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Abstract. Consideration is given to three different full dispersion Boussinesq systems
arising as asymptotic models in the bi-directional propagation of weakly nonlinear surface
waves in shallow water. We prove that, under a non-cavitation condition on the initial
data, these three systems are well-posed on a time scale of order O( 1

ε
), where ε is a small

parameter measuring the weak non-linearity of the waves. For one of the systems, this
result is new even for short time. The two other systems involve surface tension, and for
one of them, the non-cavitation condition has to be sharpened when the surface tension
is small. The proof relies on suitable symmetrizers and the classical theory of hyperbolic
systems. However, we have to track the small parameters carefully in the commutator
estimates to get the long time well-posedness.

Finally, combining our results with the recent ones of Emerald provide a full justification
of these systems as water wave models in a larger range of regimes than the classical
(a, b, c, d)-Boussinesq systems.

1. Introduction

1.1. Full dispersion models. The Korteweg-de Vries (KdV) equation is an asymptotic
model for the unidirectional propagation of small amplitude, long waves on the surface of
an ideal fluid of constant depth. It was introduced in [8, 32] to model the propagation
of solitary waves in shallow water with a wide range of applications both mathematically
and physically. However, its dispersion is too strong in high frequencies when compared
to the full water wave system. In particular, the KdV equation does not feature wave
breaking or peaking waves. To overcome these shortcomings, Whitham introduced in [52]
an equation with an improved dispersion relation. He replaced the KdV dispersion with
the exact dispersion of the linearized water wave system obtaining the equation

∂tζ +
√
Kµ(D)∂xζ + εζ∂xζ = 0, (1.1)

for (x, t) ∈ R × R+, where the function ζ(x, t) ∈ R denotes the surface elevation and the
operator

√
Kµ(D) is the square root of the Fourier multiplier Kµ(D) defined in frequency

by

Kµ(ξ) =
tanh(

√
µ|ξ|)

√
µ|ξ|

(
1 + βµ|ξ|2

)
. (1.2)

Moreover, µ and ε are small parameters related to the level of dispersion and nonlinearity,
and β is a nonnegative parameter related to the surface tension1,2.

Whitham conjectured in [52] that equation (1.1) would allow, in addition to the KdV
traveling-wave regime, the occurrence of waves of greatest height with a sharp crest as
well as the formation of shocks. However, it was not until recently that these phenomena
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were rigorously proved. We mention among others the existence of periodic waves [18], the
existence and stability of traveling waves [17, 4, 48, 27], the formation of shocks [24, 45],
Benjamin-Feir instabilities [47, 25], the existence of periodic waves of greatest height [20]
and solitary waves of greatest height [50]. Note that in the case of surface tension (β > 0),
the dynamics appear to be rather different (see e.g. [31] and the references therein).

These results illustrate some mathematical properties uniquely related to an improved dis-
persion relation, though there are some phenomena that the Whitham equation does not fea-
ture due to its unidirectionality. For instance, the Euler equations admit non-modulational
instabilities of small-amplitude periodic traveling waves [36], but the unidirectional nature
of the Whitham equation is believed to prohibit such instabilities [10].

Regarding the two-way propagation of waves at the surface of a fluid and in the long wave
regime, Bona, Chen, and Saut derived a three-parameter family of Boussinesq systems [5]{

(1− bµ∂2x)∂tζ + (1 + aµ∂2x)∂xv + ε∂x(ζv) = 0

(1− dµ∂2x)∂tv + (1 + cµ∂2x)∂xζ + εv∂xv = 0,
(1.3)

where a, b, c and d are real parameters satisfying a + b + c + d = 1
3 , ζ(x, t) ∈ R is the

deviation of the free surface with respect to its rest state, and v(x, t) ∈ R approximates the
fluid velocity at some height in the fluid domain. Like the KdV equation, the Boussinesq
systems are celebrated models for surface waves in coastal oceanography. Analogously to
the unidirectional case, one could replace the dispersion with the linearized dispersion of the
water wave equations in (1.3). These improved dispersion versions are expected to lead to
a more “accurate” description of the full water wave system. Those systems are commonly
referred to as the Whitham-Boussinesq systems or full dispersion Boussinesq systems.

Actually, there are different possibilities of full dispersion Boussinesq systems. This paper
will focus on three important ones, linking them to some specific cases of the Boussinesq
systems without BBM terms (b = d = 0). To be precise, we introduce the operator Tµ(D)
corresponding to Kµ(D) for β = 0, and whose Fourier symbol is defined by

Tµ(ξ) =
tanh(

√
µ|ξ|)

√
µ|ξ|

. (1.4)

First, we consider the system{
∂tζ +Kµ(D)∂xv + ε∂x(ζv) = 0

∂tv + ∂xζ + εv∂xv = 0,
(1.5)

introduced in [33, 1, 38] without surface tension and in [31] with surface tension. Here,
as above, ζ denotes the elevation of the surface around its equilibrium position, while v
approximates the fluid velocity at the free surface. We also consider its two-dimensional
counterpart {

∂tζ +Kµ(D)∇ · v + ε∇ · (ζv) = 0

∂tv +∇ζ + ε
2∇|v|

2 = 0,
(1.6)

where x ∈ R2 and v(x, t) ∈ R2 approximates the fluid velocity at the surface in two space
dimensions. In the case zero surface tension, it is proved that (1.5) models solitary waves
[39] and admit high-frequency (non-modulational) instabilities of small-amplitude periodic
traveling waves [19]. We also observe that (1.5) is related to (1.3) by expanding (1.2) in
low frequencies. Indeed, since Kµ(ξ) ' 1 + µ(β − 1

3)ξ2 by a Taylor expansion we see that

(1.5) reduce to (1.3) with (a, b, c, d) = (13 − β, 0, 0, 0).
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A second system is obtained by applying the operator (1.4) to ∂xζ, which gives{
∂tζ + ∂xv + ε∂x(ζv) = 0

∂tv + Tµ(D)∂xζ + εv∂xv = 0,
(1.7)

and in two dimensions reads{
∂tζ +∇ · v + ε∇ · (ζv) = 0

∂tv + Tµ(D)∇ζ + ε
2∇|v|

2 = 0.
(1.8)

This system was first introduced in [26], where it is proved that (1.7) features Benjamin-
Feir (modulational) instabilities. Note that while ζ plays the same role as for system (1.5),
it is T −1µ (D)v which approximates the velocity potential at the free surface in this case

(and T −1µ (D)v in two dimensions). We also observe that (1.7) reduces in the formal limit
√
µ|ξ| → 0 to the Boussinesq system (1.3) with (a, b, c, d) = (0, 0, 13 , 0) in low frequencies.
Finally, we will also consider a full dispersion version of (1.3) when Tµ(D) is applied to

the nonlinear terms, while Kµ(D) is applied on the ∂xζ. This system reads{
∂tζ + ∂xv + εTµ(D)∂x(ζv) = 0

∂tv +Kµ(D)∂xζ + εTµ(D)(v∂xv) = 0,
(1.9)

and in two dimensions is given by{
∂tζ +∇ · v + εTµ(D)∇ · (ζv) = 0

∂tv +Kµ(D)∇ζ + ε
2Tµ(D)∇|v|2 = 0.

(1.10)

Here ζ and v play the same roles as for system (1.7) (similarly, v has the same role as in
(1.8)). It was introduced in [13] and has the advantage of being Hamiltonian. Moreover,
the existence of solitary waves is proved in [14].

1.2. Full justification. A fundamental question in the derivation of an asymptotic model is
whether its solution converges to the solution of the original physical system. In particular,
we say that an asymptotic model is a valid approximation of the Euler equations with a
free surface if we can answer the following points in the affirmative [33]:

1. The solutions of the water wave equations exist on the relevant scale O(1ε ).

2. The solutions of the asymptotic model exist (at least) on the scale O(1ε ).
3. Lastly, we must establish the consistency between the asymptotic model and the wa-

ter wave equations, and then show that the error is of order O(µεt) when comparing
the two solutions.

The first point was proved by Alvarez-Samaniego and Lannes [2] for surface gravity
waves and Ming, Zhang and Zhang [37] for gravity-capillary waves in the weakly transverse
regime, while points 2. and 3. are specific to the asymptotic model under consideration.
For instance, in the case of the Whitham equation, Klein et al. [31] compared its solution
rigorously with those of the KdV equation. In particular, they proved that the difference
between two solutions evolving from the same initial datum is bounded by O(ε2t) for all
0 ≤ t . ε−1 with ε, µ in the KdV-regime:

RKdV = {(ε, µ) : 0 ≤ µ ≤ 1, µ = ε},
which justified the Whitham equation as a water wave model in this regime by relying on
the justification of the KdV equation [9, 33].

On the other hand, due to the improved dispersion relation of (1.1), Emerald [22] was
able to decouple the parameters (ε, µ) and prove an error estimate between the Whitham
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equation and the water wave system with a precision O(µεt) for 0 ≤ t . ε−1 in the shallow
water regime:

RSW = {(ε, µ) : 0 ≤ µ ≤ 1, 0 ≤ ε ≤ 1}. (1.11)

Moreover, Emerald decoupled the small parameters for the KdV equation and proved its
precision to be O(µ2 +µε)t for 0 ≤ t . ε−1. Consequently, the Witham equation is valid for
a larger set of small parameters when compared to the KdV equation. Specifically, when
ε � µ, these estimates imply that (1.1) equation is a better approximation of the water
wave equations.

In the case of the Boussinesq systems (1.3), consistency was first proved in [6] for (ε, µ) ∈
RKdV by relying on intermediate symmetric systems for which the long time well-posedness
follows by classical arguments. However the long time well-posedness for the (a, b, c, d)
Boussinesq is far from trivial. This result was proved3 later by Saut, Xu and Wang [42, 46].
The proof relies on suitable symmetrizers and hyperbolic theory.

The natural next step is to consider the Whitham-Boussinesq systems for (ε, µ) ∈ RSW .
In particular, the goal of this paper is to establish the well-posedness of (1.5)-(1.10), with
uniform bounds, on time intervals of size O(1ε ). Since point 1. of the justification is already
established, the long-time existence and consistency remain. Using the method of Emerald,
one can prove the consistency of any Whitham-Boussinesq system with the water wave
system (see also [21] for other full dispersion shallow water models). Therefore, having
the long time well-posedness theory for (1.5)-(1.10) will provide the final step for the full
justification of these systems.

1.3. Former well-posedness results. Regarding system (1.5) and (1.6), we know from
previous studies that surface tension plays a fundamental role in the well-posedness theory.
In fact, when β = 0 the initial value problem associated to system (1.5) is probably ill-
posed unless ζ > 0 (see the formal argument in Section 4 in [31]). We refer to [40] for
a well-posedness under the non-physical condition ζ ≥ c0 > 0. When surface tension is
taken into account, system (1.5) was proved to be locally well-posed by Kalisch and Pilod

[28] for (ζ, v) ∈ Hs(R) × Hs+ 1
2 (R), s > 5

2 (and s > 3 in two dimensions), by using a
modified energy method. We also refer to the work by Wang [51] for an alternative proof
using a nonlocal symmetrizer. However, it is worth noting that all these well-posedness
resutls were proved on a short time without considering the small parameters ε and µ.
Finally, in the formal limit

√
µ|ξ| → 0, one recovers the Boussinesq system corresponding

to (a, b, c, d) = (13 −β, 0, 0, 0). This system has been proved in [46] to be well-posed on large

time for β > 1
3 , while it is known to be ill-posed for β < 1

3 [3]. This is a formal indication

that the threshold β = 1
3 will play an important role for the long well-posedness of (1.5)

and (1.6). We will come back to this issue in the next section (see Figure 1).
As far as we know, there are no well-posedness results for system (1.7) and (1.8) even on

short time. In the formal limit
√
µ|ξ| → 0, system (1.7) reduces to the Boussinesq system

corresponding to (a, b, c, d) = (0, 0, 13 , 0), which is believed to be ill-posed [31].
Next, attention is turned to (1.9) and (1.10). There are several results when β = 0. In this

case, Dinvay [12] proved short time local well-posedness for (ζ, v) ∈ Hs+ 1
2 (R) × Hs+1(R),

s ≥ 0 in the one-dimensional case. The proof is based on standard hyperbolic theory that
involves a modified energy similar to [28]. This result was then extended in [15] by exploiting
the smoothing effect of the linear flow using dispersive techniques improving the regularity

3In the most dispersive case (a, b, c, d) = ( 1
6
, 1
6
, 0, 0), the relevant time scale O(ε−1) is still missing; the

best results being on a time scale O(ε−
2
3 ) [43, 44], (see also [35] on a time scale O(ε−

1
2 ) by using dispersive

techniques).
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to Hs(R) ×Hs+ 1
2 (R), s > − 1

10 . Furthermore, when considering small data, the system is
globally well-posed due to the control of the Hamiltonian. The estimates derived in the
aforementioned papers are not uniform in µ. However, a recent study by Tesfahun [49]
proved that the corresponding 2-dimensional system (1.10) without surface tension is well-
posed on a time interval of order O( 1√

ε
) in the KdV−regime. Indeed, dispersive techniques

are tailored-made for short waves and therefore seem not to be well suited to capture the
long wave regime (see for instance [35] for similar results for the Boussinesq system in the
KdV-KdV case). Finally, in the case of surface tension β > 0, Dinvay proved in [11] the
short time local well-posedness of (1.9) and (1.10) by using modified energy techniques.
This result also implies the small data global well-posedness in this case.

Lastly,4 we would like to comment on a recent work by Emerald [23]. Here he considered a
class of non-local quasi-linear systems in one and two dimensions that include the following
family of Whitham-Boussinesq systems,{

∂tζ + Tµ(D)∇ · v + ε(Tµ)α(D)∇ · (ζ(Tµ)α(D)v) = 0

∂tv +∇ζ + ε((Tµ)α(D)v · ∇)((Tµ)α(D)v) = 0,
(1.12)

with α ≥ 1
2 . In the paper, the author proves the long time well-posedness of (1.12), and

deomonstrate that the error between the water wave system is of order O(µεt). Also, note
that in the case α = 0, then (1.12) corresponds to system (1.6) in the case β = 0. This
case is still an open problem. However, combining the results of [23] with the ones in this
paper, accounts for many of the possible Whitham-Boussinesq systems, and thus complete
each other well.

1.4. Main results. In the current paper, we take into account the small parameters (ε, µ)
and prove the well-posedness of (1.5), (1.7), (1.9), and their two-dimensional versions, on a
time scale O(1ε ).

In the case of systems (1.7)-(1.8) and (1.9)-(1.10), we will work under the standard non-
cavitation condition.

Definition 1.1 (Non-cavitation condition). Let d = 1 or 2 with s > d
2 and ε ∈ (0, 1). We

say the initial surface elevation ζ0 ∈ Hs(Rd) satisfies the “non-cavitation condition” if there
exist h0 ∈ (0, 1) such that

1 + εζ0(x) ≥ h0, for all x ∈ Rd. (1.13)

In the case of system (1.5) and (1.6), we will distinguish between the cases β ≥ 1
3 and

0 < β < 1
3 . More precisely, for β ≥ 1

3 , we will also assume the non-cavitation condition in

Definition 1.1, while for 0 < β < 1
3 , we have to impose the following β−dependent surface

condition.

Definition 1.2 (β−dependent surface condition). Let d = 1 or 2 with s > d
2 , ε ∈ (0, 1)

and β ∈ (0, 13). We say the initial surface elevation ζ0 ∈ Hs(Rd) satisfy the “β−dependent
surface condition” if

1 + εζ0(x) ≥ hβ, for all x ∈ Rd, (1.14)

where hβ = 1− β
2 .

Remark 1.3. For 0 < β < 1
3 , Kµ(ξ) is not a monotone function for positive frequencies,

as we can be seen in the figure below. This is why we choose to impose condition (1.14) in
this case.

4See also [16] for a survey on resent developments in the field.
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Figure 1. The multipiler K1(ξ) in the case when β ≥ 1
3 (dash-dot) and β < 1

3
(line). The horizontal line (dashed) specifies the minimum.

Remark 1.4. One can see the β−dependent surface condition as a constraint on the initial
data that is related to the minimum of the function Kµ(ξ). For instance, if we consider the
multiplier in Figure 1, then an admissible initial datum must satisfy the constraint in the
figure below.

Figure 2. The blue line denotes the initial surface elevation 1 + εζ0, and is re-
stricted by hβ when 0 < β < 1

3 .

Before we state the main results, we define a natural solution space for systems (1.5)-(1.6)
and (1.7)-(1.8).

Definition 1.5. We define the norm on the function space V s
µ (Rd) to be

‖(ζ,v)‖2V sµ := ‖ζ‖2Hs + ‖v‖2Hs +
√
µ‖D

1
2 v‖2Hs .

Theorem 1.6. Let d = 1 or 2 with s > d
2 + 3

2 , β > 0 and ε, µ ∈ (0, 1). Assume that

(ζ0,v0) ∈ V s
µ (Rd) satisfies either the non-cavitation condition (1.13) in the case β ≥ 1/3

or the β−dependent surface condition (1.14) in the case 0 < β < 1
3 , where curl v0 = 0 if

d = 2. Moreover, we assume that

0 < ε ≤ 1

k2β‖(ζ0,v0)‖V sµ
for k2β =

{
c
β for 0 < β < 1

3

cβ for β ≥ 1
3

(1.15)

for some c > 0. Then there exists a positive T given by

T =
1

k1β‖(ζ0,v0)‖V sµ
with k1β =

{
c
β for 0 < β < 1

3

cβ2 for β ≥ 1
3

(1.16)

such that (1.5) and (1.6) admits a unique solution

(ζ,v) ∈ C([0, T/ε] : V s
µ (Rd)) ∩ C1([0, T/ε] : V

s− 3
2

µ (Rd)),
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that satisfies

sup
t∈[0,T/ε]

‖(ζ,v)‖V sµ . ‖(ζ0,v0)‖V sµ . (1.17)

Furthermore, there exists a neighborhood U of (ζ0,v0) such that the flow map

F sT,ε,µ : V s
µ (Rd) → C([0, T2ε ];V

s
µ (Rd)), (ζ0,v0) 7→ (ζ,v),

is continuous.

Remark 1.7. The proof of the continuous dependence on long time of order O(1ε ) seems
to be new for Boussinesq type systems. It relies on the Bona-Smith argument [7] and could
be easily adapted for the (a, b, c, d)-Boussinesq systems.

Remark 1.8. A heuristic argument can be made to argue that the physical solutions appear
when the initial data is of order one in terms of ε [41]. To illustrate this point, take the
Burgers equation

ut − εuux = 0,

a simple model that can describe an inviscid fluid in shallow water theory. Then by the
energy method, it is easy to deduce that the time of existence is of order T ∼ 1

ε‖u0‖Hs
for

s > 3
2 . As a consequence, we have that T ∼ 1

ε if the initial data is of size Oε(1).

Remark 1.9. If β ∼ 1 then ε . 1 by (1.15), and so (1.16) implies that T/ε ∼ 1/ε. On
the other hand, in the case of having β � 1, (1.15) would impose ε . β , and by (1.16) we
have the existence on the timescale T/ε ∼ β/ε.

Remark 1.10. Regarding the β−dependent surface condition, we demonstrate that the
solution will persist for a long time and satisfy εζ(x, t) ≥ −cβ for some constant c > 0.
One should also note that this is coherent since 0 < ε . β as explained in the previous
remark. For a related discussion on this physical condition see Subsection 1.3.

Next, we state a well-posedness result for (1.7) and (1.8). These systems does not feature
any surface tension and is well-posed for a long time under the standard non-cavitation
condition.

Theorem 1.11. Let d = 1 or 2 with s > d
2 +1 and µ ∈ (0, 1). Assume that (ζ0, v0) ∈ V s

µ (R)
satisfies the non-cavitation condition (1.13), where curl v0 = 0 if d = 2. Also assume that

for some c > 0 that 0 < ε ≤ c
(
‖(ζ0,v0)‖V sµ

)−1
. Then there exists T = c

(
‖(ζ0,v0)‖V sµ

)−1
such that (1.7) and (1.8) admits a unique solution

(ζ,v) ∈ C([0, T/ε] : V s
µ (Rd)) ∩ C1([0, T/ε] : V s−1

µ (Rd)),
that satisfies

sup
t∈[0,T/ε]

‖(ζ,v)‖V sµ . ‖(ζ0,v0)‖V sµ .

In addition, the flow map is continuous with respect to the initial data.

Remark 1.12. As far as we know, Theorem 1.11 is the first well-posedness result for
systems (1.7)-(1.8).

Similarly, we can combine the techniques used to prove Theorem 1.6 and Theorem 1.11
to establish the long time well-posedness of (1.9)-(1.10) in the space:

Definition 1.13. Define the norm on the function space Xs
β,µ(Rd) to be

‖(ζ,v)‖2Xs
β,µ

:= ‖ζ‖2Hs + βµ‖D1ζ‖2Hs + ‖v‖2Hs +
√
µ‖D

1
2 v‖2Hs .
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Theorem 1.14. Let d = 1 or 2 with s > d
2 + 1, β ≥ 0 and µ ∈ (0, 1). Assume that

(ζ0,v0) ∈ Xs
β,µ(R) satisfies the non-cavitation condition (1.13), where curl v0 = 0 if d = 2.

Also assume that for some c > 0 that 0 < ε ≤ c
(
‖(ζ0,v0)‖Xs

β,µ

)−1
. Then there exists

T = c
(
‖(ζ0,v0)‖Xs

β,µ

)−1
such that (1.9) and (1.10) admits a unique solution

(ζ,v) ∈ C([0, T/ε] : Xs
β,µ(Rd) ∩ C1([0, T/ε] : Xs−1

β,µ (Rd)),

that satisfies

sup
t∈[0,T/ε]

‖(ζ,v)‖Xs
β,µ
. ‖(ζ0,v0)‖Xs

β,µ
.

