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Abstract
Aim: Geomorphological processes profoundly affect plant establishment and distri-
butions, but their influence on functional traits is insufficiently understood. Here, we 
unveil trait–geomorphology relationships in Arctic plant communities.
Location: High-Arctic Svalbard, low-Arctic Greenland and sub-Arctic Fennoscandia.
Time period: 2011–2018.
Major taxa studied: Vascular plants.
Methods: We collected field-quantified data on vegetation, geomorphological pro-
cesses, microclimate and soil properties from 5,280 plots and 200 species across the 
three Arctic regions. We combined these data with database trait records to relate 
local plant community trait composition to dominant geomorphological processes 
of the Arctic, namely cryoturbation, deflation, fluvial processes and solifluction. We 
investigated the relationship between plant functional traits and geomorphological 
processes using hierarchical generalized additive modelling.
Results: Our results demonstrate that community-level traits are related to geomor-
phological processes, with cryoturbation most strongly influencing both structural 
and leaf economic traits. These results were consistent across regions, suggesting a 
coherent biome-level trait response to geomorphological processes.
Main conclusions: The results indicate that geomorphological processes shape plant 
community traits in the Arctic. We provide empirical evidence for the existence of 
generalizable relationships between plant functional traits and geomorphological pro-
cesses. The results indicate that the relationships are consistent across these three 
distinct tundra regions and that geomorphological processes should be considered in 
future investigations of functional traits.

K E Y W O R D S
cryoturbation, deflation, fluvial processes, microclimate, plant functional traits, solifluction, 
tundra, vegetation
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1  |  INTRODUC TION

Geomorphological processes shape ecosystems fundamentally, 
because they provide a diversity of habitats by eroding and relo-
cating rocks, sediments and soils (French, 2017). From the perspec-
tive of a plant, these processes alter resource availability, cause 
mechanical disturbance and damage, and increase soil instabil-
ity (Becher et  al.,  2018; Giblin et  al.,  1991; Virtanen et  al.,  2010). 
Geomorphological processes control, in part, the recruitment of plant 
species (Frost et al., 2013; Sutton et al., 2006), their occurrence and 
richness patterns, in addition to community composition (Giaccone 
et al., 2019; le Roux, Virtanen, et al.,   2013). These processes also 
influence the outcome of biotic interactions (Gentili et al., 2013) and 
provide refugia (Millar et  al.,  2015). However, we know very little 
about how geomorphological processes influence plant functional 
traits (see our systematic literature review in Appendix S1, Table S1; 
Figure S1) and even less about these relationships in the Arctic tun-
dra (see Apple et al., 2019; Kopanina et al., 2020 for alpine tundra).

Plants and their functional traits form the core of terrestrial eco-
systems (Díaz et al., 2016; Wright et al., 2004). The above-ground 
functional traits vary chiefly on two main axes: the size–structural 
trait axis (e.g., plant height, leaf area) and the leaf economic trait 
axis (e.g., leaf nutrient contents, specific leaf area) (Díaz et al., 2016; 
Wright et al., 2004). The first is related, for instance, to carbon stor-
age size (Cahoon et  al.,  2012; Chapin et  al.,  2005), and the latter 
to nutrient cycling and photosynthetic efficiency (Diaz et al., 2004; 
Reich,  2014). In tundra ecosystems, functional trait–environment 
relationships form consistent and generalizable patterns (i.e., plant 
communities from the Arctic to Antarctic have similar responses 
to microclimate, soil moisture and soil chemistry; Kemppinen 
et al., 2021), yet their responses to other environmental variables, 
such as geomorphological processes, have gained less attention. 
Overall, the functional trait compositions have changed in the tun-
dra plant communities over the last decades, and especially, size–
structural traits have been linked to the drastic biome-wide warming 
(Bjorkman, Myers-Smith, Elmendorf, Normand, Rüger, et al., 2018).

In the Arctic, temperatures, wind, snow and hydrological condi-
tions are rapidly changing (IPCC, 2018), and Arctic geomorphology 

is responding. For instance, suitable conditions for cryogenic pro-
cesses might be lost by the end of this century (Aalto et al., 2017); 
aeolian processes have expanded and increased in magnitude 
(Bullard & Mockford, 2018; Heindel et al., 2017), and fluvial pro-
cesses are shifting from snowmelt driven to more rainfall driven 
(Beel et  al.,  2021; Bintanja & Andry,  2017). In light of these 
changes, an important yet unanswered question is: How will Arctic 
plant communities, especially their functional traits, respond to 
changes in geomorphological processes? Functional traits pro-
vide information on the global carbon cycle, to which Arctic veg-
etation contributes disproportionately (Cornelissen et  al.,  2007; 
Happonen et  al.,  2022; Pearson et  al.,  2013). Thus, it is import-
ant to quantify trait–geomorphology relationships in the Arctic, 
because both plant functional traits (Bjorkman, Myers-Smith, 
Elmendorf, Normand, Rüger, et  al.,  2018) and geomorphological 
systems are facing major shifts in response to changing climatic 
conditions.

