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1 | INTRODUCTION

Abstract

Cumaceans are small peracarid crustaceans that can be remarkably diverse and
important benthic organisms. Despite their ubiquitous presence in soft sedi-
ments, no well-resolved phylogeny currently exists, which impedes ecological
and evolutionary studies of the group. We present a phylogeny based on Bayesian
inference of six markers (18S, 28S, 12S, 16S, CytB and COI), which recovers
monophyly of the order, a deep split between telson and pleotelson bearing
groups, and monophyly of four of the seven included families, including mono-
phyletic Pseudocumatidae, Lampropidae, Bodotriidae and Nannastacidae. The
only species representing the family Gynodiastylidae in our dataset was posi-
tioned among members of Diastylidae in the phylogenetic analyses. However,
this result is based on a single partial COI sequence; thus, we consider it doubt-
ful, and the family Diastylidae are otherwise recovered as a monophyletic family.
The family Leuconidae is split into two well-supported clades, a clade containing
Antarctic members of the genus Leucon and a separate clade containing non-
Antarctic members of the genera Leucon and Eudorella. The phylogeny is a great
stride forwards, as it supports most families as monophyletic, making generic
level phylogenies a plausible endeavour in the future.
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high (Corbera & Galil, 2001), they can play important
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Cumaceans are small crustaceans (1-30mm) with a
characteristic, recognizable shape including an enlarged
cephalothorax, slender abdomen and bifurcated uro-
pods (Figure 1). The characteristic shape leads to the
common names of comma shrimp and hooded shrimp.
Approximately 1900 species are described worldwide
(WoRMS, 2021), and since both density (maximum of
88,591/m?, Moore et al., 2007) and diversity can be very

roles in the marine food web as food sources for other
invertebrates, fish, birds and even whales (Jones, 1963,
Moore et al., 2007, Blanchard et al., 2019). Cumaceans
are ubiquitous in soft sediments and distributed in all
oceans from the intertidal to trenches and have been
found at hydrothermal vent sites (Corbera et al., 2008).
There are some species known from fresh and brackish
environments such as terrestrial waters on the Kamchatka
Peninsula (Derzhavin, 1926), intertidal freshwater springs
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and estuarine rivers (Duncan, 1984), Danube and Volga
rivers (Sowinsky, 1893), and the Black and Caspian Seas
(Sars, 1893), but the majority are marine.

The morphology of cumaceans is consistent at the level
of order, with three or more thoracic segments fused to the
head, all under a carapace, with the remaining thoracic
segments free, six narrow abdominal segments, and a free
telson or fused pleotelson. The characters that are used for
taxonomic differentiation are the shape of the carapace,
antennal morphology, mandible, maxillae and maxilliped
shape, patterns of exopod presence and development on
the third maxilliped to the fourth pereopod, and the pres-
ence of a free telson or fused pleotelson. Sexually dimor-
phic characters are frequently used for discrimination of
families, genera and species, with commonly used adult
male characteristics including pleopod number, shape,
penial lobe presence or absence, antennule and antenna
morphology, and exopod numbers (Figure 1).

Cumaceans have direct development, and the devel-
opment of swimming appendages depends on life stage
and sex; thus, they are quite limited in their dispersal and
movement capabilities. The lack of a planktonic larval
stage, which cumaceans share with other peracarid or-
ders, entails that each species is highly adapted to quite
specific physical and biological conditions associated
with the substrate. Environmental characteristics that
affect cumacean species distributions include grain size,
organic content, redox potential, depth and temperature
(Brandt et al., 1999, Brandt & Schnack, 1999, Corbera &
Cardell, 1995, Corbera et al., 2008, Coyle et al., 2007, Uhlir

V2 Pereopods,
X

FIGURE 1 (a) Diastylis cornuta, dorsal view. (b) Hemilamprops
uniplicatus, lateral view. Central anatomical body parts are
indicated

et al., 2021, Watling & Gerken, 2005). Diversity tends to
increase with depth, and in some areas, density also in-
creases with depth (Brandt & Schnack, 1999). When high
local species diversity is considered, it seems obvious that
cumaceans have great potential for being highly sensi-
tive indicator organisms for environmental changes in
soft sediment communities (Vassilenko, 2002). Shallow
water species may have multiple generations in a single
year (Bishop & Shalla, 1994), while deep-sea species have
generation times of up to 3years or more (Bishop, 1982).
Reproduction is typically a terminal event in the life his-
tory, although in some species, females may reproduce
up to three times. In shallow water species, it is common
during the reproductive season for the adult males to
vertically migrate. The majority of cumaceans are micro-
particle feeders, scraping sediment particles or consum-
ing diatoms (Cartes & Sorbe, 1996), but members of the
Nannastacidae may be carnivorous, based on piercing
mandible morphology and the presence of polychaete
jaws in the gut (Cartes & Sorbe, 1996).