In addition, the flow map is continuous with respect to the initial data.

Remark 1.15. Including β > 0 in the norm in the definition of Xs
β,µ(Rd) will allow us to

obtain a long time well-posedness result under the non-cavitation condition. Additionally,
when 0 < β < 1

3 then ε is independent from the surface tension parameter, and in the case

β = 0 we have that Xs
0,µ(Rd) is equal to V s

µ (Rd).

Remark 1.16. For the sake of clarity, we will mainly focus on the one-dimensional case.
Theorems 1.6, 1.11 and 1.14 can be easily extended to the 2-dimensional case by following
the same methods since the symbols Kµ(D) and Tµ(D) are radial. We give a brief outline
of what would be the main changes in Section 6.

1.5. Strategy and outline. The proof of Theorem 1.6 relies mainly on energy estimates
similar to the ones provided in [28] on a fixed time. Though, we use the idea of Wang [51],
who included the nonlocal operator Kµ(D) in the definition of the energy5:

Definition 1.17. Let (η, u) = ε(ζ, v) and Js be the bessel potential of order −s. Then we
define the energy associated to (1.5) in the one-dimensional case to be:

Es(η, u) :=

∫
R

(
(Jsη)2 + η(Jsu)2 + (

√
Kµ(D)Jsu)2

)
dx.

This energy formulation will free us to cancel out specific nonlinear terms that appear
naturally in the computations yielding the estimate

d

dt
Es(η, u) .β

(
Es(η, u)

) 3
2 . (1.18)

Combined with the coercivity of the energy, then by a standard bootstrap argument, one
deduces a solution with the lifespan of T0 = O(1ε ). We refer the reader to Proposition 3.1
and Lemma 5.3 for these results. The proof of the energy estimate is similar to the one
presented in [51], but we keep track of the small parameters. We should also note that
estimate (1.18) is applied to a regularized version of (1.5), where we recover the original
system using a Bona-Smith argument.

To run the Bona-Smith argument for s > 2, one classically needs to estimate the differ-
ence between two solutions at the V 0

µ (R)−level. These estimates will be the most technical
point of the paper and are specific to the dependence of the small parameters. In short, the
technical difficulty is related to the apparent need for ’generalized’ Kato-Ponce type com-
mutator estimates on Kµ(D) (see Lemma 2.9 and the generalization for Kµ(D) in Lemma
2.11). Whereas for the case µ = 1, one can use Calderón type estimates to simplify Kµ(D)
directly (see [28] and the reformulated system (2.1)). The main idea will be to split Kµ(D)

5Wang actually used this multiplier in the case µ = 1.
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in high and low frequencies, and then derive new commutator estimates that allow us to
obtain the necessary order of µ in the estimates related to the energy.

For the proof of Theorem 1.11, we follow the same strategy, but in this case, the dispersion
operator (1.4) is regularizing. The trick will be to introduce a scaled Bessel potential in the
energy, allowing us to mimic the properties of (1.2). The energy is given by:

Definition 1.18. Let (η, u) = ε(ζ, v) and J
1
2
µ be the scaled Bessel potential defined by

the symbol ξ 7→ (1 + µξ2)
1
4 in frequency. Then the energy associated to (1.7) in the one-

dimensional case reads:

Es(η, u) :=

∫
R

(
(
√
Tµ(D)J

1
2
µ J

sη)2 + (1 + η)(J
1
2
µ J

su)2
)
dx.

The energy formulated in Definition 1.18 is new and will require commutator estimates
specific to the equation. This will, in turn, allow us to decouple the parameters µ and ε in
the estimates and, by extension, provide an estimate in the form of (1.18).

In the same spirit, we define a modified energy for system (1.9):

Definition 1.19. Let (η, u) = ε(ζ, v) and β > 0. Then the energy associated to (1.9) in
the one-dimensional case reads:

Es(η, u) :=

∫
R

(
(Jsη)2 + βµ(D1Jsη)2 + η(Jsu)2 + (

√
T
−1
µ (D)Jsu)2

)
dx.

Note also that the energy includes the surface tension parameter β and will allow us to
deduce an estimate on the form (1.18), where the coercivity estimate will be uniform in β.
In turn, this will provide the long time well-posedness for β � 1 and T/ε ∼ 1/ε as pointed
out in Remark 1.15.

The paper is organized as follows. In Section 2, we introduce some important technical
results whose proofs will be postponed to the appendix. In the same section, we also present
new commutator estimates needed to treat the nonlinear terms when estimating the energy
in Sections 3 and 4. Then we conclude in Section 5 by combining the results obtained in
the former sections to prove Theorem 1.6 in full detail in the one-dimensional case. Lastly,
we comment briefly on the changes to adapt the proof in the two-dimensional setting, while
the proof of Theorem 1.11 and Theorem 1.14 will follow by the same arguments.

1.6. Notation.

• We let c denote a positive constant independent of µ, ε that may change from line
to line. Also, as a shorthand, we use the notation a . b to mean a ≤ c b. Similarly,
if the constant depends on β, we write a .β b. In particular, we define the constants
depending on β,

c1β =

{
cβ for 0 < β < 1

3

c for β ≥ 1
3

and c2β =

{
c for 0 < β < 1

3

cβ for β ≥ 1
3

(1.19)

• Let (V, ‖ · ‖V ) be a vector space. Then for α ≥ 0, λ > 0 and fλ ∈ V be a function
depending on λ, we define the “big−O” notation to be

‖fλ‖V = O(λα) ⇐⇒ lim
λ→0

λ−α‖fλ‖V <∞.

Similarly, we define the “small−o” notation to be

‖fλ‖V = o(λα) ⇐⇒ lim
λ→0

λ−α‖fλ‖V = 0.
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• Let L2(R) be the usual space of square integrable functions with norm ‖f‖L2 =√∫
R |f(x)|2 dx. Also, for any f, g ∈ L2(R) we denote the scalar product by

(
f, g
)
L2 =∫

R f(x)g(x) dx.
• For any tempered distribution f , the operator F denoting the Fourier transform,

applied to f , will be written as f̂(ξ) or Ff(ξ).
• Let m : R → R be a smooth function. Then we will use the notation m(D) for a

multiplier defined in frequency by m̂(D)f(ξ) = m(ξ)f̂(ξ).

• For any s ∈ R we call the multiplier D̂sf(ξ) = |ξ|sf̂(ξ) the Riesz potential of order

−s. One should note that D1 = H∂x, where Ĥf(ξ) = −i sgn(ξ)f̂(ξ) is the Hilbert
transform.
• For any s ∈ R we call the multiplier Js = (1 + D2)

s
2 = 〈D〉s the Bessel potential

of order −s. Moreover, the Sobolev space Hs(R) is equivalent to the weighted

L2−space; ‖f‖Hs = ‖Jsf‖L2 . We also find it convenient to define J
1
2
µ which is a

multiplier assosiated to the symbol:

F(J
1
2
µ f)(ξ) = (1 + µξ2)

1
4 f̂(ξ). (1.20)

• We say f is a Schwartz function S (R), if f ∈ C∞(R) and satisfies for all α, β ∈ N,

sup
x
|xα∂βxf | <∞.

• If A and B are two operators, then we denote the commutator between them to be
[A,B] = AB −BA.

2. Preliminary results

2.1. Pointwise estimates. The first result concerns the properties of the dispersive part
of the equation. Namely, we deduce pointwise estimates for the multipliers (1.2) and (1.4)
that are needed to obtain the coercivity of the energy (see, for instance, equation (3.7)
below). Moreover, these estimates will prove essential when dealing with the nonlinear
parts of the equation that appear in the energy estimates.

Lemma 2.1. Let µ ∈ (0, 1). Then we have the following pointwise estimates on the kernel
Kµ(ξ) :

• For β ≥ 0, we have the upper bound

Kµ(ξ) . 1 + β(1 + β
√
µ|ξ|). (2.1)

• If β ≥ 1
3 , then for all h0 ∈ (0, 1) we have the lower bound

Kµ(ξ) ≥ (1− h0
2

) + c
√
µ|ξ|, (2.2)

whereas, if 0 < β < 1
3 , we have the lower bound

Kµ(ξ) ≥ β + cβ
√
µ|ξ|. (2.3)

• The derivative of the symbol Kµ(ξ) satisfies∣∣∣∣ ddξ
√
Kµ(ξ)

∣∣∣∣ . 〈ξ〉−1 +
√
βµ

1
4 〈ξ〉−

1
2 . (2.4)

• We have the following comparison of
√
Kµ(ξ) by∣∣√Kµ(ξ)−

√
βµ

1
4 |ξ|

1
2

∣∣ .√β + β. (2.5)
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• There holds √
Kµ(ξ)〈ξ〉s−1|ξ| . (

√
β + β)〈ξ〉s +

√
βµ

1
4 〈ξ〉s|ξ|

1
2 . (2.6)

Remark 2.2. For inequality (2.3), it is crucial to specify the dependence in β as it will
provide the coercivity of the energy when 0 < β < 1

3 . The same is true for (2.2), whose
importance will be revealed in the proof of Proposition 3.1 below. Though, we note that
(2.3) does not agree with (2.2) when β = 1

3 . This is because the lower bound in (2.3) is not
optimal, but it does not play a role in the overall result.

Remark 2.3. We also trace the dependence in β for the first pointwise estimate (2.1),
and it will sometimes be replaced with c2β given by (1.19). This constant will again appear

when we prove the energy estimates which will provide the size of the time of existence (see
Lemma 5.3 in the proof Theorem 1.6).

The proof of Lemma 2.1 is technical and postponed to the Appendix in Section A.2. A
corollary of Proposition 2.1 may now be stated.

Corollary 2.4. Take f ∈ S (R), µ ∈ (0, 1) and s ∈ R. Then in the case β ≥ 1
3 and for all

h0 ∈ (0, 1) we have

(1− h0
2

)‖f‖2Hs + c
√
µ‖D

1
2 f‖2Hs ≤ ||

√
Kµ(D)f‖2Hs ≤ c2β‖f‖2Hs + cβ

√
µ‖D

1
2 f‖2Hs . (2.7)

Similarly, in the case 0 < β < 1
3 there holds

β‖f‖2Hs + cβ
√
µ‖D

1
2 f‖2Hs ≤ ||

√
Kµ(D)f‖2Hs ≤ c2β‖f‖2Hs + c

√
µ‖D

1
2 f‖2Hs . (2.8)

Proof. The upper bound in (2.7) follows by Plancherel’s identity and the pointwise estimate
(2.1), while the lower bound is a consequence of (2.2).

In the same way, for 0 < β < 1
3 , then (2.8) is deduced from (2.3). �

Similarly, we state some useful pointwise estimates on Tµ(ξ) and the scaled Bessel po-

tential J
1
2
µ , where the proof is presented in Appendix A.2.

Lemma 2.5. Let µ ∈ (0, 1). Then we have the following pointwise estimates on the kernel
Tµ(ξ) :

• For all h0 ∈ (0, 1) there holds

(1− h0
2

) + c
√
µ|ξ| ≤ (Tµ(ξ))−1 . 1 +

√
µ|ξ|. (2.9)

• There holds
1 . Tµ(ξ)〈√µξ〉 . 1. (2.10)

• For s ∈ R there holds∣∣∣∣ ddξ 〈ξ〉s〈√µξ〉 12
∣∣∣∣ . 〈ξ〉s−1〈√µξ〉 12 . (2.11)

• For s ∈ R there holds∣∣∣∣ ddξ
√
Tµ(ξ)〈ξ〉s〈√µξ〉

1
2

∣∣∣∣ . 〈ξ〉s−1. (2.12)

• There holds ∣∣∣∣〈√µξ〉 12 − µ 1
4 |ξ|

1
2

∣∣∣∣ . 1. (2.13)

A direct consequence of the above estimates can now be given.
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Corollary 2.6. Let f ∈ S (R), µ ∈ (0, 1), s ∈ R and c > 0. Then for all h0 ∈ (0, 1) there
holds

‖
√
Tµ(D)f‖L2 ≤ ‖f‖L2 . (2.14)

(1− h0
2

)‖f‖2Hs + c
√
µ‖D

1
2 f‖2Hs ≤ ‖

√
Tµ
−1

(D)f‖2Hs . ‖f‖2Hs + c
√
µ‖D

1
2 f‖2Hs . (2.15)

‖f‖Hs . ‖
√
Tµ(D)J

1
2
µ f‖Hs . ‖f‖Hs . (2.16)

‖f‖2Hs +
√
µ‖D

1
2 f‖2Hs . ‖J

1
2
µ f‖2Hs . ‖f‖2Hs +

√
µ‖D

1
2 f‖2Hs . (2.17)

2.2. Commutator estimates. To handle derivatives in the nonlinear parts of the equa-
tions, we need commutator estimates on Kµ(D) and Tµ(D).

Lemma 2.7. Let f, g ∈ S (R), µ ∈ (0, 1), s ≥ 1, and t0 >
1
2 . Then we have the following

commutator estimate

‖[
√
Kµ(D)Js, f ]∂xg‖L2 . (c2β‖f‖Hs +

√
βµ

1
4 ‖D

1
2 f‖Hs)‖∂xg‖Ht0

+ (c2β‖g‖Hs +
√
βµ

1
4 ‖D

1
2 g‖Hs)‖∂xf‖Ht0 . (2.18)

In the high regularity setting, the proof will follow the same lines as in [51], but we track
the dependence in µ and β using the pointwise estimates above.

Proof. First, write the commutator as a bilinear form:∥∥[
√
Kµ(D)Js, f ]∂xg

∥∥
L2 =

∥∥∥∥∫
R

(√
Kµ(ξ)〈ξ〉s −

√
Kµ(ρ)〈ρ〉s

)
f̂(ξ − ρ)∂̂xg(ρ) dρ

∥∥∥∥
L2
ξ

.

Then if a = min{ξ, ρ} and b = max{ξ, ρ}, we can use the mean value theorem, leaving us
to estimate the following terms∣∣∣√Kµ(ξ)〈ξ〉s −

√
Kµ(ρ)〈ρ〉s

∣∣∣ . sup
ω∈(a,b)

|m(ω)| |ξ − ρ|,

where

m(ω) = m1(ω) +m2(ω) = 〈ω〉s d
dω

√
Kµ(ω) + 〈ω〉s−1

√
Kµ(ω).

But using (2.5) to estimate m1(ω) and (2.4) to treat m2(ω), we deduce

m(ω) . c2β〈ω〉s−1 +
√
βµ

1
4 〈ω〉s−1|ω|

1
2 , (2.19)

where the upper bound is increasing for s ≥ 1. Therefore an upper bound is attained at
|ρ| or |ξ| ≤ |ξ − ρ|+ |ρ| . In particular, if ω = |ξ − ρ| then we may conclude by Minkowski
integral inequality, the Cauchy-Schwarz inequality and (2.19) that∥∥[
√
Kµ(D)Js, f ]∂xg

∥∥
L2 . c

2
β

∥∥∥∥∫
R
〈ξ − ρ〉s−1|ξ − ρ| |f̂(ξ − ρ)| |∂̂xg(ρ)| dρ

∥∥∥∥
L2
ξ

+
√
βµ

1
4

∥∥∥∥∫
R
〈ξ − ρ〉s−1|ξ − ρ|

1
2 |ξ − ρ| |f̂(ξ − ρ)| |∂̂xg(ρ)| dρ

∥∥∥∥
L2
ξ

. (c2β‖f‖Hs +
√
βµ

1
4 ‖D

1
2 f‖Hs)‖∂xg‖Ht0 ,
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for t0 >
1
2 . On the other hand, if ω = |ρ|, then we make a change of coordinates and argue

similarly to deduce,∥∥[
√
Kµ(D)Js, f ]∂xg

∥∥
L2 . c

2
β

∥∥∥∥∫
R
〈ξ − ν〉s−1|∂̂xg(ξ − ν)| |ν| |f̂(ν)| dν

∥∥∥∥
L2
ξ

+
√
βµ

1
4

∥∥∥∥∫
R
〈ν〉s−1|ξ − ν|

1
2 |∂̂xg(ξ − ν)| |ν| |f̂(ν)| dν

∥∥∥∥
L2
ξ

. (c2β‖g‖Hs +
√
βµ

1
4 ‖D

1
2 g‖Hs)‖∂xf‖Ht0 .

Adding the two scenarios, we may conclude that (2.18) holds.
�

We will also need a commutator estimates on Tµ(D) and J
1
2
µ .

Lemma 2.8. Let f, g ∈ S (R), s ≥ 1, t0 >
1
2 , µ ∈ (0, 1) and J

1
2
µ as defined in (1.20).

• Then we have a Kato-Ponce type estimate

‖[JsJ
1
2
µ , f ]∂xg‖L2 . (‖f‖Hs + µ

1
4 ‖D

1
2 f‖Hs)‖∂xg‖Ht0

+ (‖g‖Hs + µ
1
4 ‖D

1
2 g‖Hs)‖∂xf‖Ht0 . (2.20)

• There holds

‖[
√
Tµ(D)JsJ

1
2
µ , f ]∂xg‖L2 . ‖f‖Hs‖g‖Ht0+1 + ‖f‖Ht0+1‖g‖Hs . (2.21)

Proof. The proof is similar to the one of Lemma 2.7 and relies on the pointwise estimates

established in Lemma 2.5. Indeed, for (2.20) we define a1(D)(f, g) := [JsJ
1
2
µ , f ]∂xg and use

the mean value theorem combined with (2.11) to deduce

|â1(ξ)(f, g)| ≤
∫
R

∣∣∣〈ξ〉s〈√µξ〉 12 − 〈ρ〉s〈√µρ〉 12 ∣∣∣|f̂(ξ − ρ)| |∂̂xg(ρ)| dρ

.
∫
R
〈ξ − ρ〉s−1〈√µ(ξ − ρ)〉

1
2 |ξ − ρ| |f̂(ξ − ρ)| |∂̂xg(η)| dρ

+

∫
R
〈ρ〉s−1〈√µρ〉

1
2 |ξ − ρ| |f̂(ξ − ρ)| |∂̂xg(ρ)| dρ.

Then if we apply the L2(R)−norm with respect to ξ, we can argue as in Lemma 2.7 that

‖â1(ξ)(f, g)‖L2
ξ
. ‖J

1
2
µ f‖Hs

∫
R
|∂̂xg(ρ)| dρ+ ‖J

1
2
µ g‖Hs

∫
R
|ρ| |f̂(ρ)| dρ.

Then use the definiton of a1(D)(f, g) and (2.17) to conclude.

The proof of (2.21) is the same, with a2(D)(f, g) := [
√
Tµ(D)JsJ

1
2
µ , f ]∂xg. We use (2.12)

to find that

|â2(ξ)(f, g)| ≤
∫
R

∣∣∣√Tµ(ξ)〈ξ〉s〈√µξ〉
1
2 −

√
Tµ(ρ)〈ρ〉s〈√µρ〉

1
2

∣∣∣|f̂(ξ − ρ)| |∂̂xg(ρ)| dρ

.
∫
R
〈ξ − ρ〉s−1|ξ − ρ| |f̂(ξ − ρ)| |∂̂xg(ρ)| dρ

+

∫
R
〈ρ〉s−1|ξ − ρ| |f̂(ξ − ρ)| |∂̂xg(ρ)| dρ,

and the result follows.
�
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Next, we state the classical Kato-Ponce commutator estimate. We will use it repeatedly
to commute the Bessel potential with functions to obtain the desired energy estimates in
the coming sections.

Lemma 2.9 (Kato - Ponce commutator estimates [29]). Let s ≥ 0, p, p2, p3 ∈ (1,∞) and
p1, p4 ∈ (1,∞] such that 1

p = 1
p1

+ 1
p2

= 1
p3

+ 1
p4

. Then

‖Js(fg)‖Lp . ‖f‖Lp1‖Jsg‖Lp2 + ‖Jsf‖Lp3‖g‖Lp4 (2.22)

and
‖[Js, f ]g‖Lp . ‖∂xf‖Lp1‖Js−1g‖Lp2 + ‖Jsf‖Lp3‖g‖Lp4 . (2.23)

Similar commutator estimates also hold for more general multipliers. In fact, by splitting
the frequency domain into two parts using smooth cut-off functions defined in frequency,
we can obtain sharper commutator estimates specific to equation (1.5).

Definition 2.10. We define the smooth cut-off functions χ(i) ∈ S (R) as Fourier multipliers

F(χ(i)(D)f)(ξ) = χ(i)(|ξ|)f̂(ξ),

for any f ∈ S (R) with the following properties:

0 ≤ χ(i)(ξ) ≤ 1, (χ(1)(ξ))2 + (χ(2)(ξ))2 = 1 on R,
and

supp χ(1) ⊂ [−1, 1], supp χ(2) ⊂ R\
[
− 1

2
,
1

2

]
.

Moreover, we denote the scaled version in µ by χ
(i)
µ (ξ) = χ(i)(

√
µξ).

We have the results:

Lemma 2.11. Let s > 3
2 , µ ∈ (0, 1) and f, g ∈ S (R).

