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ABSTRACT
Deepfake media is becoming widespread nowadays because of the
easily available tools and mobile apps which can generate realistic
looking deepfake videos/images without requiring any technical
knowledge. With further advances in this field of technology in
the near future, the quantity and quality of deepfake media is also
expected to flourish, while making deepfake media a likely new
practical tool to spread mis/disinformation. Because of these con-
cerns, the deepfake media detection tools are becoming a necessity.
In this study, we propose a novel hybrid transformer network utiliz-
ing early feature fusion strategy for deepfake video detection. Our
model employs two different CNN networks, i.e., (1) XceptionNet
and (2) EfficientNet-B4 as feature extractors. We train both feature
extractors along with the transformer in an end-to-end manner
on FaceForensics++, DFDC benchmarks. Our model, while having
relatively straightforward architecture, achieves comparable results
to other more advanced state-of-the-art approaches when evalu-
ated on FaceForensics++ and DFDC benchmarks. Besides this, we
also propose novel face cut-out augmentations, as well as random
cut-out augmentations. We show that the proposed augmentations
improve the detection performance of our model and reduce over-
fitting. In addition to that, we show that our model is capable of
learning from considerably small amount of data.

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy.
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1 INTRODUCTION
The availability of huge image/video datasets and affordable com-
pute resources, has resulted in swift progress in the field of deep
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learning research, specifically in the subarea of Generative Ad-
versarial Networks (GANs) [12]. This progress has made it al-
most effortless to generate realistic synthetic content even for non-
technical computer users. The synthetic content generated using
deep learning models (i.e., GANs) is called Deepfake media. Deep-
fake media can be in the form of images, videos, text and audios.
However, out of all the different categories of deepfake media, the
visual deepfake media is the most common form of fake/synthetic
content we encounter nowadays. The number of deepfake media
generation techniques is growing exponentially. The newer gener-
ation techniques are able to generate extremely plausible synthetic
content, and it is becoming more and more challenging to detect
the generated fake media.

The most popular form of facial deepfake media we encounter
at present is generated using face swapping method, in which the
face of a person (target) is swapped with the face of another person
(source). There are 4 different types of facial deepfake media, i.e., (1)
Face Swapping, (2) Face Re-enactment, (3) Face Editing and (4) Face
Synthesis [18]. In this paper we focus on detecting facial deepfake
media, specifically the media generated using face swapping and
face re-enactment techniques.

Using ensembled or fusion based models tend to achieve ex-
ceptional results as compared to single models [8, 9, 22, 28]. We
therefore propose to employ two different CNN models as feature
extractors along with a transformer architecture (Vision Trans-
former [10]). We expect that by fusing features extracted using
different feature extractors will result in diverse feature spaces,
which will help the transformer to learn diverse set of features.
Transformer architectures are capable of simultaneously learning
meaningful associations from long input sequences. We therefore
choose transformer [10] to learn joint feature space, instead of the
classical way of using a fully connected layer to combine different
feature sets. Besides this, hybrid (having CNN as feature extractor
instead of using simple patch embeddings) transformer models tend
to achieve even better results.

We choose XceptionNet as one of the feature extractors as it
has been widely employed in deepfake detection domain [23]. The
second CNN which we choose is the EfficientNet B4 model, which
also achieved exceptional results on ImageNet benchmark. We do
not freeze the feature extractors during training, i.e., we train both
feature extractors, as well as the transformer architecture in an
end-to-end manner using a single loss function.

The contributions of this paper are three fold, (1) we propose
a novel hybrid transformer architecture which learns from joint
feature sets extracted by two different CNN feature extractors, (2)
we show that image augmentations we generate using our face
pre-processing module, combined with other affine transformation
based augmentations, improve the performance of the detection
models while reducing overfitting, and (3) we show that while
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Figure 1: Our face pre-processing module is responsible for applying 3 different types of image augmentations, (1) Affine
Transformations, (2) Random cut-out augmentations, and (3) Face cut-out augmentations. More details about the augmentations
we use are given in upcoming sections. We show that the employed image augmentations improve detection performance
while reducing overfitting. Photos acquired from Flickr Faces HQ dataset [15].

having a simple and easy to implement architecture, our model
achieves comparable results to other more complex state-of-the-art
approaches while being trained on comparably smaller number of
data samples.

