗𝑗 , 𝑢𝑢𝑖𝑖 = −𝒦𝒦𝑖𝑖𝑣𝑣𝑖𝑖. (27)

The second term, corresponding to Darcy’s law, can be rewritten in terms of the decomposition u = [𝑢𝑢0,𝑖𝑖, 𝜆𝜆𝑗𝑗 ]
from equation (20) as:

𝑢𝑢0,𝑖𝑖 = −𝒦𝒦𝑖𝑖

(︁
𝑣𝑣0,𝑖𝑖 +

∑︀
𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜈𝜈𝑗𝑗

)︁
−

∑︀
𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜆𝜆𝑗𝑗 . (28)

The presence of the extra terms arising from the decomposition is analogous to that in (19).
We note that the restriction u ∈ 𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ, implicitly places constraints (depending on the material

constants K and via the definition of D ) on the admissible pressures p. This space of admissible pressures
can be understood as the domain of the restricted operator KD : 𝐶𝐶Ω → 𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ.

In view of the mD variables and operators defined above, and subject to the right-hand side data
f = [𝑓𝑓𝑖𝑖] ∈ 𝐶𝐶Ω and the boundary data g𝐷𝐷 = [𝑔𝑔𝐷𝐷𝐷𝐷𝐷] ∈ 𝐶𝐶𝐶𝐶𝐷𝐷Ω, a straightforward substitution of definitions
shows that problem (19) is equivalent to the concisely stated mD elliptic problem

u = −KD p, in Ω × Γ, (29a)
D · u = f, in Ω, (29b)

p = g𝐷𝐷, on 𝜕𝜕𝐷𝐷Ω, (29c)

defined for u ∈ 𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ and p ∈ 𝐶𝐶Ω.

Remark 5 (Internal Neumann boundaries). For simplicity of exposition, the domain 𝑌𝑌 is taken as contractible,
and Ω𝑖𝑖 is considered a partitioning of 𝑌𝑌 . However, the reader will appreciate that these assumptions can be
relaxed. Most importantly, from the perspective of applications (as discussed in Section 2.1), some internal
interfaces may be modeled as impermeable, i.e. 𝜆𝜆𝑗𝑗 = 0. We refer to the remaining (permeable) interfaces
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as Ξ ⊂ {0, . . . , 𝑀𝑀}. The impermeable interfaces are then excluded from the problem, and considered as
internal Neumann interfaces. To be precise, we define a reduced disjoint union of interface domains

Γ =
⨆︁
𝑗𝑗∈Ξ

Γ𝑗𝑗 .

The internal Neumann boundaries may partition the domain into disconnected parts. We refer to a subdomain
as “Dirichlet-connected”, denoted 𝑖𝑖 ∈ 𝜉𝜉 if either (1) 𝜕𝜕𝐷𝐷Ω𝑖𝑖 ̸= ∅, or (2) there exists some 𝑗𝑗 ∈ 𝒮𝒮𝑖𝑖 such that
𝚥𝚥 ∈ 𝜉𝜉, or (3) there exists some 𝑗𝑗 ∈ 𝒮𝒮𝑖𝑖 such that 𝚥𝚥 ∈ 𝜉𝜉. This allows us to construct a reduced disjoint union
of subdomains

Ω =
⨆︁
𝑖𝑖∈𝜉𝜉

Ω𝑖𝑖.

All the derivations in the continuation are equally valid for these reduced product domains.

Remark 6 (Extensions to the model equations). The results of this paper can with minor modifications be
extended to non-zero Neumann boundary conditions, and with some additional effort to the class of
non-planar geometries considered in [19]. However, as this generality is typically not needed for applications,
we restrict the presentation as indicated above.

3.3 Variational formulations in mixed-dimensional notation

Before writing the variational formulations in mD notation, let us first define the relevant mD inner products
and norms. Consider the following inner-products

⟨q, r⟩Ω =
𝑚𝑚∑︁

𝑖𝑖=1
⟨𝑞𝑞𝑖𝑖, 𝑟𝑟𝑖𝑖⟩Ω𝑖𝑖

∀ q = [𝑞𝑞𝑖𝑖], r = [𝑟𝑟𝑖𝑖] ∈ 𝐿𝐿2Ω, (30)

⟨v,w⟩Ω,Γ =
𝑚𝑚∑︁

𝑖𝑖=1

(︃⟨(︁
𝑣𝑣0,𝑖𝑖 +

∑︀
𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜈𝜈𝑗𝑗

)︁
,
(︁

𝑤𝑤0,𝑖𝑖 +
∑︀

𝑗𝑗∈𝒮𝒮𝑖𝑖
ℛ𝑗𝑗𝜇𝜇𝑗𝑗

)︁⟩
Ω𝑖𝑖

+
∑︁

𝑗𝑗∈𝑆𝑆𝑖𝑖

⟨𝜈𝜈𝑗𝑗 , 𝜇𝜇𝑗𝑗⟩Γ𝑗𝑗

)︃
∀ v = [𝑣𝑣0,𝑖𝑖, 𝜈𝜈𝑗𝑗 ],w = [𝑤𝑤0,𝑖𝑖, 𝜇𝜇𝑗𝑗 ] ∈ 𝐿𝐿2𝑇𝑇Ω × 𝐿𝐿2Γ, (31)

⟨q, r⟩𝜕𝜕𝑋𝑋 Ω =
𝑚𝑚∑︁

𝑖𝑖=1
⟨𝑞𝑞𝑖𝑖, 𝑟𝑟𝑖𝑖⟩𝜕𝜕𝑋𝑋 Ω𝑖𝑖

∀ q = [𝑞𝑞𝑖𝑖], r = [𝑟𝑟𝑖𝑖] ∈ 𝐿𝐿2𝜕𝜕𝑋𝑋Ω, (32)

and their respective induced norms

‖q‖2
Ω = ⟨q, q⟩Ω, ‖v‖2

Ω,Γ = ⟨v, v⟩Ω,Γ, ‖q‖2
𝜕𝜕𝑋𝑋 Ω = ⟨q, q⟩𝜕𝜕𝑋𝑋 Ω. (33)

With these inner products, the previously defined mD divergence satisfy the following integration-by-
parts formula [17, 19] whenever v ∈ 𝐶𝐶𝐶𝐶Ω × 𝐶𝐶Γ and q ∈ 𝐶𝐶Ω:

⟨q,D · v⟩Ω + ⟨D q, v⟩Ω,Γ = ⟨T𝐷𝐷q,T𝐷𝐷v⟩𝜕𝜕𝐷𝐷Ω + ⟨T𝑁𝑁q,T𝑁𝑁v⟩𝜕𝜕𝑁𝑁 Ω. (34)

In the above the restriction to the boundary is denoted T𝑋𝑋(·) (for 𝑋𝑋 = 𝐷𝐷𝐷 𝐷𝐷), which depending on context
acts as the boundary values of pressure variables, T𝑋𝑋(·) : 𝐶𝐶Ω → 𝐶𝐶𝐶𝐶𝑋𝑋Ω, or the normal component of flux
variables, T𝑋𝑋(·) : 𝐶𝐶𝐶𝐶Ω × 𝐶𝐶Γ → 𝐶𝐶𝐶𝐶𝑋𝑋Ω.

From the product structure in the definition of the 𝐶𝐶 and 𝐿𝐿2 spaces, the continuous spaces inherit their
density from the individual subdomains to the product spaces on Ω and Γ. We can thus follow standard
procedures to obtain weak extensions of the mD differential operators, the boundary restriction (trace)
operators, and the corresponding function spaces [2, 10, 51]. We elaborate this below.

Due to the density of 𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ in 𝐿𝐿2𝑇𝑇Ω × 𝐿𝐿2Γ, the mD divergence from Section 3.2 is a densely
defined unbounded linear operator on the latter space D· : 𝐿𝐿2Ω → 𝐿𝐿2𝑇𝑇Ω × 𝐿𝐿2Γ. Let us now (temporarily)



J. Varela et al., A posteriori error estimates for mixed-dimensional elliptic equations 11

use the notation (𝑇𝑇𝑇 dom(𝑇𝑇 )) to emphasize that an operator 𝑇𝑇 has domain of definition dom(𝑇𝑇 ), and we
denote the adjoint operator with respect to the 𝐿𝐿2 inner product by an asterisk.

We recall that the Neumann boundary is incorporated into the definition of the continuous flux spaces
𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ, thus the last term in the integration-by-parts formula (34), is zero. Hence, we can define a
weak mD gradient and the corresponding space of weakly mD differentiable functions with zero trace on
the Dirichlet boundary 𝐻𝐻1

0 by considering the adjoint:

(D , 𝐻𝐻1
0 (Ω)) := (D·, 𝐶𝐶0𝑇𝑇Ω × 𝐶𝐶Γ)*. (35)

Clearly, 𝐶𝐶0Ω ⊆ 𝐻𝐻1
0 (Ω), and thus it is appropriate to consider (D , 𝐻𝐻1

0 (Ω)) as a weak gradient. Moreover, the
domain of definition simply corresponds to the standard 𝐻𝐻1

0 (Ω𝑖𝑖) on each domain, where the subscript zero
indicates zero trace on all Dirichlet boundaries. Thus 𝐻𝐻1

0 (Ω) =
∏︀𝑚𝑚

𝑖𝑖=1 𝐻𝐻1
0 (Ω𝑖𝑖), which generalizes (5).

Considering the integration-by-parts formula again, the weak mD divergence and the corresponding
space of flux functions with divergence in 𝐿𝐿2 and zero trace on the Neumann boundary 𝐻𝐻(div; Ω, Γ) can be
defined as

(D·, 𝐻𝐻(div; Ω, Γ)) := (D , 𝐻𝐻1
0 )*. (36)

Again 𝐶𝐶0𝑇𝑇 Ω × 𝐶𝐶Γ ⊆ 𝐻𝐻(div; Ω, Γ), and it is appropriate to consider (D·, 𝐻𝐻(div; Ω, Γ)) as a weak divergence.
This domain of definition of the weak divergence has the interpretation of 𝐻𝐻0(div; Ω𝑖𝑖) on all subdomains Ω𝑖𝑖

(where the subscript zero indicates zero trace on all boundaries except for Dirichlet boundaries), and 𝐿𝐿2(Γ𝑗𝑗)
spaces on all interfaces Γ𝑗𝑗 . Thus 𝐻𝐻(div; Ω, Γ) =

∏︀𝑚𝑚
𝑖𝑖=1 𝐻𝐻0(div; Ω𝑖𝑖) ×

∏︀𝑀𝑀
𝑖𝑖=1 𝐿𝐿2(Γ𝑗𝑗), which generalizes (12).

Due to the above identification of 𝐻𝐻1(Ω) and 𝐻𝐻(div; Ω, Γ) in terms of product spaces of standard
function spaces on subdomains, we extend the definition of the boundary restriction operators T𝑋𝑋(·) to
trace operators on the weak spaces by requiring that they coincide with the standard trace operators on
subdomains.

In the continuation, we will always consider the weak mD gradient and divergence, and denote these
simply by D and D·, respectively. Similarly, we will always consider the boundary restrictions as trace
operators. The above definitions of weak mD gradient and divergence operators, and their adjoint property
on the above weak spaces, has the following statements of the primal and dual weak formulations of
equations (29) as a direct consequence:

Definition 3 (Mixed-dimensional primal weak formulation). Let g ∈ 𝐻𝐻1(Ω). Then find p ∈ 𝐻𝐻1
0 (Ω) + g such

that
⟨KD p,D q⟩Ω,Γ = ⟨f, q⟩Ω ∀ q ∈ 𝐻𝐻1

0 (Ω). (37)

Definition 4 (Mixed-dimensional dual weak formulation). Find (u, p) ∈ 𝐻𝐻(div; Ω, Γ) × 𝐿𝐿2(Ω) such that
⟨︀
K−1u, v

⟩︀
Ω,Γ − ⟨p,D · v⟩Ω = ⟨g𝐷𝐷,T𝐷𝐷v⟩𝜕𝜕𝐷𝐷Ω ∀ v ∈ 𝐻𝐻(div; Ω, Γ), (38a)

⟨D · u, q⟩Ω = ⟨f, q⟩Ω ∀ q ∈ 𝐿𝐿2(Ω). (38b)

The above weak forms of the mixed-dimensional elliptic problem are well-posed for bounded coefficients
[19], in the sense that there exist positive constants K 0 and K∞ such that:

sup
v∈𝐻𝐻(div;Ω,Γ)

⟨Kv, v⟩Ω,Γ

K∞‖v‖2
Ω,Γ

≤ 1 ≤ inf
v∈𝐻𝐻(div;Ω,Γ)

⟨Kv, v⟩Ω,Γ

K 0‖v‖2
Ω,Γ

. (39)

The solutions of the primal and dual weak formulations are equivalent, and define true solutions p ∈ 𝐻𝐻1
0 (Ω)+g

and u ∈ 𝐻𝐻(div; Ω, Γ) against which the approximate solutions will be measured in later sections.

4 Functional analysis tools
In this section, we summarize the main functional analysis tools we will exploit for the a posteriori analysis.
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4.1 Poincaré-type inequalities

We recall the following weighted Poincaré inequalities:

Lemma 1 (Permeability-weighted Poincaré-Friedrichs inequalities). There exist constants 𝐶𝐶Ω ≥ 𝐶𝐶Ω𝑖𝑖
≥ 𝐶𝐶𝐾𝐾

such that

‖q‖Ω,Γ ≤ 𝐶𝐶Ω,Γ

⃦⃦
⃦K 1

2 D q
⃦⃦
⃦

Ω,Γ
∀ q ∈ 𝐻𝐻1

0 (Ω), (40a)

‖𝑞𝑞‖Ω𝑖𝑖
≤ 𝐶𝐶Ω𝑖𝑖

⃦⃦
⃦𝒦𝒦

1
2
𝑖𝑖 ∇𝑖𝑖𝑞𝑞

⃦⃦
⃦

Ω𝑖𝑖

∀ 𝑞𝑞 ∈ 𝐻𝐻1
0 (Ω𝑖𝑖), if 𝜕𝜕𝐷𝐷Ω𝑖𝑖 ̸= ∅, (40b)

‖𝑞𝑞 − 𝑞𝑞Ω𝑖𝑖
‖Ω𝑖𝑖

≤ 𝐶𝐶Ω𝑖𝑖

⃦⃦
⃦𝒦𝒦

1
2
𝑖𝑖 ∇𝑖𝑖𝑞𝑞

⃦⃦
⃦

Ω𝑖𝑖

∀ 𝑞𝑞 ∈ 𝐻𝐻1(Ω𝑖𝑖), if 𝜕𝜕𝐷𝐷Ω𝑖𝑖 = ∅, (40c)

‖𝑞𝑞 − 𝑞𝑞𝐾𝐾‖𝐾𝐾 ≤ 𝐶𝐶𝐾𝐾

⃦⃦
⃦𝒦𝒦

1
2
𝑖𝑖 ∇𝑖𝑖𝑞𝑞

⃦⃦
⃦

𝐾𝐾
∀ 𝑞𝑞 ∈ 𝐻𝐻1(𝐾𝐾), where 𝐾𝐾 ⊂ Ω𝑖𝑖. (40d)

Here, we denote by 𝑞𝑞Ω𝑖𝑖
and 𝑞𝑞𝐾𝐾 the mean value of 𝑞𝑞 over the subdomain Ω𝑖𝑖 and an arbitrary 𝑑𝑑𝑖𝑖-simplex

𝐾𝐾 ⊂ Ω𝑖𝑖, respectively.