Monophyly of the Cumacea is not in question, as
the group is clearly circumscribed morphologically and
easily recognizable. There are currently 8 families rec-
ognized within the Cumacea (Figure 2), five with a free
telson (Ceratocumatidae, Diastylidae, Gynodiastylidae,
Lampropidae and Pseudocumatidae) and three with
a fused pleotelson (Bodotriidae, Nannastacidae and
Leuconidae). The families are defined by combinations
of characters, which worked well initially in the North
Atlantic in the early stages of cumacean research, when
the majority of species were described from this region.
However, currently, there is so much overlap in family
definitions that there are incertae sedis genera, for example
Kerguelenica (Akiyama & Gerken, 2012) and Atlantocuma
(Akiyama, 2012).

Even though the order Cumacea is well defined mor-
phologically and monophyly of the order is generally
accepted, the relationships between the families and
the monophyly of families, subfamilies and genera have
largely not been tested. Haye et al. (2004) performed a mo-
lecular phylogenetic analysis using the single mitochon-
drial gene COI, and they concluded that the telson fused
into the pleotelson once. Rehm et al. (2020) used partial
16S from a few species per family to test relationships
between the Bodotriidae, Diastylidae and Leuconidae,
with the families Diastylidae and Leuconidae showing
up as monophyletic, and the Bodotriidae not appearing
monophyletic in their study. Bodotriidae, however, came
out monophyletic in a study by Uhlir et al. (2021) also
using 16S sequence, but including a larger taxon sam-
pling covering seven of the eight existing cumacean fam-
ilies. In this study, Lampropidae was found paraphyletic
since the single species representing Ceratocumatidae,
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Ceratocumatidae
Cimmerius reticulatus Jones, 1973

FIGURE 2 Species of the eight
families of Cumacea

Pseudocumatidae

Pseudocuma_longicorne (Bate, 1858)

Leuconidae
Eudorella flokkeri Miihlenhardt-Siegel, 2011
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Bodotridae
Cyclaspis gigas Zimmer, 1907

Diastylidae
Holostylis helleri (Zimmer, 1907)

Lampropidae
Platytyphlops rossi (Jones, 1971)

»

j Nannastacidae

Campylaspis breviramis Ledoyer, 1993

| \\ Gynodlastylldae

“

Cimmerius reticulatus, were positioned as sister species to
Platysympus typicus—within Lampropidae. The few other
phylogenetic analyses are based solely on morphology,
such as Haye's 2007 phylogeny of the family Bodotriidae.
The fossil record of cumaceans is sparse, with one fossil
representative that clearly belongs in a modern family
(Bodotriidae) from the Cretaceous Cenomanian (Luque &
Gerken, 2019), while the few other fossils that have been
assigned to the order from the Carboniferous (Schram
et al.,, 2003), Permian (Malzahn, 1972) and Jurassic
(Bachmayer, 1960) cannot be clearly associated with any
of the modern families.

Morphology has been inadequate for resolving the re-
lationships between families, largely due to families being
defined by combinations of characters, and as morpho-
logical diversity has been added, family definitions have
become less and less cleanly circumscribed. In terms of
change due to evolutionary processes interpretation of
character development can be ambiguous without a prior

Dicoides fletti Hale, 1946

phylogenetic analysis, leaving the coding of characters as
plesiomorphic vs. apomorphic almost impossible. In other
words, without a proper analysis to test hypotheses of
character evolution, directionality of change can be very
difficult, and in some instances complicated further when
absence or presence of a character varies within a species
(Corbera & Galil, 2001).

