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Abstract In this article we formalise the notion of knowing a secret as a
modality, by combining standard notions of knowledge and ignorance from
modal epistemic logic. Roughly speaking, Ann knows a secreet if and only if she
knows it and she knows that everyone else does not know it. The main aim is to
study the properties of these secretly knowing modalities. It turns out that the
modalities are non-normal, and are characterised by a derivation rule we call
Interpolation that is stronger than Equivalence but weaker than Monotonicity.
We study the Interpolation rule and position it in the landscape of non-normal
modal logics. We show that it, in combination with basic axioms, gives us a
complete characterisation of the properties of the secretly knowing modalities
under weak assumptions about the properties of individual knowledge, in the
form of a sound and complete axiomatisation. This characterisation gives us
the most basic and fundamental principles of secretly knowing.

1 Introduction

In this article we formalise the notion of knowing a secret, in epistemic logic —
a standard framework for formal reasoning about information in multi-agent
systems. The notion of secrets is fundamental in areas such as safety and secu-
rity, in particular in cryptography, authentication and access control. What is
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a secret? While dictionary definitions of the noun varies somewhat — “a piece
of knowledge that is hidden and intended to be kept hidden” (Wiktionary);
“a piece of information that is only known by one person or a few people and
should not be told to others” (Cambridge Dictionary); “something that is kept
or meant to be kept unknown or unseen by others” (Oxford English Dictio-
nary); “something kept from the knowledge of others” (Merriam-Webster) —
it is clear that secrets are fundamentally about knowledge and ignorance (the
lack of knowledge). For example, when we say that “Ann keeps her pin code
secret” or “Bill has a secret girlfriend” we mean that there is something (Ann’s
pin code or the identity of Bill’s girlfriend) that is (1) known by someone (Ann
or Bill) and (2) not known by others.

In this paper we formalise the notion of knowing a secret in the standard
framework for formalising knowledge, namely epistemic logic (Fagin et al.,
1995). We introduce a modality S,, such that S, is intended to mean that ¢
is a secret that agent a knows/has. We henceforth refer to these modalities as
secretly knowing modalities, and say that a secretly knows ¢!. Our goal is to
study the properties of secretly knowing that follow from the basic definition
based on knowledge and ignorance.

We focus here on the epistemic properties of secrets. As discussed above
these are quite fundamental, but it should be mentioned that there are other
aspects of secrets, such as intentionality that we don’t model explicitly. Fur-
thermore, in this paper we focus on formalising a basic notion of secretly
knowing: we assume that the secret is exclusively known by a single person.
As seen above definitions of secrets also allow for the secret to be known by
a (small) number of people. We focus here on the simplest case in order to
clarify the basic principles of secretly knowing as much as possible.

Conditions for “agent a secretly knows ¢” includes (1) that a knows ¢
and (2) that any other agent b does not know . We argue, however, that the
important thing here is not that b actually should not know, but that (2’) a
should know (or believe) that b doesn’t know. This property of secrets is not
explicitly mentioned in the definitions cited above, but it is often implicitly
assumed, e.g., in formulations such as “. ..intended to be kept hidden”. Indeed,
if Bill believes that other people know who his girlfriend is, or if he merely
doesn’t know that they don’t know who his girlfriend is, the identity of his
girlfriend wouldn’t typically be called a secret from Bill’s perspective.

We can now use the language of epistemic logic (Fagin et al., 1995), where
K,y intuitively means that agent a knows ¢, to express the fact that “agent

1 This term can be somewhat ambiguous without a precise definition. In this article we
use it to mean “knowing” with the added condition that the knowledge must be a secret (not
known by others): we say that a secretly knows ¢, or has secret knowlege of ¢, whenever a
knows ¢ and (she knows that) no one else knows . Another interpretation of “a secretly
knows ¢” would be that others don’t know that a knows ¢, but that they themselves might
actually know ¢ — which is not what we have in mind.
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a secretly knows ¢” as

Kap NKo | N\ K |, (SKs)
b#a

combining (1) and (2), or, equivalently in epistemic logic,

K, go/\/\—'Kbgo . (SKs”)
b#a

If veridicality (if K,p is true then ¢ is true) is assumed, as if often is in
epistemic logic, then this implies A, 2o Ko (2) as well. Under the veridicality
assumption, (SKs) can be seen as an “objective” definition of secretly-knowing:
a knows that ¢ and that b does not know that ¢ and both those things are
actually true. We are particularly interested in this case. However, (SKs) makes
sense also without this assumption, in a “subjective” sense of secretly knowing:
a knows (or rather in this case, believes?) that ¢ and that b does not know ¢,
but neither might actually be the case. In fact, this subjective view is alluded
to in some of the definitions above, in formulations like “something that is
kept or meant to be kept unknown” (our emphasis) — it is not required that
the secret actually is unknown by others.

Alternatively, it could perhaps be argued that “b not knowing that ¢”
should be replaced with “b does not know whether ¢ (Hart et al., 1996; Fan

et al., 2015): Koo A K, (/\b;éa(_‘Kb‘P A —\Kb—mp)). Under the veridicality as-

sumption this is actually equivalent to (SKs).

The remainder of the article is organised as follows. In the next section we
recall the standard framework of epistemic logic and extend it with new “se-
cretly knowing” modalities S, such that S, captures the meaning discussed
above. In Section 3 we study properties of secretly knowing by investigat-
ing valid (and non-valid) formulas and (non-) validity-preserving derivation
rules, under different assumptions about the properties of knowledge. We look
at both interaction properties between standard knowledge modalities K, and
secretly knowing modalities (Section 3.1) and between secretly knowing modal-
ities of different agents (Section 3.2), but perhaps most interesting are proper-
ties that involve secretly knowing modalities of only a single agent (Section 3.3)
such as distribution over conjunction or preservation of positive introspection
— these are the core properties of the secretly knowing modalities. It turns out
that the modalities are non-normal, and in Section 4 we attempt to position
them in the landscape of non-normal modal logics. In particular, we show that
they are characterised by a derivation rule which we call Interpolation which

2 Non-veridical knowledge is sometimes called “belief”. We will, however, like in, e.g.,
the standard text book in epistemic logic Fagin et al. (1995) be somewhat agnostic about
the properties of knowledge and use “knowledge” also in the cases that veridicality is not
assumed and will henceforth thus not use the word “belief”. The properties of knowledge
we assume (if any) will be clear from the context.
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is stronger than Equivalence but weaker than Monotonicity. A key question
is what a complete characterisation of the properties of the secretly knowing
modalities might be, and in Section 5 we answer that question for a language
with only a single secretly knowing modality and the cases that no assump-
tions about the properties of individual knowledge is assumed (general Kripke
models) and that veridicality (reflexive Kripke models) is assumed. These set-
tings represent the most basic and fundamental properties of secretly knowing.
We give sound and complete axiomatisations of the logic in these cases, via a
translation to an alternative semantics. In Section 6 we conclude and discuss
related and future work.

2 Language and Semantics

In order to formally study the logical properties of secretly knowing, we intro-
duce new modalities S,, such that S,¢ means that agent a secretly knows ¢
in the precise sense defined above. S,y is, of course, definable in terms of the
standard epistemic modalities K, and K3, but we introduce it as a primary op-
erator because we are interested not only in the interaction properties between
secrets and knowledge, but also in the core principles of secretly knowing. Thus
we define the formal language Lgx, parameterised by a non-empty set Prop
of propositional letters and a finite set Agt of at least two agents as follows:

pu=plop|(eANe)| Kap | Sagp

where p € Prop, a € Agt. We use the usual derived propositional connectives,
as well as I/(;go for =K ,—p and (S, ) for =S, —p. We let L stand for p A —p for
some arbitrary p € Prop, and T stand for —L. The fragment of the language
without any S, operators is called the (purely) epistemic language.

For the semantics we use standard Kripke models, as usual in epistemic
logic (Fagin et al., 1995). A (Kripke) model M = (W, R, V) consists of a set
of states W, a function R : Agt — 2" >*W mapping each agent a € Agt to
a binary relation R(a) on W called a’s accessibility relation, and a valuation
function V' : W — 2P*°P. We usually write R, for R(a). Satisfaction of a
formula ¢ € Lok in a state w of a model M = (W, R, V) is defined as follows:

M,wlkEp iff weV(p).
M,wE - it  M,w £ p.
MwlEeAy iff MwpE¢and M,w = 9.
M,wlE Ky iff Vw' € W, if wR,w' then M, w' = .
M, w = Sy ifft Vw' e W, if wR,w’ then M,w' | ¢
and Vb # a,3u € W s.t. w' Rpyu and M, u = —p.

The semantics of the K, modalities is standard. The semantics of S,¢
says that it is true if and only if in all states a considers possible not only is ¢
true, but it is also true that b does not know that. This expresses exactly the
formula (SKs) from the introduction, as we make precise in the next section.

It is easy to see that the semantics of the dual of the secretly knowing
operator is as follows:
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(Prop) Instances of propositional tautologies
(K) Kao(p =) = (Kap — Kat) Distribution
(MP) From (¢ — 1) and ¢, infer ¢ Modus Ponens
(Nec) From ¢, infer K9 Necessitation
(D) seriality Kaop — - Kg—p Consistency
(T) reflexivity  Kap — ¢ Veridicality
(4) transitivity Koo — KoKap Positive Introspection
(5) euclidicity “Kop = Ko Kgp Negative Introspection

Table 1: Axiomatisation in the purely epistemic language of the class of all
models (top). Axiomatisation of the class of models with any combination of
the properties at the bottom is obtained by adding the corresponding axioms.

M,w = (Sa)p iff Jw' € W such that wR,w" and either M, w' |= ¢
or 3b # a Yu € W if w'Rpu then M, u = —¢.

We will particularly be interested in formulas ¢ that are wvalid, denoted
E ¢, ie., formulas that are satisfied in any state in any model. Those are
the universally valid principles of (secret) knowledge. Tab. 1 (top) shows a
sound and complete axiomatisation of the class of all models in the purely
epistemic language. In the definition of that class of models (the standard
definition in epistemic logic), there is no restriction on the accessibility rela-
tions. In epistemic logic various properties of knowledge are often assumed,
such as K,p — K, K,p (positive introspection). There is a well-known corre-
spondence between the most commonly considered properties and properties
of the accessibility relations (Fagin et al., 1995), as also shown in Tab. 1.

In this paper we will be particularly interested in two special cases: the class
of all reflexive models (T) and the class of all models where the accessibility
relations are equivalence relations (S5). The first corresponds to assuming that
knowledge is veridical as discussed in the introduction, the second that also all
of the other properties in Tab. 1 hold. We write =1 ¢ and |=g5 ¢ to denote
that ¢ is valid in these model classes respectively.

In the next section we look at some valid properties as well as some prop-
erties that are not valid.

