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MOTIVATION Studying two or more types of biomolecules simultaneously in omics studies is of great
benefit since it can reveal information that is not apparent when each of the omics dimensions is considered
separately. For instance, studying transcriptome and proteome may reveal nodes of post-transcriptional
regulation (Buccitelli and Selbach, 2020; Cox and Mann, 2012) that are not apparent in the transcriptomic
or proteomic data alone. Another important example is expression quantitative trait loci (Cheung et al.,
2005; Morloy et al., 2004), in which genetic association is correlated with gene expression to shed light
on the relationship between traits and expression-driven cellular processes. The combined analysis of mul-
tiple omics dimensions is challenging for multiple reasons. First of all, the quantitative measurements in
each technology separately have to be of sufficiently high quality before correlations with other domains
can make sense. Further obstacles for multi-omics analysis are limited dynamic range and the resulting
missing-value problem inherent to most omics technologies. Furthermore, a statistical challenge arises
when performing all-against-all comparisons of variables in one technology with variables in another tech-
nology. The number of statistical tests for pairwise correlations explodes and, therefore, either a large num-
ber of false positives is createdwhenworkingwith p value thresholds or potentiallymeaningful truly positive
signals are lost due to the necessity of stringent false-discovery-rate control.
SUMMARY
We introduce Metis, a new plugin for the Perseus software aimed at analyzing quantitative multi-omics data
based on metabolic pathways. Data from different omics types are connected through reactions of a
genome-scalemetabolic-pathway reconstruction. Metabolite concentrations connect through the reactants,
while transcript, protein, and protein post-translational modification (PTM) data are associated through the
enzymes catalyzing the reactions. Supported experimental designs include static comparative studies and
time-series data. As an example for the latter, we combine circadian mouse liver multi-omics data and study
the contribution of cycles of phosphoproteome and metabolome to enzyme activity regulation. Our analysis
resulted in 52 pairs of cycling phosphosites andmetabolites connected through a reaction. The time lags be-
tween phosphorylation and metabolite peak show non-uniform behavior, indicating a major contribution of
phosphorylation in the modulation of enzymatic activity.
INTRODUCTION

Here, we introduce a software solution to this problem for the

cases in which a multi-omics analysis involves untargeted me-

tabolome data in combination with one or more other omics

technologies, which we connect through the reactions of a

metabolic pathway. For this purpose, we developed Metis,
Cell R
This is an open access article under the CC BY-N
which is a plugin for the Perseus software (Tyanova et al.,

2016) and which we describe in this work. Perseus is a com-

prehensive platform for omics data analysis, which was

developed with a user in mind who is a life-science researcher

but does not necessarily hold a degree in bioinformatics.

Hence, we expect to enable a large user base with this

type of comparative multi-omics analysis in contrast to other
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software tools that are targeted at programmers or bioinformat-

ics specialists.

While Metis can be applied to any kind of experimental design,

we focus here on an example with time-series data highlighting

an application to circadian multi-omics integration. Circadian

rhythms are endogenous and self-sustainable oscillators, pre-

sent in most living organisms, that drive daily cycles of molecular

and metabolic processes (Finger et al., 2020). The molecular

mechanism of the clock, built on transcriptional and translational

feedback loops, regulates the expression of �20% of the genes

in any given tissue inmammals. Additionally, post-transcriptional

and -translational mechanisms are reported to play an essential

role in circadian regulation of metabolism (Robles et al., 2014,

2017). Metis allows the investigation of cross correlations be-

tween quantitative changes of a metabolic enzyme at different

molecular level, such as transcript, protein, and phosphorylation

statuses, and the abundance changes of the products and reac-

tants of its catalyzed reactions, aiding to pinpoint key regulatory

enzymatic mechanisms. Regulatory nodes could be modulated

by phosphorylation-dependent enzyme activity but also by

enzyme expression changes at the protein and/or transcript

level, which can be distinguished by integrating the proteome

and transcriptome in the post-translational modification (PTM)

data analysis. The integration of diverse temporal dynamic

omics datasets together with rhythmic metabolite profiles from

mouse liver uncover phosphorylation as a major enzymatic reg-

ulatory mode. Rhythmic phosphorylation of metabolic enzymes

regulates its temporal activity and thus metabolic reactions

across the day.

RESULTS

Perseus software and Metis plugins
The Perseus software (Tyanova et al., 2016) is a comprehensive

framework for high-dimensional omics data analysis with a focus

on intuitive usability by interdisciplinary users. Through its plugin

architecture, it is extensible by writing code for workflow activ-

ities in multiple programming languages, like C#, R, and Python

(Yu et al., 2020). Besides statistical analysis on datamatrices, the

study of networks is supported as well (Rudolph and Cox, 2019).

For instance, the PHOTON plugin (Rudolph et al., 2016) can be

used to analyze phosphoproteomics data in the context of pro-

tein-protein-interaction networks with the aim of reconstructing

kinase activities (Br€uning et al., 2019).

Here, we extend the network capabilities of Perseus to the

specific requirements of metabolic pathways with the Metis

toolbox. We use genome-scale networks of metabolic reactions

to interconnect data from different omics dimensions (Figure 1).

We take reactions, reactants, and enzymes as nodes of the

network, while edges connect the reactants and enzymes to

the reactions they are taking part in. The enzyme nodes can

incorporate multiple types of quantitative omics data such as

proteomics, phosphoproteomics, and transcriptomics data.

Moreover, nodes can associate to multiple quantitative datasets

of different experimental designs, comprising, for instance, sam-

ple group comparisons or time-series data. This allows us to

compare metabolic reactions across diverse datasets spanning

many conditions and containing temporal data, thus providing
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relevant functional biological information. While we focus, in

this work, on the analysis of multi-omics time-series data, Metis

is more generic in terms of experimental designs and is also

capable of analyzing non-time-series data (Figure S1).

The alternative to this network-based analysis of multiple

omics dimensions would be an approach based on all pairwise

comparisons between the molecules in the omics datasets

without filtering through a network. However, the connection of

omics features through the reaction network is crucial to the

analysis for the reason of statistical significance of comparisons.