The first molecular phylogenetic analysis of cumaceans
was based on the single mitochondrial gene COI (Haye
et al., 2004) and resulted in a poorly resolved phylogeny.
In the current understanding, COI is considered not es-
pecially appropriate for analysis at the level of families.
Since then, two other molecular phylogenetic studies have
been published, but for several reasons, these have been
based on another single mitochondrial gene, 16S (Rehm
et al., 2020 and Uhrlir et al., 2021). Accumulation of a suf-
ficient diversity of appropriately preserved specimens for
molecular work has been difficult. Cumaceans are quite
small and difficult to individually preserve; therefore,
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they are frequently preserved in bulk with sediments in
formalin and sorted later, destroying molecular mark-
ers. Some families are rarely encountered, whether be-
cause they are strictly found in the deep sea, such as the
Ceratocumatidae, or simply difficult to find, such as the
Gynodiastylidae. In the current study, we were, for exam-
ple, unable to obtain specimens of the Ceratocumatidae or
the Gynodiastylidae, despite significant collection efforts
in Australia and New Zealand, centres of gynodiastylid
diversity. Gynodiastylidae is, therefore, in the present
study represented by a single partial COI sequence from
GenBank, from a specimen collected on the coast of India.
Also, there have generally been challenges in successfully
amplifying and sequencing certain cumacean species, al-
though recent molecular advances and additional genetic
markers to some degree have limited the issue. The lack
of a family level phylogeny has been impeding research
in the Cumacea in many areas. Without a solid phylog-
eny, diversification within the order cannot be evaluated,
and hypotheses about character evolution cannot be
tested. Ecological work requires a phylogenetic context to
interpret patterns of diversity, dispersal and endemism.
Therefore, in the present study, we conduct a thorough
molecular analysis based on a carefully selected assem-
blage of mitochondrial and nuclear genes and broad taxon
sampling. By doing this, we hope to provide a reliable phy-
logenic framework for future ecological and evolutionary
studies of Cumacea.

2 | METHODS

2.1 | DNA extraction and amplification
In total, 92 cumacean specimens from 55 species (24 gen-
era) covering seven of the eight accepted cumacean fami-
lies are included in the molecular analyses. Total genomic
DNA was extracted from the abdomens of the cumacean
specimens using the Qiagen DNeasy Blood & Tissue Kit
following the Qiagen DNeasy Protocol for Animal Tissues
07/2006.

DNA fragments from two nuclear ribosomal genes (28S
and 18S), two mitochondrial ribosomal genes (16S and
12S) and two protein-coding mitochondrial genes (COI
and CytB) were amplified and sequenced using primers
listed in Table 1. Coverage of the six genes was as follows:
12S mt rDNA: 365bp; 16S mt rDNA: 527bp; 18S rDNA:
2555bp; 28S rDNA: 993 bp; COI mtDNA: 634 bp; and CytB
mtDNA: 392 bp.

All PCR reactions were carried out using a Bio-Rad
C1000 Thermal Cycler in 25ul volumes containing 1 pl
of DNA extract, 2.5 pul 10x PCR buffer, 1.2 pl of dNTP
mixture (2.5 pM each), 1 pl of each 10 pM primer and

0.75U of Takara polymerase. Conditions for all amplifi-
cations were as follows: initial denaturation at 94°C for
5 min, then 35cycles of 30s denaturation at 94°C, 1 min
primer annealing at 52°C and 1 min extension at 72°C,
with a final 7 min 72°C extension. All PCR products were
visualized on 1% agarose gels and stored at 4°C prior to
purification and sequencing. PCR products were cleaned
by the addition of 0.1 pl (1 U) exonuclease I, 1 pl (1 U)
of shrimp alkaline phosphatase and 0.9 pl of ddH,O to
8 pul of PCR product. This was carried out by incubation at
37°C for 30min and deactivation of the enzymes at 85°C
for 15min. Sequence reactions were performed using the
BigDye v.3.1 Cycle Sequencing kit (Applied Biosystems,
Inc.) with the same primers used for initial PCR amplifi-
cation. Both strands of all PCR products were sequenced
using an ABI 3730 capillary sequencer.

2.2 | Sequence alighment

All sample PCR products were sequenced in both direc-
tions in order to improve accuracy and aligned using de-
fault parameters in Genious Prime 2020 (https://www.
geneious.com). Following minor improvements by eye,
alignments were modified for each gene prior to further
analyses. In addition to the species sequenced in the pre-
sent study, 33 cumaceans and 12 out-group species were
downloaded from GenBank. This allowed us to compile
the most complete cumacean dataset to date, both in
terms of species and DNA sequences, including data from
species of seven of eight recognized cumacean families.
(specimen data and sequence accession numbers for all
taxa included in the study can be found in Table 2). In
effect, the Bayesian inference analyses were based on
two concatenated datasets, with (5760bp) and without
(5506bp) GenBank sequences comprising six markers
(188, 28S, 128, 16S, CytB and COI). These markers rep-
resent both nuclear and mitochondrial genes with a wide
range of evolutionary rates, making them suitable for a
phylogenetic resolution at all taxonomical levels in a crus-
tacean order such as Cumacea (Toon et al., 2009; Schubart
et al., 2000).