3 The Properties of Secret Knowledge

In this section we study the properties of the secretly knowing operators in
terms of valid formulas and preservation of properties (e.g., positive intro-
spection) assumed of standard knowledge. Of course, since those operators are
definable from the knowledge operators, their properties can strictly speaking
be completely characterised by a single “axiom”, namely

Sap | Kep NK, /\ Ky |,
beagt\{a}
in the sense that all properties of the S, operators follow from this formula
together with the properties of the K, operators. However, while technically
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correct that characterisation does not shed much light on intuitively interest-
ing potential properties of secret knowledge such as veridicality or positive
introspection.

We now take a closer look at such properties under different assumptions
about the properties of the standard knowledge modalities (accessibility re-
lations), and more generally at how secret knowledge operators interact with
other operators. First, in Section 3.1 we look at interaction properties be-
tween secret knowledge and knowledge, in Section 3.2 we look at interaction
properties between secret knowledge operators for two different agents, and
in Section 3.3 we look at properties involving secret knowledge operators for
only a single agent. The properties studied in this last section are arguably
the most fundamental and represent the basic principles of secretly knowing.

In the following we look at formula schemata typically including some oth-
erwise unspecified sub-formulas ¢ or ¢ and agents a or b with implicit universal
quantification: when we say that such a schemata is valid, we implicitly mean
for all such formulas and agents, and correspondingly when we say that it is
not valid we mean for some. Most of the following propositions follow directly
from the semantic definitions and we leave out many of the proofs.

3.1 Secrets and Knowledge

Directly from the semantic definition:
Proposition 1 (Reducibility) = S,¢ < (Kagp A KaNperge {a) ﬂKbga)

If something is secretly known by a then a knows it and other agents don’t, if
we assume veridicality:

Proposition 2 (Secret privacy) 1 S.p — (Ko A = Kpp), when a £ b

In fact, assuming veridicality other agents cannot possibly know that a secretly
knows ¢:

Proposition 3 (Secret unknowability) =7 —K;S,p, when a # b

Let us now assume that knowledge has all the S5 properties. Conversely to
Prop. 3, an agent cannot possibly secretly know that another agent knows ¢
— other agents’ knowledge cannot be a secret.

Proposition 4 (Knowledge no secret) |=g5 7S, Kpp, when a # b
Similarly, secrets also cannot be about other agents’ ignorance:
Proposition 5 (Ignorance no secret) =g5 =S, Kpp, when a #b

But an agent can have knowledge about her own secrets. In fact, an agent
always has complete knowledge about her own secrets, in the sense that for
any formula, she knows whether or not she secretly knows it, as the following
shows.
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Proposition 6 (Secret negation completeness) g5 K,S.¢0 V K,—S,¢

A corollary of secret negation completeness is the following negative introspec-
tion property of the combination of secret knowledge and knowledge: if you
don’t secretly know something, then you know that you don’t.

Corollary 1 (Negative secret knowledge introspection) =g5 =S, —
Ky ap

We also have the corresponding positive introspection property.

Proposition 7 (Positive secret knowledge introspection) g5 S, —
KaSap

3.2 Secrets and Others’ Secrets

Let us move on to interaction properties between S, and S, for two differ-
ent agents a and b. First, two agents can’t share the same secret, assuming
veridicality.

Proposition 8 (Secret Exclusivity) =7 S, — =Sy, when a # b

Just like other agents’ knowledge nor their ignorance can be a secret assuming
S5 properties, neither can other agents’ secrets or non-secrets.

Proposition 9 (No secret secrets) g5 —5,Spp, when a # b

Proposition 10 (No secret non-secrets) |=gs5 =.5,Spp, when a # b

3.3 Secrets of a Single Agent

Finally, we look at properties involving secretly knowing operators for a single
agent.

3.3.1 T and S5

Assuming veridicality of knowledge, secretly-knowing satisfies consistency (but
not the converse) and in fact also veridicality? :

Proposition 11 (Consistency) =1 So — (Sa)p but sy (Sa)p — Sap

Proof =1 Sqp — =S, follows trivially from = S,—p — K,—p, Er K.~ —
—Kup, = Kap — —Sap. For £ =S,—¢ — S,¢, we offer a counterexample in
Figure 1: M, w = —S,—p A =Sap. O

3 Note that g5 o implies 7 ¢ and & . We generally state the non-validities for the
strongest possible of the cases we consider, and validities for the weakest possible cases.
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p,q ab P, g
w u

Fig. 1: S5 model M (reflexive edges omitted).

Proposition 12 (Secret veridicality) 1 S, — ¢

It immediately follows that contradictions cannot be secretly known — since
they can’t be known.

Corollary 2 (No secret contradictions) Er =S, L

In fact, not even tautologies can be secretly known (assuming veridicality):
Proposition 13 (No secret tautologies) =1 S, T

Let us move on to the case that knowledge has the all the S5 properties. In
Section 3.1 we saw that in this case, secretly-knowing also satisfies a weak
version of positive and negative introspection: if something is secretly (not)
known then that fact is known. What about the stronger version, in other
words, do the (4) and (5) axioms hold for the S, modalities? For positive
introspection: if something is secretly known, is it then secretly known that it
is secretly known? The answer in this case is yes.

Proposition 14 (Positive Secret introspection) |=g5 Sa — SaSa¢

Positive secret introspection shows that it is possible to secretly know that one
secretly knows something — in fact in S5 this holds exactly when one secretly
knows that something (S,Sa.¢ holds iff S,¢ holds). Is it possible to secretly
know that one does not secretly know something? The following shows that
the answer is yes.

Proposition 15 (Non-secrets can be secrets) g5 —S,7S.¢

Proof Proof by counterexample. See Figure 2. Let ¢ = p. We have M, w =
—Ky,p and M,w | —S,p. Similarly, we have M,w’ £ —Syp from M,w’ |=
—K,p. Therefore, M, w |= K,—Sap. Also M, w; |E —Sgp from M, wy = = Kyp.
Let b # a. M, ws | Sap, as M, ws |E KopAK,—Kpp. Thus, M, w = —~K,—S,p.
Similarly, we also have M, w’ | —K,—S,p. Therefore, M, w = K,~K,—S.p
for any b # a. Together with M, w = K,—S,p, we get that M, w = S,—S.p.
O

Negative introspection, however, does not carry over from knowing to secretly-
knowing:

Proposition 16 (No negative secret introspection) g5 7S, — Su—Sa¢
and g5 2Sqp — 15,840

Proof Let M = (W, R,V) and N = (W', R', V") be the two S5 models defined
as in Figure 3. Let ¢ = p.
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-p P
w1 wy
b b

a -
b P o b
b \
p -p
wo wih

Fig. 2: S5 model M (reflexive edges omitted). Accessibility for all agents dif-
ferent from a is the same and labelled with b.

P a —p —-p b p
w u w! u’
(a) M = (W, R,V) (b) N = (W', R, V")

Fig. 3: S5 models M and N (reflexive edges omitted). Accessibility for all
agents different from a is the same and labelled with b.

— Counterexample for =.S,p — S;—S,p. From M, w = —K,p, M,w = —S,p.
From M,u = =K,p, M,u |= =S,p. That gives us M,u = K,-S,p. Let
b # a. Since M = —S,p, we have M = Ky—S,p, M = K,Kp—S,p. That
means M, w £~ K,—Kp—S,p, and M, w = —5,-5,p by semantics.
— Counterexample for =S,p — —5,-S,p. We have N,w’ | —S,p, since
N,w' | —Kgp. Also, N,u' |= S,p since N,v' | K,pAK,—~Kyp for any b #
a. Tt follows that N,w' = ~Kp—S,p for any b # a and N,w’ | K,—S.p.
From N,w | —Kp—S.p, we have N,w' = K,—K,—S,p. By semantics,
N,w' = S,—S.p. Together with N, w’ = —S,p, we have N,w’ £ -S,p —
_‘Sa_‘ ap-
O

To sum up the case that accessibility relations are equivalence relations we
have seen that the S, modalities satisfy most of the mentioned properties of S5
knowledge: consistency, veridicality, positive introspection — but not negative
introspection. In the terminology of Agotnes and Wang (2021a): veridicality
and positive introspection are preserved when going from knowledge to secret
knowledge, while negative introspection is not. This is similar to the case of
general (group) knowledge (everybody-knows), for which negative introspec-
tion is also not preserved (Agotnes and Wéng, 2021a). It is also worth pointing
out again that we do however have the weaker form of negative introspection
in Corollary 1.

3.3.2 Basic properties: K

Let us move on to basic properties, validities that hold on the class of all
models. First, like K, S, distributes over implication:



10 Zuojun Xiong, Thomas Agotnes

Proposition 17 (Secret distribution) = S,(p — ) — (Sap — Sat)

Proof Let M,w = Sy(¢ — ) and M, w = Syp. We show that M, w = Sy1.
Proof by contradiction. Assume that M,w = —S,1, then there is w’ € W
such that wR,w’

(1) but M,w' E =, or
(2) there is a b # a € Agt such that for all u € W if w’'Ryu, then M, u = 9.

If (1) is the case, then from M, w = S,¢, we have M, w’ |= . It follows that
M,w' E —(e = ¢),and M, w = S, (¢ — ©), a contradiction. If (2) is the case,
then (3) M,u | ¢ — ¢ for any u € W with w’'Ryu. From M, w = S,(¢ — ¥)
and wR,w', i.e., (for any b # a) there exists u € W such that w'Ryu and
M, u | —(p — 1), contradicting (3). O

The secretly knowing modalities also distribute over conjunction in one
direction, the so-called (C) axiom is valid:

Proposition 18 (Secret combination) = (Sqp A Sa) — Sa(p A )

Proof Proof by contradiction. Let M, w = Sy A Sqtp but M, w = Sqa(p A ).
Then there exists a w’ € W such that wR,w’

(1) but M, w' = ~(p A ), or
(2) thereis a b # a € Agt such that for all w € W if w' Ryu, then M, u = o At.

Clearly, (1) is not possible, since M, w = S,pAS,1) means that M, w’ = (@A)
by wR,w'. Let b be as in (2). From M, w = S,p A Sy, we know that for some
u € W w Ryu and M,u = —p, and for some v € W w’ Ry’ and M, v = —).
A contradiction. O

What about the other direction? If you secretly know p A ¢, do you secretly
know p? The answer is in fact “no” — the monotonicity axiom (M) does not
hold:

Proposition 19 (Secrets are not monotonic) g5 S.(@ A1) = Sap

Proof See Figure 4(a):

P, q b p,mq  Tpq b —p, —q
u w u

w

(a) M = (W,R,V) (b) N=(W,R,V)

Fig. 4: S5 models M and N (reflexive arrows omitted).

M,w = S,(pAq), since M,w |= K,(pAq) and M = -Ky(p A q). But by
M,w E Kyp, M,w £~ Sup. O
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Intuitively, monotonicity fails because secretly knowing requiries a combina-
tion of knowledge (of @) and ignorance (of b) and while the former is monotonic,
the latter is not: if a secretly knows p A ¢, it might be the case that she knows
p but not secretly — b might know p even though she doesn’t know p A q.

