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Abstract
The spread of information in a social network has received renewed interest as social media becomes an increasingly popular
channel of communication. We are interested in the phenomenon of social diffusion of a piece of information in the presence
of a contradicting information in the network. Specifically we explore the use of formal methods for verification in studying
this phenomena. Using Monte Carlo simulation and the probabilistic model checker (PRISM) we are able to represent
social networks and confirm an earlier conjecture that disseminating new information rapidly is resistant to the presence
of contradicting information.

1 Introduction

Social network analysis is concerned with the structures of social relations and the graph they form,
as well as how that structure inf luences, and is inf luenced by the spread of information through the
networks (14; 28).

Information Diffusion is the process by which information spreads through a network. Social
networks are naturally modelled as graphs of agents, in which the agents are represented by vertices
in the graph which are connected by edges if the agents can share/communicate information.
Diffusion has been extensively studied in the social network analysis literature; see, e.g. (15) and
(21) for an overview. In particular, the impact of the social network graph on the diffusion process
has been studied. Social networks of communication have physically changed over the past 30 years.
In particular, aspects of these networks, such as the distance between two nodes and the speed
of communication, have changed drastically. This observation has revived interest in the study of
information diffusion, including work that represents the phenomena using Markov chains (e.g. (4))
as we do here.

The rise of social media has also generated interest in the informational and motivational states of
the agents in the network—such as their receptiveness to opposing views and motivations for sharing
or not sharing information—not just the relations between agents (13; 22; 26; 29).

Formal verification involves proving or disproving that a system is compliant with a formally
specified property (11). Arguably the most practical method of formal verification is model-
checking (7), in which all possible executions of a system can be examined automatically based
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1196 Markov chain model representation of information diffusion in social networks

on a model of the system. However, if exhaustive exploration of the model proves intractable then
the same model may be used in a simulation based approach.

In previous work (8), which we extend and build on here, we have built formal specifications
of social networks and diffusion properties using the input language of a probabilistic model
checker (PRISM). Unfortunately, even simple models that take account of both network structure
and an agent’s informational state proved largely intractable for model checking on networks of
any significant size. We therefore supplement the use of PRISM with Monte Carlo simulation,
which samples the space of information diffusion behaviour. This contrasts to PRISM’s exhaustive
exploration of all possible outcomes. Using Monte Carlo simulation we were able to analyse
significantly larger networks and validate a tentative result from (8) about the beneficial effect of
disseminating new information rapidly.

2 Background

Several models of information diffusion through inf luence have been proposed, although the task of
finding a good model remains challenging (6). The social inf luence models used to define processes
of diffusion can broadly be classified into two classes: infection models and threshold models, with
the possible exception of the recent Simmelian model (26). Infection models have their roots in early
research in social networks from epidemiology. In our context the concept of ‘infection’ translates
to a concept of ‘inf luence’—an agent in a social network is infected by some piece of information
if they adopt or are inf luenced by it. In threshold models, an agent is inf luenced when the number
of her inf luenced neighbours passes a certain threshold (31). We concentrate here on the infection
model, first presented in (8), though note that that paper also contains a Markov chain formalisation
of a threshold model, which we do not consider.

2.1 Infection models

One of the classic infection models is the SIS model (2). In this infection model each of the nodes in
the graph can be in one of two states: infected or susceptible to infection. At time t, s(t) represents
the susceptible proportion of the total population N , i(t) represents the infected proportion, and λ

represents the daily contact rate, which means the proportion of the susceptible users infected by
infected users in the total population, where s(t) + i(t) = 1. At time t = 0 the proportion of infected
nodes is i0. The SIS model assumes that μ represents the daily rates of the ‘cured’ nodes (a node can
now become uninfected). The SIS model can be described by

di
dt = λi(1 − i) − μi
i(0) = i0.

The SIS model is not suitable for our purposes since it has no account of the internal states of the
agents, nor does it represent the graph topology. What we want is a representation in which both the
agent’s attitude to information and their position within the graph are relevant.