2.3 | Phylogenetic analyses

To avoid cryptic species affecting the results of our phy-
logenetic analyses, most species are represented by sev-
eral individuals. We performed two separate analyses
on two datasets. Dataset-1 included 125 taxa from both
GenBank and our own material leaving many species
represented by only COI mtDNA in the alignment (re-
sult of analyses in Figure 3). Expecting low support for
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TABLE 1 Primers used to amplify and sequence DNA in this study
Primer Sequence (5'-3") Source Position
28SrRNA
1274 GACCCGTCTTGAAACACGGA Whiting et al. 1997 810
1275 TCGGAAGGAACCAGCTACTA Whiting et al. 1997 1150
FF GGTGAGTTGTTACACACTCCTTAGTCGGAT Jarman et al. 2000 1470
COI mtDNA
LCO GGTCAACAAATCATAAAGATATTGG Folmer et al. 1994 1490
HCO TAAACTTCAGGGTGACCAAAAATCA Folmer et al. 1994 2198
18S rRNA
329 TAATGATCCTTCCGCAGGTT Spears et al. 1992 1
HI CAACTAAGAACGGCCATGCAC Spears et al. 1992 510
F1131 AAACTYAAAGRAATTGACGG Troedsson et al. 2008 600
A- CAGCMGCCGCGGTAATWC Spears et al. 1992 1220
B- CGGGTAACGGGGAAT Spears et al. 1992 1440
328 CCTGGTTGATCCTGCCAG Spears et al. 1992 1800
12S mtDNA
128f GAAACCAGGATTAGATACCC Mokady et al. 1999 330
12Sr TTTCCCGCGAGCGACGGGCG Mokady et al. 1999 670
CytB mtDNA
151F TGTGGRGCNACYGTWATYACTAA Merritt et al. 1998 458
270R AANAGGAARTAYCAYTCNGGYTG Merritt et al. 1998 820
16S mtDNA
16S ar CGCCTGTTTATCAAAAACAT Palumbi et al. 1991 670
16S br CCGGTCTGAACTCAGATCACGT Palumbi et al. 1991 1230

Note: Suggested pairing of 18S primers: 329-328, 329-F1131, 329-a, HI-B, A-328.

Suggested pairing of 28S primers: 1274-1275, 1274-FF.

such a mixed dataset, in dataset-2 (92 taxa), we removed
all taxa represented by single genes from the alignment,
for comparison of support values and tree topology (result
of analyses in Figure 4). Independent models of sequence
evolution for six genes were selected using the Akaike in-
formation criteria in MrModeltest 2.4 (Nylander, 2004).
In both datasets, model testing suggested the GTR +G +1
model for the entire alignment and the following models
for each separate sequence: GTR+ G for 18S, GTR+G+1
for 16S, GTR+ G for 28S, GTR+G for 12S, GTR+G+1
for COI and GTR+G+1 for CytB. Phylogenetic analy-
ses were performed in MrBayes v3.2.7 (Ronquist and
Huelsenbeck, 2003) on full concatenated alignments of
both datasets. Sequences in each dataset were treated with
separate models (partitioned) or a single model of evolu-
tion was applied to the entire dataset (non-partitioned),
using Bayesian methods coupled with Markov chain
Monte Carlo (MCMC) inference. For all analyses, two in-
dependent runs were performed, each consisting of four
chains (1 cold and 3 hot) and proceeding for 50 million
or five million generations, sampling every 2000 genera-
tions. The number of generations for each pair of runs

was determined by monitoring the ‘average standard
deviation of spilt frequencies’ (SDSF) approaching 0.01.
Results were visualized in Tracer v. 1.3 (Drummond &
Rambaut, 2007). For each parameter, proper mixing of
the MCMC was assessed by calculating the effective sam-
pling size (ESS). The average standard deviation of spilt
frequencies (SDSF) after 50 million searches was 0.016
(partitioned dataset-1), and after five million searches 0.13
(non-partitioned dataset-1), 0.017 (partitioned dataset-2)
and 0.011 (non-partitioned dataset-2). PSRF was close to 1
on all parameters. Convergence of parameter values from
each run was evaluated by examining results in Tracer
1.6 (Rambaut et al., 2014). Plots from Tracer were used
to determine that the initial 25% of sampled trees from
each search be discarded as ‘burnin’. In effect, a total of
2x18,751 trees in dataset-1 and 2x1876 trees in dataset-
2 were used to summarize model parameters in MrBayes
using the ‘sump’ command, and ‘sumt’ to construct a 50%
majority rule consensus trees and calculate Bayesian pos-
terior probabilities for each node (Figures 3 and 4). In ad-
dition, in order to validate the Bayesian results, we chose
to apply a maximum likelihood method using RAXML
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FIGURE 3 Phylogenetic relationships of Cumacea. Cladogram, consensus tree inferred from a Bayesian analysis (50 million
generations, 37,502 trees) on a concatenated six-gene dataset (18S, 28S, 12S, 16S, CytB and COI) with letters indicating larger monophyletic
taxonomic groupings. Single gene taxa taken from GeneBank are included (Dataset-1, 125 taxa). Genes were partitioned and treated as
separate models. The SDSF for split frequencies was 0.016, and PSRF was close to 1 on all parameters. Nodal support is indicated in the
form of Bayesian posterior probabilities (PP). Nodes with PP values less than 50 have been collapsed. *” indicates nodes that were also
supported in a Bayesian analysis having one evolutionary model applied to the entire dataset (non-partitioned) and a maximum likelihood
analyses using RAXML raw trees for dataset-1 is provided in Appendices S1-S3. Major nodes in Figures 2 and 3 are labelled for reference

