
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. © 2022 Society for Industrial and Applied Mathematics
Vol. 44, No. 5, pp. A3217--A3243

A UNIFORMLY ACCURATE SCHEME FOR THE NUMERICAL
INTEGRATION OF PENALIZED LANGEVIN DYNAMICS˚

ADRIEN LAURENT:

Abstract. In molecular dynamics, penalized overdamped Langevin dynamics are used to model
the motion of a set of particles that follow constraints up to a parameter \varepsilon . The most used schemes
for simulating these dynamics are the Euler integrator in \BbbR d and the constrained Euler integrator.
Both have weak order one of accuracy, but work properly only in specific regimes depending on
the size of the parameter \varepsilon . We propose in this paper a new consistent method with an accuracy
independent of \varepsilon for solving penalized dynamics on a manifold of any dimension. Moreover, this
method converges to the constrained Euler scheme when \varepsilon goes to zero. The numerical experiments
confirm the theoretical findings, in the context of weak convergence and for the invariant measure,
on a torus and on the orthogonal group in high dimension and high codimension.
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1. Introduction. In molecular dynamics, the overdamped Langevin equation
in \BbbR d is often used for modeling the behavior of a large set of particles in a high
friction regime. It is given by

(1.1) dXptq “ fpXptqqdt` \sigma dW ptq, Xp0q “ X0,

where f is a smooth Lipschitz function (typically of the form f “ ´\nabla V for V a smooth
potential), \sigma ą 0 is a constant scalar, and W is a standard d-dimensional Brownian
motion in \BbbR d on a probability space equipped with a filtration p\scrF tq and fulfilling the
usual assumptions. If the particles are subject to smooth constraints \zeta : \BbbR d Ñ \BbbR q, such
as strong covalent bonds between atoms or fixed angles in molecules, the dynamics
follow the constrained overdamped Langevin equation

(1.2) dX0ptq “ \Pi \scrM pX0ptqqfpX0ptqqdt` \sigma \Pi \scrM pX0ptqq ˝ dW ptq, X0p0q “ X0 P \scrM ,

where the solution lies on the manifold \scrM “ tx P \BbbR d, \zeta pxq “ 0u with codimension q
thanks to \Pi \scrM : \BbbR d Ñ \BbbR dˆd, the orthogonal projection on the tangent bundle of the
manifold \scrM .

In physical applications, constrained systems are often used as a limit model for
stiff equations. For instance, in the dynamics of a diatomic molecule, the distance
between the two atoms oscillates around an average length, called the bond length
(see, e.g., [34, sect. 1.2.1] on the interactions of particles). One can work with a
simpler constrained dynamics where the distance between the atoms is fixed as a
constraint, or with the original (possibly stiff) dynamics in \BbbR d. We refer the reader
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A3218 ADRIEN LAURENT

to [41, 34], and references therein, for discussions on the use of constraints and penal-
izations in molecular dynamics. For overdamped Langevin dynamics (1.1), choosing

a function rf “ ´\nabla rV with the potential

rV “ V ´
\sigma 2

4
lnpdetpGqq `

1

2\varepsilon 
|\zeta |

2

gives penalized Langevin dynamics [16] of the form

(1.3) dY \varepsilon ptq “ fpY \varepsilon ptqqdt` \sigma dW ptq `
\sigma 2

4
\nabla lnpdetpGqqpY \varepsilon ptqqdt´

1

\varepsilon 
pg\zeta qpY \varepsilon ptqqdt,

where we fix Y \varepsilon p0q “ X0, the parameter \varepsilon ą 0 is fixed with arbitrary size, f “

´\nabla V , g “ \nabla \zeta : \BbbR d Ñ \BbbR dˆq, and G “ gT g : \BbbR d Ñ \BbbR qˆq is the Gram matrix. It
was shown in [16, Appx. C] that the solution Y \varepsilon of (1.3) converges strongly to
the solution X0 of the constrained dynamics (1.2) if X0 P \scrM . The additional

term \sigma 2

4 \nabla lnpdetpGqq is a correction term (called the Fixman correction) that is needed
to obtain the convergence to the constrained dynamics (1.2) (see [34, sect. 3.2.3.4] and
references therein). Thus, for \varepsilon small, the trajectory of the solution of (1.3) lies in
the vicinity of the manifold \scrM . This penalization can also appear naturally when
simulating Langevin dynamics with a stiff potential (see, for instance, [45, sect. 5.1]).
One is then interested in numerical schemes that are robust with respect to the pa-
rameter \varepsilon and that lie on the manifold \scrM in the limit \varepsilon Ñ 0. In this paper, we study
the following similar penalized dynamics in \BbbR d to simulate trajectories in a vicinity
of the manifold \scrM :

dX\varepsilon ptq “ fpX\varepsilon ptqqdt` \sigma dW ptq `
\sigma 2

4
\nabla lnpdetpGqqpX\varepsilon ptqqdt(1.4)

´
1

\varepsilon 
pgG´1\zeta qpX\varepsilon ptqqdt,

where X\varepsilon p0q “ X0. It is a simpler version of (1.3) that also evolves in a vicinity of the
manifold \scrM in the limit \varepsilon Ñ 0. One result of this paper is the strong convergence of
the solution X\varepsilon of (1.4) to the solution X0 of (1.2) if X0 P \scrM . We mention that in the
deterministic setting, that is, when \sigma “ 0, equation (1.4) is a singular perturbation
problem, and it converges to a differential algebraic equation (DAE) of index two in
the limit \varepsilon Ñ 0 (see [22, Chaps.VI--VII]). We propose in this article a method that is
robust with respect to the parameter \varepsilon for solving equations of the form (1.4), and we
leave the creation of robust integrators for solving (1.3) for future work for the sake
of clarity.

There are different ways to approximate the solution of the dynamics (1.4). A
strong approximation focuses on approximating the realization of a single trajectory
of (1.4) for a given realization of the Wiener process W . A weak approximation ap-
proximates the average of functionals of the solution at a fixed time T , that is, quanti-
ties of the form \BbbE r\phi pX\varepsilon pT qqs for \phi a smooth test function. In addition, under growth
and smoothness assumptions on the vector fields in (1.4) (see, for instance, [23]), the
dynamics (1.4) naturally satisfy an ergodicity property; that is, there exists a unique
invariant measure d\mu \varepsilon 

8 in \BbbR d that has a density \rho \varepsilon 8 with respect to the Lebesgue
measure, such that for all test functions \phi ,

lim
TÑ8

1

T

ż T

0

\phi pXptqqdt “

ż

\BbbR d

\phi pxqd\mu \varepsilon 
8pxq almost surely.
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3219

An approximation for the invariant measure focuses on approximating the average of
a functional in the stationary state, that is, the quantity

ş

\BbbR d \phi pxqd\mu \varepsilon 
8pxq. This is a

computational challenge when the dimension d is high, which is the case in the context
of molecular dynamics where the dimension is proportional to the number of particles,
as a standard quadrature formula becomes prohibitively expensive in high dimension.
We emphasize that the invariant measure \mu \varepsilon 

8 becomes singular with respect to the
Lebesgue measure on \BbbR d in the limit \varepsilon Ñ 0, and tends weakly as \varepsilon Ñ 0 to d\mu 0

8, a
measure that is absolutely continuous to d\sigma \scrM , the canonical measure on \scrM induced
by the Euclidean metric of \BbbR d. In this paper, we propose weak convergence results
for a new uniformly accurate integrator for solving (1.4), and numerical experiments
in the weak context and for the invariant measure, as we recall that a scheme of weak
order r automatically has order p ě r for the invariant measure (see, for instance, [37]).

The most used discretization for solving (1.4) is the explicit Euler integrator in \BbbR d

(see [15, 33, 34, 35], for instance),

(1.5) Xn`1 “ Xn `
?
h\sigma \xi ` hfpXnq ` h

\sigma 2

4
\nabla lnpdetpGqqpXnq ´

h

\varepsilon 
pgG´1\zeta qpXnq.

This integrator has weak order one of accuracy, but it faces some severe stepsize
restriction due to its instability, typically of the form h ! \varepsilon , in order to be accurate
in the regime \varepsilon Ñ 0. Since the solution X\varepsilon ptq of (1.4) converges to the solution X0ptq
of (1.2) when \varepsilon Ñ 0, one can use integrators for the limit equation (1.2) and apply
them to solve the original problem (1.4) when \varepsilon is close to zero. Indeed, one can
prove that the solution X\varepsilon ptq of (1.4) stays at distance \scrO p

?
\varepsilon q of the constrained

solution X0ptq of (1.2) (see Theorem 2.3). Thus, if the timestep of the integrator is
small enough and satisfies \varepsilon ! h, then this integrator is consistent for solving (1.4).
The alternative for the discretization of (1.2) on the manifold of the explicit Euler
scheme (1.5) is the constrained Euler scheme

(1.6) X0
n`1 “ X0

n `
?
h\sigma \xi ` hfpX0

nq ` gpX0
nq\lambda 0n`1, \zeta pX0

n`1q “ 0,

where \lambda 0n`1 P \BbbR q acts as a Lagrange multiplier and is entirely determined by the
constraint \zeta pX0

n`1q “ 0. This integrator has weak order one for solving (1.2) (see [34,
sect. 3.2.4]), and it lies on the manifold\scrM . It is a consistent approximation of (1.4) if \varepsilon 
is close to zero and \varepsilon ! h. This integrator is, however, not appropriate for solving (1.4)
if the size of \varepsilon is of the order of one, since the exact solution does not evolve in a
neighborhood of the manifold in this regime. We mention a few other techniques to
integrate numerically (1.4) or (1.2). In [28, 30], high order Runge--Kutta methods are
proposed for sampling the invariant measure in \BbbR d and on manifolds. The paper [36]
presents a constrained integrator based on the RATTLE scheme (see [42, 5, 22]) in
the context of the underdamped Langevin dynamics. Some of the previously cited
discretizations can be combined with Metropolis--Hastings rejection procedures [39,
24], as done, for instance, in [20, 8, 35, 46, 36]. As for the Euler integrators (1.5)--(1.6),
all of the previously mentioned methods are consistent, provided that the parameter \varepsilon 
and the timestep satisfy h ! \varepsilon in the context of methods in \BbbR d and satisfy \varepsilon ! h in
the context of methods on the manifold \scrM . When applied in the regime where \varepsilon 
and h share the same order of magnitude, the accuracy of these methods quickly
deteriorates, and they may face stability issues.

In past decades, different solutions were proposed for treating the loss of accuracy
in the intermediate regime h „ \varepsilon in the context of multiscale problems with the help
of uniformly accurate (UA) methods. These methods are capable of solving dynamics
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A3220 ADRIEN LAURENT

indexed by a possibly stiff parameter \varepsilon with an accuracy and a cost both independent
of \varepsilon . A uniformly accurate method is automatically asymptotic-preserving (AP), that
is, it converges in the two regimes \varepsilon Ñ 0 and \varepsilon „ 1, but the converse is not true in
general. We refer the reader to the review [25] and references therein for examples
of AP integrators for solving multiscale problems. We mention in particular the
paper [41], which proposes a penalized Hamiltonian dynamics, and AP discretizations
for solving it, and the paper [7] that gives an AP scheme for the approximation of a
class of multiscale SDEs. In [17, 44, 29], trigonometric and multirevolution integrators
are considered for solving highly oscillatory SDEs (see also the deterministic works [38,
9, 10, 14]). We mention the recent papers [11, 12, 13, 4] (see also the references therein)
that introduce UA methods for solving a variety of multiscale problems. There is a
rich literature on AP and UA methods, but, to the best of our knowledge, the problem
we study here and the techniques we consider are new. We propose in this paper a new
consistent integrator with uniform accuracy and uniform cost for solving penalized
Langevin dynamics, that is, a method for solving (1.4) whose accuracy and cost do
not depend on the parameter \varepsilon .