To illustrate this, we provide the following example: assume a

comparison of untargeted metabolomics data with 1,000 com-

pounds profiled over a time series with 10,000 phosphosites

from samples of the same time series. All pairwise comparisons

between phosphosites and metabolites would amount to

10,000,000 pairs. One would then perform one statistical test

per pair, for instance, to check if the Pearson or Spearman

correlation is significantly different from zero. Considering in

additional time-lagged correlations would further increase the

number of tests on the order of 10-fold. Using amoderate p value

threshold would result in many false positives with such a high

number of hypotheses tested simultaneously. For instance, a

p value threshold of 0.01 would result in on the order of

1,000,000 false significant calls (including an order of magnitude

factor 10 for trying different time lags in the correlation calcula-

tions). The proper alternative to this would be false discovery

rate (FDR) control, for instance with randomizations for gener-

ating the null-hypothesis distribution or by applying the Benja-

mini-Hochberg correction. This would, however, likely not call

out any of the tests as significant due to the large background

of noisy comparisons. Indeed, for the example presented later,

we would have to compare 7,986 profiles of phosphorylation

sites with 224 metabolite profiles. Calculating all time-lagged

cross correlations with, for instance, five different time lags,

including a time lag of zero, results in almost nine million p value

calculations that, after Benjamini-Hochberg correction, do not

result in any of them being significant. Hence, the comparison

of multiple omics through a network that provides a priori knowl-

edge about the relationship between the omics levels is crucial

for their statistical analysis. In our circadian multi-omics time-se-

ries analysis, we implement as a further simplification that we do

not use time-lagged correlations but instead use the results of

separate cycling analysis per omics in a multi-omics network

filtering analysis. This is necessary due to the variation intro-

duced by the heterogeneity of datasets produced in different

labs and the general limitations of quantitative accuracy in the

available datasets. Since Metis is a general framework for

the metabolic-network-based analysis of multi-omics data, the

replacement of co-cycling filtering by time-lagged correlations

is viable as soon asmore accurate and homogeneously acquired

data is available.

Rhythmicity estimation of multi-omics circadian time-
series datasets
We decided to perform an integrative multi-omics analysis of

publicly available datasets assaying in vivo circadian dynamics

in mouse liver. In order to achieve this, we obtained and re-

analyzed the most comprehensive published omics studies in
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Figure 1. Perseus framework and Metis toolbox

Perseus is a plugin-based software for the analysis of omics data. It supports two basic data types: matrices and networks. The former usually carries relative

bimolecular concentration data, and a multitude of activities exist in Perseus to process them. The generic network data structure consists of annotated nodes

and edges to accommodate diverse biological networks. Standard plugins contain activities for the creation, import processing, and analysis of, for instance,

protein-protein-interaction networks or networks consisting of kinase-substrate relations. The Metis toolbox extends the Perseus network framework to

metabolic pathways consisting of reactions, connecting metabolites that are consumed or created with the catalyzing enzymes. Annotation of these networks

connects metabolomics matrix data with matrices related to enzymes, which can be proteomics, transcriptomics, or phosphoproteomics data. Network nodes

and edges can then be filtered with simultaneous criteria onmultiple omics types, resulting in ametabolic reactionmatrix containing the results of interest. Finally,

results can be exported in .sif format, for instance, for visualization in Cytoscape.
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transcriptomics (Hughes et al., 2009), proteomics (Robles et al.,

2014), phosphoproteomics (Robles et al., 2017), metabolomics

(Krishnaiah et al., 2017), and lipidomics (Adamovich et al.,

2014) (Figure 2; Table 1). An important selection criterion was

to choose studies done using the same animal housing condi-

tions. In all studies, mice were entrained to light-dark cycles prior

to being released to constant darkness, allowing us to use the

same periodicity analysis in all datasets. Consequently, we

used 23.6 h as the period length, since this is the approximate

free-running period of mice driven by the internal clock. Sam-

pling resolution differed among those studies, varying from 1

to 4 h, and we kept the original time resolution of each dataset

for the integrative re-analysis. Using the Perseus cycling analysis

package (STAR Methods), we analyzed rhythmicity in all omics

datasets individually by fitting the log-transformed data to a

cosine curve with a period of 23.6 h and calculating the FDR us-

ing 1,000 randomizations to simulate the null hypothesis of no-

cycling behavior. To avoid discrepancies with the findings in

the published datasets, we used the same FDR cut offs as in
the original publications. In addition, we used the phosphopro-

teomics dataset to predict kinase activity using the PHOTON

method (Rudolph et al., 2016). The Perseus session for the

cycling analysis plus the respective software version are pro-

vided as supplemental information.

Cycling biomolecules
The resulting cycling analysis of the five omics datasets plus the

predicted kinases with daily patterns of activity is represented in

Figure 3. The total number of cycling molecules has to be inter-

preted with caution, since it is biased by the depths of the

respective technologies. The fraction of cycling molecules rela-

tive to all molecules quantified by the technology (Figure 3A) is

more meaningful but still not free from biases. For instance, the

ability to detect statistically significant cycling profiles strongly

depends on the quantitative precision of the technology, the

number of time points used per cycle, and the total length of

the time series in relation to the period length. Furthermore,

within datasets, molecules that are close to the detection limit
Cell Reports Methods 2, 100198, April 25, 2022 3
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Figure 2. Schematic overview of the data-analysis workflow with time-series circadian data

Datasets used from five different studies of circadian rhythms in mice liver serve as inputs along with the results of the kinase-activity prediction using the

PHOTON plugin within the Perseus software package. These were independently re-analyzed using the periodicity analysis toolkit in the Perseus software. The

results were then merged with the reconstructed mouse metabolic network from the BioModels database using the network-analysis module of Perseus.
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tend to be more difficult to be considered as cycling compared

with highly abundant molecules.

The profiles of all cycling biomolecules are shown as heat-

maps in Figure 3B, which are sorted in the vertical direction by

their acrophase. Out of all biomolecules, metabolites show,

with 58%, the largest fraction of cycling molecules. Next

frequent are transcripts, of which almost one-third show rhythms

in abundance with acrophases uniformly distributed across the

day, as described in the original publication and in other pioneer-

ing studies done with wider-spaced time points (Panda et al.,

2002; Storch et al., 2002; Ueda et al., 2002). In contrast, mouse

liver proteins have a smaller cycling fraction, 6% of the total,

sharply peaking at two main clusters, one during the day and a

second one in the middle of the night (Figure 3B). The latter clus-

ter is due to the induction of protein translation in response to an

increase in energy levels due to feeding, occurring during the

night in mice as nocturnal animals. It was found (Robles et al.,

2014) that when filtering the transcripts to those for which the

corresponding protein is cycling, phase relations between peak-

ing proteins and transcripts are on average compatible with the

expected time lag between transcription and translation but with

strong variations between individual transcript-protein pairs.

