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ABSTRACT Natural Language Processing (NLP) has become one of the leading application areas
in the current Artificial Intelligence boom. Transfer learning has enabled large deep learning neural
networks trained on the language modeling task to vastly improve performance in almost all downstream
language tasks. Interestingly, when the language models are trained with data that includes software code,
they demonstrate remarkable abilities in generating functioning computer code from natural language
specifications. We argue that this creates a conundrum for the claim that eliminative neural models are
a radical restructuring in our understanding of cognition in that they eliminate the need for symbolic
abstractions like generative phrase structure grammars. Because the syntax of programming languages is by
design determined by phrase structure grammars, neural models that produce syntactic code are apparently
uninformative about the theoretical foundations of programming languages. The demonstration that neural
models perform well on tasks that involve clearly symbolic systems, proves that they cannot be used as an
argument that language and other cognitive systems are not symbolic. Finally, we argue as a corollary that
the term language model is misleading and propose the adoption of the working term corpus model instead,
which better reflects the genesis and contents of the model.

INDEX TERMS Natural language processing, deep learning, syntax, linguistics, language model, automatic

programming, neural networks.

I. INTRODUCTION

Deep-learning Artificial Neural Networks (ANNs) imple-
ment a multi-layered machine learning architecture which
enables sophisticated representation learning [1]. They
have significantly changed the technological, societal and
commercial landscape in the past decade [2], [3]. In this
article we focus on deep learning models for Natural
Language Processing (NLP). Transformer based deep learn-
ing models [4] have recorded significant improvements in
various natural language tasks, and have entered service
in industrial applications that have a significant linguistic
component [5], [6]. As an engineering artefact, these models
have clearly enjoyed significant success. What is less clear
is how much they have contributed to our understanding of
natural language and cognitive architecture. While the most
powerful systems have shown remarkable abilities complex
language tasks like question answering and writing prose
about arbitrary topics [7], there are contrary claims that
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ANNSs are nothing but giant stochastic parrots, with many
hidden dangers if mis-represented as systems that understand
language in any non trivial sense [8], [9].

Language models are joint probability distributions over
sequences of words, or alternatively, functions that return
a probability measure over strings drawn from some
vocabulary [10], [11]. Large Neural LMs learn probability
functions for sequences of real valued, continuous vector
representations of words rather than discrete lexical items.
Continuous representations are effective at generalising
across novel contexts, resulting in better performance
across a range of tasks [11]. The probability distribution
is learned through a form of language modeling, where
the task is to ‘“‘predict the next word given the previ-
ous words™ [12] (p.191) in word strings drawn from a
corpus.

Neural LMs stipulate a mental architecture that stands in
stark contrast with a Classical symbolic view [13] dominant
in Linguistics since at least the beginning of the 20 century,
when language scholars began to study the structural proper-
ties of languages [14], [15]. The rigorous study of language
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as a cognitive faculty was pioneered by Noam Chomsky
who introduced Generative Phrase Structure Grammars as
the rule structures underlying linguistic competence [16],
[17]. In subsequent years a number of important challenges
and modifications emerged, both from within and outside
the research program1 [18]. Nevertheless, in the midst of
technical controversies and disagreements, researchers have
all agreed that ““...linguistic knowledge is couched in the
form of rules and principles.” [19] (p.74).

The recent success of deep learning ANNs on wide
ranging linguistic tasks have given support to the claim that
statistical models are preferable to generative phrase structure
grammars as theories of linguistic competence. Manning
and Schiitze argue in their classic text ‘“Foundations of
Statistical Natural Language Processing” that cognition in
general and language in particular are ‘“‘best formalized as
probabilistic processes’ [12] (p.15). A similar position is
more vigorously expressed by Peter Norvig in the context of
a debate with Noam Chomsky at MIT?: ““Many phenomena
in science are stochastic, and the simplest model of them is a
probabilistic model; I believe language is such a phenomenon
and therefore that probabilistic models are our best tool
for representing facts about language” [20]. Perhaps most
dramatically, Geoff Hinton has proclaimed in his Turing
Award acceptance speech that the success of ‘““machine
translation was the final nail in the coffin of symbolic
AT [21] (32°307).