2.2 Discrete-time Markov chains

Markov chains are an elegant formalisation of probabilistic processes that transition between states.
A discrete-time Markov chain (DTMC) is one in which a discrete model of time is assumed with
states transitioning at set time points. Formally:
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Markov chain model representation of information diffusion in social networks 1197

DEFINITION 1
(18) (Discrete-time Markov chain). A DTMC is a tuple D = (S, s0, P, L), where S is a finite set of
states, s0 ∈ S is a distinguished initial state, P : S ×S → [0, 1] is a transition probability matrix such
that

∑
s′∈S

P(s, s′) = 1 for all s ∈ S, and L(s) ⊆ AP is a labelling with atomic propositions from some

fixed set AP.

A DTMC describes a set of execution paths through the state space S where P gives the probability
of one state moving to the next and L describes propositions that are true in any given state.

DEFINITION 2
(Reward Function) We can specify a reward function, ρ : S → R, which assigns some reward value
to the states in S.

The use of a reward function on states allows us to investigate the expected reward at some time
step, t, in the system. This proves a particularly powerful tool in the study of information diffusion
where we model the number of agents who have adopted some idea in a particular state as the reward.

The role of the labelling function L in the DTMC enables us to identify properties of states that
may be used in reasoning with the DTMC—for instance, a reward function might be defined in terms
of the labels on states. We do not utilise state labels in this paper.

We will use DTMCs to represent both individual agents within a network and a social network as
a whole. To enable this we utilise ideas of synchronisation and parallel composition drawn from
Markov decision processes (MDPs). MDPs are similar to Markov chains but incorporate non-
deterministic as well as probabilistic transitions. We will therefore brief ly cover MDPs, how a
DTMC can be induced from an MDP and adapt the definition of parallel composition of MDPs
to DTMCs. Our presentation follows that in (12).

DEFINITION 3
(Markov Decision Process) An MDP is a tuple M = (S, s0, αM, δM, L) where S is a finite set
of states, s0 ∈ S is an initial state, αM is a finite alphabet and δM : S × αM → Dist(a) is
a (partial) probabilistic transition function. The set of available actions in a state, s, is given by
A(s)

def= {a ∈ αM | δM(s, a) is defined}. The function L : S → 2AP is a labelling function mapping
each state to a set of atomic propositions taken from a set AP.

Transitions between states in an MDP, M, occur in two steps. First a choice between one or more
available actions from the alphabet αM is made. To prevent deadlocks, we assume that A(s) is non-
empty for all s ∈ S. The selection of an action act ∈ A(s) is nondeterministic (i.e., the MDP makes
no assumptions about the probability of any action being selected). Secondly, a successor state s′
is chosen randomly, according to the probability distribution δM(s, act), i.e. the probability that a
transition to s′ occurs equals δM(s, act)(s′).

The concept of selecting an action that is available in state s, performing the action and then
calculating a probabilistic outcome for the result of the action, is useful for formalising the behaviour
of social networks where the actions can be considered the transmission of messages on the
network. While we could use an MDP for this, we simplify matters by assuming that there is an
equal probability of selecting an action act from the set of available actions in a state s, i.e. if
σ : S → Dist(αM) represents the probability distribution for selection of an action act in some
state s then σ(s)(act) = 1

|A(s)| if act ∈ A(s) and 0 otherwise.
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1198 Markov chain model representation of information diffusion in social networks

DEFINITION 4
An induced DTMC is a tuple (S, s0, αM, δM, L) where S, s0 and L are as for an MDP, A(s) �= ∅ for
all s ∈ S, and

P(s, s′) =
∑

act∈A(s)

δM(s, act)(s′)
|A(s)| .

We use PRISM style notation to represent induced DTMCs. In this notation for each action, act,
and each state s in which act is available we write a transition of the form:

s
act−→ p1 : s1 ∧ . . . ∧ pn : sn,

where pi = δ(s, act)(si). We can represent an induced DTMC as a set of such transitions.
We will used these induced DTMCs to represent individual agents within a social network and

their parallel composition to represent the network as whole. The following definition of parallel
composition is from the definition for parallel composition of MDPs in (12).

DEFINITION 5
(Parallel composition of induced DTMCs). If Mi are induced DTMCs (Si, si

0, αM, δMi , Li), which
share the same alphabet of actions, αM, for i = 1, 2 then their parallel composition, denoted M1 ‖
M2 is given by the DTMC induced from (S1 × S2, (s1

0, s2
0), α

1
M ∪ α2

M, δM1‖M2 , L) where δM1‖M2

is defined such that δM1‖M2((s1, s2), act) = δM1(s1, act) × δM2(s2, act) and L(s1, s2) = L1(s1) ∪
L2(s2). This is a DTMC so long as A(s1) ∩ A(s2) �= ∅ for all (s1, s2) reachable from (s1

0, s2
0).