Here, we explore the relationship between plant traits and four 
geomorphological processes common in Arctic ecosystems: cryo-
turbation, deflation, fluvial processes and solifluction (Figure  1). 
Overall, geomorphological process activity is controlled by climate, 
and it can have distinct characteristics in the Arctic (French, 2017). 
For example, aeolian processes, such as deflation, move fine soil ma-
terial and are intensified during winter, when wind speeds are high 
and the ground surface is desiccated (Heindel et al., 2018). In con-
trast, at the start of the growing season, snowmelt increases fluvial 
processes, which erode and accumulate sediments (Goudie, 2006). 
Solifluction is slow mass wasting of the topsoil, and it is especially 
active in Arctic soils, owing to their high moisture content and both 
diurnal and seasonal freezing cycles and the presence of perma-
frost (Jaesche et  al.,  2003; Matsuoka,  2001). Cryoturbation is the 
mixing and relocation of soil material caused by seasonal freezing 
and thawing (Hjort, 2014). Consequently, all these processes influ-
ence vegetation cover (D’Amico et al., 2015) and dynamics (Becher 
et al., 2018; Virtanen et al., 2010). Therefore, we expect to find that 
trait–geomorphology relationships differ between structural and 
leaf economic traits, because some processes are more related to soil 
resources, whereas others are more related to physical disturbance 

F I G U R E  1  Geomorphological processes of the study
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    |  1383KEMPPINEN et al.

of plant growth and development. We use this information to show-
case how traits might respond to changes in the magnitude of geo-
morphological processes.

2  |  MATERIAL S AND METHODS

2.1  |  Study design

We surveyed 5,280 plots within 33 study grids at three sites: six 
grids in the high-Arctic site, six in the low-Arctic site, and 21 in 
the sub-Arctic site. Each grid was 8 m × 20 m and contained 160 
study plots (1 m2) (photographs of example grids are in Figure S2). 
We located the study grids within the sites along topographic and 
vegetation gradients to maximize environmental variation within 
each site and each grid. The grids were located outside anthropo-
genic activities, such as hiking trails. At each site, the grids were 
located close to each other; the maximum distance between grids 
was 3.75 km at the high-Arctic site, 1.05 km at the low-Arctic site, 
and 2.60 km at the sub-Arctic site. From each plot, we collected the 
vascular plant and environmental data. The species data consist of 
61 species from the high-Arctic site, 75 from the low-Arctic, and 
134 from the sub-Arctic. Altogether, the species data consist of 
200 species (Table S2).

2.2  |  Study sites

2.2.1  |  High-Arctic site

The high-Arctic site was located on the slopes of Adventdalen and 
Endalen in Svalbard (Table 1). The plant species and environmen-
tal data were collected during the growing season of 2018. The 
dominating species at the site were Dryas octopetala, Salix polaris 
and Cassiope tetragona and, to a lesser extent, Bistorta vivipara, 
Festuca rubra and Poa pratensis. All grids at the site were under 
similar grazing pressure (mainly Rangifer tarandus platyrhynchus 
and Anserinae ssp.).

2.2.2  |  Low-Arctic site

The low-Arctic site was located on the highland of Ammalortup 
Nunaa in western Greenland (Table 1). The plant species and envi-
ronmental data were collected during the growing season of 2018. 
The dominating species at the site were Vaccinium uliginosum, Betula 
nana and Salix glauca and, to a lesser extent, Cassiope tetragona, Salix 
herbacaea and Rhododendron tomentosum. All grids at the site were 
under similar grazing pressure (mainly Ovibos moschatus and Rangifer 
tarandus groenlandicus).

2.2.3  |  Sub-Arctic site

The sub-Arctic site was located on Mount Saana in north-western 
Fennoscandia (Table 1). The plant species data were collected during 
the growing seasons of 2011–2013, and the environmental data dur-
ing the growing season of 2013. The dominating species at the site 
were Empetrum hermaphroditum, Betula nana and Juniperus commu-
nis and, to a lesser extent, Vaccinium vitis-idaea, Vaccinium uliginosum 
and Vaccinium myrtillus. All grids at the site were under similar graz-
ing pressure (mainly Rangifer tarandus tarandus and Cricetidae sp.).