The article is organized as follows. Section 2 is devoted to the presentation of
the new integrator and to the main convergence results. In section 3, we build a
weak asymptotic expansion of the solution of (1.4) that is uniform in \varepsilon , and we use
it for proving the uniform accuracy of our integrator. We compare in section 4 the
new integrator with the explicit Euler scheme in \BbbR d (1.5) and the constrained Euler
scheme (1.6) on \scrM in numerical experiments on a torus and on the orthogonal group
to confirm its order of convergence in the weak context and for sampling the invariant
measure. Finally, we present some possible extensions and future work in section 5.

2. Uniformly accurate integrator for penalized Langevin dynamics. In
this section, we present the new UA integrator and the main convergence results of this
paper. The proofs are postponed to section 3. Let us first lay down a few notations
and assumptions. We assume in the rest of the article that \scrM “ tx P \BbbR d, \zeta pxq “ 0u

is a compact and smooth manifold of codimension q ě 1 embedded in \BbbR d, where the
constraints are given by the smooth map \zeta : \BbbR d Ñ \BbbR q. We write g “ \nabla \zeta : \BbbR d Ñ \BbbR dˆq

and we assume that the Gram matrix Gpxq “ gT pxqgpxq P \BbbR qˆq is invertible for
all x in \scrM . With these notations, the projection \Pi \scrM on the tangent bundle is given
by \Pi \scrM pxq “ Id ´G´1pxqgpxqgT pxq. The test functions typically belong to a subspace
of \scrC 8

P p\BbbR d,\BbbR q, the vector space of \scrC 8 functions \phi pxq such that all partial derivatives
up to any order have a polynomial growth of the form

ˇ

ˇ\phi pkqpxq
ˇ

ˇ ď Cp1 ` |x|
K

q,

where the constants C and K are independent of x P \BbbR d (but can depend on k)
and where we denote by |x| “ pxTxq1{2 the Euclidean norm in \BbbR d. Similarly, we
denote by \scrC p

P p\BbbR d,\BbbR q the space of \scrC p functions whose partial derivatives up to order p
have polynomial growth. Letting \varphi : \BbbR d Ñ \BbbR dˆk, we use the following notations for
differentials: for all vectors x, a1, . . . , am P \BbbR d, we denote

\varphi pmqpxqpa1, . . . , amq “

d
ÿ

i1,...,im“1

Bm\varphi 

Bxi1 . . . Bxim
pxq a1i1 . . . a

m
im .

For the sake of clarity, we will often drop the coefficient x, and if m “ 1, we also use
the notation \varphi 1 for the Jacobian matrix of \varphi . Moreover, for peiq the canonical basis
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3221

of \BbbR d, we write

\Delta \varphi pxq “

d
ÿ

i“1

\varphi 2pxqpei, eiq and pdiv\varphi pxqqj “

d
ÿ

i“1

\varphi 1
ijpxqpeiq.

In the rest of the paper, we make the following assumption in the spirit of the regularity
assumptions made in [16, Appx. C] and [40, Chap. 2].

Assumption 2.1. The map f is bounded, is Lipschitz, and lies in \scrC 3
P . The maps g

and g1 are bounded in \BbbR d, and there exists c ą 0 such that, for x, y P \BbbR d,

(2.1) |Gypxq| ě cp1 ` |y|q´1, where Gypxq “

ż 1

0

gT px` \tau yqd\tau gpxq.

In addition, there exists a smooth change of coordinate

\psi : \BbbR d Ñ \BbbR d,

x ÞÑ

ˆ

\varphi pxq

\zeta pxq

˙

,

where \varphi : \BbbR d Ñ \BbbR d´q satisfies \varphi 1g “ 0. The map \psi lies in \scrC 5
P and is invertible, \psi 1

and \psi 2 are Lipschitz, and there exist two constants c, C ą 0 such that c ď |\psi 1pxq| ď C.

Remark 2.2. Assumption 2.1 is almost the same as the one given in [16, Appx. C ]
to prove the strong convergence of the dynamics (1.3) to the constrained dynam-
ics (1.2). The difference lies in the additional estimate (2.1) that replaces the weaker
assumption that the Gram matrix Gpxq “ G0pxq is invertible on \scrM . We use the esti-
mate (2.1) for obtaining a uniform expansion of the Lagrange multipliers in the new
method and for proving that the new method evolves in a neighborhood of the manifold
(see Lemma 3.8). Note that the existence of the change of coordinate \psi is always valid
in a neighborhood of the smooth manifold \scrM . The same goes for the estimate (2.1)
for x in a neighborhood of \scrM and y in a ball centered on zero. Assumption 2.1 is
valid in particular if \scrM is a vector subspace of \BbbR d, but it is quite restrictive. It would
be interesting to extend the results of this paper under simpler regularity assumptions
made only on the manifold, as numerical experiments hint that the results presented
in this paper still stand without global assumptions. This is matter for future work.

Under Assumption 2.1, the problems (1.2) and (1.4) are well posed, and we obtain
the strong convergence of the penalized dynamics (1.4) to the constrained dynam-
ics (1.2).

Theorem 2.3. Under Assumption 2.1, the solution X\varepsilon of the penalized dynam-
ics (1.4) converges strongly to X0, the solution of the constrained dynamics (1.2);
that is, for all t ď T , there exists a constant C ą 0 such that, for all \varepsilon ą 0,

sup
tďT

\BbbE 
”

ˇ

ˇX\varepsilon ptq ´X0ptq
ˇ

ˇ

2
ı

ď C\varepsilon .

Moreover, \zeta pX\varepsilon ptqq satisfies

sup
tďT

\BbbE 
”

|\zeta pX\varepsilon ptqq|
2

ı

ď C\varepsilon .

This result was first introduced in [16, Appx. C] for slightly different penalized
dynamics. The proof is almost identical, but we present it in Appendix A for the
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A3222 ADRIEN LAURENT

sake of completeness. In the deterministic setting with \sigma “ 0, the convergence to the
manifold is of order 1 in \varepsilon instead of order 1{2. We introduce the following additional
assumption.

Assumption 2.4. There exists c ą 0 such that, for x, y P \BbbR d,

|Gypxq| ě c, where Gypxq “

ż 1

0

gT px` \tau yqd\tau gpxq.

Assumption (2.4) is a stronger version of the inequality (2.1) and is in the spirit
of the concept of admissible Lagrange multipliers [36]. It is always satisfied for x in a
neighborhood of the manifold \scrM and y in a ball centered on zero if we assume that the
Gram matrix Gpxq “ G0pxq is invertible on \scrM . We emphasize that we do not need
this assumption for proving the uniform accuracy property of the new method, but
we use it for obtaining uniform estimates in the regime \varepsilon Ñ 0 and on the numerical
implementation of the UA method.

We introduce the new integrator for approximating the penalized dynamics (1.4)
with cost and accuracy independent of the parameter \varepsilon , and a cost comparable to
that of the constrained Euler scheme (1.6) in terms of the number of evaluations of
the functions f , \zeta , g, and g1.

New Method (Uniform discretization of penalized overdamped Langevin dynamics)

X\varepsilon 
0 “ X0 P \scrM 

for n ě 0 do

X\varepsilon 
n`1 “ X\varepsilon 

n `
?
h\sigma \xi n ` hfpX\varepsilon 

nq `
p1 ´ e´h{\varepsilon q2

2
pg1pgG´1\zeta qG´1\zeta qpX\varepsilon 

nq

`
\sigma 2\varepsilon 

8
p1 ´ e´2h{\varepsilon q\nabla lnpdetpGqqpX\varepsilon 

nq ` gpX\varepsilon 
nq\lambda \varepsilon n`1,(2.2)

\zeta pX\varepsilon 
n`1q “ e´h{\varepsilon \zeta pX\varepsilon 

nq ` \sigma 

c

\varepsilon 

2
p1 ´ e´2h{\varepsilon qgT pX\varepsilon 

nq\xi n

` \varepsilon p1 ´ e´h{\varepsilon q
`

gT f `
\sigma 2

4
gT\nabla lnpdetpGqq `

\sigma 2

2
divpgq

˘

pX\varepsilon 
nq

` \sigma 2
´

\varepsilon p1 ´ e´h{\varepsilon q ´

c

\varepsilon h

2
p1 ´ e´2h{\varepsilon q

¯

ˆ

´

d
ÿ

i“1

pg1pgG´1gT eiqqT gG´1gT ei ´

d
ÿ

i“1

pg1peiqqT gG´1gT ei

¯

pX\varepsilon 
nq.

end for

The new method works in a way similar to the constrained Euler integrator (1.6).
Knowing the approximation X\varepsilon 

n of X\varepsilon pnhq, we project a modified Euler step on a
modified manifold defined by the constraint given in (2.2) (in place of \zeta pX\varepsilon 

n`1q “ 0
for the constrained Euler integrator (1.6)). We project the modified step in the
direction gpX\varepsilon 

nq with the help of a Lagrange multiplier \lambda \varepsilon n`1. For the implementation
of the method, one can use, for instance, a fixed point iteration or a Newton method
at each step to find the solution pX\varepsilon 

n`1, \lambda 
\varepsilon 
n`1q of the implicit system of equations (2.2).

In order for the discretization (2.2) to be well-defined, we use bounded random
variables. The \xi n are independent and bounded discrete random vectors that have the
same moments as standard Gaussian random vectors up to order four, in the spirit
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3223

of [40, Chap. 2], that is, for instance, that their components satisfy

(2.3) \BbbP p\xi i “ 0q “
2

3
and \BbbP p\xi i “ ˘

?
3q “

1

6
, i “ 1, . . . , d.

Note that using truncated Gaussian random variables would also work.

Remark 2.5. The new integrator is related to the popular idea of backward er-
ror analysis and modified equations for SDEs (see, for instance, [48, 1, 18, 26, 27]).
The idea is to define a projection method (see [21, sect. IV.4]) with a modified con-
straint in place of \zeta pXnq “ 0. Instead of evaluating the stiff term h

\varepsilon gG
´1\zeta as in the

Euler scheme (1.5), we project a modified step of the explicit Euler scheme in \BbbR d

on a manifold that is close to \scrM when \varepsilon ! 1 and whose constraint is given by a
truncation of a uniform expansion of \zeta pX\varepsilon q. When \varepsilon Ñ 8, the expression of the
constraint \zeta pX\varepsilon 

n`1q in (2.2) tends to a truncated Taylor expansion in h around X\varepsilon 
n,

while for \varepsilon Ñ 0, \zeta pX\varepsilon 
n`1q tends to zero, which enforces that the integrator lies on \scrM .

These intuitions will be made rigorous in section 3.

Remark 2.6. In the context of a manifold \scrM of codimension q “ 1, the Gram
matrix Gpxq and gpxqT ei “ gipxq are real numbers, so that \nabla lnpdetpGqq “ 2G´1g1pgq

and

d
ÿ

i“1

pg1pgG´1gT eiqqT gG´1gT ei “ G´1pg1pgqqT g “

d
ÿ

i“1

pg1peiqqT gG´1gT ei.