Protein function is often regulated by PTMs rather than, or in

addition to, changes in protein levels. This is the case for many

proteins involved in temporally regulated signaling pathways in

the liver (Robles et al., 2017). Thus, it is not surprising that 26%

of the phosphorylation sites, corresponding to more than 40%

of liver proteins, display daily rhythms almost completely inde-

pendent of protein-abundance cycles. Similar to rhythmic pro-

teins, cycling phosphorylation showed two distinct clusters of

acrophases, with the majority of peaks occurring during the

day or resting phases and slightly earlier than the protein cluster.
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The extensive regulation of phosphorylation in mouse liver im-

plies temporal control of kinase activity. Kinase activity is, in

addition to protein levels, strongly regulated by phosphorylation

and often by autophosphorylation. Thus, while among all cycling

proteins in liver, there are three kinases with rhythmic changes,

55 kinases display cycles of phosphorylation abundance. It is,

however, very challenging to infer kinase activity by using phos-

phorylation patterns on the kinases since the majority of phos-

phorylation sites are of unknown function (Needham et al.,

2019). Taking advantage of curated kinase-substrate relation-

ships (Hornbeck et al., 2015), we were previously able to infer

a number of kinaseswhose activity oscillates across the day (Ro-

bles et al., 2017). Since this prediction method is biased toward

well-known kinases, we here use an alternative method to pre-

dict cycles of kinase activity: the PHOTON algorithm (Rudolph

et al., 2016), which is based on the statistical analysis of pro-

tein-protein-interaction networks. Applying it to the phosphopro-

teome data, we were able to predict 33 distinct kinases with

changes in their activities across the day, corresponding to

20% of all kinases in the PHOTON analysis. Interestingly, pre-

dicted kinase activities are enriched in two temporal regions

slightly preceding the phosphorylation clusters on average,

indicative of a time lag between peak kinase activity and

maximum substrate phosphorylation. Overall, our data show

that kinetics of molecular reactions, such as phosphorylation,

can be studied using large-scale time-series data.

Circadian clocks and metabolism crosstalk bidirectionally.

While tissue clocks regulate local metabolism, the metabolic

state feeds back to the molecular clock (Brown, 2016). Accord-

ingly, in mouse liver, which is one of the most studied organs, a

large proportion of metabolites have been described to display

rhythms across the day. Perseus cycling analysis of the



Table 1. Datasets used in this study

Paper Hughes et al. (2009)

Robles et al.

(2014) Robles et al. (2017) Krishnaiah et al. (2017)

Adamovich et al.

(2014)

Dataset transcriptomics proteomics phosphoproteomics metabolomics lipidomics

Number of identified molecules 18,647 3,132 7,986 224 159

Number of cycling molecules 5,989 186 2,066 131 11

Total duration of sampling (hours) 48 48 48 48 20

Number of time points measured 48 (every hour) 16 (every 3 h) 16 (every 3 h) 48 (every hour) 6 (every 4 h)

Replicates per time point 1 3 3 4 4

Cycling q value threshold 0.05 0.33 0.1 0.05 0.05

Details of the five omics datasets of circadian mouse liver entrained in day-night cycles and then free running from time point 0. Several details of the

time-series acquisition, such as the total acquisition time, the sampling rate, and the number of replicates per time point, vary. Cycling q values differed

between the analyses performed in the respective publications. In order to keep consistency with previous work, we applied the cycling q value that

was used in each publication.
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metabolomics data resulted in more than 50% of metabolites

with daily cycles, similar to what was reported in the original

study (Krishnaiah et al., 2017). Rhythmic metabolites peak at

diverse times of the day, with many of them during the inactive

phase (Figure 3). Similarly, Perseus cycling analysis of the lipido-

mics data yielded cycling lipids, 7% of the total, peaking pre-

dominantly during the day as previously reported (Adamovich

et al., 2014).

Reaction-based multi-omics filtering
Metabolic networks are represented within Metis with three

different node types, namely reaction, enzyme, and metabolite

(Figure 4). Metabolite nodes are connected to the reactions

they participate in and are classified as a substrate or a product

of the reaction in question. Since enzymes are not consumed or

produced via the reaction but only catalyze it, these nodes are

connected to the reaction nodes in an undirected manner. All

node types can be annotated within the nodes table of the

network in Perseus with both qualitative and quantitative infor-

mation, e.g., in the case of a reaction, this can be its reversibility

or rate. Edges can also be annotated with various qualitative and

quantitative information. When filtering for reactions of interest,

Perseus can retain all reaction nodes where a condition is either

true or false and/or a certain threshold is applied to the numerical

annotation at the metabolite or enzyme nodes of the metabolic

network. In other words, all nodes that meet the conditions of

the filter plus the reaction nodes directly connected to them

can either be retained or removed in order to reach the desired

network for further analysis in the next processing step. The

user also has the option to apply several filters of a certain

type on different properties of the nodes and edges in union or

as an intersect, depending on the nature of the question. Here,

we apply a filter on the q values of the periodicity analysis of

each of the three omics dimensions, namely proteomics

(q R 0.33), phosphoproteomics (q < 0.1), and metabolomics

(q < 0.05), to retain all reactions that have nodes with our criteria

for further analysis. Following this filtering, we looked for reac-

tions mediated by enzymes that are not cycling at the protein

level, harbor cycling phosphorylations, and have rhythmic sub-

strates and/or products. The filtering reduced the network from

6,453 nodes and 48,625 edges to 1,898 nodes and 5,636 edges.
The number of remaining edges after filtering should be

compared with the number of pairwise comparisons in a naive

all-versus-all correlation approach, which was estimated to

result in nearly nine million p value calculations. Finally, 52 edges

remain that represent pairs of cycling phosphosites and metab-

olites that are connected through a reaction. For more details on

how to perform the filtering, see STAR Methods and Figure 4.

Phosphorylation as driver of dynamic enzymatic
reactions
The multi-omics network analysis with Metis resulted in a meta-

bolic sub-network with cycling metabolites of reactions medi-

ated by enzymes with rhythmic phosphorylation changes (Fig-

ure 5; Table S1). Together, those rhythmic reactions covered

several metabolic processes that involve important metabolites

such as NADH, AMP, coenzyme A (CoA), and amino acids. Over-

all, we find that phosphorylation works as a regulatory switch for

enzymes in key metabolic reactions in mouse liver. While phos-

phorylation can serve as an activating or repressive modulator,

most of the time, the functional relevance of a phosphorylated

residue identified in a large-scale phosphoproteomics study is

unknown (Needham et al., 2019). This is the case for many of

the rhythmic phosphorylations in metabolic enzymes of our

network as well. We thus seek to infer the functional role of the

phosphorylation in the activity of some of these enzymes based

on the quantitative correlation with the substrate and/or product

of its reaction. An evident example of this is the case of carba-

moyl-phosphate synthetase 2 (CAD), which is confirmed by our

analysis, where we reproduce the fact that the enzyme is alloste-

rically regulated by phosphorylation at S1859 (Figure S2) (Robi-

taille et al., 2013).