We refer to 𝐶𝐶Ω,Γ as the mixed-dimensional permeability-weighted Poincaré-Friedrichs constant (whose
existence was shown in [19]), 𝐶𝐶Ω𝑖𝑖

is the standard subdomain permeability-weighted Poincaré-Friedrichs
constant, and 𝐶𝐶𝐾𝐾 is a local permeability-weighted Poincaré-Friedrichs constant.

It is important to mention that concrete values of 𝐶𝐶Ω𝑖𝑖
are available only for a limited set of geometries,

see e.g.: [20, 58, 62]. An upper bound exists for convex domains, and thus for a simplex 𝐾𝐾 ⊂ Ω𝑖𝑖 we
have [12, 49]

𝐶𝐶𝐾𝐾 ≤ diam(𝐾𝐾)
𝜋𝜋𝜋𝜋𝐾𝐾

(41)

where 𝑐𝑐𝐾𝐾 is the lower bound on the permeability within 𝐾𝐾:

𝑐𝑐𝐾𝐾 = inf
𝑥𝑥∈𝐾𝐾

𝑣𝑣∈𝑇𝑇 𝑇𝑇𝑥𝑥

(𝒦𝒦𝑖𝑖(𝑥𝑥)𝑣𝑣) · 𝑣𝑣

‖𝑣𝑣‖

2
(42)

The importance of this is understood if 𝐾𝐾 is an element of a simplicial partition of Ω𝑖𝑖, in which case 𝐶𝐶𝐾𝐾

scales with the mesh size ℎ𝐾𝐾 = diam(𝐾𝐾). This allows for superconvergent properties of residual estimators
for some locally mass-conservative approximations [27, 28, 63]. We analyze these cases with further details
in Section 5.2 and Remark 15.

4.2 Conforming flux spaces

It is often possible to verify that an approximate solution v ∈ 𝐻𝐻(div; Ω, Γ) satisfies some stronger conservation
property, that is to say, that there is some space 𝑈𝑈 ⊆ 𝐿𝐿2 such that

D · v − f ∈ 𝑈𝑈 (43)

This allows for the construction of stronger a posteriori estimates, and as such, we formalize this concept as
a generalization of 𝐻𝐻(div; Ω, Γ) to “𝑈𝑈 -conforming flux spaces”:

Definition 5 (Conforming mD flux space). Let 𝐻𝐻(div; Ω, Γ; 𝑈𝑈) ⊂ 𝐻𝐻(div; Ω, Γ) be a 𝑈𝑈 -conforming flux space,
in the sense of

𝐻𝐻(div; Ω, Γ; 𝑈𝑈) = {v ∈ 𝐻𝐻(div; Ω, Γ) : f − D · v ∈ 𝑈𝑈} . (44)

To exploit the conforming flux spaces, we must construct certain projected 𝐻𝐻1(Ω) spaces. Consider therefore
𝑈𝑈 as some subspace of 𝐿𝐿2(Ω) and define 𝑈𝑈⊥ to be its orthogonal complement:

𝑈𝑈⊥ := {q ∈ 𝐿𝐿2(Ω) : ⟨q, r⟩Ω = 0 ∀ r ∈ 𝑈𝑈}. (45)
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Moreover, let 𝜋𝜋𝑈𝑈⊥ be the 𝐿𝐿2–projection onto 𝑈𝑈⊥, such that for any r ∈ 𝐿𝐿2(Ω), 𝜋𝜋𝑈𝑈⊥r ∈ 𝑈𝑈⊥ satisfies the
orthogonality property:

⟨r − 𝜋𝜋𝑈𝑈⊥r, q⟩Ω = 0 ∀ q ∈ 𝑈𝑈⊥. (46)

Consider now the projected 𝐻𝐻1
0 (Ω) space denoted 𝑊𝑊 ⊂ 𝐿𝐿2(Ω), defined as the range of 𝜋𝜋𝑊𝑊 := (𝐼𝐼 −𝜋𝜋𝑈𝑈⊥) :

𝐻𝐻1
0 (Ω) → 𝐿𝐿2(Ω), and let the norm of 𝑊𝑊 be defined as a weighted 𝐿𝐿2-norm with nonnegative weights

𝜇𝜇 ∈ 𝐿𝐿∞(Ω)
‖q‖𝑊𝑊𝑊𝑊𝑊 := ‖𝜇𝜇q‖Ω ∀ q ∈ 𝑊𝑊𝑊 (47)

which are defined within the class 𝒞𝒞𝑊𝑊 with unit Poincaré constants:

𝒞𝒞𝑊𝑊 =

⎧
⎪⎨
⎪⎩

𝜇𝜇 ∈ 𝐿𝐿∞(Ω) : sup
q∈𝐻𝐻1

0 (Ω)

‖𝜋𝜋𝑊𝑊 q‖𝑊𝑊𝑊𝑊𝑊⃦⃦
⃦K 1

2 D q
⃦⃦
⃦

Ω,Γ

≤ 1

⎫
⎪⎬
⎪⎭

. (48)

Indeed, such classes exist in the literature of Poincaré inequalities for weighted norms, see e.g., [50, 53].
Note that a trivial member of 𝒞𝒞𝑊𝑊 is the inverse of the permeability-weighted mD Poincaré-Friedrichs
constant 𝜇𝜇(𝑥𝑥) = 𝐶𝐶−1

Ω,Γ. As we will see in Sections 5.1 and 5.2, the concrete choice of the space 𝑈𝑈 and the
corresponding weights 𝜇𝜇 will directly impact the strength of the estimates.

Remark 7 (On the space 𝐻𝐻(div; Ω, Γ; 𝑈𝑈)). The conforming mD flux spaces allow us to obtain sharper
estimates in Section 5. However, it is important to note that the standard case 𝑈𝑈 = 𝐿𝐿2(Ω) is included in
our definition, for which the orthogonal complement is void, and the projection 𝜋𝜋𝑊𝑊 = 𝐼𝐼; thus 𝑊𝑊 = 𝐻𝐻1

0 (Ω).
This and other cases are elaborated in more detail in Sections 5.2.1 to 5.2.4.

4.3 Bilinear forms and energy norms

For the a posterior i analysis, we will need the next two mD bilinear forms and their induced energy norms

B(q, r) = ⟨KD q,D r⟩Ω,Γ, |||q|||2 = B(q, q) =
⃦⃦
⃦K 1

2 D q
⃦⃦
⃦

2

Ω,Γ
∀ q, r ∈ 𝐻𝐻1

0 (Ω), (49)

A(v,w) =
⟨︀
v,K−1w

⟩︀
Ω,Γ, |||v|||2* = A(v, v) =

⃦⃦
⃦K− 1

2 v
⃦⃦
⃦

2

Ω,Γ
∀ v,w ∈ 𝐿𝐿2𝑇𝑇Ω × 𝐿𝐿2Γ, (50)

which are related via
|||q||| = |||KD q|||* ∀ q ∈ 𝐻𝐻1

0 (Ω). (51)

We also define the full norm for a mixed-dimensional pair of primal and dual variables as

||[q, v]|| := |||q||| + |||v|||* +
⃦⃦

𝜇𝜇−1D · v
⃦⃦

Ω ∀ (q, v) ∈ 𝐻𝐻1
0 (Ω) × 𝐻𝐻(div; Ω, Γ; 𝑈𝑈). (52)

Note that the last norm will depend on the eventual choice of 𝜇𝜇−1, which we emphasize must be from the
class 𝜇𝜇 ∈ 𝒞𝒞𝑊𝑊 , as defined in the preceding section.

5 A posteriori error estimates
This section is devoted to obtaining the error bounds for our model problem. First, we provide general
abstract estimates, and later we focus on the evaluation of the different bounds.

5.1 General abstract estimates

Let us now present the general abstract bounds. We formalize the main results presented in Section 3 and
extend the ones presented in Theorem 1 in the following theorem.
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Theorem 2 (General abstract a posteriori error bounds). Let the error majorant be defined as

ℳ(q, v, f, 𝜇𝜇) := 𝜂𝜂DF(q, v) + 𝜂𝜂R(v, f, 𝜇𝜇), (53)

where
𝜂𝜂DF(q, v) := |||v + KD q|||* and 𝜂𝜂R(v, f, 𝜇𝜇) :=

⃦⃦
𝜇𝜇−1(f − D · v)

⃦⃦
Ω, (54)

valid for all q ∈ 𝐻𝐻1
0 (Ω) + g and v ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈). Then, the following a posteriori error estimates hold.

(1) Let p ∈ 𝐻𝐻1
0 (Ω) + g be the solution to (37) and q ∈ 𝐻𝐻1

0 (Ω) + g be arbitrary. Then

|||p − q||| ≤ ℳ⊕
p = ℳ(q, v, f, 𝜇𝜇) ∀ v ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈), (55)

where ℳ⊕
p is the upper bound of the error for the primal variable.

(2) Let u ∈ 𝐻𝐻(div; Ω, Γ) be the solution to (38) and v ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈) be arbitrary. Then

|||u − v|||* ≤ ℳ⊕
u = ℳ(q, v, f, 𝜇𝜇) ∀ q ∈ 𝐻𝐻1

0 (Ω) + g, (56)

where ℳ⊕
u is the upper bound of the error for the dual variable.

(3) Let p ∈ 𝐻𝐻1
0 (Ω) + g be the solution to (37) and u ∈ 𝐻𝐻(div; Ω, Γ) be the solution to (38), and let

(q, v) ∈ (𝐻𝐻1
0 (Ω) + g) × 𝐻𝐻(div; Ω, Γ; 𝑈𝑈) be arbitrary. Then,

ℳ(q, v, f, 𝜇𝜇) = ℳ⊖
p,u ≤ ||[p − q, u − v]|| ≤ ℳ⊕

p,u = 2ℳ(q, v, f, 𝜇𝜇) + 𝜂𝜂R(v, f, 𝜇𝜇), (57)

where ℳ⊖
p,u and ℳ⊕

p,u are the lower and upper bounds of the error for the primal-dual variable.

Proof. Due to the construction of mixed-dimensional product spaces and the adjoint property of the
weak differential operators, the proof from the mono-dimensional case can (to a large extent) be applied
directly [59]. A notable deviation from the standard proofs is the use of conforming flux spaces, and
the inclusion of the Poincaré-constants in the weights 𝒞𝒞𝑊𝑊 . The full proof is included for completeness in
Appendix C.

Remark 8 (Non-conforming approximations). Referring again to the general setting of mD calculus, it has
been shown that the differential operators form part of a cochain complex, and that an mD Helmholtz
decomposition exists [19]. Thus, by realizing the above constructions as Hilbert complexes, the above error
bounds can be extended also to non-conforming approximations following, e.g., Theorem 4.7 of [47]. However,
as a main objective of our work is to obtain bounds based on conforming properties of the approximations,
we will not pursue non-conforming approximations in this work.

5.2 Evaluation of the majorant

The aim of this section is to provide concrete forms of the majorant ℳ(q, v, f, 𝜇𝜇) from Theorem 2 depending
upon the choices of the weights 𝜇𝜇. For this purpose, consider once again the definition of the majorant

ℳ(q, v, f, 𝜇𝜇) = 𝜂𝜂DF(q, v) + 𝜂𝜂R(v, f, 𝜇𝜇) ∀ q = [𝑞𝑞𝑖𝑖] ∈ 𝐻𝐻1
0 (Ω) + g, v = [𝑣𝑣0,𝑖𝑖, 𝜈𝜈𝑗𝑗 ] ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈). (58)

The estimation of the first term 𝜂𝜂DF(q, v) is independent of the weights 𝜇𝜇. Indeed, by applying (50), it
is straightforward to see that

𝜂𝜂2
DF(q, v) =

𝑚𝑚∑︁
𝑖𝑖=1

⎛
⎜⎝

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

⃦⃦
⃦⃦
⃦⃦𝒦𝒦− 1

2
𝑖𝑖

(︃
𝑣𝑣0,𝑖𝑖 +

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜈𝜈𝑗𝑗

)︃
+ 𝒦𝒦

1
2
𝑖𝑖 ∇𝑖𝑖𝑞𝑞𝑖𝑖

⃦⃦
⃦⃦
⃦⃦

2

𝐾𝐾

+
∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

∑︁
𝐾𝐾∈𝒯𝒯Γ𝑗𝑗

⃦⃦
⃦𝜅𝜅

− 1
2

𝑗𝑗 𝜈𝜈𝑗𝑗 + 𝜅𝜅
1
2
𝑗𝑗

(︀
𝑞𝑞𝚥𝚥 − tr 𝑞𝑞𝚥𝚥

)︀⃦⃦
⃦

2

𝐾𝐾

⎞
⎟⎠

=
𝑚𝑚∑︁

𝑖𝑖=1

⎛
⎝ ∑︁

𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝜂𝜂2
DF‖,𝐾𝐾 +

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

∑︁
𝐾𝐾∈𝒯𝒯Γ𝑗𝑗

𝜂𝜂2
DF⊥,𝐾𝐾

⎞
⎠ . (59)
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The terms 𝜂𝜂DF‖,𝐾𝐾 and 𝜂𝜂DF⊥,𝐾𝐾 measure the diffusive flux error in the tangential and normal directions
associated with the subdomain element 𝐾𝐾 ∈ 𝒯𝒯Ω𝑖𝑖

and the mortar element 𝐾𝐾 ∈ 𝒯𝒯Γ𝑗𝑗
, respectively.

To complete the evaluation of the majorant, we are left with the estimation of 𝜂𝜂R(v, f, 𝜇𝜇), which depends
on the choices of 𝜇𝜇. Recall that this term measures the mismatch in satisfying the conservation equation in
each subdomain. To be precise, there are four main types of conforming fluxes; Standard 𝐿𝐿2-conforming,
subdomain conservation, grid level (local) conservation, and point-wise. The quality of the residual balance
can be verified explicitly before applying the a posteriori estimates, and thus is not considered an assumption
in the theory. Below, we make precise the aforementioned cases.

5.2.1 No mass-conservation

Assume nothing is known about the approximation of the residual terms beyond the 𝐿𝐿2 structure. We
indicate this case by the abbreviation “NC”, and set 𝑈𝑈NC = 𝐿𝐿2, and v ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈NC) = 𝐻𝐻(div; Ω, Γ).
Then 𝑈𝑈⊥

NC = 0, which implies that 𝜋𝜋𝑊𝑊 = 𝐼𝐼, and 𝑊𝑊 = 𝐻𝐻1
0 (Ω). Then, a priori, we only know the global

(mixed-dimensional) Poincaré (40a), i.e., we have no better weight than setting 𝜇𝜇(𝑥𝑥) = 𝐶𝐶−1
Ω,Γ for 𝑥𝑥 ∈ Ω.

