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Abstract Neurogenesis is the generation of neurons from stem cells, a process that is regulated by 
SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood 
in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongi-
carpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using 
a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and 
in vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during 
embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequen-
tially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have broad developmental 
potential, become neural progenitors that express Soxb2 before differentiating into mature neural 
cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia 
neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear 
whether migration per se or exposure to different microenvironments is the main driver of their fate 
determination. Our data constitute a rich resource for studies aiming at addressing this question, 
which is at the heart of understanding the origin and development of animal nervous systems.

Editor's evaluation
This paper shows that SoxB genes act sequentially in neural stem cells before differentiating into 
mature neural cells and that loss of SoxB genes causes defects in embryonic neurogenesis. The 
manuscript provides molecular insights into neurogenesis during cnidarian embryogenesis, homeo-
stasis, and regeneration.

Introduction
Neurogenesis − the generation of neuronal cells − is thought to be a partially conserved process 
in metazoans (Bosch et al., 2017; Gahan et al., 2017; Kelava et al., 2015; Rentzsch et al., 2017; 
Tournière et  al., 2020; Watanabe et  al., 2014) but the early evolutionary history of this process 
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remains unclear. SoxB transcription factors (TFs) are central players in neurogenesis across a broad 
range of animal taxa including vertebrates, insects, nematodes, planarians, and cnidarians (Alqadah 
et  al., 2015; Meulemans and Bronner-Fraser, 2007; Richards and Rentzsch, 2015; Ross et  al., 
2018) but how and when these genes became co-opted into the process of neuron formation is 
unknown. Vertebrate SoxB TFs are commonly subdivided into the SoxB1 group (Sox1, Sox2, and 
Sox3) that maintain stemness in neural stem cells, while SoxB2 group members (Sox14 and Sox21) 
are involved in neural differentiation (Bylund et al., 2003; Holmberg et al., 2008). Hence, verte-
brate SoxB genes act sequentially in neurogenesis, but it is unclear whether this feature is ancestral 
or derived in metazoan animals. Furthermore, SOX orthology has been notoriously hard to interpret 
and, therefore, a similar SoxB subdivision has not been observed in invertebrates (Flici et al., 2017; 
Jager et al., 2011; Richards and Rentzsch, 2015; Schnitzler et al., 2014). Finally, expression and 
functional data on SOX genes in the context of neurogenesis are still rare in non-bilaterians, making 
an evolutionary inference difficult to establish.

Cnidarians are the sister group to bilaterians (Kayal et al., 2018; Zapata et al., 2015) and, as 
such, they represent an interesting outgroup to study the evolution of neurogenesis. As in verte-
brates, multiple SoxB genes are expressed in the developing nervous systems of representatives 
of the two main cnidarian clades, Anthozoa (corals and sea anemones) (Magie et al., 2005; Rich-
ards and Rentzsch, 2014; Richards and Rentzsch, 2015) and Medusozoa (hydroids and jellies) (Flici 
et al., 2017; Jager et al., 2006). While we know that some cnidarian SoxB genes are required for 
neurogenesis, their function is not well understood. Hydractinia symbiolongicarpus is a colonial hydro-
zoan cnidarian (Figure 1—figure supplement 1; Frank et al., 2020) and, like other hydrozoans, this 
animal possesses a population of stem cells, known as i-cells. These i-cells self-renew and contribute 
to somatic lineages, including neurons, and to germ cells throughout life (DuBuc et al., 2020; Gahan 
et al., 2016). The colonial nature of the animal enable i-cells to migrate throughout the colony and 
populate individual polyps. Hence, i-cells constitute a single population for the entire colony. i-cells 
first appear in embryonic endoderm (Gahan et al., 2016) but migrate to the outer tissue layer of 
the body, the epidermis, during metamorphosis (Figure 1—figure supplement 2), remaining there 
during adult life. In the mature animal, undifferentiated i-cells are found in interstitial spaces of the 
epidermis, primarily of the lower body column. They differentiate while migrating orally (Bradshaw 
et  al., 2015), giving rise to various cell types including the two main neuronal lineages: neurons 
and nematocytes − the latter being specialized stinging cells that are used by cnidarians to capture 
prey or for defence from predators. The Hydractinia nervous system has a typical cnidarian nerve-net 
structure with a higher concentration of neurons at its oral end (Figure 1—figure supplement 3 and 
Figure 1—figure supplement 4). The Hydractinia genome encodes three SoxB-like genes (Soxb1, 
Soxb2, and Soxb3) whose orthologous relation to specific bilaterian homologs cannot be resolved 
due to low sequence conservation. Hence, their names do not implicate them as being part of any 
bilaterian SoxB subgroup (Flici et al., 2017). A previous study has shown that Hydractinia Soxb2 is 
expressed in proliferative, putative neural progenitors, and Soxb3 is expressed in neural cells, identi-
fied by their distinctive morphology. Both genes are essential for adult neurogenesis and nematogen-
esis (Flici and Frank, 2018; Flici et al., 2017). However, the functions of Soxb1, Soxb2, and Soxb3 in 
embryonic neurogenesis remain unknown.

Here, we have studied the function of all three Hydractinia SoxB genes in embryogenesis. To 
observe the dynamic expression of these genes in adults, we have generated Soxb1 and Soxb2 
transgenic reporter animals and tracked individual cells during differentiation using in vivo time lapse 
imaging. We also used fluorescence-activated cell sorting (FACS) and droplet microfluidics approaches 
(InDrop-seq) as a first step towards generating cell type-specific and single-cell transcriptomes, then 
analysed the cell cycle characteristics of Hydractinia cell fractions. Our data are consistent with SoxB 
genes acting sequentially in adults as i-cells differentiate into neurons and nematocytes. Knockdown 
experiments indicate a complex role for SoxB genes in the differentiation of embryonic neuronal cells. 
Under Soxb2 knockdown conditions, we have documented biased differentiation to specific neural 
cell types. Our study provides insight into the evolution of SoxB genes and their function in neuro-
genesis across Metazoa.

https://doi.org/10.7554/eLife.78793
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Results
Expression pattern of SoxB genes in Hydractinia
We studied the expression pattern of all three SoxB genes in Hydractinia using both traditional, 
tyramide amplification-based mRNA fluorescence in situ hybridization (FISH) and signal amplifi-
cation by exchange reaction (SABER) single-molecule FISH (Kishi et al., 2019). In sexual polyps, 
Soxb1 was expressed in cells morphologically resembling i-cells and germ cells in males and females 
(Figure 1A–D). In feeding polyps, Soxb1 was expressed in cells that resembled i-cells both with 
respect to their morphology and their anatomical location, being primarily distributed in the lower 
body column of the polyp and largely absent from the oral end of the animal (Bradshaw et al., 2015; 
Figure 1E–G). To confirm the identity of Soxb1-expressing cells, we used double FISH with Piwi1, 
a known marker for Hydractinia i-cells and germ cells (DuBuc et al., 2020; Gahan et al., 2016). We 
found that all Soxb1+ cells also expressed Piwi1 and vice versa (Figure 1). Therefore, we conclude 
that Soxb1 is expressed in i-cells, that is, in stem cells that give rise to somatic cells (including 
neurons and nematocytes) and to germ cells. Soxb2 expression partially overlapped with Soxb1 in 
the mid-region of the polyp body column, being largely absent from the lower (aboral) area of the 
polyp that primarily included only Piwi1+/Soxb1+ cells (Figure 2A–C). Soxb3 was expressed in the 
middle and upper (i.e., oral) parts of the polyp and partly overlapped with Soxb2 in the mid-region 
(Figure 2D–F). These findings are consistent with a previous study that investigated Soxb2/Soxb3 
expression (Flici et al., 2017). It is also in line with the known pattern of distribution of Hydractinia 
cells, with i-cells being restricted to the lower body column, and neural cells mainly concentrated 
in the oral pole.