2.3  |  Plant data

We combined field data on vascular plant species occurrences with 
database records of seven plant functional traits, namely plant height, 
specific leaf area, seed mass, leaf dry mass content, leaf area, leaf ni-
trogen content and leaf phosphorus content (following Kemppinen 
et al., 2021). Initially, we identified the species and estimated their per-
centage coverage in the field (see full species list in Table S2). Then, 
we extracted trait observations for the identified species from three 
databases: the Tundra Trait Team database (TTT), the TRY Plant Trait 
Database (TRY) and the Botanical Information and Ecological Network 
(BIEN) (Bjorkman, Myers-Smith, Elmendorf, Normand, Thomas, 
et al., 2018; Kattge et al., 2020; Maitner et al., 2018). We provide a full 
citation list of the trait data in the Appendix A and in the (Appendix S1).

Description High-Arctic site Low-Arctic site Sub-Arctic site

Location 78.20 N, 15.73 E 66.95 N, −50.72 W 69.05 N, 20.81 E

Elevation (m a.s.l.) 30–110 520–560 595–810

Mean annual temperature (°C) −5.9 −4.9 −3.1

Annual precipitation sum (mm) 196 252 518

Note: The climate data at the high-Arctic site are based on the years 1971–2000 measured at 
the Svalbard Airport observation site (78.25 N, 15.50 E; 28 m a.s.l.; 7.7 km from the study site) 
(Norwegian Centre for Climate Services, 2019), at the low-Arctic site on the years 1977–2013 
measured at the Kangerlussuaq Airport (67.02 N, −50.70 W; 50 m a.s.l.; 7.0 km from the study 
site) (Danish Meteorological Institute, 2019), and at the sub-Arctic site on the years 1991–2018 
measured at the Saana meteorological station (69.04 N, 20.85 E; 1,002 m a.s.l.; 1.5 km from the 
study site) (Finnish Meteorological Institute, 2019b) and the Kyläkeskus meteorological station 
(69.04 N, 20.80 E; 480 m a.s.l.; 1.0 km from the study site) (Finnish Meteorological Institute, 
2019a).

TA B L E  1  Site descriptions
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1384  |    KEMPPINEN et al.

We used the species names and their widely used synonyms 
to extract trait observations from TTT, TRY and BIEN. The ob-
servations we derived from TRY correspond to trait identity (ID) 
numbers here in parentheses: leaf area (3108, 3109, 3110, 3111, 
3112, 3113 and 3114), leaf area for species with compound leaves 
(3108, 3110, 3112 and 3114), plant height (3106), seed mass 
(26), leaf dry matter content (47), leaf nitrogen content (14), leaf 
phosphorus content (15) and specific leaf area (3115, 3116 and 
3117). In addition, we extracted observations from TRY for spe-
cies that occurred in the TTT database and in Fennoscandian 
countries (based on occurrence records of the Global Biodiversity 
Information Facility; GBIF; https://www.gbif.org/). Furthermore, 
we searched for records from all genera within our dataset from 
BIEN. We standardized the nomenclature to match the GBIF back-
bone nomenclature.

Chiefly, we followed the methods described by Bjorkman, 
Myers-Smith, Elmendorf, Normand, Thomas, et  al.  (2018) to clean 
and combine the trait data. We determined the error risk of each 
observation by calculating by how many standard deviations (SDs) 
the value differs from the mean values of the given species and trait 
(the focal observation excluded in the SD and mean calculations). We 
used an error risk threshold of three, except: (1) if there were fewer 
than four trait observations, we included all data; and (2) if there 
were <10 trait observations, we included only those with an error 
risk <2.25. In addition, we used expert knowledge to exclude man-
ually any trait values that we considered to be impossible for some 
species. For instance, we considered that a 10-m-tall individual of 
Juniperus communis is not possible in tundra ecosystems.

We used species-level trait observations; however, if a given 
species lacked this, we used genus-level trait observations. Initially, 
we selected georeferenced observations within the tundra climatic 
zone (class “ET” in the study by Beck et al., 2018). Then, we averaged 
the trait values over the species within the genus. Finally, we had 
trait observations at the species level, and in addition, at the genus 
level, if there were no species-level trait observations available.

We calculated community-weighted mean (CWM) values for the 
5,280 plots. The responses of functional traits to environmental 
conditions are often investigated by using CWM values, in which the 
species-level average trait value is weighted by the species abun-
dance (Lavorel et al., 2007). Here, we used hierarchical sampling and 
bootstrapping, and we accounted for the varying relevance of the 
trait observation for tundra vegetation and the intraspecific varia-
tion in the trait data. We used an adjusted version of the code that 
is available at: https://github.com/richa​rdjte​lford/​trait​strap (Maitner 
et al., 2021). If a given trait observation was georeferenced, we used 
these location data to extract information on the climate in which 
the observation was made using a fine-scale climate classification 
(Beck et  al.,  2018). Initially, we classified the relevance of a given 
trait observation by using five nested hierarchies: (1–3) Köppen–
Geiger climate classifications; (4) the georeferencing information; 
and (5) the global level, in which all trait observations were included. 
Consequently, a given trait observation received a five times higher 
weight (1–5) if it was a georeferenced trait observation recorded 