Thus, the secretly-knowing modalities are not normal modalities. We also
immediately see that they also don’t distribute over disjunction: & S,q —
Sa(pV q) (Figure 4(a): M,w [= Saq A =Sa(pVq)) and W~ So(pVq) — Sap
(Figure 4(b): N,w |= Sa(pV ¢) A 2Sap).

We saw that in the T (and S5) case there is at least one “new” validity
that is not an instance of a T validity, namely —.S,T. This is not guaranteed
to hold if veridicality is not assumed, because then it can be that an agent
has no accessible states in some state in which case S, T will hold. But in that
case also S, L will hold, so we have the following new general validity which
we in the following will refer to as (S).

Proposition 20 (S)
=S, T ¢ S, (S)

Proof M,w = S, T, iff w is a dead-end for a, iff M,w | S,L. O

While —S, T is not valid in the general case, it is of course satisfiable — S, T
is not valid. In fact, we do actually have that = S, for any ¢ — there are no
tautological secrets.

Proposition 21 (No tautological secrets) For any ¢, g5 Sag

Proof Let ¢ be an arbitrary formula and assume that |= S,¢. Let M, s be an
arbitrary pointed S5 model. M, s = S,¢. By reflexivity of R,, M, s = ¢ and
there is a state ¢t and b # a such that sRyt and M, t = —p. But since = Sy,
M,t = ¢, a contradiction. |

In particular, the (normal) Necessitation rule (from ¢ infer S, ) does not hold.
In Section 4 we look more closely at which sub-normal rules the S, modalities
do and do not satisfy. But let us first consider another pertinent issue.

3.3.83 Is it a box or a diamond?

We argued above that the S, modalities are not normal — not normal box
modalities that is: they don’t have the properties of normal box modalities
(see, e.g., Blackburn et al. (2001)). However, given the exists-forall flavour
of the semantics, it is not obvious that they should be viewed as boxes and
not as diamonds. And indeed, if we instead view (S,) as the box (despite our
notation), then necessitation actually holds. The same is true even for —S,.

Proposition 22 (Negative necessitation and diamond necessitation)
If = ¢ then |= —S,p. If E ¢ then = (Sy)e.
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Proof Let = ¢. It follows that = Kpp for any b, from which it immediately
follows that S, is unsatisfiable. It also follows that = —K,—¢, from which it
follows that —S,—. a

So are we just viewing the modalities the wrong way, could it be that
actually (S,) is a normal box? The answer is “no”, but this time for a different
reason: neither of the two mentioned variants satisfy the (K) axiom.

Proposition 23 (No K-axiom of (S,)) Fss (Sa)(e = ¢) — ((Sa)p —
(Sa)¥)

Proof Let ¢ = p,1b = q. See Figure 5. We have M,w = —=S,—(p — q) since
M,w | —K,~(p — q). Also, M,w = =S,—p, since M,w = —~K,—p. But we
have M, w = S,—q since M,w = K,—~q and M | —~K}—q for any b # a. Thus,
M, w [~ =S,—q, which means g5 2S,—(p — q) = (0S.—p — =S,q). O

P, q b P, g a P, q b Pq
w u

w’ u/

Fig. 5: S5 model M (reflexive arrows omitted). Accessibility for all agents
different from a is the same and labelled with b.

Proposition 24 (No K-axiom of —5,) g5 —S.(¢ = ¢) — (0See —
_‘Saw)

Proof Let ¢ = p,i = q. See Figure 6. We have M,w | —S,(p — ¢) since
Mw E [/(;Kb(p—> q) from M,u = Kp(p — q). Also, M,w | —S,p, since
M,w = —Kgp. But we have M, w | S,q since M,w | K,q and M = —Kq
for any b # a. Thus, M, w £ —S,q, which means g5 =S, (p — q) = (—Sap —
—549). O

P, —q b P a -, q b “ps 4
Fig. 6: S5 model M (reflexive arrows omitted). Accessibility for all agents
different from a is the same and labelled with b.

4 Between Monotonicity and Equivalence: the Interpolation Rule

It is natural to ask, then, what about other, weaker, rules, known from other
non-normal modal logics? Let us first consider the monotonicity rule (Rm):
from ¢ — 1) derive S, — Sg1p. This does not hold for S, (which should come
as little surprise given Proposition 19), neither does it hold for —=S,, S,— or

(Sa)-
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Proposition 25 (Non-monotonicity)

— There are ¢ and ¢ such that |= ¢ — ¢, but g5 Sap — S

— There are ¢ and ¥ such that = — 1, but g5 S — S

— There are ¢ and ¥ such that = — 1, but g5 Sa—p — Sq—1

— There are ¢ and ¥ such that |= p — ¥, but g5 7Sa—p — =S~

Proof Proof by counterexamples. For the first, let ¢ = p and ¢ = (¢V—q), then
clearly E p — (¢ V —q), Fss Sap — Sa(qV —q) (since Sep A =S, (g V —q) are
satisfiable). For the second, let ¢ = (p A ¢), but ¢ = p, then we have M, w
=S.(p A q) = —Syp from Figure 7. For the third, let ¢ = g and ¥ = (p V —p),
then = ¢ — (pV—p), and from Figure 5, we have M, w £~ S,—q — So.—(p V —p).
For the last, let ¢ = (p A =p), ¥ = ¢, then = (p A =p) — ¢, and from Figure
5, we have M, w £ —S,—(p A —p) = —=S,—q. O

-p,q b D, q a P, q b -p, q
w’ w u !

u

Fig. 7: S5 model M (reflexive edges omitted).

The equivalence rule (Re) does, however, hold:
Proposition 26 (Equivalence) If | ¢ <> ¢ then = Sap < Sat.

Proof Let |= ¢ <> 1 and assume that M, w | Syp but M, w [~ Sy. From the
latter we get that there is a w’ such that wR,w’ and either (1) M,w’ [~ ¢ or
(2) for all u, if w' Ryu then M, u |= 1. From the former we get that M, w’ = ¢
and that there is a v/ such that w'Ryu’ and M,u' = —p. If (1) was the case
then M,w’ = —p from = ¢ < 9, a contradiction. If (2) was the case then
M,vw' = ¢ and thus M, v | ¢ from the assumption that | ¢ < 1, also a
contradiction. O

We note that the Equivalence rule also preserves validity on T and on S5, which
strictly speaking does not follow directly (although the same proof works).

That the equivalence rule holds for S, modality is of some significance:
it means (together with the fact that the logic extends propositional logic)
that the logic of S, extends the weakest non-normal modal logic E that has
neighbourhood semantics (see, e.g., Pacuit (2017)). Given the “forall-exists”
Kripke semantics of the secretly knowing modalities, this should perhaps not
come as a big surprise.

Let us sum up thus far by positioning the S, modalities in the landscape
of non-normal modal logics: they are classical (satisfy the principles of the
basic system E, namely (Re) in addition to propositional logic) and adjunctive
(satisfy (C)) but not monotonic or regular (do not satisfy (M)). In addition
they satisfy (C) and (K) and thus satisfy all the properties of the well-known
ECK system. In addition, we have seen exactly one additional validity (on the
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class of all models), namely (S) from Prop. 20. Thus, these modalities seem to
be ECKS modalities.

In the S5 case (i.e., when accessibility relations are equivalence relations),
we also have the (D), (T), (4), (T) and —=S,L, but not the (5), axioms. Both
(D) and —S, L are derivable using (T)%, so in this case the modalities seem to
be ECKT4T modalities.

The question then is, do the S, modalities satisfy any other principles?
The answer seems to be “yes”. Take the following formula:

7= (Salp A @) A Salg V1)) = Saq

It is easy to see that v is valid. However, it does not seem to be derivable
in ECKS. Note, in particular, that (see Prop. 19 and related discussion)

%Sa(p/\Q)_)Saq %Sa(q\/r)_)saq-

Inspecting v we can see that ¢ = ¢ acts as an “interpolant” between
p=pAgand x=qVr:

EpAqg—q Eq—qVr,

and that secret knowledge of both ¢ and y implies secret knowledge of .
We now arrive at a perhaps surprising key result: any such interpolant is
secretly known.

Proposition 27 (Interpolation rule)
—IfEe—= v and = — x, then |E (Sap A Sax) = Sat.

Proof Assume that = ¢ — ¢ and = ¢ — x, we need to show that = (S,p A
SaX) — Sqt. Let M,w be an arbitrary pointed model such that M,w
Sae A Sax, but M,w = Su1p. Then M, w = (S,)—% by semantics, i.e., there
exists u such that wR,u and

(1) M,u =, or
(2) there is a b # a such that for any v, if uRpv then M, v = 4.

First consider case (2), let b be such an agent. From wR,u and M,w |=
Sa A Sax, we have M, u |= ¢ Ay, and there exists v1 and vg such that uRpv1,
uRpva, M,v1 = —p, and M,vs = —x. From = ¢ — x, we have M, vy = =)
— a contradiction. Second, consider case (1). We have that M,u = ¢ A x
and since = ¢ — 1, then get that M, u | ¢ — again a contradiction. Thus,
M, w = (Sap A Sax) = Satb. O

We call the corresponding inference rule, from ¢ — v and ¥ — x infer
(Sap A SaX) — Satb, the Interpolation rule® (I).

4 (D): from the (T) instance Sqp — ¢ we get ¢ — =S which combined with a second
(T) instance Sq—¢p — - gives us @ — —Sqp which is the contrapositive of (D). =S, L:
by (T) we have that Sq L — L and thus =L — =S, and we have T = —L.

5 Note that unlike in Craig’s interpolation theorem (Craig, 1957), the probably most well-
known use of the term “interpolation” in formal logic, there is no assumption about common
vocabulary among the involved formulas.
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(Prop) Instances of propositional tautologies
(MP)  From ¢ — 9 and ¢ infer 1
M) O(eAy) = (Op A DOy)
(©) (O ADY) = O(p A )
(K)  DO(p ) - (Op - Op)
(N) Ot
(Rm) From ¢ — 1 infer Op — Oy
(Nec)  From ¢ infer Oy
(Re)  From ¢ <> ¢ infer Op < Oy
(S) OT <+ 0L
(I)  From ¢ — v and ¢ — x infer (Op A Ox) — Oy

Table 2: Axioms and rules.

4.1 Interpolation In the Landscape of Non-Normal Modal Logics

Let us have a closer look at the Interpolation rule (I), and how it relates to
other principles commonly considered in the study of non-normal modal logics.
We also consider the (S) axiom (see p. 11). In this section we use the standard
modal language:
pu=p|-el(@re)|Op

where p € Prop. The most commonly used axioms and rules for non-normal
modal logics (Pacuit, 2017), most of them already mentioned, together with
(I) and the axiom (S), are shown in Table 2.