While mRNA FISH experiments, described above, informed us about cells that expressed SoxB 
genes in space and time at cellular resolution, they did not provide direct information on the fate 
of these cells. To obtain these data, we generated transgenic reporter animals that expressed tdTo-
mato or GFP, driven by the endogenous Soxb1 or Soxb2 genomic control elements, respectively 
(Figure 3A–I). Attempts to generate a Soxb3 reporter were unsuccessful. Instead, we used an Rfamide 
reporter animal that expresses GFP in RFamide+ neurons (Figure 3J–L). The rationale of this approach 
was that the long half-life of fluorescent proteins would enable tracking cells even after their fate 
is changed and the reporter gene shut down. Fluorescence of the Soxb1::tdTomato reporter was 
dim in vivo but the signal was enhanced in fixed animals through the use of anti-RFP antibodies 
(Figure 3A–E). In contrast, the signal produced by the Soxb2 and Rfamide reporters, both expressing 
GFP, was sufficiently bright to be viewed in vivo using fluorescence stereomicroscopy (Figure 3F–L).

Contrary to the mRNA FISH data (Figure 1), the Soxb1 promoter-driven tdTomato was not only 
observed in stem/progenitor cells but was present in neural cells as well, based on the distinct 
morphology of these cells (Figure 3A–C). In sexual polyps, tdTomato was also observed in maturing 
germ cells (Figure 3D and E). This shows that Soxb1+ cells differentiated into neural cells and gametes 
as expected. The Soxb2 promoter-driven GFP was visible in neurons and nematocytes but not in i-cells 
(Figures 2 and 3F–I), suggesting that Soxb2+ cells were more committed than i-cells (i.e., Soxb1+ 
cells). The spatial distribution of Soxb1+ and Soxb2+ cells was distinct from that of their respective 
progeny, consistent with migrating neural progenitors that differentiate during and following their 
migration away from the lower body column area where i-cells and their early progeny reside. The 
Rfamide reporter was only visible in sensory and ganglionic neurons (Figure 3J–L), consistent with the 
expression pattern of this gene in neurons but not in neural progenitors (Gahan et al., 2017; Kanska 
and Frank, 2013).

FISH expression patterns (Figure 2) showed partial overlap between Soxb1 and Soxb2, as well as 
between Soxb2 and Soxb3, the latter confirming previous reported observations (Flici et al., 2017). 
Furthermore, analysis of transgenic reporter animals indicated that Soxb1+ and Soxb2+ cells give rise to 
neural cells (Figures 2 and 3). To confirm within-lineage transitions between Soxb1 and Soxb2 expres-
sion, we generated double Soxb1::tdTomato/Soxb2::GFP reporter animals by crossing a Soxb1::td-
Tomato female with a Soxb2::GFP male. The Soxb1-driven tdTomato fluorescence that was too dim 
to be viewed live by stereomicroscopy was readily visible in vivo using a more sensitive spinning disk 
confocal microscope. Double transgenic animals were mounted in low-melt agarose and subjected to 
prolonged in vivo spinning disk confocal imaging. We observed tdTomato-positive (i.e., Soxb1+), GFP-
low or negative (i.e., Soxb2-) cells transforming to double positive cells (Figure 4; Figure 4—figure 
supplement 1). Collectively, our mRNA expression data and the ones obtained previously (Flici et al., 

https://doi.org/10.7554/eLife.78793
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Figure 1. Piwi1 and Soxb1 are co-expressed in i-cells and germ cells. (A–D) Analysis of sexual polyps’ mid (A) and 
lower (B) body column, and early (C) and late (D) oocytes. (E–G) Analysis of feeding polyps’ head (E), mid-(F), and 
lower (G) body column. (A–D) were tyramide-based fluorescence in situ hybridization (FISH); (E–G) were single-
molecule FISH. Scale bars = 40 μm.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.78793
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2017) together with the results of our live imaging of transgenic reporter animals are consistent with 
sequential expression of SoxB genes in the neural lineage.

Cellular and molecular characterization of Hydractinia neural cells
We used a recently developed flow cytometry/FACS protocol (DuBuc et al., 2020) to analyse and 
physically sort cells from dissociated transgenic reporter animals. The long half-life of the fluorescent 
reporter proteins resulted in the isolation of not only cells that expressed the reporter genes but also 
their progeny. To minimize the contribution of progeny to the sorted cellular fraction, we used a FACS 
gating strategy to select live, nucleated single cells and sorted populations that had low side scatter 
(SSC) characteristics and high levels of GFP (Figure 5A–C and Figure 5—figure supplement 1).

A previously established Piwi1::GFP reporter animal (Bradshaw et al., 2015) was used to selec-
tively isolate i-cells by FACS rather than the Soxb1::tdTomato reporter animal. tdTomato fluorescent 
protein is optimally excited by a 561 nm yellow/green laser; the configuration of the BD FACS Aria 
cell sorter in the NUI Galway flow cytometry core facility does not include a 561 nm laser. The usage 
of Piwi1::GFP to isolate i-cells was possible given that the two genes have been shown to be co-ex-
pressed in i-cells (Figure 1). Piwi1+ (i.e., Soxb1+ i-cells) are known to represent a rare population, 
representing approximately 1.4% of the live single-cell population of the Soxb2::GFP transgenic 
animal (DuBuc et al., 2020). We found that Soxb2+ cells (i.e., putative neural progenitors) were an 
equally rare population (Figure 5A–B). Rfamide+ neurons were distributed among two distinct popu-
lations that differed in levels of GFP expression, accounting for 1.6% and 1.8% of the live single cells, 
respectively (Figure 5C). Imaging flow cytometry of the Piwi1::GFP reporter animal (i.e., cells that also 
express Soxb1) revealed that the brightest cells were small with a high nuclear to cytoplasmic ratio, 
consistent with stem cell morphology (Figure 5D). The two Rfamide+ cell populations did not differ 
morphologically based on imaging flow cytometry except in their GFP expression (Figure 5E and F); 
their exact nature is yet unclear. Flow cytometric cell cycle analysis (Figure 5G–L) revealed that the 
Piwi1+ cells were almost exclusively in S/G2/M phase (Figure 5G), similar to what has been observed 
in i-cells from the freshwater polyp Hydra (Buzgariu et al., 2014). However, i-cell progeny, defined by 
low GFP fluorescence and constituting a highly heterogeneous population, were found in all stages 
of the cell cycle (Figure 5H). Soxb2+ cells that include putative neural progenitors (Flici et al., 2017) 
had a cell cycle profile similar to i-cells, mostly found during the S/G2/M phases of the cell cycle 
(Figure 5J). Rfamidehigh and Rfamidelow neurons that are thought to be terminally differentiated were 
mostly in G0/G1, similar to what was observed in nematocytes (Figure 5I and K–L). The robustness of 
the flow cytometric analysis was demonstrated by studying other cellular fractions including epithe-
lial cells from an epithelial reporter (Künzel et al., 2010), male germ cells (from the Piwi1 reporter), 
and cells from an Ef1a knock-in animal where GFP is expressed ubiquitously (Sanders et al., 2018; 
Figure 5—figure supplement 1 and Figure 5—figure supplement 2).