The discretization (2.2) thus reduces to

X\varepsilon 
n`1 “ X\varepsilon 

n `
?
h\sigma \xi n ` hfpX\varepsilon 

nq `
p1 ´ e´h{\varepsilon q2

2
p\zeta 2G´2g1pgqqpX\varepsilon 

nq

`
\sigma 2\varepsilon 

4
p1 ´ e´2h{\varepsilon qpG´1g1pgqqpX\varepsilon 

nq ` gpX\varepsilon 
nq\lambda \varepsilon n`1,(2.4)

\zeta pX\varepsilon 
n`1q “ e´h{\varepsilon \zeta pX\varepsilon 

nq ` \sigma 

c

\varepsilon 

2
p1 ´ e´2h{\varepsilon qgT pX\varepsilon 

nq\xi n

` \varepsilon p1 ´ e´h{\varepsilon qpgT f `
\sigma 2

2
G´1gT g1pgq `

\sigma 2

2
divpgqqpX\varepsilon 

nq.

We present in the rest of the section the uniform accuracy property of the dis-
cretization (2.2), and we show that the integrator converges to the constrained Euler
scheme (1.6) when \varepsilon Ñ 0. The different convergence results are summarized by the
following commutative diagram, where T “ Nh is fixed. Note that, as we present a
convergence result in h that is uniform in \varepsilon , the two arrows for the convergence in h
rely on the same theorem (Theorem 2.7).

integrator X\varepsilon 
N in \BbbR d integrator X0

N on \scrM 

solution X\varepsilon pT q of (1.4) solution X0pT q of (1.2)

hÑ0 pThm. 2.7q

\varepsilon Ñ0

pThm. 2.9q

hÑ0 pThm. 2.7q

\varepsilon Ñ0

pThm. 2.3q

We now state the main result of this work, that is, the uniform accuracy of the
discretization (2.2) for approximating the solution of the penalized Langevin dynam-
ics (1.4).
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A3224 ADRIEN LAURENT

Theorem 2.7. Under Assumption 2.1, the integrator pX\varepsilon 
nq given by (2.2) is a

consistent UA approximation of the solution X\varepsilon ptq of the penalized Langevin dynam-
ics (1.4); that is, for a given test function \phi P \scrC 5

P , there exist h0 ą 0, C ą 0 such that
for all \varepsilon ą 0, h ď h0, the following estimate holds:

(2.5) |\BbbE r\phi pX\varepsilon 
nqs ´ \BbbE r\phi pX\varepsilon pnhqqs| ď C

?
h, n “ 0, 1, . . . , N, Nh “ T.

Remark 2.8. Note that Theorem 2.7 states the uniform consistency, but not the
uniform weak order one, as one could expect. The discretization (2.2) has weak order
one if \varepsilon “ \varepsilon 0 is fixed or in the limit \varepsilon Ñ 0, but an order reduction occurs in the
intermediate regime 0 ă \varepsilon ă \varepsilon 0, and the integrator only has weak order 1{2 with respect
to h in general. For the sake of simplicity, we leave the creation of UA integrators of
higher weak order for future works.

We present the proof of Theorem 2.7 in section 3. It relies on a weak expansion
in h of the solution of (1.4) that is uniform in \varepsilon . One could directly use this uniform
expansion as an explicit numerical integrator for solving (1.4). It would also yield a
uniformly accurate scheme and would not require one to solve a fixed point problem.
However, in the limit \varepsilon Ñ 0, this integrator would almost surely not stay on the
manifold. The crucial geometric property that the integrator lies on the manifold
when \varepsilon Ñ 0 is satisfied for the new method, as stated in the following result.

Theorem 2.9. Under Assumption 2.1, the integrator pX\varepsilon 
nq in (2.2) converges to

the Euler scheme on the manifold (1.6) when \varepsilon Ñ 0; that is, for h and N fixed such
that T “ Nh, there exists a constant Ch ą 0 that depends on h but not on \varepsilon such that

|\zeta pX\varepsilon 
nq| ď Ch

?
\varepsilon , n “ 0, 1, . . . , N.

In addition, if Assumption 2.4 is satisfied, then, for h0 small enough, for h ď h0 fixed,
there exists a constant Ch ą 0 such that

(2.6)
ˇ

ˇX\varepsilon 
n ´X0

n

ˇ

ˇ ď Ch

?
\varepsilon , n “ 0, 1, . . . , N, Nh “ T.

Remark 2.10. In the deterministic context (i.e., when \sigma “ 0), the uniform accu-
racy of the discretization (2.2) still holds, and the speed of convergence to the man-
ifold \scrM of both the exact solution and the integrator are in \scrO p\varepsilon q. To the best of
our knowledge, the integrator given by (2.2) is the first integrator with the uniform
accuracy property for solving the singular perturbation problem (1.4) with \sigma “ 0.
However, similar expansions that are uniform with respect to \varepsilon are presented in [22,
Chaps.VI--VII] and references therein.

Remark 2.11. Another widely used scheme on the manifold is the Euler scheme
with implicit projection direction,

(2.7) X0
n`1 “ X0

n ` hfpX0
nq `

?
h\sigma \xi n ` gpX0

n`1q\lambda 0n`1, \zeta pX0
n`1q “ 0,

where the Lagrange multiplier \lambda 0n`1 is determined by the constraint \zeta pX0
n`1q “ 0. The

UA discretization given in (2.2) can be modified so that it converges to the integra-
tor (2.7) when \varepsilon Ñ 0. It suffices to replace the first line of (2.2) by

X\varepsilon 
n`1 “ X\varepsilon 

n `
?
h\sigma \xi n ` hfpX\varepsilon 

nq ´
p1 ´ e´h{\varepsilon q2

2
pg1pgG´1\zeta qG´1\zeta qpX\varepsilon 

nq

`
\sigma 2

4

´

b

2\varepsilon hp1 ´ e´2h{\varepsilon q ´
\varepsilon 

2
p1 ´ e´2h{\varepsilon q

¯

\nabla lnpdetpGqqpX\varepsilon 
nq ` gpX\varepsilon 

n`1q\lambda \varepsilon n`1
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3225

and to keep the same expansion for the constraint \zeta pX\varepsilon 
n`1q. The methodology for the

uniform expansion of the integrator that we present in section 3.2 extends to this con-
text, so that the convergence results persist. Similarly, one could change the direction
of projection gpX\varepsilon 

nq into gpY \varepsilon 
n q, where Y \varepsilon 

n is any consistent one-step approximation
of X\varepsilon 

n, in the spirit of the class of projected Runge--Kutta methods presented in [30].
Finding a class of UA discretizations that converge to a more general class of Runge--
Kutta methods on the manifold \scrM is a matter for future works.

The uniform discretization (2.2) is implicit and requires one to solve a fixed point
problem at each step with, for instance, a fixed point iteration or a Newton method.
The following result, in the spirit of [22, Chap.VII] for deterministic DAEs and [30,
Lem. 3.3] for the constrained dynamics (1.2), confirms that the associated implicit
system is not stiff, that is, that its complexity does not depend on the stiff parameter \varepsilon .

Theorem 2.12. Under Assumption 2.1, each step of the integrator pX\varepsilon 
nq given

by (2.2) can be rewritten as a solution of a fixed point problem of the form

X\varepsilon 
n`1 “ F \varepsilon 

hpX\varepsilon 
n`1q,

where F \varepsilon 
h : \BbbR d Ñ \BbbR d depends on X\varepsilon 

n, \xi n, h, and \varepsilon . Moreover, if Assumption 2.4 is
satisfied, then there exists h0 ą 0 independent of \varepsilon such that for all h ď h0, F

\varepsilon 
h is a

uniform contraction, that is, there exists a positive constant L ă 1 independent of h
and \varepsilon such that, for all y1, y2 P \BbbR d,

|F \varepsilon 
hpy2q ´ F \varepsilon 

hpy1q| ď L |y2 ´ y1| .

3. Weak convergence analysis. In this section, we present the uniform weak
expansion and the stability properties of the solution X\varepsilon ptq to the penalized dy-
namic (1.4) and of the uniform integrator pX\varepsilon 

nq given in (2.2). We then use these
results to prove Theorems 2.7, 2.9, and 2.12. Let us begin the analysis with a few
technical lemmas and notations.

Lemma 3.1. Let pX\varepsilon 
nq be given by (2.2); then, under Assumption 2.1, there exists

a constant C0 ą 0 independent of X0 P \scrM , \varepsilon , and h such that, for all n ě 0,

(3.1) p1 ´ e´h{\varepsilon q |\zeta pX\varepsilon 
nq| ď C0

?
h.

Proof. As f , \xi n, g, and g1 are bounded, we obtain from the definition of the
integrator given by (2.2) that

|\zeta pX\varepsilon 
n`1q| ď e´h{\varepsilon |\zeta pX\varepsilon 

nq| ` C
b

\varepsilon p1 ´ e´2h{\varepsilon q,

where we used that the function p1´e´xq{x is bounded for x ą 0. Thus, as \zeta pX0q “ 0,

|\zeta pX\varepsilon 
nq| ď e´nh{\varepsilon |\zeta pX0q| ` C

b

\varepsilon p1 ´ e´2h{\varepsilon q

n´1
ÿ

k“0

e´kh{\varepsilon 

ď C

a

\varepsilon p1 ´ e´2h{\varepsilon q

1 ´ e´h{\varepsilon 
ď C0

?
h

1 ´ e´h{\varepsilon 
,

where the constant C0 does not depend on X0, \varepsilon , n, and h. This yields the esti-
mate (3.1).
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A3226 ADRIEN LAURENT

The estimate (3.1) is a direct consequence of our choice of using bounded random
variables in (2.2). We shall use this estimate extensively in the rest of this section.
Thus, we denote by \scrM \varepsilon 

h the set of vectors x P \BbbR d that satisfy the estimate

(3.2) p1 ´ e´h{\varepsilon q |\zeta pxq| ď C0

?
h,

where C0 is the constant given in Lemma 3.1. The set \scrM \varepsilon 
h is a closed subset of \BbbR d

that contains \scrM . The numerical scheme given by (2.2) takes values in \scrM \varepsilon 
h. We

mention that the convergence results are still valid if the initial condition X0 of (2.2)
is chosen in \scrM \varepsilon 

h instead of \scrM .
As we aim at writing uniform expansions, we introduce the convenient nota-

tion R\varepsilon 
hpxq for any remainder that satisfies at least |\BbbE rR\varepsilon 

hpxqs| ď Ch3{2, where C is
independent of \varepsilon , h, and x.

The following result serves as a technical tool for simplifying the calculations
in the uniform expansions of subsections 3.1 and 3.2. It is proved with elementary
computations.

Lemma 3.2. The Fixman correction can be rewritten in the following way:

\sigma 2

4
\nabla lnpdetpGqq “

\sigma 2

2

d
ÿ

i“1

g1peiqG
´1gT ei “

\sigma 2

2

d
ÿ

i“1

g1pgG´1gT eiqG
´1gT ei,

where peiq is the canonical basis of \BbbR d.

Proof of Lemma 3.2. Using G “ gT g as a symmetric matrix, g “ \nabla \zeta as a gra-
dient (which implies xT g1pyq “ yT g1pxq), and the standard properties of the trace
operator Tr, we deduce that

BjplnpdetpGqqq “ TrpG´1BjGq “ 2TrpG´1pg1pejqqT gq “ 2Trpg1pejqG´1gT q

“ 2
d

ÿ

i“1

eTi g
1pejqG´1gT ei “ 2

d
ÿ

i“1

eTj g
1peiqG

´1gT ei,

that is, \nabla lnpdetpGqq “ 2
řd

i“1 g
1peiqG

´1gT ei. For the second equality, we have

d
ÿ

i“1

eTj g
1pgG´1gT eiqG

´1gT ei “

d
ÿ

i“1

eTi gG
´1gT g1pejqG´1gT ei

“ TrpgG´1gT g1pejqG´1gT q “ Trpg1pejqG´1gT q

“

d
ÿ

i“1

eTi g
1pejqG´1gT ei “

d
ÿ

i“1

eTj g
1peiqG

´1gT ei.