This paper is structured as follows, in section 2 we present a
brief literature review, in section 3 we describe the augmentations
we employ, the proposed face pre-processing module, our model
architecture, the datasets used to train our models, and implemen-
tation details, in section 4 we compare the achieved results with
other deepfake detection baselines, and in section 5 we conclude
our study and propose future research directions.

2 RELATEDWORK
Recent works on deepfake media detection mostly employ CNN
based architectures along with other strategies (e.g., multimodal
features, recurrent networks, transformer models etc) to detect
deepfake images/videos. Unlike the previous research studies, in
this paper we propose a novel strategy to simultaneously learn
from joint feature spaces extracted using two different CNN feature
extractors using a transformer architecture while employing heavy
image augmentations.

Rossler et al. in [23] proposed a simple deepfake detection tech-
nique based on the XceptionNet [4] CNN model pre-trained on
the imagenet dataset. Authors fine-tune the generic XceptionNet
on their FaceForensics++ dataset while reporting excellent per-
formance scores the four subsets of the FaceForensics++ dataset,
namely, (1) FaceSwap, (2) Face2Face, (3) DeepFakes, and (4) Neural-
Textures [23]. The proposed model achieved excellent results on
uncompressed videos, however, lost performance when tested on
compressed videos.

In [28] Zhu et al. propose to utilize 3D facial details to detect
deepfakes. Authors find that merging the 3D identity texture and
direct light is significantly helpful in detecting deepfakes. They
employ the XceptionNet CNN model for feature extraction. A face
cropped image and its 3D detail is used to train the detection model.
They also perform a detailed analysis of a number of different
feature fusion strategies. The proposed technique was trained on
FaceForensics++ dataset and evaluated on (1) FaceForensics++, (2)
Google DeepfakeDetectionDataset, and (3) DFDC datasets. Authors
report promising results on all of the three datasets alongwith better
generalization capability than the previously proposed techniques.

Qi et al. in [22] propose a novel deepfake detection technique
which they call, DeepRhythm. The proposed technique works by
analyzing the heartbeat rhythms of a person in a given video. They
employ photoplethysmography (PPG) to analyze minute changes in
the skin tone inherent with the blood pumping visible on the human
faces. Authors evaluate the proposed technique on FaceForensics++,
and DFDC datasets and report excellent performance results.

In [27] Xuan et al. proposed a more general deepfake media de-
tection technique by employing image augmentations, for example,
gaussian blur and gaussian noise to preprocess images in order to
remove low level high frequency GAN artifacts present inside the
generated images. They then trained a forensic convolutional neu-
ral network model on the preporcessed images. They established
that by using image augmentations on both real and fake images,
destroy the low level noise cues, while forcing the forensics model
to learn more meaningful features. Through experimentation au-
thors establish the effectiveness of their proposed technique on
deepfake media detection.

Sabir et al. in [24] proposed a recurrent convolutional network
for deepfake media detection. The DenseNet convolutional neural
network was employed alongwith a gated recurrent neural network
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Figure 2: Our hybrid transformer network comprising of two different CNNs, (1) XceptionNet, (2) EfficientNet-B4 and a
transformer. Our model is trained on the cropped face images. The face image is fed to the face pre-processing module which
applies face cut-out/random cut-out and affine transformation augmentations randomly. The augmented face image is then
fed to the CNN feature extractors. The extracted features are then fused together by concatenation. A BERT style [𝑐𝑙𝑎𝑠𝑠] token
and learnable positional embedding are added to the concatenated features which are then fed to the transformer. Both feature
extractors and the transformer are trained in an end-to-end manner using a single loss function.

to exploit temporal inconsistencies present between frames of a
deepfake video. The proposed technique was evaluated on the
FaceForensics++ [23] dataset showing promising performance.

Following a similar path, Guera and Delp in [13] proposed to
employ a convolutional neural network alongwith a long short term
memory (LSTM) network for deepfake video detection. Authors
tried to exploit inter-frame discrepancies inherent to most deepfake
videos. The CNN was tasked with extracting frame-level features,
which were then fed to the LSTM network to learn the temporal
features. Authors evaluated themodel on their own dataset showing
exceptional performance.