We used FACS to physically isolate the following cell fractions: Soxb2high, Rfamidehigh, and Rfamidelow 
neurons. We generated transcriptomes for each of these cell fractions and used a previously published 
i-cell transcriptome (DuBuc et al., 2020). We then compared gene expression between the combina-
tions shown in Supplementary file 1. Given the long half-life of fluorescent proteins, the Soxb2+ cells’ 
transcriptome we present (Supplementary file 2) probably includes also early stages of their differen-
tiation. The two RFamide+ neuronal populations are probably different, as the RFamide neuropeptide 
is considered a marker for differentiated neurons. Indeed, typical neuronal genes were expressed by 
these cells (Figure 5M; Supplementary file 2). The RFamide+ neurons fraction also expressed mini-
collagen genes that are markers of nematogenesis. Co-expression of minicollagens and precursors 
of neuropeptides has been reported previously (Sunagar et al., 2018; Wolenski et al., 2013) so this 
observation in RFamide+ cells is not surprising given that nematocytes are neural cells.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The animal model Hydractinia.

Figure supplement 2. i-Cell location during different stages in ontogeny, marked by Piwi1.

Figure supplement 3. The structure of the nervous system in embryogenesis and larvae.

Figure supplement 4. The structure of the nervous system in adult feeding and sexual polyps.

Figure 1 continued

https://doi.org/10.7554/eLife.78793
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Figure 2. Partial overlap in the expression of Soxb1 and Soxb2, and Soxb2 and Soxb3 in feeding polyps. (A–
C) Single-molecule fluorescence in situ hybridization (FISH) with probes against Soxb1 and Soxb2 showing upper-
mid (A), lower-mid (B), and lower (C) body column. (D–F) Single-molecule FISH with probes against Soxb2 and 
Soxb3 showing the head region (D), upper-mid (E), and lower-mid (F) body column. Arrowheads point to double-
positive cells. Scale bars = 40 μm.

https://doi.org/10.7554/eLife.78793
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Figure 3. Soxb1, Soxb2, and Rfamide transgenic reporter animals. (A–E) Soxb1::tdTomato reporter animal. Animals were fixed and stained with an 
anti-dsRed antibody. (A) Whole feeding polyp. (B) Lower polyp body column. (B’) Higher magnification of tdTomato+ i-cells. (C) Head region including 
base of tentacles. (C’) Close-up showing tdTomato+ neurites. (D) Male sexual polyp. (E) Female sexual polyp. (E’) Higher magnification of tdTomato+ 
oocytes. (F–I) Live imaging of a Soxb2::GFP reporter animal. (F) planula larva. (G) Oral pole of a polyp viewed from above. (G’, G’’) Higher magnification 

Figure 3 continued on next page
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To provide further insight into the composition of the neural cells population, we used a droplet 
microfluidic single-cell handling system (InDrop) (Klein et al., 2015) to generate a single-cell transcrip-
tome dataset based on 7071 cells from Hydractinia wild type feeding polyps. This allowed us to iden-
tify 22 cell clusters (Figure 5—figure supplement 3A) and their associated upregulated marker genes 
(Figure  5—figure supplement 3B); this may be an underestimation of the cellular complexity of 
Hydractinia as compared to that of other cnidarians (Sebé-Pedrós et al., 2018; Siebert et al., 2019). 
However, we were able to identify putative i-cells, nematoblasts, gland cells, neurons, and a group 
of mixed progenitors. Upregulated marker gene expressions generally recapitulated the expression 
profiles of the physically sorted cells from the transgenic reporter animals, with up to 15% of markers 
corresponding to DEG transcript of the sorted cell types (Figure 5—figure supplement 3C; Supple-
mentary file 3). Specifically analyzing the expression of Soxb1-3 (Figure 5—figure supplement 3D), 
we find that both Soxb1 and Soxb2 are expressed in a subset of i-cells; these cells are presumably in 

of GFP+ cells with neural morphology. (H) GFP+ interconnected neurons in stolon. (I) Mid-body column region of polyp showing GFP+ cells. (I’) GFP+ 
nematoblasts (based on the presence of a nematocyst capsule). (I’’) GFP+ neurons. (J–L) Live imaging of Rfamide::GFP+ reporter feeding polyps. 
(J) Upper polyp region including head and tentacles. (K) Oral pole of feeding polyp viewed from above. (L) Higher magnification of the head region, 
showing GFP+ neural network. Asterisks point to oral ends. Scale bars = 40 μm.

Figure 3 continued
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Figure 4. Sequential expression of Soxb1 and Soxb2. (A) Immunofluorescence of Soxb1::tdTomato and Soxb2::GFP double positive cells that resemble 
differentiating neurons by morphology. (B) In vivo time lapse imaging of a Soxb1::tdTomato+ cells (shown in red) with increasing levels of Soxb2::GFP 
(shown in green) over a time frame of 8 hr (T0=3 hr post decapitation (hpd); T1=4 hpd;...; T5=8 hpd). Green Soxb2::GFP cells that appear in the image 
probably migrated into the confocal plane during imaging. Scale bars = 40 μm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. In vivo time lapse imaging of a Soxb1::tdTomato/Soxb2::GFP double transgenic reporter animal.
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Figure 5. Analysis of dissociated Hydractinia cells by conventional and imaging flow cytometry. (A) Gating strategy of i-cells, nematocytes, mixed 
progenitors, and GFP- cells from a Piwi1 reporter animal. (B) Gating of putative neural progenitors from a Soxb2 reporter animal. (C) Gating two distinct 
populations of Rfamide::GFP+ neurons. (D–F) Imaging flow cytometric analysis of cells from the transgenic reporter animals. (G–L) Cell cycle analysis of 
distinct, sorted cell populations. (G) i-Cells are mostly in S/G2/M. (H) i-Cell progeny are distributed along the cell cycle. (I) Nematocytes are mostly in G1. 

Figure 5 continued on next page
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transition to becoming Soxb2-only positive progenitor cells (clusters 13 and 14 in Figure 5—figure 
supplement 3A). Finally, Soxb3 is only expressed in few cells in cluster 18 (Figure 5—figure supple-
ment 3A, D). It also appears that subpopulations of neural cells transition from a Soxb2 RFamide 
low state (cluster 14) that express a G-protein coupled receptor for glutamate (Figure  5—figure 
supplement 3E) to a Soxb2 RFamide high state (cluster 13), of which some eventually become Soxb2-
negative while still expressing high levels of RFamide (cluster 11). These are presumably terminally 
differentiated neurons as determined by the marker genes Kaptin and Contactin2 (Figure 5—figure 
supplement 3E). This is consistent with the downregulation of Soxb2 resulting in near absence of 
RFamide+ neurons and bolsters the role of Soxb2 as a marker for neural progenitor cells. Combined, 
the bulk- and-single-cell analyses provide a valuable resource for further analyses of cnidarian cells, 
allowing for the extended analysis of nematoblasts as a way to characterize both known and novel 
marker genes (Figure 5—figure supplement 3F).