Definition 5 allows us to represent a social network by representing the agents individually and
the effect they have on each other as synchronised actions (that is each agent makes a transition
labelled by the same action act). The probability of a global transition from one state to a next
state therefore depends upon the existence of transitions with the same action in each of the agent
DTMCs. Synchronised actions thus allow us to represent the effect the actions of one agent have on
other agents in the network.

Transitions between states in the induced DTMC, occur in three steps. First we pick an action
act that is available in s at random with an equal chance of any available action being selected.
We then calculate the next local state for each agent i using the probability distribution defined by

si act−→ p1 : sa
1 ∧ . . . ∧ pn : sa

n. We then compose these these local states into the next global state.
We can use repeated parallel composition to create an induced DTMC for an arbitrary numbers of

agents.

2.3 PRISM

PRISM (19) is a probabilistic symbolic model checker in continuous development since 1999,
primarily at the Universities of Birmingham and Oxford. Typically a model of a system is supplied
to PRISM in the form of a probabilistic automata. This can then be exhaustively checked against
a property written in PRISM’s own probabilistic property specification language, which subsumes
several well-known probabilistic logics. PRISM has been used to formally verify a variety of systems
in which reliability and uncertainty play a role, including communication protocols and biological
systems (10; 20).

In our models we use DTMC with a reward function as our probabilistic automata.
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2.4 Monte Carlo simulation

Monte Carlo simulation is a broad term for a range of techniques for using random sampling and
statistical modeling to mimic the operations of complex systems. If a system is represented as a
DTMC then there is a natural application of Monte Carlo simulation to the model in which each
simulation run begins in the starting state of the model and then selects the next state according to
the probability distribution over transitions.

It should be noted that model checkers such as PRISM can be used as simulation systems in this
way; however, PRISM was unable to construct the models necessary to allow this sampling so we
opted instead to write our own simulator described in Section 5.

3 A Markov Chain Infection Model of Information Diffusion in Social
Networks
As has been noted in the literature (5) the transmission of information around a social network may
depend both on the features of the specific agents in the network and on the structure of the social
network itself. We are interested in how network structure affects the spread of ideas. Further, we
want to see how agent properties contribute to the global effect.

As an example of an agent feature that might inf luence contagion we consider how one idea
may be associated with an ‘anti-idea, that might either cause an idea to be abandoned (analogous
to recovering from infection in traditional model) or might cause other behaviour (e.g. greater
adherence to the original idea, modifications to network structure and so on). Taking this example,
which to the best of our knowledge has not been considered in social network analysis, is motivated
by the insight from psychology that ‘once formed impressions are remarkably perseverant’ (23). In
this case we use the current informational state of the agent to inform how likely it is to adopt an
opinion. Once adopted it will broadcast the opinion to its network.

We present a class infection models represented as the parallel composition of induced DTMCs,
generated from a social network graph, the initial informational states of the agents and two
probabilities. In an infection model, each agent ai in the network can be in one of three states.
Either the agent agrees with some idea φ (written as state sai

φ ) or it disagrees with the idea (sai¬φ) or
it is indifferent to φ (written as sai⊥)). If there are n agents in the network, there are 3n states in the
global model.

An agent may broadcast a message in favour of φ (respectively, ¬φ) to all of its connections if it
agrees with φ. We treat this as an action ai_saysφ (resp. ai_says¬φ), which is available in state sai

φ

(resp. sai¬φ).
On receiving a message in favour of φ (resp. ¬φ) there is a probability λ that the agent will adopt

the idea φ (resp. ¬φ) if it is currently indifferent to it and a probability μ that it will abandon the
idea ¬φ (resp. φ) if that is already held. Receiving a message is modelled as a transition labelled
with the same action as sending the message.

Note that the definition of a transition between two global states the infection model represents the
sending of a message by one agent synchronised with the receiving of the message by its connected
agents. Thus, implicitly, our model selects an agent, at random, to transmit its belief about φ and all
agents receiving this message then update their state accordingly.