in discussion. The monophyletic taxa: (A) Cumacea, (B) The telson bearing clades (Diastylidae, Gynodiastylidae, Pseudocumatidae

and Lampropidae, (C) The clades with fused pleotelson (Nannastacidae, Leuconidae and Bodotriidae), (D) The families Diastylidae,
Gynodiastylidae and Pseudocumatidae, (E) Lampropidae, (F) Diastylidae, (G) Pseudocumatidae, (H) The only gynodiastylid sequence
(COI), (I) A monophyletic group of Antarctic leuconid species (Leuconidae I), (J) A clade consisting of seven different genera within a
monophyletic Bodotriidae, (K) Nannastacidae, (L) An assembly of Eudorella and Leucon species closer related to Nannastacidae than the
remaining Leuconidae, (M) Leuconid species within the genus Eudorella (Leuconidae IT)—see discussion and results for more information,

(N) An assembly of Leucon species

(Stamatakis, 2014) on our full dataset. A 50% major ma-
jority tree was constructed from one thousand rapid boot-
strap replicates (—f) that were calculated employing the
GTRGAMMA substitution using 6 distinct data/gene
partitions (applied same sequence models as those used
in the Bayesian analyses) with joint branch length optimi-
zation. The parsimony random seed (—p) and bootstrap
random seed (—x) were set to 1. Raw trees for all analyses,
both phylograms and cladograms, with support values are
provided as Appendices S1-S7.

3 | RESULTS

In our study, we focused primarily on the Bayesian analy-
ses where each gene was treated with an independent
model of evolution or with one model for all genes. These
analyses were performed on a total dataset including COI
sequences from GenBank, and a dataset where species
represented by only COI or 16S sequences were excluded.
The overall topology in all Bayesian analyses were to a
large degree congruent, if not identical. With the excep-
tion of Leuconidae, the analyses retained strong support
for monophyletic families. We expanded our analyses
by conducting a maximum likelihood analysis on the
full dataset; this was to investigate to what extent our
Bayesian-based topology was retained using ML, reflect-
ing the robustness of our dataset. As expected, the ML not
only gave lower support values in deeper nodes, but also
although lesser resolution in internal nodes, all families,
except for Leuconidae, were retained as monophyletic.
Major nodes supported by all analyses are marked with
“*’in the Bayesian full dataset, partitioned gene consensus
tree (Figure 3). We will continue presenting our results,
both agreements and deviations, from all analyses with
reference to the Bayesian, partitioned full dataset topol-
ogy (Figure 3), as all additional analyses are variants of
this full dataset with less data and/or less complex models.

Cumaceans are monophyletic (Figures 3 and 4).
Representatives from one out-group, Nebalia sp., and
three putative sister taxa, Lophogaster typicus, Asellus
aquaticu, and Tanais dulongi were included in our anal-
yses, which invariably suggested that the assembly of
cumacean species define the monophyly of the taxonomic
group Cumacea (Figure 3A, PP =1).