Hydractinia head regeneration involves de novo neurogenesis
Hydractinia can regenerate a decapitated head that includes a fully functional nervous system 
within 2–3  days (Bradshaw et  al., 2015). This predictable generation of many new neurons 
provides an opportunity to study neurogenesis in regeneration. To identify the cellular source of 
regenerative neurogenesis, we first characterized the dynamics of nervous system regeneration 
over 48 hr using Rfamide::GFP reporter transgenic animals (Figure 6). Animals were decapitated 
and allowed to regenerate their heads. Subsets of these animals were then fixed at 12, 24, 36, 
and 48 hr post decapitation (hpd). Prior to fixation, they were incubated for 30 min in EdU. Fixed 
samples were stained for EdU, GFP (reporting Rfamide), and Piwi2 (an i-cell marker; for anti-Piwi2 
antibody validation; see Figure 6—figure supplement 1). We also analysed intact animals that 
showed a well-developed head nervous system but had neither S-phase cells nor i-cells in their 
heads (Figure  6A), as expected (Bradshaw et  al., 2015). At 12 hpd, there were many cycling 
cells in the stump area, few neurons (likely remnants of the amputated tissue), and few migrating 
Piwi2low cells that are probably i-cell progeny (Figure 6B). At 24 hpd, a clear proliferative blas-
tema had been established at the oral most pole, with i-cells (Piwi2high) and their progeny being 
numerous in the area. However, only a few RFamide+ neurons were visible (Figure 6C). At 36 hpd, 
new neurons were visible in the regenerating head and proliferative i-cells and progeny were still 
present (Figure 6D). Finally, at 48 hpd, a nearly complete head nervous system had been estab-
lished and the regenerating head contained lower numbers of i-cells and progeny (Figure 6E). 
Hence, Piwi2low cells, which are presumably i-cell progeny, were the first to migrate to the injury 
area, followed later on by Piwi2high cells, which are probably stem cells. This is similar to what has 
been observed in planarian head regeneration, where neoblast progeny arrive in the injury area 
before neoblasts (Abnave et al., 2017). Of note, none of the existing neurons incorporated EdU 
during regeneration, consistent with neurons being terminally differentiated. To study nervous 
system regeneration in vivo, we used the Rfamide::GFP transgenic reporter animals to track indi-
vidual neurons over the course of regeneration. The animals were decapitated, mounted in low-
melt agarose, and imaged every hour for either the first 24 hr, or from 24 to 72 hpd. In all cases, 
the neurons remained stationary and did not proliferate during the observation period while a 
new head nervous system regenerated (Figure 6—figure supplement 2). Hence, similar to Hydra 
(Miljkovic-Licina et al., 2007), head nervous system regeneration in Hydractinia involves de novo 
neurogenesis rather than proliferation or migration of existing neurons.

(J) SoxB+ (putative neural progenitors) are mostly in S/G2/M. (K) Low and (L) high Rfamide+ neurons. (M) Differential gene expression analysis of sorted 
cell populations. Genes expressed by Rfamide-high and Rfamide-low neurons are listed.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Representative flow cytometry density plots identifying subpopulations as defined by internal complexity (side scatter [SSC]) and 
level of GFP expression of Hydractinia transgenic reporter animals and matched wild type animals (A–I) and imaging flow cytometry (J).

Figure supplement 2. Typical flow cytometry gating strategy used for cell cycle analysis of transgenic animals and a wild type animal.

Figure supplement 3. Transcriptomic analysis of Hydractinia single cells.

Figure 5 continued

https://doi.org/10.7554/eLife.78793
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Figure 6. Cellular events during Hydractinia head regeneration in an Rfamide::GFP transgenic reporter animal. (A) Intact head, characterized by few 
S-phase cells, extensive RFamide+ neuronal network, and no Piwi1high i-cells or their putative Piwi1low progeny. (B) 12 hr post decapitation (hpd) showing 
many proliferative cells, only few remnant RFamide + neurons, and few immigrating i-cells and progeny. (C) 24 hpd. High numbers of EdU incorporating 
cells, few RFamide+ neurons, and increasing i-cells and putative progeny are seen at the oral regenerating end. (D) 36 hpd. High number of S-phase 
cells, increased number of RFamide+ neurons, and further increase in i-cell numbers are seen. (E) 48 hpd. Decreasing numbers of S-phase cells, 
increasing numbers of RFamide+ neurons, and decreasing numbers of i-cells are observed. Scale bars = 40μm.

Figure 6 continued on next page
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SoxB genes are required for embryonic neurogenesis
It has been shown previously that Soxb2 and Soxb3 are essential for neurogenesis in adult Hydractinia 
(Flici et al., 2017). However, the role of Soxb1 has not been studied, nor has the role of these TFs in 
other life stages. Hence, we set out to study the role of all three SoxB genes in embryogenesis. For 
this, we used short hairpin RNA (shRNA)-mediated knockdown by microinjection into zygotes as previ-
ously described (DuBuc et al., 2020). The specificity of the treatment was assessed qualitatively by 
FISH in at least three replicates per shRNA (Figure 7—figure supplement 1A). The animals were fixed 
at 72 hpf; at this stage of development, Hydractinia normally reaches the metamorphosis-competent 
planula larva stage.

Soxb1 knockdown affected many aspects of larval development. First, the animals were on 
average smaller and underdeveloped (Figure  7—figure supplement 1B). Second, these animals 
had fewer Piwi1+ i-cells and numbers of neurons and nematoblasts was lower than normal. RFamide 
neuron numbers were low or absent altogether (Figure 7). Third, these larvae had defects in ciliation 
(Figure 7, Figure 7—figure supplement 2) and, as a result, their movement was restricted (larvae 
swim by coordinated cilia beat). Finally, the larvae had lost their ability to metamorphose upon CsCl 
treatment (Figure 7), with the latter probably being the result of a loss of neurons expressing GLWa-
mide, the internal regulator of metamorphosis in Hydractinia (Gajewski et  al., 1996; Müller and 
Leitz, 2002; Schmich et al., 1998). However, the number of S-phase cells was upregulated compared 
with the control and proliferative cells were also detectable in the epidermis; normally, S-phase cells 
are restricted to the gastrodermis in larvae (Figure 7). The above defects could be explained by Soxb1 
playing a role in maintaining stemness in i-cells, similar to the role of Sox2 in mammalian pluripotency 
(Boyer et al., 2005; Takahashi and Yamanaka, 2006). Loss of Soxb1 may have resulted i-cells exiting 
the stem cell program, as observed by Piwi1 staining (Figure 7). This would be expected to directly 
affect all i-cell derivatives that include neurons and nematocytes, as well as other cell types. The 
increased number of S-phase cells could reflect a compensatory response to loss of i-cells or be a 
response of i-cells to loss of stemness.

Downregulation of Soxb2 had no visible effect on i-cells or on GLWamide+ neurons (Figure  7) 
but RFamide+ neurons were nearly absent. Nematoblast numbers had increased and no significant 
difference was observed on cycling cells. These phenotypes are markedly distinct from what is seen 
after downregulation of Soxb2 in adult neurogenesis, where the numbers of neurons, nematocytes, 
and cycling cells are noticeably reduced (Flici et al., 2017). This could be explained by preferential 
differentiation of neural progenitors to GLWamide+ neurons over RFamide+ neurons if progenitors 
are limiting, given the essential role of the latter in metamorphosis. Alternatively, the SoxB2 protein 
might be maternally loaded or dispensable for embryonic GLWamide+ neurons. The increase in nema-
toblast numbers following Soxb2 downregulation could indicate a nematogenesis-inhibiting role for 
this gene. Surprisingly, downregulation of Soxb3 had no major effect on the animals, in contrast to 
the role of this gene in adult neurogenesis (Flici et al., 2017). The above data suggest an essential 
and complex role of Soxb2 for embryonic neurogenesis, but also highlight major differences between 
embryonic and adult neurogenesis.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Piwi2 antibody validation.