Nguyen et al. in [21] proposed a capsule network based model
to detect deepfake media. The proposed model was evaluated on
four different deepfake detection datasets containing a wide range
of synthetic images and videos. The proposed method achieved
excellent results as compared to other methods on all datasets.

Again in [20], Nguyen et al. proposed a different strategy em-
ploying a Y-shaped encoder-decoder model. Authors trained the
model by following a multi-task learning based technique which
was able to classify and generate a segmentation mask of the tam-
pered regions within manipulated images/videos. The proposed
model was evaluated on the FaceForensics and FaceForensics++
[23] datasets achieving promising results even when finetuned on
a small number of images.

In [5] Ciftci et al. proposed a novel deepfake detection technique
employing biological signals (i.e., photoplethysmography or PPG
signals) to train a CNN and a support vector machine (SVM). The

predictions from the CNN and SVM were fused to get final clas-
sification label. The proposed model achieved promising results
when evaluated on several different deepfake detection datasets
including, Face Forensics, Face Forensics++ [23], and CelebDF [17]
datasets.

In [1] Afchar et al. proposed two different CNN models, which
they called, (1) Meso-4 and (2) MesoInception-4, both containing
a small number of layers focusing on mesoscopic image features.
The proposed model was tested on an existing deepfake detection
dataset, as well as, a custom dataset collected by the authors. The
model achieved excellent results on both datasets.

In [16] proposed a novel video transformer network for deepfake
media detection, capable of learning from new data in an incremen-
tal manner. The proposed video transformer model was trained on
multimodal data (i.e., face cropped images, and UV texture maps).
The proposed models achieved excellent results on a number of
different deepfake detection benchmarks.

3 METHODOLOGY
In this section, we briefly introduce, (1) image augmentations we
employ to train our models, (2) face pre-processing module which is
responsible for applying the image aumentations and normalizing
the image, (3) the two CNN backbones we employ to extract image
features, and (4) the transformer model.
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3.1 Augmentations
We use two different image cropping (face cut-out, random cut-out)
based augmentations, which are applied along with three different
affine transformation (rotation, translation, scaling) based augmen-
tations.

In face cut-out augmentations, we crop out specific face part from
the image in a random order using facial landmarks, as shown in
figure. Whereas, in case of random cut-out augmentations, we crop
out random square shaped region from a given face image. Both of
these augmentations are separately applied to train two different
models. However, the affine transformation based augmentations
are applied along with both of these cut-out based augmentations.
The pipeline shown in figure 2, applies face cut-out augmentation
along with affine transformation based augmentations to a given
face image.

3.2 Face Pre-processing Module
The face pre-processing module is responsible for applying aug-
mentations and normalizing a given input face image. In case of
face cut-out augmentations, the face pre-processing module takes
a face cropped image as input, predicts 81 face landmarks using
OpenCV’s facial landmarks predictor. It then selects a number of
different landmarks randomly to cut a specific face part out from
the image.

The face pre-processing module in case of random cut-out aug-
mentations, takes a face cropped image, randomly crop outs two
squared shaped regions from the image. The purpose of using heavy
cut out augmentations is that we want to prevent our model from
overfitting. If we do not use augmentations, the model will memo-
rize the training data and will not be able generalize well on the
test set, as can be seen from the results in table 2.

3.3 XceptionNet
XceptionNet architecture with depth-wise separable convolutions
was proposed by François Chollet in [4]. For deepfake detection,
Rossler et al. employed XceptionNet in [23]. They showed that
the XceptionNet architecture achieved exceptional results on Face-
Forensics++ dataset. Because of the excellent performance of Xcep-
tionNet on deepfake detection, in this paper we use XceptionNet
as one of the feature extractors.

3.4 EfficientNet-B4
EfficientNets are a new set of state-of-the-art convolutional neu-
ral network models for image classification proposed in [25]. For
deepfake detection EfficientNet architectures achieved promising
results on DFDC dataset. In-fact, the winning model of the DFDC
was an ensemble of 5 EfficientNet CNNs [8]. Furthermore, because
of the memory constraints we needed a smaller but effective model,
making EfficientNet-B4 the best choice for our study.