In this paper we will defend the Classical symbolic view
with an argument analogous to an indirect proof in logic,
where the assumed truth of a premise leads to an absurd
conclusion, thereby proving the falsehood of that premise.
We present the argument as follows. In section 2 we provide
some background by briefly explaining what is meant by a
rule based, generative phrase structure grammar in natural
language and software code. The argument itself begins in
section 3 which details why ANN models are an alternative
to explicit rule based grammar. The assumed premise is that
the success of neural models makes them good explanatory
models of natural language without the need for symbols.
In section 4 we describe recent successes using ANN models
- especially language models - to automatically generate
software code. But this is where the contradiction arises.
If ANN models can be construed as explanatory theories
for natural language based on their successes on language
tasks then, in the absence of counter arguments, they should
be good explanatory theories for computer language as
well. We see no such argument and therefore arrive at the
absurd conclusion that ANNSs are good explanatory models of
software. We know this is absurd because it is just a fact that

1Chomsky describes his early work as an attempt to create a theoretical
apparatus which was rich enough to describe the data. But it was always
understood that the initial machinery had to be wrong because such a rich,
complex system couldn’t meet the criterion for biological evolution. The
subsequent years were spent by reducing the complexity of the theoretical
machinery https://youtu.be/pUWmTXkpHjE?t=3520

2MIT150: Brains, Minds and Machines Symposium, June 16, 2011.
Transcript available at https://chomsky.info/20110616/
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the acceptable syntax of computer languages is determined by
their grammar. Therefore, successful ANN models of natural
language cannot be used as evidence against generative
phrase structure grammars in natural language. In section
5 we show that in fact language models are most accurately
described as corpus models. The paper then concludes.

Il. GENERATIVE PHRASE STRUCTURE GRAMMAR FOR
NATURAL LANGUAGE AND SOFTWARE CODE

Linguistics in the first half of the 20" century was mainly
a taxonomic science with researchers pursuing Immediate
Constituent (IC) analysis inspired by Bloomfield [22], and
Saussure’s structural linguistics as outlined in his 1916 book,
Course in General Linguistics. The goal of early linguists
was to develop methods that divide an expression into its
immediate constituents, and continue the subdivision until
syntactically indivisible parts were obtained. The essential
insight contributed by Chomsky was that the constituent
structure of language is the product of a system of rewrite
rules of the form A — ® where A is a class label and
w is a string that could contain terminal strings as well
as other class labels [23]. An early example in [17] is the
following simple grammar. (Note that the early formulations
of grammar did not yet include the necessary machinery for
recursive definitions [15].)

Sentence — NP + VP @))
NP —-T+N )
VP — Verb 4+ NP 3)
T — the “4)
N — man, ball, etc. (5)
Verb — hit, took, etc. (6)

This grammar can generate sentences of the type shown in
Figure 1, through a series of derivations.

Sentence

/\
NP VP

PN T
T N  Verb NP

I I I PN
the man hit T N

I I
the  ball

FIGURE 1. A tree diagram showing a result of a sequence of derivations
using rules 1 - 6. It does not show the order of the derivation.

Syntactic Structures [17] outlined a new agenda for a
formal linguistic theory in which language was considered
as ““ ...a set (finite or infinite) of sentences, each finite in
length and constructed out of a finite set of elements” [17](p.
13). Sentences are the output of a generative grammar, and
the Linguistics project is to explore grammars which generate

all and only the grammatical sentences of natural languages.
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An important distinction was drawn between linguistic
competence, the speaker-hearer’s knowledge of language,
and performance, actual instances of language use in concrete
situations [24]. A grammar on this view is a description of
competence. It is not only a theory about possible sentence
structure but about the intrinsic knowledge that allows the
speaker to generate an infinite set of grammatical sentences
with a finite set of rules, and for the hearer to assign
linguistic structure to each of those sentences. Performance,
on the other hand, includes the many psychological processes
underlying actual linguistic productions, including effects
of attention, memory, and so on. The multitude of these
psychological processes are often little understood and can
result in productions rife with errors from interference by
a range of unpredictable, non language specific processes.
For this reason Chomsky advocated using intuitions about
grammatical acceptability as the primary data for linguistic
theories rather than speech or text corpora.

One of the pioneers of high level computer programming
languages, John W. Backus who led the Applied Science
Division of IBM’s Programming Research Group® took
inspiration from Chomsky’s work on PSGs and conceived a
meta-language that could describe the syntax of languages
that was easier for programmers to write than the machine
languages of the time. The meta language later became
known as Backus-Naur form (BNF), so called partly because
it was originally co-developed by Peter Naur in a 1963 IBM
report on the ALGOL 60 programming language”.* The
BNF is a notation for context free grammars consisting of
productions over terminal and nonterminal symbols, used to
provide the precise syntax of programming languages which
is required for writing compilers and interpreters for the
language [25]. The original syntax described in the technical
report included meta characters as shown in (7)

< > = | @)

where sequences of characters enclosed in the brackets
represent metalinguistic variables and the::= and | are
metalinguistic connectives. Productions or rewrite rules are
expressed using this machinery. For example the productions
in (8) and (9) generate strings such as (10) and (11)