within the tundra climate class instead of a non-georeferenced 
global-level trait observation. Finally, we used these weights (1–5) to 
take a random sample of the trait observations in order to calculate 
the CWM values for the plots. We repeated this 100 times for a given 
plot to quantify how CWM values might be influenced by the intra-
specific variation within the trait data. We included CWM values in 
the analyses only if the trait data (at the species or genus level) were 
available for the species that comprised a minimum of 90% of the 
vegetation cover in a given plot. On average, the species-level trait 
observations covered 96.0% (seed mass) to 99.5% (plant height) of 
the species that were weighted by their abundance in the plots. The 
coverage increased to 99.1% and 99.9%, respectively, when we also 
included the genus-level trait observations. On average, the number 
of trait observations per species weighted by their abundance in the 
plots varied from 32.9 (seed mass) to 667.0 (plant height), indicating 
that the common species are also common in the trait data.

Species reproducing by spores (i.e., ferns and lycopods) instead 
of seeds were excluded from the CWM seed mass calculations. 
However, only 34% of the plots had any fern and/or lycopod species 
present, and <1% of the plots had relative fern and/or lycopod cover 
>25% (of the total vegetation cover). Therefore, ferns and lycopods 
do not contribute greatly to the CWM trait values.

We used log10-transformations for CWM trait values in our 
analyses.

2.4  |  Environmental data

In this study, we focus on geomorphological processes that repre-
sent relatively slow and persistent geomorphological activity, not 
rapid event-type disturbances. Therefore, although we mapped the 
processes only at a given point in time, the recorded processes are 
likely to represent decadal activity patterns affecting long-living 
Arctic plant life. The geomorphological processes were recorded 
for each plot in situ by a geomorphologist (following methodology 
of Virtanen et al., 2010). In the high-Arctic and low-Arctic sites, the 
survey was carried out by J.K. in 2018, and in the sub-Arctic site 
by M.L. in 2013. First, the geomorphologist identified whether the 
plot was affected by any Earth surface process. Second, the type of 
the process was recorded. Third, the geomorphologist estimated the 
proportion of the plot surface where the given process affected the 
topsoil (coverage 0–100%). At all three sites, four types of processes 
were present, namely cryoturbation, deflation, fluvial processes and 
solifluction. Cryoturbation was identified by landforms that had 
been created and shaped by soil frost (i.e., freeze–thaw processes), 
such as patterned ground and earth hummocks. Deflation was iden-
tified by signs of wind erosion on the soil surface (i.e., fine material 
had been blown out). Fluvial processes were identified by marks of 
stream erosion and sediment deposition. Solifluction was identi-
fied by landforms that had been formed by slow mass movement of 
water-saturated soils, such as solifluction terraces and lobes.

Soil moisture was measured as the volumetric water content 
(VWC%) using a hand-held time-domain reflectometry sensor 
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(Spectrum Technologies FieldScout TDR 300). We used 10 cm probes 
at the low-Arctic site and 7.5 cm probes in the two other sites. The 
measurements capture the general pattern of the relative moisture 
conditions across each site (following methodology by le Roux, Aalto, 
et al., 2013). We measured soil moisture on days without precipitation 
for ≥24 h prior. We measured soil moisture at three points within each 
plot to account for within-plot soil moisture variation, and we used the 
mean of these three points to represent the soil moisture conditions at 
the plot. We measured soil moisture once at the high-Arctic (8 August 
2018), once at the low-Arctic site (9 July 2018) and three times at the 
sub-Arctic site (12–13 June, 23–24 July and 9 August 2013). For the 
sub-Arctic site, we used the mean soil moisture value of the three mea-
surements to represent the soil moisture conditions in the analyses.

Soil pH was analysed from soil samples. Initially, we collected 
72 samples at the high-Arctic sites and at the low-Arctic sites (12 
samples per grid) and 378 samples at the sub-Arctic site (18 samples 
per grid). We then oven-dried the samples at 40°C and determined 
their pH from a 1:5 suspension of soil in a solution of distilled water 
and CaCl2 (0.01 mol/L), following the International Organization for 
Standardization 10390:1994 (E) protocol. Finally, we used spatial bi-
linear interpolation (based on x and y) to estimate soil pH values for 
the remaining plots. We forced the interpolated pH values between 
the range of the pH values of a given grid.