3.5 Hybrid Image Transformer
Table 2 presents a performance comparison of our model trained
under different augmentation strategies. We use heavy image aug-
mentations for example, rotation, horizontal flipping, translation,
scaling, face cut-outs and random cut-outs. During experimentation

we found that the model overfits severely when no image augmen-
tations are employed. Random cut-out augmentations along with
affine transformation based augmentations give best results.

We employ BERT [7, 10] styled transformer to learn the joint
features extracted using the two CNNs. Since Transformers have
proven to be excellent in simultaneously learning meaningful prop-
erties from long sequences because of their bidirectional represen-
tation learning capability, we employ these models to learn the
joint features extracted by two CNNs. We believe that rather than
utilizing the early feature fusion followed by a fully connected layer
to learn from the joint feature space, as it is widely done while using
multiple CNNs; using a transformer to learn the joint feature space
will yield better results.

In addition to this, ensembled/fusion based models are proven
to achieve better results when compared with single models specif-
ically in deepfake detection, as we can infer from Facebook’s Deep-
fake Detection Challenge, in which most of the top ranked models
employed ensembled/fusion based networks [8].

We utilize Transformer architecture pretrained on ImageNet1) on
features extracted using an early fusion based strategy in which two
different CNN models as introduced above. The extracted features
are concatenated, a classification token (similar to BERT’s [class]
token) is added at the start, and assigned a positional embedding
before being fed to the transformer architecture. Our model com-
prises of 12 encoder blocks and 12 attention heads (following the
architecture of ViT-Base-16 [10]). The weights for the pretrained
CNN models are obtained from Ross Wightman2. Both the feature
extractors, and the transformer are trained in an end-to-end manner
using a single loss function i.e., we do not freeze the weights of
feature extractors while training.

3.6 Dataset
We train and evaluate our models on FaceForensics++ [23] and
DFDC [9] datasets.

3.6.1 FaceForensics++. This dataset comprises of four subsets
namely, (1) FaceSwap, (2) Face2Face, (3) Deepfakes, and (4) Neural
Textures. The videos we used to train our models are high quality
(c23). We create train, validation, and test sets according to the
instructions in FaceForensics++ dataset paper [23]. There are 720
train videos, 140 validation videos, and 140 test videos. We train
our models on 200K images (100k real and 100k fake), which is less
than half of the size of training set Rossler et al. used to train their
XceptionNet model in [23]. Out of the 200K training images, 160K
images are used for training and the remaining 40K images are used
for validation.

For fake videos, we extract 50 face frames starting from the
beginning of each video, whereas, for the real videos, we extract
150 frames from each video. We do this to balance the real and fake
test sets. The exact amount of images from each dataset used to
train, validate and test our models as given in table 3.

To evaluate our models we extract 16 face frames from 140 test
videos which results in a total of 2100 images as mentioned in the
table 3. To assign a classification label to any test video, we take 16
frames and feed to our model one by one. The final prediction is
1https://github.com/lukemelas/PyTorch-Pretrained-ViT
2https://github.com/rwightman/pytorch-image-models
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Table 1: Performance (accuracy) comparison of a number of different deepfake detection baseline models on FaceForensics++
dataset. Each of the mentioned model was trained on all subsets of the FaceForensics++ dataset at once. Best results are
highlighted.

Approach Deepfakes Face2Face FaceSwap NeuralTextures Pristine Cumulative

Steg. Features + SVM [11] 68.80% 67.69% 70.12% 69.21% 72.98% 70.97%
Cozzolino et al. [6] 75.51% 86.34% 76.81% 75.34% 78.41% 78.45%
Bayar and Stamm [2] 90.25% 93.96% 87.74% 83.69% 77.02% 82.97%
Afchar et al. [1] 89.55% 88.60% 81.24% 76.62% 82.19% 83.10%
Rossler et al. [23] 97.49% 97.69% 96.79% 92.19% 95.41% 95.73%
Qi et al. [22] 99.70% 98.90% 97.80% - - -
Ours (Face cut-out) 97.85% 97.85% 96.42% 90.71% 95.00% 95.57%
Ours (Random cut-out) 98.57% 98.57% 97.85% 92.14% 97.85% 97.00%

Table 2: Performance comparison of our models trained with and without image augmentations. In this table, DF refers to
Deepfakes, F2F refers to Face2Face, FS refers to FaceSwap, NT refers to NeuralTextures, and P refers to Pristine.