<ab>::= ( | [ | <ab> ( | <ab> <d> (8
<d>::=0 1] 1| 2] 31 4] 51 6 &)
[(((1(36( (10)

(12345( (1D

BNF productions can be used to construct phrase structure

descriptions of program expressions. For example given a
simple grammar that includes the following production,

<statement>::=
if <expression> then <statement>
| 1f <expression> then <statement>

3 https://betanews.com/2007/03/20/john-w-backus-1924-2007/
4https://www.masswerk.at/algol60/rep011.htm
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else <statement>
| <other>

one can generate statement (12) where E; are expressions
and S; are statements

if E; then if E); then §; else S» (12)

In turn the statement can be parsed to return the tree in figure 2
(example from [25], p. 211)

stmt
—
if expr then stmt
PAN
E1 if expr then stmt else stmt
AN AN AN
E> S So

FIGURE 2. A parse of the statement if E; then if E, then S; else S,.

Chomsky’s context free grammars were designed to handle
the inherent ambiguities in natural languages, and the BNF
inherited this property, which is undesirable for programming
languages. One solution was proposed by Bryan Ford who
introduced Parsing Expression Grammars (PEGs) which
eliminated ambiguity with several new devices including
ordered choice [26]. In fact the current specification for
Python 3.9 uses a mixture of BNF and PEG.’

Ill. LANGUAGE WITHOUT RULES

The story of modern ANNS can be traced back to the Logical
Calculus of McCulloch and Pitts [27] who showed that it was
possible to model the behaviour of networks of neurons with a
logical calculus. This inspired researchers to create networks
of artificial neurons with complex computational properties,
which gave rise to the current generation of neural networks,
the Deep Learning Networks [1], which can learn complex
non linear transformations implicated in image recognition,
language processing, and other domains. The promise is that
such models can explain complex cognitive phenomena such
as language understanding, without the need for abstract
symbol manipulating machinery.

Churchland argued that cognitive behaviour can be
reduced to brain states, vis-a-vis parallel neural computa-
tions. Citing the work of Pellionis er al. on the Tensorial
approach to the geometry of brain function [28], she asks
us to imagine that “...arrays of neurons are interpretable
as executing vector-to-vector transformations because that is
what they really are doing — the computational problems a
nervous system has to solve are fundamentally geometrical
problems” [29](p.418). That is, transformations of real
valued tensors is just what it is to be a cognitive agent.

Pinker and Prince [19] described this idea as elimina-
tive connectionism which are neural systems where it is
impossible to find a principled mapping between *...the

5 https://docs.python.org/3.9/reference/grammar.html
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components of a PDP® model and the steps or memory
structures implicated by a symbol-processing theory ...”.
Computations are performed at a non symbolic level, and
any corresponding symbolic descriptions would only serve as
short-hand approximations that could be used, for example,
to make intuitive predictions [19]. The authors further dis-
tinguished eliminative connectionism from implementational
connectionism which is a class of systems in which the
computations carried out by collections of neurons are
isomorphic to the structures and symbol manipulations of
a symbolic system. For example, recurrent neural networks
with long short-term memory have been shown to learn very
simple context free and context sensitive languages [30].
More specifically the language with sentences of the form
a'b" is learned through gate units acting as counters that
can keep track of the number of terminal symbols in simple
sequences [30]. It is therefore crucial to establish which
kind of system deep learning models are, because eliminative
neural systems are the only ones that offer a theoretical
alternative to traditional grammar. Implementational systems
would be fully compatible with a rules based linguistic theory
and would therefore be theoretically uninteresting.
According to Marcus [31], a clear criterion for recognising
a genuinely eliminative connectionist system is how it
implements compositionality. Compositionality is a char-
acteristic of Classical symbolic architectures, in which the
representation-bearing computational units are structured
expressions, and the operations performed on the expressions
depends on their structure [13]. For example, P follows from
P&Q because of an operation which applies to the constituent
structure of the representation. The P and the Q in the
formula can be of arbitrary complexity and the operation
will apply in exactly the same way. Eliminative ANNs
are not Classical architectures because the operation that
is responsible for transforming the network state from one
which represents P&Q to one which represents P does not
operate by virtue of the constituent structure of the formula.
Instead, the computation involves the network settling on an
activation state representing P following the presentation of
P&Q because of the values of the model parameters which
were adjusted to match the statistical association between
P&Q and P in the training data. In addition, if we substituted
complex novel formulas for P and Q in a Classical system
then the inference to P&Q would still hold, but the same
would not be true in a network model that did not include the
formulas in the training set. Finally if both P and Q were true
in a Classical system then P&Q would also be true. On the
other hand an ANN which was trained to output P when P&Q
was input would not output P&Q when presented with P and
Q on the input, unless it was specifically trained to do so.
There are good reasons to believe that deep learning net-
works are to be understood as non compositional, eliminative
connectionist models. Bengio er al. [32] argue that it is the
non-linear transformations between the vectors in a deep