Freezing degree days (FDDs) and growing degree days (GDDs) 
were calculated from soil temperature, which was measured with 
miniature loggers (Thermochron iButton DS1921G and DS1922L). 
Temperature was logged at a 2–4 h interval for 1 year. We installed 
72 loggers at the high-Arctic and at the low-Arctic sites (12 loggers 
per grid) and 378 loggers at the sub-Arctic site (18 loggers per grid). 
We installed them c. 10 cm below the soil surface. After 1 year of 
measurement, we had data from 69 loggers at the high-Arctic site 
(2018–2019), 72 at the low-Arctic site (2018–2019) and 322 at the 
sub-Arctic site (2013–2014). We used spatial bilinear interpolation 
to estimate soil temperature values for the remaining plots. We 
forced the interpolated temperature values between the range of 
the observed temperature values of a given grid. We averaged the 
soil temperatures to daily mean temperatures and used these to cal-
culate FDDs and GDDs for each plot. FDDs are a sum of daily soil 
temperatures when temperature is below 0°C, which summarizes 
the harshness of winter thermal conditions to vegetation. GDDs are 
a thermal sum of days when mean temperature exceeds 3°C and 
thus accounts for both the overall amount of energy available for 
plants and the length of the growing season.

Organic layer depth was measured (in centimetres) using a thin 
metal rod. We measured ≤80 cm depth. We measured 72 plots at the 
high-Arctic and low-Arctic sites (12 plots per grid) and all the plots 
at the sub-Arctic site. We used bilinear interpolation to estimate or-
ganic layer depth values for the remaining plots at the high-Arctic 
and low-Arctic sites. We constrained the interpolated organic layer 
depth values between the range of the organic layer depth values 
of a given grid.

Solar radiation was represented by incident radiation, which was 
calculated as the maximum potential solar radiation (i.e., assuming 

clear sky conditions). In the calculations, we used the slope and as-
pect values that we measured in situ at each plot using rulers and a 
compass. We followed the methods of McCune & Keon (2002).

2.5  |  Statistical methods

We assessed the collinearity of the environmental predictors using 
Spearman's correlation (Figure S3). We assessed the sites individu-
ally and the entire combined dataset (i.e., all sites together). The 
correlations were <.7, except for FDD and organic layer depth (.14 
across all sites; .75 at the sub-Arctic site). FDD is a microclimate pre-
dictor that represents winter and snow conditions that can be more 
relevant to Arctic plants than summer thermal conditions (Niittynen 
et al., 2020). Organic layer depth represents the medium on which 
plants grow, and it is one of the most relevant predictors of spatial 
soil moisture conditions throughout the growing season (Kemppinen 
et al., 2018). Thus, it was important to include organic layer depth 
in the models, because our soil moisture measurements were snap-
shots. Despite their collinearity in the models, we decided to include 
both FDD and organic layer depth in further analyses, because they 
represent two important and completely different mechanisms that 
can help us to gain a better understanding of Arctic plant communi-
ties and their functional traits.

We used hierarchical generalized additive models (HGAMs) to 
analyse the data (Pedersen et al., 2019). For each of the seven plant 
traits, we fitted one multi-predictor HGAM. We fitted the HGAMs 
with the package mgcv v.1.8–31 (Wood, 2011). In the models, the 
effects of each environmental variable were represented by a thin 
plate spline constructed of 20 basis functions. Each model was built 
with four types of predictors. First, we included the “global” (data 
combined from three sites) trait–environment relationship for each 
environmental variable. Here, the “global” trait–environment rela-
tionship refers to a relationship that is transferable and generalizable 
within the three study sites (following methods and terminology of 
Pedersen et al., 2019). Second, we included the site-specific devia-
tions from the “global” relationship as a factor-smooth interaction, 
in which all deviating splines share the same wiggliness. Third, we 
included a random intercept for each site-grid combination. Fourth, 
we included the site as a factor. We did not include the effect of 
sites as a random intercept because variance estimates for random 
intercepts of factors with only four levels are unreliable. The result-
ing model is a GAM equivalent of a linear mixed-effects model that 
has random intercepts for grids nested in sites and random slopes 
that vary by site, with the exception that the random intercepts 
for sites were fitted as factors. We used restricted maximum like-
lihood (REML) estimation to fit the models and specified that the 
smoothing parameters of the environmental response splines must 
have a value of at least one. We used R v.4.0.2. The marginal envi-
ronmental responses of this model are presented in Figure 2. Site-
specific response curves were acquired by summing together global 
and site-specific splines. Standard deviations for the site-specific 
response curves were acquired by summing the variances of the 
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1386  |    KEMPPINEN et al.

F I G U R E  2  Consistent plant functional trait–geomorphology relationships. (a) The study design of three study sites across the Arctic. 
(b) The black continuous line represents the spline for the trait–environment relationships across the three sites. The coloured continuous 
lines represent each site separately. The shaded areas represent two standard deviations for the spline, taking into account the uncertainty 
in the smoothers. The global splines have a reference value of zero at the mean value of the environmental variable across the dataset. 
Abbreviations: FDD, soil temperature-derived freezing degree days; GDD3, soil temperature-derived growing degree days

(a)

(b)
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    |  1387KEMPPINEN et al.

global and site-specific splines. Given that the CWMs were log10-
transformed, the responses represent changes in average traits 
along environmental gradients on a proportional scale. To visual-
ize this, the environmental response curves were transformed to a 
percentage scale, where the reference level of zero change corre-
sponds to the value of the trait in average environmental conditions 
in an average site.