• Let (χ
(1)
µ

√
Kµ)(D) be the multiplier of the symbol (χ

(1)
µ

√
Kµ)(ξ). Then

‖(χ(1)
µ

√
Kµ)(D)f‖L2 .β ‖f‖L2 , (2.24)

and
‖[(χ(1)

µ

√
Kµ)(D), f ]∂xg‖L2 .β ‖f‖Hs‖g‖L2 . (2.25)

• We define the symbol

σµ, 1
2
(D) :=

(
1

√
µ|D|

+ β
√
µ|D|

) 1
2

. (2.26)

Then
‖(χ(2)

µ σµ, 1
2
)(D)f‖L2 .β ‖f‖L2 + µ

1
4 ‖D

1
2 f‖L2 (2.27)

and
‖[(χ(2)

µ σµ, 1
2
)(D), f ]∂xg‖L2 .β µ

1
4 ‖f‖Hs‖g‖

H
1
2
. (2.28)

• Lastly, we define the symbol σµ,0(D) to be

σµ,0(D) :=

(
1

√
µ|D|

+ β
√
µ|D| − Kµ(D)

) 1
2

. (2.29)

Then
‖(χ(2)

µ σµ,0)(D)f‖L2 .β ‖f‖L2 (2.30)

and
‖[(χ(2)

µ σµ,0)(D), f ]∂xg‖L2 .β ‖f‖Hs‖g‖L2 . (2.31)
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The proof is postponed to Appendix A.3, where we also will prove the following commu-
tator estimates at the L2(R)−level:

Lemma 2.12. Let s > 3
2 , µ ∈ (0, 1) and f, g ∈ S (R).

• For the composition of
√
Tµ(D) and J

1
2
µ there holds,

‖[
√
Tµ(D)J

1
2
µ , f ]∂xg‖L2 . ‖f‖Hs‖g‖L2 . (2.32)

• While for the usual Bessel potential there holds,

‖[
√
Tµ(D)Js, f ]∂xg‖L2 . ‖f‖Hs‖Jsg‖L2 . (2.33)

• Similarly, when the operator Js is the identity, we have

‖[
√
Tµ(D), f ]∂xg‖L2 . ‖f‖Hs‖g‖L2 . (2.34)

• The derivative of the following commutator satisfies

‖∂x[
√
Tµ(D), f ]g‖L2 . ‖f‖Hs‖g‖L2 . (2.35)

• Lastly, we can commute J
1
2
µ by

‖[J
1
2
µ , f ]∂xg‖L2 . ‖f‖Hs‖J

1
2
µ g‖L2 . (2.36)

2.3. Classical estimates. Before turning to the proof of the energy estimates, we state
some necessary results that will also be used throughout the paper. First, recall the em-
beddings (see, for example [34]).

Lemma 2.13 (Sobolev embeddings). Let f ∈ S (R) and s ∈ (0, 12). Then Hs(R) ↪→ Lp(R)

with p = 2
1−2s , and there holds

‖f‖Lp . ‖Dsf‖L2 . (2.37)

Moreover, In the case s > 1
2 , then Hs(R) is continuously embedded in L∞(R).

We also will use the Leibniz rule for the Riesz potential on multiple occasions.

Lemma 2.14 (Fractional Leibniz rule [30]). Let σ = σ1 + σ2 ∈ (0, 1) with σi ∈ [0, σ] and
p, p1, p2 ∈ (1,∞) satisfy 1

p = 1
p1

+ 1
p2

. Then, for f, g ∈ S (R)

‖Dσ(fg)− fDσg − gDσf‖Lp . ‖Dσ1f‖Lp1‖Dσ2g‖Lp2 . (2.38)

Moreover, the case σ2 = 0, p2 =∞ is also allowed.

Finally, we recall the following results for the Bona-Smith argument (provided in the
classical paper [7]) on the multiplier ϕδ(D) defined by:

Definition 2.15. Let ϕ ∈ S (R) such that
∫
ϕ = 1 and for δ > 0 define the regularization

operators ϕδ(D) in frequency by

∀f ∈ L2(R), ∀ξ ∈ R, ϕ̂δf(ξ) := ϕ(δξ)f̂(ξ),

where ϕ is a real valued and ϕ(0) = 1.

We give the version of the regularization estimates as presented in [34] (Proposition 9.1).

Proposition 2.16. Let s > 0, δ > 0 and f ∈ S (R). Then

‖ϕδ(D)f‖Hs+α . δ−α‖f‖Hs , ∀α > 0, (2.39)

and
‖ϕδ(D)f − f‖Hs−β . δβ‖f‖Hs , ∀β ∈ [0, s]. (2.40)
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Moreover, there holds

‖ϕδ(D)f − f‖Hs−β =
δ→0

o(δβ), ∀β ∈ [0, s]. (2.41)

3. A priori estimates

In this section, we give a priori estimates for solutions of the three systems (1.5), (1.7),
and (1.9).

3.1. Estimates for system (1.5). As noted in the introduction, we revisit the energy
estimate in [51] to keep track of the parameters β, ε and µ. For simplicity, we adopt the
notation U = (η, u)T = ε(ζ, v)T , where we write (1.5) on the compact form:

∂tU +M(U, D)U = 0, (3.1)

with

M(U, D) =

(
u∂x (Kµ(D) + η)∂x
∂x u∂x

)
. (3.2)

Also, we simplify the notation for the energy given in Definition 1.17 by introducing the
symmetrizer

Q(U, D) = Q(1)(U, D) +Q(2)(U, D) =

(
1 0
0 η

)
+

(
0 0
0 Kµ(D)

)
. (3.3)

Then the energy given in Definition 1.17 can be rewritten as

Es(U, D) =
(
JsU, Q(U, D)JsU

)
L2 .

Proposition 3.1. Let s > 2, ε, µ ∈ (0, 1) and (η, u) = ε(ζ, v) ∈ C([0, T0];V
s
µ (R)) be a

solution to (3.1) on a time interval [0, T0] for some T0 > 0. Moreover, assume there exist
h0 ∈ (0, 1) and h1 > 0 such that

h0 − 1 ≤ η(x, t), ∀(x, t) ∈ R× [0, T0] and sup
t∈[0,T0]

‖(η, u)‖Hs×Hs ≤ h1, (3.4)

when β ≥ 1
3 , and that

−β
2
≤ η(x, t), ∀(x, t) ∈ R× [0, T0] and sup

t∈[0,T0]
‖(η, u)‖Hs×Hs ≤ h1, (3.5)

when 0 < β < 1
3 .

Then, for the energy given in Definition 1.17 and ciβ defined by (1.19),

d

dt
Es(U) ≤ c2β

(
Es(U)

) 3
2 , (3.6)

for all 0 < t < T0, and

c1β‖(η, u)‖2V sµ ≤ Es(U) ≤ c2β‖(η, u)‖2V sµ , (3.7)

for all 0 < t < T0.

Remark 3.2. Note that we aim to prove (3.6) with power 3
2 on the right-hand side. This

result will prove essential in getting the time of existence T ∼ 1
ε in the proof of Theorem

1.6. One should also note that if we have (3.7), then it is enough to show

d

dt
Es(U) .β ‖(η, u)‖3V sµ ,

to obtain (3.6). With this in mind, in the proof of the proposition, we will repeatedly use
assumption (3.4)−(3.5) to discard higher powers in the norm of the solution than 3. Meaning
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the terms of form ‖(η, u)‖3+nV sµ
for n ∈ N will be bounded by ‖(η, u)‖3V sµ since this seems to be

the best we can hope for when using the current method.

Proof of Proposition 3.1. We first prove estimate (3.7) in the case β ≥ 1/3. By definition,
we have that

Es(U) = ‖Jsη‖2L2 +
(
Jsu, (Kµ(D) + η)Jsu

)
L2 .

Thus, as a result of the non-cavitation condition (3.4) and the estimate (2.7), there holds(
Jsu, (Kµ(D) + η)Jsu

)
L2 ≥

h0
2
‖u‖2Hs + c

√
µ‖D

1
2u‖2Hs .

The reverse inequality holds for any β > 0 and is a consequence of (2.7), Hölder’s inequality,
the Sobolev embedding with s > 3

2 , and conditions (3.4)−(3.5). Indeed, we observe that

Es(U) ≤ ‖η‖2Hs + ‖
√
Kµ(D)u‖2Hs + ‖η‖L∞‖u‖2Hs ≤ cβ‖(η, u)‖2V sµ .

In the case 0 < β < 1
3 , we impose the β−dependent surface condition (3.5), leaving less

to be absorbed for the coercivity and in conjunction with (2.8). This implies(
Jsu, (Kµ(D) + η)Jsu

)
L2 ≥

β

2
‖u‖2Hs + c

√
µ‖D

1
2u‖2Hs .

As a consequence, we have that (3.7) is established for all β > 0.
Next, we prove (3.6). By using (3.1) and the fact that Q(U, D) is self-adjoint, we compute

1

2

d

dt
Es(U) =

(
Js∂tU, Q(U, D)JsU

)
L2 +

1

2

(
JsU, (∂tQ(U, D))JsU

)
L2

= −
(
JsM(U, D)U, Q(U, D)JsU

)
L2 +

1

2

(
JsU, (∂tQ(U, D))JsU

)
L2

=: −I + II.

Control of I. We may write

I =
(
[Js,M(U, D)]U, Q(1)(U, D)JsU

)
L2 +

(
Q(1)(U, D)M(U, D)JsU, JsU

)
L2

+
(
JsM(U, D)U, Q(2)(U, D)JsU

)
L2

=: I1 + I2 + I3.

Control of I1. It follows from the Cauchy-Schwarz inequality that

|I1| ≤ ‖[Js,M(U, D)]U‖L2‖Q(1)(U, D)JsU‖L2 .

The second term is easily treated,

‖Q(1)(U, D)JsU‖L2 . ‖Jsη‖L2 + ‖η‖L∞‖Jsu‖L2 . ‖(η, u)‖V sµ ,

by Hölder’s inequality, the Sobolev embedding with s > 1
2 , and assumption (3.4). Further-

more, using the Kato-Ponce commutator estimate (2.23) yields

‖[Js,M(U, D)]U‖L2 ≤ ‖[Js, u]∂xη‖L2 + ‖[Js, η]∂xu‖L2 + ‖[Js, u]∂xu‖L2

≤ ‖η‖Hs‖u‖Hs + ‖u‖2Hs

≤ ‖(η, u)‖2V sµ .

The desired bound on I1 follows:

|I1| . ‖(η, u)‖3V sµ .
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Control of I2 + I3. First note that (aij) = Q(1)(U, D)M(U, D) is given by,

(aij) =

(
u∂x (Kµ(D) + η)∂x
η∂x ηu∂x

)
.

We must estimate each piece below,(
Q(1)(U, D)M(U, D)JsU, JsU

)
L2

=
(
a11J

sη, Jsη
)
L2 +

(
a12J

su, Jsη
)
L2 +

(
a21J

sη, Jsu
)
L2 +

(
a22J

su, Jsu
)
L2

=: A11 +A12 +A21 +A22.

As we will shortly see, A12 + A21 needs to be compensated by B21, that is defined by the
remaining part:(

JsM(U, D)U, Q(2)(U, D)JsU
)
L2 =

(
∂xJ

sη,Kµ(D)Jsu
)
L2 +

(
Js(u∂xu),Kµ(D)Jsu

)
L2

=: B21 +B22,

while B22 is the price we pay for symmetry.

Control of A11. Integration by part and the Sobolev embedding yields

|A11| ≤
1

2

∣∣(∂xuJsη, Jsη)L2

∣∣ ≤ 1

2
‖∂xu‖L∞‖η‖2Hs . ‖(η, u)‖3V sµ .

Control of A12 +A21 +B21. By definition, consideration is given to the expression

A12 +A21 +B21 =
(
(Kµ(D) + η)∂xJ

su, Jsη
)
L2 +

(
(Kµ(D) + η)∂xJ

sη, Jsu
)
L2 .

Observe, after integration by parts that

A12 = −
(
Jsu, (Kµ(D) + η)∂xJ

sη
)
L2 −

(
Jsu, ∂xηJ

sη
)
L2 .

The first term cancels with (A21 + B21), while the Sobolev embedding easily controls the
remaining part,

|
(
Jsu, ∂xηJ

sη
)
L2 | ≤ ‖∂xη‖L∞‖η‖Hs‖u‖Hs . ‖(η, u)‖3V sµ .

Control of A22. We simply use integration by parts as above together with (3.4)−(3.5) to
deduce

|A22| ≤ |
(
ηu∂xJ

su, Jsu
)
L2 | ≤ c2β‖(η, u)‖3V sµ .

Control of B22. We observe, after integrating by parts that

B22 =
(
Js(u∂xu),Kµ(D)Jsu

)
L2

=
(
[
√
Kµ(D)Js, u]∂xu,

√
Kµ(D)Jsu

)
L2 −

1

2

(
(∂xu)

√
Kµ(D)Jsu,

√
Kµ(D)Jsu

)
L2 .

Thus, we deduce by using Hölder’s inequality, estimates (2.18) and (2.7) that

|B22| ≤ c2β‖(η, u)‖3V sµ .

Control of II. First we claim that ‖Kµ(D)∂xu‖L∞ .β ‖(η, u)‖V sµ for s > 2. Indeed, it

follows from (2.1) and the Sobolev embedding H
1
2

+

(R) ↪→ L∞(R) that

‖Kµ(D)∂xu‖L∞ ≤ ‖∂xu‖
Hs− 3

2
+ β
√
µ‖D1∂xu‖

Hs− 3
2

≤ c2β(‖u‖Hs +
√
µ‖D

1
2u‖Hs). (3.8)

Then we observe by using equation (3.1) yields,

II =
(
Jsu, (∂tη)Jsu

)
L2 = −

(
Jsu, (Kµ(D)∂xu)Jsu

)
L2 −

(
Jsu, (∂x(ηu))Jsu

)
L2 .
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Consequently, the desired estimate follows from Hölder’s inequality, the Sobolev embedding,
and the above claim that,

|II| . ‖Kµ(D)∂xu‖L∞‖u‖2Hs + ‖∂x(ηu)‖L∞‖u‖2Hs .β ‖(η, u)‖3V sµ . (3.9)

Adding together all the estimates, combined with (3.7) yields,

d

dt
Es(U) ≤ c2β

(
Es(U)

) 3
2 ,

and completes the proof of Proposition 3.1.
�

3.2. Estimates for system (1.7). As in the former subsection we define U = (η, u)T =
ε(ζ, v)T and we write the system on a compact form:

∂tU +M(U, D)U = 0, (3.10)

with

M(U, D) =

(
u∂x (1 + η)∂x

Tµ(D)∂x u∂x

)
. (3.11)

We define the symmetrizer associated to (3.10) to be

Q(U, D) =

(
Tµ(D) 0

0 1 + η

)
. (3.12)

Then the energy given in Definition 1.18 can be written as

Es(U) =
(
JsJ

1
2
µ U,Q(U, D)JsJ

1
2
µ U
)
L2 , (3.13)

and the a priori estimate for (1.7) is stated in the following proposition.

Proposition 3.3. Let s > 3
2 , ε, µ ∈ (0, 1) and (η, u) = ε(ζ, v) ∈ C([0, T0];V

s
µ (R)) be a

solution to (1.7) on a time interval [0, T0] for some T0 > 0. Moreover, assume there exist
h0 ∈ (0, 1) and h1 > 0 such that

h0 − 1 ≤ η(x, t), ∀(x, t) ∈ R× [0, T0] and sup
t∈[0,T0]

‖(η, u)‖Hs×Hs ≤ h1. (3.14)

Then, for the energy given in Definition 1.18, there holds

d

dt
Es(U) .

(
Es(U)

) 3
2 , (3.15)

for all 0 < t < T0, and
‖(η, u)‖2V sµ . Es(U) . ‖(η, u)‖2V sµ , (3.16)

for all 0 < t < T0.

Proof of Proposition 3.3. We begin by proving (3.16). By Definition (1.18) of the energy,
the non-cavitation condition (3.14), (2.17), and (2.16) we obtain the lower bound

Es(U) = ‖
√
Tµ(D)J

1
2
µ η‖2Hs +

(
J

1
2
µ J

su, (1 + η)J
1
2
µ J

su
)
L2

≥ c‖η‖2Hs + h0‖J
1
2
µ u‖2Hs

≥ c‖η‖2Hs + c · h0(‖u‖2Hs +
√
µ‖D

1
2u‖2Hs),

for some c > 0. The reverse inequality follows by the estimates (2.16), (2.17), Hölder’s
inequality, the Sobolev embedding, and (3.14):

Es(U) ≤ ‖
√
Tµ(D)J

1
2
µ η‖2Hs + ‖J

1
2
µ u‖2Hs + ‖η‖L∞‖J

1
2
µ u‖2Hs . ‖(η, u)‖2V sµ .
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Next, we prove (3.15). There follows by using (3.10) and the self-adjointness of Q(U,D)
that

1

2

d

dt
Es(U) = −

(
JsJ

1
2
µM(U, D)U,Q(U, D)JsJ

1
2
µ U
)
L2

+
1

2

(
JsJ

1
2
µ U, (∂tQ(U, D))JsJ

1
2
µ U
)
L2

=: −I + II.

Control of I. By definition of (3.13) we decompose I in four pieces,

I =
(
JsJ

1
2
µ (u∂xη), JsJ

1
2
µ Tµ(D)η

)
L2 +

(
JsJ

1
2
µ

(
(1 + η)∂xu

)
, JsJ

1
2
µ Tµ(D)η

)
L2

+
(
JsJ

1
2
µ Tµ(D)∂xη, (1 + η)JsJ

1
2
µ u
)
L2 +

(
JsJ

1
2
µ u∂xu, (1 + η)JsJ

1
2
µ u
)
L2

=: A11 +A12 +A21 +A22.

Control of A11. We aim to exploit symmetries, and we first write A11 as

A11 =
(
[JsJ

1
2
µ

√
Tµ(D), u]∂xη, J

sJ
1
2
µ

√
Tµ(D)η

)
L2

+
(
uJsJ

1
2
µ

√
Tµ(D)∂xη, J

sJ
1
2
µ

√
Tµ(D)η

)
L2

=: A1
11 +A2

11.

The first term is treated by the commutator estimate (2.21) with s > 3
2 , the Cauchy-Schwarz

inequality and (2.16). Thus, there holds

|A1
11| ≤ ‖[JsJ

1
2
µ

√
Tµ(D), u]∂xη‖L2‖JsJ

1
2
µ

√
Tµ(D)η‖L2 . ‖u‖Hs‖η‖2Hs .

Similar to previous estimates, we use integration by parts and exploit the symmetries of

A2
11, then conclude by (2.16), and the Sobolev embedding H

1
2

+

(R) ↪→ L∞(R) that

|A11| ≤
1

2

∣∣((∂xu)JsJ
1
2
µ

√
Tµ(D)η, JsJ

1
2
µ

√
Tµ(D)η

)
L2

∣∣ . ‖(η, u)‖3V sµ .

Control of A12 +A21. We first decompose A12 in two parts

A12 =
(
[JsJ

1
2
µ

√
Tµ(D), η]∂xu, J

sJ
1
2
µ

√
Tµ(D)η

)
L2

+
(
(1 + η)JsJ

1
2
µ

√
Tµ(D)∂xu, J

sJ
1
2
µ

√
Tµ(D)η

)
L2

= A1
12 +A2

12.

We estimate A1
12 the same way we did for A1

11 and obtain

|A1
12| . ‖u‖Hs‖η‖2Hs .

For the second term, after integration by parts, we find

A2
12 = −

(
(∂xη)JsJ

1
2
µ

√
Tµ(D)u, JsJ

1
2
µ

√
Tµ(D)η

)
L2

−
(
(1 + η)JsJ

1
2
µ

√
Tµ(D)u, JsJ

1
2
µ

√
Tµ(D)∂xη

)
L2

= A2,1
12 +A2,2

12 .

By using the Sobolev embedding and (2.16), we find that

|A2,1
12 | ≤ ‖∂xη‖L∞‖J

1
2
µ

√
Tµu‖Hs‖J

1
2
µ

√
Tµη‖Hs . ‖u‖Hs‖η‖2Hs .
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On the other hand, we cannot estimate A2,2
12 on its own. We must therefore cancel it with

A21. Observe

A21 =
(
JsJ

1
2
µ

√
Tµ(D)∂xη, [

√
Tµ(D), η]JsJ

1
2
µ u
)
L2

+
(
JsJ

1
2
µ

√
Tµ(D)∂xη, (1 + η)JsJ

1
2
µ

√
Tµ(D)u

)
L2

= A1
21 +A2

21.

First, by using integration by parts, the Cauchy-Schwarz inequality, (2.16), (2.35) and (2.17)
we find that

|A1
21| = ‖JsJ

1
2
µ

√
Tµ(D)η‖L2‖∂x[

√
Tµ(D), η]JsJ

1
2
µ u‖L2 . ‖(η, u)‖3V sµ . (3.17)

On the other hand, we observe that A2
21 = −A2,2

21 . We may therefore conclude that the sum
satisfies:

|A12 +A21| . ‖(η, u)‖3V sµ .

Control of A22. Similar to A11 we write the expression with the good commutator:

A22 =
(
[JsJ

1
2
µ , u]∂xu, (1 + η)JsJ

1
2
µ u
)
L2 +

(
uJsJ

1
2
µ ∂xu, (1 + η)JsJ

1
2
µ u
)
L2

= A1
22 +A2

22.

Then use the Cauchy-Schwarz inequality, (3.14), (2.20) with s > 3
2 , and the Sobolev em-

bedding to get

|A1
22| . ‖[JsJ

1
2
µ , u]∂xu‖L2(1 + ‖η‖L∞)‖JsJ

1
2
µ u‖L2 . ‖(η, u)‖3V sµ .

While for A2
22 we integrate by parts, apply the Sobolev embedding, and again bound each

term by the V s
µ−norm of (η, u) to obtain that

|A2
22| . (‖∂xu‖L∞ + ‖∂xη‖L∞)‖J

1
2
µ u‖2Hs . ‖(η, u)‖3V sµ .