Model DF F2F FS NT P Agg.

No Augs 95.71% 93.57% 92.85% 85.00% 96.42% 92.71%
Face cut-out 97.85% 97.85% 96.42% 90.71% 95.00% 95.57%
Random cut-out 98.57% 98.57% 97.85% 92.14% 97.85% 97.00%

Table 3: Number of frames used to train models on different
datasets: Pristine, FaceSwap, Deepfakes, Face2Face, Neural
Textures.

Dataset Training Validation Test

Pristine 100K 20K 2.24K
FaceSwap 25K 5K 2.24K
Deepfakes 25K 5K 2.24K
Face2Face 25K 5K 2.24k
Neural Textures 25K 5K 2.24K

made after averaging the predictions obtained from the model for
each frame.

3.6.2 Deepfake Detection Challenge (DFDC). This dataset
comprises of around 124K videos. To train our models we use only
around 8K videos. The amount of fake videos in DFDC dataset is
more than the real videos, and thus to balance the real and fake
image samples, we extract 50 frames from each fake video, whereas,
from each real video we extract 150 frames. This results in around
265K real and fake frames, from which we only use 48K images to
train our model and 12K images for validation purposes. So in total,
we only used 60K real and fake face frames from DFDC dataset to
train and validate our models.

We use 400 test videos provided with the DFDC dataset to evalu-
ate our model. For evaluation, we use the same strategy we used for
evaluating the models on FaceForensics++ dataset, i.e., we extract
16 face frames from each test video and feed to our model one by
one. The final prediction about a video is made after averaging the
individual frame predictions.

3.7 Implementation Details
For face detection and cropping, we use OpenCV3. For custom
image augmentations such as, rotation, flipping, translation and
cutouts we employ ImgAug4 library. We use Ross Wightman’s
github repoitory to download CNNweights pretrained on ImageNet.
We borrow code and weights of vision transformer pretrained on
ImageNet from Luke Melas 5.

To train our models we use SGD with a momentum ranging
from 0.6 to 0.9, with a learning rate of 3 × 10−3. We stop training
when the validation loss keeps on increasing for 3 consecutive
epochs, or the training accuracy approaches to 100% (to prevent
severe overfitting). We train the two CNNs and the transformer in
an end-to-end manner, and optimize them through a single binary
cross entropy loss function.

We resize images to [3, 224, 224] dimensions. Having higher
resolution images yield better results but because of memory con-
straints we choose to use this image resolution to train and evaluate
our models. The input image is fed to the CNN feature extractors,
which after extracting features, each of the feature extractors re-
turn features of dimension [1, 162, 768]. The obtained features are
then concatenated to get final features of dimension [1, 324, 768].
We append a BERT style [𝑐𝑙𝑎𝑠𝑠] token at the start of the extracted
features resulting making the dimension [1, 325, 768]. A learnable
positional embedding is added to these features through element
wise addition. The resulting features are then fed to the transformer.

3https://opencv.org/
4https://imgaug.readthedocs.io/en/latest/
5https://github.com/lukemelas/PyTorch-Pretrained-ViT
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Table 4: We compare the performance (accuracy) of our model with the XceptionNet proposed by Rossler et al. in [23]. In this
table, DF refers to Deepfakes, F2F refers to Face2Face, FS refers to FaceSwap, NT refers to NeuralTextures.

Model DF F2F FS NT Agg.

Rossler et al. [23] 92.48% 91.33% 92.63% 85.98% 90.60%
Ours (Random cut-out) 95.00% 95.00% 95.71% 90.00% 93.92%

Table 5: Number of training and validation images used by
different deepfake detection techniques. Thenumber of train,
validation, and test sets of other studies in this table are rough
estimates, as the the authors do not specify exact number of
images they used to train their models.