We follow the standard convention of naming axiomatic systems (see Pacuit
(2017)). All the systems we consider are implicity assumed to have (Prop) as
axioms and (MP) as a rule. E extends this basic system with the (Re) rule,
I extends the basic system with the (I) rule. EK extends E with axiom (K),
and so on. We will abuse notation and sometimes use L for the smallest set
of formulas that contains the axioms of L and is closed under the rules of L.
We write Fr, ¢ for ¢ € L and say that ¢ is derivable in L. When (A) is an
axiom schema, Fr, (A) means that all instances of (A) are derivable in L. We
say that a rule is admissible in a system L if L is closed under the rule.

We first show that (Re) is derivable from (I).

Proposition 28 (Re) is admissible in any system containing (I).

Proof By taking x = ¢, (I) gives us Op — Oy from ¢ — ¢ and ¢ — .
Swapping ¢ and 1 gives us Ly — Oe. O

One consequence of having the (Re) rule is that uniform substitution holds:
from ¢ < ¢’ we can derive ¢ < @[i/¢'] where p[i/¢'] is the result of
replacing some occurrences of ¢ with ¢’ (Pacuit, 2017).

Next, we show that (I) is derivable from (Rm).

Proposition 29 (I) is admissible in any system containing (Rm).

Proof From ¢ — 1 Monotonicity gives us (g — v which implies (Op A
Ox) — Oy. O
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Thus we have, for example, that ECK C ICK C RmCK. We now show
that both inclusions are strict.

Proposition 30 (I) is not admissible in EK or ECK.

Proof We are going to use the fact that EK (ECK) is sound with respect
to standard interpretation in neighbourhood models property (k) (and (c)) as
defined below (Lewis, 1974; Surendonk, 1997; Pacuit, 2017; Van De Putte and
McNamara, 2021). A neighbourhood model M = (W, N, V') where W and V
are as in a (Kripke) model and N maps any state in W to a set of subsets
of W. M,w = Oy iff o™ € N(w), where oM = {v € W : M,v |= ¢}. The
mentioned properties are (X = W \ X):

(k) if X € N(w) and X UY € N(w) then Y € N(w),
(¢) f X € N(w) and Y € N(w) then X NY € N(w).

Consider the following formula:
7= BPAg ADgVr)) = Ug

which is derivable from (p A q) — ¢ and ¢ — (¢ V r) by (I). We are now going
to show that there is a neighbourhood model M, having both the (k) and (c)
properties, that falsifies v. That means that - is not valid on the class of such
models, and thus, by soundness it cannot be that it is derivable in either EK
or ECK.

The model M = (W, N, V) is defined as follows. W = {w, u,v, s}, N(w) =
{{w},{w,u,v}} (N(u), N(v) and N(s) are arbitrary such that (k) and (c)
are satisfied). V(p) = {w}, V(¢q) = {w, u}, and V(r) = {v}. For (c¢), we have
{w} N{w,u,v} = {w} € N(w). Now we show that M has the (k) property.
If X = {w}, then X = {u,v,s} and {u,v,s} UY ¢ N(w) for any Y C W,
(k) holds trivially. If X = {w,u,v}, then X = {s} and {s}UY ¢ N(w) for
any Y C W, (k) holds trivially. We have (p A ¢)™ = {w} € N(w), (¢ VvV r)M =
{w,u,v} € N(w), that’s M,w = O(pAq) AO(gVr), but ¢M = {w,u} & N(w),
that’s M, w [~ Ogq. O

Proposition 31 (Rm) is not admissible in IC or ICS.

Proof Assume that (Rm) is admissible in ICS or in IC. In both cases all
instances of (M) are derivable in ICS (see (Pacuit, 2017, Lemma 2.39)). ICS
is sound with respect to all Kripke models (we prove this formally in the next
section), but there are instances of (M) that are not valid on those models
(Prop. 19) — a contradiction. O

Thus, the Interpolation rule is at the same time a strengthening of the
Equivalence rule and a weaking of the Monotonicity rule. One difference be-
tween Equivalence and Monotonicity, and one that will be important for us,
is that in the presence of the (C) axiom the latter can derive the (K) axiom
while the former cannot. As Interpolation is “in between”, a natural question
is on which side it falls on. The following answers that question.
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Proposition 32 Fic O(p — ¢) — (e — Ov)

Proof
L((p=Y)np) = (Prop)
2.9 = (p = 1) (Prop)
3B =v)Nne)ABlp =) =0y (I),1+2
4.0((p = ¥) Ap) = (O(p — ) — Oy)  (Prop), (MP), 3
5. (0(p = ¢)AOp) = 0O((p =) Ag)  (C)
6. (O(p — ) AOp) = (O(p — ) —» Oy) (MP),44+5
7.0(p = ¢) — (Op — Oy) (P rop) (MP), 6

Not surprisingly, Prop. 30 holds also if we add the (S) axiom:
Proposition 33 (I) is not admissible in ECKS.

Proof ECKS is sound w.r.t. all neighbourhood models with the (k) and (c)
properties (see the proof of Prop. 30) as well as the following property:

(s) We N(w)iff 0 € N(w)

This follows immediately from the facts that (C) and (K) and (S) are valid on
that model class, and that (Re) preserves validity on the model class. Consider
again the formula v and the model M in the proof of Prop. 30 (slightly modified
to require that also (s) holds for N(u), N(v) and N(s)). Observe that M also
has the (s) property. Thus, v is not valid on the class of (k), (¢) and (s) models,
so it cannot be derivable. O

Let us now sum up what we know about the Interpolation rule (and the
(S) axiom), and position it in the landscape of non-normal modal logics:

EK c® ECK c® ICK =® IC c® RmCK =0) EMCK =© EMC
) c ™ ) G ™ ™

EKS C ECKS c® ICKS =®) ICS c® RmCKS =® EMCKS =© EMCS

(1) Strictness: (Pacuit, 2017, Observation 2.43).

(2) Inclusion: Prop. 28. Strictness: Prop. 30.

(3) Prop. 32.

(4) Inclusion: Prop. 29. Strictness: Prop. 31.

(5) (Pacuit, 2017, Lemma 2.39).

(6) (Pacuit, 2017, Lemma 2.41).

(7) Strictness: all the logics mentioned in the first line (i.e., without explicit
mention of the (S) axiom) are included in (the smallest normal logic) K.
(S) is not derivable in K (by soundness w.r.t. Kripke models).

(8) Inclusion: Prop. 28. Strictness: Prop. 33.

In the next section we show that the logic ICS is a sound and complete
axiomatisation of core properties of the secretly knowing modalities.
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5 Completeness of Core Properties

In the previous sections we looked at some properties of the S, modalities in
the form of valid formulas and validity preserving rules, both interaction prop-
erties relating an S, modality to other modalities as well as basic properties
involving only S, modalities for one agent a. The latter are the most interest-
ing in the sense that they represent the basic properties of these modalities.
We tried to place these modalities in the landscape of non-normal modalities,
in particular we discovered the Interpolation rule and studied it in some detail
as a general rule for sub-normal modal logics. The obvious question is: are
there any other valid properties? Or do all valid properties follow from the
principles (basic properties and rules) we have discovered so far? In this sec-
tion we show that the answer to the first question in a natural sense is “no”,
and we prove that by showing that a set of basic principles is complete.

Of course, if we consider the full language there is a simple complete char-
acterisation of all valid properties of the .S, modalities: the Reducibility prop-
erty (Prop. 1) together with the characterisation of the knowledge modalities
(Table 1). However, this does not shed much light on interesting properties.
Thus, in order to focus on the most basic and fundamental properties of the
S, in this section we will consider a language without the individual knowl-
edge modalities K,, and with only a single S, modality for a fixed agent a
(in other words, the basic modal language considered in Section 4.1 where the
box is interpreted as a-secretly-knowing). On the semantic side we consider
two cases: the class of all models and the class of all reflexive models, leav-
ing more challenging cases such as S5 for future work (see the discussion in
Section 6). All valid formulas for this restricted language and this generalised
semantics are of course also valid formulas in the general language and under
S5 semantics. Indeed, we argue that they represent the most basic principles
of secretly knowing. Below, we give a complete characterisation of these prop-
erties in terms of axioms and rules already discussed in the previous sections.

One final restriction is that we consider the case of only two agents. Given
that we only have a single secretly knowing modality, for a single agent, this
is not a significant restriction — it doesn’t matter how many “other” agents b
there are as long as there is at least one. However, the restriction to only one
“other” agents makes the technical details less cluttered.

The main results are that the logic ICS from Section 4.1 is in fact sound
and complete with respect to all models, and its extension ICST with the
(T) axiom is sound and complete with respect to reflexive models. The rest
of this section is organised as follows. We first formally define the restricted
language and semantics in Section 5.1. We then define the basic axiomatic
system ICS in Section 5.2, argue that it is sound and discuss some derivable
theorems. In Section 5.3 we introduce an alternative semantics and show that
it is equivalent to the Kripke semantics. The main result for ICS is found in
Section 5.4: completeness with respect to Kripke semantics (via the alternative
semantics). Finally, in Section 5.5 we adapt these results to ICST.
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) Instances of propositional tautologies
) F(SeASY) = S(eAY)

(S) FEST«+SL
)
)

From F (¢ — ) and F ¢, infer F 1)
From - ¢ — 1 and F ¢ — x, infer - (Sp A Sx) — Sy

Fig. 8: The axiomatisation ICS, for the Lg language.

5.1 Language and Semantics

In this section we assume that Agt = {a,b}. Let the language Lg be defined
by the following grammar:

pu=plop|(@Ap)]|Sp

where p € Prop. Intuitively, S¢ means the same as S,p: we have a single
secretly knowing modality for a single agent, more specifically the agent a.
Agent b is “the other” agent. We write (S) for =S—. Models are like before;
since there are only two agents we write M = (W, R4, Rp, V). The interpre-
tation of a formula in a state of a model is defined exactly as for the full
language, replacing S, with S.

5.2 ICS

The system ICS over the language Lg is defined (again) in Figure 8. In addi-
tion to propositional logic it contains the “secret combination” axiom (C) and
the (S) axiom discussed in Section 3.3, and the Interpolation rule. Henceforth,
F ¢ means that ¢ is derivable in the system ICS.

Theorem 1 (Soundness) The aziomatisation ICS is sound.

Proof (C) is valid (Prop. 18), (S) is valid (Prop. 20), (I) preserves validity
(Prop. 27). The (Prop) and (MP) cases are immediate.

In Section 4.1 we showed several rules and theorems that are admissible
and derivable in ICS, most notably (K) and (Re). They will be used without
further comment in the following. We also consider the following rule and
theorems, which will be of technical use in the completeness proof.