We visualized two exemplar traits, plant height and specific 
leaf area, in relationship to the environmental gradients (Figure 3). 
Based on the HGAMs, we plotted the responses of the two exemplar 
traits in relationship to all possible pairs between the environmen-
tal variables (i.e., geomorphological process + microclimate or soil 
properties), which resulted in 24 plots of two-dimensional response 
surfaces per trait. The surfaces demonstrate how data points are 
distributed across these environmental spaces. This was used to 

explore more closely how the traits vary depending on two environ-
mental variables at a time. The HGAMs fitted to the whole dataset 
with the same model structure presented above were used to pre-
dict plant height and specific leaf area for an artificial dataset. This 
dataset was constructed to range across all possible combinations 
of each pair (geomorphological process + microclimate or soil prop-
erties), while all other predictors were set to their median values, 
which were calculated based on all plots in the original dataset. To 
prevent predictions too far from the environmental space used in 
model fitting (i.e., extrapolation), we excluded data points in the ar-
tificial dataset that were further than 10% of the variable-specific 
range from the true observations. In model prediction, we excluded 
the site-specific smoothers and random intercepts. Thus, visual-
ized environmental spaces focus only on the “global effects” of the 
predictors.

F I G U R E  3  Plant functional traits in relationship to observed environmental gradients. (a) Plant height values were particularly low 
where cryoturbation was present. (b) Specific leaf area values were particularly high in habitats where fluvial processes were present 
and low where deflation was present. White represents parts of the gradient that are beyond the observed data. Abbreviations: FDD, 
soil temperature-derived freezing degree days; GDD3, soil temperature-derived growing degree days

(a) (b)
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We visualized the two exemplar traits spatially in relationship to 
possible changes in the four geomorphological processes (Figure 4). 
This analysis is based on the full dataset of the field observations, 
in which we simulated changes to the observed values for a given 
geomorphological process as follows. Initially, we created four sim-
ulated datasets for each process individually, while keeping the rest 
of the dataset unaltered. Then, in each dataset, we increased or de-
creased the percentage coverage of a given process by 50 or 100%. 
The 100% decrease is equivalent to removing the process entirely 
from the plot in which it was present. The 100% increase is equiva-
lent to doubling the coverage of the given processes when present 
(up to a maximum of 100%). Then, we used the two example traits 
and their HGAMs to predict the traits into the simulated datasets. 
We did not alter the rest of the environmental predictors. Finally, we 
selected example grids, in which a given process was present while 
other processes were not, to visualize the sensitivity of the traits 
against changes in a given process.

3  |  RESULTS

Our results revealed consistent trait–geomorphology relationships 
across the three Arctic sites (Figure 2; Table S3). This indicates that 
the relationships were more strongly determined by general trait–
geomorphology relationships than by site-specific deviations from 
this global pattern (Figure 2). Overall, trait responses to each geo-
morphological process differed, indicating that each process has a 
unique influence on plant functional traits.

The analysis on two exemplar traits indicated that in plots with 
less cryoturbation (c. <25%), plants were taller than in more cryotur-
bated plots, regardless of the other environmental conditions (i.e., 
microclimate and soil variables; Figure  3a). This was not detected 
regarding deflation, fluvial processes or solifluction. Specific leaf 
area varied along the cryoturbation and fluvial processes gradients 
regardless of the other environmental variables (Figure 3b). This was 
not as evident regarding deflation or solifluction.

The visualizations of model simulations indicated that the 
height of plants increases if cryoturbation or deflation decreases 
(Figure 4a,c). Plant height decreases if cryoturbation or deflation in-
creases (Figure 4a,c) or if fluvial processes or solifluction decreases 
(Figure  4e,g). Specific leaf area increases if cryoturbation, fluvial 
processes or solifluction increases (Figure 4b,f,h) or if deflation de-
creases (Figure 4d). Specific leaf area decreases if cryoturbation, flu-
vial processes or solifluction decreases (Figure 4b,f,h) or if deflation 
increases (Figure 4d).

4  |  DISCUSSION

Here, we unveiled plant functional trait–geomorphology relation-
ships across three distinct study sites in the Arctic tundra. We 
found that trait–geomorphology relationships are consistent across 
the sites, and that responses of structural traits and leaf economic 

traits to geomorphological processes contrast strongly (Figure  2). 
In many cases, the community traits are driven predominantly by 
these processes (Figure  3). This means that the trait responses to 
geomorphological processes are strong enough to mask the effects 
of variation in other environmental variables, and in turn, that these 
processes are important local-scale drivers of vegetation structure. 
Our correlative methods do not prove causation, but our observa-
tional approach provides missing insights into trait–geomorphology 
relationships in Arctic ecosystems. Our results from the Arctic 
(Figure 5), together with existing literature from alpine ecosystems 
(Apple et al., 2019; Kopanina et al., 2020), provide evidence for the 
importance of geomorphological processes in trait ecology.

