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Abstract 

The recent development of machine-learning methods to identify peptides in complex mass-

spectrometric data constitutes a major breakthrough in proteomics. Longstanding methods for 

peptide identification, such as search engines and experimental spectral libraries, are being 

superseded by deep-learning models that allow the fragmentation spectra of peptides to be 

predicted from their amino-acid sequence. These new approaches, including recurrent neural 

networks and convolutional neural networks, use predicted in silico spectral libraries rather 

than experimental libraries to achieve higher sensitivity and/or specificity in the analysis of 

proteomics data. Notably, machine learning is galvanizing applications that involve large 

search spaces, such as immunopeptidomics and proteogenomics. Current challenges in the 

field include the prediction of spectra for peptides with posttranslational modifications and 

for cross-linked pairs of peptides. Permeation of machine learning-based spectral prediction 

into search engines and spectrum-centric data-independent acquisition workflows for diverse 

peptide classes and measurement conditions will continue to push sensitivity and dynamic 

range in proteomics applications in the coming years. 
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Introduction 

Shotgun proteomics1–4 is a technique to identify and quantify proteins in samples of interest 

(Fig, 1). The approach includes two main steps. First, proteins are digested to peptides by 

proteases, and second, the peptides are fragmented in the mass spectrometer, which results in 

fragmentation spectra. Because of the oligomeric structure of peptides and the dominance of 

bond breakage in their backbone, the fragmentation spectra display regularities5 that can be 

exploited to determine their sequence of amino acids6 and covalent modifications of the 

amino acids. Thus, the interpretation of peptide spectra is somewhat different compared with 

molecules that lack a repetitive structure, such as metabolites7. With knowledge of the 

physical method of fragmentation — such as collision induced dissociation8,9, higher-energy 

collisional dissociation10 or electron transfer dissociation11 — the masses of the dominant 

peptide fragments can be easily calculated from the sequence. However, it is non-trivial to 

predict the relative intensities of fragment peaks in the spectrum, or in some cases their 

absence from the spectrum, which are both determined by quantum chemistry12. The peptide 

search engines13–15 that are traditionally used in shotgun proteomics to identify peptides 

generally ignore intensity information beyond simplified rules16,17. Although these tools have 

been successfully applied for many years, the intensity pattern carries information that can be 

used to improve the sensitivity and specificity of the peptide identification process18–20. 

 

One method for making use of the intensity information is to assemble libraries directly from 

previously measured spectra21–24 and apply them to the analysis of the sample of interest. 

This approach has the advantage that it is hypothesis-free regarding the content of the spectra. 

In principle, it can accommodate non-standard peaks that do not belong to any of the standard 

fragment ion series25 (Fig. 1), which are not considered in most prediction approaches 

available today. The disadvantage is that any new peptides in the sample, for which no library 

spectrum has been acquired, that would be lost in the analysis. An alternative approach, 

which, however, is prone to lose new peptides in the analysis as well, is to acquire project-

specific libraries. Generating such libraries adds substantial measurement effort to the project 

and is usually restricted to applications in which the benefit of increased sensitivity strongly 

outweighs the shortcoming of the peptide space being limited by the library content.  
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The limitations of these approaches for leveraging intensity information — both the failure to 

detect novel peptides and the additional measurement effort of generating project-specific 

libraries — would be overcome if peak intensities in fragmentation spectra could be predicted 

quickly and precisely from amino acid sequences. The first attempts at doing this date back 

nearly 20 years, using either a decision tree26 or a single hidden layer neural network27. In a 

recent breakthrough, deep learning methods28,29 have begun to predict peptide fragmentation 

spectra from amino acid sequence with near experimental accuracy18,30,31. This review 

focuses on machine-learning methods for accurate prediction of spectral libraries . Other 

recent reviews have covered more generally how deep learning is applied to proteomics32–34. 

 

The first section introduces key concepts in machine learning and deep learning. The second 

section discusses the requirements for training data used in spectral prediction and methods 

that predict either selected ion series or the full spectrum. The third section covers prediction 

of spectra for cross-linked peptides and peptides with post-translational modifications; in 

these applications the size of the available training data is currently much smaller, posing 

additional challenges. Predicted spectral libraries are beneficial in both data-dependent 

acquisition35–41 (DDA) and data-independent acquisition42 (DIA) methods. The fourth section 

explains how intensity-based rescoring in DDA is facilitating applications in 

immunoproteomics and proteogenomics, two areas with a substantially larger search space 

compared with standard proteomics. The fifth section discusses applications in DIA. Whereas 

DDA isolates a single molecular species for fragmentation, DIA fragments many peptides 

simultaneously (Fig. 2), generating spectra that are much more complex. The added 

information from the library spectrum intensities is particularly beneficial to deconvolute 

contributions from different peptides. This section compares DIA experiments analyzed with 

experimental versus predicted libraries and ends with a short overview of recent specialized 

spectrum prediction tools for DIA applications. Finally, a concluding section discusses 

promising avenues for further improving machine-learning tools for spectral prediction.  