Proposition 34 The following rule (Es) is admissible in ICS.
— from k@, infer E Sp < S—p.
Proof Let F . Then F ¢ <> T, by (Re), - Sp +» ST. From (S) and proposi-

tional logic, F S <> SL. Also, we have - S—p +» S by applying (Re) rule
to - = <+ L. Then by propositional logic, we have - Sy < S—¢p. g

Proposition 35 (Derivable theorems) The following theorems are deriv-
able in ICS:
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1. ES(eA—p) = (Sp AS—p)
2. FS(e V)= (SpAS—p)

Proof For (1) : we have - (L — ¢) <> T. By (Re), F S(L — ¢) + ST, and
it follows that - ST — S(L — ¢). By (K), F S(L —=¢) — (SL — So).
Then by propositional logic, - ST — (SL — Sy), i.e., F SL — (ST — So).
Therefore, we have - (SL — ST) — (SL — S¢) by propositional logic. From
the (S) axiom, we have - (SL — ST), then by (MP), - SL — Se. It follows
that - S(¢ A —¢) — Se. Similarly we can derive F S(p A —p) — S—p from
F (L — —¢) — T. It follows that S(¢ A =¢) = (Sp A S—p) by prop. logic.
For (2): we have - (L — ¢) <> T. By (Re), - S(L —¢) + ST, so -
ST = S(L — ¢). By (K),F S(L — ¢) = (SL — S¢). Then by propositional
logic, = ST — (SL — S¢). Therefore, we have - (ST — SL) — (ST — Syp)
by propositional logic. From the (S) axiom, we have - (ST — S.L1), then
by (MP), v ST — Sp. It follows that - S(pV —p) — S¢. Similarly, we
can derive = S(pV —¢) — S—p from - (L — —p) — T. It follows that
S(e V) = (S A S—p) by propositional logic. O

The following weakening of the (I) rule by the (C) axiom will come in
handy (note that the antecedent is equivalent to (NS A Sd) — S—x):
k

Proposition 36 If- Adp — —x andF —x — & then (ASOLA(S)x) — —S0.
k k

Proof From rule (I) we have = (S(A\,, 0x)AS0) — S—x, that’s (1) = S(A, 0x) =
(S0 — S—x). By (C), we have (2) - (A, S0r) = S(A, k). (1) and (2) by
propositional logic, = (A, S0x) = (S0 = S—x), then, = (A, Sox) = ((S)x —
=56), F (Ag Sok A (S)x) = —S0. O

5.3 Alternative Semantics

In this section we define an alternative semantics for the language, which is
shown to be equivalent. This will be used in the completeness proof in the
following section.

First, we show that reflexivity for b (or the lack of it) cannot be detected
by the logical language.

Proposition 37 (b-reflexive-ignorance) Let M = (W, R, Ry, V') be a model,
and M™ = (W, Ry, Ry", V') be the Ry-reflexive model of M : Ry" = RpU{(w, w) |
w € W}. We claim that for any ¢ € Lg, M,w = ¢ iff M",w [ ¢.

Proof Induction on ¢ € Lg. The propositional cases are immediate. We discuss
the case ¢ = (9)9.

(Left-to-right). Let M, w = (S)1, by semantics, there exists u € W such that
wR,u and we have the following two cases:

1. M,u = 4. Tt follows M",u |= ¢ by ITH. From wR,u and the definition of
M", M w = (S)i.
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2. If M,u [~ 1, then M, u = —). Tt follows that for all v € W, uRpv implies
M,v = —) by the semantics of M, w = (S)v. Also, by IH and reflexivity
(uRp"u), M, u }= —p. Since Rp"(u) = Rp(u) U {u}. Then for any v € W
uRp"v implies that either uRyv and M,v = —¢ (follows by the semantic
consequence of the assumption), or u = v and M,v | —¢ (follows by the
assumption). It shows that for any v € W, uRp"v implies M, v = —p. Then
by semantics and the definition of M", M",w = (S)1.

(Right-to-left). Let M", w = (S)t, there exists u € W such that wR,u and
we have the following two cases:

1. M",u = 1. Then we have M, u =+ by IH. M,w = (S)¢ by semantics.

2. If M",u £ v, then M",u = —. Tt follows that for all v € W, if uR}" v,
then M" v | —). Here, if uRpv, we have uR, v, then M,v = —1 by
IH. If not uRyv, then we have v = v from uRy"v and M",v | —¢ from
assumption, that’s M, v = =) by TH. Either way, if uRpv, then M, v | —).
It follows that M, w = (S)y by semantics.

Therefore, we have M, w = (S). O

Second, we show that satisfaction is also invariant if we remove any access
for b in states not accessible from any other state by a.

Definition 1 (Refined model) Given a Ry-reflexive model M" = (W, R,, Ry", V),

the refined model (of M") is the model M"1* = (W, R,, Ry"!%, V') where
Ry = Ry"\ {(w,u) | wRy"u and there is no v € W,such that vR,w}.

Proposition 38 (Refined model) Let M"1% = (W, Ry, Ry, V) be the re-
fined model of a Ry-reflexive model M"™ = (W,R,, Ry",V). Then for any
e Lsg: M",wlk @ iff M71%,w = o.

Proof Induction on ¢. Propositional cases are immediate. ¢ = (S)y: M",w =
(S)1; iff there exists u € W such that wR,u and if M u = — then for all
v € W, uRpv implies M",v = —; iff (by L.H.) there exists u € W such that
wR,u and if M"1% u |= ) then for all v € W, uRyv implies M71% v = =
(note that uRyv will not be deleted as wR,u); iff M71% w |= . O

Observe that refined models satisfy the following conditions:

— for any w,u € W: wR,u implies uRpu.
— for any w,u € W: wRpu implies that there exists v € W such that vR,w.

We now introduce the alternative semantics: interpretation in what we call
standard models.

Definition 2 (Standard model) A standard model M° = (W°,0,V?°) is
defined as follows:

— W? is a set of states.
— O is a ternary relation on W¢ such that:
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(i) for any w,u € W°: O(w, u, u) iff there exists v € W° such that O(w, u, v);
(ii) for any w,w’, u,v,v" € W°: O(w,u,v) and O(w', u,v") implies O(w, u,v").
— V' is a valuation function from Prop to the powerset of W°.

A standard model “packs” the a and b relations into one ternary relation:
intuitively O(w,u, v) means that wR,u and uRpv (similar models already exist
in the modal logic literature, see Section 6 for a discussion). Condition (ii) is
thus a straightforward property of the composition of R, and R;. Condition (i)
is b-reflexivity, which we without loss of generality (since it cannot be detected)
can assume of our Kripke models.

The language is interpreted in standard models as follows. We use (S) here
for simplicity, and the other cases are as in Kripke models. With the meaning
mentioned above in mind, it is easy to see that this definition is equivalent to
the corresponding definition for Kripke models.

M wE(S)e if Jue We such that O(w,u,u) and [M°,u [ ¢,
or Vv € W°: O(w, u, v) implies M°, v = —¢).

We can now define formal translations between models and standard mod-
els, making use of the notion of refined models introduced above. In particular,
standard models are semantically equivalent to (binary) Kripke models as we
will soon see it in Corollary 3.

Definition 3 (Translation) Given a standard moded M° = (W, 0,V), the
translated model Tr(M°) = (W, R,, Ry, V') where:

— wRyu iff there exists v € W such that O(w,u,v).
— wRyu iff there exists v € W such that O(v, w, u).

We can now show that the translated model is equivalent to the standard
model.

Theorem 2 Let M° be a standard model, and Tr(M?®) be the translated model.
We have for any p € Lg:

Me wE @ iff Tr(M°),w = ¢.

Proof Induction on ¢. Boolean cases are immediate. We show the case ¢ :=
(S)1. For simplicity, we denote Tr(M°) as M. Before we move to the diamond
case, we prove the following two properties:

(*) for any w,u € W: wR,u implies uRpu.
(**) for any w,u,v € W: from wR,u and uRyv, we have O(w,u,v).

For (*): Let wR,u, then there exists v € W such that O(w,u,v), and then by

Definition 2(i), O(w, u,u), and by Definition 3, uRyu.

For (**): Let wR,u and uRyv, by Definition 3 there exists v/, w’ € W such

that O(w, u,v’) and O(w', u,v). Then by Definition 2(ii), we have O(w, u,v).
Now we move to the proof for ¢ = (S)1.

(Left-to-right). Let M°,w = (S)4, then by semantics, there exists u € W°

such that O(w,u,u) and either M° u = ¢, or Yo € W°: if O(w,u,v) then
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M?°, v = —p. Then there exists u € W such that wR,u (by Definition 3) and
uRpu by (*) and either M°, u | 9, or Yo € W°: if wR,u and uRyv by (**),
then M° v = —). By LH., there exists u € W such that wR,u and uRyu and
either M,u |= 1, or Yv € W, if wR,u and uRpv, then M, v |= —). Then there
exists u € W such that wR,u and either M, u =, or Vo € W, if uRpv, then
M,v = —. By semantics, M, w = (S).

(Right-to-left). Let M,w | (S)4, there exists u € W such that wR,u and
either M, u |= ¢, or Vv € W, if uRyv then M,v = —). By (*), there exists
u € W such that wR,u and uRyu and either M,u = v, or Yo € W, if wR,u
and uRpv then M,v = —). By Definition 3, Definition 2(ii), there exists
u € W such that O(w,u,u) and either M,u = ¢, or Vo € W, if O(w,u,v)
then M,v = —). By L.H., there exists u € W such that O(w,u, u) and either
Me, u =1, or Vo € W, if O(w,u,v) then M°, v |E —. O

The last missing piece of the puzzle is to show that any (refined) model is
the result of translating some standard model.

Theorem 3 For any refined model M, there exists a standard model M° such
that Tr(M°) = M.

Proof Let M = (W, Rs, Rp, V') be a refined model. M° = (W°,0,V?) is de-
fined as follows: W° =W, V° =V and (*) for any w,u,v € W°: O(w,u,v) iff
wR,u and uRyv.

First we show that M has the standard model properties.

— For O(w, u,w) iff O(w,u,v) for some v. Left-to-right: trivial. Right-to-left:
let O(w,u,v), then wR,u and uRpv by (*), and thus wR,u and uRpu by
the observations about refined model above, and then O(w, u,u) by (*).

— For O(w, u,v) and O(w', u,v") implies O(w, u,v"). Assume that O(w, u,v)
and O(w',u,v"), by (*), we get wRu, uRpv, w' Ryu, and uRpv’, and then
we get that O(w,u,v") from wR,u and uRyv" by (*).

Now we show that Tr(M°) = M. Let Tr(M°) = (W', R,/, R,’,V"). Clearly
W'=W and V' =V. For R, and Ry:

— For any w, u: wR, v iff wR,u. If wR,"u, by Definition 3 there exists v such
that O(w, u,v), and then by (*) we get that wRqu. If wR,u, by the refined
model observations above, uRyu, and then O(w, u,u) by (*) and wR, u by
Definition 3.

— For any w, u: wRy u iff wRyu. If wRy'u, by Definition 3 there exists v such
that O(v,w,u), then by (*), we infer wRpu. If wRyu, by the observations
there exists v such that vR,w, and then O(v,w,u) by (*) and wRy'u by
Definition 3.