Moreover, S26 phosphorylation of acyl-CoA oxidase 1

(ACOX1), the enzyme catalyzing the first step of peroxisomal

very-long-chain fatty-acid oxidation, cycles with a peak in the

resting phase concomitant with the nadir of flavin adenine dinu-

cleotide (FAD), the cofactor of this reaction (Figure 5A, left panel).

Low co-factor levels could indicate high enzymatic activity plau-

sibly driven by phosphorylation, leading to a temporal regulation

of peroxisomal fatty-acid oxidation with a peak in the inactive

phase as reported for mitochondria fatty-acid oxidation (Neu-

feld-Cohen et al., 2016). FAD is also a co-factor in the first step
Cell Reports Methods 2, 100198, April 25, 2022 5
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Figure 3. Results of cycling analysis for the individual omics datasets
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of proline catabolism mediated by proline dehydrogenase

(PRODH). In addition to the co-factor FAD, proline as a substrate

of this reaction is also rhythmic with a nadir during the inactive

phase similar to FAD and also to the cycling profile of PRODH

phosphorylation of S32. Thus, under nutrient stress during the

resting phase when mice are not eating, PRODH activation

would mediate proline catabolism to maintain the cellular energy

levels (Pandhare et al., 2009). In contrast to what we observed for

ACOX1, increased S32 phosphorylation of PRODHwould lead to

enzymatic inhibition and accumulation of proline during the

active phase when nutrient levels are high due to food intake

(Figure 5A, middle and right panels).

Another example is the crosstalk between acetyl-CoA syn-

thase (ACSS2) rhythmic phosphorylation and the cycle of its

enzymatic co-factor CoA. ACSS2 is rhythmically phosphorylated
6 Cell Reports Methods 2, 100198, April 25, 2022
in S267, while S30, S263, S267, and S263 phosphorylations do

not cycle. Acetyl-CoA is produced by ACSS2 using citrate and

CoA as substrates; therefore, the fact that the CoA cycles in

anti-phase to the ACSS2 S267 phosphorylation suggests that

ACSS2 activity is promoted by S267 phosphorylation (Figure 5A).

A similar relationship can be inferred for the CoA synthase

COASY, for which cycling phosphorylation at S177 and S182

occurred parallel to the rhythmic levels of its enzymatic product

CoA (Figure 5A).

Another very interesting cross correlation between rhythmic

enzymatic phosphorylation and cycles of substrate and

product metabolites is the reaction mediated by the glycine

N-methyltransferase (GNMT). GNMT catalyzes the synthesis of

N-methylglycine (sarcosine) from glycine using S-adenosylme-

thionine (SAM) as the methyl donor, producing SAM. The peak
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(A) Exemplary network structure that is represented in Metis using the three node types, reaction, metabolite, and enzyme, which are connected according to the

participation of biomolecules in reactions.

(B) Nodes are attached to annotations originating frommatrices filled with quantitative omics data. Themetabolite nodes are affiliated with rows in amatrix object

carrying metabolite concentrations over potentially complex experimental designs, which are time series in the case at hand. The enzyme nodes are primarily

associated with proteomics data, connecting nodes to the quantitative data on relative enzyme concentrations, here also in the form of time-series data. Also,

quantitative post-translational modification data, as, for instance, phosphorylation or mRNA level data, are mapped here to the enzyme nodes. After mapping

various omics data to the network, filters can be applied on each node (filtered nodes are shown in green in this example).

(C) Applying the filter results in a network where only the relevant reactions and enzymes are retained.
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Figure 6. Histogram of the difference be-

tween acrophases of metabolites and phos-

phosites

All pairs of cycling metabolites and phosphorylation

sites resulting from network filtering that are hence

connected through a reaction were used to create a

histogram of phase differences. The differences

between acrophases of metabolites and corre-

sponding enzyme phosphorylations are sorted into

3 h bins. Enrichments can be observed around the

‘‘in-phase’’ and ‘‘in-anti-phase’’ regions.
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of GNMT phosphorylation at S10 in the middle of the night, likely

driven by feeding as previously reported, is concomitant with the

maximum levels of SAH and nadir of SAM, the product and sub-

strate of its enzymatic reaction, respectively (Figure 5A). In this

manner, the nutrient-dependent regulation of GMNT activity via

phosphorylation would impact methionine metabolism and the

methyl cycle by controlling the SAM/SAH ratio. Since SAM is

the methyl donor for almost all cellular methylation reactions,

temporal control of GNMT activity across the day would likely

contribute to the daily rhythms of RNA and histone methylation

and their crosstalk to the molecular clock (Fustin et al., 2013,

2020; Greco et al., 2020).

Phase relations betweenmetabolite concentrations and
enzyme phosphorylation
In the previous section, we looked into specific examples of pairs

of cycling metabolites and cycling enzyme phosphorylation that

passed our filters targeted at finding enzyme regulation by phos-

phorylation. In Figure 6, we provide a histogram of phase differ-

ences containing all such pairs found by the network analysis.

The phase differences are grouped into 3 h bins. The bin at 0 con-

tains those cases for which the enzyme phosphorylation is in

phase with the metabolite levels (phase difference between 1.5

and +1.5 h), while the bin at 12 contains those cases for which

metabolite and phosphorylation levels are in anti-phase (phase

difference between 10.5 and 13.5 h). The highest bin is the one

in exact anti-phase at 12. In this bin, the metabolite concentra-

tion is highwhen the fraction of enzymes that are phosphorylated

at the respective site is low and vice versa. One needs to distin-

guish cases in which themetabolite is counted as a product or as

a substrate of the reaction. In the case where the metabolite is a

product, these can be interpreted as potential cases of enzyme-
Figure 5. Network of enzymatic reactions with oscillating enzyme phosphorylation, substrate

Orange squares depict enzymes, and green hexagons depict metabolites. For the highlighted regions, co

metabolite intensities are shown.

(A) ACOX1 and PRODH.

(B) UBP1.

(C) HARS2.

(D) GNMT.

(E) PTDSS1.

(F) ACSS2, PLA2G4A, and COASY.