Using (49) and the mD Poincaré inequality (40a), one obtains the following bound, which is the weakest
bound available within the class of bounds considered in this paper:

𝜂𝜂2
R ≤ 𝐶𝐶2

Ω,Γ

𝑚𝑚∑︁
𝑖𝑖=1

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

⃦⃦
⃦⃦
⃦⃦𝑓𝑓𝑖𝑖 − ∇𝑖𝑖 ·

(︃
𝑣𝑣0,𝑖𝑖 +

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜈𝜈𝑗𝑗

)︃
+

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

𝜈𝜈𝑗𝑗

⃦⃦
⃦⃦
⃦⃦

2

𝐾𝐾

=
𝑚𝑚∑︁

𝑖𝑖=1

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝜂𝜂2
R,𝐾𝐾;NC = 𝜂𝜂2

R;NC, (60)

Here, 𝜂𝜂R,𝐾𝐾;NC denotes the local residual error for non-conservative approximations. The majorant when
mass conservation cannot be guaranteed at any level is then given by,

ℳNC(q, v, f) = 𝜂𝜂DF(q, v) + 𝜂𝜂R;NC(v, f), (61)

and it follows from the above that this is an upper bound, ℳ ≤ ℳNC.

5.2.2 Subdomain mass-conservation

Due to the structure of the equations, where interface fluxes are stated explicitly, many approximations
will have mass conservation satisfied in a subdomain level, which is in a sense a compatibility condition
on the floating domains Ω𝑖𝑖. We indicate this case by the abbreviation “SC”. In particular, the divergence
r = [𝑟𝑟𝑖𝑖] = D · v ∈ 𝑈𝑈SC satisfies for all 𝑖𝑖 ∈ {1, . . . , 𝑚𝑚} where 𝜕𝜕𝐷𝐷Ω𝑖𝑖 = ∅,

⟨𝑟𝑟𝑖𝑖, 1⟩Ω𝑖𝑖
= ⟨𝑓𝑓𝑖𝑖, 1⟩Ω𝑖𝑖

. (62)

Thus, by definition 𝑈𝑈⊥
SC is the space of constants over the floating subdomains Ω𝑖𝑖, and the space 𝑊𝑊 is the

space of 𝐻𝐻1(Ω𝑖𝑖) functions, with zero mean if 𝜕𝜕𝐷𝐷Ω𝑖𝑖 = ∅.
This case represents an improvement relative to the previous one, in the sense that we can now employ

the subdomain Poincaré constants instead of the mD constant. Let us make this point precise in the
following lemma.

Lemma 2. Let 𝑊𝑊 =
∏︀𝑚𝑚

𝑖𝑖=1 𝐻𝐻1(Ω𝑖𝑖), where

𝐻𝐻1(Ω𝑖𝑖) =
{︀

𝑞𝑞𝑖𝑖 ∈ 𝐻𝐻1
0 (Ω𝑖𝑖) | ⟨𝑞𝑞𝑖𝑖, 1⟩Ω𝑖𝑖

= 0 if 𝜕𝜕𝐷𝐷Ω𝑖𝑖 = ∅
}︀

. (63)

Then, 𝜇𝜇(𝑥𝑥) = 𝐶𝐶−1
Ω𝑖𝑖

for 𝑥𝑥 ∈ Ω𝑖𝑖 belongs to the class 𝒞𝒞𝑊𝑊 , where 𝐶𝐶Ω𝑖𝑖
is the permeability-weighted Poincaré-

Friedrichs constants defined in Lemma 1.
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Proof. Using the Poincaré inequality (40c) and the fact that the sum of broken norms is weaker than the
full norm, the following result holds

sup
q∈𝐻𝐻1

0 (Ω)

‖𝜋𝜋𝑊𝑊 q‖𝑊𝑊𝑊𝑊𝑊⃦⃦
⃦K 1

2 D q
⃦⃦
⃦

Ω,Γ

= sup
q∈𝐻𝐻1

0 (Ω)⃦⃦
⃦K

1
2 D q

⃦⃦
⃦

Ω,Γ
=1

‖𝜋𝜋𝑊𝑊Ωq‖𝑊𝑊Ω,𝜇𝜇

= sup
q∈𝐻𝐻1

0 (Ω)⃦⃦
⃦K

1
2 D q

⃦⃦
⃦

Ω,Γ
=1

⎛
⎜⎝

𝑚𝑚∑︁
𝑖𝑖=1

𝜕𝜕𝐷𝐷Ω𝑖𝑖 ̸=∅

⃦⃦
𝐶𝐶−1

Ω𝑖𝑖
𝑞𝑞𝑖𝑖

⃦⃦
Ω𝑖𝑖

+
𝑚𝑚∑︁

𝑖𝑖=1
𝜕𝜕𝐷𝐷Ω𝑖𝑖=∅

⃦⃦
⃦⃦𝐶𝐶−1

Ω𝑖𝑖

(︂
𝑞𝑞𝑖𝑖 − 1

|Ω𝑖𝑖|
⟨𝑞𝑞𝑖𝑖, 1⟩Ω𝑖𝑖

)︂⃦⃦
⃦⃦

Ω𝑖𝑖

⎞
⎟⎠

≤ sup
q∈𝐻𝐻1

0 (Ω)⃦⃦
⃦K

1
2 D q

⃦⃦
⃦

Ω,Γ
=1

𝑚𝑚∑︁
𝑖𝑖=1

⃦⃦
⃦𝒦𝒦

1
2 ∇𝑖𝑖𝑞𝑞𝑖𝑖

⃦⃦
⃦

Ω𝑖𝑖

≤ 1.

In view of Lemma 2, 𝜂𝜂R can be bounded as

𝜂𝜂2
R ≤

𝑚𝑚∑︁
𝑖𝑖=1

𝐶𝐶2
Ω𝑖𝑖

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

⃦⃦
⃦⃦
⃦⃦𝑓𝑓𝑖𝑖 − ∇𝑖𝑖 ·

(︃
𝑣𝑣0,𝑖𝑖 +

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜈𝜈𝑗𝑗

)︃
+

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

𝜈𝜈𝑗𝑗

⃦⃦
⃦⃦
⃦⃦

2

𝐾𝐾

=
𝑚𝑚∑︁

𝑖𝑖=1

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝜂𝜂2
R,𝐾𝐾;SC = 𝜂𝜂2

R;SC, (64)

where 𝜂𝜂R,𝐾𝐾;SC are the local residual estimators for subdomain mass-conservative approximations. The
majorant for this case is given by

ℳSC(q, v, f) = 𝜂𝜂DF(q, v) + 𝜂𝜂R;SC(v, f). (65)

This estimate is sharper than that in the preceding section, since 𝐶𝐶Ω𝑖𝑖
≤ 𝐶𝐶Ω,Γ, thus whenever the assumptions

of this section are satisfied, it holds that ℳ ≤ ℳSC ≤ ℳNC.
Note that (65) is identical in structure to the residual estimators (16e) and (16f) obtained in Theorem 1.

However, they are fundamentally different in the sense that (65) do not require all subdomains to have a
non-empty Dirichlet part but rather mass to be conserved in each subdomain Ω𝑖𝑖.

5.2.3 Local mass-conservation

By choice of numerical method, it is often easy to verify that mass is conserved on an element basis in a
subdomain partition. We indicate this case by the abbreviation “LC”. As in the preceding section, this
implies that the divergence r = [𝑟𝑟𝑖𝑖] = D · v ∈ 𝑈𝑈LC then satisfies for all 𝐾𝐾 ⊂ 𝒯𝒯Ω𝑖𝑖

that

⟨𝑟𝑟𝑖𝑖, 1⟩𝐾𝐾 = ⟨𝑓𝑓𝑖𝑖, 1⟩𝐾𝐾 , (66)

where 𝒯𝒯Ω𝑖𝑖
denotes a finite partition of Ω𝑖𝑖 (typically a simplicial grid). In this case, 𝑈𝑈LC contain functions

having zero mean on each element 𝐾𝐾 ∈ 𝒯𝒯Ω𝑖𝑖
, and from (66) we see that 𝑈𝑈⊥

LC =
∏︀𝑚𝑚

𝑖𝑖=1 P0(𝒯𝒯Ω𝑖𝑖
).

We will consider the slightly weaker case, where (66) is only required to hold for all “non-Dirichlet
boundary” elements, that is for all elements where 𝜕𝜕𝜕𝜕 ∩ 𝜕𝜕𝐷𝐷Ω = ∅. This is sufficient for the results from
Lemma 2 to be extendable to the grid level by considering the space 𝑊𝑊Ω =

∏︀𝑚𝑚
𝑖𝑖=1

∏︀
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝐻𝐻1(𝐾𝐾), where
𝐻𝐻1(𝐾𝐾) is defined in (63).

Lemma 2 now applies without modification, and weights 𝜇𝜇(𝑥𝑥) ≥ 𝐶𝐶−1
𝐾𝐾 for 𝑥𝑥 ∈ 𝐾𝐾 are therefore in 𝒞𝒞𝑊𝑊 .

Moreover, thanks to convexity of simplicial grid elements, the local permeability-weighted Poincaré-Friedrichs
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constants are now fully computable. This allows us to bound 𝜂𝜂R,Ω as follows:

𝜂𝜂2
R,Ω ≤

𝑚𝑚∑︁
𝑖𝑖=1

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

ℎ2
𝐾𝐾

𝜋𝜋2𝑐𝑐2
𝐾𝐾

⃦⃦
⃦⃦
⃦⃦𝑓𝑓𝑖𝑖 − ∇𝑖𝑖 ·

(︃
𝑣𝑣0,𝑖𝑖 +

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛ𝑗𝑗𝜈𝜈𝑗𝑗

)︃
+

∑︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

𝜈𝜈𝑗𝑗

⃦⃦
⃦⃦
⃦⃦

2

𝐾𝐾

=
𝑚𝑚∑︁

𝑖𝑖=1

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝜂𝜂2
R,𝐾𝐾;LC = 𝜂𝜂2

R,Ω;LC,

(67)

where 𝜂𝜂R,𝐾𝐾;LC are the local residual estimators for locally mass-conservative approximations. Using the
above results, the majorant for locally mass-conservative approximations reads

ℳLC(q, v, f) = 𝜂𝜂DF(q, v) + 𝜂𝜂R;LC(v, f). (68)

The local residual estimates 𝜂𝜂R,Ω;LC correspond to the ones previously obtained by [28, 63] for mono-
dimensional problems subject to a flux equilibration step. Since 𝐶𝐶𝐾𝐾 ≤ 𝐶𝐶Ω𝑖𝑖

, then as before, whenever the
assumptions of this section are satisfied, it holds that ℳ ≤ ℳLC ≤ ℳSC ≤ ℳNC.

Remark 9 (Fully computable residual estimators). Unlike estimators obtained with residual methods (con-
taining unknown constants [11, 35]) or a purely functional approach such as in Sections 5.2.1 and 5.2.2
(containing constants that are generally difficult to determine [57]), estimators such as (67) contain only
known local constants depending on the mesh size and material parameters. This justifies the claim that
these estimators are fully computable.

5.2.4 Exact mass-conservation

Methods with local mass conservation, as discussed in the previous section, when applied to problems
where the RHS data f is zero or piecewise constant, can then often be verified to have an exact (pointwise)
conservation property. We indicate this case by the abbreviation “EC”, for which f = D · v, so that
𝑈𝑈EC = 0 and 𝑈𝑈⊥

EC = 𝐿𝐿2(Ω). Now, 𝜋𝜋𝑊𝑊 = 0 and 𝑊𝑊 = 0. Thus, any finite weights 𝜇𝜇 are admissible, yet the
choice is immaterial since the residual term

⃦⃦
𝜇𝜇−1(f − D · v)

⃦⃦
Ω always evaluates to zero. Consequently, only

diffusive-type errors are present in the a posteriori estimation, and the majorant takes the form

ℳEC(q, v) = 𝜂𝜂DF(q, v). (69)

This case can also be seen as the limiting case of local mass conservation for a family of grid partitions
where ℎ𝐾𝐾 → 0.

5.2.5 Summary of majorants and subdomain errors

With the obtained majorants, we can define the corresponding upper bounds for the errors of the primal,
dual, and primal-dual variables.

Definition 6. Let 𝛼𝛼 = NC, SC, LC, EC, corresponding to the flux conformity spaces 𝑈𝑈𝛼𝛼 discussed in the
preceding sections. Then, in view of the results from Theorem 2 and the majorants (61), (65), (68), and
(69), the upper bounds for the error in the primal, dual, and primal-dual pair, for arbitrary approximations
q ∈ 𝐻𝐻1

0 (Ω) + g and v ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈𝛼𝛼), are

ℳ⊕
p;𝛼𝛼 := ℳ𝛼𝛼, ℳ⊕

u;𝛼𝛼 := ℳ𝛼𝛼, ℳ⊕
p,u;𝛼𝛼 := 2ℳ𝛼𝛼 + 𝜂𝜂R;𝛼𝛼. (70)

while the lower bound for the error in the primal-dual pair is

ℳ⊖
p,u;𝛼𝛼 := ℳ𝛼𝛼. (71)

It is our interest not only to measure local errors, but also to distinguish between subdomain and interface
errors. This motivates the definition of the following errors estimators.
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Definition 7 (Subdomain and interface error indicators). Let 𝛼𝛼 = EC, LC, SC, NC. Then, we will denote by
𝜀𝜀Ω𝑖𝑖;𝛼𝛼 and 𝜀𝜀Γ𝑗𝑗

the subdomain and interface error indicators, defined by

𝜀𝜀2
Ω𝑖𝑖;𝛼𝛼 := 𝜀𝜀2

DF,Ω𝑖𝑖
+ 𝜀𝜀2

R,Ω𝑖𝑖;𝛼𝛼 :=
∑︁

𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝜂𝜂2
DF‖,𝐾𝐾 +

∑︁
𝐾𝐾∈𝒯𝒯Ω𝑖𝑖

𝜂𝜂2
R,𝐾𝐾;𝛼𝛼,

𝜀𝜀2
Γ𝑗𝑗

:= 𝜀𝜀2
DF,Γ𝑗𝑗

:=
∑︁

𝐾𝐾∈𝒯𝒯Γ𝑗𝑗

𝜂𝜂2
DF⊥,𝐾𝐾 .

We emphasize that while the majorants provide guaranteed bounds, the subdomain and interface error
indicators can only be expected to correlate with the error.

6 Concrete bounds for locally mass-conservative approximations
In this section, we will make the evaluation of the bounds concrete by providing explicit approximations
to (38) using the lowest-order mixed-finite element method (MFEM).

6.1 Grid partitions

Ultimately, a posteriori estimates are primarily applied to approximations that are defined on computational
grids. We therefore, in this section, summarize the relevant notation for grids and the mapping operators
between subdomains and interfaces.