Gathering all these estimates, we conclude that

|I| . ‖(η, u)‖3V sµ . (3.18)

Control of II. By defintion of (3.12) and (3.10) we get that,

II =
(
JsJ

1
2
µ u, (∂tη)JsJ

1
2
µ u
)
L2

= −
(
JsJ

1
2
µ u, (∂xu)JsJ

1
2
µ u
)
L2 −

(
JsJ

1
2
µ u, (∂x(ηu))JsJ

1
2
µ u
)
L2

Then, by using Hölder’s inequality, the Sobolev embedding, (3.14) and (2.17), we deduce
that

|II| . (‖∂xu‖L∞ + ‖∂x(ηu)‖L∞)‖J
1
2
µ u‖2Hs . ‖(η, u)‖3V sµ . (3.19)

Consequently, we may add (3.18) and (3.19), then apply (3.16) to conclude the proof of
estimate (3.15).

�
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3.3. Estimates for system (1.9). As in the former subsections we let U = (η, u)T =
ε(ζ, v)T and write the system on the form

∂tU + M (U, D)U = 0, (3.20)

with

M (U, D) =

(
Tµ(D)(u∂x·) ∂x + Tµ(D)(η∂x·)
Kµ(D)∂x Tµ(D)(u∂x·)

)
. (3.21)

The symmetrizer is defined by

Q(U, D) =

(
T −1µ (D)Kµ(D) 0

0 T −1µ (D) + η

)
. (3.22)

Then the energy given in Definition 1.19 can be written as

Es(U) =
(
JsU,Q(U, D)JsU

)
L2 , (3.23)

and the a priori estimate for (1.9) is stated in the following proposition.

Proposition 3.4. Let s > 3
2 , ε, µ ∈ (0, 1), β ≥ 0, and let (η, u) = ε(ζ, v) ∈ C([0, T0];X

s
β,µ(R))

be a solution to (1.9) on a time interval [0, T0] for some T0 > 0. Moreover, assume that
there exist h0 ∈ (0, 1) and h1 > 0 such that

h0 − 1 ≤ η(x, t), ∀(x, t) ∈ R× [0, T0] and sup
t∈[0,T0]

‖(η, u)‖Hs×Hs ≤ h1. (3.24)

Then, for the energy given in Definition 1.19, there holds,

d

dt
Es(U) . c2β

(
Es(U)

) 3
2 , (3.25)

and the energy is coercive:

‖(η, u)‖2Xs
β,µ
. Es(U) . ‖(η, u)‖2Xs

β,µ
. (3.26)

Proof of Proposition 3.4. We will first provide the coercivity estimate (3.26). By Definition
1.19 for the energy, the non-cavitation condition (3.24) and (2.15) we obtain the lower
bound

Es(U) = ‖〈
√
βµD1〉η‖2Hs +

(
Jsu, (T −1µ (D) + η)Jsu

)
L2

≥ ‖η‖2Hs + βµ‖D1η‖2Hs +
h0
2
‖u‖2Hs + c

√
µ‖D

1
2u‖2Hs ,

for some c > 0 and β ≥ 0. The reverse inequality follows by the upper bound in (2.15), the
Sobolev embedding and (3.24):

Es(U) ≤ ‖〈
√
βµD1〉η‖2Hs + ‖

√
T
−1
µ (D)Jsu‖2 + ‖η‖L∞‖Jsu‖2 . ‖(η, u)‖2Xs

β,µ
.

We may now prove (3.25). To do so, we use (3.20) and the self-adjointness of Q(U, D)
to write

1

2

d

dt
Es(U) = −

(
JsM (U, D)U,Q(U, D)JsU

)
L2 +

1

2

(
JsU, (∂tQ(U, D))JsU

)
L2

=: I + I I .

Control of I . By definition of (3.23) we must estimate the following terms:

I =
(
Js(u∂xη),Kµ(D)Jsη

)
L2 +

(
Js∂xu+ JsTµ(D)(η∂xu), T −1µ (D)Kµ(D)Jsη

)
L2

+
(
JsKµ(D)∂xη, (T −1µ (D) + η)Jsu

)
L2 +

(
JsTµ(D)(u∂xu), (T −1µ (D) + η)Jsu

)
L2

=: A11 + A12 + A21 + A22.
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Control of A11. We rewrite A11 as

A11 =
(
[Js
√
Kµ(D), u]∂xη, J

s
√
Kµ(D)η

)
L2 +

(
uJs

√
Kµ(D)∂xη, J

s
√
Kµ(D)η

)
L2

=: A 1
11 + A 2

11.

Then in the case β > 0, we first observe by interpolation and Young’s inequality that√
βµ

1
4 ‖η‖

Hs+1
2
≤ ‖η‖

1
2
Hs

(
β
√
µ‖η‖Hs+1

) 1
2 .β ‖η‖Hs + β

√
µ‖D1η‖Hs , (3.27)

and thus A 1
11 is treated by the Cauchy-Schwarz inequality, the commutator estimate (2.18)

with s > 3
2 , (2.7), and (3.27):

|A 1
11| . c2β(‖u‖Hs + µ

1
2 ‖u‖

Hs+1
2
)(‖η‖Hs +

√
βµ

1
4 ‖η‖

Hs+1
2
)2 . c2β‖(η, u)‖3Xs

β,µ
.

On the other hand, for A 2
11 we conclude by integration by parts, (2.7), (3.27), and the

Sobolev embedding with s > 3
2 that

|A11| . |A 1
11|+ ‖∂xu‖L∞‖

√
Kµ(D)η‖Hs‖

√
Kµ(D)η‖Hs . c2β‖(η, u)‖3Xs

β,µ
,

for β > 0. Moreover, in the case β = 0, then Kµ(D) is equal to Tµ(D) and we simply
use Hölder’s inequality, (2.33), (2.14), the Sobolev embedding, and integration by parts to
deduce the estimate

|A11| ≤ |
(
[Js
√
Tµ(D), u]∂xη, J

s
√
Tµ(D)η

)
L2 |+ |

(
uJs

√
Tµ(D)∂xη, J

s
√
Tµ(D)η

)
L2 |

. ‖u‖Hs‖η‖2Hs .

Control of A12 + A21. By using integration by parts we write,

A12 =
(
Js(η∂xu),Kµ(D)Jsη

)
L2 −

(
Jsu, T −1µ (D)Kµ(D)Js∂xη

)
L2

= A 1
12 + A 2

12.

For A 1
12, observe

A 1
12 =

(
[Js, η]∂xu,Kµ(D)Jsη

)
L2 −

(
(∂xη)Jsu,Kµ(D)Jsη

)
L2 −

(
ηJsu,Kµ(D)Js∂xη

)
L2

= A 1,1
12 + A 1,2

12 + A 1,3
12 .

Then in the case β > 0 we use the Kato-Ponce commutator estimate (2.9), the Sobolev
embedding, and the pointwise estimate (2.1) combined with Plancherel imply that

|A 1,1
12 + A 1,2

12 | . c
2
β‖u‖Hs‖η‖Hs(‖η‖Hs + β

√
µ‖D1η‖Hs) . c2β‖(η, u)‖3Xs

β,µ
.

While for the case β = 0, we simply use the boundedness of Tµ(D) on L2(R) to deduce,

|A 1,1
12 + A 1,2

12 | . ‖u‖Hs‖η‖2Hs .

However, in either case the contribution of remaining terms, A 1,3
12 + A 2

12, will be canceled
by A21. Indeed, we observe that

A21 =
(
JsKµ(D)∂xη, ηJ

su
)
L2 +

(
JsKµ(D)∂xη, T −1µ (D)Jsu

)
L2 = −A 1,3

12 −A 2
12.

Hence, combining these identities and estimates gives the bound

|A12 + A21| . c2β‖(η, u)‖3Xs
β,µ
.

Control of A22. Consider the two terms:

A22 =
(
Js(u∂xu), Jsu

)
L2 +

(
JsTµ(D)(u∂xu), ηJsu

)
L2 = A 1

22 + A 2
22.
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The control of A 1
22 is a direct consequence of the Kato-Ponce commutator estimate (2.9)

and integration by parts. Since s > 3
2 , we have that

|A 1
22| ≤

∣∣([Js, u]∂xu, J
su
)
L2

∣∣+
1

2

∣∣((∂xu)Jsu, Jsu
)
L2

∣∣ . ‖u‖3Hs .

To deal with A 2
22, we make the decomposition

A 2
22 =

(
[Js
√
Tµ(D), u]∂xu,

√
Tµ(D)ηJsu

)
L2 +

(
uJs

√
Tµ(D)∂xu, [

√
Tµ(D), η]Jsu

)
L2

+
(
uJs

√
Tµ(D)∂xu, η

√
Tµ(D)Jsu

)
L2

= A 2,1
22 + A 2,2

22 + A 2,3
22 .

Then for A 2,1
22 we employ the Cauchy-Schwarz inequality, (2.33), (3.24), (2.14), and the

Sobolev embedding to deduce

|A 2,1
22 | ≤ ‖[J

s
√
Tµ(D), u]∂xu‖L2‖

√
Tµ(D)(ηJsu)‖L2 . ‖(η, u)‖3Xs

β,µ
.

Before we treat A 2,2
22 , we note that ‖[

√
Tµ(D), η]Jsu‖L2 . ‖η‖Hs‖u‖Hs . Indeed, using

(2.14) and the Sobolev embedding we find that

‖[
√
Tµ(D), η]Jsu‖L2 . ‖η‖L∞‖Jsu‖L2 . ‖η‖Hs‖u‖Hs . (3.28)

Consequently, using integration by parts, the Cauchy-Schwarz inequality, (3.28) and (2.35)
we get

|A 2,2
22 | =

∣∣((∂xu)Js
√
Tµ(D)u, [

√
Tµ(D), η]Jsu

)
L2

∣∣
+
∣∣(uJs√Tµ(D)u, ∂x[

√
Tµ(D), η]Jsu

)
L2

∣∣
. ‖η‖Hs‖u‖3Hs ,

then use (3.24) on one term. Similarly, for A 2,3
22 we use integration by parts, the Sobolev

embedding, and (2.14) to get the bound

|A 2,3
22 | . ‖∂x(ηu)‖L∞‖u‖2Hs .

Therefore, we conclude by (3.24) and gathering all these estimates that

|A22| . ‖(η, u)‖3Xs
β,µ
,

and by extension, we have the bound

|I | .β ‖(η, u)‖3Xs
β,µ
.

Control of I I . By defintion of (3.22) and (3.20) we get that,

I I =
(
Jsu, (∂tη)Jsu

)
L2

= −
(
Jsu, (∂xu)Jsu

)
L2 −

(
Jsu, (Tµ(D)∂x(ηu))Jsu

)
L2 ,

Then the final estimate follows by the Cauchy-Schwarz inequality, (3.24) and the fact that
Tµ(D) is bounded on L2(R), then apply Hölder’s inequality, and the Sobolev embedding to
deduce

|I I | ≤ ‖∂xu‖L∞‖u‖2Hs + ‖Tµ(D)∂x(ηu)‖L∞‖u‖2Hs . ‖(η, u)‖3Xs
β,µ
.

�
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4. Estimates for the difference of two solutions

4.1. Estimates for system (1.5). We will now estimate the difference between two solu-
tions of (1.5) given by U1 = (η1, u1)

T = ε(ζ1, v1)
T and U2 = (η2, u2)

T = ε(ζ2, v2)
T . For

convenience, we define (ψ,w) = (η1 − η2, u1 − u2). Then W = (ψ,w)T solves

∂tW +M(U1, D)W = F, (4.1)

with M defined as in (3.2) and F = −
(
M(U1, D)−M(U2, D)

)
U2. Specifically, the source

term is given by

F = −
(
w∂xη2 + ψ∂xu2

w∂xu2

)
. (4.2)

The energy associated to (4.1) is given in terms of the symmetrizer Q(U1, D) defined in
(3.3) and reads

Ẽs(W) :=
(
JsW, Q(U1, D)JsW

)
L2 . (4.3)

The main result of this section reads:

Proposition 4.1. Take s > 2 and ε, µ ∈ (0, 1). Let (η1, u1), (η2, u2) ∈ C([0, T0] : V s
µ (R)) be

two solutions of (1.5) on a time interval [0, T0] for some T0 > 0. Moreover, assume there
exist h0 ∈ (0, 1) and h1 > 0 such that

h0 − 1 ≤ η1(x, t), ∀(x, t) ∈ R× [0, T0] and sup
t∈[0,T0]

‖(η1, u1)‖Hs×Hs ≤ h1, (4.4)

when β ≥ 1
3 , and that

−β
2
≤ η1(x, t), ∀(x, t) ∈ R× [0, T0] and sup

t∈[0,T0]
‖(η1, u1)‖Hs×Hs ≤ h1, (4.5)

when 0 < β < 1
3 .

Define the difference to be W = (ψ,w) = (η1− η2, u1−u2). Then, for the energy defined
by (4.3), there holds

d

dt
Ẽ0(W) .β max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0

µ
, (4.6)

and

‖(ψ,w)‖2V 0
µ
.β Ẽ0(W) .β ‖(ψ,w)‖2V 0

µ
. (4.7)

Furthermore, we have the following estimate at the V s
µ− level:

d

dt
Ẽs(W) .β |

(
JsF, Q(U1, D)JsW

)
L2 |+ max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V sµ , (4.8)

and

‖(ψ,w)‖2V sµ .β Ẽs(W) .β ‖(ψ,w)‖2V sµ . (4.9)

Remark 4.2. The source term corresponding to F given by (4.8) will be treated in the proof
of Theorem 1.6 by using regularization estimates and a classical Bona-Smith argument [7].

Proof of Proposition 4.1. First, the proofs of (4.7) and (4.9) are similar to the one of (3.7).
Next, we only prove (4.6), where (4.8) is more straightforward and follows the same line,

utilizing similar estimates to those applied for the proof of Proposition 3.1.



26 M. OEN PAULSEN

To prove (4.6), we use (4.1) and the self-adjointness of Q(U1, D) to write

1

2

d

dt
Ẽ0(W) =

1

2

(
W, (∂tQ(U1, D))W

)
L2 +

(
F, Q(U1, D)W

)
L2

−
(
M(U1, D)W, Q(U1, D)W

)
L2

=: I − II − III.

Control of I. We estimate the first term for s > 2 by arguing similarly to estimate (3.9).
Indeed, we have that

I = (w, (∂tη1)w) . ‖∂tη1‖L∞‖w‖2L2 .β ‖(u1, η1)‖V sµ ‖(ψ,w)‖2V 0
µ
.

Control of II. For II, we write

II =
(
w∂xη2, ψ

)
L2 +

(
ψ∂xη2, ψ

)
L2 +

(
w∂xu2, η1w

)
L2 +

(
w∂xu2,Kµ(D)w

)
L2

=: II1 + II2 + II3 + II4.

The first three terms are treated by the Cauchy-Schwarz inequality and the Sobolev em-
bedding. Take, for instance, II1:

|II1| . ‖w∂xη2‖L2‖ψ‖L2 . ‖η2‖Hs‖(ψ,w)‖2V 0
µ
,

for s > 3
2 . Then estimating II2 + II3 similarly gives

|II1 + II2 + II3| . max
i=1,2

‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0
µ
.

Regarding the term containing the multiplier Kµ(D), we write

II4 ≤ ‖
√
Kµ(D)(w∂xu2)‖L2‖

√
Kµ(D)w‖L2 =: II14 · II24 ,

and make the observation

II14 ≤ ‖(
√
Kµ(D)−

√
βµ

1
4D

1
2 )(w∂xu2)‖L2 +

√
βµ

1
4 ‖D

1
2 (w∂xu2)‖L2

=: II1,14 +
√
βII1,24 .

For the first term, we note that (
√
Kµ(D)−

√
βµ

1
4D

1
2 ) is bounded on L2(R) by (2.5), and

we can conclude by the Sobolev embedding that

II1,14 .β ‖w∂xη2‖L2 .β ‖η2‖Hs‖(ψ,w)‖V 0
µ
.

For the remaining term, II1,24 , we first make an observation. Let ν = 1
2

−
and (p1, p2) =

( 1ν ,
2

1−2ν ) then by (2.37) there holds

‖D
1
2∂xu2‖Lp1µ

1
4 ‖w‖Lp2 . ‖u2‖H2−νµ

1
4 ‖D

1
2w‖L2 . (4.10)

Moreover, by the fractional Leibniz rule (2.38), the triangle inequality and Hölder’s inequal-
ity yields the bound

II1,24 . µ
1
4 ‖D

1
2 (w∂xu2)− wD

1
2∂xu2 − (∂xu2)D

1
2w‖L2 + µ

1
4 ‖wD

1
2∂xu2‖L2

+ µ
1
4 ‖(∂xu2)D

1
2w‖L2

. ‖D
1
2∂xu2‖Lp1µ

1
4 ‖w‖Lp2 + ‖w‖L2µ

1
4 ‖D

1
2∂xu2‖L∞ + ‖∂xu2‖L∞µ

1
4 ‖D

1
2w‖L2 .

Now, since 1
p1

+ 1
p2

= ν + 1−2ν
2 = 1

2 , we may apply (4.10) to deal with the first term, and

combined with the Sobolev embedding H
1
2

+

(R) ↪→ L∞(R) we deduce that

II1,24 . ‖u2‖Hsµ
1
4 ‖D

1
2w‖L2 + ‖w‖L2µ

1
4 ‖D

1
2u2‖Hs ,
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with s > 3
2 . Consequently, the bound on II4 is given by

II4 .β max
i=1,2

‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0
µ
,

which allows us to conclude that

II .β max
i=1,2

‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0
µ
.

Control of III. By definition, we must estimate:

III =
(
u1∂xψ,ψ

)
L2 +

(
(Kµ(D) + η1)∂xw,ψ

)
L2

+
(
∂xψ, (Kµ(D) + η1)w

)
L2 +

(
u1∂xw, (Kµ(D) + η1)w

)
L2

= A1 +A2 +A3 +A4.

The first term is handled by integration by parts and the Sobolev embedding

|A1| . ‖∂xu1‖L∞‖ψ‖2L2 . ‖u1‖Hs‖ψ‖2L2 .

Next, we observe a cancelation in the off-diagonal terms due to the symmetry. Indeed, we
see after integrating by parts that

A2 = −
(
(∂xη1)w,ψ

)
L2 −A3.

Consequently, we observe after using Hölder’s inequality and the Sobolev embedding that

|A2 +A3| . ‖∂xη1‖L∞‖w‖L2‖ψ‖L2 .

The only term remaining is A4, which contains the multiplier that will need some more
care. In particular, we write

A4 =
(
u1∂xw, η1w

)
L2 +

(
u1∂xw,Kµ(D)w

)
L2

=: A1
4 +A2

4.

The first term is again treated by integration by parts, and we obtain the bound

|A1
4| . ‖u1‖Hs‖η1‖Hs‖w‖2L2 .

Lastly, to estimate A2
4, we split the kernel Kµ(D) into several pieces that are localized in

low and high frequencies:

Kµ(D) = ((χ(1)
µ )2Kµ)(D) + ((χ(2)

µ )2(σµ, 1
2
)2)(D)− ((χ(2)

µ )2(σµ,0)
2)(D), (4.11)

where σµ, 1
2
(D) is defined in (2.26), σµ,0(D) is defined in (2.29) and χ

(i)
µ (D) with its porperties

given by Definition 2.10. Then, we get that(
u1∂xw,Kµ(D)w

)
L2 =

(
(χ(1)
µ

√
Kµ)(D)(u1∂xw), (χ(1)

µ

√
Kµ)(D)w

)
L2

+
(
(χ(2)
µ σµ, 1

2
)(D)(u1∂xw), (χ(2)

µ σµ, 1
2
)(D)w

)
L2

−
(
(χ(2)
µ σµ,0)(D)(u1∂xw), (χ(2)

µ σµ,0)(D)w
)
L2

=: A2,1
4 +A2,2

4 −A
2,3
4 .

We treat each term individually using the commutator estimates in Lemma 2.11, where the
remaining part is symmetric and is treated by using integration by parts and the Sobolev
embedding in the usual way.
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Control of A2,1
4 . Proceeding as explained above, we have that

A2,1
4 =

(
[(χ(1)

µ

√
Kµ)(D), u1]∂xw, (χ

(1)
µ

√
Kµ)(D)w

)
L2

+
(
u1(χ

(1)
µ

√
Kµ)(D)∂xw, (χ

(1)
µ

√
Kµ)(D)w

)
L2

= A2,1,1
4 +A2,1,2

4 .

For A2,1,1
4 we use the Cauchy-Schwarz inequality, (2.24), and (2.25) to obtain the bound

|A2,1,1
4 | . ‖[(χ(1)

µ

√
Kµ)(D), u1]∂xw‖L2‖(χ(1)

µ

√
Kµ)(D)w‖L2

. ‖u1‖Hs‖w‖2L2 .

For the remaining term, we deduce from (2.24) that

|A2,1,2
4 | = 1

2
|
(
(∂xu1)(χ

(1)
µ

√
Kµ)(D)w, (χ(1)

µ

√
Kµ)(D)w

)
L2 |

. ‖∂xu1‖L∞‖w‖2L2 .

Control of A2,2
4 . Similarly we get from the estimates (2.27), (2.28) and the Sobolev embed-

ding that

|A2,2
4 | . |

(
[(χ(2)

µ σµ, 1
2
)(D), u1]∂xw, (χ

(2)
µ σµ, 1

2
)(D)w

)
L2 |

+
1

2
|
(
(∂xu1)(χ

(2)
µ σµ, 1

2
)(D)w, (χ(2)

µ σµ, 1
2
)(D)w

)
L2 |

. ‖u1‖Hs(‖w‖L2 + µ
1
4 ‖D

1
2w‖L2)2.

Control of A2,3
4 . By the same approach as above, combined with estimates (2.30) and (2.31)

leaves us with the bound

|A2,3
4 | . |

(
[(χ(2)

µ σµ,0)(D), u1]∂xw, (χ
(2)
µ σµ,0)(D)w

)
L2 |

+
1

2
|
(
(∂xu1)(χ

(2)
µ σµ,0)(D)w, (χ(2)

µ σµ,0)(D)w
)
L2 |

. ‖u1‖Hs‖w‖2L2 + ‖∂xu1‖L∞‖w‖2L2 .