Hence we get the result.

3.1. Uniform expansion of the exact solution. We consider the exact solu-
tionX\varepsilon ptq of the penalized Langevin dynamics (1.4), with the initial conditionX0 “ x,
that we assume is deterministic for simplicity. Then, X\varepsilon satisfies the following expan-
sion in h that is uniform with respect to \varepsilon .

Proposition 3.3. Under Assumption 2.1, there exists h0 ą 0 such that for
all h ď h0, if X\varepsilon is the solution of the penalized Langevin dynamics (1.4) starting
at x P \scrM \varepsilon 

h, then, for all \phi P \scrC 3
P , the following estimate holds:

(3.3)
ˇ

ˇ

ˇ
\BbbE r\phi pX\varepsilon phqqs ´ \BbbE r\phi px`

?
hA\varepsilon 

hpxq ` hB\varepsilon 
hpxqqs

ˇ

ˇ

ˇ
ď Cp1 ` |x|

K
qh3{2,
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3227

where C is independent of h and \varepsilon and where the functions A\varepsilon 
h and B\varepsilon 

h are given by

A\varepsilon 
h “ \sigma \xi `

e´h{\varepsilon ´ 1
?
h

gG´1\zeta ` \sigma 
´

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon q ´ 1

¯

gG´1gT \xi ,

B\varepsilon 
h “ f `

´ \varepsilon 

h
p1 ´ e´h{\varepsilon q ´ 1

¯

gG´1gT f `
\sigma 2

2

´ \varepsilon 

h
p1 ´ e´h{\varepsilon q ´ 1

¯

gG´1 divpgq

`
\sigma 2\varepsilon 

8h
p1 ´ e´2h{\varepsilon q\nabla lnpdetpGqq `

\sigma 2\varepsilon 

8h
p1 ´ e´h{\varepsilon q2gG´1gT\nabla lnpdetpGqq

`
1

2h
pe´h{\varepsilon ´ 1q2

´

g1pgG´1\zeta qG´1\zeta ´ gG´1gT g1pgG´1\zeta qG´1\zeta 

´ gG´1pg1pgG´1\zeta qqT gG´1\zeta 
¯

` \sigma 2
´

1 `
\varepsilon 

h
pe´h{\varepsilon ´ 1q

¯

d
ÿ

i“1

gG´1pg1peiqqT gG´1gT ei

`
\sigma 2

4

´ \varepsilon 

h
pe´2h{\varepsilon ´ 4e´h{\varepsilon ` 3q ´ 2

¯

d
ÿ

i“1

gG´1pg1pgG´1gT eiqqT gG´1gT ei,

with \xi a discrete bounded random vector that satisfies (2.3), and where the func-
tions A\varepsilon 

h and B\varepsilon 
h are bounded uniformly in \varepsilon and h on \scrM \varepsilon 

h.

Note that for q “ 1 we obtain the first step of the UA discretization (2.4) by
gathering all the terms of the form gM withM P \BbbR q of the weak approximation given
in Proposition 3.3 in a Lagrange multiplier g\lambda \varepsilon 1 P \BbbR q and by adding the truncated
expansion of \zeta pX\varepsilon phqq as a constraint.

The proof of Proposition 3.3 relies on the change of coordinate \psi given in As-
sumption 2.1. Instead of discretizing directly the penalized dynamics (1.4), we first
apply the change of coordinate \psi and we derive an expansion in time of X\varepsilon ptq that is
uniform in the parameter \varepsilon . The following result is used for proving Proposition 3.3.

Lemma 3.4. With the same notations and assumptions as in Proposition 3.3, the
following estimates hold for all h ď h0 and all x P \scrM \varepsilon 

h:

\BbbE r|X\varepsilon phq ´ x|2s1{2 ď C
?
h,(3.4)

\BbbE r|X\varepsilon phq ´ px`
?
h pA\varepsilon 

hpxqq|2s1{2 ď Ch,(3.5)
ˇ

ˇ

ˇ
\BbbE r\psi pX\varepsilon phqqs ´ \BbbE r\psi px`

?
h pA\varepsilon 

hpxq ` hB\varepsilon 
hpxqqs

ˇ

ˇ

ˇ
ď Ch3{2,(3.6)

where C is independent of h and \varepsilon , B\varepsilon 
h is defined in Proposition 3.3, and pA\varepsilon 

h is given
by

pA\varepsilon 
h “ \sigma 

W phq
?
h

`
e´h{\varepsilon ´ 1

?
h

gG´1\zeta `
\sigma 

?
h
gG´1gT

ż h

0

peps´hq{\varepsilon ´ 1qdW psq.

Proof of Proposition 3.3. The uniform bounds on A\varepsilon 
hpX\varepsilon ptqq and B\varepsilon 

hpX\varepsilon ptqq are
obtained straightforwardly by using Assumption 2.1 and the fact that x P \scrM \varepsilon 

h. We

prove the local weak order one of the approximation Y \varepsilon phq “ x`
?
h pA\varepsilon 

hpxq ` hB\varepsilon 
hpxq

given in Lemma 3.4. Let \phi P \scrC 3
P and r\phi “ \phi ˝ \psi ´1; then a Taylor expansion around x

yields
ˇ

ˇ

ˇ
\BbbE r\phi pX\varepsilon phqq ´ \phi pY \varepsilon phqqs

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
\BbbE rr\phi ˝ \psi pX\varepsilon phqqs ´ \BbbE rr\phi ˝ \psi pY \varepsilon phqqs

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
\BbbE rr\phi 1p\psi pxqqp\psi pX\varepsilon phqq ´ \psi pY \varepsilon phqqqs

ˇ

ˇ

ˇ
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A3228 ADRIEN LAURENT

`
1

2

ˇ

ˇ

ˇ
\BbbE rr\phi 2p\psi pxqqp\psi pX\varepsilon phqq ´ \psi pxq, \psi pX\varepsilon phqq ´ \psi pxqq

´ r\phi 2p\psi pxqqp\psi pY \varepsilon phqq ´ \psi pxq, \psi pY \varepsilon phqq ´ \psi pxqqs

ˇ

ˇ

ˇ

` Cp1 ` |x|
K

qh3{2

ď

ˇ

ˇ

ˇ

r\phi 1p\psi pxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
\BbbE r\psi pX\varepsilon phqq ´ \psi pY \varepsilon phqqs

ˇ

ˇ

ˇ

`
1

2

ˇ

ˇ

ˇ

r\phi 2p\psi pxqq

ˇ

ˇ

ˇ
\BbbE r|\psi pX\varepsilon phqq ` \psi pY \varepsilon phqq ´ 2\psi pxq|2s1{2

¨ \BbbE r|\psi pX\varepsilon phqq ´ \psi pY \varepsilon phqq|2s1{2 ` Cp1 ` |x|
K

qh3{2,

where we used (3.4), Assumption 2.1, and the bilinearity of r\phi 2p\psi pxqq. With Lemma 3.4

and the regularity properties of r\phi and \psi , we get

(3.7)
ˇ

ˇ

ˇ
\BbbE r\phi pX\varepsilon phqqs ´ \BbbE r\phi px`

?
h pA\varepsilon 

hpxq ` hB\varepsilon 
hpxqqs

ˇ

ˇ

ˇ
ď Cp1 ` |x|

K
qh3{2.

In the spirit of [40, Chap. 2], we replace the random variable pA\varepsilon 
hpxq by the random

variable A\varepsilon 
hpxq that share the same expectation and covariance matrix. Indeed, a

calculation gives

Covp pA\varepsilon 
h,ipxq, pA\varepsilon 

h,jpxqq “ \sigma 2\delta ij `
2\sigma 2

h
pgG´1gT qij

ż h

0

peps´hq{\varepsilon ´ 1qds

`
\sigma 2

h

d
ÿ

k“1

pgG´1gT qikpgG´1gT qjk

ż h

0

peps´hq{\varepsilon ´ 1q2ds

“ \sigma 2\delta ij ` \sigma 2pgG´1gT qij

´ \varepsilon 

2h
p1 ´ e´2h{\varepsilon q ´ 1

¯

,

where we used that gT g “ G and the It\^o isometry. On the other hand, a similar
calculation yields

CovpA\varepsilon 
h,ipxq, A\varepsilon 

h,jpxqq “ \sigma 2\delta ij ` 2\sigma 2
´

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon q ´ 1

¯

pgG´1gT qij

` \sigma 2
´

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon q ´ 1

¯2 d
ÿ

k“1

pgG´1gT qikpgG´1gT qjk

“ \sigma 2\delta ij ` \sigma 2pgG´1gT qij

´ \varepsilon 

2h
p1 ´ e´2h{\varepsilon q ´ 1

¯

.

Replacing pA\varepsilon 
hpxq by A\varepsilon 

hpxq in the weak expansion (3.7) gives the estimate (3.3).

The main ingredient of the proof of Lemma 3.4 is the decomposition of the terms
of the expansion in a part that stays on the tangent space and a part of the form gM
with M P \BbbR q that is orthogonal to the tangent space.

Proof of Lemma 3.4. As \psi ´1 is Lipschitz, we have

\BbbE r|X\varepsilon phq ´ x|2s1{2 ď C\BbbE r|\psi pX\varepsilon phqq ´ \psi pxq|2s1{2

ď C\BbbE r|\varphi pX\varepsilon phqq ´ \varphi pxq|2s1{2 ` C\BbbE r|\zeta pX\varepsilon phqq ´ \zeta pxq|2s1{2.

On the one hand, applying the It\^o formula to \varphi pX\varepsilon q yields

\varphi pX\varepsilon phqq “ \varphi pxq ` \sigma 

ż h

0

\varphi 1pX\varepsilon psqqdW psq(3.8)
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3229

`

ż h

0

r\varphi 1f `
\sigma 2

4
\varphi 1\nabla lnpdetpGqq `

\sigma 2

2
\Delta \varphi spX\varepsilon psqqds,

where the term in \varepsilon vanishes as \varphi 1g “ 0 (see Assumption 2.1). Assumption 2.1 allows
us to write the uniform strong expansion

\BbbE r|\varphi pX\varepsilon phqq ´ \varphi pxq|2s1{2 ď C
?
h.

On the other hand, for \zeta pX\varepsilon q, we have

d\zeta pX\varepsilon q “ \sigma gT pX\varepsilon qdW `

”

gT f `
\sigma 2

4
gT\nabla lnpdetpGqq `

\sigma 2

2
divpgq ´

1

\varepsilon 
\zeta 

ı

pX\varepsilon qdt.

With the variation of constants formula, it rewrites into

\zeta pX\varepsilon phqq “ e´h{\varepsilon \zeta pxq ` \sigma 

ż h

0

eps´hq{\varepsilon gT pX\varepsilon psqqdW psq(3.9)

`

ż h

0

eps´hq{\varepsilon 
”

gT f `
\sigma 2

4
gT\nabla lnpdetpGqq `

\sigma 2

2
divpgq

ı

pX\varepsilon psqqds.