Let us start by defining the partitions of the domains of interest. To this aim, denote by 𝒯𝒯Ω𝑖𝑖
, 𝒯𝒯Γ𝑗𝑗

, and
𝒯𝒯𝜕𝜕𝑖𝑖Ω𝑗𝑗

the partitions of Ω𝑖𝑖, Γ𝑗𝑗 , and 𝜕𝜕𝑗𝑗Ω𝑖𝑖, respectively. Moreover, let 𝒯𝒯Ω = ∪𝑚𝑚
𝑖𝑖=1𝒯𝒯Ω𝑖𝑖

, 𝒯𝒯Γ = ∪𝑀𝑀
𝑗𝑗=1𝒯𝒯Γ𝑗𝑗

, and
𝒯𝒯𝜕𝜕𝐼𝐼 Ω = ∪𝑚𝑚

𝑖𝑖=1 ∪𝑗𝑗∈𝒮𝒮𝑖𝑖
𝜕𝜕𝑗𝑗Ω𝑖𝑖 represent the union of all subdomain, mortar, and internal boundary grids.

Here, we only consider simplicial partitions. In particular, we require all elements 𝐾𝐾 ⊂ Ω𝑖𝑖 to be strictly
non-overlapping simplices of dimension 𝑑𝑑𝐾𝐾 = 𝑑𝑑𝑖𝑖. We use ℎ𝐾𝐾 to denote the diameter of 𝐾𝐾, and define
ℎΩ𝑖𝑖

= maxℎ𝐾𝐾
𝒯𝒯Ω𝑖𝑖

, ℎΓ𝑗𝑗
= maxℎ𝐾𝐾

𝒯𝒯Γ𝑗𝑗
, and ℎ𝜕𝜕𝑗𝑗Ω𝑖𝑖

= maxℎ𝐾𝐾
𝒯𝒯𝜕𝜕𝑗𝑗Ω𝑖𝑖

.
We will not at this point place any conditions on the grid partitions, although several aspects of this

will be advantageous from the perspective of computation.

6.2 Finite element spaces and the approximated problem

Let us introduce the finite element spaces necessary to write the approximated problem. We start by
defining a local space for the approximated pressures, mortar fluxes, and tangential fluxes. They are given,

TΓjTΩ̂
TΩ̌

K ∈ TΩ̌
K ∈ TΩ̂

K ∈ TΓj

u0,h ∈ RTN0(K)

λh ∈ P0(K)

ph ∈ P0(K)

Fig. 4: Left: Matching coupling between the grids 𝒯𝒯Ω𝚥𝚥
, 𝒯𝒯Γ𝑗𝑗

, and 𝒯𝒯Ω𝚥𝚥 . Right: Degrees of freedom involved in the coupling
between a 2d higher-dimensional cell, a 1d mortar-cell, and a 1d lower-dimensional cell. Locally, tangential fluxes are
approximated using RTN0(𝐾𝐾), whereas mortar fluxes and pressures using P0(𝐾𝐾).
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respectively by

𝑄𝑄ℎ,𝑖𝑖 :=
{︀

𝑞𝑞ℎ,𝑖𝑖 ∈ 𝐿𝐿2(Ω𝑖𝑖) : 𝑞𝑞ℎ,𝑖𝑖|𝐾𝐾 ∈ P0(𝐾𝐾) ∀ 𝐾𝐾 ∈ 𝒯𝒯Ω𝑖𝑖

}︀
, 𝑑𝑑𝑖𝑖 ∈ {0, . . . , 𝑛𝑛},

Λℎ,𝑗𝑗 :=
{︀

𝜈𝜈ℎ,𝑗𝑗 ∈ 𝐿𝐿2(Γ𝑗𝑗) : 𝜈𝜈ℎ,𝑗𝑗 |𝐾𝐾 ∈ P0(𝐾𝐾) ∀ 𝐾𝐾 ∈ 𝒯𝒯Γ𝑗𝑗

}︀
, 𝑑𝑑𝑗𝑗 ∈ {0, . . . , 𝑛𝑛 − 1},

𝑉𝑉ℎ,𝑖𝑖 :=
{︀

𝑣𝑣ℎ,𝑖𝑖 ∈ 𝐻𝐻(div; Ω𝑖𝑖) : 𝑣𝑣ℎ,𝑖𝑖|𝐾𝐾 ∈ RTN0(𝐾𝐾) ∀ 𝐾𝐾 ∈ 𝒯𝒯Ω𝑖𝑖

}︀
, 𝑑𝑑𝑖𝑖 ∈ {1, . . . , 𝑛𝑛},

where P0 and RTN0 denote the spaces of constants and lowest-order Raviart-Thomas(-Nédélec) spaces of
vector functions [41, 54]. See also Figure 4 for the degrees of freedom involved in the generic coupling
between a (higher-dimensional) triangle, a mortar line segment, and a (lower-dimensional) line segment.

The composite space for the approximated mD pressure 𝑄𝑄ℎ ⊂ 𝐿𝐿2 (Ω) and the approximated mD flux
𝑋𝑋ℎ ⊂ 𝐻𝐻(div; Ω, Γ) are defined respectively by

𝑄𝑄ℎ :=
𝑚𝑚∏︁

𝑖𝑖=1
𝑄𝑄ℎ,𝑖𝑖 and 𝑋𝑋ℎ :=

𝑚𝑚∏︁
𝑖𝑖=1

⎛
⎝𝐻𝐻0(div; Ω𝑖𝑖) ∩ 𝑉𝑉ℎ,𝑖𝑖 ×

∏︁

𝑗𝑗∈𝒮𝒮𝑖𝑖

ℛℎ,𝑗𝑗 Λℎ,𝑗𝑗

⎞
⎠ . (72)

While not strictly necessary from a theoretical perspective, in the discrete setting, it is often useful to choose
a finite-dimensional reconstruction operator based on the discrete spaces, and we allow for this through the
notation ℛℎ,𝑗𝑗 : Λℎ,𝑗𝑗 → 𝐻𝐻(div; Ω𝑖𝑖), which in practice is often further restricted to ℛℎ,𝑗𝑗 : Λℎ,𝑗𝑗 → 𝑉𝑉ℎ,𝚥𝚥. Such
discrete reconstruction operators are natural for matching grids, and can also be constructed in the more
general case of non-matching grids, see e.g. [9, 17, 18]. Here Πℎ : Λℎ,𝑗𝑗 → Λ̃ℎ,𝑗𝑗 is the 𝐿𝐿2 projection from the
mortar grid on Γ𝑗𝑗 to the boundary simplicial partition of Ω𝚥𝚥.

We have now all the elements necessary to write the finite-dimensional approximation to the dual mixed
problem (38).

Definition 8 (Approximated mD dual mixed formulation). Find (uℎ, pℎ) ∈ 𝑋𝑋ℎ × 𝑄𝑄ℎ such that
⟨︀
K−1uℎ, vℎ

⟩︀
Ω,Γ − ⟨pℎ,D · vℎ⟩Ω = ⟨g𝐷𝐷,T𝐷𝐷vℎ⟩𝜕𝜕𝐷𝐷Ω ∀ vℎ ∈ 𝑋𝑋ℎ, (73a)

⟨D · uℎ, qℎ⟩Ω = ⟨f, qℎ⟩Ω ∀ qℎ ∈ 𝑄𝑄ℎ. (73b)

Due to the presence of the discrete reconstruction operator, this approximation is conforming whenever
Λℎ,𝑗𝑗 = Λ̃ℎ,𝑗𝑗 , i.e. for matching grids. For non-matching grids, the approximation is still convergent, subject
to normal conditions on the mortar grids [17].

Remark 10 (Conservation properties). Whenever equation (73b) is satisfied exactly, then equation (66)
holds, and we have local mass conservation for matching grids. Thus, the fluxes lie in the smaller space
𝑋𝑋ℎ ∩ 𝐻𝐻(div; Ω, Γ; 𝑄𝑄⊥

ℎ,𝑖𝑖), and the results from section 5.2.3 apply. Furthermore, if 𝑓𝑓𝑖𝑖 ∈ 𝑄𝑄ℎ,𝑖𝑖 and ℛℎ,𝑗𝑗 :
Λℎ,𝑗𝑗 → 𝑉𝑉ℎ,𝚥𝚥, then the projection of the source term, and hence the residual error, onto 𝑄𝑄⊥

ℎ,𝑖𝑖 vanishes. Thus,
the local conservation is verified to be pointwise, the fluxes lie in 𝑋𝑋ℎ ∩ 𝐻𝐻(div; Ω, Γ; 0) and the results from
Section 5.2.4 apply.

Remark 11 (Well-posedness and a priori estimates). The stability and a priori approximation properties of
the finite-dimensional system given in (73) has been previously established [17].

6.3 Pressure reconstruction

Recall that Theorem 2 requires any approximation to the mD flux to be in 𝐻𝐻(div; Ω, Γ), whereas approx-
imations to the mD pressure must lie in 𝐻𝐻1

0 (Ω) + g. By the condition that uℎ ∈ 𝑋𝑋ℎ ⊂ 𝐻𝐻(div; Ω, Γ), the
solution of equations (73) by definition satisfy the first condition. On the other hand, the approximated
mD pressure pℎ is only in 𝐿𝐿2 (Ω). We therefore need to enhance the regularity of the approximated pressure
and thus obtain a reconstructed pressure.
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Definition 9 (Reconstructed pressure). We will call reconstructed pressure p̃ℎ to any function constructed
from the mD pair (pℎ, uℎ) ∈ 𝐿𝐿2 (Ω) × 𝐻𝐻(div; Ω, Γ) such that

p̃ℎ ∈ 𝐻𝐻1
0 (Ω) + g. (74)

Remark 12 (On potential reconstruction). Several techniques for obtaining p̃ℎ are available in the literature.
Arguably, the simplest option is to perform an average of the P0(𝐾𝐾) pressures on local patches and from there
construct local affine P1(𝐾𝐾) functions [23]. Other techniques aim at solving first a local Neumann problem to
obtain a P2(𝐾𝐾) post-processed pressure, and then apply interpolation techniques to get energy-conforming
potentials [4–6, 26, 63]. Any of these choices are compatible with the bounds derived herein.

Remark 13 (Computable estimates). Computable versions of the majorants are now readily available by
setting (q, v) = (p̃ℎ, uℎ) in (61), (65), (68), and (69).

Remark 14 (Other locally mass-conservative methods). In addition to the MFEM scheme of the lowest-order
(RT0-P0), other flux-based numerical methods such as the Mixed Virtual Element Method (MVEM) [24, 31]
and Cell Centered Finite Volume Methods (CCFVM), including the Two-Point Flux Approximation (TPFA)
and the Multi-Point Flux Approximation (MPFA) [1, 44], can be analyzed with our framework provided
that the fluxes are interpolated in 𝑋𝑋ℎ and the pressures reconstructed as indicated above. For methods
without an explicit flux representation, an additional flux reconstruction step may be needed.

Remark 15 (Superconvergence of the residual estimators). Due to Remark 10, the residual estimators
𝜂𝜂R,𝐾𝐾𝐾LC are superconvergent for lowest-order locally mass-conservative approximations. This property is
guaranteed since: (1) local Poincaré constants decay as 𝒪𝒪(ℎ𝐾𝐾) for simplicial elements and (2) the norm of
the residual

⃦⃦
⃦𝑓𝑓𝑖𝑖 − ∇𝑖𝑖 · 𝑣𝑣𝑖𝑖 +

∑︀
𝑗𝑗∈𝑆𝑆𝑖𝑖

𝜈𝜈𝑗𝑗

⃦⃦
⃦

𝐾𝐾
also decays as 𝒪𝒪(ℎ𝐾𝐾) [15]; leading to an overall rate of 𝒪𝒪(ℎ2

𝐾𝐾).

7 Numerical validations and applications
In this section, we apply our estimators to numerical validations and benchmarks, both in two and three
dimensions. To this aim, we use four different numerical methods, namely those mentioned in Remark 14:
RT0-P0, MVEM-P0, MPFA, and TPFA. In all cases, we only consider strictly matching grids and use a
low-order pressure reconstruction (recall Remark 12 for further discussion).

The numerical examples are implemented in the Python-based open-source software PorePy [34], using
the extension package mdestimates [60], which includes the scripts of all numerical examples considered in
this section.

7.1 Numerical validations

We validate the a posteriori bounds and assess their efficiency on a 1d/2d problem (Section 7.1.2) and a
2d/3d problem (Section 7.1.3), both with manufactured solutions. The geometric configuration for both
problems is shown in Figure 5. Let us denote the fracture as Ω1, the matrix as Ω2, the left interface as Γ1,
and the right interface as Γ2. Further, assume the existence of an exact, smooth pressure 𝑝𝑝2(𝑥𝑥) in Ω2. Refer
to Table 7 and Table 8 from the Appendix D for the analytical expressions of all variables of interest.

7.1.1 Efficiency indices

Efficiency indices are used to assess the performance of the approximations when exact solutions are
available. They are defined as the ratio between the estimated and the exact errors. Here, we consider the
following efficiency indices.
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Fig. 5: Geometric setups used for the numerical validations. Left: A 1𝑑𝑑 fracture embedded in a 2𝑑𝑑 matrix and the exact
pressure solution. Right: A 2𝑑𝑑 fracture embedded in a 3𝑑𝑑 matrix.

Definition 10 (Efficiency indices). Let 𝛼𝛼 = NC, SC, LC, EC and let p ∈ 𝐻𝐻1
0 (Ω) + g and u ∈ 𝐻𝐻(div; Ω, Γ) be

the solutions to (37) and (38), respectively. Then, in view of Theorem 2, the efficiency indices for the primal,
dual, and primal-dual pair, for arbitrary approximations q ∈ 𝐻𝐻1

0 (Ω) + g and v ∈ 𝐻𝐻(div; Ω, Γ; 𝑈𝑈𝛼𝛼), are

𝐼𝐼p;𝛼𝛼(q) :=
ℳ⊕

p;𝛼𝛼
|||p − q|||

, 𝐼𝐼u;𝛼𝛼(v) :=
ℳ⊕

u;𝛼𝛼
|||u − v|||*

, 𝐼𝐼p,u;𝛼𝛼(q, v) :=
ℳ⊕

p,u;𝛼𝛼
||[p − q, u − v]|| . (75)

Remark 16. Optimal efficiency indices (equal to 1) are obtained when the approximations match the exact
solutions. Moreover, in general the efficiency indices satisfy the bounds:

1 ≤ 𝐼𝐼p;𝛼𝛼(q), 1 ≤ 𝐼𝐼u;𝛼𝛼(v), 1 ≤ 𝐼𝐼p,u;𝛼𝛼(q, v) ≤
ℳ⊕

p,u;𝛼𝛼

ℳ⊖
p,u;𝛼𝛼

= 2 +
𝜂𝜂R;𝛼𝛼
ℳ𝛼𝛼

(76)

For the final term, we note that since 𝜂𝜂R;𝛼𝛼 ≤ ℳ𝛼𝛼, then for 𝛼𝛼 = NC, SC the total efficiency index satisfies
𝐼𝐼p,u;𝛼𝛼 ≤ 3, while for local conservation 𝐼𝐼p,u;LC ≤ 2 + 𝑂𝑂(ℎ2) and finally for exact conservation 𝐼𝐼p,u;EC ≤ 2.