Cell R
activity repression by phosphorylation. In

the case where the metabolite is a sub-

strate, the interpretation is enzyme activa-

tion, since the more a substrate is
consumed, the greater the enzyme function driven by higher

phosphorylation levels. Accuracy of the data, simplicity of the

fit model, and the binning of phases all give some leeway to

the phase relationship, which can accommodate 1 to 2 h time

lags due to accumulation or consumption times of metabolite

concentrations. It should be emphasized that our example

data contain metabolite concentrations, not their fluxes. Time

lags resulting from this between phosphorylation changes and

metabolite concentrations are expected, since the abundance

of a metabolite may increase because the rate of its production

has increased or because the rate of its consumption has

decreased. A more direct correlation would be expected be-

tween phosphorylation and flux changes. However, apparently,

in our example, these differences were not large enough to

completely dilute the phase relationship between metabolites

and phosphorylation. When large-scale metabolic flux data are

available, these could be added as edge annotations into aMetis

model, and the reaction filtering could be based on these.

Another caveat is that the association of phases is not the proof

of a causal relationship but only points at potentially causal links

between biomolecules that ultimately need to be confirmed by

other means.

Another interesting region of the histogram is around time lag

0 (bins �3, 0, and 3 h), which also has an increased number of

cases compared with the average. Here, phosphorylation levels

are close in phase with the metabolite concentration, leading to

the opposite interpretation as in the 12 h bin. Here, the caseswith

substrates are interpreted as enzyme suppression by phosphor-

ylation, while cases with products are interpreted as enzyme

activation. Time lags due to accumulation/consumption effects

seem to be larger here, as is manifested by the larger spread

of phase differences onto the �3 and 3 h bins.
s, and products

mmon profile plots of normalized phosphosite and
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In summary, the distribution of phase differences between

metabolites and corresponding enzyme phosphorylation is

non-uniform and indicative of enzyme-activity regulation due to

metabolite and phosphorylation crosstalk. Several of these

enzyme-metabolite pairs could be rationalized in the previous

subsection.

DISCUSSION

We introduced Metis, a Perseus plugin for the joint analysis of

multiple omics datasets throughmetabolic networks. By restrict-

ing comparisons between molecular concentration data from

two omics levels to the subset defined by co-occurrence in

reactions of the metabolic network, we arrive at a manageable

problem with a strongly reduced background of false-positive

findings. On circadian multi-omics data for mouse liver, we find

enzyme phosphorylation-metabolite pairs co-occurring in reac-

tions, which show phase relationships indicative of activation

and repression. The circadian multi-omics analysis using Metis

highlights phosphorylation as a major regulatory switch of enzy-

matic activity regulating daily metabolic reactions in mouse liver

as already shown for receptor downstream signaling pathways

in this same organ (Robles et al., 2017). A potential drawback

of the filtering on reactions is the lack of discovery of interactions

outside of the ones known in the metabolic network.

We see data quality in terms of completeness of quantification

over the whole time series, as well as quantification accuracy as

limitations to the data analysis, in particular for the metabolome

and phosphoproteome data. The noisiness led us to perform, as

a first step, circadian analysis separately in each of the omics

levels and do the network-based analysis with the resulting fit

parameters. With advances in data quality, it will be possible,

as well as of interest, to perform the network analysis with corre-

lations across omics dimensions on the raw time profiles. We

see Perseus and Metis as a very suitable framework for this pur-

pose. The different omics levels used in this publication were

measured in different labs. While it is remarkable that in spite

of this source of variation, the joint analysis with Metis produces

meaningful results, we believe that it would be even better to

perform all omics measurements in the same lab, with the

same time points and preferably derived from the same samples.

Also, current technological developments, as, for instance, the

application of data-independent acquisition methods to phos-

phoproteomics andmetabolomics, will likely enable other statis-

tical-analysis methods that directly use correlation co-efficients

between different omics datasets.

The analysis of circadian multi-omics datasets using Metis

highlighted a predominant role for phosphorylation regulating

the activity of metabolic enzymes and, consequently, meta-

bolism. Metabolic states crosstalk to the molecular clock to

thus ensure proper circadian responses to metabolic changes

(Brown, 2016). One mechanism of crosstalk could involve meta-

bolic enzymes that directly modulate circadian transcriptional

control by physically interacting with chromatin remodeling sys-

tems, reprograming gene expression in response to the meta-

bolic state (Boon et al., 2020; Li et al., 2018). This reprogramming

would be largely based on a post-translational mechanism lead-

ing to modifications of histones and non-histone proteins to
10 Cell Reports Methods 2, 100198, April 25, 2022
ultimately control their activity. Our analysis of metabolite and

enzymatic activity supports this notion and even exposes com-

plementary metabolic reactions that can impact transcription.

For example, while an ACSS2 phospho-dependent peak of ac-

tivity in themiddle of the night would promote histone acetylation

(Mews et al., 2017) and transcriptional activity by generating

Acetyl-CoA, food-driven phosphorylation and activation of

GNMT in the night would inhibit histone methylation, and thus

transcriptional repression, by reducing SAM levels (Fustin

et al., 2013, 2020; Greco et al., 2020). Thus, rhythms of metabolic

enzymatic activity and corresponding metabolite levels would

specifically impact the circadian molecular machinery at the

chromatin to ultimately entrain the molecular clock to metabolic

and nutrient states.

Limitations of the study
While the developed software is generically applicable to the

data types presented, limitations in our particular study arose

due to the heterogeneity of the data used. Likely more findings

would be obtained if all omics data were acquired from the

same samples with same sampling of the time axis.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse liver circadian transcriptomics data (Hughes et al., 2009) https://doi.org/10.1371/journal.pgen.1000442

Mouse liver circadian proteomics data (Robles et al., 2014) https://doi.org/10.1371/journal.pgen.1004047

Mouse liver circadian phosphoproteomics data (Robles et al., 2017) https://doi.org/10.1016/j.cmet.2016.10.004

Mouse liver circadian metabolomics data (Krishnaiah et al., 2017) https://doi.org/10.1016/j.cmet.2017.03.019

Mouse liver circadian lipidomics data (Adamovich et al., 2014) https://doi.org/10.1016/j.cmet.2013.12.016

Whole Genome Metabolism - Mus musculus (B€uchel et al., 2013) https://doi.org/10.1186/1752-0509-7-116

Software and algorithms

Perseus (Tyanova et al., 2016) and this paper. https://doi.org/10.1038/nmeth.3901

Cytoscape (Shannon et al., 2003) https://doi.org/10.1101/gr.1239303

Perseus sessions This paper. https://doi.org/10.17632/n4nx6x999v.1

Matplotlib (Hunter, 2007) https://doi.org/10.1109/MCSE.2007.55

Pandas http://www.dlr.de/sc/Portaldata/15/Resources/

dokumente/pyhpc2011/submissions/

pyhpc2011_submission_9.pdf

NumPy (van der Walt et al., 2011) https://doi.org/10.1109/MCSE.2011.37
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, J€urgen Cox, cox@

biochem.mpg.de.