Sparallel Distributed Processing
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learning architecture that allows the network to perform
its functions, setting them apart from symbolic systems.
As an example, “If Tuesday and Thursday are represented
by very similar vectors, they will have very similar causal
effects on other vectors of neural activity.” [32] p.59. In a
Classical system there is no inherent similarity between
the two symbols “Tuesday” and “Thursday”. Overlapping
patterns of inference are only possible by asserting explicit
axioms in the system to establish that the concepts are
members of a collection that behave equivalently in certain
circumstances. In a deep learning network, by contrast, the
inferences are licensed by the similarity between the vectors
themselves, which emerges through the learning process.
“Tuesday” and ““Thursday”, on this account, have similar
effects because they have overlapping representations learned
from the sentences in the training corpus and not because they
share common relations in an axiomatic system.

Additionally, Yun et al. [33] present a proof that deep learn-
ing transformers are universal approximators of continuous
sequence-to-sequence functions’ with compact support, but
a critical assumption of the proof is contextual mapping of
words in a sentence, such that the representation of individual
words depends on the whole sentence. The proof requires,
for example, that the “I”” must be mapped to different vector
embeddings in “I am happy”” and “I am Bob”’. The semantic
contribution of the constituent to the whole is a function of
the whole, a direct contradiction to compositionality.

A. LARGE NEURAL LANGUAGE MODELS

The most successful neural models for NLP are very large
deep learning models that are trained on some version of the
language modeling task, using vast amounts of text [34]. The
models capture intricate statistical generalisations available
in the training corpus which can subsequently be exploited
in task specific training with much smaller data sets,
a paradigm called transfer learning [34]. Large LMs also
appear to encode structural relations in language and can be
probed in various ways to display aspects of their linguistic
competence. For example Hewitt & Manning [35] argue that
vector based representations in deep learning neural networks
can capture syntactic tree dependencies between words
without an explicit mechanism for constructing parse trees.
Using structural probes with a learned, linear transformation,
they argue that syntax trees are embedded “implicitly” in
the deep learning model’s vector geometry. Furthermore, they
suggest that subject-verb agreement can be solved by using
L2 distance metrics, since the verb that has to agree in number
is closer to the subject than it is to any of the irrelevant
attractor nouns following the transformation.

Goldberg [36] reports a similar finding, that the BERT [37]
model with no additional fine tuning does remarkably well
on predicting the subject appropriate number marking on
the focus verb in sentences, even if there are mismatching

7An additional condition is that the function must be permutation
equivariant, unless positional encodings are used.
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distractors between the subject and the verb. He concludes
that “exploring the extent to which deep purely attention
based architectures such as BERT are capable of capturing
hierarchy-sensitive and syntactic dependencies — as well
as the mechanisms by which this is achieved — is a
fascinating area for future research”. In fact a sub field of
machine learning that has affectionately come to be known
as Bertology [38], is attempting to do just that.

In summary, neural LMs display some of the represen-
tations that are found in symbolic rule based theories, but
it is not clear how they emerge or how they participate
in computation. A potential explanation is suggested by
Nefdt [39] who proposed a refinement to the idea of com-
positionality with a distinction between Process-, State-, and
Output- Compositionality. A system is process compositional
if the procedures it computes have meaningful parts, and
those parts are in principle knowable. The meaningful parts
are composed procedurally to give increasingly complex
meaningful expressions. This is essentially the sense of
compositionality we have ascribed to Classical systems. State
compositionality on the other hand describes representations
in the system that can be decomposed into smaller meaningful
units even though they were not generated by a known
compositional process. For example there are many analyses
for ways in which lexical items might be decomposed
into meaningful constituents (e.g. bachelor = unmarried +
man), but the decomposition does not exhaust the range of
potential inferences the lexical item can enter into, nor is
there a compositional process to explain how the constituents
can be combined in learning the concept [40]. Output
compositionality takes a functional view in which for any
input tokens ¢ there is a function f which produces an output
o that is state compositional. Output compositionality is a
special case of state compositionality because it does not
imply that the entire analysis needs to be state compositional,
it is sufficient that local outputs are. Neural language models
would on this account exhibit output compositionality, such
that various structured states can be observed, but these states
do not reveal meaningful constituents which are causally
responsible for the evolution of the system. The discovery
of local compositional structure does not reveal how those
structures participate in the evolution of the system ( [32],
[41], [42]).