DEFINITION 6
A social network infection model, SN , is a tuple, 〈MD, G〉. MD represents the parallel composition of
n induced DTMCs, ai, each representing an agent in a social network, and a graph G in which each
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1200 Markov chain model representation of information diffusion in social networks

FIGURE 1. Transition system for agent ai in an infection model

agent, ai forms a node in the graph and the edges of the graph represent social network connections.
We write cn(i, j) if agents ai and aj are connected by an edge in G, i.e. cn(i, j)

def= 〈ai, aj〉 ∈ edges(G).
Each agent (induced DTMC) in MD is defined by the transition system shown in Figure 1.

We note that it is straightforward to generate the parallel DTMC in a social network infection
model automatically from the graph G, the initial state for each agent, and the probabilities λ and μ.

4 Model-Checking Infection Models

To start, we considered a fully connected network (FCN) of 10 agents. We seeded the network
with one agent believing φ and one agent believing ¬φ (all other agents indifferent) and set the
probabilities of infection, λ and μ to 0.5. We generated a social network infection model from the
graph of this network for use with PRISM.

To create a reward function we first created a set of the number of agents in some state s =
{sa0 , . . . , san} that believed φ:

Bφ({sa0 , . . . , san}) = {sai |sai ∈ {sa0 , . . . , san} ∧ sai = sai
φ }

Then defined ρ(s) as proportion of the total number of agents in state sai
φ , i.e. the size of Bφ(s)

divided by n:

ρ(s) = |Bφ(s)|
n

.
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Markov chain model representation of information diffusion in social networks 1201

FIGURE 2. Expected number of infected agents per message sent on a FCN

We used PRISM to calculate the expected reward over time (represented by the number of actions
taken/messages broadcast within the network).

Figure 2 shows that this network quickly converges to a state where the expectation is that half the
agents believe φ—the expected reward is 5.

We are not very interested in FCNs. Research in the information diffusion under the SIS
model from early on has shown that the structure of the network has a big inf luence on the
effectiveness of the contagion (27) and fully connected models are not very realistic in terms of social
networks.

We want to have a ‘higher detail’ insight into the impact a particular graph has on the spread of
information. We generated a random network that satisfies the criteria for modelling a social network
as a random graph as outlined in (24): the maximal degree of separation is low, the probability of
an edge between two agents is higher if they have mutual neighbours, and the network has a skewed
degree distribution. This network contained 10 agent nodes, some with a minimum of 2 connections
within the network and one with 8 connections. We initially studied the spread of ideas within this
network with λ = μ = 0.5 and φ and ¬φ inserted in poorly connected agents (i.e. agents with only
two connections within the network), well-connected agents (i.e. agents with 6 connections) and
when the agent with idea φ had 8 connections while the agent with idea ¬φ had only 2 connections.
We generated infection models for this network and the initial states we were interested in and used
PRISM to calculate the expected reward over time/messages broadcast. The results are shown in
Figure 3.

As it can be seen in the case where the initial agents have similar numbers of connections, the
expected number of infected agents converges to 5 (converging more rapidly in the case where the
initial agents have more connections). However, in the case where the agent initially wishing to
disseminate φ has more connections than the agent wishing to disseminate ¬φ then the number of
agents believing φ converges to just under 6—showing that the initial advantage had a long term
effect. This result came as a surprise to us—our hypothesis was that over time the network would
equalise to a steady state where roughly half the nodes held idea and half held the anti-idea. This
was based on an assumption that simply selecting a seed node with many (or few) connections would
have little long-term effect since those connections would themselves vary in connectivity and so the
speed that an idea and anti-idea moved through the network would ultimately be the same and would
be governed by the network shape as a whole and not by the starting conditions of two nodes. As far
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FIGURE 3. Expected number of infected agents per message sent on a randomly generated network

as we are aware this effect is not one that has been studied in the context of diffusion in the literature.
We generated another 9 networks (for a total of 10) and observed the same effect in all of them.
We further hypothesised that the effect was caused by the small size of the networks, thus allowing
the initial advantage to quickly translate into a network-wide advantage before the disadvantaged
‘anti-idea’ had a chance to establish itself. However, we were unable to investigate whether the same
effect held for larger network sizes using PRISM. In fact PRISM struggled to even build models for
larger networks, let alone calculated expected rewards over time1.