Thus, M° is indeed a standard model and Tr(M°) = M. O
Consequently, together with Proposition 38 and Proposition 37, any model is

equivalent to some standard model.

Theorem 4 For any model M, there is a standard model M° such that for
any ¢ € Lg: M,w = ¢ iff M°,w = .
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Proof Let M be a model, then by Proposition 37, we have M,w [ ¢ iff
M, w = ¢, and then by Proposition 38, we have M" w = ¢ iff M™%, w |= .
We have some standard model M such that M"% = Tr(M°) by Theorem 3,
which gives us M°,w = ¢ iff Ml w |= ¢ by Theorem 2. O

Theorems 2 and 4 give us the following corollary.

Corollary 3 Any ¢ € Lg is valid on models iff it is valid on standard models.

5.4 Completeness of ICS

We now prove completeness of ICS with respect to standard models. The
translation in the previous section then immediately gives us completeness
also with respect to Kripke models. The proof is based on the canonical model
method, making use of the standard definition of maximal consistent sets of
formulae. We are faced with two main challenges in applying this method,
however. First, the model we will build is what we have called a standard
model, instead of a Kripke model, making it necessary to come up with a
(ternary) relation for standard models. Second, for reasons that will become
clear soon, the conventional way of defining the state space as all maximal
consistent sets does not give us enough states; we will need several “copies”
of each maximal consistent set. Before we can define the canonical standard
model we need a couple of intermediate definitions and observations, having
to do with these challenges.

Definition 4 Let A be a maximal consistent set of formulae (mcs). We define
the following abbreviations.

— S(4) ={¢| Sp € A},
— N(Q) :=={p | (S)p € A},
— E(4) :={-x]|S(AQ)F —xand x € N(A)}.

Intuitively, E(A) is the set of formulas —y that (1) can be derived from secrets
in A {¢: Sp € A} F =x) but (2) are not secrets in A (—=S—y € A) (note
that it is possible for (1) and (2) to hold at the same time due to the lack
of monotonicity). In the construction of the canonical model that follows, we
are going to have to make sure that for each of these formulas there is an
accessible state for agent a that is a proper witness for (S)x being true. The
following technical property of S(A) is needed for the truth lemma.

Proposition 39 Let A be an mes. If S(A) is consistent then for any 6 € S(A)
and —~x € E(A), the set {—d,~x} is consistent.

Proof Assume that S(A) is consistent, that § € S(A),—x € E(A), and that

{—d, =X} is not consistent. Then - =y — §. Also, from the definition of E(A),

S(A) F —x, there exists a sequence 01, ...,0, € S(A) such that H Adp — —x.
k

From Proposition 36, we have - (ASox A (S)x) — —S9. As we have \So, € A
k k
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and (S)x € A, then —S6 € A as well. Therefore, S§ ¢ A and thus § € S(A),
contradicting the assumptions. O

Let L(p) be the set of mcss containing formula ¢.

The following is a technical definition of two sets Ra(A) and Rab(A) that
will be used to build the the standard canonical model, more precisely to
define the states accessible by agent a, and by agent a followed by agent b,
respectively.

Definition 5 (Ra(A), Rab(A)) Let A be an mes. Ra(A) is defined as fol-
lows: if S(A) is not consistent, we let Ra(A) = (), otherwise, Ra(A) = {4’ |
A’ is an mes such that S(A) C A’}. Rab(A) is defined as follows, only for
the case that S(A) is consistent (undefined otherwise): if E(A) # § then
Rab(A) = {L(—x) | =x € E(Q)}; if E(A) = ) then Rab(A) = {L(—1)}.

The following intermediate result will be used in the existence lemma.

Proposition 40 Let A be an mcs. S(A) is consistent iff there exists ¢ € Lg
such that ¢ & S(A).

Proof Let A be an mcs. The left-to-right direction is trivial. For the other
direction, let ¢ ¢ S(A) for some ¢. Assume that S(A) is not consistent.
Then for some d1,...,0, € S(A), F (&1 A... Ad,) — L. It follows that
FA...Ad) < Lyand F S(61 A... Ady) < SL by (Re). Similar, we have
F S(01 A=d1) <> SL from F L < (01 A —d7), it gives = S(61 A ... Ady) <
S(61 A —d1). By applying Prop. 35, and we get = S(01 A...Ad,) — So.
Repeat this process for each 0; (1 < ¢ < n), and we get - S(d1 A... Ad,) —
(So1A...ANS6,). By axiom (C) we get = S(01 A ... Adp) & (SO1 A ... ASS,),
ie, FSL < (S8 A...ASH,) and SL € A, thus by Prop. 35 and definition
of L FS1 — Sy for any ¢ € Lg, and thus we have Sp € A and ¢ € S(AQ)
for any ¢, a contradiction to assumption. ad

We can finally give the definition of the canonical standard model. One dif-
ference to conventional canonical model constructions, in addition to the fact
that we employ standard models, is that the states will be what we called la-
belled mazimal consistent sets (Imcs) instead of maximal consistent sets (mcs).
An lmcs is of the form I'[¢], where I" is an mcs and ¢ € Lg is a formula. We
write ¢ € Alx] iff ¢ € A. Note that we can construct many different lmcs
from one mcs by chosing different labels. The reason for the need to get more
states by using labels is to get a sufficient number of “middle states” between
a-b accessible states; we explain this in more detail after the definition.

Definition 6 (Canonical standard model) The canonical standard model
Me = (We,0°,V°) is defined as follows.
— We={Alp] | Aly] is a labelled mcs};
— If S(A) is consistent: for any —x, x1, X2 € Ls,
— O°(Alxa], I'[-x], I"[x2]) iff I' € Ra(A), L(—x) € Rab(A), and I €
L(—\X).
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— If S(A) is not consistent:
— thereisnomes I', I'', and —x, x1, X2 € Ls s.t. O°(A[x1], I'[=x], I [x2])-
— Ve(p) ={Alyp] | p € A} for any p € Prop and ¢ € Lg.

Note that the labels x; and x2 play no role in the definition of O°.

To understand the use of labels, consider the case that only used standard
mess. If (S)y € A, it might be the case that we need all a-accessible states
to contain —y. In that case, for any I" a-accessible from A we need that for
any b-accessible set from I', i.e., I'", =x € I". For the same reason, we could
also have (S)d € A such that =6 € I" and then we need for any b-accessible
set from I, i.e., I'”, that =6 € I'". But that might not be possible: =y and —§
might not even be consistent. That is why we need more “copies” of I" labelled
by, e.g., =x or =§ — more “middle states”.

Note that labels are only relevant for the lmcs in the middle place of the
O° relation: the b-accessible states are identified by the label. For instance,
for I'[-x], the b-accessible Imcss are all mcss defined by Rab(A) that contains
—x. And for I'[-¢] (same mcs I'), the b-accessible Imcss are all mess defined
by Rab(A) that contains —J. Also note that if —y is inconsistent, then y is a
tautology, and we have y € I" (it’s b-accessible set is empty), and (S)x € A if
I' is a~accessible from A.

We now show that the standard canonical model indeed is a standard
model.

Proposition 41 (Canonicity) Let A[xi] be any Imes, I' be any mcs, and
—x € Lg be any formula. we have the following properties:

(1) O(Abul, Tl I"[xal) for some imes Ixa] if O(Abal, Pl TIx).
(2) For any Imcs A'[xz], 2[xs], and 2'[x4]:

fTO’ITL OC(A[XlL F[_'X]v _Q[Xg]) and OC(A/[XQL F[_‘X]v Q/[X‘l]);

we have O°(A[x1], I'[-x], $2'[x4)])-

Proof Firstly, we show that (*) for any lmcs Alx1], I'[-x] and I'[x2]:
O¢(Alxa], I'[-x], I'[xz]) iff I' € Ra(A) and L(—x) € Rab(A).

Case 1: If S(A) is not consistent, then by the definition of Ra(A) (Def. 5),
Ra(A) = 0. We have I' € Ra(A) and not O(A[x1], I'[-x], I'[xz]) by Definition
6.
Case 2: If S(A) is consistent, we then consider by two directions.
(Left-to-right). Trivial, by Definition 6.
(Right-to-left). As we have I" € Ra(A) and L(—x) € Rab(A), we only need
to show that I" € L(—x), by Definition 6. Based on the fact that S(A) is
consistent, we consider the following two cases:

— If E(A) = 0, then Rab(A) = {L(—L1)}, and x = L such that L(—1) is
the only element of Rab(A) by Definition 5. We have I' € L(—.L1) by the
definition of L, i.e., I' € L(—x) from x = L.
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— If E(A) # 0, then for any L(—x) € Rab(A) we have S(A) F —x. As
I' € Ra(A), we have S(A) C I' by Definition 5, and by S(A) F —y, we
have I' b —x. Then —x € I" since I' is an mcs, and it follows I' € L(—x)
by the definition of L.

Now we can move to the canonicity proof.

(1). (Right-to-left). Trivial. (Left-to-right). Let O°(A[x1], I'[-x], I"[x2]) for
some lmcs I''[x2]. By definition, I" € Ra(A) and L(—x) € Rab(A), and by (*),
O(Apal, I'l=x], I'[=x])-

(2). Let (a) O°(Alx, [T, 2[xa]) and (b) O°(Axal, T, 2 [xal). Apply
Definition 6. From (a), we have (i) I' € Ra(A) and (ii) L(—x) € Rab(4); from
(b), we have (iii) 2’ € L(—x). By Definition 6, by (i), (ii), and (iii), we get
O°(Alxa], I'[=x], £2'[xa))- 0

We have showed that the canonical standard model is a standard model. We
proceeed by providing an existence lemma, and then the truth lemma.

Lemma 1 (Existence lemma) If Alxi] is an Imcs and (S)p € A, then
there exists an Imes I'[-x] such that O°(Alxa), I'[-x], I'[-x]) and

— either p € T,

— or for all I''[x2], O°(Alx1], I'[=x], [ [xz]) implies ~p € I".

Proof Let A[xi1] be an lmes and (S)p € A. Then N(A) is not empty, and
- & S(A). Then S(A) is consistent from Proposition 40. Proof by cases:

— If E(A) = 0, then Rab(A) = {L(—L)} by definition, and we claim that
S(A)U{¢} is consistent. Suppose not, we have S(A) F —p, then ¢ € E(A)
from ¢ € N(A), a contradiction to the assumption that E(A) = (). Then
there is an mcs I' containing S(A) U {p} s.t. O°(A[x1], I'[-L], I'[-1]) and
pel.

— If E(A) # 0, then Rab(A) = {L(—x) | =x € E(A)} by Definition 5. Based
on ¢ € N(A), we consider two cases:

— If =¢p € E(A), then L(—p) € Rab(A) by Definition 5. We just let I" be
an mcs such that S(A) C I' (clearly, I' € Ra(A) by Definition 5), by
item (*) in the proof of Proposition 41 we have that I'[-¢] such that
0°(Alal, T=gl, Tlog]), and for any I'[xa], 0%(ANl, T-gl, I[xa)
implies - € I, since I"" € L(—¢) from O°(Alx1], I'[=¢], I"[x2]) by
Definition 6.