Materials availability
This work consists purely of data and data analysis software for the generation of the results and thus no further materials were used.

Data and code availability
d All re-analyzed data have been deposited and are publicly available as of the date of publication. Accession numbers are listed

in the key resources table.

d All original code has been deposited at GitHub and is publicly available as of the date of publication. DOIs are listed in the key

resources table. Data analysis was performed with Perseus version 1.6.15 containing the Metis plugin, which can be down-

loaded from https://maxquant.org/perseus/and whose code is freely available on GitHub (https://github.com/JurgenCox/

perseus-plugins/tree/master/PluginMetis). The Metis plug-in is distributed under the GNU v3.0 license. All Perseus sessions

and further data are available in the Mendeley dataset https://doi.org/10.17632/n4nx6x999v.1.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Transcriptomics data
Themouse liver circadian transcriptomics data contained 18,647 transcripts, quantified every hour (48 time points). The series matrix

was downloaded as a.txt file from theGene Expression Omnibus (GEO) with the IDGSE11923 (Hughes et al., 2009). The header of the

downloaded file was removed, only keeping the ‘‘!Sample_title’’. This file was then uploaded to Perseus using the ‘‘Generic matrix

upload’’ function where all columns containing expression values were uploaded as ‘‘Main’’ and the ‘‘ID_REF’’ column was uploaded

as ‘‘Text’’. The ‘‘ID_REF’’ column was used to annotate the transcripts with UniProt IDs using a Perseus annotation file shipped with

the software (which was also uploaded to Perseus using the ‘‘Generic matrix upload’’ function) and the ‘‘Matching rows by name’’

function of Perseus. Rows which were not annotated with an UniProt ID were removed using the ‘‘Filter rows based on text column’’

function. The rows with the same UniProt ID were combined, taking the median using the ‘‘Unique rows’’ function. Having checked
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the distribution of the data using the ‘‘Histogram’’ function, the data was transformed by log10(x) using the ‘‘Trans-form’’ function (see

Perseus session file named ‘‘Transcriptomics.sps’’).

Proteomics data
The mouse liver circadian proteomics data contained 3,132 proteins, quantified every 3 h (16 time points). The data was obtained

from the supplementarymaterial of the original article (Robles et al., 2014) as an Excel document. The sheet named ‘‘A- Total dataset’’

was saved as a.txt file and uploaded to Perseus using the ‘‘Generic matrix upload’’ function where all columns containing expression

values were uploaded as ‘‘Main’’ and the UniProt IDs of the proteins as ‘‘Text’’. Having checked the distribution of the data using the

‘‘Histogram’’ function, and since the original paper reports the expression values to have been transformed by log2(x), the data was

first transformed by 2(x) and later by log10(x) using the ‘‘Trans-form’’ function. This is done so that all datasets are treated exactly in

the same manner within Perseus (see Perseus session file named ‘‘Proteomics.sps’’). While the protein quantification data from this

source was produced with MaxQuant, Metis and Perseus in general operate independently of the MaxQuant software and can pro-

cess omics data produced by any other software.

Phosphoproteomics data
Themouse liver phosphoproteomics data contained 7,986 phosphosites quantified every 3 h (16 time points). The data was obtained

from the supplementarymaterial of the original article (Robles et al., 2017) as an Excel document. The sheet named ‘‘A- Total dataset’’

was saved as a.txt file and uploaded to Perseus using the ‘‘Generic matrix upload’’ function where all columns containing expression

values were uploaded as ‘‘Main’’, the UniProt IDs of the proteins as ‘‘Text’’, the phosphorylated amino acid as ‘‘Text’’ and the position

of the phosphorylated amino acid within the protein as ‘‘Text’’. Since the data was already log10(x) transformed, no further process-

ing was carried out (see Perseus session file named ‘‘Phosphoproteomics.sps’’).

Metabolomics data
The mouse liver circadian metabolomics data contained 224 metabolites, quantified every hour (48 time points). The data was

obtained from the supplementary material of the original article (Krishnaiah et al., 2017) as an Excel document. The sheet named

‘‘Liver_data’’ was saved as a.txt file. For the measured metabolites we could retrieve 200 ChEBI IDs which were later used to

map and annotate the metabolites according to the mouse metabolic network from the BioModels database. The ChEBI IDs were

retrieved via a simple script from HMDB website using the supplied HMDB IDs within the original supplementary file provided by

Krishnaiah et al. (2017). For metabolites missing HMDB IDs, metabolite names were used for manual retrieval of ChEBI IDs. The re-

sulting.txt file was then uploaded to Perseus using the ‘‘Generic matrix upload’’ function where all columns containing the metabolite

quantification values were uploaded as ‘‘Main’’. Having checked the distribution of the data using the ‘‘Histogram’’ function, the data

was transformed by log10(x) using the ‘‘Trans-form’’ function (see Perseus session file named ‘‘Metabolomics.sps’’).

Lipidomics data
The lipidomics data contained 159 lipids, quantified every 4 h (6 time points). The data was obtained from the supplementary material

of the original article (Adamovich et al., 2014) as an Excel document. The sheet named ‘‘A.’’ was modified to have the lipid types as a

column instead of row separators and saved as a.txt file and uploaded to Perseus using the ‘‘Generic matrix upload’’ function where

all columns containing the lipid quantification values were uploaded as ‘‘Main’’, the mass as ‘‘Numeric’’ and the type and name as

‘‘Text’’. Having checked the distribution of the data using the ‘‘Histogram’’ function, the data was transformed by log10(x) using the

‘‘Trans-form’’ function (see Perseus session file named ‘‘Lipidomics.sps’’).

Kinase activity prediction
Kinase activity prediction was performed using the PHOTON plugin of Perseus. The phosphoproteomics data was annotated based

on the UniProt IDs with Gene IDs and ENSP IDs using the Perseus ‘‘Add annotation’’ function. Three different protein-protein inter-

action networks were used, namely BioGRID, IntAct and STRING. These were downloaded from the respective web sources and are

available as supplementary data within this paper. After the analysis described below for each interaction network, the periodicity

analysis is performed as explained in the Periodicity Analysis section and the resulting matrices are merged, annotated using the

‘‘Add annotation’’ function with ‘‘Keywords’’ which were later filters for ‘‘Kinase’’ using the ‘‘Filter rows based on categorical column’’

to keep only the kinases from the PHOTON prediction (see Perseus session file named ‘‘Kinase Activity Prediction.sps’’).