Figure supplement 2. In vivo tracing of RFamide-GFP+ neurons during regeneration located in the (A) lower part and (B) upper part of the body 
column during the first 20 hr post decapitation (hpd), and (C) from 24 hpd until 72 hpd.

Figure 6 continued

https://doi.org/10.7554/eLife.78793
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Figure 7. Effects of SoxB genes downregulation in embryogenesis. (A) Short hairpin RNA (shRNA)-mediated knockdown of Soxb1, Soxb2, and Soxb3. 
(B) Higher magnification of Piwi1+ and S-phase cells showing reduced i-cell numbers following Soxb1 downregulation. Note proliferative cells in 
epidermis, not seen in untreated and following Soxb2 or Soxb3 downregulation. (C) Quantification of phenotypes. Scale bars = 40μm.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Validation of shRNA experiments.

Figure 7 continued on next page
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Discussion
Multiple SoxB proteins act to generate neurons across metazoans but orthologous relationships 
between individual SoxB members in different animal clades have been difficult to establish (Flici 
et al., 2017). This is either because multiple duplication events of an ancestral SoxB gene occurred 
within lineages, resulting in paralogous genes in any one clade, or that sequence drift over evolu-
tionary time has blurred discernable orthologous relationships. However, the requirement for more 
than one SoxB gene to generate neurons in animals as distantly related as Hydractinia, Drosophila, 
and mice suggest that more than one SoxB gene had already been present before the cnidarian-
bilaterian split to generate neurons in their last common ancestor; it does not exclude further lineage-
specific diversification and gene losses thereafter. Finally, it indicates a highly conserved mechanism 
of subfunctionization following gene duplication at the base of animals.

Soxb1 is an i-cell marker and probably fulfills a role in stemness. Its downregulation resulted in loss 
of i-cells and impacted other aspects of development including the ability to metamorphose, which 
was expected given that i-cells provide progenitors to multiple lineages. This function of Soxb1 is 
similar to the role of vertebrate Sox2. However, vertebrate Sox2 also acts in neural stem cells while in 
Hydractinia, there is no direct evidence so far to support a similar function. Furthermore, a population 
of long-term, self-renewing neural progenitors has yet to be identified in cnidarians. Our results from 
Hydractinia, along with data obtained from other cnidarians (reviewed by Rentzsch et  al., 2017), 
are also consistent with continuous generation of neurons from multi- or pluripotent cells that also 
contribute to non-neural lineages, without the existence of a long-term, self-renewing neural stem 
cell.

Soxb2 was expressed in a population of cells with uncommitted morphology that differentiated 
to neural cells, based on GFP retention in neurons and nematocytes in the Soxb2 reporter animal. 
Our in vivo analysis of Soxb1/Soxb2 double transgenic reporter animals has shown that Soxb1+ 
cells transform into Soxb2+ cells (Figure 4 and Figure 4—figure supplement 1). Downregulation 
of Soxb2 resulted in neural-specific defects in embryos, consistent with this gene being expressed 
preferentially in the neural lineage (Figure 3). The latter is also supported by the neural transcrip-
tional fingerprint (Figure 5M; Supplementary file 2) and single-cell transcriptomic profiles of Soxb2+ 
cells (Figure 5—figure supplement 3C-E). Of note, deviation from normal development following 
Soxb2 perturbation was not a simple reduction in all neural cells, as seen in adults (Flici et al., 2017). 
Instead, Soxb2 downregulation caused a loss of RFamide+ neurons but not of GLWamide+ neurons. 
Because GLWamide+ neurons are essential for metamorphosis of Hydractinia larvae (Plickert et al., 
2003), it is possible that the animals preferentially generate this type of neuron when progenitors are 
limited. Conversely, nematoblast numbers increased upon Soxb2 downregulation, suggesting that 
Soxb2 normally inhibits nematogenesis in embryos, in contrast to its function in adults (Flici et al., 
2017).

Despite being expressed in embryos and larvae (Flici et  al., 2017), no visible phenotype was 
observed following Soxb3 downregulation, other than the effect of its downregulation in adults (Flici 
et al., 2017). Therefore, Soxb3 may not play a distinct role in embryonic neurogenesis, or that the 
effect of its downregulation in embryos is too subtle to be observed by our methods.

i-Cells are concentrated in the lower body column (Bradshaw et al., 2015), neural progenitors 
are scattered in the mid-body column, while most neurons and nematocytes are found in the head. 
This implies that neural cells differentiate while migrating from the base of the polyp toward the 
head, reflected by the partly overlapping expression domains of SoxB genes that mark the stages 
of differentiation. A major question emanating from this work is whether migration is required for 

Figure supplement 2. Effect of Soxb1 downregulation on epidermal ciliation in 3-day old larvae using acetylated tubulin antibody staining and in situ 
hybridization of Soxb2 in sexual polyps (A) shGFP-injected animal.

Figure 7 continued
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neurogenesis cell autonomously, or whether migrating stem cells become exposed to different micro-
environments along the oral-aboral axis that drive their differentiation non-cell autonomously.

The poor conservation of SoxB gene sequences across animals make direct functional comparisons 
difficult. However, the requirement for multiple SoxB genes and migration seem to be common hall-
marks of neurogenesis in all studied animals. Additional common features remain to be discovered. 
Hydractinia’s continuous, predictable, and accessible neurogenesis across all life stages provides an 
excellent model to address these questions.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-Piwi1 (rabbit polyclonal) https://doi.org/10.1126/science.aay6782 N/A IF (1:2000)

Antibody Anti-Piwi2 (Guinea pig polyclonal) In-house N/A IF (1:500)

Antibody
Anti-acetylated tubulin (mouse 
monoclonal) Sigma-Aldrich Ca# T7451 IF (1:1000)

Antibody Anti-RFamide (mouse polyclonal)
https://doi.org/10.1007/s004270050181

IF (1:1000)

Antibody Anti-GLWamide (rabbit polyclonal) https://doi.org/10.1007/s004270050181 IF (1:1000)

Antibody
Anti-Ncol1
(rabbit polyclonal)

https://doi.org/10.1371/journal.pone.​
0022725.g001 
 

IF (1:500)

Antibody Anti-Ncol3 (guinea pig polyclonal)
https://doi.org/10.1371/journal.pone.​
0022725.g001 IF (1:500)

Antibody Anti-GFP (rabbit polyclonal) Santa Cruz Ca# 8334 IF (1:1000)

Antibody Anti-RFP (rat polyclonal) Chromotek Ca# 5F8 IF (1:1000)

Strain, strain background (Hydractinia 
symbiolongicarpus) 293-10 wild type animals This paper N/A Materials and methods

Strain, strain background (Hydractinia 
symbiolongicarpus) SoxB1::tdTomato line This paper N/A Materials and methods

Strain, strain background (Hydractinia 
symbiolongicarpus) SoxB2::GFP line This paper N/A Materials and methods

Strain, strain background (Hydractinia 
symbiolongicarpus) RFamide::GFP line This paper N/A Materials and methods

Strain, strain background (Hydractinia 
symbiolongicarpus) RFamide::SoxB1::GFP This paper N/A Materials and methods

Experimental model and subject details
Hydractinia culture
Stable clones were grown on glass microscope slides and cultured at 20–22°C in artificial seawater 
(ASW) under a 14:10 light:dark cycle regime. They were fed four times a week with freshly hatched 
Artemia nauplii and once a week with oysters (pureed when fresh and then stored frozen in aliquots).