 

Machine learning and deep learning approaches 

Fragmentation spectrum prediction is a supervised learning problem in which the spectrum is 

predicted from the peptide sequence and models are trained on sets of peptide sequences plus 

metadata, e.g. peptide charge or collision energy, as the input variables, and the fragment 

intensities, for instance of the y- and b-series ions, as the output variables (Fig. 3a). There is a 
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large variety of regression methods available, including tree-based models43,44 such as 

random forest regression45 and XGBoost46, support vector regression47,48 and neural 

networks. Neural networks are frequently used in spectrum prediction due to their superior 

performance.  

 

Neural networks are machine-learning methods that are roughly modeled on how neurons 

integrate signals in the brain. Directed connections carrying weights indicate which other 

neurons a given neuron can communicate with. A single idealized computational neuron (Fig. 

3b) has incoming and outgoing connections, where incoming connections can have an 

excitatory or an inhibitory effect, depending on whether their weights are positive or 

negative. The output is calculated as a nonlinear (‘activation’) function applied to the sum of 

the input signals, and sent to the next neurons via the outgoing connections. Neurons are 

typically arranged in layers with the multilayer perceptron (Fig. 3c) as the prototypic example 

of a feedforward network. The weights are determined during training, in which examples are 

presented for which the outcome (the spectrum) is known. A loss function measures the 

discrepancy between the true outcome and the current prediction.  This prediction error is 

minimized in a strategy called back-propagation49. Deep neural networks have architectures, 

i.e. content and connectivity of computational neurons, that are sufficiently complex to 

represent data in a hierarchy of concepts, where complex representations are composed of 

simpler ones. In the example of a multilayer perceptron in Fig. 3c, the presence of multiple 

hidden layers, i.e. layers of neurons, that are not directly connected to the input or the output, 

would allow for such a hierarchical representation. Learning the representation of higher-

level concepts in the original, primitive data is one of the hallmarks of deep learning, in 

contrast to simpler, conventional machine learning algorithms that are applied to hand-crafted 

features of pre-processed data. This approach is very practical and powerful, since no 

extensive domain knowledge is required; however, it can come at the expense of an increased 

need in the number of training instances and computation time, compared with conventional 

machine learning on extracted features.  

 

One specific class of neural networks, recurrent neural networks49,50 (RNN), has turned out to 

be very useful for fragmentation spectrum prediction. They are designed to process sequential 

data and can be applied to sequences of variable length, which makes them particularly 

applicable to peptides. Bidirectional RNNs51 combine two RNNs, one for each direction 
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along the sequence, to take into account that the frequency of a certain bond breakage 

depends on the sequence context before and after that bond. For some peptide bonds, their 

propensity to break is determined mostly by the local molecular environment, whereas for 

others more distant sequence properties are relevant. Gated RNNs have been developed to 

deal with multiple causal distance scales in the sequence. The two main types of gated RNNs, 

long short-term memory52,53 (LSTM) and gated recurrent units54 (GRUs) have both been 

applied to fragmentation spectrum prediction. Also, convolutional neural networks55 (CNNs), 

which have traditionally been used for tasks in image classification and recognition have 

been applied to spectra.  

 

Transfer learning56 (Fig. 3d) is a technique wherein parts of a trained model are re-used in a 

model with a different but related task which is then fine-tuned by a smaller number of 

training instances than would have been needed if the model had been trained from scratch. 

This technique can be useful for applications in which spectra are predicted for specialized 

technological or biological contexts, for which one can borrow parts of trained models from a 

more generic context. For instance, a model trained on a large dataset of unmodified peptides 

can be partially transferred to a model of peptides carrying posttranslational modifications 

which is subsequently trained on a smaller dataset.  Finally it is of interest that computational 

methods such as shapely additive explanations57 (SHAP) and integrated gradients58 are 

available for the attribution of input feature ranges to the prediction outcomes for a particular 

instance. In image recognition, for instance, these methods can indicate pixel ranges in an 

image that are most responsible for a certain decision. Similarly, in spectra they can provide 

information on the sequence regions that are most contributing to the determination of a 

fragment ion intensity18. 

 

Spectral data 

Fragmentation spectra can be predicted in two ways, either by focusing on pre-defined ion 

series types, e.g. y- and b-type ions, whose masses are directly calculable from the input 

sequence and whose intensities are to be predicted, or by predicting the full spectrum without 

referring to ion series annotation. Crucial for training a predictive model is a dataset of 

examples for which the input and the output is known. Such a ground truth dataset can be 

obtained from synthetic peptides with defined sequences59,60 which then undergo mass 

spectrometric analysis. This approach has the advantage that the entire composition of the 
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peptide mixture is known. However, spectra obtained from such measurements do not reflect 

the composition of a real sample, since they cover only a limited set of peptides, and 

substantial efforts are required for synthesis and analysis.  More often one makes use of 

existing DDA datasets, deposited in public raw data repositories61–67. In this case it is ensured 

that peptides are correctly identified up to a selectable false discovery rate68,69 (FDR) and can 

therefore serve as a quasi-ground truth. Optionally, further thresholds on additional quality 

parameters such as the search engine score can be applied. For approaches predicting the full 

spectrum, re-analyzing complex proteomics data to train the model has the complication that 

peaks can have resulted from co-fragmented peptides, which either would have to be reduced 

by spectral clustering70,71, or by a threshold on a measure for co-fragmentation72,73. 