IV. NEURAL NETWORK MODELS AND SOFTWARE CODE
Hindle et al. [43] proposed that the majority of software
that people write can be described as natural programs
which are relatively simple, repetitive code that is used
for communication with other programmers as much as
it is to provide machine instructions. They successfully
trained N-gram language models on software code to show
that programming languages share many of the regularities
observed in natural languages. They then used the trained
model as a code suggestion plugin for the Eclipse Interactive
Development Environment, resulting in keystroke savings of
up to 61% over the built in suggestion engine [43].
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Subsequent research expanded on this work by training
significantly larger language models for mining source code
repositories and providing new complexity metrics [44], and
using deep learning networks for code completion [45].

In a popular blog post, Andrej Karpathy drew our attention
to the Unreasonable Effectiveness of Recurrent Neural
Networks® with some illustrations of RNNs learning from
character level data. He showed that models could learn
to generate natural language prose, prose which includes
markdown, valid XML, LaTeX, and source code in the C
programming language. The RNN generated both LaTeX and
C code with remarkable syntactic fidelity including spacing,
matching brackets, variable declarations and so on. Observed
errors were principally semantic. For example, one example
of LaTeX code had a 13 line environment beginning with
\begin{proof} and ending with \end{lemma}. That
is, the coreference dependency is partially broken; while the
\begin{} block is closed as required by the syntax, the
RNN has not correctly remembered the exact identity of the
block. Similarly the C code contains very few syntactic errors,
but contains semantic errors such as variable names not being
used consistently, or using undefined variables.

A. LARGE NEURAL LANGUAGE MODELS AND CODE
SYNTHESIS

Hendrycks et al. [46] released APPS, an ambitious dataset
and benchmark for measuring the effectiveness of machine
learning models in a realistic code generation framework,
involving natural language problem specifications and func-
tional test cases. The problems have three levels of difficulty;
introductory, interview, and competitive. The following
example is the natural language description in an “interview”’
level problem.

You are given two integers n and m. Calculate the
number of pairs of arrays (a, b) such that: the length
of both arrays is equal to m; each element of each
array is an integer between 1 and n (inclusive); a;
< b; for any index i from 1 to m; array a is sorted
in non-descending order; array b is sorted in non-
ascending order. As the result can be very large, you
should print it modulo 10” + 7.
Input: The only line contains two integers n and m
(1 <n <1000, 1 < m < 10). Output: Print one
integer - the number of arrays a and b satisfying
the conditions described above modulo 10° + 7.
——Examples—
Input: 2 2, Output: 5
Input: 10 1, Output: 55
Input: 723 9, Output: 157557417
The authors gathered 10,000 coding problems with
131,836 test cases for checking the generated solutions, and
232,444 gold-standard solutions written by humans. They

8http://karpathy. github.io/2015/05/21/rnn-effectiveness/ The title is a play
on The Unreasonable Effectiveness of Mathematics in the Natural Sciences,
a 1960 article by the Nobel Prize winning physicist Eugene Wigner.
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tested four models for their ability to generate code that
could solve the test cases; code which is both syntactically
well formed and semantically correct. The models they tested
were GPT-2 [47] (two versions, with 0.1 and 1.5 Billion
parameters), GPT-Neo (2.7B parameters) [48] and GPT-3 [7]
(175B parameters). The GPT-2 models received additional
pre-training with 30 GB of Python code from GitHub. GPT-
Neo was trained on the Pile [49] which already contains code
from GitHub. GPT-3 had no prior training on code. All but
GPT-3 were then further fine tuned on the APPS dataset,
while GPT-3 was tested in a few-shot scenario.

The results showed that in general bigger models were
better than the smaller models, and pre-training on code is
critical since the largest GPT-3 model without pre-training (or
fine tuning) was outperformed by the smallest GPT-2 model.

In general this proved to be a difficult task and the best
model passed only 14.68% of test cases on the introductory
problems, and 6.54% for the ’competitive’ problems. On a
strict criterion where success was defined as passing all of the
test cases, these figures dropped to 3.9% and 0% respectively.
However, the important finding for our argument was the
extremely low rate of syntax errors in the code. Remarkably,
GPT-Neo generated code that failed because of syntax errors
on only 3% of its solutions on the “introductory’’ problems,
increasingly to approximately 5% for the ‘“‘competition”
problems.

Listing 1 shows a machine synthesized solution for the the
example problem. The solution attempts to build arrays as
described, to return a result which depends on those arrays,
and to provide the answer as modulo 10° 4+ 7. However the
logic it uses to build and compare the arrays is faulty and the
results incorrect.