Spawning took place approximately one and a half hours after light induction by the release of 
gametes (sperm and oocytes) in a water column. Once collected, the embryos were stored in 4°C for 
up to 4 hr to halt their development and provide a wider time frame for injections.

Stable transgenic reporter animals
Zygotes were injected with plasmid DNA at 3–4 μg/μl concentration. Plasmid was supplemented with 
100 mM KCl which helped to reduce mosaic integration. Once the embryo reached the planula larval 
stage, metamorphosis was induced by a 3–4 hr incubation with 1:5 580 mM CsCl:ASW. Once meta-
morphosing larvae fully retracted, they were placed on glass slides to settle and form a new colony. 

https://doi.org/10.7554/eLife.78793
https://doi.org/10.1126/science.aay6782
https://doi.org/10.1007/s004270050181
https://doi.org/10.1007/s004270050181
https://doi.org/10.1371/journal.pone.0022725.g001
https://doi.org/10.1371/journal.pone.0022725.g001
https://doi.org/10.1371/journal.pone.0022725.g001
https://doi.org/10.1371/journal.pone.0022725.g001
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Animals were then bred to produce stable, non-mosaic transgenic offspring. To generate double 
transgenics, stable second-generation SoxB1::tdTomato and SoxB2::GFP animals were crossed.

Method details
Generation of transgenic animals
Cloning vectors were generated by inserting 5’ upstream regulatory sequence (URS) and 3’ down-
stream regulatory sequence of the desired gene (SoxB1, SoxB2, or RFamide) upstream and down-
stream of the coding sequence of the fluorescence protein (GFP or tdTomato), respectively. Cloning 
and ligation of the fragments was achieved by restriction enzyme-based approach. Chemically compe-
tent XL1 Blue Escherichia coli bacteria were transfected with the vector and once the plasmid was 
validated by sequencing, embryos were injected.

For the ectopic expression of SoxB1, the RFamide construct was used and the coding sequence of 
SoxB1 was inserted between URS and fluorescence protein.

Cellular staining
Standard immunofluorescence staining was done as previously described in (Flici et al., 2017): the 
tissue was fixed in 4% PFA in PBS for 60 min at room temperature (RT) or overnight (ON) at 4°C 
followed by three washes of 10 min each with PBS with 0.3% Triton X-100 (PBSTx). For storage, the 
tissue was dehydrated by incubation in increasing concentrations of ethanol diluted in PBSTx and 
stored in –20°C (25%, 50%, 75%, and 100%; 5 min each wash). Tissue was then slowly rehydrated by 
washing in decreasing concentrations of ethanol followed by three washes of 10 min each with PBSTx. 
The tissue was then blocked for 1 hr in 3% BSA in PBSTx and primary antibodies were added ON at 
4°C. The following day, tissue was washed three times 10 min each with PBSTx and blocked again for 
15 min with 5% serum in BSA/PBSTx (goat serum unless indicated otherwise). Secondary antibodies 
were added based on the host of the primary antibodies in 5% serum in BSA/PBSTx for 1 hr in RT and 
then the tissue was washed three times 10 min each with PBSTx. Nuclear staining was then carried out 
with Hoechst 33258 (use: 1 in 2000; stock: 20 mg/ml; Sigma-Aldrich; B2883) for 15 min at RT followed 
by three washes 10 min each with PBSTx. Tissue was then mounted in Fluoroshield (Sigma-Aldrich; 
F6182) on glass microscopic slides (Fisher Scientific; 11562203).

For the nematocyte capsule staining by FITC-coupled DSA lectin, all the steps described below 
were performed on the shaker and in RT unless otherwise stated. Fixation was carried out by incu-
bating the tissue in TBS-T for 10–30 min. Following, the tissue was washed three times for 5 min each 
with TBST-T and blocked for 1 hr with 2% BSA in TBS. Three more washes of 5 min each were carried 
out with TBS, and then lectin was added in a 15 μg/ml final concentration diluted in TBS-T. Lectin 
incubation was for 1 hr and samples were protected from light. Three more washes of 5 min each 
with TBS were carried out, and Hoechst (1:1000) was added for 30 min. Samples were washed again 
for three times before mounting them in Fluoromount. Mounted samples were left ON at 4°C to cure 
before imaging. Samples could be imaged only within 2–3 days after curing and could be stored in 
4°C – not 20°C.

EdU staining was done as previously described in (Bradshaw et al., 2015): all the solutions were 
prepared according to the manufacturer’s instructions. Prior fixation, the polyps were incubated in 
EdU solution for 30 min or more depending on the experiment (stock concentration 10 mM; 1 μl 
EdU/1 ml ASW), washed three times in ASW and incubated in MgCl2 before fixation. Polyps are then 
fixed in 4% PFA in PBS for 1 hr at RT and washed once with 3% BSA in PBSTx for 30 min. Next, two 
washes with PBSTx were carried out (first wash: 1 hr; second wash: 30 min), followed by two washes 
with 3% BSA in PBSTx for 5 min each. The tissue was then incubated in Click-iT cocktail for 30 min 
(~100 μl per 100 polyps; protect from light) followed by three washes of 3% BSA in PBSTx for 20 min 
each. Following, samples were stained with various antibodies as described above.

In situ hybridization
For conventional FISH
FISH was done as previously described in (DuBuc et al., 2020): animals were first fixed for 90 s in ice-
cold 0.2% glutaraldehyde (stock: 25%, Sigma-Aldrich; G5882) with 4% PFA (stock: 16%, Alfa Aesar; 
43368) in filtered ASW and then in 4% PFA in PBS-0.1% Tween (PTW) for 1 hr at 4°C followed by three 

https://doi.org/10.7554/eLife.78793
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quick washes with PTW. Post-fixation washes were done in increasing concentrations of methanol in 
PTW and then the samples were either stored for future use or continued with the procedure. Next, 
the tissue was permeabilized by washes in increasing concentrations of methanol in acetone and rehy-
drated with washes in decreasing concentrations of methanol in PTW.

The next steps were done with reagents and buffers in RT. Following rehydration of the tissue, 
three PTW quick washes were done to remove any residual methanol and then the activity of PFA 
was quenched by two washes 5 min each with glycine (2 mg/ml; Fisher Scientific; BP381-1) in PTW 
followed by three PTW washes.

The tissue was then pre-hybridized by adding pre-heated hybridization buffer ON, and then 
hybridized for 2 days in pre-heated hybridization buffer containing the desired probes (1 ng/μl). The 
hybridization temperature depends on the probe with the range being 55–60°C.

Following, all the post-hybridization washes were done at hybridization temperature. First, the 
tissue was washed twice with a simpler version of the hybridization buffer for 10 and 40 min. Then, 
washes for 30 min were carried out in decreasing concentrations of hybridization buffer in 2× SSC 
followed by three washes of 15 min each in 2× SSC.