Gathering all these estimates, we obtain the result

|A4| = |A1
4 +A2

4 +A3
4| .β (‖u1‖Hs + ‖η1‖Hs)‖(ψ,w)‖2V 0

µ
.

Adding I + II + III concludes the proof. �

4.2. Estimates for system (1.7). As in the prvious subsection, we let U1 = (η1, u1)
T =

ε(ζ1, v1)
T and U2 = (η2, u2)

T = ε(ζ2, v2)
T be two solutions of (1.7) and define the difference

(ψ,w) = (η1 − η2, u1 − u2). Then W = (ψ,w)T solves

∂tW +M(U1, D)W = F, (4.12)

with M defined as in (3.11) and F will remain the same as previously defined by (4.2).
Then the energy associated to (4.12) is given in terms of the symmetrizer (3.12):

Ẽs(W) :=
(
J

1
2
µ J

sW,Q(U1, D)J
1
2
µ J

sW
)
L2 . (4.13)

Proposition 4.3. Take s > 3
2 and ε, µ ∈ (0, 1). Let (η1, u1), (η2, u2) ∈ C([0, T0] : V s

µ (R)) be
two solutions of (1.7) on a time interval [0, T0] for some T0 > 0. Moreover, assume there
exists h0 ∈ (0, 1) and h1 > 0 such that

h0 − 1 ≤ η1(x, t), ∀(x, t) ∈ R× [0, T0] and sup
t∈[0,T0]

‖(η1, u1)‖Hs×Hs ≤ h1. (4.14)
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Define the difference to be W = (ψ,w) = (η1− η2, u1−u2). Then, for the energy defined
by (4.13), there holds

d

dt
Ẽ0(W) . max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0

µ
, (4.15)

and

‖(ψ,w)‖2V 0
µ
. Ẽ0(W) . ‖(ψ,w)‖2V 0

µ
. (4.16)

Furthermore, we have the following estimate at the V s
µ− level:

d

dt
Ẽs(W) . |

(
JsF,Q(U1, D)JsW

)
L2 |+ max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V sµ , (4.17)

and

‖(ψ,w)‖2V sµ . Ẽs(W) . ‖(ψ,w)‖2V sµ . (4.18)

Proof. The proofs of (4.16) and (4.18) are similar to the proof of (3.16).
Also, we only prove (4.15) since the control of (4.17) follows by the proof of Proposition

3.3.
To prove (4.15), we use (4.12) and the self-adjointness of Q(U1, D) to write

1

2

d

dt
Ẽ0(W) =

1

2

(
J

1
2
µ W, (∂tQ(U1, D))J

1
2
µ W

)
L2 +

(
J

1
2
µ F,Q(U1, D)J

1
2
µ W

)
L2

−
(
J

1
2
µM(U1, D)W,Q(U1, D)J

1
2
µ W

)
L2

=: I − II − III.

Control of I. Using (4.12), (2.17), the Sobolev embedding and (4.14) yields

|I| = 1

2
|
(
J

1
2
µ w, (∂tη1)J

1
2
µ w
)
L2 | . ‖(η1, u1)‖V sµ ‖J

1
2
µ w‖2L2 ,

since s > 3
2 .

Control of II. The contribution of the source term is given by

II =
(
J

1
2
µ (w∂xη2), Tµ(D)J

1
2
µ ψ
)
L2 +

(
J

1
2
µ (ψ∂xu2), Tµ(D)J

1
2
µ ψ
)
L2

+
(
J

1
2
µ (w∂xu2), J

1
2
µ w
)
L2 +

(
J

1
2
µ (w∂xu2), η1J

1
2
µ w
)
L2

=: II1 + II2 + II3 + II4.

Control of II1 + II2. The estimate of II1 is a direct consequence of the Cauchy-Schwarz
inequality, (2.16) and the Sobolev embedding. Indeed, since s > 3

2 , we get

|II1| ≤ ‖
√
Tµ(D)J

1
2
µ (w∂xη2)‖L2‖

√
Tµ(D)J

1
2
µ ψ‖L2 . ‖η2‖Hs‖w‖L2‖ψ‖L2 .

Next, the control of II2 follows by the same estimates and gives

|II2| . ‖η2‖Hs‖ψ‖2H1 .

Control of II3 + II4. We first deduce from (2.13) that

‖J
1
2
µ (w∂xu2)‖L2 ≤ ‖w∂xu2‖L2 + µ

1
4 ‖D

1
2 (w∂xu2)‖L2 .
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The first term is estimated by the Sobolev embedding, while the second term is equal to
the term II1,24 in the proof of Proposition 4.1. Since the terms w and u2 in II1,24 belong to
the same function space, we can apply the same estimates. Thus, there holds for s > 3

2 that

‖J
1
2
µ (w∂xu2)‖L2 . max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0

µ
. (4.19)

Therefore, by using the Cauchy-Schwarz inequality, (4.19), (2.17), (4.14), and the Sobolev
embedding implies

|II3|+ |II4| . (1 + ‖η1‖L∞)‖J
1
2
µ (w∂xu2)‖L2‖J

1
2
µ w‖L2 . max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0

µ
.

Control of III. Lastly, the symmetrized term reads:

III =
(
J

1
2
µ (u1∂xψ), Tµ(D)J

1
2
µ ψ
)
L2 +

(
J

1
2
µ

(
(1 + η1)∂xw

)
, Tµ(D)J

1
2
µ ψ
)
L2

+
(
Tµ(D)J

1
2
µ ∂xψ, (1 + η1)J

1
2
µ w
)
L2 +

(
J

1
2
µ (u1∂xw), (1 + η1)J

1
2
µ w
)
L2

= A11 +A12 +A21 +A22.

Each term is treated by using integration by parts and suitable commutator estimates.

Control of A11. For A11, we use integration by parts to find that

A11 =
(
[
√
Tµ(D)J

1
2
µ , u1]∂xψ,

√
Tµ(D)J

1
2
µ ψ
)
L2 −

1

2

(
(∂xu1)

√
Tµ(D)J

1
2
µ ψ,

√
Tµ(D)J

1
2
µ ψ
)
L2 .

Thus, it follows from the commutator estimate (2.32) with s > 3
2 and estimate (2.16) that

|A11| . max
i=1,2

‖(ηi, ui)‖V sµ ‖ψ‖
2
L2 .

Control of A12 +A21. Treating the off-diagonal terms we first observe,

A12 =
(
[
√
Tµ(D)J

1
2
µ , η1]∂xw,

√
Tµ(D)J

1
2
µ ψ
)
L2

+
(
(1 + η1)

√
Tµ(D)J

1
2
µ ∂xw,

√
Tµ(D)J

1
2
µ ψ
)
L2

= A1
12 +A2

12.

The commutator estimate (2.32) and estimate (2.16) deals with the first term. Indeed, we
get the bound

|A1
12| ≤ ‖[

√
Tµ(D)J

1
2
µ , η1]∂xw‖L2‖

√
Tµ(D)J

1
2
µ ψ‖L2 . max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0

µ
.

Next, we integrate A2
12 by parts to obtain two new terms

A2
12 = −

(
(∂xη1)J

1
2
µ

√
Tµ(D)w, J

1
2
µ

√
Tµ(D)ψ

)
L2

−
(
(1 + η1)J

1
2
µ

√
Tµ(D)w, J

1
2
µ

√
Tµ(D)∂xψ

)
L2

= A2,1
12 +A2,2

12 .

Arguing as above, we find that

|A2,1
12 | ≤ ‖∂xη1‖L∞‖J

1
2
µ

√
Tµ(D)w‖L2‖J

1
2
µ

√
Tµ(D)ψ‖L2 . ‖η1‖Hs‖(ψ,w)‖2V 0

µ
,
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for s > 3
2 . On the other hand, the term A2,2

12 , is absorbed by A21. Indeed,

A21 = −
(√
Tµ(D)J

1
2
µ ψ, ∂x[

√
Tµ(D), η1]J

1
2
µ w
)
L2

+
(√
Tµ(D)J

1
2
µ ∂xψ, (1 + η1)

√
Tµ(D)J

1
2
µ w
)
L2

= A1
21 +A2

21,

with A2
21 = −A2,2

12 . We estimate A1
21 by using the Cauchy-Schwarz inequality, (2.16), (2.35),

and (2.17) to get

|A1
21| ≤ ‖

√
Tµ(D)J

1
2
µ ψ‖L2‖∂x[

√
Tµ(D), η1]J

1
2
µ w‖L2 . ‖η1‖Hs‖(ψ,w)‖2V 0

µ
.

Thus, we deduce by gathering all these estimates that

|A12 +A21| . max
i=1,2

‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0
µ
.

Control of A22. Lastly, the term A22 is estimated by (2.36) for s > 3
2 , (4.14), and integration

by parts

|A2
22| ≤ |

(
[J

1
2
µ , u1]∂xw, (1 + η1)J

1
2
µ w
)
L2 |+ |

(
u1J

1
2
µ ∂xw, (1 + η1)J

1
2
µ w
)
L2 |

. max
i=1,2

‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0
µ
.

Therefore, we deduce that

d

dt
Ẽ0(W) . |I|+ |II|+ |III| . max

i=1,2
‖(ηi, ui)‖V sµ ‖(ψ,w)‖2V 0

µ
,

which concludes the proof of Proposition 4.3.
�

4.3. Estimates for system (1.9). Again, we let U1 = (η1, u1)
T = ε(ζ1, v1)

T and U2 =
(η2, u2)

T = ε(ζ2, v2)
T be two solutions of (1.9) and define the difference (ψ,w) = (η1 −

η2, u1 − u2). Then W = (ψ,w)T solves

∂tW + M (U1, D)W = F, (4.20)

with M defined as in (3.21) and F is defined by

F = −
(
Tµ(D)(w∂xη2) + Tµ(D)(ψ∂xu2)

Tµ(D)(w∂xu2)

)
. (4.21)

The energy associated with (4.20) is given in terms of the symmetrizer (3.22) by

Ẽs(W) :=
(
JsW,Q(U1, D)JsW

)
L2 . (4.22)

Proposition 4.4. Take s > 3
2 , ε, µ ∈ (0, 1) and β ≥ 0. Let (η1, u1), (η2, u2) ∈ C([0, T0] :

Xs
β,µ(R)) be two solutions of (1.9) on a time interval [0, T0] for some T0 > 0. Moreover,

assume there exist h0 ∈ (0, 1) and h1 > 0 such that

h0 − 1 ≤ η1(x, t), ∀(x, t) ∈ R× [0, T0] and sup
t∈[0,T0]

‖(η1, u1)‖Hs×Hs ≤ h1. (4.23)

Define the difference to be W = (ψ,w) = (η1− η2, u1−u2). Then, for the energy defined
by (4.22), there holds

d

dt
Ẽ0(W) .β max

i=1,2
‖(ηi, ui)‖Hs‖(ψ,w)‖2X0

β,µ
, (4.24)
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and

‖(ψ,w)‖2X0
β,µ
. Ẽ0(W) . ‖(ψ,w)‖2X0

β,µ
. (4.25)

Furthermore, we have the following estimate at the Xs
β,µ− level:

d

dt
Ẽs(W) .β |

(
JsF,Q(U1, D)JsW

)
L2 |+ max

i=1,2
‖(ηi, ui)‖Xs

β,µ
‖(ψ,w)‖2Xs

β,µ
, (4.26)

and

‖(ψ,w)‖2Xs
β,µ
. Ẽs(W) . ‖(ψ,w)‖2Xs

β,µ
. (4.27)

Proof. By previous arguments, we note that the proofs of (4.25) and (4.27) are similar to
the proof of (3.26).

Moreover, we will only prove (4.24) since the control of (4.26) follows by the proof of
Proposition 3.4.

We will now prove (4.24). Then we first use (4.20) and the self-adjointness of Q(U1, D)
to write

1

2

d

dt
Ẽ0(W) =

1

2

(
W, (∂tQ(U1, D))W

)
L2 +

(
F,Q(U1, D)W

)
L2

−
(
M (U1, D)W,Q(U1, D)W

)
L2

=: I −I I −I I I .

Control of I . By (4.20), Hölder’s inequality, the Sobolev embedding and (4.23) we deduce

|I | = 1

2
|
(
w, (∂tη1)w

)
L2 | . ‖u1‖Hs(1 + ‖η1‖Hs)‖w‖2L2 . max

i=1,2
‖(ηi, ui)‖Hs‖(ψ,w)‖2X0

β,µ
.

Control of I I . The contribution from the source term is given by,

I I =
(
w∂xη2,Kµ(D)ψ

)
L2 +

(
ψ∂xη2,Kµ(D)ψ

)
L2

+
(
w∂xu2, w

)
L2 +

(
Tµ(D)(w∂xu2), η1w

)
L2

=: I I 1 + I I 2 + I I 3 + I I 4.

Control of I I 1 + I I 2. For β > 0, we first apply the Cauchy-Schwarz inequality, (2.1),
and the Sobolev embedding to deduce that for s > 3

2

|I I 1|+ |I I 2| . (‖w‖L2 + ‖ψ‖L2)‖η2‖Hs‖Kµ(D)ψ‖L2

. ‖η2‖Hs‖(ψ,w)‖2X0
β,µ
.

The case β = 0, is similar where we instead use the boundedness of Tµ(D) on L2(R) to
obtain

|I I 1|+ |I I 2| . ‖η2‖Hs‖(ψ,w)‖2L2 .

Control of I I 3 + I I 4. Both terms are treated with the Cauchy-Schwatz inequality,
(2.14) and the Sobolev embedding. Consequently, for s > 3

2 and β ≥ 0 there holds

|I I 3|+ |I I 4| . (1 + ‖η1‖Hs)‖u2‖Hs‖w‖2L2 . max
i=1,2

‖(ηi, ui)‖Hs‖(ψ,w)‖2X0
β,µ
.

Gathering all these estimates yields

|I I | . max
i=1,2

‖(ηi, ui)‖Hs‖(ψ,w)‖2X0
β,µ
.
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Control of I I I . The symmetrized term I I I reads:

I I I =
(
u1∂xψ,Kµ(D)ψ

)
L2 +

(
(1 + Tµ(D)η1)∂xw, T −1µ (D)Kµ(D)ψ

)
L2

+
(
Kµ(D)∂xψ, (T −1µ (D) + η1)w

)
L2 +

(
Tµ(D)(u1∂xw), (T −1µ (D) + η1)w

)
L2

= A11 + A12 + A21 + A22.

Control of A11. In the case β > 0, we decompose A11 as

A11 =
(
u1∂xψ, ((χ

(1)
µ )2Kµ)(D)ψ

)
L2 +

(
u1∂xψ, ((χ

(2)
µ )2(σµ, 1

2
)2)(D)ψ

)
L2

−
(
u1∂xψ, ((χ

(2)
µ )2(σµ,0)

2)(D)ψ
)
L2 ,

where we have divided the multiplier Kµ(D) into three pieces in the same way as we did in
(4.11). We may therefore apply the same estimates as for A3

4 in the proof of Proposition
4.1, where we change the role of ψ and w to obtain

|A11| = |
(
u1∂xψ,Kµ(D)ψ

)
L2 | .β ‖u1‖Hs(‖ψ‖2L2 +

√
βµ

1
4 ‖ψ‖2

H
1
2
).

Then use inequality (3.27) to conclude that

|A11| . ‖u1‖Hs‖(ψ,w)‖2X0
β,µ
.

In the case β = 0, we simply use Hölder’s inequality, (2.14), (2.34), to obtain

|A11| . |
(
(∂xu1)

√
Tµ(D)ψ,

√
Tµ(D)ψ

)
L2 |+ |

(
[
√
Tµ(D), u1]∂xψ,

√
Tµ(D)ψ

)
L2 |

. ‖u1‖Hs‖ψ‖2L2 .

Control of A12 + A21. Treating the off-diagonal terms we first observe by integrating by
parts that

A12 = −
(
(∂xη1)w,Kµ(D)ψ

)
L2 −A21.

Therefore, we may apply Hölder’s inequality, the Sobolev embedding, and (2.1) for β ≥ 0,
to deduce

|A12 + A21| . ‖η1‖Hs‖(ψ,w)‖X0
β,µ
.

Control of A22. We decompose A22 into two terms

A22 =
(
u1∂xw,w

)
L2 +

(
Tµ(D)(u1∂xw), η1w

)
L2

= A 1
22 + A 2

22.

We see that A 1
22 is easily treated by the Cauchy-Schwarz inequality, integration by parts,

the Sobolev embedding, and (4.23). Indeed, there holds

|A 1
22| . ‖u1‖Hs‖w‖2L2 .

Next, we decompose A 2
22 into three parts

A 2
22 =

(
[
√
Tµ(D), u1]∂xw,

√
Tµ(D)(η1w)

)
L2 +

(
u1
√
Tµ(D)∂xw, [

√
Tµ(D), η1]w

)
L2

+
(
u1
√
Tµ(D)∂xw, η1

√
Tµ(D)w

)
L2 .

= A 2,1
22 + A 2,2

22 + A 2,3
22 .

For A 2,1
22 , we simply apply Hölder’s inequality, (2.34), (2.14), the Sobolev embedding to

find that

|A 2,1
22 | ≤ ‖[

√
Tµ(D), u1]∂xw‖L2‖

√
Tµ(D)(η1w)‖L2 . ‖u1‖Hs‖η1‖Hs‖w‖2L2 .
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For A 2,2
22 , we first remark that

‖[
√
Tµ(D), η1]w‖L2 . ‖η1‖L∞‖w‖L2 , (4.28)

simply by using Hölder’s inequality and (2.14). Then after integrating by parts, we use
Hölder’s inequality, the Sobolev embedding, (2.35), (4.23), and (4.28) to deduce that

|A 2,2
22 | ≤ ‖∂xu1‖L∞‖

√
Tµ(D)w‖L2‖[

√
Tµ(D), η1]w‖L2

+ ‖u1‖L∞‖
√
Tµ(D)w‖L2‖∂x[

√
Tµ(D), η1]w‖L2

. max
i=1,2

‖(ηi, ui)‖Hs‖w‖2L2 .

Lastly, we use integration by parts, then apply Hölder’s inequality, (2.14), the Sobolev
embedding, and (4.23) to obtain that

|A 2,3
22 | ≤

1

2
‖∂x(u1η1)‖L∞‖

√
Tµ(D)w‖2L2 . max

i=1,2
‖(ηi, ui)‖Hs‖w‖2L2 .

We may now gather these estimates to conclude that

|A22| . max
i=1,2

‖(ηi, ui)‖Hs‖(ψ,w)‖2X0
β,µ
,

and as a result the proof of Proposition 4.4 is now complete. �

5. Proof of Theorem 1.6 in the one-dimensional case

Proof. The proof is divided into eight steps, utilizing the results above.

Step 1: Existence of solutions for a regularized system. Let s > 1
2 , 0 < ν < 1 and α = 3

2

+
.

Then, for any initial data U0 := (η0, u0) ∈ V s
µ (R), we claim that there exist cβ > 0, and a

time

0 < Tν := Tν
(
‖(η0, u0)‖V sµ

)
=

(
cβν

2
3α

1 + ‖(η0, u0)‖V sµ

) 1

1− 2
3α (5.1)

such that Uν := (ην , uν)T ∈ C([0, Tν ];V s
µ (R)) is a unique solution of the regularized Cauchy

problem: {
∂tη

ν + uν∂xη
ν + (Kµ(D) + ην)∂xu

ν = −ν〈D〉αην

∂tu
ν + ∂xη

ν + uν∂xu
ν = −ν〈D〉αuν .

(5.2)

The proof of the existence of a unique solution is a consequence of the contraction mapping
principle. First, we find the diagonalisation of the linear part, Sν(t), of (5.2) to be

Sν(t) =
1

2

(
−
√
Kµ(D)

√
Kµ(D)

1 1

)(
exp(−tLν−(D)) 0

0 exp(−tLν+(D))

)(
−K−

1
2

µ (D) 1

K−
1
2

µ (D) 1

)
where Lν±(D) = ±iD

√
Kµ(D) + ν〈D〉α. Then we shall show that

ΦU0(Uν)(t) := Sν(t)U0 −
∫ t

0
Sν(t− s)∂x

(
ηνuν

(uν)2

2

)
(s) ds, (5.3)

defines a contraction on the closed subspaceB(a) of C([0, T ];V s
µ (R)), whose norm is bounded

by a, and is centered at the point Sν(t)U0. However, we note by Plancherel that for |ξ| > 1
there holds,

‖Sν(t)∂xU‖L2 .β ‖|ξ|
3
2 e−ν|ξ|

αtÛ‖L2 .β
1

(νt)
2
3α

‖U‖L2 . (5.4)
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The same is trivially true for |ξ| ≤ 1. Now, combining (5.4) with the fact that 2
3α < 1 and

the algebra property of H
1
2

+

(R) we deduce that

‖ΦU0(Uν)− Sν(t)U0‖Hs .β T
1− 2

3α ν−
2
3α ‖Uν‖2Hs

and

‖ΦU0(Uν
1)− ΦU0(Uν

2)‖Hs .β T
1− 2

3α ν−
2
3α ‖Uν

1 −Uν
2‖Hs(‖Uν

1‖Hs + ‖Uν
2‖Hs)

Therefore, by choosing a = ‖U0‖L∞T V sµ and T as in (5.1) we can use the above estimates

to conclude by the Fixed Point Theorem that there exist a unique solution of (5.2) in
C([0, Tν ];V s

µ (R)).