4.1  |  Trait responses to geomorphological  
processes

The four geomorphological processes that were present in our 
study grids across all three study sites are typical active agents of 
Earth surface systems across Arctic landscapes and are ultimately 
driven by different factors (temperature, wind, precipitation, snow 
and gravity) (Brook, 2018; French, 2017). In turn, each of the pro-
cesses has a different effect on Arctic plant communities (le Roux 
& Luoto, 2014; Virtanen et  al., 2010). In various ways, these geo-
morphological processes increase instability in the soil by relocat-
ing soil material (Brook,  2018; French,  2017), which might lead to 
altered soil nutrient availability and cause physical damage to the 
plants. These processes have strong effects on species composition 
(Giaccone et al., 2019; le Roux, Virtanen, et al., 2013), and now we 
report effects also on plant functional traits.

The trait–cryoturbation relationships were consistent across the 
three sites and revealed contrasting responses between structural 
and leaf economic traits. Our results indicate that at locations with 
high cryoturbation, plants grow smaller and have smaller leaves and 
seeds, while their leaf nutrient contents and specific leaf area in-
crease. Focusing on plant height and specific leaf area, we noticed 
that both traits responded to possible changes in cryoturbation, 
except that specific leaf area showed almost no response to lower 
cryoturbation. We expect that these results can be explained by how 
cryoturbation mixes and relocates soil material (Ping et al., 1998). In 
turn, cryoturbation can foster both physical and chemical weather-
ing and nutrient supply by exposing mineral soil material (Walker 
et al., 2004). In addition, the influence of cryoturbation can poten-
tially be explained also by biotic interactions: taller plants shade 
smaller plants, which might restrict the small plants to less favour-
able habitats influenced, for instance, by cryoturbation (Niittynen & 
Luoto, 2018). Therefore, greater cryoturbation could have an addi-
tional positive influence on specific leaf area via competition.

The trait–deflation relationships indicated that both structural and 
leaf economic traits respond already to low levels of deflation, but that 
further increases in deflation have minimal effect on the traits. This 
was a consistent pattern across the study sites, except for seed mass, 
which was related negatively to deflation in the high-Arctic site, but 
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    |  1389KEMPPINEN et al.

F I G U R E  4  Plant functional traits in relationship to changes in the cover of geomorphological processes. For each geomorphological 
process, an example grid (8 m × 20 m) is presented here. Cells with white borders represent study plots in which a given process was 
observed to be present (coverage 1–100%). For instance, the grid in panels (a) and (b) is a study grid at the high-Arctic site in Svalbard, and in 
that grid only cryoturbation was present in the white-bordered plots, whereas other geomorphological processes (namely, deflation, fluvial 
processes and solifluction) were absent. The middle panel with the yellow–blue gradient presents the observed community-weighted mean 
plant height (a,c,e,g) and specific leaf area (b,d,f,h). The changes in plant functional traits represent outcomes of the hierarchical generalized 
additive models, which are predicted to manipulated data where a given geomorphological process has been increased or decreased by 50 
or 100% in each plot. For instance, (a) plant height responds to changes in cryoturbation, and (b) specific leaf area responds to the decrease 
of cryoturbation (g,h)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
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positively at the two other sites. We suspect that the inconsistent pat-
terns related to seed mass can be explained, in part, by a few species 
that have especially large seeds (e.g., Empetrum nigrum and Arctous al-
pina) and that were not present at the high-Arctic site. When examining 
the responses of plant height and specific leaf area to deflation, both 
traits responded to possible changes in deflation; however, decreasing 
deflation had a stronger effect on specific leaf area than an increase. 
This is likely to reflect how deflation transports away both organic and 
fine soil material (which increases soil desiccation further) and causes 
physical disturbance to plants (Bridges & Laity,  2013; Wolfe,  2013). 
Consequently, deflation might decrease soil nutrient availability, which 
favours a conservative use of resources.

The trait–fluvial processes relationships were generally opposite 
to the trait–deflation relationships. The traits responded to low levels 
of fluvial processes, and further increases had minimal impacts on the 
traits. The three sites had similar responses, except for one of the seven 
traits: leaf nitrogen content had a unimodal response in the high-Arctic 

site. Both plant height and specific leaf area responded to possible 
changes in fluvial processes, and plant height had both positive and 
negative responses to increases in fluvial processes. We suspect that 
these results can be explained by how fluvial processes relocate fine 
sediments and increase seasonal variation of soil moisture, and overall, 
how they are related to other environmental conditions, such as win-
ter conditions (snow cover duration, snow melt timing and duration of 
the snow melt period) and the formation of organic soils (Blankinship 
et al., 2014; Bring et al., 2016; Giblin et al., 1991). Consequently, the 
transportation and accumulation of water and soil, and in turn, the in-
crease in relocation of nutrients and plant available water might favour 
both plant growth and the rapid use of resources.