At this point, all the washes/incubation steps were moved from hybridization temperature to RT. 
Quick washes in decreasing concentrations of 0.2× SSC in PTW were done followed by five quick 
washes in PTW. Once the post-hybridization washes were done, the endogenous peroxidase activity 
was quenched by incubating the tissue in 3% hydrogen peroxide (Fisher; H/1800/15) in PTW for 1 hr 
at RT protected from light followed by three washes of PTW for 10 min each. The tissue was then incu-
bated with the first antibody (anti-DIG POD, 1:1000; Roche 11207733910) in 1% blocking buffer (Roche; 
11096176001) in maleic acid buffer ON at 4°C followed by three washes of 10 min each with PTW.

The developing process of the first antibody was done preferably with Rhodamine in developing 
buffer with three incubations of 1 hr each at RT followed by an ON incubation at 4°C.

The next day, at least five PTW washes were carried out, or until the tissue has no residual 
Rhodamine or Fluorescein, and then the tissue was either prepared for mounting or a second anti-
body incubation. If the tissue was prepared with a single probe, it was then stained with the nuclear 
marker Hoechst (1:2000) in PTW for 15 min and washed and mounted in 100 mM Tris-pH 8 in 50% 
TDE (Sigma; 166782).

In the case of a double FISH, after the ON incubation with the developing buffer, the tissue was 
washed thoroughly with PTW and then washed once for 10 min with 0.1 M glycine pH2 followed by 
three quick PTW washes. The tissue was then shortly blocked with 1% blocking buffer in maleic acid 
buffer and incubated with the second antibody (anti-Fluorescein POD, 1:1000, Roche; 11426346910) 
in 1% blocking buffer in maleic acid buffer ON at 4°C followed by three washes of 10 min each with 
PTW.

The developing, post-developing washes, nuclear staining, and mounting were done the same 
way as described above but instead of Rhodamine, Fluorescein was used. After the post-developing 
washes but before TDE washes and mounting, the tissue could be quickly washed with increasing 
concentrations of methanol in PBS and then with decreasing concentrations of the same solutions to 
remove background staining.

For SABER FISH
Tissue was fixed and dehydrated the same way like in the conventional FISH as described above. 
Samples were then incubated in 1% H2O2 diluted in 100% MeOH (ice cold) for 45 min in RT, followed 
by two quick washes with ice-cold 100% MeOH. Then, tissues were permeabilized by quick washing 
in decreasing and then increasing concentrations of methanol diluted in, followed by rehydration with 
quick washes in decreasing concentrations of methanol in PTW.

The next steps are done with reagents and buffers in RT. Following rehydration of the tissue, three 
PTW quick washes are done followed by two washes 5 min each with glycine (2 mg/ml; Fisher Scien-
tific; BP381-1) in PTW followed by three PTW washes.

Samples were then washed once for 5 min in triethanolamine (TEA) pH 8, followed by another 
wash in TEA pH 8 with the addition of 6 μl of acetic anhydrite. Acetic anhydrite would form a drop-
like appearance in the well and so the samples were left on the rocker until the drop was dissolved. 
Another wash with TEA followed but this time 12 μl of acidic anhydrite were added and placed on the 
rocker until drop was dissolved. A few washes with PTW followed.
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Samples were then placed in Whyb buffer (pre-warmed at 43°C) and incubated at 43°C for 10 min. 
Whyb buffer was then replaced with Hyb1 buffer (pre-warmed at 43°C) and placed in a 43°C incubator 
ON (pre-hybridization). The next day, the probes in Hybe buffer were added at a concentration of 
1 μg/120 μl. Tissue was then incubated with the probes for 2 days at 43°C.

All the following steps were done at Hybe temperature and all the reagents were pre-warmed 
(43°C). Probes were removed and replaced with Whyb buffer for 10 min. Then, two washes with Whyb 
buffer for 30 min each were done, followed by a 10 min wash with 50% Whyb buffer in 2× SSCTw. Two 
more washes with 2× SSCTw were followed for 10 min each.

The steps followed were performed at 37°C. 2× SSCTw was replaced with PTW (two quick washes). 
Once the samples were warmed up to 37°C, Hyb2/fluor solution was added and samples were incu-
bated for 1 hr at 37°C. Hyb2/fluor solution was also pre-warmed at 37°C before it was added to the 
samples.

After that, Hyb2/fluor solution was replaced with pre-warmed Whyb2 for a 10 min incubation at 
37°C followed by two washes of 5 min each with PTW. Nuclear staining was then performed in RT by 
diluting Hoechst in PTW (1:2000) and incubating the samples for 45–60 min at RT. Samples were then 
quickly washed twice with PTW and mounted in 97% TDE. Samples were imaged within 4 days. Three 
to six animals were imaged per condition.

shRNA interference
For shRNA interference experiments, primers were designed to clone unique sites of the three SoxB 
genes. Stock primers (100 mM) containing a T7 site were directly used and incubated at 98°C for 
2 min and then left in RT for 10 min to anneal; 2 μl of each primer were used and mixed with nuclease-
free water to a final reaction volume of 20 μl. Following, T7 transcription was carried out by using the 
total reaction volume from the previous step (20 μl) as a DNA template along with 3.5 μl of each NTP 
(ATP, GTP, UTP, CTP; 100 mM stock concentration), 4 μl of 10× reaction buffer and 3 μl of T7 RNA poly-
merase mix (HiScribe T7 High Yield RNA Synthesis kit, NEB; E2040). The mixture was then incubated 
ON at 37°C. The next day, the products were DNase treated for 1 hr at 37°C with 40 μl of DNase solu-
tion (5 μl DNaseI in 35 μl RDD buffer; Qiagen RNAse-free DNase set; 79254) and RNA was isolated by 
using Quick-RNA MiniPrep kit (Zymo Research; R1054) following the manufacturer’s instructions. The 
eluted RNA was quantified using NanoDrop and the quality was checked by running a formaldehyde 
denature gel. Embryos were injected at a concentration of 250 ng/μl for all three SoxB genes.

In vivo imaging and analysis
Decapitated polyps from transgenic colonies were transferred to 35 mm imaging dishes with a glass 
bottom (Ibidi; D 263) and 0.5% low-melt agarose in filtered ASW was placed dropwise on individual 
polyps in order to secure them as close to the bottom of the dish as possible. Once the polyps had 
stabilized, low-melt agarose was poured into the dish to cover the whole bottom. On polymerization 
the dish was transferred to an Andor spinning disc confocal microscope which was used to generate 
time lapse movies. Images were captured over the duration of the time course as z-stacks at 10 μm 
apart, using a 10× objective lens. Prior to collecting the Z stack, exposure time and EM gain were set 
and recorded to the channel of illumination. This was maintained for all experiments. Each specimen 
was imaged using λ488 nm and λ564 nm lasers. Phase contrast images were also collected as an 
indication of animal location and viability pre, during, and post imaging. Animals were subjected to 
a 72 hr imaging with 1 hr imaging intervals. Every hour, a z-stack spanning the whole depth of each 
animal was obtained in GFP, RFP, and DIC channels. Data were then analysed using ImageJ/Fiji soft-
ware (ImageJ 1.52i), and two to three focal planes covering the whole cell of interest were selected. 
In total, 16 animals were imaged.