Remark 5.1. A consequence of Step 1, is the continuity of the flow map associated with
(5.2). But this is only for the ’short’ time Tν given by (5.1), and is therefore not useful for
the limit equation.

Step 2: The blow-up alternative. We define the maximal time of existence to be

T ?ν = sup
{
Tν > 0 : ∃! Uν = (ην , uν)T solution of (5.2) in C([0, Tν ];V s

µ (R))
}
.

Then we claim that the solution of (5.2) satisfies the blow-up alternative:

If T ?ν <∞, then lim
t↗T ?ν

‖(ην , uν)(t)‖V sµ =∞. (5.5)

First, we argue by contradiction that T ?ν <∞ and there exist A ∈ R+ such that

sup
t∈[0,T ?ν )

‖(ην , uν)(t)‖V sµ = A. (5.6)

We use (5.1) to define τν,A = T ?ν −
Tν(A)

2 . Then we have that

a := ‖(ην , uν)(τν,A)‖V sµ ≤ A.

Therefore, if we let Vν
0 = (ην , uν)T (τν,A) serve as initial data, then (5.2) has a unique

solution given by

Vν(t) = Sν(t)Vν
0 −

∫ t

0
Sν(t− s)∂x

(
vν1v

ν
2

(vν2 )
2

2

)
(s) ds (5.7)

with Vν = (vν1 , v
ν
2 ) ∈ C([0, Tν(a)];V s

µ (R)). Here, Tν(a) is given by (5.1) due to Step 1.
Moreover, we observe that Tν(a) ≥ Tν(A) by definition (5.1), and implies τν,A + Tν(a) ≥
T ?ν + Tν(A)

2 . Thus, we define the extension of Uν = (ην , uν)T by the function

Zν(t) =

{
Uν(t), if 0 ≤ t < τν,A

Vν(t− τν,A), if τν,A ≤ t ≤ τν,A + Tν(a),

and one can verify that it is a solution of (5.2) for all t ∈ [0, T ?ν + Tν(A)
2 ] ⊂ [0, τν,A + Tν(a)].

This contradicts the definition of T ?ν . Thus, we conclude that if T ?ν < ∞, then necessarily
A =∞ in (5.6), and implies

lim sup
t↗T ?ν

‖(ην , uν(t))‖V sµ =∞. (5.8)
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To conclude the proof of the claim, we use (5.8) to verify that for all R > 0 there exists
an open interval (tR, T

?
ν ) such that ‖(ην , uν(t))‖V sµ > R, for all t ∈ (tR, T

?
ν ). Indeed, we

argue by contradiction that there exists R ∈ R+ such that for all 0 < tR < T ?ν , we have

‖(ην , uν)(t)‖V sµ ≤ R, (5.9)

for some t ∈ (tR, T
?
ν ). By (5.8) there is a time such that τR,0 > T ?ν −

Tν(R)
2 and satisfying

‖(ην , uν)(τR,0)‖V sµ > R.

On the other hand, by assumption (5.9) we can take tR = τR,0 and use the fact that there
is a time τR,1 ∈ (tR, T

?
ν ) such that

‖(ην , uν)(τR,1)‖V sµ ≤ R.

Thus, by the same argument as above we can take (ην , uν)(τR,1) as initial data of (5.2) to

find an extended solution defined on [0, T ?ν + Tν(R)
2 ] ⊂ [0, τR,1 +Tν(R)]. This contradicts the

definition of T ?ν . As a result, we conclude that (5.5) holds true.

Step 3: The existence time is independent of ν > 0. We claim that there exists

T =
1

k1β‖(ζ0, v0)‖V sµ
,

as in (1.16), such that the regularized solution ε(ζν , vν) = (ην , uν) exists on the interval
[0, Tε ].

The proof relies on a bootstrap argument similar to the proof of Lemma 5.1 in [28]. In
fact, the long time existence is a direct consequence of the following remark and lemma.

Remark 5.2. We will invoke the estimates in Proposition 3.1 for system (5.2). However,
due to the parabolic regularisation, we must also control the additional terms given by

d

dt
Es(U

ν) .β
(
Es(U

ν)
) 3

2 − ν
(
Js+αUν , Q(Uν , D)JsUν

)
L2 .

But decomposing the last term, we note that(
Js+αUν , Q(Uν , D)JsUν

)
L2 =

(
Js+

α
2 ην , Js+

α
2 ην
)
L2 +

(
Js+

α
2 uν , (Kµ(D) + ην)Js+

α
2 uν

)
L2

+
(
Js+

α
2 uν , [J

α
2 , ην ]Jsuν

)
L2

= I + II + III.

The first two terms has a positive sign, while the third term, III, can be absorbed by the
second term by using Cauchy-Schwarz, (A.9) and Young’s inequality:

|III| ≤ 2c1‖uν‖Hs+α2
‖ην‖Hs‖uν‖Hs ≤ c2‖uν‖2

Hs+α2
+
c1
c2
‖ην‖2Hs‖uν‖2Hs ,

by choosing 0 < c2 < min{h02 ,
β
2 }. Indeed, by (2.7), (2.8), (3.4), (3.5) and (3.7) we get the

bound

−ν(I + II + III) ≤ −ν‖ην‖2
Hs+α2

+ ν(c2 −min{h0
2
,
β

2
})‖uν‖2

Hs+α2

+
c1
c2
cβ
(
Es(U

ν)
) 3

2 .

Therefore, we have that Proposition 3.1 holds for the regularised system.
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Lemma 5.3. Let s > 2 and ε be as in (1.15). Let (ην , uν) = ε(ζν , vν) ∈ C([0, T ?ν );V s
µ (R))

be a solution of (5.2) with initial data ε(ζ0, v0) = (η0, u0) ∈ V s
µ (R), defined on its maximal

time of existence and satisfying the blow-up alternative (5.5). Moreover, let η0 = εζ0 satisfy
either the non-cavitation condition (1.13) or the β−dependent surface condition (1.14),
depending on whether β ≥ 1

3 or 0 < β < 1
3 , respectively. Then there exists a time

T0 =
1

k1β‖(η0, u0)‖V sµ
, (5.10)

such that T ?ν > T0 and

sup
t∈[0,T0]

‖(ην , uν)(t)‖V sµ ≤ 4k2β‖(η0, u0)‖V sµ . (5.11)

The constants are on the form

k2β =
c2β
c1β

and k1β =

{
C1
β for 0 < β < 1

3

C2β
2 for β ≥ 1

3

where C1 and C2 are two positive constants to be fixed in the proof.

Proof. We define the set

T̃ν = sup
{
Tν ∈ (0, T ?ν ) : sup

t∈[0,Tν ]
‖(ην , uν)(t)‖V sµ ≤ 4k2β‖(η0, u0)‖V sµ

}
. (5.12)

Then we first note that T̃ν < T ?ν , or else it would contradict the blow-up alternative (5.5).

For the proof we argue by contradiction that T̃ν ≤ T0.
The main idea is to improve the estimate given in (5.12). First, we verify that the solution

(ην , uν) satisfy (3.4). Indeed, recalling assumption (1.15):

0 < ε ≤ 1

k2β‖(ζ0, v0)‖V sµ
,

implies

‖(ην , uν)‖Hs ≤ k2β‖(ην0 , uν0)‖V sµ = 4εk2β‖(ζ0, v0)‖V sµ ≤ 4, (5.13)

for all t ∈ [0, T̃ν ]. Next, the solution (ην , uν) satisfy the non-cavitation condition. We will
prove this as a consequence of the bound

sup
τ∈[0,T̃ν ]

|∂tην(τ)| ≤ k2ββ2.

Indeed, by similar argument as for (3.8), we use (5.2), (5.13), and H
1
2

+

(R) ↪→ L∞(R) to
find

‖∂tην‖L∞ ≤ c2β‖(ην , uν)‖V sµ + ‖ην‖Hs‖uν‖Hs ≤ 4k2βc
2
β‖(η0, u0)‖V sµ .

Then, by the Fundamental Theorem of Calculus we obtain

1 + ην(x, t) = 1 + η0 +

∫ t

0
∂tη

ν(x, s) ds ≥ h0 − k2ββ2T̃ν , (5.14)

for all t ∈ [0, T̃ν ]. On the one hand, if β ≥ 1
3 , then

k2β =
c2β
c1β

= cβ.
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Thus, for C2 > 0 large enough, we get that k1β ≥ C2β
2 ≥ cβ2

h0
. Moreover, by the assumption

T̃ν ≤ T0, we conclude from (5.14) that

1 + ην(x, t) ≥ h0 − k2ββ2T0 ≥
h0
2
,

for all t ∈ [0, T̃ν ]. On the other hand, in the case when β ∈ (0, 13) we need to verify (3.5).

But this can be done the same way by choosing k1β ≥
C1
β ≥

c
βhβ

for C1 > 0 large enough.

Having remark 5.2 in mind, the hypotheses of Proposition 3.1 are now verified, leaving
us (3.6) and (3.7) at our disposal. With this at hand, we observe that

Es(U
ν)(t) ≤ Es(Uν)(0) + c2β

∫ t

0

(
Es(U

ν)(s′)
) 3

2 ds′ =: ψ(t).

By the above inequality, we then have ψ′(t) ≤ c2β
(
Es(U

ν)(t)
) 3

2 ≤ c2β (ψ(t))
3
2 . We solve the

differential inequality and use (3.7) to relate the energy with the V s
µ−norm of the solution

and deduce that

c1β‖(ην , uν)(t)‖V sµ ≤
c2β‖(η0, u0)‖V sµ

1− (c2β)
2

2 t‖(η0, u0)‖V sµ
, (5.15)

for all t ∈ [0, T̃ν ]. Finally, if C1, C2 > 0 is large enough then since T̃ν ≤ T0 we have that

‖(ην , uν)(t)‖V sµ ≤ 2k2β‖(ην0 , uν0)‖V sµ .

Though, by continuity of the solution in time t ∈ [0, T ?ν ), there exists τ > 0 such that

‖(ην , uν)(τ)‖V sµ ≤ 3k2β‖(η0, u0)‖V sµ for T̃ν < τ < T ?ν . This contradicts the definition of T̃ν .

Thus, we may conclude T0 < T̃ν for all ν > 0 and that T0 is independent from ν by its
definition in (5.10).

�

Remark 5.4. For 0 < β < 1
3 we observe that k1β ∼ k2β ∼

1
β and is due to the appearance of

c1β in the coercivity estimate (3.7). This will impact the size of the time interval when β is

small (see Remark 1.9). On the other hand, for system (1.9) the coercivity estimate (3.26)
is independent of β and therefore gives a longer time of existence, as noted in Remark 1.15.

Step 4: Uniqueness. Given a solution of (1.5), then we claim that it must be unique.
We consider two solutions

ε(ζ1, v1) = (η1, u1) and ε(ζ1, v1) = (η1, u1) in C([0, T0];V
s
µ (R)),

with the same initial data. Then define W = (η1 − η2, u1 − u2)
T , which is associated

to the initial datum W(0) = 0. Since (η1, u1) ∈ Hs(R), there exist a number h1 > 0
such that ‖(η1, u1)‖Hs×Hs ≤ h1. Moreover, η1 satisfies the non-cavitation condition by the
Fundamental Theorem of Calculus and the argument made in the proof of Lemma 5.3.
Thus, we may use Proposition 4.1 to deduce

d

dt
Ẽ0(W) .β max

i=1,2
‖(ηi, ui)‖V sµ Ẽ0(W).

Then Grönwall’s lemma and (4.7) implies that ‖(η1−η2, u1−u2)(t)‖V sµ = 0 for all t ∈ [0, T0].
We therefore conclude the proof of the uniqueness.
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Step 5: Existence of solutions. We claim that for all 0 ≤ s′ < s there exists a solution

(ζ, v) = ε−1(η, u) ∈ C([0, T0];V
s′
µ (R)) ∩ L∞([0, T0];V

s
µ (R)) of (1.5) with T0 = O(1ε ) defined

by (5.10).

Using the change of variable (ζ, v) = ε−1(η, u), we see that the claim in Step 5 is equivalent
to proving that (ην , uν) solving (5.2) will satisfy system (3.1) in the limit ν ↘ 0 on [0, T0].
In fact, the main idea is to prove the convergence of {(ην , uν)} as ν ↘ 0 by considering the
difference between two solutions

W = (ψ,w) := (ην
′ − ην , uν′ − uν).

with 0 < ν ′ < ν < µ and where (ην
′
, uν

′
), (ην , uν) are two sets of solutions to system (5.2),

obtained in Step 1. Then for α = 3
2

+
we have that (ψ,w) satisfies a regularized version of

(4.1):

∂tW +M(Uν′ , D)W = Fν − ν ′JαW + (ν − ν ′)JαUν ,

with

Fν = −
(
w∂xη

ν + ψ∂xu
ν

w∂xu
ν

)
, (5.16)

and the same initial data.
The system also satisfies the estimates of Proposition 4.1 by simply noting that

d

dt
Ẽ0(W) .β Ẽ0(W)− ν ′

(
JαW, Q(Uν′ , D)W

)
L2 + (ν − ν ′)

(
JαUν , Q(Uν′ , D)W

)
L2

with (
JαW, Q(Uν′ , D)W

)
L2 =

(
J
α
2 ψ, J

α
2 ψ
)
L2 +

(
J
α
2w, (Kµ(D) + ην

′
)J

α
2w
)
L2

+
(
J
α
2w, [J

α
2 , ην

′
]w
)
L2 .

The two first term has a positive sign, while the last term can be absorbed arguing exactly
as in remark 5.2. On the other hand, we have directly that for s > 3

2

|
(
JαUν , Q(Uν′ , D)W

)
L2 | . ‖ην‖Hs‖ψ‖L2 + ‖ην′‖Hs‖uν‖Hs‖w‖L2

+ ‖
√
Kµ(D)uν‖Hs‖

√
Kµ(D)w‖L2 .

Thus, gathering these estimates with (1.17), (2.7) and (4.7) we find that

d

dt
Ẽ0(W) .β ‖(η0, u0)‖V sµ (Ẽ0(W) + (ν − ν ′)(Ẽ0(W))

1
2 ). (5.17)

Step 5.1: Convergence in C([0, T0];V
0
µ (R)). Define the difference (ψ,w) as above, then use

(5.17) and (4.7), combined with Grönwall’s inequality and (5.11) to find the estimate

sup
t∈[0,T0]

‖(ψ,w)(t)‖V 0
µ
.β ‖(η0, u0)‖V sµ (ν − ν ′).

Consequently, {(ην , uν)}0<ν≤1 defines a Cauchy sequence in C([0, T0];V
0
µ (R)) and we con-

clude that there exists a limit (η, u) ∈ C([0, T0];V
0
µ (R)) by completeness.
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Step 5.2: Solution in C([0, T0];V
s′
µ (R)) ∩ L∞([0, T0];V

s
µ (R)) for s′ ∈ [0, s). As a direct

consequence of (5.11) and the previous step, we deduce by interpolation

‖(ψ,w)‖L∞T0V s
′

µ
.β ‖(ψ,w)‖

s′
s
L∞T0

V sµ
‖(ψ,w)‖1−

s′
s

L∞T0
V 0
µ

.β (ν − ν ′)1−
s′
s ‖(η0, u0)‖V sµ −→ν→0

0. (5.18)

Step 6: The solution is bounded by the initial data. We claim that the solution obtained in
Step 5 satisfies (1.17).

Indeed, using the notation from the previous step, we deduce by (5.11) that

{(ην , uν)}0<ν≤1 ⊂ C([0, T0];V
s
µ (R))

is a bounded sequence in a reflexive Banach space. As a result, we have by Eberlein-
S̆mulian’s Theorem that (ην , uν) ⇀

ν→0
(η, u) weakly in V s

µ (R) for all t ∈ [0, T0] and implies

sup
t∈[0,T0]

‖(η, u)‖V sµ .β ‖(η0, u0)‖V sµ . (5.19)

Remark 5.5. For smooth data (η0, u0) ∈ H∞(R) of (3.1) we could reapply the arguments
above to deduce the existence of a smooth solution (η, u) ∈ C([0, T0];H

∞(R)), who satisfy
the bound (5.19) for any s > 2 and with T0 as defined in (5.10).

Step 7: Presistence of the solution. We claim that there exists a unique solution (ζ, v) =

ε−1(η, u) ∈ C([0, T0];V
s
µ (R)) of (1.5).

We consider (ηδ, uδ), solving (3.1) with regularised initial data: (ηδ0, u
δ
0) = (ϕδ(D)η0, ϕδ(D)u0)

and with ϕδ(D) as in definition 2.15. Then for any δ > 0 we have by remark 5.5 that the
solution is smooth and satisfy

‖(ηδ, uδ)‖L∞T0V sµ . ‖(η
δ
0, u

δ
0)‖V sµ , (5.20)

for t ∈ [0, T0]. To conclude the proof, we let 0 < δ′ < δ < 1 and again consider the difference

W = (ψ,w) := (ηδ
′ − ηδ, uδ′ − uδ),

which also satisfy

∂tW +M(Uδ′ , D)W = Fδ

with

Fδ = −
(
w∂xη

δ + ψ∂xu
δ

w∂xu
δ

)
, (5.21)

and with initial data

(ψ(0), w(0)) = ((ϕδ′(D)− ϕδ(D))η0, (ϕδ′(D)− ϕδ(D))u0). (5.22)

The system satisfies the estimates of Proposition 4.1 and we use (4.6) and (4.7), combined
with Grönwall’s inequality and (5.20) to first find the estimate

sup
t∈[0,T0]

‖(ψ,w)(t)‖V 0
µ
≤ ec

2
β‖(η0,u0)‖V sµ T0‖(ψ(0), w(0))‖V 0

µ
,

with ‖(η0, u0)‖V sµT0 .β 1 by definition (5.10). As a result, we use (5.22), the triangle

inequality and (2.40) to deduce that

sup
t∈[0,T0]

‖(ψ,w)(t)‖V 0
µ
.β δ

s‖(η0, u0)‖V sµ −→δ→0
0. (5.23)
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Moreover, as a direct consequence of (5.11) and (5.23), we deduce by interpolation

‖(ψ,w)‖L∞T0V s
′

µ
.β ‖(ψ,w)‖

s′
s
L∞T0

V sµ
‖(ψ,wδ)‖1−

s′
s

L∞T0
V 0
µ

.β δ
s−s′‖(η0, u0)‖V sµ −→δ→0

0. (5.24)

To conclude, we keep these estimates in mind where we aim to apply estimate (4.8), following
the Bona-Smith argument [7]. But first we must control Fδ in V s

µ (R). The elements of Fδ

are given in (4.2), and we must therefore control the terms given by:(
JsFδ, Q(Uδ′ , D)JsW

)
L2

=
(
Js(w∂xη

δ), Jsψ
)
L2 +

(
Js(ψ∂xη

δ), Jsψ
)
L2

+
(
Js(w∂xu

δ), ηδ
′
Jsw

)
L2 +

(
Js(w∂xu

δ),Kµ(D)Jsw
)
L2

=: A1 +A2 +A3 +A4.

The terms A1, A2 and A3 are treated similarly. For instance, take A1. Then we observe
that

A1 ≤ ‖Js(w∂xηδ)‖L2‖Jsψ‖L2 .

Furthermore, using (2.22) and the Sobolev embedding, we obtain that

‖Js(w∂xηδ)‖L2 . ‖w‖L∞‖Js∂xηδ‖L2 + ‖Jsw‖L2‖ηδ‖Hs . (5.25)

Using the triangle inequality, (2.39), and (5.20), we observe that

‖Js∂xηδ‖L2 ≤ δ−1‖η0‖Hs , (5.26)

which needs to be compensated to close the estimate. With this in mind, we use the Sobolev

embedding H
1
2

+

(R) ↪→ L∞(R) and (5.24) to deduce

‖w‖L∞T0L∞ . ‖(ψ,w)‖
L∞T0

V
1
2
+

µ

. δs−
1
2

+

‖(η0, u0)‖V sµ . (5.27)

Thus, combining (5.25) with (5.26) and (5.27) we get that

|A1| . sup
t∈[0,T0]

(
‖w‖Hs‖ηδ‖Hs + δs−

3
2

+

‖(η0, u0)‖V sµ
)
‖ψ‖Hs ,

as δ ↘ 0. Arguing similarly, and using estimate (5.20), we deduce that

|A1|+ |A2|+ |A3| . sup
t∈[0,T0]

‖(η0, u0)‖V sµ
(
‖(ψ,w)‖2V sµ + δs−

3
2

+

‖(ψ,w)‖V sµ
)
.

For A4, we write

A4 =
(
[Js
√
Kµ(D), w]∂xu

δ, Js
√
Kµ(D)w

)
L2

+
(
wJs

√
Kµ(D)∂xu

δ, Js
√
Kµ(D)w

)
L2 .

The commutator is treated by (2.18). While in the second term, we use (2.7) and argue as
above, giving the estimate

|A4| .β sup
t∈[0,T0]

‖(η0, u0)‖V sµ
(
‖(ψ,w)‖2V sµ + δs−

3
2

+

‖(ψ,w)‖V sµ
)
.

We may therefore conclude by (4.8):

d

dt
Ẽs(W) .β ‖(η0, u0)‖V sµ

(
Ẽs(W) + δs−

3
2

+

Ẽs(W)
1
2
)
.
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Then Grönwall’s inequality and (4.9) implies

‖(ψ,w)‖L∞T0V sµ .β δ
s− 3

2

+

‖(η0, u0)‖V sµ −→δ→0
0.

Thus, (ηδ, uδ) is a Cauchy sequence in C([0, T0];V
s
µ (R)) and we conclude by the uniqueness

of the limit that the solution (η, u) ∈ C([0, T0];V
s
µ (R)).