The BioGRID network.txt file and uploaded to Perseus using the ‘‘Generic matrix upload’’ function with the confidence column as

‘‘Numeric’’ and the source and target columns as ‘‘Text’’. The resulting matrix was converted to the Perseus ‘‘Network collection’’

data type using the ‘‘Frommatrix’’ function of Perseus choosing the correct ‘‘Source’’ and ‘‘Target’’ columns. Then the node degrees

were calculated using the ‘‘Node degrees’’ function of Perseus and filtered using the ‘‘Filter nodes by numerical column’’ function for

nodes with less than 600� in order to discard nodes that are connected to too many other nodes which would cause significant noise

within the PHOTON analysis. The remaining nodes within the network were then annotated with the phosphoproteomics quantitative

time series data (all the ‘‘Main’’ columns) using the ‘‘Annotate nodes’’ function based on the ‘‘Node’’ column of the network and the

‘‘GeneID’’ column of the phosphoproteomics data, selecting ‘‘Keep separate’’ for the ‘‘Combine copied main values’’ option.

PHOTONanalysis was done using the PHOTONplugin of Perseuswhere all the columns contacting the quantitative data are selected
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and the ‘‘Side’’ is selected as ‘‘twosided’’ and a python.exe path is given as ‘‘Executable’’. As output, PHOTON provides two network

collections and a matrix. The matrix was further processed using the ‘‘To base identifiers’’ function based on the ‘‘Node’’ column

containing the Gene IDs to retrieve the UniProt IDs for the PHOTON prediction. The columns were also renamed using the ‘‘Rename

columns’’ function and sorted using the ‘‘Sort columns’’ function. The resulting matrix was saved as a.txt file using the ‘‘Generic ma-

trix export’’ function.

The IntAct network.txt file and uploaded to Perseus using the ‘‘Generic matrix upload’’ function with the confidence column as

‘‘Numeric’’ and the source and target columns as ‘‘Text’’. The resulting matrix was filtered using the ‘‘Filter nodes by numerical col-

umn’’ function for the protein-protein interactions with confidence values greater than 0.5. The resulting converted to the Perseus

‘‘Network collection’’ data type using the ‘‘From matrix’’ function of Perseus choosing the correct ‘‘Source’’ and ‘‘Target’’ columns.

The nodeswithin the networkwere then annotatedwith the phosphoproteomics quantitative time series data (all the ‘‘Main’’ columns)

using the ‘‘Annotate nodes’’ function based on the ‘‘Node’’ column of the network and the column containing the UniProt IDs of the

phosphoproteomics data, selecting ‘‘Keep separate’’ for the ‘‘Combine copied main values’’ option. PHOTON analysis was done us-

ing the PHOTON plugin of Perseus where all the columns contacting the quantitative data are selected and the ‘‘Side’’ is selected as

‘‘twosided’’ and a python.exe path is given as ‘‘Executable’’. As output, PHOTON provides two network collections and amatrix. The

matrix was further processed to rename the columns using the ‘‘Rename columns’’ function and sort them using the ‘‘Sort columns’’

function. The resulting matrix was saved as a.txt file using the ‘‘Generic matrix export’’ function.

The STRING network.txt file was uploaded to Perseus using the ‘‘Raw upload’’ function with the ‘‘Split into columns’’ selected

along with the ‘‘Separator’’ as ‘‘Tab’’. The resulting matrix’s score column type was converted from string to numerical using the

‘‘Change column type’’ function. Later the score column was used to filter for interactions with a score higher than 900 using the ‘‘Fil-

ter nodes by numerical column’’ function. The ‘‘mode’’ columnwas also used to filter for protein-protein interactions whichwere cate-

gorized as ‘‘binding’’ using the ‘‘Filter rows based on text column’’ function with the search string set as ‘‘binding’’, without matching

for case butmatching for thewhole word and the ‘‘Mode’’ selected as ‘‘Keepmatching rows’’ and the filter mode as ‘‘Reducematrix’’.

The resulting matrix was further processed using the ‘‘Process text column’’ function to remove ‘‘10,090.’’ from the beginning of the

ENS IDs within the STRING network ‘‘item_id_a’’ and ‘‘item_id_b’’ columns with the regular expression ‘‘10,090\.(.*)’’ and no replace-

ment string. The ‘‘Rename columns’’ function was used to rename the columnswithin thematrix containing the ENS IDs to ‘‘protein1’’

and ‘‘protein2’’ for the interacting proteins. The ‘‘Trans-form’’ function was then used on the confidence column with the transforma-

tion formula as ‘‘x/1000’’. Later, using the ‘‘Reorder/remove columns’’ function, only the columns ‘‘Confidence’’, ‘‘protein1’’ and ‘‘pro-

tein2’’ were kept for creating the Perseus network collection using the ‘‘Frommatrix’’ function to be used for PHOTON analysis. Prior

to the PHOTON analysis, the node degrees were calculated using the ‘‘Node degrees’’ function which was used to filter the network

for nodes with degrees less than 1000 in order to discard nodes that are connected to too many other nodes which would cause

significant noise within the PHOTON analysis. The nodes within the network were then annotated with the phosphoproteomics quan-

titative time series data (all the ‘‘Main’’ columns) using the ‘‘Annotate nodes’’ function based on the ‘‘Node’’ column of the network

and the column containing the ENSP IDs of the phosphoproteomics data, selecting ‘‘Keep separate’’ for the ‘‘Combine copied main

values’’ option. PHOTON analysis was done using the PHOTON plugin of Perseus where all the columns contacting the quantitative

data are selected and the ‘‘Side’’ is selected as ‘‘greater’’ and a python.exe path is given as ‘‘Executable’’. As output, PHOTON pro-

vides two network collections and a matrix. The matrix was further processed to rename the columns using the ‘‘Rename columns’’

function and sort them using the ‘‘Sort columns’’ function. The resulting matrix was saved as a.txt file using the ‘‘Generic matrix

export’’ function.