As the integrands in (3.9) are bounded (using Assumption 2.1), we get

\BbbE r|\zeta pX\varepsilon phqq ´ \zeta pxq|2s1{2 ď Cppe´h{\varepsilon ´ 1q2 |\zeta pxq|
2

` hq1{2 ď C
?
h,

where we used that x P \scrM \varepsilon 
h. We thus get the desired estimate (3.4). The esti-

mate (3.5) is obtained with the same arguments by keeping track of the terms of
size \scrO p

?
hq in the expansions.

We now prove the weak estimate (3.6). We denote for simplicity Y \varepsilon phq “ x `
?
h pA\varepsilon 

hpxq ` hB\varepsilon 
hpxq. Let us first look at the approximation of \varphi pX\varepsilon phqq. On the one

hand, applying the It\^o formula to \varphi pX\varepsilon ptqq gives

\varphi pX\varepsilon phqq “ \varphi pxq ` h\varphi 1fpxq ` h
\sigma 2

4
\varphi 1\nabla lnpdetpGqqpxq ` h

\sigma 2

2
\Delta \varphi pxq `R\varepsilon 

hpxq,

where we used (3.4) and we put in R\varepsilon 
hpxq all the terms that are zero in average. On

the other hand, an expansion in h of \varphi pY \varepsilon phqq yields

\varphi pY \varepsilon phqq “ \varphi `
?
h\varphi 1

pA\varepsilon 
h ` h

”

\varphi 1B\varepsilon 
h `

1

2
\varphi 2p pA\varepsilon 

h,
pA\varepsilon 
hq

ı

`R\varepsilon 
h

“ \varphi ` h\varphi 1f `
\sigma 2\varepsilon 

8
p1 ´ e´2h{\varepsilon q\varphi 1\nabla lnpdetpGqq

`
1

2
pe´h{\varepsilon ´ 1q2\varphi 1g1pgG´1\zeta qG´1\zeta `

\sigma 2

2
\varphi 2pW phq,W phqq

`
1

2
pe´h{\varepsilon ´ 1q2\varphi 2pgG´1\zeta , gG´1\zeta q

`
\sigma 2

2

ż h

0

ż h

0

peps´hq{\varepsilon ´ 1qpepu´hq{\varepsilon ´ 1q\varphi 2pgG´1gT dW psq, gG´1gT dW puqq

` \sigma 2

ż h

0

peps´hq{\varepsilon ´ 1q\varphi 2pW phq, gG´1gT dW psqq `R\varepsilon 
h,

where we use that \varphi 1g “ 0, we omit the dependence in x for conciseness, and we put
in R\varepsilon 

hpxq all the terms that are zero in average. We now replace the random terms by
their expectation,

\varphi pY \varepsilon phqq “ \varphi ` h\varphi 1f `
\sigma 2\varepsilon 

8
p1 ´ e´2h{\varepsilon q\varphi 1\nabla lnpdetpGqq ` h

\sigma 2

2
\Delta \varphi 
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A3230 ADRIEN LAURENT

`
1

2
pe´h{\varepsilon ´ 1q2p\varphi 1pg1pgG´1\zeta qG´1\zeta q ` \varphi 2pgG´1\zeta , gG´1\zeta qq

`
\sigma 2

2

ż h

0

peps´hq{\varepsilon ´ 1q2ds
d

ÿ

i“1

\varphi 2pgG´1gT ei, gG
´1gT eiq

` \sigma 2

ż h

0

peps´hq{\varepsilon ´ 1qds
d

ÿ

i“1

\varphi 2pei, gG
´1gT eiq `R\varepsilon 

h.

Letting M P \BbbR q, we differentiate the equality \varphi 1pgMq “ 0. We obtain that for
any M P \BbbR q and v P \BbbR d we have \varphi 1pg1pvqMq ` \varphi 2pgM, vq “ 0. We deduce that

\varphi 1pg1pgG´1\zeta qG´1\zeta q ` \varphi 2pgG´1\zeta , gG´1\zeta q “ 0.

Applying Lemma 3.2, we get by a direct calculation that

\varphi pY \varepsilon phqq “ \varphi pxq ` h\varphi 1fpxq ` h
\sigma 2

4
\varphi 1\nabla lnpdetpGqqpxq ` h

\sigma 2

2
\Delta \varphi pxq `R\varepsilon 

hpxq,

which gives the desired estimate

(3.10)
ˇ

ˇ

ˇ
\BbbE r\varphi pX\varepsilon phqqs ´ \BbbE r\varphi px`

?
h pA\varepsilon 

hpxq ` hB\varepsilon 
hpxqqs

ˇ

ˇ

ˇ
ď Ch3{2.

For the one-step approximation of \zeta pX\varepsilon phqq, the It\^o formula and the variation of
constants formula yield

\zeta pX\varepsilon phqq “ e´h{\varepsilon \zeta pxq`\varepsilon p1´e´h{\varepsilon q

ˆ

gT f`
\sigma 2

4
gT\nabla lnpdetpGqq`

\sigma 2

2
divpgq

˙

pxq`R\varepsilon 
hpxq.

For \zeta pY \varepsilon phqq, using gT g “ G, we get with the same arguments as for \varphi pY \varepsilon phqq that

\zeta pY \varepsilon phqq “ \zeta `
?
hgT pA\varepsilon 

h ` h
”

gTB\varepsilon 
h `

1

2
pg1p pA\varepsilon 

hqqT pA\varepsilon 
h

ı

`R\varepsilon 
h

“ e´h{\varepsilon \zeta ` \varepsilon p1 ´ e´h{\varepsilon qgT f

`
\sigma 2

2

´

\varepsilon p1 ´ e´h{\varepsilon q ´ h
¯

divpgq `
\sigma 2

2
pg1pW phqqqTW phq

`
\sigma 2\varepsilon 

4
p1 ´ e´h{\varepsilon q2gT\nabla lnpdetpGqq

` \sigma 2
´

h` \varepsilon pe´h{\varepsilon ´ 1q

¯

d
ÿ

i“1

pg1peiqqT gG´1gT ei

`
\sigma 2

4

´

\varepsilon pe´2h{\varepsilon ´ 4e´h{\varepsilon ` 3q ´ 2h
¯

d
ÿ

i“1

pg1pgG´1gT eiqqT gG´1gT ei

`
\sigma 2

2

ż h

0

ż h

0

peps´hq{\varepsilon ´ 1qpepu´hq{\varepsilon ´ 1qpg1pgG´1gT dW puqqqT gG´1gT dW psq

` \sigma 2

ż h

0

ż h

0

peps´hq{\varepsilon ´ 1qpg1pW phqqqT gG´1gT dW psq `R\varepsilon 
h.

We now replace the stochastic integrals by their expectations (putting the remainders
in R\varepsilon 

h), and we use Lemma 3.2 to simplify the expansion. It yields

\zeta pY \varepsilon phqq “ e´h{\varepsilon \zeta ` \varepsilon p1 ´ e´h{\varepsilon qpgT f `
\sigma 2

4
gT\nabla lnpdetpGqq `

\sigma 2

2
divpgqq `R\varepsilon 

h,
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which implies

(3.11)
ˇ

ˇ

ˇ
\BbbE r\zeta pX\varepsilon phqqs ´ \BbbE r\zeta px`

?
h pA\varepsilon 

hpxq ` hB\varepsilon 
hpxqqs

ˇ

ˇ

ˇ
ď Ch3{2.

Combining the inequalities (3.10) and (3.11) gives the desired weak estimate (3.6).

To end this subsection, we recall the growth properties of X\varepsilon that will be of use
in subsection 3.3. For this particular result, we add the dependency in the initial
condition x of the exact solution of (1.4) with the notation X\varepsilon pt, xq.

Lemma 3.5. Under Assumption 2.1, for \phi P \scrC 5
P and t ď T fixed, the func-

tion r\phi \varepsilon pxq “ \BbbE r\phi pX\varepsilon pt, xqqs lies in \scrC 3
P with constants independent of t and \varepsilon .

Proof. The standard theory (see, for instance, the textbook [40]) gives r\phi \varepsilon P \scrC 3.
With the regularity assumptions on \psi and its derivatives, it is sufficient to prove that
\BbbE r\phi pY \varepsilon pt, yqqs is in \scrC 3

P , where Y
\varepsilon pt, yq “ \psi pX\varepsilon pt, \psi ´1pxqqq (replacing \phi by \phi ˝ \psi ´1).

We recall from the proof of Lemma 3.4 that \varphi pX\varepsilon pt, xqq satisfies the integral formu-
lation (3.8) and that \zeta pX\varepsilon pt, xqq satisfies (3.9). Putting together these equations, we
deduce that Y \varepsilon pt, yq satisfies an equation of the form

Y \varepsilon pt, yq “ A\varepsilon ptqy `

ż t

0

A\varepsilon pt´ sqF pY \varepsilon ps, yqqds`

ż t

0

A\varepsilon pt´ sqGpY \varepsilon ps, yqqdW psq,

where F and G are in \scrC 3
P and do not depend on \varepsilon , and

A\varepsilon ptq “

ˆ

Id´q 0

0 e´t{\varepsilon Iq

˙

.

As |A\varepsilon ptq| ď C, the process Y \varepsilon pt, yq satisfies \BbbE r|Y \varepsilon pt, yq|
2p

s ď Cp1 ` |y|
K

q, with C
and K independent of \varepsilon . Thus, we have

\BbbE r\phi pY \varepsilon pt, yqqs ď Cp1 ` \BbbE r|Y \varepsilon pt, yq|
K

sq ď Cp1 ` \BbbE r|y|
K

sq.

For the derivatives, we recall from [19] that Z\varepsilon pt, yq “ ByY
\varepsilon pt, yq satisfies the equation

Z\varepsilon pt, yq “ A\varepsilon ptqId `

ż t

0

A\varepsilon pt´ sqF 1pY \varepsilon ps, yqqZ\varepsilon pt, yqds

`

ż t

0

A\varepsilon pt´ sqG1pY \varepsilon ps, yqqZ\varepsilon pt, yqdW psq.

Applying the same arguments as for Y \varepsilon pt, yq yields that Z\varepsilon pt, yq has bounded moments

of all order and that \BbbE r\phi pZ\varepsilon pt, yqqs ď Cp1`\BbbE r|y|
K

sq. The same methodology extends
to B2

yY
\varepsilon pt, yq and B3

yY
\varepsilon pt, yq.

3.2. Uniform expansion and bounded moments of the numerical solu-
tion. In this subsection, we show that the integrator given by (2.2) has bounded
moments of all order, that it lies on the manifold \scrM in the limit \varepsilon Ñ 0, and that
it satisfies the same local weak uniform expansion as the exact solution of (1.4) (see
Proposition 3.3).

First, the integrator given by (2.2) satisfies the following bounded moments prop-
erty.
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Proposition 3.6. Under Assumption 2.1, pX\varepsilon 
nq has bounded moments of any

order along time; i.e., for all timestep h ď h0 small enough such that Nh “ T is
fixed, for all integer m ě 0,

sup
nďN

\BbbE r|X\varepsilon 
n|

2m
s ď Cm,

where the constant C ą 0 is independent of \varepsilon and h.

The integrator pX\varepsilon 
nq given in (2.2) also satisfies a uniform local expansion that is

similar to its continuous counterpart presented in Proposition 3.3.