Step 8: Continuous dependence of the flow map data solution. Consider two sets of initial
data (ζ1, v1)(0), (ζ2, v2)(0) ∈ V s

µ (R). Then we claim that for all λ > 0, there exists γ > 0
such that having

‖(ζ1 − ζ2, v1 − v2)(0)‖V sµ < γ,

implies
‖(ζ1 − ζ2, v1 − v2)‖L∞T0

2

V sµ < λ.

Equivalently, we will prove that for ε(ζ1, ζ2, v1, v2) = (η1, η2, u1, u2) such that

‖(η1 − η2, u1 − u2)(0)‖V sµ < εγ,

implies
‖(η1 − η2, u1 − u2)‖L∞T0

2

V sµ < ελ.

Using the notation in Step 7, we let 0 < δ < 1 to be fixed, and (ηδ1, u
δ
1), (η

δ
2, u

δ
2) ∈

C([0, T02 ];V s
µ (R)) be two solutions of (5.2) on large time with corresponding initial data

(ϕδ(D)η1, ϕδ(D)u1)(0) and (ϕδ(D)η2, ϕδ(D)u2)(0). Then observe

‖(η1 − η2, u1 − u2)‖V sµ ≤ ‖(η1 − η
δ
1, u1 − uδ1)‖V sµ + ‖(η2 − ηδ2, u2 − uδ2)‖V sµ

+ ‖(ηδ1 − ηδ2, uδ1 − uδ2)‖V sµ
=: B1 +B2 +B3. (5.28)

For the first two terms we use that ε−1(ηδ, uδ) = (ζδ, vδ) → (ζ, v) = ε−1(η, u) as δ ↘ 0 by
Step 6. Therefore it follows that B1 and B2 must at least satisfy the estimate,

sup
t∈[0,T0

2
]

(B1 +B2)(t) .β εoδ(1). (5.29)

While for B3, we need the continuity of the flow map of the regularized system (5.2) on a
long time (see Remark 5.1).

We let W̃ = (ψ̃, w̃) = (ηδ1 − ηδ2, uδ1−uδ2). Then staying consistent with previous notation,
we have that the difference between two regularized solutions will satisfy the equation:

∂tW̃ +M(Uδ
1, D)W̃ = F̃δ, (5.30)

with

F̃δ = −
(
w̃∂x η

δ
2 + ψ̃∂xu

δ
2

w̃∂xu
δ
2

)
,

and initial data

(ψ̃, w̃)(0) = (ϕδ(D)η1 − ϕδ(D)η2, ϕδ(D)u1 − ϕδ(D)u2)(0).

We will use this information to estimate B3 by suitable energy estimates at V 0
µ (R) and

V s
µ (R)−level.

Similar to Step 6, we first obtain the estimate in V 0
µ (R) by using (4.7) and (4.9). Indeed,

there holds
d

dt
Ẽ0(W̃) .β max

i=1,2
‖(ηδi , uδi )‖V sµ Ẽ0(W̃). (5.31)
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For simplicity we let ‖(η1, u1)(0)‖V sµ = εK. Moreover, we observe that if εγ < 1
2‖(η1, u1)(0)‖V sµ ,

then we have by (5.20) that

‖(ηδ1, uδ1)‖L∞T0
2

V sµ + ‖(ηδ2, uδ2)||L∞T0
2

V sµ .β ‖(η1, u1)(0)‖V sµ + ‖(η2, u2)(0)‖V sµ

.β εK. (5.32)

As a result, we have an estimate of the difference in V 0
µ (R). Indeed, by Grönwall’s inequality,

(5.31), (5.32), the triangle inequality, and (2.40) implies

‖(ψ̃, w̃)‖V 0
µ
.β ‖(ψ̃, w̃)(0)‖V 0

µ
.β εK(δs +K−1γ). (5.33)

We will now use this decay estimate to deal with (4.8), which is at the V s
µ (R)−level.

Similar to Step 6, we decompose the source term (4.2) in four pieces

Ã :=
(
JsF̃δ, Q(Uδ

1, D)JsW̃δ
)
L2

=
(
Js(w̃∂xη

δ
2), Jsψ̃

)
L2 +

(
Js(ψ̃∂xη

δ
2), Jsψ̃

)
L2

+
(
Js(w̃∂xu

δ
2), η

δ
2J

sw̃
)
L2 +

(
Js(w̃∂xu

δ
2),Kµ(D)Jsw̃

)
L2

=: Ã1 + Ã2 + Ã3 + Ã4.

To estimate Ã1, we first obtain a bound similar to (5.24). Indeed, using the Sobolev
emebedding, interpolation, (5.32), and (5.33) yields

sup
t∈[0,T0]

‖w̃‖L∞ . sup
t∈[0,T0]

‖(ψ̃, w̃)‖
V

1
2
+

µ

. ‖(ψ̃, w̃)‖
1
2s

+

L∞T0
V sµ
‖(ψ̃, w̃)‖1−

1
2s

+

L∞T0
V 0
µ

. εK(δs−
1
2

+

+ (K−1γ)1−
1
2s

+

)

where 1− 1
2s

+
> 0 for s > 1

2

+
. Then arguing as we did for A1 in Step 7, we obtain that

|Ã1| . sup
t∈[0,T0]

(
‖w̃‖Hs‖ηδ2‖Hs + ‖w̃‖L∞δ−1‖ηδ2‖Hs

)
‖ψ̃‖Hs

. εK sup
t∈[0,T0]

(
‖w̃‖Hs + δs−

3
2

+

+ δ−1(K−1γ)1−
1
2s

+)
‖ψ̃‖Hs .

Moreover, for the remaining terms, we can use similar estimates, recalling that for Ã4 we
also need to deal with the non-local operator Kµ(D) (see step 7 for details). Indeed,

Ã .β εK sup
t∈[0,T0]

(
‖(ψ̃, w̃)‖V sµ + δs−

3
2

+

+ δ−1(K−1γ)1−
1
2s

+)
‖(ψ̃, w̃)‖V sµ . (5.34)

Consequently, combining estimates (4.8) and (4.9) with (5.34) yields

d

dt
Ẽs(W̃) .β εK

(
Ẽs(W̃) + (δs−

3
2

+

+ δ−1(K−1γ)1−
1
2s

+

)Ẽs(W̃)
1
2
)
.

Thus, we have an estimate on B3 by the energy estimate (4.9), Grönwall’s inequality and
(2.41). Indeed, there holds

B3 = ‖(ψ̃, w̃)‖V sµ .β ‖(ψ̃, w̃)(0)‖V sµ + εK(δs−
3
2

+

+ δ−1(K−1γ)1−
1
2s

+

)

.β εoδ(1) + εγ + εK(δs−
3
2

+

+ δ−1(K−1γ)1−
1
2s

+

). (5.35)
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Returning to (5.28), we may conclude the proof of the continuous dependence. We first
fix 0 < δ < 1 to be small enough and satisfying

oδ(1) +Kδs−
3
2

+

<
λ

2cβ
,

for some constant cβ depending on β. Then let γ verify the restriction:

εγ <
1

2
‖(η1, u1)(0)‖V sµ ,

such that γ+Kδ−1(K−1γ)1−
1
2s

+

< λ
2cβ

. Consequently, we have by (5.28), (5.29) and (5.35)

that

sup
t∈[0,T0

2
]

‖(η1 − η2, u1 − u2)(t)‖V sµ ≤ εcβ(oδ(1) + γ +K(δs−
3
2

+

+ δ−1(K−1γ)1−
1
2s

+

))

< ελ.

As a result, we have demonstrated that the solution of (1.5) depends continuously on the
initial data and thus completes the proof of Theorem 1.6.

�

6. The two-dimensional case

Let x = (x1, x2) ∈ R2 and v = (v1, v2)
T . Then we observe that under the curl-free condition

on the initial datum in Theorem 1.6 that (1.6) enjoys a similar structure to (1.5) (see also
Lemma 4.2 in [35]). Indeed, since curl v0 = 0 we can take the curl of the second equation
in (1.6) and find that curl v = 0, courtesy of the Fundamental Theorem of Calculus. We
therefore have the relation

∂x1v2 = ∂x2v1. (6.1)

Now, let u = εv and define U = (η,u)T = ε(ζ,v)T . Then use (6.1) to rewrite system (1.6)
as

∂tU +M(U, D)U = 0, (6.2)

with

M(U, D) =

u · ∇ (Kµ(D) + η)∂x1 (Kµ(D) + η)∂x2
∂x1 (u · ∇) · 0
∂x2 0 (u · ∇) ·

 .

Then the natural symmetrizer is given by

Q(U, D) =

1 0 0
0 (Kµ(D) + η) 0
0 0 (Kµ(D) + η)

 ,

and by extension, an energy associated to (6.2) reads

Es(U, D) =
(
JsU, Q(U, D)JsU

)
.

The energy estimates are similar to the one-dimensional case. Indeed, for (η,u) ∈ V s
µ (R2)

and s > 5
2 , we observe that

1

2

d

dt
Es(U) = −

(
Js(u · ∇η), Jsη

)
L2 −

(
Js((Kµ(D) + η)∇ · u), Jsη

)
L2

−
(
Js∇η, (Kµ(D) + η)Jsu

)
L2 −

(
Js((u · ∇)u), (Kµ(D) + η)Jsu

)
L2

+
1

2

(
Jsu, (∂tη)Jsu

)
L2 .



LONG TIME WELL-POSEDNESS OF WHITHAM-BOUSSINESQ SYSTEMS 45

An estimate analogous to the ones of Proposition 3.1 is a consequence of two-dimensional
versions of estimates in Section 2. However, these are easily extended to 2-d by noting that
Kµ(D) and Tµ(D) is radial.

The estimate of the difference between two solutions is similar to the proof of Proposition
4.1.

Appendix A

A.1. Pointwise estimates for
√
Kµ(ξ) and

√
Tµ(ξ). Before turning to the proof of the

pointwise estimates in Lemma 2.1 and Lemma 2.5, we make an important observation. Let√
Tµ(D) be the Fourier multiplier associated with the symbol√

Tµ(ξ) =

√
tanh(

√
µ|ξ|)

√
µ|ξ|

.

Then the operator is regularizing for µ > 0 on L2(R), and acts similar to the scaled Bessel

potential J
− 1

2
µ defined by the symbol ξ 7→ (1 + µξ2)−

1
4 . While

√
Kµ(ξ) has a similar

behaviour in low frequency for β < 1
3 , but acts like J

1
2
µ in high frequencies.

Figure 3. The multiplier
√
K1(ξ) in the cases β ≥ 1

3 (line) and β < 1
3 (dash-dots).

The red curve is a plot of
√
T1(ξ) (dash).

Lemma A.1. Let µ > 0 and take any n ∈ N.

• Then Tµ(ξ) satisfies ∣∣∣ dn
dξn

√
Tµ(ξ)

∣∣∣ . µn2 〈√µξ〉− 1
2
−n. (A.1)

• Similarly, Kµ(ξ) satisfies∣∣∣ dn
dξn

√
Kµ(ξ)

∣∣∣ .β µn2 〈√µξ〉 12−n. (A.2)

Proof. The proof is a generalization of Lemma 8 in [15]. Following their arguments, we
observe that since T1(

√
µr) = Tµ(r) for r > 0, it is sufficient to show that∣∣∣ dn

drn

√
T1(r)

∣∣∣ . 〈r〉− 1
2
−n.

We divide the proof into two steps.
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First, let 0 < r < 1
2 and prove that any derivative of

√
T1(r) is bounded. We have that√

T1(r) is bounded in this region. By direct computation, we observe

d

dr

√
T1(r) =

sech2(r)

(2r)2
√
T1(r)

(
2r +

e−2r − e2r

2

)
=:

sech2(r)√
T1(r)

G(r), (A.3)

where G(r) can be written as a series by expanding the exponentials. Indeed, we have that

G(r) =
1

(2r)2

(
2r +

e−2r − e2r

2

)
= −

∞∑
k=0

(2r)2k+1

(2k + 3)!
.

The series is uniformly convergent for r ≥ 0. Moreover, G(r) and its derivatives are bounded
for 0 < r < 1

2 . By extension, since for all n ≥ 0 there holds dn

drn sech
2(r) . e−2r we have

that ∣∣∣ dn
drn

√
T1(r)

∣∣∣ . 1.

Now, we let r ≥ 1
2 and prove the necessary decay estimate. We use the identity

tanh(r) = 1− 2

e2r + 1
, (A.4)

and deduce by the chain rule that∣∣∣ dn
drn

√
T1(r)

∣∣∣ . n∑
k=0

(1

r

(
1− 2

e2r + 1

)) 1
2
−k
r−k−n . 〈r〉−

1
2
−n.

Lastly, we have that (A.2) follows by the Leibniz rule. Indeed, we observe∣∣∣ dn
drn

√
K1(r)

∣∣∣ =
∣∣∣ dn
drn

√
T1(r)(1 + βr2)

∣∣∣
.

n∑
k=0

∣∣∣ dn−k
drn−k

√
T1(r)

∣∣∣∣∣∣ dk
drk

√
1 + βr2

∣∣∣
.β 〈r〉

1
2
−n,

which concludes the proof of Lemma A.1. �

A.2. Proof of Lemmas 2.1 and 2.5.

Proof of Lemma 2.1. First, we again make the observation that K1(
√
µξ) = Kµ(ξ). There-

fore, we simply let r > 0 and consider K1(r). To establish the upper bound given in (2.1),
we note that for r < 1 we have

K1(r) ≤ 1 + β.

This is because tanh(r)
r ≤ 1. On the other hand, when r ≥ 1 then tanh(r) < 1 and it follows

that

K1(r) ≤ 1 + βr.

Consequently, for all r > 0 there holds K1(r) ≤ c2β(1 + r) with c2β as defined in (1.19).

Next, we prove the lower bound given by (2.2) with β ≥ 1
3 . We will again split r into

two intervals, where we aim to prove

K1(r) =
tanh(r)

r
(1 + βr2) ≥ (1− h0

2
) + cr, (A.5)
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for some positive constant c > 0 and any h0 ∈ (0, 1). We prove (A.5) by considering two

cases for r. When 0 ≤ r ≤ h0
4 we use that

tanh(r) =

∫ r

0
(1− tanh2(x)) dx ≥ r − r3

3
, (A.6)

since tanh2(x) ≤ x2 by the mean value theorem. Therefore, we have that

K1(r) ≥
(

1− r2

3

)(
1 +

r2

3

)
≥
(

1− h0
2

)
+
(h0

4
− r4

9

)
+ r,

which implies (A.5) since 0 ≤ r ≤ h0
4 .

For the remaining part, we use the identity (A.4) and show that (A.5) holds for r ≥ h0
4

if:

tanh(r)

(
1 +

r2

3

)
− r(1 + cr) > 0

⇐⇒
(

1 +
r2

3
− r(1 + cr)

)
− 2

e2r + 1

(
1 +

r2

3

)
> 0

⇐⇒
(

1 +
r2

3
− r(1 + cr)

)(
e2r + 1

)
− 2

(
1 +

r2

3

)
:= G(r) > 0.

But this holds since

G′′′(r) =
4

3
e2r
(
2r2 − 3c(2r2 + 6r + 3)

)
≥ 4

3
e2r
(
r2(1− 6c) + r(

h0
8
− 18c) + (

h20
32
− 9c)

)
,

and is positive for 0 < c < 10−3h20 with r ≥ h0
4 . Indeed, as a consequence we have the

following chain of implications

0 < G′′
(h0

2

)
≤ G′′(r) =

2

3

(
e2r(1− 2r + 2r2 − 3c(2r2 + 4r + 1))− 3c− 1

)
=⇒ 0 < G′

(h0
2

)
≤ G′(r) =

1

3

(
e2r(3− 4r + 2r2 − 6cr(r + 1))− 2r − 3− 6cr

)
=⇒ 0 < G

(h0
2

)
≤ G(r).

We have therefore verified (A.5) for all r ≥ 0 and we conclude that (2.2) holds true.

Similarly, for 0 < β < 1
3 , we have that (2.3) is a consequence of the inequality

tanh(r)

r
(1 + βr2) ≥ β + cr.

One should note that we do not require sharp estimates. In fact, we simply need to obtain
the estimate (

1 + βr2 − r(β + cr)

)(
e2r + 1

)
− 2

(
1 + βr2

)
=: H(r) ≥ 0,

for r ≥ 0. On the other hand, we observe that

H ′′′(r) = 4e2r
(

2 + 2βr(2 + r)− 3c+ 2cr(3 + r)
)
> 0

for all r ≥ 0 if

(2− 3c) + 2r(2β − 3c) + 2r2(β − c) > 0
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and is ensured for 0 < c ≤ 10−3β. Consequently,

0 < H ′′(0) ≤ H ′′(r) = 2e2r
(

2 + β(2r2 + 2r − 1)− c(2r2 + 4r + 1)
)
− 2(β + c)

0 < H ′(0) ≤ H ′(r) = e2r
(

2 + β(2r2 − 1)− 2c(r2 + 2r)
)
− β(2r + 1)− 2cr

0 < H(0) ≤ H(r),

and we argue as above to conclude.

The proof of estimate (2.4) is a direct consequence of Lemma A.1 and (A.2) with n = 1
if we trace the dependence in β:∣∣ d

dr

√
K1(r)

∣∣ . 〈r〉− 1
2
−1(1 + βr2)

1
2 + 〈r〉−

1
2

βr

(1 + βr2)
1
2

. 〈r〉−1 +
√
β〈r〉−

1
2 .

Estimate (2.5) concerns the following bound on the difference:∣∣∣√Kµ(ξ)−
√
βµ

1
4 |ξ|

1
2

∣∣∣ =
∣∣∣(tanh(

√
µ|ξ|)

√
µ|ξ|

(1 + βµξ2)
) 1

2 −
√
βµ

1
4 |ξ|

1
2

∣∣∣.
For β

√
µ|ξ| ≤ 1 there holds trivially by using the triangle inequality that∣∣∣√Kµ(ξ)−

√
βµ

1
4 |ξ|

1
2

∣∣∣ . 1.

While for β
√
µ|ξ| > 1 we observe by direct calculations that∣∣∣√Kµ(ξ)−

√
βµ

1
4 |ξ|

1
2

∣∣∣ =
√
βµ

1
4 |ξ|

1
2

∣∣∣(tanh(
√
µ|ξ|)

βµξ2
+ tanh(

√
µ|ξ|)

) 1
2 − 1

∣∣∣
.
√
βµ

1
4 |ξ|

1
2

∣∣∣tanh(
√
µ|ξ|)

βµξ2
+ (tanh(

√
µ|ξ|)− 1)

∣∣∣
.

1

(β
√
µ|ξ|)

1
2

1
√
µ|ξ|

+
√
β(
√
µ|ξ|)

1
2 e−2

√
µ|ξ|

. β +
√
β,

where we used the triangle inequality and that β
√
µ|ξ| > 1.

Lastly, we prove (2.6) by using (2.5):√
Kµ(ξ)〈ξ〉s−1|ξ| =

(√
Kµ(ξ)−

√
βµ

1
4 |ξ|

1
2

)
〈ξ〉s−1|ξ|+

√
βµ

1
4 〈ξ〉s−1|ξ|

3
2

. (β +
√
β)〈ξ〉s +

√
βµ

1
4 〈ξ〉s|ξ|

1
2 .

�

Proof of Lemma 2.5. To prove (2.9), since T1(
√
µξ) = Tµ(ξ), we only need to establish the

following inequality:

1− h0
2

+ cr ≤ r

tanh(r)
. 1 + r, (A.7)

for all r > 0 and some c > 0. We also note that the upper bound is trivial, so we only prove
the lower bound. Let h0 ∈ (0, 1). By the mean value theorem we find that tanh(r) ≤ r and
observe

r

tanh(r)
= (1− h0

2
)

r

tanh(r)
+
h0
2

r

tanh(r)
≥ 1− h0

2
+
h0
2
r.
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Next, we consider (2.10). For
√
µ|ξ| ≤ 1 we have that Tµ(ξ) ∼ 1 and 〈√µξ〉 ∼ 1. On the

other hand, when
√
µ|ξ| ≥ 1 then Tµ(ξ) ∼ 1√

µ|ξ| and 〈√µξ〉 ∼ √µ|ξ|. Multiplying the two

functions, we obtain the desired result.
We estimate the derivative (2.11) directly and using that µ ∈ (0, 1):∣∣∣ d

dξ
〈ξ〉s〈√µξ〉

1
2

∣∣∣ . 〈ξ〉s−1〈√µξ〉 12 + 〈ξ〉s〈√µξ〉
1
2
√
µ〈√µξ〉−1 . 〈ξ〉s−1〈√µξ〉

1
2 ,

since
√
µ〈√µξ〉−1 ≤ 〈ξ〉−1.

Similarly, we have that (2.12) follows by the same argument after using (A.1) and (2.11):∣∣∣ d
dξ

√
Tµ(ξ)〈ξ〉s〈√µξ〉

1
2

∣∣∣ . √µ〈ξ〉− 3
2 〈ξ〉s〈√µξ〉

1
2 + 〈√µξ〉−

1
2 〈ξ〉s−1〈√µξ〉

1
2

. 〈ξ〉s−1.
For estimate (2.13), we observe that

〈√µξ〉
1
2 − µ

1
4 |ξ|

1
2 = µ

1
4 |ξ|

1
2

(
(

1

µξ2
+ 1)

1
4 − 1

)
. 1.

�

A.3. Proof of Lemmas 2.11 and 2.12. For the proof of Lemma 2.11 and Lemma 2.12,
we need a “generalized” version of the Kato-Ponce commutator estimate which holds for
symbols defined by:

Definition A.2 (Symbol class [33] Def. B.7). We say that a symbol σ(D) is a member of
the symbol class Ss with s ∈ R, if ξ 7→ σ(ξ) ∈ C is smooth and satisfies

∀α ∈ N, sup
ξ∈R
〈ξ〉α−s

∣∣∣ dα
dξα

σ(ξ)
∣∣∣ <∞.