The trait–solifluction relationships demonstrated that structural 
traits showed an approximately hump-shaped relationship with so-
lifluction, in agreement with previous literature investigating the 
effect of this process on vegetation abundance (Hjort et al., 2014). 
Our results indicated that both structural and leaf economic traits 

F I G U R E  5  A summary of the results: Plant functional trait–geomorphology relationships in the Arctic
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responded positively to increases across low levels of solifluction, 
whereas further increases had negative responses. This was the 
general pattern across the three sites. Both plant height and specific 
leaf area responded to possible changes in solifluction, and these re-
sults supported the unimodal response of plant height: if solifluction 
increases, plant height would decrease in some plots but increase 
in others. We believe that these results can be explained by how 
solifluction operates, which is by mixing and relocating soil mate-
rial (Matsuoka, 2001). Consequently, low levels of solifluction (slow 
soil movement) would increase soil nutrient availability and favour 
the rapid use of resources without disturbing plant growth, whereas 
high levels of solifluction would be a disturbance to plant growth by 
destabilizing the soil (Ridefelt et al., 2011). This is because the depth 
of soil movement associated with solifluction can be deeper than 
the rooting depth of the plants, which can enable vegetation to grow 
on active solifluction sites. Nevertheless, it should be noted that in 
comparison to the other geomorphological processes investigated 
here, the effect of solifluction was negligible and clearly the weakest 
trait–geomorphology relationship.

4.2  |  Future perspectives

In the tundra, disturbance ecology has long traditions of investi-
gating plant communities in relationship to natural disturbances. 
Plant communities can, for instance, experience disturbance caused 
by geomorphological processes (Johnson & Billings,  1962), such 
as rapid mass wasting (landslides and rockslides) (Macias-Fauria 
& Johnson,  2013). In addition to these catastrophic events (short 
duration, high intensity), over time, geomorphological processes 
also sculpt the Arctic landscapes and provide a range of habitats 
by altering soil resources and stability (long duration, low intensity) 
(French,  2017). Our results highlight why geomorphological pro-
cesses are not only a mechanical disturbance for vegetation, but 
how they also profoundly shape functional traits of the Arctic plant 
communities. Thus, it is important to consider and describe in detail 
whether and what type of disturbance geomorphological processes 
pose to plants and to determine the spatial and temporal extents and 
the overall intensity of the given disturbance (Graham et al., 2021).

As it becomes warmer in the Arctic, plants grow taller and 
cryogenic processes decrease (Aalto et al., 2017; Bjorkman, Myers-
Smith, Elmendorf, Normand, Rüger, et al., 2018). Our results indicate 
that if cryogenic processes were completely lost, plant height would 
increase further, but specific leaf area would decrease. However, 
indirect effects and feedbacks across macroclimate, microclimate, 
geomorphological processes (and overall geodiversity) and Arctic 
biota can make the causal hierarchy complex, and it should be in-
vestigated thoroughly (e.g., via structural equation modelling). 
For instance, plants also shape geomorphology (Stallins,  2006; 
Viles, 2020); for instance, the expansion of woody plant species can 
reduce permafrost thaw (Blok et  al.,  2010; Nauta et  al.,  2015). At 
our study sites, woodiness of the plant community was reflected 
well by the functional traits (data not shown). For instance, leaf dry 

mass content had a strong positive correlation with CWM woodi-
ness, whereas leaf area and plant height had a negative correlation. 
In future studies, it would be important to quantify the possible 
feedbacks of the trait–geomorphology relationships, especially in 
relationship to shrubification, particularly the differences between 
tall deciduous shrub communities and evergreen dwarf shrub com-
munities (Vowles & Björk, 2019). Overall, geomorphology alongside 
plant ecology increases our understanding of trait–environment re-
lationships in the rapidly changing Arctic.

4.3  |  Conclusions

Here, we have shown that geomorphological processes shape plant 
functional traits in the Arctic. Previously, analyses on species com-
position have shown that geomorphological processes impact veg-
etation. Focusing on functional traits allows us to generalize results 
across sites with potentially dissimilar species compositions and 
reveals that the nature of geomorphological impacts is consistent 
across sites separated by thousands of kilometres. We, therefore, 
provide empirical evidence for the existence of generalizable rela-
tionships between plant functional traits and geomorphological pat-
terns, and the results indicate that the relationships are universal 
across three distinct Arctic tundra ecosystems. This knowledge is 
important for improving the biological basis for predictions of cli-
mate change impacts over vulnerable Arctic ecosystems facing rapid 
shifts in both their biotic and abiotic environments.
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