Proposition 3.7. Under Assumption 2.1, there exists h0 ą 0 such that for
all h ď h0, if pX\varepsilon 

nq is the numerical discretization given by (2.2) beginning at x P \scrM \varepsilon 
h

(assumed deterministic for simplicity), then, for all test functions \phi P \scrC 3
P , the follow-

ing estimate holds:

(3.12)
ˇ

ˇ

ˇ
\BbbE r\phi pX\varepsilon 

1qs ´ \BbbE r\phi px`
?
hA\varepsilon 

hpxq ` hB\varepsilon 
hpxqqs

ˇ

ˇ

ˇ
ď Cp1 ` |x|

K
qh3{2,

where C is independent of h and \varepsilon , and A\varepsilon 
h and B\varepsilon 

h are the functions given in Propo-
sition 3.3.

To prove Propositions 3.6 and 3.7, we rely on the following lemma, whose proof is
postponed to the end of this subsection. We emphasize that an inequality of the form
|\zeta pxq| ď C does not imply in general that x stays close to \scrM . That is why we rely
in Lemma 3.8 on an estimate of the Lagrange multipliers (using the inequality (2.1)).
This estimate ensures that the method evolves in a neighborhood of the manifold.

Lemma 3.8. Under Assumption 2.1 and if x P \scrM \varepsilon 
h, there exists h0 ą 0 such that,

for all timestep h ď h0, the one-step approximation X\varepsilon 
1 and the Lagrange multiplier \lambda \varepsilon 1

in the discretization (2.2) satisfy

|X\varepsilon 
1 ´ x| ď C

?
h, \lambda \varepsilon 1 “

?
hG´1pxq\lambda \varepsilon 1,p1{2q ` hG´1pxq\lambda \varepsilon 1,p1q `R\varepsilon 

hpxq,

where |\lambda \varepsilon 1,p1{2q
| ď C, |\lambda \varepsilon 1,p1q

| ď C, and |R\varepsilon 
hpxq| ď Ch3{2 with C independent of \varepsilon , h,

and x.

For proving Proposition 3.6, we apply the change of variable \psi and we adapt the
standard methodology presented in [40, Lemmas 1.1.6 and 2.2.2].

Proof of Proposition 3.6. We derive from (2.2) that
ˇ

ˇ

ˇ
\BbbE r\zeta pX\varepsilon 

n`1q ´ e´h{\varepsilon \zeta pX\varepsilon 
nq|X\varepsilon 

ns

ˇ

ˇ

ˇ
ď Ch,

ˇ

ˇ

ˇ
\zeta pX\varepsilon 

n`1q ´ e´h{\varepsilon \zeta pX\varepsilon 
nq

ˇ

ˇ

ˇ
ď C

?
h.

We prove that \zeta pXnq has bounded moments by induction on n. The binomial formula
yields

\BbbE r
ˇ

ˇ\zeta pX\varepsilon 
n`1q

ˇ

ˇ

2m
s “ \BbbE 

”
ˇ

ˇ

ˇ
e´h{\varepsilon \zeta pX\varepsilon 

nq ` \zeta pX\varepsilon 
n`1q ´ e´h{\varepsilon \zeta pX\varepsilon 

nq

ˇ

ˇ

ˇ

2m ı

ď e´2mh{\varepsilon \BbbE r|\zeta pX\varepsilon 
nq|

2m
s

` C\BbbE 
”

|\zeta pX\varepsilon 
nq|

2m´1
ˇ

ˇ

ˇ
\BbbE 

”

\zeta pX\varepsilon 
n`1q ´ e´h{\varepsilon \zeta pX\varepsilon 

nq|X\varepsilon 
n

ı
ˇ

ˇ

ˇ

ı

` C
2m
ÿ

k“2

\BbbE 
”

|\zeta pX\varepsilon 
nq|

2m´k
ˇ

ˇ

ˇ
\zeta pX\varepsilon 

n`1q ´ e´h{\varepsilon \zeta pX\varepsilon 
nq

ˇ

ˇ

ˇ

k ı
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ď \BbbE r|\zeta pX\varepsilon 
nq|

2m
s ` Cp1 ` \BbbE r|\zeta pX\varepsilon 

nq|
2m

sqh.

Following [40, Lem. 1.1.6], as X0 P \scrM is bounded, it implies that \BbbE r|\zeta pXnq|
2m

s is
bounded uniformly in n “ 0, . . . , N and \varepsilon .

Using Lemma 3.8 and the equality \varphi 1g “ 0, a direct calculation gives
ˇ

ˇ\BbbE r\varphi pX\varepsilon 
n`1q ´ \varphi pX\varepsilon 

nq|X\varepsilon 
ns

ˇ

ˇ ď Ch,(3.13)
ˇ

ˇ\varphi pX\varepsilon 
n`1q ´ \varphi pX\varepsilon 

nq
ˇ

ˇ ď C
?
h.(3.14)

Following the same methodology as for \BbbE r|\zeta pXnq|
2m

s, the estimates (3.13)--(3.14)

imply that \BbbE r|\varphi pXnq|
2m

s is bounded uniformly in n “ 0, . . . , N and \varepsilon . Then, as \psi ´1

is Lipschitz, we have

\BbbE r|X\varepsilon 
n|

2m
s ď Cp1 ` \BbbE r|\psi pX\varepsilon 

nq|
2m

sq ď Cp1 ` \BbbE r|\varphi pX\varepsilon 
nq|

2m
s ` \BbbE r|\zeta pX\varepsilon 

nq|
2m

sq ď C.

Hence we get the result.

We obtain the uniform expansion of the numerical solution by writing explicitly
a uniform expansion of the Lagrange multiplier \lambda \varepsilon 1, in the spirit of [34, Lem. 3.25].

Proof of Proposition 3.7. Using Lemma 3.8 and Assumption 2.1, we obtain

X\varepsilon 
1 “ x`

?
h

”

\sigma \xi ` pgG´1qpxq\lambda \varepsilon 1,p1{2q

ı

`R\varepsilon 
hpxq,

where the remainder satisfies |R\varepsilon 
hpxq| ď Ch. The constraint is then given by

\zeta pX\varepsilon 
1q “ \zeta pxq `

?
h

”

\sigma gT pxq\xi ` \lambda \varepsilon 1,p1{2q

ı

`R\varepsilon 
hpxq.

On the other hand, we get from the definition of the integrator (2.2) that

\zeta pX\varepsilon 
1q “ \zeta pxq `

?
h

”e´h{\varepsilon ´ 1
?
h

\zeta pxq ` \sigma 

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon qgT pxq\xi 

ı

`R\varepsilon 
hpxq.

By identifying the two terms in
?
h in the expansions of \zeta pX\varepsilon 

1q, we deduce the value
of \lambda \varepsilon 1,p1{2q

, that is,

\lambda \varepsilon 1,p1{2q “
e´h{\varepsilon ´ 1

?
h

\zeta ` \sigma 
´

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon q ´ 1

¯

gT \xi .

The expression of \lambda \varepsilon 1,p1{2q
and Lemma 3.8 give

X\varepsilon 
1 “ x`

?
hA\varepsilon 

hpxq ` h

„

fpxq `
p1 ´ e´h{\varepsilon q2

2h
pg1pgG´1\zeta qG´1\zeta qpxq

`
\sigma 2\varepsilon 

8h
p1 ´ e´2h{\varepsilon q\nabla lnpdetpGqqpxq ` pgG´1qpxq\lambda \varepsilon 1,p1q

ȷ

`R\varepsilon 
hpxq,(3.15)

where |R\varepsilon 
hpxq| ď Ch3{2. We then compute the expansion of \zeta pX\varepsilon 

1q, and we compare it
with the definition of the integrator (2.2) to obtain the expression of \lambda \varepsilon 1,p1q

. Inserting

this expression in (3.15) gives

X\varepsilon 
1 “ x`

?
hA\varepsilon 

hpxq ` hB\varepsilon 
hpxq `R\varepsilon 

hpxq,

where the remainder satisfies |\BbbE rR\varepsilon 
hpxqs| ď Ch3{2 and |R\varepsilon 

hpxq| ď Ch. A Taylor ex-

pansion of \phi pX\varepsilon 
1q around x`

?
hA\varepsilon 

hpxq ` hB\varepsilon 
hpxq yields the estimate (3.12).
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The proof of Lemma 3.8 mainly relies on the estimates (2.1) and (3.2). We refer
the reader to [30, Lem. 3.3] and [22, Chap.VII] for similar proofs where explicit
expressions of Lagrange multipliers are derived.

Proof of Lemma 3.8. Let x P \scrM \varepsilon 
h. For brevity, we rewrite the discretization (2.2)

as

X\varepsilon 
1 “ x`

?
hY \varepsilon 

p1{2qpxq ` hY \varepsilon 
p1qpxq ` gpxq\lambda \varepsilon 1,

\zeta pX\varepsilon 
1q “ \zeta pxq `

?
h\zeta \varepsilon p1{2qpxq ` h\zeta \varepsilon p1qpxq,

where the functions Y \varepsilon 
p1{2q

, Y \varepsilon 
p1q

, \zeta \varepsilon 
p1{2q

, and \zeta \varepsilon 
p1q

are given by

Y \varepsilon 
p1{2q “ \sigma \xi ,

Y \varepsilon 
p1q “ f `

p1 ´ e´h{\varepsilon q2

2h
pg1pgG´1\zeta qG´1\zeta q `

\sigma 2\varepsilon 

8h
p1 ´ e´2h{\varepsilon q\nabla lnpdetpGqq,

\zeta \varepsilon p1{2q “
e´h{\varepsilon ´ 1

?
h

\zeta ` \sigma 

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon qgT \xi ,

\zeta \varepsilon p1q “
\varepsilon 

h
p1 ´ e´h{\varepsilon q

ˆ

gT f `
\sigma 2

4
gT\nabla lnpdetpGqq `

\sigma 2

2
divpgq

˙

` \sigma 2
´ \varepsilon 

h
p1 ´ e´h{\varepsilon q ´

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon q

¯

d
ÿ

i“1

ppg1pgG´1gT eiqqT gG´1gT eiq

´ \sigma 2
´ \varepsilon 

h
p1 ´ e´h{\varepsilon q ´

c

\varepsilon 

2h
p1 ´ e´2h{\varepsilon q

¯

d
ÿ

i“1

ppg1peiqqT gG´1gT eiq.

Using Assumption 2.1 and the estimate (3.2), the following uniform estimates hold:

ˇ

ˇ

ˇ
Y \varepsilon 

piqpxq

ˇ

ˇ

ˇ
ď C,

ˇ

ˇ

ˇ
\zeta \varepsilon piqpxq

ˇ

ˇ

ˇ
ď C, i P t1{2, 1u.

The fundamental theorem of calculus yields

\zeta pX\varepsilon 
1q ´ \zeta pxq “

ż 1

0

gT px` \tau pX\varepsilon 
1 ´ xqqd\tau pX\varepsilon 

1 ´ xq “
?
h\zeta \varepsilon p1{2qpxq ` h\zeta \varepsilon p1qpxq.

Substituting X\varepsilon 
1 ´ x then gives

ż 1

0

gT px` \tau pX\varepsilon 
1 ´ xqqd\tau p

?
hY \varepsilon 

p1{2qpxq ` hY \varepsilon 
p1qpxq ` gpxq\lambda \varepsilon 1q “

?
h\zeta \varepsilon p1{2qpxq ` h\zeta \varepsilon p1qpxq.