Cumaceans are profoundly divided into two major
monophyletic branches (Figure 3B, PP = 0.87 & 3C,
PP = 0.99), a free telson bearing clade and a fused ple-
otelson clade. All species that possess a free telson at
the 6th abdominal segment form a monophyletic taxon
(Figure 3B, PP = 0.87). The clade of telson bearing
cumaceans (Figure 3B) is divided into a strongly sup-
ported dichotomy (Figure 3D,E). The branch comprising
a monophyletic Lampropidae (Figure 3E, PP = 1) con-
stitutes a monophyletic sister taxon to a clade represent-
ing the remaining telson bearing cumaceans. The sister
group to the Lampropidae forms a bifurcated branch
(Figure 3D, PP = 1) of which one branch leads to two spe-
cies, Petalosarsia declivis and Pseudocuma similis, both
belonging to the monophyletic family Pseudocumatidae
(Figure 3G, PP = 1). The other branch leads to a well-
supported clade (Figure 3F, PP = 1) containing all mem-
bers of the family Diastylidae, and the only species in
the study that represents the family Gynodiastylidae,
Gynodiastylis sp (Figure 3H). The position of this single
Gynodiastylis species should be taken with reservation,
since only a single GenBank sequence of the COI gene is
included in the analyses. The speciose genera Diastylis,
Hemilamprops and Leptostylis are polyphyletic taxa in
the analyses.

The cumacean species with a fused pleotelson form
a monophyletic clade (Figure 3C, PP = 0.99), which
includes the families Leuconidae, Bodotriidae and
Nannastacidae. The phylogenetic analysis reveals that
the pleotelson cumaceans form an unresolved trichot-
omy: a clade of Antarctic Leucon species, Leuconidae I
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FIGURE 4 Cladogram, consensus tree from a Bayesian analysis (5 million generations, 3752 trees each) on a concatenated six-gene
dataset (18S, 28S, 128, 16S, CytB and COI). Species represented by only one gene were not included (Dataset-2, 92 taxa). The presented
tree is from Analysis-1, which was a partitioned dataset, treating each gene with separate models, posterior probabilities are shown above

branches (see Appendices S4 and S5 for raw trees). Analysis-2 was on an unpartitioned dataset, treating entire alignment with a single

GTR + G+ I model of evolution, posterior probabilities are shown below branches (see Appendices S6 and S7 for raw trees). Numbers on

branches are posterior probabilities from both analyses. Outer branches are collapsed where identical species formed a monophyletic clade

with full support, represented by one branch in tree. Numbers in brackets following species names indicate number of individuals used in

analyses

(Figure 31, PP = 0.74); a clade consisting of species that
represent seven different genera within the monophy-
letic Bodotriidae representatives (Figure 3J, PP = 0.66);
a dichotomous clade, which contains the monophyletic
Nannastacidae (Figure 3K, PP = 1), and the second group
of leuconid species, Leuconidae II (Figure 3L, PP = 0.7).
Leuconidae II consists of species within the genus
Eudorella (Figure 3M, PP = 0.63), which apart from the
position of Leucon (Crymoleucon) tener is monophyletic,

and the second group of Leucon species (Figure 4N,
PP =1).

By omitting species that rely solely on sequences from
a single gene, the phylogeny becomes significantly more
robust, illustrated by increased posterior probabilities
(Figure 4). As for structure, there is virtually no difference
in the topology between the phylogenies in all of our anal-
yses, be it full data or pruned data, one model or mixed
models, Bayesian or maximum likelihood.
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4 | DISCUSSION

Monophyly of cumaceans has never been in doubt
morphologically, although never tested against mo-
lecular data, and is unambiguously supported by our
analyses (Figures 3 and 4). Within the Peracarida,
unique cumacean traits include the modification of the
first three thoracic appendages as maxillipeds (rotated
towards the midline and used for food handling rather
than locomotion) and the fusion of the first three tho-
racic segments into the carapace, which is expanded and
wide relative to a slender pleon, leading to the common
name of comma shrimp. The sister taxon of the Cumacea
is not yet known, as there have been various proposed
relationships among the Peracarida, none of them with
satisfactory resolution nor using modern molecular tech-
niques and sufficient data. Using morphological data,
proposed sister groups for the Cumacea have included
the Tanaidacea (Schram, 1986, Watling, 1999, Richter &
Scholtz, 2001, Poore, 2005), Mictacea (Wills, 1998) and
Spelaeogriphacea (Siewing, 1963). Molecular analysis
using a single gene proposed a sister group of the Isopoda
(Spears et al., 2005). The Spears et al. paper was seminal
in being the first molecular attempt at a peracarid mo-
lecular phylogeny, but suffers from the limited data that
was possible at the time.