2 n, m = map(int, input().split())
;s mod = 10%%9+7

s fact = [1, 1]

¢ factinv = [1, 1]
inv = [0, 1]

9 for i in range (2, n+l):
10 fact.append((fact[-1] % i) % mod)
i} inv.append((-inv[mod % i] * (mod//i)) % mod)

o

12 factinv.append((factinv[-1] * inv[-1]) % mod)

14 def cmb(n, r, mod):
15 if (r < 0) or (n < r):
16 return 0

17 r = min(r, n - r)

18 return fact[n] % factinv[r] * factinv[n-r] $%
mod

19

20 print ((cmb(n, m, mod) % cmb(m-1, n-1, mod)) % mod)

Listing 1. Example solution from a model tested on APPS. This solution
passes 0 test cases but it is a legal Python program.

Austin et al. [50] released a somewhat easier dataset, the
Mostly Basic Programming Problems (MBPP), comprising
natural language descriptions, concrete test cases, and
gold standard solutions. They argued that the poor model
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performance reported by [46] was due to the difficult nature
of the problems. In particular the competition set was
written in a manner that purposely obfuscated the connection
between problem statement and solution code. The MBPP
was therefore designed to maintain the clarity of the natural
language descriptions and to be solvable by entry-level
programmers. The problems and solutions were provided
by crowd-sourced workers and subsequently inspected by
the authors. The models used for the experiments were
BERT-style transformer models [4] with parameter counts
ranging from 244 million to 137 billion, and pre-trained
on a combination of web documents, dialog data, and
Wikipedia. The pre-training dataset contained 2.97B docu-
ments, of which 13.8M were web sites that contained some
code and text, although complete source code files were not
included.

The experiments showed a log-linear improvement in per-
formance with model size, and only marginal improvement
of fine tuning over the pre-trained models. The largest model
with 137 billion parameters could solve approximately 60%
of the problems with at least one generated solution, while the
smallest 244 million parameter model could solve fewer than
5%. The models benefited from fine-tuning by approximately
a constant 10% from the 422 million to the 68 billion
parameter model. As a result the benefit of fine-tuning
decreased proportionately as model size increased.

The qualitative error analysis revealed that the main reason
for failure was not syntactic errors but problems with the code
semantics. Even the smallest models produced syntactically
correct Python code about 80% of the time, increasing to over
90% for the larger models. The most commonly observed
semantic errors were in complex problems with multiple
constraints or sub-problems, where the generated code only
solved one sub problem. For example the problem “Write
a function to find the longest palindromic subsequence
in the given string” might result in code that found just
one of the palindromic sequences but not the longest one.
Another possible mistake was code that solved a problem that
was similar, but more common than the provided one. For
example the query “Write a python function to find the largest
number that can be formed with the given list of digits.” might
result in a program that calculated the largest digit in the list.

One difficulty with this finding is that it is not possible
to identify the exact locus of the semantic errors. It could,
for example be the natural language component which fails
to extract the correct specification. In order to investigate
the level of semantic understanding in the code synthesis
component, the authors tested to see how well the model
could predict the output of the ground truth source code.
If the model had some understanding of the semantics of code
then this should manifest itself in learning code execution.
Previous work has found that different architectures were
in fact capable of learning to execute code [51]. In a few-
shot setting where only the code was presented as a prompt
and the model had to predict the output in an input-output
test case, the accuracy was 16.4%, and improved to 28.8%
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when two input-output example pairs were also presented.
These results dropped to 8.6% and 11.6% respectively when
2 test cases were presented (and the model had to answer both
correctly). More interestingly, when only the natural language
problem description and an example input-output prompt was
presented the model performed more accurately, at 12.8%.
Finally, the model performed better when it was presented
with only the examples as prompt then it did with the code
itself, with no example (10.2% example only, 8.6% code
only). Together the results suggest that the model was not
considering the semantics of the code at all when predicting
the results of execution. The model appeared to be using
previously observed patterns rather any understanding of the
code.

OpenAl Codex” is an experimental API from the Microsoft
owned company which powers GitHub Copilot.'"® Codex
is a GPT-3 based model fine tuned on publicly available
code, which generates Python code from docstrings [52].
For testing purposes the authors introduced the HumanEval
evaluation set which includes 164 manually constructed
programming problems consisting of a function signature,
docstring, body, and several unit tests. Listing 2 shows an
example problem together with a correct and an incorrect
solution. The incorrect solution supports Austin et al.’s
analysis that the errors are not syntactic but semantic,
in this case caused by solving only a part of the problem.
In this example the generated algorithm fails to consider the
boundary condition where n = 1.