Using Assumption 2.1, we get the following explicit expression of \lambda \varepsilon 1:

\lambda \varepsilon 1 “
?
hG´1

X\varepsilon 
1´xpxq

ˆ

\zeta \varepsilon p1{2qpxq ´

ż 1

0

gT px` \tau pX\varepsilon 
1 ´ xqqd\tau Y \varepsilon 

p1{2qpxq

˙

(3.16)

` hG´1
X\varepsilon 

1´xpxq

ˆ

\zeta \varepsilon p1qpxq ´

ż 1

0

gT px` \tau pX\varepsilon 
1 ´ xqqd\tau Y \varepsilon 

p1qpxq

˙

.

Then, the growth assumption (2.1) on G´1
y pxq allows us to write

|\lambda \varepsilon 1| ď C
?
hp1 ` |X\varepsilon 

1 ´ x|q and |X\varepsilon 
1 ´ x| ď C

?
hp1 ` |X\varepsilon 

1 ´ x|q.
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UNIFORMLY ACCURATE SCHEME FOR LANGEVIN DYNAMICS A3235

Hence, for h ď h0 small enough, we deduce that |X\varepsilon 
1 ´ x| ď C

?
h and

(3.17) \lambda \varepsilon 1 “
?
hG´1pxqp\zeta \varepsilon p1{2q ´ gTY \varepsilon 

p1{2qqpxq `R\varepsilon 
h,

where |R\varepsilon 
h| ď Ch. For the term of size \scrO phq, we first deduce from (3.17) that

ˇ

ˇ

ˇ
X\varepsilon 

1 ´ x´
?
hpY \varepsilon 

p1{2q ` gG´1\zeta \varepsilon p1{2q ´ gG´1gTY \varepsilon 
p1{2qqpxq

ˇ

ˇ

ˇ
ď Ch.

By using this estimate in (3.16), a Taylor expansion yields the desired expansion
of \lambda \varepsilon 1.

3.3. Proofs of the convergence theorems. Now that we have the local uni-
form expansion of the exact solution and the numerical scheme, as well as the stability
property of Proposition 3.6, we are able to prove the main convergence theorems.

Proof of Theorem 2.7. We derive the global weak consistency (2.5) with tech-
niques similar to the ones presented in [40, Chap. 2]. We denote by X\varepsilon pt, xq the
solution of the penalized dynamics with initial condition x and X\varepsilon 

npxq the numerical
solution with initial condition x. For x P \scrM \varepsilon 

h, Propositions 3.3 and 3.7 yield

|\BbbE r\phi pX\varepsilon ph, xqq ´ \phi pX\varepsilon 
1pxqq|xs| ď Cp1 ` |x|

K
qh3{2,

where \phi P \scrC 3
P . Lemma 3.5 gives that \phi npxq “ \BbbE r\phi pX\varepsilon ppn ´ 1qh, xqq|xs is in \scrC 3

P .
We rewrite the global error, given by E\varepsilon 

h “ |\BbbE r\phi pX\varepsilon pT,X0qq ´ \phi pX\varepsilon 
N pX0qqs|, with a

telescopic sum,

E\varepsilon 
h ď

N
ÿ

n“1

ˇ

ˇ\BbbE r\phi pX\varepsilon pnh,X\varepsilon 
N´npX0qqq ´ \phi pX\varepsilon ppn´ 1qh,X\varepsilon 

N´n`1pX0qqqs
ˇ

ˇ

ď

N
ÿ

n“1

ˇ

ˇ\BbbE r\phi npX\varepsilon ph,X\varepsilon 
N´npX0qqq ´ \phi npX\varepsilon 

1pX\varepsilon 
N´npX0qqqs

ˇ

ˇ

ď

N
ÿ

n“1

\BbbE r
ˇ

ˇ\BbbE r\phi npX\varepsilon ph, xqq ´ \phi npX\varepsilon 
1pxqq|x “ X\varepsilon 

N´npX0qs
ˇ

ˇs

ď

N
ÿ

n“1

Cp1 ` \BbbE r
ˇ

ˇX\varepsilon 
N´npX0q

ˇ

ˇ

K
sqh3{2 ď Ch1{2,

where we used the bounded moments property of Proposition 3.6 and that X\varepsilon 
n P \scrM \varepsilon 

h

(Lemma 3.1).

Proof of Theorem 2.9. We obtain straightforwardly from the expression of the in-
tegrator (2.2) that |\zeta pX\varepsilon 

nq| ď Ch

?
\varepsilon . Using this estimate and the notation introduced

in the proof of Lemma 3.8, we observe that

ˇ

ˇ

ˇ
Y \varepsilon 

piqpX\varepsilon 
nq ´ Y 0

piqpX\varepsilon 
nq

ˇ

ˇ

ˇ
ď Ch

?
\varepsilon ,

ˇ

ˇ

ˇ
\zeta \varepsilon piqpX\varepsilon 

nq

ˇ

ˇ

ˇ
ď Ch

?
\varepsilon , i P t1{2, 1u,

where Y 0
p1{2q

pxq “ \sigma \xi n and Y 0
p1q

pxq “ fpxq. The Lagrange multiplier given by (3.16)

therefore satisfies
ˇ

ˇ\lambda \varepsilon n`1 ´ Ć\lambda \varepsilon n`1

ˇ

ˇ ď Ch

?
\varepsilon , where

Ć\lambda \varepsilon n`1 “ ´G´1
X\varepsilon 

n`1´X\varepsilon 
n

pX\varepsilon 
nq

ż 1

0

gT pX\varepsilon 
n ` \tau pX\varepsilon 

n`1 ´X\varepsilon 
nqqd\tau p\sigma 

?
h\xi n ` hfpX\varepsilon 

nqq.
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A3236 ADRIEN LAURENT

Similarly to (3.16), the Lagrange multiplier \lambda 0n`1 of the constrained Euler integra-
tor (1.6) is given by

\lambda 0n`1 “ ´G´1
X0

n`1´X0
n

pX0
nq

ż 1

0

gT pX0
n ` \tau pX0

n`1 ´X0
nqqd\tau p\sigma 

?
h\xi n ` hfpX0

nqq.

Using that G´1
y pxq is bounded, a straightforward calculation shows that G´1

y pxq is

Lipschitz in x, y P \BbbR d, that is, there exists a constant L ą 0 such that

ˇ

ˇG´1
y1

px1q ´G´1
y2

px2q
ˇ

ˇ ď Lp|x1 ´ x2| ` |y1 ´ y2|q, x1, x2, y1, y2 P \BbbR d.

Thus, we get the estimate

ˇ

ˇ\lambda \varepsilon n`1 ´ \lambda 0n`1

ˇ

ˇ ď Chp
?
\varepsilon `

ˇ

ˇX\varepsilon 
n ´X0

n

ˇ

ˇq ` C
?
h

ˇ

ˇX\varepsilon 
n`1 ´X0

n`1

ˇ

ˇ ,

and, as \lambda \varepsilon n`1 and \lambda 0n`1 are bounded uniformly in \varepsilon , we have

ˇ

ˇgpX\varepsilon 
nq\lambda \varepsilon n`1 ´ gpX0

nq\lambda 0n`1

ˇ

ˇ ď Chp
?
\varepsilon `

ˇ

ˇX\varepsilon 
n ´X0

n

ˇ

ˇq ` C
?
h

ˇ

ˇX\varepsilon 
n`1 ´X0

n`1

ˇ

ˇ .

From the definitions of X\varepsilon 
n`1 in (2.2) and X0

n`1 in (1.6), we deduce that

ˇ

ˇX\varepsilon 
n`1 ´X0

n`1

ˇ

ˇ ď Chp
?
\varepsilon `

ˇ

ˇX\varepsilon 
n ´X0

n

ˇ

ˇq ` C
?
h

ˇ

ˇX\varepsilon 
n`1 ´X0

n`1

ˇ

ˇ .

If h ď h0 is small enough, we obtain

ˇ

ˇX\varepsilon 
n`1 ´X0

n`1

ˇ

ˇ ď Chp
?
\varepsilon `

ˇ

ˇX\varepsilon 
n ´X0

n

ˇ

ˇq.

We deduce the estimate (2.6) by iterating this inequality for n ď N “ T {h.

Proof of Theorem 2.12. We take over the notations and the expression (3.16) of
the Lagrange multiplier \lambda \varepsilon 1 that we used in the proof of Lemma 3.8. Without loss of
generality, we concentrate on the first step of the algorithm withX0 “ x. Replacing \lambda \varepsilon 1
by the explicit formula (3.16) in (2.2) yields that X\varepsilon 

1 is a fixed point of the following
map:

F \varepsilon 
hpyq “ x`

?
hY \varepsilon 

p1{2qpxq ` hY \varepsilon 
p1qpxq ` gpxqG´1

y´xpxq

„

?
h\zeta \varepsilon p1{2qpxq ` h\zeta \varepsilon p1qpxq

´

ż 1

0

gT px` \tau py ´ xqqd\tau p
?
hY \varepsilon 

p1{2qpxq ` hY \varepsilon 
p1qpxqq

ȷ

.

For y1, y2 P \BbbR d, Assumption 2.1 gives

|F \varepsilon 
hpy2q ´ F \varepsilon 

hpy1q| ď C
?
h |y2 ´ y1| ,

where we used that G´1
y pxq is Lipschitz in x, y P \BbbR d. We deduce that F \varepsilon 

h is a uniform
contraction for h ď h0 small enough.

4. Numerical experiments. In this section, we perform numerical experiments
to confirm the theoretical findings, on a torus in \BbbR 3 and on the orthogonal group in
high dimension and codimension, in the spirit of the experiments in [46, 47, 30].
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4.1. Uniform approximation for the invariant measure on a torus. We
consider the example in codimension one of a torus in \BbbR 3. We apply the new method
given by the discretization (2.4) for sampling the invariant measure of (1.4) for dif-
ferent steps h and parameters \varepsilon , and we compare it with the Euler integrators (1.5)
in \BbbR d and (1.6) on the manifold. We recall that for dynamics of the form (1.4)
the weak convergence implies the convergence for the invariant measure (see [43]).
The numerical experiments of this subsection hint that the uniform accuracy prop-
erty also extends to the approximation of the invariant measure, but we leave the
mathematical analysis for the invariant measure for future work. We consider the
constraint \zeta pxq “ px21 ` x22 ` x23 ` R2 ´ r2q2 ´ 4R2px21 ` x22q, with R “ 3 and r “ 1,
and we choose the map fpxq “ ´25px1 ´ R ` r, x2, x3q, with \sigma “

?
2, the test

function \phi pxq “ |x|
2
, M “ 107 trajectories, the final time T “ 10, and the initial

condition X0 “ pR´ r, 0, 0q. Increasing the value of T does not modify the computed
averages, which hints that we reached the equilibrium. The factor 25 in f confines
the solution in a reasonably small neighborhood of the torus, which allows a faster
convergence to equilibrium and to take fewer trajectories. We compute the Monte

Carlo estimator sJ “ 1
M

řM
m“1 \phi pX

pmq

N q » \BbbE r\phi pXN qs, where X
pmq
n is the mth realiza-

tion of the integrator at time tn “ nh, and N is an integer satisfying Nh “ T . We
compare this approximation with a reference value of

ş

\BbbR d \phi d\mu 
\varepsilon 
8 computed with the

UA integrator by using a timestep href “ 2´12. In the case of the constrained Euler
scheme (1.6), it amounts to comparing an approximation of

ş

\scrM \phi d\mu 0
8 with the refer-

ence value of
ş

\BbbR d \phi d\mu 
\varepsilon 
8. We observe in Figure 1 that the accuracy of the constrained

integrator (1.6) for solving the unconstrained problem (1.4) deteriorates when \varepsilon grows
larger, as \mu \varepsilon 

8 deviates from \mu 0
8. The explicit Euler scheme (1.5) faces stability issues

when \varepsilon Ñ 0. The accuracy of the new method for solving (1.4) does not deteriorate
depending on \varepsilon , and it shares a behavior similar to the constrained Euler scheme (1.6)
when \varepsilon Ñ 0, which is in agreement with Theorem 2.9. The right graph of Figure 1
shows that the behavior of the error in \varepsilon is the same for any fixed value of h. This is
a numerical confirmation of the uniform accuracy property of the discretization (2.2)
(in the spirit of the numerical experiments in [11]), as stated in Theorem 2.7. For any
fixed \varepsilon , the right graph of Figure 1 also shows that the error decreases when h Ñ 0.
A plot of the error against h for a fixed \varepsilon (not included for conciseness) shows a slope
of order one (see Remark 2.8).