As mentioned in the results section, the phylogenetic
analyses become significantly more robust by excluding
species represented by only a single gene compared with
the analyses where only multigenic represented species
are included. We have not analysed in detail the cause
of this difference, but we believe that it is likely that the
species represented by a single gene during the phylo-
genetic analyses, to a greater extent than the multigene
represented species, change phylogenetic position and
thereby weaken the overall robustness of phylogeny. The
phylogenetic position of these ‘single gene’ species in the
full data analyses (e.g. Gynodiastylis sp and Atlantocuma
sp.) must therefore be taken with caution. The multigen-
etic analyses where we excluded single gene taxa strongly
support the morphology-based classification systemat-
ics with all of the well-represented families appearing as
monophyletic clades. Within the Cumacea, there are five
families with a free telson (Ceratocumatidae, Diastylidae,
Gynodiastylidae, Lampropidae and Pseudocumatidae)
and three families with a fused pleotelson (Bodotriidae,
Leuconidae and Nannastacidae). There was historically
some doubt as to whether telson fusion was a singular
event, or occurred multiple times, suggested by char-
acters such as the presence of a process on the pleopod
endopod in adult males (Bodotriidae, Lampropidae and
Pseudocumatidae) vs. absence of a process (Diastylidae,

Leuconidae) (Haye et al., 2004). However, the work of
Haye et al. (2004) supported a single fusion of the telson
into a pleotelson, which is also unambiguously supported
by our analyses (Figure 3C).

Throughout the Cumacea, reduction is a common mor-
phological theme. Reduction is used generally to describe
minimization in size or number of articles in appendages
or structures, or loss of an appendage or structure entirely.
For example, a reduced pleopod in the adult male is typ-
ically small, may lack articles in the rami and has few,
short setae, relative to a fully developed pleopod, which is
typically nearly the length of the body segment, half the
width of the body segment, armed with many very long
plumose setae that are used for locomotion. In phyloge-
netics and evolutionary theory, the loss of characters and
also reductions are often hypothesized to have occurred
as several independent evolutionary events and therefore
fail to define monophyletic clades based on apomorphic
properties.

Within the free telson clade (Figures 3B and 4B), the
Lampropidae are the basal group, which is in accord with
morphological characteristics that are considered prim-
itive (Haye et al., 2004, Lomakina, 1958, Zimmer, 1941),
including a large, broad telson with three or more ter-
minal setae, three large pleopods in the adult male, a
larger and more developed antenna 2 in the female and
four hepatic diverticula. The Pseudocumatidae exhibit
high levels of reduction, with the telson being reduced
to an unarmed flap that does not contain the anus, a very
reduced antenna two in the female, and zero—two pairs
of reduced pleopods in the adult male. The Diastylidae
likewise possesses several reduced characters compared
with the likely plesiomorphic condition in Lampropidae,
the sister group to Diastylidae and Pseudocumatidae.
The reduction trend appears to have been strongest in
Pseudocumatidae, both in terms of the degree and the
number of character reductions, with a telson that is
frequently shorter, with two terminal setae, and with a
distinct pre and post anal division, an unreduced but
small antenna two in the female, and usually two pairs
of pleopods in the adult male (with rare genera with
two reduced pairs, or one or zero pairs of pleopods).
The families in the free telson clade that lack sufficient
molecular data exhibit a range of morphological char-
acters that suggest various possible placements. The
species of the Ceratocumatidae are distinctly united by
a morphological autapomorphy, a pair of small setose
lobes on the propodus of the first pereopod. However,
the Ceratocumatidae have a small, unarmed flap for a
telson (derived), which its members share with mem-
bers of Pseudocumatidae. Ceratocumatidae also po-
sess five pairs of fully developed pleopods in the adult
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males, which they share with males of Bodotriidae.
However, this character is most likely a plesiomorphy
within Cumacea, and the character has therefore no rel-
evance in a strict cladistic context. The Gynodiastylidae
were initially considered to be part of the Diastylidae
(Lomakina, 1958, Hale, 1946, Zimmer, 1941), although
Stebbing (1912, 1913) suggested that they might be a
separate family. Day (1980) resurrected Stebbing's fam-
ily, and the family is defined by a high level of reduction,
with a small, weakly armed telson that does contain the
anus, no pleopods in the adult male and the loss of the
exopod on maxilliped three in the female. The morphol-
ogy suggests that the Gynodiastylidae could have a sis-
ter relationship with the Diastylidae based on the telson
containing the anus and occasionally being armed with
two small terminal setae. There is some support for a
close relationship between these taxa by Gynodiastylis
sp being nested within the Diastylidae (Figure 3H), al-
beit only represented by COI. Alternatively, there could
be a sister relationship with the Pseudocumatidae, sug-
gested by the reduced telson and reduction in pleopods.