5 A Monte Carlo Simulation Tool for Influence Models

We implemented a simulation tool for our Markov chain inf luence models. This tool takes as input a
graph, two seed nodes for an idea, φ and its corresponding anti-idea, ¬φ, the probability that an agent
will change its mind and the number of messages to be exchanged in a simulation. This algorithm
is shown as Algorithm 1. It performs one run through the system and calculates, as a reward, the
number of agents in the graph in agreement with the idea φ.

1The reasons for this continue to be opaque. While we would not expect PRISM to cope with networks consisting of
thousands of nodes, a model with considerably more than 310 states should not be an unreasonable challenge for the tool,
particularly if used in ‘simulation’ mode rather than ‘model-checking’ mode.
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1204 Markov chain model representation of information diffusion in social networks

Algorithms 2 and 3 show how the initial seed nodes are calculated for the two cases we are
interested in, namely one where the seed nodes have roughly equivalent numbers of connections
and one where one seed node has a significantly higher number of connections than the other. We
sort the nodes in the graph by their number of connections and either select one node at random and
then a second node within 10% of the list of the first (Algorithm 2), or by selecting a node from the
first quarter of the list and a second node from the last quarter of the list (Algorithm 3). Once the
seed nodes are chosen, these algorithms perform a set number of runs through the system and then
return the average reward over all the runs as a percentage.

Altogether this simulation tool can simulate a sub-class of social network infection models, which
have only a single seed node for an idea and anti-idea.

5.1 Graph generation

We used the implementation of the generation algorithm of (1) (the Barabási–Albert model) in the
networkX Python package2 to generate our graphs. This algorithm starts out with m disconnected
nodes forming a graph. It then adds nodes iteratively up to n nodes. Each new node is connected
to m (in our case 3) random pre-existing nodes, which are selected preferentially (in the networkX
package this means they are selected from a list of nodes where each node is represented by k + 1
entries in the list where k is the number of existing connections the node already has). Barabási–
Albert models are scale-free networks that share many topological properties with social networks.

5.2 Results

For each of our experiments we generated 100 random graphs with n nodes (for values of n ∈
{10, 100, 1000, 10, 000}). We then ran Algorithms 2 and 3 one hundred times for runs of length n to
6n (i.e. the number of messages broadcast varied between the number of nodes in the graph up to

2https://networkx.org
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FIGURE 4. Graphs with 10 Nodes

six times the number of nodes in the graphs) for graphs with up to 1000 nodes and from n to 3n for
the graphs with 10,000 nodes (for time reasons3 ) and then for each run length plotted the average
reward for that run length.

The results are shown in Figures 4–6. The error bars indicate the 10th and 90th centile of the
results across the 100 graphs. As can be seen the initial advantage of high connectivity (a ‘gets
there first’ effect) continues to hold as the graph sizes increase. The implication of this is that
our hypothesis that in large enough networks an initial advantage at a single seed node would not
determine the speed at which an idea spread but that this would be depend instead upon the overall
network structure (and so in experiments generating random network structures and seeding at
random nodes within those we would see no particular advantage in expected reward) was incorrect.
At least in Barabási–Albert networks, an initial early advantage (a single ‘inf luencer’ node if you
will) is sufficient to ensure network dominance by an idea.

We also investigated the effect of varying how resistant agents were to changing their minds. We
hypothesised that low values of μ would amplify the ‘gets there first effect’ since agents would be
less likely to change their minds, away from the first idea they encountered. We investigated this
for graphs of size 1000, where 3000 messages were exchanged in each run and λ set to 0.5 while
μ (the probability of an agent changing their mind once infected by either an idea or its anti-idea)
varied from 0.1 to 0.5. The results are shown in Figure 8. We were surprised to see that the value of
μ apparently had little effect on the expected reward. This suggests that if sufficient messages are
exchanged, the probability of an agent changing its mind on receipt of any individual has relatively
little on the spread of an idea through the network—eventually, an agent will have received enough
messages that it will have adopted the idea.

3It takes approximately n∗0.00001 seconds to generate a graph of size n and approximately n∗0.0003 seconds to generate
one run of n messages on that graph.
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FIGURE 5. Graphs with 100 Nodes

FIGURE 6. Graphs with 1000 nodes

6 Related Work

The inf luence of network structure on diffusion has been extensively studied in economics; see e.g.
(21) for an extensive literature list and (16) for a more general overview of the impact of social
network structure on behaviour.