One also associates the following seminorm on Ss :

N s(σ) = sup
α∈N, α≤4

sup
ξ∈R
〈ξ〉α−s

∣∣∣ dα
dξα

σ(ξ)
∣∣∣. (A.8)

The following results is found in Appendix B of [33].

Lemma A.3. Let t0 > 1/2, s ≥ 0 and σ ∈ Ss. If f ∈ Hs ∩ Ht0+1(R), then for all
g ∈ Hs−1(R),

‖[σ(D), f ]g‖L2 . N s(σ)‖f‖Hmax{t0+1,s}‖g‖Hs−1 . (A.9)

With this at hand, we may give the proof.

Proof of Lemma 2.11. To prove (2.24) and (2.25), it suffices to verify for all n ∈ N that

sup
ξ∈R
〈ξ〉n

∣∣∣ dn
dξn

(χ(1)
µ

√
Kµ)(ξ)

∣∣∣ .β 1, (A.10)

for any 0 < µ < 1. Indeed, in agreement with Definition A.2, then (χ
(1)
µ

√
Kµ) ∈ S0 and

(2.25) holds true due to Lemma A.3. Moreover, using Plancherel and (A.10) with n = 0 we
have

‖(χ(1)
µ

√
Kµ)(D)f‖L2 .β ‖f‖L2 ,

proving (2.24). Now, let us prove (A.10). We observe that

µ
k
2 〈ξ〉k

∣∣∣( dk
dξk

χ(1))(
√
µξ)
∣∣∣ . 1, k ≥ 0, (A.11)
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since
√
µ|ξ| . 1 on the support of χ

(1)
µ (ξ). Moreover, we observe by Lemma A.1 and

µ ∈ (0, 1) that

χ(1)
µ (ξ)

∣∣∣ dk
dξk

√
Kµ(ξ)

∣∣∣ .β χ(1)
µ (ξ)〈√µξ〉

1
2µ

k
2 〈√µξ〉−k .β 〈ξ〉−k.

Combining these estimates with the Leibniz rule yields

〈ξ〉n
∣∣∣ dn
dξn

(
χ(1)
µ (ξ)

√
Kµ(ξ)

)∣∣∣ . 〈ξ〉n n∑
k=0

∣∣∣ dn−k
dξn−k

(
χ(1)(

√
µξ)
) dk

dξk
(√

Kµ(ξ)
)∣∣∣

.β 〈ξ〉n
n∑
k=0

µ
n−k
2

∣∣( dn−k
dξn−k

χ(1))(
√
µξ)
∣∣〈ξ〉−k

.β

n∑
k=0

µ
n−k
2 〈ξ〉n−k

∣∣( dn−k
dξn−k

χ(1))(
√
µξ)
∣∣ .β 1.

Hence, (χ
(1)
µ

√
Kµ) ∈ S0 and N 0(χ

(1)
µ

√
Kµ) .β 1 independently from µ, proves (A.10).

Next, we consider estimates (2.27) and (2.28). Recalling (2.26) we define

σ̃µ, 1
2
(ξ) = µ−

1
4σµ, 1

2
(ξ) =

1

µ
1
4

1

µ
1
4 |ξ|

1
2

(1 + µβξ2)
1
2 . (A.12)

Then, it suffices to prove that

sup
ξ∈R
〈ξ〉n−

1
2

∣∣∣ dn
dξn

(χ(2)
µ σ̃µ, 1

2
)(ξ)

∣∣∣ .β 1, (A.13)

for all n ∈ N and any µ ∈ (0, 1). Indeed, if we assume (A.13) and take n = 0 we deduce
from Plancherel’s identity that

‖(χ(2)
µ σµ, 1

2
)(D)f‖L2 .β µ

1
4 ‖f‖

H
1
2
.β ‖f‖L2 + µ

1
4 ‖D

1
2 f‖L2 .

which proves (2.27). Moreover, (A.13) also implies that (χ
(2)
µ σ̃µ, 1

2
) ∈ S

1
2 withN

1
2 (χ

(2)
µ σ̃µ, 1

2
) .β

1 so that

‖[(χ(2)
µ σµ, 1

2
)(D), f ]∂xg‖L2 .β µ

1
4 ‖f‖Hs‖g‖

H
1
2
,

by Lemma A.3. Now we prove (A.13). First, we consider the functions,

aµ(ξ) =
1

µ
1
4 |ξ|

1
2

and bµ(ξ) = (1 + µβξ2)
1
2 .

Then, since |ξ| > √µ|ξ| > 1 on the support of χ
(2)
µ , we observe that

χ(2)
µ (ξ)

∣∣∣ dk
dξk

aµ(ξ)
∣∣∣ . µ 1

4χ(2)
µ (ξ)

1
√
µ|ξ|

1

|ξ|k−
1
2

. µ
1
4 〈ξ〉

1
2
−k〈√µξ〉−1. (A.14)

While bµ(ξ) .β 〈
√
µξ〉 and its deriatives satisfy the bound,

χ(2)
µ (ξ)

∣∣∣ dk
dξk

bµ(ξ)
∣∣∣ .β χ(2)

µ (ξ)µ
k
2 〈√µξ〉1−k .β 〈

√
µξ〉〈ξ〉−k. (A.15)

Thus, if all derivatives falls on σ̃µ, 1
2
, the Leibniz rule, (A.14) and (A.15) imply

χ(2)
µ (ξ)

∣∣∣ dk
dξk

σ̃µ, 1
2
(ξ)
∣∣∣ . µ− 1

4χ(2)
µ (ξ)

k∑
j=0

∣∣∣ dk−j
dξk−j

aµ(ξ)
∣∣∣ ∣∣∣ dj
dξj

bµ(ξ)
∣∣∣ .β 〈ξ〉 12−k.
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On the other hand, when derivatives fall the cut-off function, we observe

µ
k
2 〈ξ〉k

∣∣∣( dk
dξk

χ(2))(
√
µξ)
∣∣∣ . 1, k ≥ 1, (A.16)

since the support of dk

dξk
χ
(2)
µ is contained in the support of χ

(1)
µ . As a result, there holds

〈ξ〉n−
1
2

∣∣∣ dn
dξn

(
χ(2)
µ (ξ)σ̃µ, 1

2
(ξ)
)∣∣∣ . 〈ξ〉n− 1

2

n∑
k=0

∣∣∣ dn−k
dξn−k

(
χ(2)(

√
µξ)
)∣∣∣ ∣∣∣ dk

dξk
(
σ̃µ, 1

2
(ξ)
)∣∣∣

.β 〈ξ〉n−
1
2

n∑
k=0

µ
n−k
2

∣∣( dn−k
dξn−k

χ(2))(
√
µξ)
∣∣ 〈ξ〉 12−k

.β

n∑
k=0

µ
n−k
2 〈ξ〉n−k

∣∣( dn−k
dξn−k

χ(2))(
√
µξ)
∣∣

.β 1.

The estimate is uniform in µ ∈ (0, 1), and (A.13) is proved, which provides the desired
result.

Lastly, we prove (2.30) and (2.31) arguing in the same vein. First, we write:

χ(2)
µ (ξ)σµ,0(ξ) = χ(2)

µ (ξ) · 1

µ
1
4 |ξ|

1
2

·
(

1 + µβξ2
) 1

2 ·
( 2

e2
√
µ|ξ| + 1

) 1
2

=: χ(2)
µ (ξ) aµ(ξ) bµ(ξ) cµ(ξ),

making use of the identity (A.4). Then we observe for all N ∈ N that

〈ξ〉k〈√µξ〉N
∣∣∣ dk
dξk

cµ(ξ)
∣∣∣ . µ k2 〈ξ〉k〈√µξ〉Ne−√µ|ξ| . 1. (A.17)

As a result, we deduce by (A.15) and (A.17) with N = 1 that

χ(2)
µ (ξ)

∣∣∣ dk
dξk

(bµ(ξ) cµ(ξ))
∣∣∣ . χ(2)

µ (ξ)

k∑
j=0

∣∣ dk−j
dξk−j

(
bµ(ξ)

)∣∣ ∣∣ dj
dξj
(
cµ(ξ)

)∣∣
.β

k∑
j=0

〈ξ〉−(k−j)〈√µξ〉 〈ξ〉−j〈√µξ〉−1

.β 〈ξ〉−k.

Moreover, we use (A.14) to deduce

χ(2)
µ (ξ)

∣∣∣ dk
dξk

σµ,0(ξ)
∣∣∣ . χ(2)

µ (ξ)
k∑
j=0

∣∣∣ dk−j
dξk−j

(
aµ(ξ)

)∣∣∣ ∣∣∣ dj
dξj
(
bµ,β(ξ) cµ(ξ)

)∣∣∣ .β 〈ξ〉−k,
from which we find

〈ξ〉n
∣∣∣ dn
dξn

(
χ(2)
µ (ξ)σµ,0(ξ)

)∣∣∣ . 〈ξ〉n n∑
k=0

∣∣∣ dn−k
dξn−k

(
χ(2)
µ (ξ)

)∣∣∣ ∣∣∣ dk
dξk
(
σµ,0(ξ)

)∣∣∣ .β 1,

by (A.16). Arguing as above, we may conclude that the estimates (2.30) and (2.31) hold. �
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Proof of Lemma 2.12. In order to prove (2.32), we simply verify that
√
TµJ

1
2
µ ∈ S0 and

N 0(
√
TµJ

1
2
µ ) . 1 uniformly in µ ∈ (0, 1). But this is a direct consequence of Lemma A.1

and the Leibniz rule:

〈ξ〉n
∣∣∣ dn
dξn

√
Tµ(ξ)J

1
2
µ

∣∣∣ . 〈ξ〉n n∑
k=0

∣∣∣ dn−k
dξn−k

√
Tµ(ξ)

∣∣∣ ∣∣∣ dk
dξk
〈√µξ〉

1
2

∣∣∣
. 〈ξ〉n

n∑
k=0

µ
n−k
2 〈√µξ〉−

1
2
−(n−k)µ

k
2 〈√µξ〉

1
2
−k

. 〈ξ〉nµ
n
2 〈√µξ〉−n,

and is bounded by a constant independent from µ ∈ (0, 1). Hence, we may conclude by
Lemma A.3 that (2.32) holds true.

A similar approach is used for the proof of (2.33). Indeed, we observe that

〈ξ〉n−s
∣∣∣ dn
dξn

√
Tµ(ξ)Js

∣∣∣ . 〈ξ〉n−s n∑
k=0

µ
n−k
2 〈√µξ〉−

1
2
−(n−k)〈ξ〉s−k . 1.

Hence,
√
TµJs ∈ Ss and N s(

√
TµJs) . 1 uniformly in µ ∈ (0, 1), allowing us to conclude

by Lemma A.3.
The proof of (2.34) is the same, by a direct application of (A.1) we deduce that

√
Tµ ∈ S0

uniformly in µ ∈ (0, 1).
Next, we consider (2.35). Define the bilinear form: a1(D)(f, g) = ∂x[

√
Tµ(D), f ]g. Then

we may use Plancherel to write

|â1(ξ)(f, g)| ≤
∫
R
|ξ|
∣∣∣√Tµ(ξ)−

√
Tµ(ρ)

∣∣∣|f̂(ξ − ρ)| |ĝ(ρ)| dρ.

Clearly, if we can prove that

b1(ξ, ρ) := |ξ|
∣∣∣√Tµ(ξ)−

√
Tµ(ρ)

∣∣∣ . 1 + |ξ − ρ|, (A.18)

then we can conclude as we did for the proof of Lemma 2.7. Indeed, assuming the claim
(A.18), then there holds

‖∂x[
√
Tµ(D), f ]g‖L2 = ‖â1(ξ)(f, g)‖L2 . (‖f‖Ht0 + ‖∂xf‖Ht0 )‖g‖L2 .

Now, in order to estimate b1(ξ, ρ) we consider three cases. First, if |ρ| ≤ 1, then we have by
the triangle inequality,

b1(ξ, ρ) ≤ (1 + |ξ − ρ|)
(√

Tµ(ξ) +
√
Tµ(ρ)

)
. 1 + |ξ − ρ|,

since ξ 7→
√
Tµ(ξ) is bounded by one. Secondly, consider the region where |ρ| > 1 and

|ξ| ≥ |ρ|. Then since ξ 7→ tanh(
√
µ|ξ|) is increasing and ξ 7→ Tµ(ξ) is decreasing, we have

that

|ρ|
|ξ|
≤
(
|ρ|
|ξ|

) 1
2

≤
(
Tµ(ξ)

Tµ(ρ)

) 1
2

≤ 1.

Thus, there holds

b1(ξ, ρ) = |ξ|
(

1−
(
Tµ(ξ)

Tµ(ρ)

) 1
2)√

Tµ(ρ) ≤ |ξ| − |ρ| ≤ |ξ − ρ|.
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For |ρ| > 1 and |ξ| < |ρ| we use a similar argument to find,

b1(ξ, ρ) = |ξ|
(

1−
(
Tµ(ρ)

Tµ(ξ)

) 1
2)√

Tµ(ξ) ≤ |ξ|
|ρ|

(|ρ| − |ξ|) ≤ |ξ − ρ|.

Finally, we estimate (2.36) using a similar approach. We define the bilinear form a2(D)(f, g) =

[J
1
2
µ , f ]∂xg and look in frequency:

|â2(ξ)(f, g)| ≤
∫
R

∣∣∣〈√µξ〉 12 − 〈√µρ〉 12 ∣∣∣|f̂(ξ − ρ)| |∂̂xg(ρ)| dρ.

Then by the same argument as above, we only need to prove that

b2(ξ, ρ) =
∣∣∣〈√µξ〉 12 − 〈√µρ〉 12 ∣∣∣ |ρ|

〈√µρ〉
1
2

. 1 + |ξ − ρ|. (A.19)

We consider three cases. If |ρ| ≤ 1 then since µ ∈ (0, 1), there holds by the triangle
inequality:

b2(ξ, ρ) . 1 + 〈ξ − ρ〉
1
2 .

In the case |ξ| ≥ |ρ| > 1, observe that

1 + µρ2

1 + µξ2
≤ (1 + µρ2)

1
4

(1 + µξ2)
1
4

≤ 1, (A.20)

and we have
ξ2 − ρ2

|ξ − ρ| |ξ|
≤ |ξ|+ |ρ|

|ξ|
. 1. (A.21)

As a consequence, recalling µ ∈ (0, 1), we have that

b2(ξ, ρ) ≤
(

1− 1 + µρ2

1 + µξ2

) 〈√µξ〉 12
〈√µρ〉

1
2

|ρ|

≤ µ(ξ2 − ρ2)
µ

1
4 (1 + µξ2)

3
4
+ 1

4

(1 + µξ2)
1
4

〈ρ〉
1
2

|ρ|

≤ ξ2 − ρ2

|ξ|
|ρ|

|ξ|
1
2 〈ρ〉

1
2

. |ξ − ρ|.

Lastly, in the case |ρ| > 1 and |ξ| < |ρ|, we can simply change the role of ξ and ρ in (A.20)
and (A.21). As result, we get

b2(ξ, ρ) ≤
(

1− 1 + µξ2

1 + µρ2

)
|ρ| ≤ ρ2 − ξ2

|ρ|
. |ξ − ρ|.

We may therefore conclude that (A.19) holds and the estimate (2.36) follows. �
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[16] V. Duchêne, Many Models for Water Waves, arXiv preprint arXiv:2203.11340, (2022).

[17] M. Ehrnström, M. Groves, and E. Wahlén, On the existence and stability of solitary-wave
solutions to a class of evolution equations of Whitham type, Nonlinearity, 25, (2012), no. 10,
2903–2936.

[18] M. Ehrnström and H. Kalisch, Traveling waves for the Whitham equation, Differential Integral
Equations, 22, (2009), no. 11-12, 1193–1210.

[19] M. Ehrnström, A. Mathew, and K.M. Claassen, Existence of a highest wave in a fully dispersive
two-way shallow water model, Arch. Ration. Mech. Anal., 231, (2019), no. 3, 1635–1673.

[20] M. Ehrnström, and E. Wahlén, On Whitham’s conjecture of a highest cusped wave for a nonlocal
dispersive equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 36, (2019), no. 6, 1603–1637.

[21] L. Emerald, Rigorous derivation from the water waves equations of some full dispersion shallow
water models, SIAM J. Math. Anal., 53, (2021), no. 4, 3772–3800.



LONG TIME WELL-POSEDNESS OF WHITHAM-BOUSSINESQ SYSTEMS 55

[22] , Rigorous derivation of the Whitham equations from the water waves equations in the
shallow water regime, Nonlinearity, 34, (2021), no. 11, 7470–7509.

[23] , Local well-posedness result for a class of non-local quasi-linear systems and its appli-
cation to the justification of Whitham-Boussinesq systems, arXiv preprint arXiv:2206.09213,
(2022).

[24] V.M. Hur, Wave breaking in the Whitham equation, Adv. Math., 317, (2017), 410–437.

[25] V.M. Hur, M. Johnson Modulational instability in the Whitham equation for water waves, Stud.
Appl. Math. 134, (2015), no. 1, 120–143.

[26] V.M. Hur and A. K. Pandey, Modulational instability in a full-dispersion shallow water model,
Stud. Appl. Math. 142, (2019), no. 1, 3–47.

[27] M. Johnson and D. Wright, Generalized solitary waves in the gravity-capillary Whitham equa-
tion, Stud. Appl. Math., 144, (2020), no. 1, 102–130.

[28] H. Kalisch and D. Pilod, On the local well-posedness for a full-dispersion Boussinesq system
with surface tension, Proc. Amer. Math. Soc., 147, (2019), no. 6, 2545–2559.

[29] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,
Comm. Pure Appl. Math., 41, (1988), no. 7, 891–907.

[30] C. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized
Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, no. 4,
(1993), 527–620.

[31] C. Klein, F. Linares, D. Pilod, and J-C. Saut, On Whitham and related equations, Stud. Appl.
Math., 140, (2018), no. 2, 133–177.

[32] D. Korteweg and G. De Vries, On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves, Phil. Mag., 39, (1895), no. 240, 422–443.

[33] D. Lannes, The water waves problem: Mathematical analysis and asymptotics, Mathematical
Surveys and Monographs, 188, American Mathematical Society, Providence, RI, 2013, ISBN:
978-0-8218-9470-5.

[34] F. Linares and G. Ponce, Introduction to nonlinear dispersive equations, Second edition, Uni-
versitext. Springer, New York, 2015, ISBN: 978-1-4939-2180-5; 978-1-4939-2181-2.

[35] F. Linares, D. Pilod, J-C. Saut, Well-posedness of strongly dispersive two-dimensional surface
wave Boussinesq systems, SIAM J. Math. Anal. 44, (2012), no. 6, 4195–4221.

[36] R. MacKay and P. Saffman, Stability of water waves, Proc. Roy. Soc. London Ser. A 406,
(1986), no. 1830, 115–125.

[37] M. Ming, P. Zhang, and Z. Zhang, Long-wave approximation to the 3-D capillary-gravity waves,
SIAM J. Math. Anal., 44, (2012), no. 4, 2920–2948.

[38] D. Moldabayev, H. Kalisch, D. Dutykh, Denys, The Whitham equation as a model for surface
water waves, Phys. D 309, (2015), 99–107.

[39] D. Nilsson and Y. Wang, Solitary wave solutions to a class of Whitham–Boussinesq systems, Z.
Angew. Math. Phys., 70, (2019), no. 3, Paper No. 70, 1–13.

[40] L. Pei and Y. Wang, A note on well-posedness of bidirectional Whitham equation, Appl. Math.
Lett., 98, (2019), 215–223.

[41] J-C. Saut, Personal communication.

[42] J-C. Saut and L. Xu, The Cauchy problem on large time for surface waves Boussinesq systems,
J. Math. Pures Appl. (9), 97, (2012), no. 6, 635–662.

[43] , Long time existence for the Boussinesq-Full dispersion systems, J. Differential Equa-
tions, 269, (2020), no. 3, 2627–2663.



56 M. OEN PAULSEN

[44] , Long time existence for a strongly dispersive Boussinesq system, SIAM J. Math. Anal.
52, (2020), no. 3, 2803–2848.

[45] J-C. Saut and Y. Wang, The wave breaking for Whitham-type equations revisited, arXiv preprint
arXiv:2006.03803, (2020), to appear in SIAM J. Math. Anal.

[46] J-C. Saut, C. Wang, and L. Xu, The Cauchy problem on large time for surface-waves-type
Boussinesq systems II, SIAM J. Math. Anal., 49, (2017), no. 4, 2321–2386.

[47] N. Sanford, K. Kodama, J. D. Carter, and H. Kalisch, Stability of traveling wave solutions to
the Whitham equation, Phys. Lett. A 378, (2014), no. 30-31, 2100–2107.

[48] A. Stefanov and J.D. Wright, Small amplitude traveling waves in the full-dispersion Whitham
equation, J. Dynam. Differential Equations, 32, (2020), no. 1, 85–99.

[49] A. Tesfahun, Long-time existence for a Whitham–Boussinesq system in two dimensions, arXiv
preprint arXiv:2201.03628, (2022).

[50] T. Truong , E. Wahlén, and M. Wheeler Global bifurcation of solitary waves for the Whitham
equation , arXiv preprint arXiv:2009.04713, (2020).

[51] Y. Wang, Well-Posedness to the Cauchy Problem of a Fully Dispersive Boussinesq System, J.
Dynam. Differential Equations, 33, (2021), no. 2, 805–816.

[52] G. B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. A, 299,
(1967), 6–25.

Department of Mathematics, University of Bergen, Postbox 7800, 5020 Bergen, Norway
Email address: Martin.Paulsen@UiB.no