Within the pleotelson clade, the Bodotriidae form a
basal branch (Figure 47J) to a closely related clade con-
sisting of Leuconidae and Nannastacidae, which agrees
with the morphology very well. The Bodotriidae com-
monly have five pairs of pleopods in the adult male (or
4,3,2,0) vs. two (or 0) in the Leuconidae and none in the
Nannastacidae. Species within the Bodotriidae are com-
monly encountered with the pleotelson fusion being
less complete than in the Leuconidae or Nannastacidae,
meaning that the telson is fused to the final pleonal seg-
ment and unable to move, but it extends posteriorly well
between the pleopods, and there is a constriction delin-
eating the fusion boundary of the pleotelson. This indi-
cate that Leuconidae and Nannastacidae share a derived
state of the pleotelson character, which then can act as an
apomorphy for two families, while Bodotriidae possess a
plesiomorphic state of the pleotelson. This can actually
lead to confusion in identification of specimens, given the
small and reduced telsons found in several of the telson
bearing families. The Leuconidae and Nannastacidae are
either nearly flat across the terminus of the pleon, or may
be produced into a slight triangular or rectangular shape,
but never have a large posterior protrusion with a con-
striction marking the fusion.

Most genera are supported, especially the morpho-
logically well-circumscribed genera, and some genera
that are known to be problematic, that is Diastylis and
Leptostylis, are shown to be non-monophyletic. Our re-
sults disagree with those of Rehm et al. (2020), and our
tree topology is very strongly supported. It is clear from
the difference in support values between our ‘full data’

and ‘single gene excluded’ analyses, those incomplete
datasets, or more so mixed datasets, containing taxa with
one gene only, strongly affect the phylogenetic recon-
struction. It then becomes clear that one cannot assess
family level relationships using a single, highly variable
sequence alone, such as 16S, which is more suitable for
assessing species delimitations and cryptic speciation
(Rehm et al., 2007).

In the full dataset analyses, the Leuconidae is split
between a group of Antarctic species (Leuconidae I,
Figure 3I) and non-Antarctic species (Leuconidae II,
Figure 3M,N). It is possible and would be extremely in-
teresting, if this split is reflecting a case of Antarctic iso-
lation. However, the Antarctic species in our study are
represented by 16S sequences only, and as already dis-
cussed, when species with only a single gene are excluded,
nodes in our analyses gain higher support and collapsed
and/or ambiguous relationships are resolved. In this case,
the Leuconidae become monophyletic. By removing the
Antarctic species, we are of course severely limited in
presenting support for our ‘limited data’ hypothesis. So,
until Antarctic species can be represented with complete
data, it will remain unclear whether the division of the
Leuconidae between Antarctic and non-Antarctic species
is real or an artefact.

Within the Diastylidae (Figures 2F and 3F), the gen-
era Diastyloides and Dimorphostylis are recovered, but
none of the other genera are recovered as monophy-
letic. This is not surprising, as the larger diastylid gen-
era are globally distributed and not well-circumscribed
morphologically. In the case of Leptostylis, Diastylis and
Makrokylindrus, it has been known for a long time that
the generic definitions are not adequate and there are ‘de-
fining’ morphological characters (telson length, propor-
tions, setation; adult male antenna one and antenna two
morphology) that are clearly continuous (see Day, 1980
for a discussion). None of our analyses recovers Diastylis
or Leptostylis as monophyletic and the phylogeny indi-
cates that the family Diastylidae is in need of a thorough
taxonomic revision.

The family Gynodiastylidae is only represented by a
partial COI sequence; thus, the placement of the family
within the Diastylidae clade (Figure 3F) is uncertain,
given that COI is not a suitable sequence for assessing
deeper nodes, although it is useful for assessing pop-
ulation relationships within cumacean species (Teske
et al., 2006).

The only cumacean family entirely missing in the pres-
ent study, Ceratocumatidae, possesses a telson, in effect
placing it in the telson bearing clade. However, the phy-
logenetic position of the family within the telson bear-
ing clade is still not known, and clarification must await
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future morphological and/or molecular analyses upon
collection of appropriately preserved specimens.

The phylogeny represents a great stride forward in
cumacean systematics, in that families are largely re-
covered as monophyletic, and the strong support for
the telson/ pleotelson split resolves basic questions
about the evolutionary history of the group. The rela-
tionships within the telson/pleotelson clades are also
strongly supported (Figures 3 and 4), providing a start-
ing point for assessing directionality of change in mor-
phological character transformations. The results are
also very promising because it is now plausible to work
on cumacean phylogenies without the concern that the
families are polyphyletic, making generic level phyloge-
nies a rewarding exercise.
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