4.2. Weak approximation on the orthogonal group. We apply the UA
method on a compact Lie group (in the spirit of the numerical experiments in [46,
47]) to see how it performs in high dimension and codimension. We choose the

orthogonal group Opmq “ tM P \BbbR mˆm,MTM “ Imu, seen as a submanifold of \BbbR m2

of codimension q “ mpm ` 1q{2. We compare the explicit Euler scheme (1.5), the
constrained Euler scheme (1.6), and the new method on \scrM “ Opmq for m “ 2, . . . , 5
with the parameters \varepsilon “ 0.005, T “ 1, and h “ 2´7. Note that, as h and \varepsilon share the
same order of magnitude, the explicit Euler scheme (1.5) can face stability issues, and
the solution does not lie on the manifold \scrM . Thus, we are in the regime where the
convergence results for both Euler schemes (1.5)--(1.6) do not apply. We choose f “

´\nabla V , where V is given by

(4.1) V pxq “ 50Trppx´ Im2qT px´ Im2qq

with the parameters \sigma “
?
2, X0 “ Id, and \phi pxq “ Trpxq and M “ 106 trajectories.

The reference solution for Jpmq “ \BbbE r\phi pX\varepsilon pT qqs is computed with the UA integrator
with href “ 2´9. With the factor 50 in the potential (4.1), the trajectories stay close
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A3238 ADRIEN LAURENT

Fig. 1. Error for sampling the invariant measure of penalized Langevin dynamics on a torus
in \BbbR 3 of the uniform discretization (2.2) and the Euler integrators (1.5) and (1.6) for different values
of \varepsilon with h “ 2´9T (left), and error curves versus \varepsilon of the UA method for different timesteps h “

2´iT and i “ 6, . . . , 10 (right), with the final time T “ 10, the maps fpxq “ ´25px1 ´ R `

r, x2, x3q, \phi pxq “ |x|
2, and M “ 107 trajectories.

to Im2 , and Jpmq is close to \phi pIm2q “ m. This choice of factor permits one to explore
a reasonably small area of Opmq, in order to avoid zones close to \scrM where the Gram
matrix G has a bad condition number or is singular, and to reduce the number of
trajectories needed. We observe numerically that replacing the factor 50 by 1 in (4.1)
induces a severe timestep restriction. We present the results of the experiment in
Table 1. We omit the results for the explicit Euler scheme (1.5), as the method is
inaccurate in this regime (error of size 1). We observe that, in the regime where h
and \varepsilon share the same order of magnitude, the UA integrator performs significantly
better than the Euler schemes (1.6) and (1.5) for solving the problem (1.4). In this
regime, the Euler method (1.5) faces stability issues, and it is inappropriate to use
the constrained Euler scheme (1.6), as the solution X\varepsilon ptq of (1.4) is not close to the
solution X0ptq of (1.2). Moreover, the cost in time of the new method stays the same
in average for any value of \varepsilon (results not included for conciseness). This confirms
numerically the uniform cost of solving the fixed point problem (2.2), as stated in
Theorem 2.12.

Table 1
Numerical approximation of Jpmq “ \BbbE r\phi pX\varepsilon pT qqs for 2 ď m ď 5 with the estimator sJ “

M´1
řM

k“1 \phi pX
pkq

N q, where pXnq is given by the uniform discretization (2.2) for sJUA and by the

constrained Euler scheme (1.6) for sJEC with their respective errors. The average is taken over M “

106 trajectories with the potential (4.1), \phi pxq “ Trpxq, the final time T “ 1, the stiff parameter \varepsilon “

0.005, and the timestep h “ 2´7.

m dimp\scrM q q Jpmq sJUA Error of sJUA
sJEC Error of sJEC

2 1 3 2.00934 2.00619 3.1 ¨ 10´3 1.99165 1.8 ¨ 10´2

3 3 6 3.01458 3.00821 6.4 ¨ 10´3 2.97460 4.0 ¨ 10´2

4 6 10 4.02050 4.00972 1.1 ¨ 10´2 3.94846 7.2 ¨ 10´2

5 10 15 5.02669 5.00842 1.8 ¨ 10´2 4.91298 1.1 ¨ 10´1

5. Conclusion and future work. In this work, we presented a new method
for the weak numerical integration of penalized Langevin dynamics evolving in the
vicinity of manifolds of any dimension and codimension. On the contrary of the other
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existing discretizations, the accuracy of the proposed integrator is independent of the
size of the stiff parameter \varepsilon . Moreover, its cost does not depend on \varepsilon , and it converges
to the Euler scheme on the manifold when \varepsilon Ñ 0. Throughout the analysis, we gave an
expansion in time of the solution to the penalized Langevin dynamics that is uniform
in \varepsilon , as well as new tools for the study of stochastic projection methods for solving
stiff SDEs.

Multiple questions arise from the work presented in this paper, with many of
great interest for physical applications. First, it would be interesting to get con-
vergence results with weaker assumptions or to develop UA integrators for different
penalized dynamics with the same limit when \varepsilon Ñ 0 such as the original penalized
dynamics (1.3) (see [16]). One could build integrators for penalized dynamics of the
form

dX\varepsilon “ fpX\varepsilon qdt` \sigma dW `
\sigma 2

4
\nabla lnpdetpGqq ´

1

\varepsilon 
pgG´1\zeta 1qpX\varepsilon qdt´

1

\nu 
pgG´1\zeta 2qpX\varepsilon qdt,

where \varepsilon and \nu do not share the same order of magnitude, or for constrained dynamics
with a penalized term. One could also build a UA numerical scheme with high order
in the weak context, or just in the context of the invariant measure (in the spirit of the
works [6, 31, 2, 3, 32, 28, 30] where numerical schemes of high order for the invariant
measure and weak order one were introduced). Postprocessors [45] proved to be an
efficient tool for reaching high order for the invariant measure without increasing the
cost of the method and could be used in this context. Moreover, the order conditions
presented in [28] for Runge--Kutta methods for solving Langevin dynamics in \BbbR d both
in the weak sense and for the invariant measure do not match with the order conditions
for solving Langevin dynamics constrained on the manifold \scrM , as presented in [30].
It would be interesting to create a unified class of high order Runge--Kutta methods
with the same order conditions in \BbbR d, on the manifold \scrM , and in the vicinity of \scrM .
The discretizations presented in this paper could also be combined with Metropolis--
Hastings rejection procedures [39, 24], in the spirit of the works [20, 8, 35, 46, 36], in
order to get an exact approximation for the invariant measure with a rejection rate
that does not deteriorate in the regime \varepsilon Ñ 0.

A. Proof of Theorem 2.3. In this section, we prove the convergence of the
penalized Langevin dynamics (1.4) to the constrained dynamics (1.2) when \varepsilon Ñ 0,
as stated in Theorem 2.3. The proof uses techniques and arguments similar to those
in [16, Appx. C]. However, since we rescaled the stiff term in (1.4), there is no need
for a change of time to prove the convergence to the constrained dynamics.

Proof of Theorem 2.3. In the orthogonal coordinates system given by Assump-
tion 2.1, equation (1.4) becomes

d\varphi pX\varepsilon ptqq “ p\varphi 1fqpX\varepsilon ptqqdt` \sigma \varphi 1pX\varepsilon ptqqdW ptq

`
\sigma 2

4
p\varphi 1\nabla lnpdetpGqqqpX\varepsilon ptqqdt`

\sigma 2

2
\Delta \varphi pX\varepsilon ptqqdt,

d\zeta pX\varepsilon ptqq “ pgT fqpX\varepsilon ptqqdt` \sigma gT pX\varepsilon ptqqdW ptq `
\sigma 2

4
pgT\nabla lnpdetpGqqqpX\varepsilon ptqqdt

`
\sigma 2

2
divpgqpX\varepsilon ptqqdt´

1

\varepsilon 
\zeta pX\varepsilon ptqqdt,

where we used that \varphi 1g “ 0 and that \zeta 1 “ gT . Therefore, \zeta pX\varepsilon ptqq satisfies

\zeta pX\varepsilon ptqq “ \sigma 

ż t

0

eps´tq{\varepsilon gT pX\varepsilon psqqdW
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`

ż t

0

eps´tq{\varepsilon 
”

gT f `
\sigma 2

4
gT\nabla lnpdetpGqq `

\sigma 2

2
divpgq

ı

pX\varepsilon psqqdt,

and a bound on \zeta pX\varepsilon ptqq is given by

\BbbE r|\zeta pX\varepsilon ptqq|
2
s ď C

ż t

0

e2ps´tq{\varepsilon dt` C

ˆ
ż t

0

eps´tq{\varepsilon dt

˙2

ď C\varepsilon .(A.1)

On the other hand, we rewrite (1.2) in the orthogonal coordinates as

d\varphi pX0ptqq “ p\varphi 1fqpX0ptqqdt` \sigma \varphi 1pX0ptqqdW

`
\sigma 2

4
p\varphi 1\nabla lnpdetpGqqqpX0ptqqdt`

\sigma 2

2
\Delta \varphi pX0ptqqdt,

d\zeta pX0ptqq “ 0,

where we used that

1

2
\varphi 1\nabla lnpdetpGqq ` \Delta \varphi “

d
ÿ

i“1

\varphi 1p\Pi 1
\scrM p\Pi \scrM eiqeiq `

d
ÿ

i“1

\varphi 2p\Pi \scrM ei,\Pi \scrM eiq.

With Assumption 2.1, we obtain

\BbbE r
ˇ

ˇ\varphi pX\varepsilon ptqq ´ \varphi pX0ptqq
ˇ

ˇ

2
s ď C

ż t

0

\BbbE r
ˇ

ˇX\varepsilon psq ´X0psq
ˇ

ˇ

2
sds,

and from (A.1) we deduce that

\BbbE r
ˇ

ˇ\zeta pX\varepsilon ptqq ´ \zeta pX0ptqq
ˇ

ˇ

2
s ď C\varepsilon .

Thus, \psi pX\varepsilon ptqq satisfies

\BbbE r
ˇ

ˇ\psi pX\varepsilon ptqq ´ \psi pX0ptqq
ˇ

ˇ

2
s ď C

ż t

0

\BbbE r
ˇ

ˇX\varepsilon psq ´X0psq
ˇ

ˇ

2
sds` C\varepsilon ,

and, as \psi ´1 is Lipschitz, we have

\BbbE r
ˇ

ˇX\varepsilon ptq ´X0ptq
ˇ

ˇ

2
s ď C

ż t

0

\BbbE r
ˇ

ˇX\varepsilon psq ´X0psq
ˇ

ˇ

2
sds` C\varepsilon ,

which, with the use of the Gronwall lemma, gives the desired estimate.
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