The methodology used to study network structure impact on diffusion throughout the literature
is numerical analysis, simulation and experiments. Both micro and macro aspects of the network
structure have been considered, but in both cases these aspects refer to statistical properties of the
network. For example, a macro network aspect example is the degree distribution in the network,
while a micro network aspect example is the average distance between two agents in the network
and network component diameters. In nearly all diffusion models, the likelihood of adopting new
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FIGURE 7. Graphs with 10,000 nodes

FIGURE 8. Graphs with 1000 nodes, varying μ

information or behaviour increases with the increase of adjacent agents who have adopted it and a
higher agent degree leads to higher contagion (21). We also observe this here.

The approach in (4) is most similar to our own, using Markov chain models to capture the network
structure and to show how opinions among the agents in the network may vary among a fixed
set of opinions (a generalisation of the approach that assumes there is an idea, an ‘anti-idea’, and
indifference that we use here). However, in their model the chance an agent will change its opinion
does not depend upon its existing opinion, only upon the opinions of its neighbours. They use both
formal analysis to generate results about the behaviour of the general system and Monte Carlo
simulation to analyse a specific system consisting of a fully connected network and two possible
opinions.
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Model-checking information in social networks has been studied from a theoretical perspective in
(25) and (9). Pardo and Schneider (25) consider the problem of verifying knowledge properties over
social network models (SNMs) and show that the model-checking problem for epistemic properties
over SNMs is decidable.

Dennis et al. (9) introduce a formal specification for SNM’s and privacy properties that can be
established to hold using model-checking using PRISM. Belardinelli and Grossi (3) present a model-
checking algorithm and property specification logic for studying contagion-type models in open
dynamic networks. This takes an agent view but does not explicitly consider the informational states
of the agents. The proposed model-checking algorithm has not been implemented.

Kouvaros and LomuscioLomuscio (17) use parameterised model-checking in the MCMAS system
to study opinion formation protocols for swarm robotics. These protocols are similar to threshold
models and involve agents in a swarm switching their opinion to the majority opinion of their
neighbours. The interest in this work was primarily on answering whether the protocol guaranteed
convergence to an opinion, not on analysing the behaviour of information diffusion itself and
probabilistic aspects were not studied.

Lastly, (32) use PRISM to evaluate the efficacy of methods for controlling harmful network
propagation using different protection strategies for individual nodes. Although (32) are interested
in security an protecting networks from e-viruses, the approach and methodology can be seen as
related to ours in the case of information diffusion.

7 Discussion

We have developed a Markov chain-based framework for modelling information diffusion in social
networks which takes an agent-centred view that includes an account of the agent’s informational
state when considering changes in the network. This framework represents a natural formalism for a
variety of analysis techniques including model checking with the PRISM probabilistic model checker
and Monte Carlo simulation.

Unfortunately, even comparatively simple models proved intractable for analysing models of
interesting size in PRISM. However, Monte Carlo simulation allowed us to validate PRISM results
for small networks on larger networks.

This suggests that results from simulation and model checking can be combined in a corroborative
fashion, where model-checking results can be used to produce certain answers in small networks,
backed up by statistical modelling corroborating those answers over larger networks, and confirms
that Markov chains are a useful modelling tool in this area.

There are a number of interesting avenues for future work, particularly since the formalism
presented here is comparatively simple. We would like to explore the use of Monte Carlo simulation
in conjunction with the threshold models developed in (8). We would also be interested to investigate
in more detail the choice of seed node, for instance using concepts of centrality, or looking at
the effect of multiple seed nodes. Other avenues for investigation might be allowing the graph
structure to change over time (e.g. as agents form connections with like-minded agents and abandon
connections with agents they disagree with), looking at other techniques for generating social
network graphs (e.g. those in (30)), or allowing a variety of agents with different reactions to
challenging information (modelled by varying the values of μ and λ across the agents in our
formalism) 4 . Ultimately, we would be interested in exploring whether network structure or actions

4Our thanks to an anonymous referee for many of these suggestion.
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from network providers can inf luence information diffusion across networks by, for instance,
preventing the formation of filter bubbles.

Open Data

The PRISM models, network graphs, output and timing data reported in this paper can all be found
in the University of Liverpool Data Catalogue DOI: https://doi.org/10.17638/datacat.liverpool.ac.uk/
909.

Simulator code and results can be found at https://github.com/louiseadennis/MonteCarloInforma
tionDiffusion.git.
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