I def is_prime(n):
2 """Return true if a given number is prime, and
false otherwise.
>>> is_prime (6) False
>>> is_prime (101) True
6 >>> is_prime(11l) True
>>> is_prime (13441) True
8 >>> is_prime (61) True
9 >>> is_prime(4) False
10 >>> is_prime(l) False
12 ### COMPLETION 6 (CORRECT) : ###
13 prime = True
14 if n ==
15 return False
16 for i in range(2, n):
1 if n 8 i == 0:
18 prime = False
19 return prime

21 ### COMPLETION 7 (WRONG) : ###
2 for i in range(2, n):
if n 8 i ==
return False
return True

Listing 2. Example HumanEval docstring and a correct and incorrect

completion

They evaluated (a) a 12B parameter vanilla GPT-3 model,
(b) Codex, which is GPT-3 fine-tuned on 159GB of code
collected from GitHub, and (c) Codex-S which is further

9https://openai.comfblog/openai—codex/
10https://copilot.github.com/
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fine-tuned on correctly implemented standalone functions.
When looking at single solutions the vanilla GPT-3 model
was unable to solve any HumanEval problems, while the 12B
parameter Codex solved 28.8%. Fine-tuning this model on
function solutions produced Codex-S which solved 37.7% of
the problems, which was a bigger gain from fine-tuning than
observed on the other studies. When considering multiple
solutions, Codex-S was able to find at least one correct
solution 72.31% of the time from among 100 candidate
solutions, and 46.81% of the time among 10 solutions.

Probing error points once again provided some interesting
insights. The authors created “‘building blocks™ which were
simple tasks such as “convert the string s to lowercase”,
“remove all vowels from the string”, and “replace spaces
with triple spaces”. When the building blocks were system-
atically concatenated to form increasingly complex function
descriptions, model performance decreased exponentially
with increasing problem complexity. This pattern is not likely
to be observed with human programmers, as the task is simply
to link simple discrete functions together.

In summary, deep learning neural network models are
beginning to have impressive success in generating syntac-
tically correct code from natural language specifications.
The various models demonstrate not only a knowledge
of programming constructs like variable declaration and
operation signatures, but also constructs that depend on
constituency structure like long distance dependencies (e.g.
matching brackets, matching if-then imperatives). On the
other hand the knowledge of semantics is either absent or very
limited.

V. LARGE NEURAL LANGUAGE MODELS ARE CORPUS
MODELS

The surprising success of neural LMs to synthesize computer
code has resulted in some puzzling claims. For example [50]
speculate that for models ‘it is not necessary to explicitly
encode the grammar of the underlying language — they
learn it from data.” Taken literally the claim would be
that the neural network is implementational after all, since
it is learning the grammar of a programming language.
We have already pointed out the problems with this position
when applied to models of natural language, and suggest
that similar problems exist in the domain of programming
languages.

The most parsimonious hypothesis is that language models
perform natural language and programming tasks through
the same mechanisms, which is not that they learn the
grammar of the language. The evidence that neural network
representations can encode hierarchical components in lan-
guage (e.g. [35], [42]) presents the possibility that the same
representations are used in encoding structural relationships
in software code. Some support for this comes from [53] who
developed a novel method for probing neural LMs for their
ability to encode natural language syntax. In order to validate
their method they used neural models trained on a synthetic
language for arithmetic expressions with a simple syntax,
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concluding that the neural network encoding of the structural
patterns generated by an artificial grammar are analogous to
their encoding of natural language structures.

It is important to point out once again that programming
languages have an exact grammar which is, by hypothesis,
not learned by the LM. Therefore the LM’s ability to
abstract hierarchical relationships by some means other than
a grammar, is a powerful tool which can result in impressive
linguistic performance as well.

It is clear that large LMs are able to generate syntactically
well formed productions in domains where they receive large
amounts of training data, whether that be natural language
or software code. Since the data is their only resource for
learning, they can be susceptible to the characteristics of the
data set. For example, Bender ef al. [9] documented many
different selection biases which can affect which utterances
are included in corpora. Perhaps even more problematical
is that the performance of language models on language
tasks is strongly influenced by the diversity of the training
corpora [49], [54], which shows that what is modeled is
not language per se, but the characteristics of the training
corpora. Similarly Brown et al. [7] used a filtered version
of the Common Crawl dataset,'! a collection of text based
on 12 years of web crawling, and found that the unfiltered
version gave poorer results on language tasks than the
higher quality version which was filtered in part through a
comparison with text in written books.