Flow cytometry, FACS, and imaging flow cytometry
Tissue dissociation and flow cytometric analysis was done as previously described in DuBuc et al., 
2020 using only feeding polyps. Cell suspensions were labelled with 37.5 μg/ml Hoechst 33342 (Sigma 
Cat#14533) for 20 min at 18°C. Flow cytometric analysis was performed using a BD FACSCanto II 
flow cytometer (BD Biosciences, San Jose, CA) which was calibrated according to the manufacturer’s 
recommendations. Data were analysed using Diva v8.0.1 (BD Biosciences) or FlowJo v10 (TreeStar 
Inc, Olten, Switzerland). Typical gating strategies involved gating on live, nucleated cells (Hoechst 
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33342 positively stained population) measured using the 405 nm excitation laser line and 450/50 nm 
photomultiplier tube (PMT) fluorescence detector, followed by doublet exclusion based on forward 
scatter height versus forward scatter area. For cell cycle analysis an additional doublet exclusion gate 
was included based on plotting Hoechst 33342 height versus Hoechst area. Expression of the GFP 
reporter in transgenic animals was measured using the 488 nm excitation laser line in the 530/30 nm 
PMT fluorescence detector. Cells prepared from wild type animals were used as a gating control and 
to set the voltages in the cell cycle analysis. An example of a typical gating strategy used in cell cycle 
analysis as well as representative cell cycle profiles from wild type and transgenic animals’ cell cycle 
profile of distinct cell populations is illustrated in Figure 5—figure supplements 1 and 2.

For imaging flow cytometry cell suspensions were prepared, as previously described, from reporter 
animals: Piwi1::GFP and RFamide::GFP and analysed using INSPIRE software on an Imagestream X 
Mark II imaging flow cytometer (Luminex Corporation, Northbrook, IL). Analysis was performed using 
IDEAS software (Luminex Corporation, Northbrook, IL). Samples were gated on focused cells (bright-
field gradient root mean squared), cells as measured by brightfied area versus aspect ratio followed by 
Hoechst 33342 positive population and GFP versus SSC. Hoechst and GFP fluorescence was measured 
using the 405 nm excitation laser line and 435–505 nm bandpass filter and the 488 nm excitation laser 
line and 480–560 nm bandpass filter, respectively. Cells isolated from a wild type Hydractinia animal 
were used as a gating control.

For FACS, 100 polyps from each reporter line were dissociated as described above Piwi1::GFP, 
SoxB2::GFP, and RFamide::GFP (n=3) and re-suspended in 1  ml of filtered ASW containing 0.5% 
Pronase and 0.1% BSA. FACS was performed on a BD FACSAriaII high-speed cell sorter using a 100 µm 
nozzle at 20 psi with filtered ASW as sheath. ASW was used as sheath fluid to eliminate osmotic stress 
to the cells during sorting. GFP-expressing and non-GFP-expressing cell populations were gated on 
live, nucleated single cells. Cells prepared from matched wild type animals were used as controls. Cell 
populations were sorted directly into Trizol (Life Technologies, Cat#15596026) for subsequent RNA 
extraction using the Direct-zol RNA MiniPrep kit. The purity of the sorted populations was checked by 
sorting directly into ASW followed by flow cytometric analysis on a BD FACSAriaII cell sorter.

InDrop single-cell transcriptomics
Tissue dissociation was done as described above. Cells were then transferred to 18.5% mannitol in H2O 
to replace sea-H2O, which otherwise interferes with critical downstream enzymatic reactions including 
droplet RT. After filtering of the cell suspension through 100 μm filters, cells were quickly subjected 
to in-house InDrop microfluidics to generate a single-cell transcriptome dataset as described in Klein 
et  al., 2015. Following sequencing of the InDrop library, raw reads were processed using python 
scripts provided in Klein et al., 2015. The resulting genes-versus-cells UMI-filtered count matrix was 
then processed, analysed, and visualized in R using Seurat 3.0 following standard procedures (Stuart 
et al., 2019). Cluster markers were annotated using BLAST against uniprot KB. Bioinformatics workl-
flows and results are provided (Supplementary file 2). Raw sequencing reads are available under SRA 
accession number PRJNA777228.

Antibody generation
For Piwi2 antibody production, primers containing a 5’ HIS-tag were designed to amplify a region of 
Piwi2. Fragments were cloned and expressed in pET3s expression vector using restriction sites (Nde1 
and BamH1 – encoded in primer sequences) and expressed in Rosetta DE3 pLysS bacteria. Protein 
extract was then analysed and injected into two guinea pigs by Eurogentec. Antisera were analysed 
by western blots and antibody specificity was validated as shown in Figure 6—figure supplement 1.

Cell type-specific transcriptomes
Quantification and statistical analysis
Transcriptome analysis

Quantitation of shRNAi mutant animals
All cell counting analysis was performed using 3D Object Counter function in ImageJ/Fiji software. 
Counts were made relative to the total tissue area in the X/Y dimension. A z-stack covering the whole 
depth of each sample was obtained. Counting was performed on cells positive for the respective 
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cell type marker based on antibody staining and numbers were compared between shControl and 
shSoxb1/2/3 animals. Three to seven animals were counted per condition. Uninjected animals and 
animals treated with shGFP were used as controls. Uninjected animals were only used for quantifica-
tion purposes. Statistical analysis was performed in GraphPad Prism using unpaired t-test. Differences 
were considered not significant when p >0.05.

The shRNA knockdown was assessed qualitatively. At least three animals per shRNA treatment 
were assessed by SABER FISH.

Software and algorithms

FastQC v0.11.6 (Babraham Bioinformatics, 2019)
Trimmomatic v0.36 (Bolger et al., 2014) http://www.usadellab.org/cms/?page=trimmomatic
HISAT2 v2.1.0 (Zhang et al., 2021) http://daehwankimlab.github.io/hisat2/
HTSeq v0.11.2 (Anders et  al., 2015) https://htseq.readthedocs.io/en/release_0.11.1/index.​
html
DESeq2 v1.28.1 (Love et  al., 2014) https://bioconductor.org/packages/release/bioc/html/​
DESeq2.html
Seurat 3.1.5 (Hao et al., 2021) https://github.com/satijalab/seurat/releases

Cell type-specific transcriptomes
After RNA isolation, samples were shipped to the NIH Intramural Sequencing Center (NISC) for 
further processing and sequencing. RNA was amplified with the Ovation RNA-Seq System V2 kit, 
and sequencing libraries were made with Illumina TruSeq Stranded mRNA Library Prep Kit. Libraries 
were sequenced on two lanes of Illumina NovaSeq 6000 (2 × 151 bp), generating between 27 and 
69 million reads per sample (average 44 million reads).

Transcriptome analysis
Read quality control was performed using FastQC v0.11.6. Overrepresented sequences and low-
quality bases were trimmed using Trimmomatic v0.36 (Bolger et al., 2014). After trimming, unpaired 
reads and reads shorter than 36 bp were discarded.

Reads were aligned to the reference transcriptome described in DuBuc et al., 2020 using HISAT2 
(Kim et al., 2019), and gene-level read counts were generated with HTSeq-count v0.11.2 (Anders 
et  al., 2015). Cell type-specific transcripts were identified by conducting a differential expression 
analysis between reporter-positive and reporter-negative cells using the R package DESeq2 (Love 
et al., 2014).
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The following datasets were generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Chrysostomou 2022 Bulk RNA-seq https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA549873/

NCBI BioProject, 
PRJNA549873

Frank U 2022 Single-cell RNA-seq https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA777228

NCBI BioProject, 
PRJNA777228
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