7.1.2 Two-dimensional validation

For our first validation, we consider the 1d/2d case as shown in the left Figure 5. This validation has two
purposes: (1) compare the majorants and efficiency indices obtained using global (no mass-conservation) and
local (local mass-conservation) Poincaré-Friedrichs constants, and (2) show the different errors associated
with subdomains and interfaces.

To this aim, we consider four levels of successively refined combinations of mesh sizes, characterized
by ℎcoup = ℎ𝜕𝜕1Ω2 = ℎΓ1 = ℎΩ1 = ℎΓ2 = ℎ𝜕𝜕2Ω2 . The global Poincaré constant is obtained numerically by
solving the associated eigenvalue problem (see e.g., [48]), giving a value of 𝐶𝐶Ω,Γ ≈ 0.2251.

Majorants for the primal, dual, and primal-dual variables are shown in Table 1. We can see that all
majorants reflect the convergence tendency of the numerical methods, and in particular (as is well-known),
we identify that the TPFA approximation performs relatively poorly on this problem. As expected, the
majorants obtained exploiting the local conservation properties of the methods are sharper than the ones
obtained using global weights, both in absolute value and in terms of efficiency index.

Further inspection shows that efficiency indices lie within the expected bounds discussed in Remark 16.
In particular, efficiency indices for the primal variable using local weights are very accurate, and only a ∼ 7%
deviation with respect to the actual error (for the finest grid) is observed in the case of RT0-P0, MVEM-P0,
and MPFA. For TPFA, the efficiency index is worse, as a consequence of the flux approximation being worse.
Efficiency indices for the dual variable are in general larger than the ones obtained for the primal variable;
this is to be expected for mixed-dual approximations with the relatively simple pressure reconstruction,
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Tab. 1: Two-dimensional validation: Majorants and efficiency indices.

ℎcoup ℳ⊕
p;NC ℳ⊕

p;LC ℳ⊕
p,u;NC ℳ⊕

p,u;LC 𝐼𝐼p;NC 𝐼𝐼p;LC 𝐼𝐼u;NC 𝐼𝐼u;LC 𝐼𝐼p,u;NC 𝐼𝐼p,u;LC

RT
0-

P0

0.05 5.86e-02 4.36e-02 1.33e-01 8.83e-02 1.46 1.08 4.09 3.04 1.89 1.59
0.025 3.01e-02 2.17e-02 6.89e-02 4.38e-02 1.49 1.07 4.18 3.02 1.91 1.58

0.0125 1.52e-02 1.08e-02 3.48e-02 2.17e-02 1.50 1.07 4.22 3.00 1.92 1.57
0.00625 7.65e-03 5.37e-03 1.76e-02 1.08e-02 1.52 1.07 4.25 2.98 1.93 1.57

M
V

EM
-P

0 0.05 6.18e-02 4.68e-02 1.40e-01 9.47e-02 1.42 1.07 4.31 3.26 1.89 1.60
0.025 3.10e-02 2.27e-02 7.08e-02 4.56e-02 1.46 1.07 4.31 3.15 1.91 1.59

0.0125 1.54e-02 1.10e-02 3.53e-02 2.22e-02 1.49 1.07 4.29 3.07 1.92 1.58
0.00625 7.72e-03 5.44e-03 1.77e-02 1.09e-02 1.51 1.06 4.28 3.02 1.92 1.57

M
PF

A

0.05 5.91e-02 4.41e-02 1.34e-01 8.93e-02 1.46 1.09 4.12 3.07 1.89 1.59
0.025 3.03e-02 2.19e-02 6.92e-02 4.41e-02 1.49 1.08 4.20 3.04 1.91 1.58

0.0125 1.52e-02 1.08e-02 3.49e-02 2.18e-02 1.50 1.07 4.23 3.01 1.92 1.57
0.00625 7.66e-03 5.38e-03 1.76e-02 1.08e-02 1.52 1.07 4.25 2.99 1.93 1.57

T
PF

A

0.05 6.67e-02 5.17e-02 1.50e-01 1.04e-01 1.54 1.19 3.09 2.39 1.84 1.58
0.025 3.74e-02 2.90e-02 8.35e-02 5.83e-02 1.68 1.31 2.36 1.83 1.78 1.52

0.0125 2.64e-02 2.20e-02 5.73e-02 4.41e-02 1.82 1.52 1.64 1.36 1.63 1.44
0.00625 1.37e-02 1.15e-02 2.98e-02 2.30e-02 1.64 1.37 1.82 1.52 1.64 1.44

The results for ℳ⊕
u;NC and ℳ⊕

u;LC are omitted since they are equal to ℳ⊕
p;NC and ℳ⊕

p;LC, respectively.

Tab. 2: Two-dimensional validation: Subdomain and interface errors.

ℎcoup 𝜀𝜀DF,Ω2
𝜀𝜀R,Ω2;NC 𝜀𝜀R,Ω2;LC 𝜀𝜀DF,Ω1

𝜀𝜀R,Ω1;NC 𝜀𝜀R,Ω1;LC 𝜀𝜀DF,Γ1
𝜀𝜀DF,Γ2

RT
0-

P0

0.05 4.24e-02 1.41e-02 1.00e-03 2.26e-03 7.99e-03 5.65e-04 1.89e-04 1.89e-04
0.025 2.14e-02 7.73e-03 3.02e-04 1.14e-03 4.01e-03 1.42e-04 9.03e-05 9.15e-05

0.0125 1.07e-02 4.00e-03 7.28e-05 5.70e-04 2.01e-03 3.55e-05 4.41e-05 4.41e-05
0.00625 5.34e-03 2.07e-03 1.91e-05 2.85e-04 1.00e-03 8.87e-06 2.20e-05 2.20e-05

M
V

EM
-P

0 0.05 4.55e-02 1.41e-02 1.00e-03 3.25e-03 7.99e-03 5.65e-04 2.52e-04 2.52e-04
0.025 2.23e-02 7.73e-03 3.02e-04 1.32e-03 4.01e-03 1.42e-04 1.00e-04 1.03e-04

0.0125 1.09e-02 4.00e-03 7.28e-05 5.98e-04 2.01e-03 3.55e-05 4.50e-05 4.50e-05
0.00625 5.41e-03 2.07e-03 1.91e-05 2.89e-04 1.00e-03 8.87e-06 2.21e-05 2.21e-05

M
PF

A

0.05 4.29e-02 1.41e-02 1.00e-03 2.52e-03 7.99e-03 5.65e-04 2.05e-04 2.05e-04
0.025 2.15e-02 7.73e-03 3.02e-04 1.18e-03 4.01e-03 1.42e-04 9.24e-05 9.35e-05

0.0125 1.07e-02 4.00e-03 7.28e-05 5.77e-04 2.01e-03 3.55e-05 4.44e-05 4.44e-05
0.00625 5.36e-03 2.07e-03 1.91e-05 2.86e-04 1.00e-03 8.87e-06 2.20e-05 2.20e-05

T
PF

A

0.05 5.04e-02 1.41e-02 1.00e-03 2.52e-03 7.99e-03 5.65e-04 1.87e-04 1.89e-04
0.025 2.86e-02 7.73e-03 3.02e-04 1.18e-03 4.01e-03 1.42e-04 9.42e-05 9.23e-05

0.0125 2.19e-02 4.00e-03 7.28e-05 5.77e-04 2.01e-03 3.55e-05 4.47e-05 4.46e-05
0.00625 1.14e-02 2.07e-03 1.91e-05 2.86e-04 1.00e-03 8.87e-06 2.20e-05 2.21e-05
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Tab. 3: Three-dimensional validation: Majorants and efficiency indices.

ℎcoup ℳ⊕
p;NC ℳ⊕

p;LC ℳ⊕
p,u;NC ℳ⊕

p,u;LC 𝐼𝐼p;NC 𝐼𝐼p;LC 𝐼𝐼u;NC 𝐼𝐼u;LC 𝐼𝐼p,u;NC 𝐼𝐼p,u;LC

RT
0-

P0

0.2625 2.85e-01 2.36e-01 6.21e-01 4.73e-01 1.25 1.03 4.14 3.43 1.72 1.43
0.1720 1.94e-01 1.62e-01 4.20e-01 3.24e-01 1.23 1.03 4.22 3.53 1.73 1.50
0.0827 1.07e-01 8.69e-02 2.33e-01 1.74e-01 1.28 1.04 3.61 2.94 1.70 1.48
0.0418 5.62e-02 4.58e-02 1.23e-01 9.16e-02 1.25 1.02 3.16 2.58 1.63 1.43

M
V

EM
-P

0 0.2625 2.89e-01 2.40e-01 6.28e-01 4.80e-01 1.24 1.03 4.19 3.48 1.72 1.44
0.1720 1.96e-01 1.64e-01 4.24e-01 3.28e-01 1.23 1.03 4.26 3.57 1.73 1.50
0.0827 1.08e-01 8.80e-02 2.35e-01 1.76e-01 1.27 1.04 3.65 2.98 1.70 1.48
0.0418 5.66e-02 4.62e-02 1.24e-01 9.23e-02 1.25 1.02 3.18 2.60 1.63 1.44

M
PF

A

0.2625 2.90e-01 2.40e-01 6.29e-01 4.82e-01 1.25 1.03 4.08 3.38 1.72 1.43
0.1720 1.98e-01 1.66e-01 4.28e-01 3.32e-01 1.23 1.03 4.22 3.54 1.73 1.50
0.0827 1.09e-01 8.90e-02 2.37e-01 1.78e-01 1.27 1.04 3.64 2.98 1.70 1.49
0.0418 5.69e-02 4.65e-02 1.24e-01 9.30e-02 1.25 1.02 3.18 2.60 1.63 1.44

T
PF

A

0.2625 3.84e-01 3.35e-01 8.17e-01 6.70e-01 1.24 1.08 2.13 1.86 1.48 1.28
0.1720 2.95e-01 2.63e-01 6.23e-01 5.27e-01 1.38 1.23 1.66 1.48 1.44 1.30
0.0827 2.22e-01 2.02e-01 4.63e-01 4.04e-01 1.62 1.48 1.40 1.28 1.45 1.35
0.0418 2.08e-01 1.97e-01 4.26e-01 3.95e-01 1.76 1.67 1.29 1.23 1.46 1.41

The results for ℳ⊕
u;NC and ℳ⊕

u;LC are omitted since they are equal to ℳ⊕
p;NC and ℳ⊕

p;LC, respectively.

where the approximated fluxes have relatively good accuracy as compared to the reconstructed pressures.
Finally, efficiency indices for the primal-dual variable are less than 2 for all methods in consideration.

Considering now the local error indicators, shown in Table 2, we note that diffusive errors decrease
linearly for the matrix, fracture, and interfaces. Likewise, residual errors for the matrix and fracture decrease
linearly when the global Poincaré-Friedrichs constant is used. When the local Poincaré-Freidrich constants
are used, the residual estimators for the matrix and the fracture decrease quadratically, which goes in
agreement with the super-convergent properties discussed in Remark 15.

7.1.3 Three-dimensional validation

For our next numerical validation, we employ the 2d/3d configuration from the right Figure 5. We repeat
the same analysis from the previous section, and investigate four refinement levels. The mixed-dimensional
Poincaré constant for this configuration corresponds to a value of 𝐶𝐶Ω,Γ ≈ 0.1838. The results are shown in
Table 3 and Table 4. As in the previous validation, we can see that the majorants capture the local and
global convergence tendency of all numerical methods. Again, RT0-P0, MVEM-P0, and MPFA give quite
similar results, whereas TPFA showcase larger errors. As expected, efficiency indices again lie within the
stated bounds from Remark 16.

7.2 Numerical applications

We now apply our estimators to numerical approximations of challenging problems solving the equations of
incompressible flow in fractured porous media. Importantly, since source terms are zero in both applications,
by applying matching grids the residual errors are zero, and we are in the setting of having an exact
conservation property from the numerical approximation. From Remark 16, we then know that the efficiency
index for the primal-dual error will be less than 2; even if the exact solution and error are both unknown.
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Tab. 4: Three-dimensional validation: Subdomain and interface errors.

ℎcoup 𝜀𝜀DF,Ω2
𝜀𝜀R,Ω2;NC 𝜀𝜀R,Ω2;LC 𝜀𝜀DF,Ω1

𝜀𝜀R,Ω1;NC 𝜀𝜀R,Ω1;LC 𝜀𝜀DF,Γ1
𝜀𝜀DF,Γ2

RT
0-

P0

0.2625 2.35e-01 4.73e-02 2.55e-02 4.67e-03 1.56e-02 6.70e-03 5.05e-03 5.00e-03
0.1720 1.62e-01 3.08e-02 1.10e-02 4.53e-03 9.01e-03 2.04e-03 1.37e-03 1.37e-03
0.0827 8.69e-02 1.91e-02 3.91e-03 2.72e-03 5.17e-03 6.70e-04 4.07e-04 4.09e-04
0.0418 4.58e-02 1.01e-02 1.06e-03 1.40e-03 2.64e-03 1.70e-04 1.08e-04 1.09e-04

M
V

EM
-P

0 0.2625 2.39e-01 4.73e-02 2.55e-02 5.78e-03 1.56e-02 6.70e-03 5.54e-03 5.49e-03
0.1720 1.64e-01 3.08e-02 1.10e-02 5.56e-03 9.01e-03 2.04e-03 1.50e-03 1.50e-03
0.0827 8.79e-02 1.91e-02 3.91e-03 3.05e-03 5.17e-03 6.70e-04 4.40e-04 4.41e-04
0.0418 4.61e-02 1.01e-02 1.06e-03 1.46e-03 2.64e-03 1.70e-04 1.13e-04 1.14e-04

M
PF

A

0.2625 2.40e-01 4.73e-02 2.55e-02 5.04e-03 1.56e-02 6.70e-03 5.93e-03 5.86e-03
0.1720 1.66e-01 3.08e-02 1.10e-02 4.86e-03 9.01e-03 2.04e-03 1.56e-03 1.55e-03
0.0827 8.89e-02 1.91e-02 3.91e-03 2.82e-03 5.17e-03 6.70e-04 4.61e-04 4.62e-04
0.0418 4.65e-02 1.01e-02 1.06e-03 1.41e-03 2.64e-03 1.70e-04 1.14e-04 1.16e-04

T
PF

A

0.2625 3.34e-01 4.73e-02 2.55e-02 4.88e-03 1.56e-02 6.70e-03 6.04e-03 5.11e-03
0.1720 2.63e-01 3.08e-02 1.10e-02 4.86e-03 9.01e-03 2.04e-03 1.35e-03 1.29e-03
0.0827 2.02e-01 1.91e-02 3.91e-03 2.85e-03 5.17e-03 6.70e-04 4.50e-04 4.39e-04
0.0418 1.97e-01 1.01e-02 1.06e-03 1.46e-03 2.64e-03 1.70e-04 1.02e-04 1.02e-04

7.2.1 Two-dimensional application

In this numerical experiment, we consider the benchmark case 3b from [29]. As shown in the left panel of
Figure 1, the domain consists of ten (partially intersecting) fractures embedded in a unit square matrix.
The exact fracture coordinates can be found in Appendix C of [29]. Fractures 4 and 5 represent blocking
fractures (𝒦𝒦 = 10−4 and 𝜅𝜅 = 1) whereas the others represent conductive fractures (𝒦𝒦 = 104 and 𝜅𝜅 = 108).
The matrix permeability is set to one. A linear pressure drop is imposed from left (𝑝𝑝 = 4) to right (𝑝𝑝 = 1),
whereas no flux is prescribed at the top and bottom of the domain.