If the quality of a dataset can influence the performance
of the model, then there should be clear guidelines as to
what constitutes a high quality dataset. To the best of our
knowledge the answer to this in the neural LM literature is
rather vague. Take for example the Pile, a dataset specifically
designed to be a large, diverse and high-quality resource
for machine learning [49]. Unfortunately the authors are
not explicit about what they regard as ‘‘high-quality”, even
though they use the descriptor 33 times in their paper.
Some clues emerge through the description of individual
data sources such as Wikipedia which is “...a source of
high quality, clean English text ...” (p.4), suggesting as
one criterion a text written in complete English sentences
with some editorial control. Also mentioned is the Common
Crawl web content where one challenge is “...difficulty
of cleaning and filtering the Common Crawl data ...”
due to low level problems such as presence of non text
characters, segmentation problems, capitalization, etc. [12].
Common Crawl data also contains duplicate lines which
often signals highly repetitive ““boilerplate text””, which can
reduce performance on downstream tasks [55]. Grave et
al. [56] tried to filter Common Crawl by using Wikipedia
“because the articles are curated, the corresponding text is
of high quality”. Again, editorial control is an important
factor. Another technique for increasing quality by comparing
against Wikipedia was used by Wenzek et al. [57] who
measured the perplexity score of target web pages against a

1 https://commoncrawl.org/the-data/
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language model trained on Wikipedia, and took the perplexity
as a measure of quality. Again the strategy is to assume
Wikipedia is high quality and use it to filter other content.

The practice is problematic in our view because it is
important to be specific about what should be accepted
as appropriate input to a ‘“language model”, as the data
is literally the “language” in the model. In linguistic
theory, as we saw earlier, Chomsky proposed grammatical
acceptability judgement as a way to decide which utterances
counted as valid data for linguistic enquiry. But this view
is criticised in statistical NLP. For example Manning [58]
argued against the Chomskyan notion of grammaticality
and proposed probabilistic syntax largely on the strength
of examples which purportedly show the non categorical
nature of grammar. Norvig [20] argued even more forcefully
that ““... people have to continually understand the uncertain,
ambiguous, noisy speech of others ...Chomsky for some
reason wants to avoid this, and therefore he must declare
the actual facts of language use out of bounds and declare
that true linguistics only exists in the mathematical realm
...Chomsky dislikes statistical models in that they tend to
make linguistics an empirical science (a science about how
people actually use language) ...”” So for Norvig the data
for the study of Inguage is the “‘actual use” of language
which are the noisy and uncertain utterances of the everyday.
But this view makes it difficult to justify eliminating any
“low quality” utterances reflecting how people “actually use
language” from the corpus. If we are going to judge dataset
quality by comparing it against the edited and grammatical
text in ‘“‘high quality” sources such as Wikipedia, then we
need to be careful with our theoretical assumptions. The
problem is that we might be smuggling grammaticality in by
the back door.

For the preceding reasons we would suggest a clarification
in terminology, and propose a change from the theory-laden
term language model to the more objectively accurate term
corpus model. Not only does the term corpus model better
reflect the contents of models, it also provides transparency in
discussing issues such as model bias. One might be surprised
if a language model is biased, or if there is different bias in
two different language models, but a bias in corpus models
and different biases in different corpus models is almost an
expectation. Natural language is not biased. What people say
or write can be biased.

VI. CONCLUSION

We considered the challenge that deep learning neural models
present to traditional generative phrase structure theories of
natural language, and showed the challenge to be invalid since
the arguments could equally and absurdly be applied against
phrase structure in software code. We claim our argument
to be more powerful and permanent than more traditional
attempts to prove that neural networks cannot perform
particular tasks. This style of argument has an illustrious
history in the field, where research activity was drastically
reduced for decades by the publication of Minsky and Pap-
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pert’s Perseptrons, which showed fundamental computational
limitations of the contemporary neural models [59]. More
sophisticated models were eventually devised to overcome
these limitations, and the previously devastating criticisms
vanished. Our argument is more powerful because it is
predicated on the success of neural models. We argue
that achieving high performance on arbitrary NLP tasks
is irrelevant to theories of natural language in general,
and generative grammar in particular, because the same
arguments can apply equally to programming languages
which are clearly the product of a generative grammar.

As a corollary we argued that the term “‘language model”
is misleading. A more accurate and useful term would be
“corpus model”. We hope this clarification is useful for
practical work as well as scientific discovery, and look
forward to theoretical insights that can be gained by exploring
the similarities between the statistical epiphenomena created
by natural languages and computer software in shared corpus
models.

Pinker and Prince argued that the connectionist models of
the time failed to deliver a “‘radical restructuring of cognitive
theory” [19](p.78), because they did not adequately model
relevant linguistic phenomena. We argue that modern neural
models similarly fail, but from the opposite perspective.
In becoming universal mimics that can imitate the behaviour
of clearly rule driven processes, they become uninformative
about the true nature of the phenomena they are “parrot-
ing”’ [9]. Enormous amounts of training data and advances in
compute power have made the modern incarnation of artifi-
cial neural networks tremendously capable in solving certain
problems that previously required human-like intelligence,
but just like their predecessors, they have failed to deliver a
revolution in our understanding of human cognition.
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