— if ~np & E(A), from p € N(A) we have S(A) I/ -, therefore S(A)U{p}
is consistent. Extend it into an mcs I" (then I" € Ra(A) by Definition
5); we have for any L(—x) € Rab(A), O°(A, I'[-x], I'[-x]) from item
(*) in the proof of Proposition 41 and ¢ € I" by construction.

O

In order to prove the truth lemma, and thus the desired result, we need
the following proposition.

Proposition 42 If there exists I'[—x] € W such that O°(A[x1], I'[-x], I'[=x])
and [either ¢ € I', or for all I'[x2] € W¢: O°(Alxal, I'[-x], I'[xz]) implies
—p € I''], then we have (S)y € A.
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Proof Proof by contraposition. Let (S)y ¢ A — then S—p € A by the mcs
property and duality. We consider two cases:

— if S(A) is not consistent, then O°(A[x1], I'[-x], I'[-x]) does not hold for
any I'[-x] € W€ by Definition 6, and we are done.

— if S(A) is consistent, we need to show that “for any I'[-x] € W¢, if
O°(Alx1], I'[-x), I'[-x]) then —p € I' and there exists I"[x2] € W<
O°(Alx1], I'[=x], I [x2]) and ¢ € I'". We consider two cases:

— E(A) = 0: Assume that O°(A[x1], I'[-x], I'[-x]). Then I € Ra(A)
and L(—x) € Rab(A) by definition of O° (Def. 6). We immediately
have =) € I' from I' € Ra(A) and S— € A. Since E(A) = 0, we
have Rab(A) = {L(—1)} by definition of Rab (Def. 5), it follows that
L(—x) = L(—1) since L(—L) is the only element of Rab(A). Now we
claim that {1} must be consistent. Suppose not, then - ¢ — 1, and
F = < =L by propositional logic. Then by the (Re) rule, - S—¢
S—L. From S—p € A, S—1L € A and ST € A, then by the (S) axiom,
S1 € A, and it follows that L € S(A) by Def. 4. That shows that S(A)
is not consistent, a contradiction. Therefore, we have proved that {u}
is consistent. Then there is an mcs I such that ¢ € I'" and clearly,
I'" € L(—L1) by definition of L, and thus I € L(—x) since x = L.

— if E(A) # 0. Assume that O°(A[x1], I'[-x], I'[=x]), then I' € Ra(A),
L(—x) € Rab(A) by definition of O° (Def. 6). We immediately have
- € I' from I' € Ra(A) and S—p € A. Since E(A) # 0, we have
Rab(A) = {L(—x) | -x € E(A)} by Def. 5. From Proposition 39, we
have that {——, —x} is consistent as =) € S(A). Then for lmes I''[x2]
containing {——, —x}, we have I'" € L(—x) and ¢ € T".

O

Lemma 2 (Truth lemma) Let M¢ = (W¢,0°,V°) be the canonical standard
model. We have that M¢, Alx1] E ¢ iff ¢ € Alxa] for any formula ¢, x1 € Ls.

Proof Let x1 be arbitrary. Propositional cases are immediate. Consider the
» = (S)1 case.

(Left-to-right) If M°, A[x1] = (S)%, then there exists an lmcs I'[-x] €
We such that O°(A[x1], I'[-x], I'[—x]) and if M€, I'[-x] K& -, then for all
I'[x2] € W: O°(Alxa], I'[-x], I''[xz]) implies M, I'"'[x2] = —. By TH, there
exists an Imcs I'[-x] € W¢ such that O°(A[x1], I'[-x], I'[-x]) and if ¢ & T,
then for all I[x2] € W: O°(Alx1], I'[=x], I'[xz]) implies —-¢p € I''. We have
(S)y € A from Proposition 42, and (S)y) € Alx;] follows by definition.

(Right-to-left) If () € Alxi] (that’s (S)y € A by definition), then by
Lemma 1, there exists an lmes I'[-x] such that O¢(A[x1], I'[-x], ['[-x]) and
[either ¢ € T, or for all I''[x2], O°(A[x1], I'[=x], ['[-x2]) implies —¢) € I'']. It
follows that there exists an lmcs I'[-x] such that O°¢(A[x1], I'[-x], I'[-x]) and
[either M€, I'[-x] E ¢ (by IH), or for all IV, O°(A[x1], I'[-x], I"[x2]) implies
Me¢,I'"[x2] = - (by IH)]. Then by semantics, M¢, A[x1] = (S)¢ . O

Theorem 5 ICS is sound and strongly complete with respect to the class of
all standard models.
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Proof For soundness, assume that ¢ is not valid on all standard models, i.e.,
that M° w [~ ¢ for some M° w. By Theorem 2, Tr(M¢) is the model such
that Tr(M€),w | —¢. That means that ¢ is not valid on the class of all
models, which by Theorem 1 means that I/ ¢. For completeness: proof by
contraposition. Assume that 2 t/ ¢, then 2 U {-p} is consistent. Extend
N U {~} into an lmes A[x1]. We have M, Alx1] E —¢ by Lemma 2, and it
follows that £2 |~ ¢ in standard models. O

Theorem 6 (Completeness) ICS is sound and strongly complete with re-
spect to the class of all models.

Proof Let 2t/ ¢. We let 2 C A and M¢ Alx1] E —¢ as in the proof of
Theorem 5. By Theorem 2, for all ¢ M€ Alx1] E ¢ iff Tr(M°), Alx1] E ¢,
and it follows that {2 = ¢ on the class of models. a

We mention two minor results that immediately follow: ICS is also sound
and strongly complete with respect to (1) all Rp-reflexive models (Prop. 37,
Theorem 2) as well as (2) all refined models (Prop. 38, Theorem 2).

5.5 ICST: Soundness and Completeness

Let ICST be ICS extended with the (T) axiom S¢ — ¢. We will show that
ICST is sound and complete with respect to reflexive models (models where
both agents have reflexive accessibility relations).

Theorem 7 ICST is sound with repect to reflexive models.

Proof Follows immediately from soundness of ICS, and validity of (T) which
follows immediately from reflexivity for agent a.

In the remainder of this section we adapt the completeness proof of ICS to
ICST. In the rest of the section we use F to stand for FicgT, by “consistent”
we mean ICST consistent; by mcs we mean maximal ICST-consistent set,
and similarly for Imess and so on. Definitions of L, Ra and Rab are as in the
previous section. We define the canonical standard model for ICST as follows.

Definition 7 (Canonical standard model) The canonical standard model
Me = (We,0¢,Ve) for ICST is defined as follows.

— We ={Alp] | Alp] is an lmcs such that L(y) € Rab(A)};
— For any -y € Lg such that I'[-x] € W€ and for any A, I € W¢,

— O%(A, I'[~x], I'") iff I' € Ra(A), L(—x) € Rab(A) and I'" € L(—x).
— Ve(p) ={A|p € A} for any p € Prop.

The following properties of the canonical standard model will be useful.

Corollary 4 For any lmcs Alx1] € W€, S(A) is consistent and E(A) # .
Moreover, =L € E(A), Ra(A) # 0, and Rab(A) = {L(-x) | ~x € E(A)}.
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Proof Let A[x1] € W€ be an arbitrary lmcs. We have that S(A) is consistent
by Proposition 40, since =S1 € A. It follows that Ra(A) # () by Definition
5. Similarly, =L € E(A) by Definition 4 from (S)L € A and S(A) F —L. It
follows that E(A) # 0. Then by Definition 5, we have Rab(A) = {L(—x) |
-x € E(A)}. O

M€ is indeed a standard model. The following can be shown with the same
proof strategy as in Proposition 41 (although the details differ a little).

Proposition 43 (Canonicity) Let A[x1], ['[-x] € W€ be any lmcs. We have
the following properties:

(1) O(ADal, I'l=x], I [x2]) for some tmes I [xa] € W€ iff O°(A[xa], I'[=x], I'[-x])-
(2) For any —x € Lg: from O°(A[xa], I'[-x], 2[x2]) and O°(A"[xs], I'[=x], £2'[x4]),
we have O°(Alx1], I'[=x], £2'[xa])-

We say that a standard model is reflexive, if O(z, x, z) holds for any € W.
The canonical standard model is reflexive:

Proposition 44 (Reflexivity) The canonical standard model is reflexive.

Proof Let Alx] € We°. We will show that O°(A[x], A[x], A[x]). From A[x] €
We, we have that L(x) € Rab(A) by the definition of W€ (Definition 7). First,
we prove that A € Ra(A). From S(A) being consistent and the (T) axiom,
we have (*) S(A) C A (if ¢ € S(A), then Sy € A by definition (Def. 4), and
v € A by (T)), it then follows that A € Ra(A) by Definition 5.

Now, we show that A € L(x). From L(x) € Rab(A), we have (a) S(A) F x
and x € E(A) from Definition 5, since F(A) # @ (Cor. 4). From (a), we know
that x € I' for any S(A) C I'. Therefore, x € A when I' = A from (*)
and A € L(x) by definition of L. Therefore, O¢(A[x], A[x], A[x]) follows by
Definition 7. O

Now we need to prove the existence lemma again, since we have deleted
lots of lmcss.

Lemma 3 (Existence lemma) For any Alxi1] € W€, if (S)p € A, then
there exists I'[-x] € W€ such that O°(Alx1], I'[-x], I'[-x]) and [either p € I,
or for any lmes I'[xz) € W, if O°(Alxal, -], I"[xa]), then ~p € I").

Proof Let A[x1] be an Imcs and (S)¢ € A. From E(A) # (), we have Rab(A) =
{L(=x) | 7x € E(A)} by Def. 5. Based on ¢ € N(A), we consider two cases:

— If =p € E(A), then L(—p) € Rab(A), and A[-p] € W€. By reflexivity
(Prop. 44), O° (A=), A[—¢], Al—¢)]). It follows that O¢(A[x1], Al—-¢], A[-¢])
by Definition 7 and A[x1] € W¢. For any lmcs I [x2], O°(A[x1], A[-¢], I’ [x2])
implies = € I'"” by Definition 7.

— If v & E(A) from ¢ € N(A), we have S(A) I/ —p, and therefore S(A) U
{¢} is consistent. Extend it into an mecs I'. Then I" € Ra(A), and for
the particular L(—L) € Rab(A), we have that O°(A[x1], I'[-L], '[-1]) as
I' e L(—1), and ¢ € I' by construction.



The Logic of Secrets and the Interpolation Rule 31

O

Like in the case of ICS we need the following result for the truth lemma.

Proposition 45 If for some I'[-x] € W, O°(A[xa], I'[-x], I'[-x]) and [ei-
therp € I, or for all I [x2] € W€, O°(Alxa], I'[=x], I'[xz2]) implies —p € T"],
then (S)y € A.