Approach Train Validation Test

Rossler et al. [23] 388K 70K 70K
Zhu et al. [28] 360K 70K 70K
Ours 200K 40K 11.2K

4 RESULTS
In this section we will present and compare the results our model
achieved on the FaceForensics++ and DFDC dataset. We trained
our model on FaceForensics++ dataset under three different set-
tings e.g., (1) without image augmentations, (2) with face cut-out
augmentations, and (3) with random cut-out augmentations. We
found that the model trained using random cut-out augmentations
outperformed the other two variants, and thus we further trained
this model on DFDC dataset as well. Performance comparison of
our model under three augmentation strategies can be seen in table
2. As we understand, the reason behind the excellent performance
of random cut-out augmentation is because it cuts out most parts of
the image in a random order preventing themodel frommemorizing
face images.

It should also be noted that we trained our models on smaller
number of samples from the FaceForensics++ dataset (given in
table 3) as compared to other approaches, e.g., Rossler et al. [23]
train their model on around 388𝐾 images, Zhu et al. [28] train their
models on around 360𝐾 images. We compare our models with the
baseline results provided in the original FaceForensics++ paper
[23], since they provide performance scores of each model on every
subset of the FaceForensics++ dataset. We also present the results
achieved by our models on DFDC dataset in table 6.

Table 1 presents a detailed comparison of the obtained accuracy
scores on all of the subsets of FaceForensics++ dataset. Our model
trained using heavy image augmentations achieves comparable
results to the baseline techniques listed in Table 1 and new state-
of-the-art deepfake detection techniques[22, 28]. The reason for
choosing the techniques in table 1 for comparison is that these tech-
niques are also evaluated in the original FaceForensics++ dataset
paper, and carry out the training in the same manner as we do
in this paper. Testing is done in a different manner than these
approaches i.e., we test our models on 16 face frames per video,
whereas these approaches test there models on 100 face frames per
video. For validation, the approaches in FaceForensics++ paper use

100 face frames per video, whereas, we split the train and validation
set in 80:20 ratio i.e., 200K images for training and 40K images for
validation.

Some of the other deepfake detection state-of-the-art techniques
[5, 22, 28] achieve better results than our model, however, those
techniques are quite complex to implement, and in most cases use
more data than we use to train the models.

In table 4 we present a comparison of our model with Xception-
Net [23] model proposed by Rossler et al. We train and evaluate our
model on each of the four subsets of FaceForensics++ dataset sepa-
rately. For training we only use 5000 fake images (from each subset)
and 5000 real images. While Rossler et al. trained their models on
50 videos or 13500 images since they use 270 images from each
video for training. We show that our model even being trained on
less data, improves detection performance. In table 5 we compare
the size of training set Rossler et al. [23] and Zhu et al. [28] use to
train their respective models.

Table 6: Performance (accuracy) comparison of a number
of different deepfake detection baseline models on DFDC
dataset. Best results are highlighted.

Approach Dataset Train Size Accuracy

Mittal et al. [19] DFDC - 84.40%
Wodajo et al. [26] DFDC 112K 91.50%
Bondi et al. [3] DFDC - 92.20%
Ours (Random cut-out) DFDC 48K 98.24%

We present a comparison of results our model achieved on the
DFDC dataset in table 6. We show that while being trained on
smaller training set, our model still achieves exceptional perfor-
mance scores as compared to other relevant works proposed in the
past.

5 CONCLUSION AND FUTUREWORK
Detecting deepfake media is crucial as well as challenging. Besides
other challenges of deepfake media detection, for example, poor
generalization capability of the detection models, deepfake media
is also adversarial in nature and continues to evolve rapidly. In
this study we presented an early fusion based hybrid transformer
network for deepfake media detection. Our model achieved com-
parable results to most of the state-of-the-art deepfake detection
techniques [22, 28] . After this, we plan to train and evaluate our
model on other prominent deepfake detection datasets, such as,
Celeb-DF [17], ForgeryNet [14] and others. We also plan to analyze
the generalization capability of our model on unseen data in future
studies, while trying to visually interpret our model to know what
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kind of features it utilizes more while making decisions and how it
differentiates between different categories of deepfake media, i.e.,
face swapping, face re-enactment etc.

In future we will focus our work mainly on improving the gen-
eralization capability of the deepfake detection models, and further
work on improving the adversarial robustness of the detection
models.
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