The benchmark establishes three refinement levels; coarse, intermediate, and fine, with approximately
1500, 4200, and 16000 two-dimensional cells. The structure of the local contributions to the majorant (confer
e.g., equation (59)) are shown in Figure 6, based on the approximate solution obtained by the MPFA
discretization.

In Table 5, we show the errors bounds for the three refinement levels. To avoid numbering domains and
interfaces, we refer to the matrix error as 𝜀𝜀Ω2,EC, and group the fracture and interface errors by conductive
and blocking. For example, 𝜀𝜀Ω1,C,EC refers to the sum of the errors of 1d conductive fractures.

An important observation is that the persistent reduction of the majorant ℳ⊕
p,u;EC, together with the

known upper and lower bounds on the efficiency indexes established in Remark 16, provides a post factum
verification of the convergence of all the numerical methods considered.

The error estimates suggest that the contribution to the overall error bounds are concentrated, primarily,
on highly conductive interfaces (see the column corresponding to 𝜀𝜀Γ1,C). On a more qualitative note, Figure 6
suggests that subdomain diffusive errors are concentrated at the fracture tips and fracture intersections,
which is where singularities may typically be encountered [17].

7.2.2 Three-dimensional application

Our last numerical application is based on a modified version of the three-dimensional benchmark 2.1
from [14]. The domain consists of nine intersecting fractures embedded in a unit cube, as shown in the
middle panel of Figure 1. This results in an intricate network with 106 subdomains and 270 interfaces of
different dimensionality.
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Tab. 5: Error estimates for the two-dimensional application.

Mesh 𝜀𝜀Ω2;EC 𝜀𝜀Ω1;EC,C 𝜀𝜀Ω1;EC,B 𝜀𝜀Γ1,C 𝜀𝜀Γ1,B 𝜀𝜀Γ0 ℳ⊕
p;EC ℳ⊕

p,u;EC

RT
0-

P0

Coarse 7.39e-01 2.93e-01 2.98e-04 3.13e+03 1.52e-01 2.24e+01 9.94e+02 1.99e+03
Intermediate 5.95e-01 1.90e-01 2.77e-04 1.95e+03 1.00e-01 1.79e+01 6.20e+02 1.24e+03

Fine 4.30e-01 1.07e-01 2.78e-04 9.79e+02 5.15e-02 1.22e+01 3.15e+02 6.30e+02

M
V

EM
-P

0 Coarse 7.29e-01 3.51e-01 1.44e-04 3.10e+03 1.46e-01 4.41e+01 9.84e+02 1.97e+03
Intermediate 5.91e-01 2.23e-01 1.27e-04 1.94e+03 9.43e-02 3.14e+01 6.17e+02 1.23e+03

Fine 4.28e-01 1.24e-01 1.18e-04 9.78e+02 4.80e-02 2.02e+01 3.15e+02 6.29e+02

M
PF

A Coarse 7.39e-01 3.13e-01 1.72e-04 3.03e+03 1.43e-01 3.39e+01 9.63e+02 1.93e+03
Intermediate 5.98e-01 2.01e-01 1.54e-04 1.89e+03 9.18e-02 2.55e+01 6.00e+02 1.20e+03

Fine 4.33e-01 1.12e-01 1.46e-04 9.49e+02 4.71e-02 1.68e+01 3.05e+02 6.10e+02

T
PF

A

Coarse 7.52e-01 3.05e-01 1.76e-04 3.19e+03 1.48e-01 3.67e+01 1.01e03 2.02e+03
Intermediate 6.08e-01 1.96e-01 1.51e-04 1.95e+03 9.41e-02 2.61e+01 6.12e+02 1.22e+03

Fine 4.45e-01 1.09e-01 1.60e-04 1.00e+03 4.84e-02 1.86e+01 3.23e+02 6.46e+02

The results for ℳ⊕
u;EC are omitted since they are equal to ℳ⊕

p;EC.
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Fig. 6: Two-dimensional benchmark problem and the errors associated with the matrix and fractures for the coarse (left),
intermediate (center), and fine (right) grid resolutions. Fractures 4 and 5 are blocking, whereas the others are conductive.
The local bounds were obtained using MPFA. The results suggest that subdomain diffusive errors are concentrated around
fracture tips and fracture intersections.



26 J. Varela et al., A posteriori error estimates for mixed-dimensional elliptic equations

Tab. 6: Error estimates for the three-dimensional application.

Mesh 𝜀𝜀Ω3;EC 𝜀𝜀Ω2;EC 𝜀𝜀Ω1;EC 𝜀𝜀Γ2 𝜀𝜀Γ1 𝜀𝜀Γ0 ℳ⊕
p;EC ℳ⊕

p,u;EC

RT
0-

P0

Coarse 6.17e-01 5.81e-04 3.16e-04 9.87e+02 3.63e-02 3.31e-02 5.03e+02 1.01e+03
Intermediate 4.55e-01 4.61e-04 1.58e-04 7.75e+01 8.86e-03 8.35e-04 3.40e+01 6.81e+01

Fine 3.86e-01 2.55e-04 9.60e-05 2.26e+01 4.63e-03 4.34e-04 1.07e+01 2.14e+01

M
V

EM
-P

0 Coarse 6.07e-01 6.99e-04 2.77e-04 9.54e+02 7.48e-02 6.38e-02 4.66e+02 9.33e+02
Intermediate 4.55e-01 4.63e-04 1.65e-04 8.19e+01 9.96e-03 4.59e-03 3.59e+01 7.18e+01

Fine 3.86e-01 2.46e-04 9.17e-05 2.33e+01 4.00e-03 1.75e-03 1.11e+01 2.22e+01

M
PF

A Coarse 6.07e-01 7.00e-04 3.15e-04 1.05e+03 4.61e-02 1.69e-02 5.24e+02 1.05e+03
Intermediate 4.46e-01 4.88e-04 1.61e-04 8.42e+01 7.72e-03 2.31e-03 3.71e+01 7.42e+01

Fine 3.77e-01 2.53e-04 9.04e-05 2.37e+01 2.82e-03 9.36e-04 1.12e+01 2.24e+01

T
PF

A

Coarse 6.32e-01 4.72e-04 2.26e-04 7.92e+02 4.21e-02 1.34e-02 3.76e+02 7.52e+02
Intermediate 4.48e-01 6.27e-04 1.40e-04 1.47e+02 1.56e-02 2.32e-03 6.82e+01 1.36e+02

Fine 4.07e-01 5.82e-04 8.72e-05 4.60e+01 7.97e-03 1.05e-03 2.04e+01 4.08e+01

The results for ℳ⊕
u;EC are omitted since they are equal to ℳ⊕

p;EC.

The original benchmark imposes an inlet flux (purple lower corner 𝑢𝑢 = −1) and an outlet pressure
(pink upper corner 𝑝𝑝 = 1), and for the rest of the external boundaries null flux. Since we have only
detailed our results for zero Neumann boundary conditions, we have replaced the inlet flux by a constant
pressure condition (𝑝𝑝 = 1) and modified the value of the outlet pressure (𝑝𝑝 = 0). The benchmark assigns
heterogeneous permeability to the matrix subdomain, whereas the fractures are assumed to be highly
conductive. For the complete description of the benchmark, we refer to [14], and for an impression on how
the contributions to the majorant are distributed, see Figure 7. Here we show the error estimates for the
whole fracture network obtained with RT0-P0, where it becomes evident that the subdomain diffusive
errors are concentrated at the inlet and outlet boundaries; refinement efforts should therefore focus on these
regions.

As in Section 7.2.1, we collect the local errors of subdomains and interfaces of equal dimensionality.
The results are summarized in Table 6. As in the previous cases, we have local and global convergence for
all four numerical methods. Again, RT0-P0, MVEM-P0, and MPFA show very similar results, while TPFA
show larger errors.

As in the 2d case discussed above, the persistent reduction of the majorant ℳ⊕
p,u;EC, again serves as a

verification of the convergence of all four numerical methods.

8 Conclusion
In this paper, we obtained a posteriori error estimates for mixed-dimensional elliptic equations. Depend-
ing upon the level of accuracy at which residual balances can be approximated, we have derived four
concrete versions of the majorant; i.e.: for no mass-conservative, subdomain mass-conservative, locally
mass-conservative, and point-wise mass-conservative approximations. Furthermore, we have demonstrated
both theoretically and numerically that sharper bounds can be obtained (for locally mass-conservative
methods) using local Poincaré constants instead of the global ones.

Our bounds have been thoroughly tested with numerical approximations obtained with four locally
mass-conservative methods of the lowest-order, namely: RT0-P0, MVEM-P0, MPFA, and TPFA. We
performed a detailed efficiency analysis comparing the use of global and local Poincaré-Friedrichs constants
in two and three dimensions. In both validations, our upper bounds reflected the optimal convergence rates
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Fig. 7: Subdomain diffusive error contributions to the majorant for the fine grid resolution obtained with RT0-P0.

of the numerical methods. In addition, we applied our bounds to two- and three-dimensional community
benchmark problems exhibiting challenging fracture networks. Again, in both cases, the bounds reflected
the limitations and the convergence rates of the methods satisfactory.

To the best of our knowledge, the bounds obtained here are the first of their kind to provide a practical
tool to measure the error in numerical approximations to the equations modeling the incompressible,
single-phase flow in generic fractured porous media.
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A Derivation of variational formulations
Here, we present the derivations for the primal and dual variational formulations for the case of a single
fracture immersed in a matrix.

A.1 Derivation of the primal weak form for a single fracture

Substitute (1b) into (1a), multiply each term by 𝑞𝑞2 ∈ 𝐻𝐻1
0 (Ω2), and integrate over Ω2. Similarly, substi-

tute (1b), (3a), and (3b) into (2a), multiply each term by 𝑞𝑞1 ∈ 𝐻𝐻1
0 (Ω1) and integrate over Ω1. Add the

resulting equations to obtain

− ⟨∇2 · 𝒦𝒦2∇2 𝑝𝑝2, 𝑞𝑞2⟩Ω2
− ⟨∇1 · 𝒦𝒦1∇1 𝑝𝑝1, 𝑞𝑞1⟩Ω1

+ ⟨𝜅𝜅1 (𝑝𝑝1 − tr𝜕𝜕1Ω2 𝑝𝑝2), 𝑞𝑞1⟩Ω1

+ ⟨𝜅𝜅2 (𝑝𝑝1 − tr𝜕𝜕2Ω2 𝑝𝑝2), 𝑞𝑞1⟩Ω1
= ⟨𝑓𝑓2, 𝑞𝑞2⟩Ω2

+ ⟨𝑓𝑓1, 𝑞𝑞1⟩Ω1
. (77)

Using integration by parts, the first term of (77) can be expressed as

−⟨∇2 · 𝒦𝒦2∇2 𝑝𝑝2, 𝑞𝑞2⟩Ω2
= ⟨𝒦𝒦2∇2 𝑝𝑝2, ∇2 𝑞𝑞2⟩Ω2

−
2∑︁

𝑗𝑗=1

⟨︀
tr𝜕𝜕𝑗𝑗Ω2 (𝒦𝒦2∇2 𝑝𝑝2) · 𝑛𝑛2, tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

⟩︀
𝜕𝜕𝑗𝑗Ω2

,

= ⟨𝒦𝒦2∇2𝑝𝑝2, ∇2𝑞𝑞2⟩Ω2
−

2∑︁
𝑗𝑗=1

⟨︀
𝜆𝜆𝑗𝑗 , tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

⟩︀
Γ𝑗𝑗

,

= ⟨𝒦𝒦2∇2𝑝𝑝2, ∇2𝑞𝑞2⟩Ω2
+

2∑︁
𝑗𝑗=1

⟨︀
𝜅𝜅𝑗𝑗

(︀
𝑝𝑝1 − tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2

)︀
, tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

⟩︀
Γ𝑗𝑗

. (78)

Here, we use the internal boundary conditions (1c) and (1d) and the definition of the mortar fluxes (3a)
and (3b). Analogously, integration by parts allows us to write the second term of (77) as

− ⟨∇1 · 𝒦𝒦1∇1 𝑝𝑝1, 𝑞𝑞1⟩Ω1
= ⟨𝒦𝒦1∇1 𝑝𝑝1, ∇1 𝑞𝑞1⟩Ω1

. (79)

Note that the boundary terms vanish due to the choice of boundary conditions.
Finally, we note that the third and fourth terms from (77) can be equivalently written as

⟨︀
𝜅𝜅𝑗𝑗

(︀
𝑝𝑝1 − tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2

)︀
, 𝑞𝑞1

⟩︀
Ω1

=
⟨︀
𝜅𝜅𝑗𝑗

(︀
𝑝𝑝1 − tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2

)︀
, 𝑞𝑞1

⟩︀
Γ𝑗𝑗

, 𝑗𝑗 ∈ {1, 2}. (80)

The proof is completed by substituting (78), (79), and (80) into (77) and grouping common terms.
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A.2 Derivation of the dual weak form for a single fracture

Let us start with (13a). Multiply respectively (1b) and (2b) by 𝑣𝑣0,2 ∈ 𝑉𝑉0,2 and 𝑣𝑣0,1 ∈ 𝑉𝑉0,1, integrate over
the subdomains Ω2 and Ω1, use integration by parts to obtain

⟨︀
𝒦𝒦−1

2 𝑢𝑢2, 𝑣𝑣0,2
⟩︀

Ω2
=

⟨︀
𝒦𝒦−1

2 (𝑢𝑢0,2 + ℛ1𝜆𝜆1 + ℛ2𝜆𝜆2), 𝑣𝑣0,2
⟩︀

Ω2
= −⟨∇2 𝑝𝑝2, 𝑣𝑣0,2⟩Ω2

= ⟨𝑝𝑝2, ∇2 · 𝑣𝑣0,2⟩Ω2
− ⟨𝑔𝑔𝐷𝐷𝐷2, tr𝜕𝜕𝐷𝐷Ω2 𝑣𝑣0,2 · 𝑛𝑛2⟩𝜕𝜕𝐷𝐷Ω2

. (81)
⟨︀
𝒦𝒦−1

1 𝑢𝑢1, 𝑣𝑣0,1
⟩︀

Ω1
=

⟨︀
𝒦𝒦−1

1 𝑢𝑢0,1, 𝑣𝑣0,1
⟩︀

Ω1
= −⟨∇1 𝑝𝑝1, 𝑣𝑣0,1⟩Ω1

= ⟨𝑝𝑝1, ∇1 · 𝑣𝑣0,1⟩Ω1
− ⟨𝑔𝑔𝐷𝐷𝐷1, tr𝜕𝜕𝐷𝐷Ω1 𝑣𝑣0,1 · 𝑛𝑛1⟩𝜕𝜕𝐷𝐷Ω1

. (82)