Proof Proof by contraposition. Let (S)1) ¢ A, then S—) € A by the mcs prop-
erty and duality. We need to show that “for any I'[-x] € W, if O°(A[x1], I'[-x], I'[x])
then [-# € I' and for some IV € W€, O°(A[x1], I'[-x], ") and ¢ € T"]".
Assume that O°(A[x1], I'[-x], I'[=x]), then I € Ra(A), L(-x) € Rab(A)
by definition. We immediately have ¢ € I" from I" € Ra(A) and S—¢ € A.
Since E(A) # 0, we have Rab(A) = {L(—x) | -x € E(A)} by definition. From
Proposition 39, we have that {=—1), —~x} is consistent as =1 € S(A). Then for
all mes I containing {——, =y} such that I'[yz] € W€ for any x2 € Lg, we
have I''[x2] € L(—x) and ¢ € I". |

Lemma 4 (Truth lemma) Let M¢ = (W¢,0°,V°) be the canonical standard
model for ICST, and A[x1] be any Imcs in W€¢. We have that for any formula

p € Ls, M Alx1] F ¢ iff ¢ € Alxa].

Proof The propositional cases are immediate. Consider the case ¢ = (S).
(Left-to-right). If M€, Alx1] = (S)%, then for some I'[-x] € W€, O¢(Alx1], I'[-x], I'[-x])
and [either M€ I'[-x] | 1, or for all I"[x2] € W€ O°(Alx1], I'[-x], " [x2])

implies M, I''[x2] | —¢]. By IH, for some I'[-x] € W€, O¢(A[x1], I'[-x], I'[-x])

and [either ¢ € I, or for all I''[x2] € W O°(Alxi], I'[-x], I'[xz2]) implies

—p € I'']. We have that (S)y € A[x1] from Proposition 45.

(Right-to-left). If (S)y € Alxi], by Lemma 3, there exists I'[-x] such that
O%(Al], I, T'l=x]) and [either 1 € I'l=x], or for all [x] € W, 0°(Alxa], I'=x], I'[x2))
implies ) € I'']. It follows that there exists I'[-x] such that O°(A[xa1], I'[-x], I'[-x])
and [either M€, I'[-x] £ ¢ (by IH), or for all I''[x2], O°(A[x1], I'[=x], I [x2])

implies M€, I"'[x2] = —¢ (by IH)]. By semantics, M, Alx1] = (S)9 . O

The following corollary follows immediately.

Corollary 5 For any Al-x1], A[-xz2] € W€ and for any ¢ € Lg,
Me, Al=xa] | ¢ iff M€, Al=xa] ¢

Proof Assume that A[-x1], A[-x2] € W€ are arbitrary, and ¢ € Lg is an
arbitrary formula. M€, A[-x1] E ¢, iff ¢ € A[-x1] (by Lemma 4), iff ¢ €
Al=xa], iff M, Al-x2] E ¢ (by Lemma 4). O

Theorem 8 (Completeness) ICST is sound and strongly complete with
respect to the class of reflexive standard models.

Proof That (T) is valid on the class of reflxive standard models follows directly
from the definition. Completeness: proof by contraposition. Let I' FcsT .
Then I'U{—¢} is consistent, and it can be extended into a maximal and ICST-
consistent set I'" such that M¢ I'"[-~1] = —¢ by Lemma 4 and Corollary 5
(I'"[-1] is admissible from Corollary 4) and it then follows that I" = . O
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Theorem 9 ICST is sound and strongly complete with respect to the class of
reflexive models.

Proof From the proof of Theorem 8, we have M€, I'"[-1] = =¢. By Theorem
2, Tr(M°), I"[-1] E —p, and Tr(M°) is a (refined) model. It is easy to
see that the translation of a reflexive standard model has R,-reflexivity. By
Proposition 37, we have that ICST is strongly complete with respect to the
class of models satisfying both R, and R, reflexivity.

6 Discussion

In this paper we formalised the concept of “secretly knowing” as a modality on
the abstraction level of standard Kripke models of epistemic logic. We studied
the properties of the secretly knowing modalities in the form of valid formulas
and validity preserving rules. These included interaction properties between
secret knowledge and individual knowledge modalities, as well as between se-
cret knowledge modalities for different agents.

The perhaps most interesting properties are those involving secretly know-
ing modalities for a single agent; these are the most fundamental properties
of secretly knowing. We saw that the secret knowledge modalities are not nor-
mal. This should come as little surprise, given the non-standard interpretation
in Kripke models using an “exist-forall” combination also found in other non-
normal modal logics such as Coalition Logic (Pauly, 2002). Unlike the Coalition
Logic modalities the secretly knowing modalities are not monotonic.

We gave a complete characterisation of the secret knowledge modality in
the case of the weakest possible assumptions about individual knowledge (gen-
eral Kripke models) considered in epistemic logic (Fagin et al., 1995) as well as
under the (common) assumption that knowledge is veridial (reflexive Kripke
models), by restricting the language to a single modality. These two restric-
tions, a single modality and weak individual knowledge, allowed us to untangle
the most basic and fundamental properties of the secret knowledge modalities
(that all also hold under stronger assumptions about the properties of knowl-
edge). The main result is that secret knowledge modalities are characterised
by what we called the Interpolation rule, which is weaker than Monotonicity
but stronger than Equivalence, in addition to the fact that they are adjunctive
(have the (C) axiom) and satisfy the (S) axiom — system ICS (or ICST if
reflexivity is assumed).

Along the way we studied the Interpolation rule, which to our knowledge
has not been studied in the literature, as a general sub-normal rule. In partic-
ular we showed that it is strictly between Equivalence and Monotonicity, and
that in an adjunctive logic it can be used to derive the (K) axiom. While we
are not aware of existing applications of the Interpolation rule, both negative
and diamond necessitation, which in our case are admissible in the S5 case but
not in the K case, exist, in logics of agency and in deontic logics, respectively.

As ICS is an extension of the system E, the weakest system allowing neigh-
bourhood semantics, a problem of obvious interest is to find a possibly corre-
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sponding class of neighbourhood models (using the standard interpretation of
the language in neighbourhood models). We leave this for future work. How-
ever, as noted by Pacuit (2017), neighbourhood semantics is not always the
best choice. Indeed, we have given a different alternative semantics, by what we
called standard models. Standard models are in fact n-ary relational models,
more specifically 3-ary in our case, proposed by Schotch and Jennings (1980).
n-ary relational models were in fact originally developed for non-adjunctive
logics (Pacuit, 2017). However, our interpretation of the language in standard
models is different — a non-standard interpretation in (a particular class of)
3-ary models if you will. Finding a more natural and/or standard semantics,
perhaps among the many existing semantics for weak modal logics remains a
general open problem.

As pointed out by Van De Putte and McNamara (2021), modal logics with
what is sometimes called “the normality schema” (K) but which nevertheless
are sub-normal have been “widely neglected” when it comes to logical inves-
tigations, one possible reason being a lack of applications — maybe even a
perception that it makes little sense to have (K) in a non-normal logic. In this
paper we have shown that it actually does, it follows from a natural definition
of secretly knowing in Kripke models. A notable exception to this neglect is
(Van De Putte and McNamara, 2021) itself, which gives a constructive canon-
ical® completeness proof for EK, ECK and some non-iterative relatives. We
observe that one can in fact immediately get a strong completeness result for
the logics EKS and ECKS with respect to neighbourhood models with prop-
erties (k), (s) and (k), (¢), (s) (see Section 4.1), respectively, from the general
results in (Van De Putte and McNamara, 2021).

If we add the assumption that individual knowledge has the S5 properties,
secret knowledge inherits most of the properties of knowledge except negative
introspection. This is similar to the situation for group knowledge and belief
(Agotnes and Wéng, 2021a): general knowledge (“everybody-knows”) loses
both negative and positive introspection on S5. Common knowledge, while
retaining negative introspection on S5, loses it on every model class without
the (B) axiom (symmetry) for individual knowledge. Negative introspection
seems to be the most “fragile” property of knowledge. While the mentioned
group knowledge modalities are normal, somebody-knows (Agotnes and Wang,
2021b) isn’t, albeit for very different reasons than secretly-knowing: it is mono-
tonic and has the necessitation rule, but lacks both (C) and (K).

Completeness of the Lg language interpreted in S5 models remains an
open problem. We conjecture that the logic ICT4S is complete. The fact that
there are relatively few existing completeness results for non-normal logics
with non-iterative axioms such as (4) indicate that this might be a challenge.
For example, while completeness of ECKT follows easily from the construc-
tions in (Van De Putte and McNamara, 2021), we are not aware of existing
completeness results for the sub-logic ECK4.

6 Compared with existing non-canonical (Lewis, 1974) or non-constructive (Surendonk,
1997) proofs.
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A related work is (van der Hoek and Lomuscio, 2004) where the concept
of ignorance is studied in a very similar way to the way we studied secrets in
this paper. A minimal modal language is used, with a single modality I with
Iy meaning that the agent is ignorant of whether ¢ (knows neither ¢ nor —p).
Like our modality, the ignorance modality can be expressed using the standard
knowledge modality, but the goal is to tease out the basic principles of igno-
rance. To this end, a sound and complete axiomatisation is presented, for the
case of no assumptions about the properties of knowledge (no restrictions on
the accessibility relations, like our basic case). The ignorance modality is how-
ever, normal, the semantics being defined in terms of existential quantification
over the accessibility relation. The secretly knowing modalities can be seen as a
combination of knowledge and ignorance modalities, and it is this combination
of universal and existential quantification that makes it sub-normal.

There are various ways our abstract definition of secretly knowing could be
extended by bringing other aspects than individual knowledge and ignorance
into the picture. We already mentioned intentionality in the introduction. An-
other is common knowledge. First, a stronger version of our definition of se-
cretly knowing could be investigated, where not only a knows that b doesn’t
know ¢, but that is common knowledge between a and b. This is similar to
the pre- and post-conditions of lying in van Ditmarsch (2014). Second, as also
mentioned in the introduction, sometimes secrets are known by a small num-
ber of people rather than a single person, and in this case common knowledge
seems to play an important role. We leave further investigation to future work.

Of other conceptually related work, secrets play a key role in work on gos-
sip protocols (Attamah et al., 2014, 2017; Apt et al., 2016; Apt and Wojtczak,
2018) which use logic to formalise reasoning about information flow. However,
secrets are taken as a primary notion rather than derived from the underlying
notion of knowledge”, and the focus is not on the properties of secretly know-
ing. Also related are modal logics of access control (Abadi et al., 1993; Abadi,
2003; Garg and Abadi, 2008; Fong, 2011; Aceto et al., 2010). Some works in
this area are concerned with properties of secrets of the type we consider in
this paper, but they are (again) mostly taken as primary rather than derived
from an underlying abstract epistemic framework.
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