Periodicity analysis
All the data acquired fromprevious publications and the kinase activity predictionwere analyzed using Perseus’s time-series analysis

toolkit. Perseus performs this analysis in a permutation-based FDR-controlled manner and calculates the amplitude of the change

and the peaking time for each case by fitting the data to a cosine function (Tyanova et al., 2016). The results were then filtered to

define ‘‘cycling’’ and ‘‘non-cycling’’ entries according to the original q-values recommended by each of the publications that the

data originated from and q-value less than 0.1 for the kinase activity prediction data using the ‘‘Filter rows based on numerical/

main column’’ function. The data was annotated using the ‘‘Categorical annotation rows’’ and ‘‘Numerical annotation rows’’ functions

for all the measurements within the 48 h. The last five time points of the transcriptomics data were removed due to systematic ab-

normalities observed in the data using the ‘‘Reorder/remove columns’’ function. Using the numerical annotation, the circadian anal-

ysis was done using the ‘‘Periodicity analysis’’ function with the period set to 23.6, FDR set to 1 and number of randomizations set to

1000. The heatmapsweremade by collapsing and averaging themeasurements to 3 h intervals using ‘‘Average groups’’ function and

the zero and 24 time point were calculated using the same data points. Prior to visualizing the heatmap the ‘‘Z-score’’ function was

used for normalization and the ‘‘Hierarchical clustering’’ function was used without the row and column trees (see Perseus session

files named ‘‘Lipidomics.sps’’, ‘‘Metabolomics.sps’’, ‘‘Phosphoproteomics.sps’’, ‘‘Proteomics.sps’’, ‘‘Transcriptomics.sps’’ and

‘‘Kinase Activity Prediction Cycling Analysis.sps’’).

Whole genome metabolic networks
The metabolic network used in this study and available at http://annotations.perseus-framework.org/within the ‘‘MetabolicNet-

works’’ folder for 11 most popular model organisms are based on data downloaded from the BioModels database (Path2Models)
e3 Cell Reports Methods 2, 100198, April 25, 2022
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(B€uchel et al., 2013). Thesemetabolic networks are parsed upon retrieval from the BioModels database as an.xml file and reduced to

two text files containing the edges and the node annotations of the network. The.txt file with the edges of the network contains two

columns, ‘‘Source’’ and ‘‘Target’’, while the.txt file with the node annotations contains two columns, ‘‘Node’’ and ‘‘Type’’. These files

can simply be uploaded to Perseus as explained in the following section and used.

Network mapping and filtering
The network.txt files for mouse were uploaded to Perseus using the ‘‘Generic matrix upload’’ function. For the edge table both the

‘‘Source’’ and ‘‘Target’’ columns are selected as ‘‘Text’’ and for the node annotation table the ‘‘Node’’ column is selected as ‘‘Text’’

and the ‘‘Type’’ column as ‘‘Categorical’’. Using the ‘‘Frommatrix’’ function, the matrix containing the edges of the network was con-

verted to a Perseus network collection. Later using the matrix containing the node annotations, annotations were added to the

network using the ‘‘Annotate nodes’’ function. Note that these annotations can also be extended using the Perseus annotation files

shipped with the software and also available at http://annotations.perseus-framework.org/within the ‘‘PerseusAnnotation’’ folder.

For the purpose of this study we annotate the mouse metabolic network with q-values from each of the omics dataset for which

the periodicity analysis was performed using Perseus as explained in the previous sections. Thematrix from each periodicity analysis

performed on the various omics datasets was exported in.txt format and imported into the Perseus session containing the metabolic

network collection using the ‘‘Generic matrix upload’’ function. Since these.txt files are generated using Perseus, upon upload to

another Perseus session, Perseus assigns the correct data types to each column in the file automatically. In order tomap the q-values

from the metabolomics data to the network the ChEBI IDs were used but since there were formatting differences between the

network IDs and the data, the ‘‘Process text column’’ function was used to add the string ‘‘CHEBI:’’ to the beginning of the IDs within

the metabolomics data with the regular expression ‘‘^([^]+)’’ and the replacement string ‘‘CHEBI:$&’’ on the ‘‘ChEBI’’ column of the

matrix. The column containg the q-values was also renamed using the ‘‘Rename columns’’ function to ‘‘Metabolomics q-value’’ prior

to using the ‘‘Annotate nodes’’ function for mapping the data. The same strategy is used to map the q-values from the phosphopro-

teomics, proteomics and transcriptomics data. After annotating the network with the q-values, the network was filtered using the

‘‘Filter for metabolic reactions’’ function with the ‘‘Number of columns’’ set to four, ‘‘x’’ set to the metabolomics q-values, ‘‘y’’ set

to the phosphoproteomics q-values, ‘‘z’’ set to the proteomics q-values and ‘‘a’’ can be set to the transcriptomics q-values. Subse-

quently, the four relations are set as ‘‘x < 0.05’’, ‘‘y < 0.1’’ and ‘‘z>=0.33’’ and no restriction on a. The ‘‘Combine through’’ option is set

to ‘‘union’’, since each node type is annotated with a separate column containing the q-values of the cycling analysis for each of the

relevant datasets. This results in reactions where either of the three cases is true (cycling metabolite/s, cycling phosphosite/s and

non-cycling protein/s). The filtering reduced the network from 6,453 nodes and 48,625 edges to 1,898 nodes and 5,636 edges.

For further analysis of the remaining reactions, the ‘‘Metabolic reactions to matrix’’ function was used to collapse each reaction

with the filtered nodes to the Perseus matrix format where each row represents a reaction. For this purpose, the column containing

the node types were selected, also, the reaction, modifier (enzyme/protein), substrate and products were selected. The resulting

matrix is then further processed to filter for reactions that have both phosphosite information for their modifiers and metabolite in-

formation for their reactants to reach phosphosite and metabolite pairs of interest (see the Perseus session file named ‘‘Analysis-

Time-Series.sps).

Network export to third-party software
Any metabolic network analyzed within Perseus can be exported in the.sif (simple interaction file) format using the ‘‘SIF export for

metabolic reactions’’ function. For this purpose, both the Perseus metabolic network matrix and network types can be used. For ex-

porting networks from the matrix format, the columns containing the reaction, modifier (enzyme/protein), substrate and products

need to be selected along with the path to a Python installation. Exporting the metabolic network from Perseus network format, sim-

ply use the sif export function in the network tab (Figure S3). The resulting matrix can then be exported and used within third-party

software, e.g. Cytoscape.

Mendeley data
Hamzeiy, Hamid; Ferretti, Daniela; Robles, Maria; Cox, Juergen (2021), ‘‘PerseusMetis Data’’, Mendeley Data, V1, https://doi.org/10.

17632/n4nx6x999v.1 https://doi.org/10.17632/n4nx6x999v.1

Metabolic Network Analysis Folder: Perseus session files and data used forMetis analysis for both time series data and static data,

along with the final results presented.

Metabolic Networks Folder: Metabolic networks for 11 most common organisms.

Periodicity Analysis Folder: Perseus session files and data used to perform the periodicity analysis on the various datasets.

PHOTON Analysis Folder: Protein-protein interaction networks and Perseus session files used to perform PHOTON analysis for ki-

nases activity prediction.

QUANTIFICATION AND STATISTICAL ANALYSIS

No applicable statistical tests have been performed.
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