Adding together (81) and (82) gives (13a). We now focus on (13b). First, we use (1b) and multiply by the
test functions ℛ𝑗𝑗𝜈𝜈𝑗𝑗 with 𝜈𝜈𝑗𝑗 ∈ 𝐿𝐿2(Γ𝑗𝑗) for 𝑗𝑗 ∈ {1, 2}, integrate over Ω2, and apply integration by parts, to
obtain:

⟨︀
𝒦𝒦−1

2 𝑢𝑢2, ℛ𝑗𝑗𝜈𝜈𝑗𝑗

⟩︀
Ω2

=
⟨︀
𝒦𝒦−1

2 (𝑢𝑢0,2 + ℛ1𝜆𝜆1 + ℛ2𝜆𝜆2), ℛ𝑗𝑗𝜈𝜈𝑗𝑗

⟩︀
Ω2

= −⟨∇2 𝑝𝑝2, ℛ𝑗𝑗𝜈𝜈𝑗𝑗⟩Ω2

= ⟨𝑝𝑝2, ∇2 · (ℛ𝑗𝑗𝜈𝜈𝑗𝑗)⟩Ω2
−

⟨︀
tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2, tr𝜕𝜕𝑗𝑗Ω2 ( ℛ𝑗𝑗𝜈𝜈𝑗𝑗) · 𝑛𝑛2

⟩︀
𝜕𝜕𝑗𝑗Ω2

= ⟨𝑝𝑝2, ∇2 · (ℛ𝑗𝑗𝜈𝜈𝑗𝑗)⟩Ω2
−

⟨︀
tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2, 𝜈𝜈𝑗𝑗

⟩︀
𝜕𝜕𝑗𝑗Ω2

= ⟨𝑝𝑝2, ∇2 · (ℛ𝑗𝑗𝜈𝜈𝑗𝑗)⟩Ω2
−

⟨︀
tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2, 𝜈𝜈𝑗𝑗

⟩︀
Γ𝑗𝑗

. (83)

Next, we multiply the interface laws (3a) and (3b) by 𝜈𝜈1 and 𝜈𝜈2, respectively, to get
⟨︀
𝜅𝜅−1

1 𝜆𝜆𝑗𝑗 , 𝜈𝜈𝑗𝑗

⟩︀
Γ𝑗𝑗

= −⟨𝑝𝑝1, 𝜈𝜈𝑗𝑗⟩Γ𝑗𝑗
+

⟨︀
tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2, 𝜈𝜈𝑗𝑗

⟩︀
Γ𝑗𝑗

= −⟨𝑝𝑝1, 𝜈𝜈𝑗𝑗⟩Ω1
+

⟨︀
tr𝜕𝜕𝑗𝑗Ω2 𝑝𝑝2, 𝜈𝜈𝑗𝑗

⟩︀
Γ𝑗𝑗

, 𝑗𝑗 ∈ {1, 2}. (84)

After adding (83) and (84) and canceling common terms, we obtain (13b). Finally, to obtain (13c), we
multiply (1a) by 𝑞𝑞2 ∈ 𝐿𝐿2(Ω2) and (2a) by 𝑞𝑞1 ∈ 𝐿𝐿2(Ω1), and integrate over their respective subdomains,
and add the resulting equations.

B Proof of Theorem 1
Here, we present the proof of the upper bound of the error for the primal variable, for the case of a single
fracture immersed in a matrix.

Proof. Start by computing the difference between 𝑝𝑝 = [𝑝𝑝1, 𝑝𝑝2] ∈ 𝐻𝐻1
0 (Ω) + 𝑔𝑔 and an arbitrary function

𝑞𝑞 = [𝑞𝑞1, 𝑞𝑞2] ∈ 𝐻𝐻1
0 (Ω) + 𝑔𝑔 in the energy norm (14):

|||𝑝𝑝 − 𝑞𝑞|||2 = ⟨𝒦𝒦2∇2(𝑝𝑝2 − 𝑞𝑞2), ∇2(𝑝𝑝2 − 𝑞𝑞2)⟩Ω2
+ ⟨𝒦𝒦1∇1(𝑝𝑝1 − 𝑞𝑞1), ∇1(𝑝𝑝1 − 𝑞𝑞1)⟩Ω1

+
2∑︁

𝑗𝑗=1

⟨︀
𝜅𝜅𝑗𝑗

[︀
(𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2 (𝑝𝑝2 − 𝑞𝑞2)

]︀
, (𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2 (𝑝𝑝2 − 𝑞𝑞2)

⟩︀
Γ𝑗𝑗

,

= ⟨𝒦𝒦2∇2𝑝𝑝2, ∇2(𝑝𝑝2 − 𝑞𝑞2)⟩Ω2
+ ⟨𝒦𝒦1∇1𝑝𝑝1, ∇1(𝑝𝑝1 − 𝑞𝑞1)⟩Ω1

+
2∑︁

𝑗𝑗=1

⟨︀
𝜅𝜅𝑗𝑗

[︀
(𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2(𝑝𝑝2 − 𝑞𝑞2)

]︀
, (𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2 (𝑝𝑝2 − 𝑞𝑞2)

⟩︀
Γ𝑗𝑗

+ ⟨−𝒦𝒦2∇2𝑞𝑞2, ∇2(𝑝𝑝2 − 𝑞𝑞2)⟩Ω2
+ ⟨−𝒦𝒦1∇1𝑞𝑞1, ∇1(𝑝𝑝1 − 𝑞𝑞1)⟩Ω1

+
2∑︁

𝑗𝑗=1

⟨︀
−𝜅𝜅𝑗𝑗

(︀
𝑞𝑞1 − tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

)︀
, (𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2 (𝑝𝑝2 − 𝑞𝑞2)

⟩︀
Γ𝑗𝑗

. (85)
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By noticing that the first three terms of (85) add up to the right-hand side of (6), and adding the identity

− ⟨𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2, ∇2(𝑝𝑝2 − 𝑞𝑞2)⟩Ω2
− ⟨𝑣𝑣0,1, ∇1(𝑝𝑝1 − 𝑞𝑞1)⟩Ω1

+ ⟨∇2 · (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2), 𝑝𝑝2 − 𝑞𝑞2⟩Ω2
+ ⟨∇1 · 𝑣𝑣0,1 − 𝜈𝜈1 − 𝜈𝜈2, 𝑝𝑝1 − 𝑞𝑞1⟩Ω1

+
2∑︁

𝑗𝑗=1

⟨︀
𝜈𝜈𝑗𝑗 , (𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2 (𝑝𝑝2 − 𝑞𝑞2)

⟩︀
Γ𝑗𝑗

= 0,

valid for any 𝑣𝑣0 ∈ 𝑉𝑉0 and 𝜈𝜈 ∈ 𝐿𝐿2(Γ) to (85), we obtain

|||𝑝𝑝 − 𝑞𝑞|||2 = ⟨− (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2 + 𝒦𝒦2∇2𝑞𝑞2), ∇2(𝑝𝑝2 − 𝑞𝑞2)⟩Ω2
+ ⟨− (𝑣𝑣0,1 + 𝒦𝒦1∇1𝑝𝑝1), ∇1(𝑝𝑝1 − 𝑞𝑞1)⟩Ω1

+
2∑︁

𝑗𝑗=1

⟨︀
−

[︀
𝜈𝜈𝑗𝑗 + 𝜅𝜅𝑗𝑗

(︀
𝑞𝑞1 − tr𝜕𝜕𝑗𝑗Ω2 𝑞𝑞2

)︀]︀
, (𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕𝑗𝑗Ω2 (𝑝𝑝2 − 𝑞𝑞2)

⟩︀
Γ𝑗𝑗

+ ⟨𝑓𝑓2 − ∇2 · (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2), 𝑝𝑝2 − 𝑞𝑞2⟩Ω2
+ ⟨𝑓𝑓1 − ∇1 · 𝑣𝑣0,1 + 𝜈𝜈1 + 𝜈𝜈2, 𝑝𝑝1 − 𝑞𝑞1⟩Ω1

. (86)

Recognizing that since 𝒦𝒦2 is symmetric positive definite, it can be expressed as 𝒦𝒦2 =
(︁

𝒦𝒦1/2
2

)︁2
, where

𝒦𝒦1/2
2 is also symmetric positive definite, and therefore self-adjoint. The square-root of the material coefficients

can therefore be moved to the second argument of the three first inner products in (86). After applying the
Cauchy-Schwarz inequality to each inner product of (86), one gets

|||𝑝𝑝 − 𝑞𝑞|||2 ≤
⃦⃦
⃦𝒦𝒦− 1

2
2 (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2 + 𝒦𝒦2∇2𝑞𝑞2)

⃦⃦
⃦

Ω2

⃦⃦
⃦𝒦𝒦

1
2
2 ∇2(𝑝𝑝2 − 𝑞𝑞2)

⃦⃦
⃦

Ω2

+
⃦⃦
⃦𝒦𝒦− 1

2
1 (𝑣𝑣0,1 + 𝒦𝒦1∇1𝑝𝑝1)

⃦⃦
⃦

Ω1

⃦⃦
⃦𝒦𝒦

1
2
1 ∇1(𝑝𝑝1 − 𝑞𝑞1)

⃦⃦
⃦

Ω1

+
⃦⃦
⃦𝜅𝜅

− 1
2

1 [𝜈𝜈1 + 𝜅𝜅1 (𝑞𝑞1 − tr𝜕𝜕1Ω2 𝑞𝑞2)]
⃦⃦
⃦

Γ1

⃦⃦
⃦𝜅𝜅

1
2
1 [(𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕1Ω2 (𝑝𝑝2 − 𝑞𝑞2)]

⃦⃦
⃦

Γ1

+
⃦⃦
⃦𝜅𝜅

− 1
2

2 [𝜈𝜈2 + 𝜅𝜅2 (𝑞𝑞1 − tr𝜕𝜕2Ω2 𝑞𝑞2)]
⃦⃦
⃦

Γ2

⃦⃦
⃦𝜅𝜅

1
2
2 [(𝑝𝑝1 − 𝑞𝑞1) − tr𝜕𝜕2Ω2 (𝑝𝑝2 − 𝑞𝑞2)]

⃦⃦
⃦

Γ2

+ ‖𝑓𝑓2 − ∇2 · (𝑣𝑣0,2 + ℛ1𝜈𝜈1 + ℛ2𝜈𝜈2)‖Ω2
‖𝑝𝑝2 − 𝑞𝑞2‖Ω2

+ ‖𝑓𝑓1 − ∇1 · 𝑣𝑣0,1 + 𝜈𝜈1 + 𝜈𝜈2‖Ω1
‖𝑝𝑝1 − 𝑞𝑞1‖Ω1

Applying the permeability-weighted Poincaré-Friedrichs inequality (40b) to the terms ‖𝑝𝑝1 − 𝑞𝑞1‖Ω1
and

‖𝑝𝑝2 − 𝑞𝑞2‖Ω2
, the proof of the theorem is completed.

C Proof of Theorem 2
Here, we present the proof of our main theorem, which deals with the general abstract estimates in a
mixed-dimensional setting.

Proof. (1) The proof for the bounds for the mD primal variable follows the one presented in Appendix B,
modulo its generalization to the mD setting and the use of weighted norms on the residual terms. Start by
computing the difference between any q ∈ 𝐻𝐻1

0 (Ω) + g and p ∈ 𝐻𝐻1
0 (Ω) + g using (49), to get

|||p − q|||2 = ⟨KD (p − q),D (p − q)⟩Ω,Γ = ⟨KD p,D (p − q)⟩Ω,Γ + ⟨−KD q,D (p − q)⟩Ω,Γ

= ⟨f, p − q⟩Ω + ⟨−KD q,D (p − q)⟩Ω,Γ = ⟨f, p − q⟩Ω +
⟨

−K− 1
2 D q,K

1
2 D (p − q)

⟩
Ω,Γ

= ⟨f − D · v, p − q⟩Ω +
⟨

−K− 1
2 (v + KD q),K

1
2 D (p − q)

⟩
Ω,Γ

. (87)

Here, we used (49), (55), and added the fact that D· and D are adjoints.
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By exploiting the orthogonality property (46) and then introducing the weights to the second and third
terms, (87) can be equivalently written as:

|||p − q|||2 = ⟨f − D · v, 𝜋𝜋𝑊𝑊 (p − q)⟩Ω +
⟨

−K− 1
2 (v + KD q),K

1
2 D (p − q))

⟩
Ω,Γ

=
⟨︀
𝜇𝜇−1(f − D · v), 𝜇𝜇𝜇𝜇𝑊𝑊 (p − q)

⟩︀
Ω +

⟨
−K− 1

2 (v + KD q),K
1
2 D (p − q)

⟩
Ω,Γ

. (88)

Finally, applying the Cauchy-Schwarz inequality to the first and second terms of (88), and then the
norm definitions (49), (50), and (47), we arrive at the desired bound:

|||p − q|||2 ≤ |||v + KD q|||*|||p − q||| +
⃦⃦

𝜇𝜇−1(f − D · v)
⃦⃦

Ω‖𝜋𝜋𝑊𝑊 (p − q)‖𝑊𝑊𝑊𝑊𝑊

≤ |||v + KD q|||*|||p − q||| +
⃦⃦

𝜇𝜇−1(f − D · v)
⃦⃦

Ω|||p − q||| ≤ ℳ(q, v, f, 𝜇𝜇)|||p − q|||. (89)

(2) The proof for the bounds for the dual variable is given next. We remark that an alternative proof
based on a generalized abstract estimate (see [63], Theorem 6.1) can be used to obtain equivalent upper
bounds after its generalization to the mD setting.

We start by adding the square of the primal and dual error to obtain:

|||p − q|||2 + |||u − v|||2* = ⟨KD (p − q),D (p − q)⟩Ω,Γ +
⟨︀
K−1(u − v), u − v

⟩︀
Ω,Γ

=
⟨︀
u + KD q,K−1u + D q

⟩︀
Ω,Γ +

⟨︀
K−1(u − v), u − v

⟩︀
Ω,Γ

=
⟨︀
u − v + v + KD q,K−1u − K−1v + D q + K−1v

⟩︀
Ω,Γ +

⟨︀
K−1(u − v), u − v

⟩︀
Ω,Γ

=
⟨︀
v + KD q,K−1v + D q

⟩︀
Ω,Γ + 2⟨u − v, −D (p − q)⟩Ω,Γ

=
⟨
K− 1

2 v + K
1
2 D q,K− 1

2 v + K
1
2 D q

⟩
Ω,Γ

+ 2⟨u − v, −D (p − q)⟩Ω,Γ. (90)

Here, we used the norm definitions (49) and (50) together with the mD constitutive relationship (29a).
Using partial integration, mass conservation (29b), and the orthogonality property (46), the second

term of (90) can be equivalently written as

⟨u − v, −D (p − q)⟩Ω,Γ = ⟨D · (u − v), −(p − q)⟩Ω = ⟨f − D · v, −(p − q)⟩Ω

= ⟨f − D · v, −𝜋𝜋𝑊𝑊 (p − q)⟩Ω =
⟨︀
𝜇𝜇−1(f − D · v), −𝜇𝜇𝜇𝜇𝑊𝑊 (p − q)

⟩︀
Ω. (91)

Using the Cauchy-Schwarz inequality twice and the definition of the weighted norms (47), (91) can be
estimated as

⃒⃒
⟨u − v, −D (p − q)⟩Ω,Γ

⃒⃒
≤

⃦⃦
𝜇𝜇−1(f − D · v)

⃦⃦
Ω‖𝜋𝜋𝑊𝑊 (p − q)‖𝑊𝑊𝑊𝑊𝑊

=
⃦⃦

𝜇𝜇−1(f − D · v)
⃦⃦

Ω|||p − q||| ≤ 1
2

(︁⃦⃦
𝜇𝜇−1(f − D · v)

⃦⃦2
Ω + |||p − q|||2

)︁
. (92)

Substituting (92) into (90) and applying the Cauchy-Schwarz inequality to the first term, we arrive at,

|||u − v|||2* ≤ |||v + KD q|||2* +
⃦⃦

𝜇𝜇−1(f − D · v)
⃦⃦2

Ω,

from which we conclude that (56) indeed holds.
(3) To prove the upper bound for the primal-dual pair, we choose an arbitrary pair (q, v) ∈ (𝐻𝐻1

0 (Ω) +
g) × 𝐻𝐻(div; Ω, Γ; 𝑈𝑈), and measure its difference with the exact solution (p, u) ∈ (𝐻𝐻1

0 (Ω) + g) × 𝐻𝐻(div; Ω, Γ)
in the norm (52), to get

||[(p − q, u − v)]|| = |||p − q||| + |||u − v|||* +
⃦⃦

𝜇𝜇−1D · (u − v)
⃦⃦

Ω ≤ 2ℳ +
⃦⃦

𝜇𝜇−1D · (u − v)
⃦⃦

Ω,

where we use the bounds (55) and (56).
For the proof of the lower bound, we start from the definition of the majorant, to get

ℳ = |||v + KD q|||* +
⃦⃦

𝜇𝜇−1(f − D · v)
⃦⃦

Ω

≤ |||u − v|||* + |||KD (p − q)|||* +
⃦⃦

𝜇𝜇−1(f − D · v)
⃦⃦

Ω = ||[(p − q, u − v)]||.

This completes the proof for the two-sided bounds and the abstract theorem.
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D Exact solutions to numerical validations
Herein, we provide the exact expressions for the pressure, velocities, mortar fluxes, and source terms for the
numerical validations presented in Section 7.1.

We will conveniently define the following quantities for notational compactness:

𝛼𝛼(𝑥𝑥) = 𝑥𝑥1 − 0.50,

𝛽𝛽1(𝑥𝑥) = 𝑥𝑥2 − 0.25, 𝛽𝛽2(𝑥𝑥) = 𝑥𝑥2 − 0.75,

𝛾𝛾1(𝑥𝑥) = 𝑥𝑥3 − 0.25, 𝛾𝛾2(𝑥𝑥) = 𝑥𝑥3 − 0.75,

where 𝑥𝑥 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3].

D.1 Exact solutions for the 1d/2d validation

The matrix subdomain Ω2 is decomposed into three regions, i.e. Ω2 = ∪3
𝑘𝑘=1Ω𝑘𝑘

2 , given by:

Ω1
2 = {𝑥𝑥 ∈ Ω2 : 0.00 < 𝑥𝑥2 < 0.25} ,

Ω2
2 = {𝑥𝑥 ∈ Ω2 : 0.25 ≤ 𝑥𝑥2 < 0.75} ,

Ω3
2 = {𝑥𝑥 ∈ Ω2 : 0.75 ≤ 𝑥𝑥2 < 1.00} .

Let us now define the distance function 𝑑𝑑(𝑥𝑥) from Ω2 to Ω1. That is,

𝑑𝑑(𝑥𝑥) =

⎧⎪⎪⎨
⎪⎪⎩

(︀
𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽1(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω1
2(︀

𝛼𝛼(𝑥𝑥)2)︀0.5
, 𝑥𝑥 ∈ Ω2

2(︀
𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽2(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω3
2

, (93)

and the bubble function 𝜔𝜔(𝑥𝑥):

𝜔𝜔(𝑥𝑥) =

{︃
𝛽𝛽1(𝑥𝑥)2𝛽𝛽2(𝑥𝑥)2, 𝑥𝑥 ∈ Ω2

2

0, otherwise
. (94)

In Table 7, we include the exact solutions for all the variables of interest. Note that the parameter 𝑛𝑛

controls the regularity of the solution. For this particular validation, a value of 𝑛𝑛 = 1.5 was adopted.

D.2 Exact solutions for the 2d/3d validation

Analogously to the previous case, we decompose the three-dimensional matrix Ω2 into nine subdomains, i.e.
Ω2 = ∪9

𝑘𝑘=1Ω𝑘𝑘
2 , given by

Ω1
2 = {𝑥𝑥 ∈ Ω2 : 0.00 < 𝑥𝑥2 < 0.25, 0.00 < 𝑥𝑥3 < 0.25} ,

Ω2
2 = {𝑥𝑥 ∈ Ω2 : 0.00 < 𝑥𝑥2 < 0.25, 0.25 ≤ 𝑥𝑥3 < 0.75} ,

Ω3
2 = {𝑥𝑥 ∈ Ω2 : 0.00 < 𝑥𝑥2 < 0.25, 0.75 ≤ 𝑥𝑥3 < 1.00} ,

Ω4
2 = {𝑥𝑥 ∈ Ω2 : 0.25 ≤ 𝑥𝑥2 < 0.75, 0.00 < 𝑥𝑥3 < 0.25} ,

Ω5
2 = {𝑥𝑥 ∈ Ω2 : 0.25 ≤ 𝑥𝑥2 < 0.75, 0.25 ≤ 𝑥𝑥3 < 0.75} ,

Ω6
2 = {𝑥𝑥 ∈ Ω2 : 0.25 ≤ 𝑥𝑥2 < 0.75, 0.75 ≤ 𝑥𝑥3 < 1.00} ,

Ω7
2 = {𝑥𝑥 ∈ Ω2 : 0.75 ≤ 𝑥𝑥2 < 1.00, 0.00 < 𝑥𝑥3 < 0.25} ,

Ω8
2 = {𝑥𝑥 ∈ Ω2 : 0.75 ≤ 𝑥𝑥2 < 1.00, 0.25 ≤ 𝑥𝑥3 < 0.75} ,

Ω9
2 = {𝑥𝑥 ∈ Ω2 : 0.75 ≤ 𝑥𝑥2 < 1.00, 0.75 ≤ 𝑥𝑥3 < 1.00} .
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Tab. 7: Exact solutions for the 1d/2d validation.

𝑝𝑝2 =
𝑑𝑑𝑛𝑛+1 + 𝜔𝜔𝜔𝜔 Ω2

2

𝑑𝑑𝑛𝑛+1
2 Ω2 ∖ Ω2

2

𝑢𝑢2 =

−𝑑𝑑𝑛𝑛+1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼1

]︁
Ω1

2

−𝑑𝑑
[︁
𝛼𝛼−1 (𝜔𝜔 + 𝑑𝑑𝑛𝑛(𝑛𝑛+ 1)) 2𝛽𝛽2

1𝛽𝛽2 + 2𝛽𝛽1𝛽𝛽2
2

]︁
Ω2

2

−𝑑𝑑𝑛𝑛+1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼2

]︁
Ω3

2

𝑓𝑓2 =

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
2𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω1

2

−2𝑑𝑑 (𝛽𝛽1(𝛽𝛽1 + 2𝛽𝛽2) + 𝛽𝛽2(2𝛽𝛽1 + 𝛽𝛽2))− 𝑑𝑑𝑛𝑛−1𝑛𝑛(𝑛𝑛+ 1) Ω2
2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
2𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω3

2

𝜆𝜆1 = 𝜔𝜔 Γ1

𝜆𝜆2 = 𝜔𝜔 Γ2

𝑝𝑝2 = 0 𝜕𝜕1Ω2

𝑝𝑝2 = 0 𝜕𝜕2Ω2

𝑝𝑝1 = −𝜔𝜔 Ω1

𝑢𝑢1 =
[︁
0 2𝛽𝛽2

1𝛽𝛽2 + 2𝛽𝛽1𝛽𝛽2
2

]︁
Ω1

∑︀
𝑗𝑗∈𝑆𝑆1

𝜆𝜆𝑗𝑗 = 2𝜔𝜔 Ω1

𝑓𝑓1 = 8𝛽𝛽1𝛽𝛽2 + 2(𝛽𝛽2
1 + 𝛽𝛽2

2)− 2𝜔𝜔 Ω1

The distance function 𝑑𝑑2(𝑥𝑥) from Ω2 to Ω1 is now given by

𝑑𝑑2(𝑥𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽1(𝑥𝑥)2 + 𝛾𝛾1(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω1
2,(︀

𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽1(𝑥𝑥)2)︀0.5
, 𝑥𝑥 ∈ Ω2

2,(︀
𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽1(𝑥𝑥)2 + 𝛾𝛾2(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω3
2,(︀

𝛼𝛼(𝑥𝑥)2 + 𝛾𝛾1(𝑥𝑥)2)︀0.5
, 𝑥𝑥 ∈ Ω4

2,(︀
𝛼𝛼(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω5
2,(︀

𝛼𝛼(𝑥𝑥)2 + 𝛾𝛾2(𝑥𝑥)2)︀0.5
, 𝑥𝑥 ∈ Ω6

2,(︀
𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽2(𝑥𝑥)2 + 𝛾𝛾1(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω7
2,(︀

𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽2(𝑥𝑥)2)︀0.5
, 𝑥𝑥 ∈ Ω8

2,(︀
𝛼𝛼(𝑥𝑥)2 + 𝛽𝛽2(𝑥𝑥)2 + 𝛾𝛾2(𝑥𝑥)2)︀0.5

, 𝑥𝑥 ∈ Ω9
2,

(95)

and the bubble function 𝜔𝜔(𝑥𝑥):

𝜔𝜔(𝑥𝑥) =

{︃
𝛽𝛽1(𝑥𝑥)2𝛽𝛽2(𝑥𝑥)2𝛾𝛾1(𝑥𝑥)2𝛾𝛾2(𝑥𝑥)2, 𝑥𝑥 ∈ Ω5

2

0, otherwise
. (96)

In Table 8, we show the exact solutions for all the variables of interest. Once again, a value of 𝑛𝑛 = 1.5
is adopted for this validation.
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Tab. 8: Exact solutions for the 2𝑑𝑑𝑑3𝑑𝑑 validation.

𝑝𝑝2 =
𝑑𝑑𝑛𝑛+1 + 𝜔𝜔𝜔𝜔 Ω2

2

𝑑𝑑𝑛𝑛+1
2 Ω2 ∖ Ω2

2

𝑢𝑢2 =

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼1 𝛾𝛾1

]︁
Ω1

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼1 0

]︁
Ω2

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼1 𝛾𝛾2

]︁
Ω3

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 0 𝛾𝛾1

]︁
Ω4

2

−𝑑𝑑
[︁
𝛼𝛼−1(𝜔𝜔 + 𝑑𝑑𝑛𝑛(𝑛𝑛+ 1)) 2𝛽𝛽2

1𝛽𝛽2𝛾𝛾2
1𝛾𝛾

2
2 + 2𝛽𝛽1𝛽𝛽2

2𝛾𝛾
2
1𝛾𝛾

2
2 2𝛽𝛽2

1𝛽𝛽
2
2𝛾𝛾

2
1𝛾𝛾2 + 2𝛽𝛽2

1𝛽𝛽
2
2𝛾𝛾1𝛾𝛾

2
2

]︁
Ω5

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 0 𝛾𝛾2

]︁
Ω6

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼2 𝛾𝛾1

]︁
Ω7

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼2 0

]︁
Ω8

2

−𝑑𝑑𝑛𝑛−1(𝑛𝑛+ 1)
[︁
𝛼𝛼 𝛼𝛼2 𝛾𝛾2

]︁
Ω9

2

𝑓𝑓2 =

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
3𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1) + 𝛾𝛾2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω1

2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
2𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω2

2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
3𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1) + 𝛾𝛾2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω3

2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
2𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛾𝛾2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω4

2

−2𝑑𝑑
(︀
𝛽𝛽2
1𝛽𝛽

2
2 (𝛾𝛾1 (𝛾𝛾1 + 2𝛾𝛾2) + 𝛾𝛾2 (2𝛾𝛾1 + 𝛾𝛾2)) + 𝛾𝛾2

1𝛾𝛾
2
2 (𝛽𝛽1 (𝛽𝛽1 + 2𝛽𝛽2) + 𝛽𝛽2 (2𝛽𝛽1 + 𝛽𝛽2))

)︀
Ω5

2

−𝛼𝛼−2𝜔𝜔𝜔𝜔𝑛𝑛+1(𝑛𝑛+ 1)2 − 𝛼𝛼−2𝜔𝜔𝜔𝜔𝑛𝑛+1(𝑛𝑛+ 1)

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
2𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛾𝛾2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω6

2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
3𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1) + 𝛾𝛾2

1𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω7

2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
2𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω8

2

−𝑑𝑑−2(𝑛𝑛+ 1)
(︀
3𝑑𝑑𝑛𝑛+1 + 𝛼𝛼2𝑑𝑑𝑛𝑛−1(𝑛𝑛− 1) + 𝛽𝛽2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1) + 𝛾𝛾2

2𝑑𝑑
𝑛𝑛−1(𝑛𝑛− 1)

)︀
Ω9

2

𝜆𝜆1 = 𝜔𝜔 Γ1

𝜆𝜆2 = 𝜔𝜔 Γ2

𝑝𝑝2 = 0 𝜕𝜕1Ω2

𝑝𝑝2 = 0 𝜕𝜕2Ω2

𝑝𝑝1 = −𝜔𝜔 Ω1

𝑢𝑢1 =
[︁
0 2𝛾𝛾2

1𝛾𝛾
2
2(𝛽𝛽1𝛽𝛽2

2 + 𝛽𝛽2
1𝛽𝛽2) 2𝛽𝛽2

1𝛽𝛽
2
2(𝛾𝛾1𝛾𝛾

2
2 + 𝛾𝛾2

1𝛾𝛾2)
]︁

Ω1

∑︀
𝑗𝑗∈𝑆𝑆1

𝜆𝜆𝑗𝑗 = 2𝜔𝜔 Ω1

𝑓𝑓1 = 𝛽𝛽2
1𝛾𝛾

2
2 + 4𝛽𝛽1𝛽𝛽2𝛾𝛾2

2 + 𝛽𝛽2
2𝛾𝛾

2
1 + 4𝛽𝛽2

2𝛾𝛾1𝛾𝛾2 + 2𝛽𝛽2
2𝛾𝛾

2
2 − 2𝜔𝜔 Ω1