Otherwise, the machine learning model will have the additional task of identifying features 

that are present due to co-fragmentation. In contrast, in approaches that predict only the 

intensities of ion series, the contamination effect of co-fragmented peptides is expected to be 

minor even in complex proteome samples. 

 

To determine the performance of a machine learning model, the available data needs to be 

split into a training, a validation and a test data set. The training and validation sets are used 

for model building, whereas the test set is entirely excluded from this process but is 

afterwards used to assess the performance of the model in terms of predictive accuracy in an 

unbiased way (Fig. 3e). For model building, the training dataset is used to determine the 

parameters of the model, i.e. the weights and biases of a neural network, and the validation 

set is used to tune the model’s hyperparameters and to avoid overfitting in this process.  To 

judge the accuracy of a prediction, one needs a spectral similarity measure74–77 which 

quantifies how close the predicted spectrum is to the experimental one, examples include the 

Pearson correlation between the spectral intensities or the spectral contrast angle78. 

Calculating the similarity measure for all predictions on the test set elements results in a 

histogram, which can be used to calculate the average accuracy, confidence intervals or a box 

plot for the whole population of predictions. In cases where the available data are limited, one 

can use cross validation (Fig. 3f) to increase the statistics of the histogram of accuracies.  

  

The predictive performance of a model depends on the number of available training 

instances. If the training set is too small, the full potential of the approach might not have 

been reached and one would need to obtain more instances to reach the plateau of asymptotic 
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performance (Fig. 3g). In practice, it is important how the model performs with a limited 

number of training instances, since the number of available spectra in a given technological 

or biological setting might be restricted. There is a practical limit set to the prediction 

accuracy given by how similar technical replicates of MS/MS spectra are for the same 

peptide and same values of metadata parameters79.  

 

Ion series intensity prediction 

Most of the popular deep learning models for ion series intensity prediction use RNNs, which 

have been realized in  pDeep30,80, DeepMass:Prism18, Prosit31 and by Guan et al81, but CNNs 

were also used82. Prosit is based on a GRU, whereas the other RNN based models use LSTM 

layers. As an example, the architecture of DeepMass:Prism (Fig 4a) is described in more 

detail. It uses the encoder-decoder architecture83 which has been developed in the context of 

machine translation, e.g. for turning German sentences into English. The encoder part takes a 

variable length peptide sequence as input and transforms it into a fixed length representation, 

which is achieved by three LSTM layers. Together with values of metadata parameters, such 

as charge or fragmentation type, a decoder consisting of a multilayer perceptron generates the 

‘translated’ sequence of ion series intensities. Outputs include y and b ions as well as peaks 

resulting from losses of H2O and NH3. Prosit also follows an encoder-decoder architecture 

but has slight differences in its construction, as it takes the normalized collision energy as an 

additional metadata parameter input.  

 

Conventional machine learning has been applied to ion series intensity prediction as well. 

These methods can be sub-divided into fixed length and window-based approaches. In the 

former, which is implemented in MS2PIP84–86, a separate model is trained for every possible 

peptide length (Fig 4b). Thus, there is no synergy from peptides of different lengths as it is 

the case for RNNs. Since there is no complication from variable-length inputs, in principle 

any conventional machine learning algorithm could be used with random forests as first 

choice84. For window-based methods such as wiNNer18, which is categorized as deep 

learning since its neural network contains multiple hidden layers, peptides of different lengths 

contribute to the same model (Fig 4c). The model predicts the peak heights relative to the 

highest peak in the spectrum for the ions formed by the breakage of one peptide bond at a 

time. The feature space is of fixed length and can be thought of as representing a sequence 

window around the currently considered bond plus some additional features. Features include 
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one-hot encoded amino acids in the sequence window centered on the peptide bond under 

consideration, length of the peptide, distances (number of residues) to the C- and N-terminus, 

one-hot encoded amino acids at the termini plus the values of metadata parameters that were 

also fed into the RNN-based models. Multiple instances of window-based training data will 

be created from one peptide by sliding the window along the sequence. Several other 

approaches also belong in this category since their prediction focuses on one peptide bond at 

a time and the features are recruited partially from the amino acids around that bond26,27,87–89 

with a small window size. Although the prediction accuracy of window-based prediction is 

usually lower compared with RNN based prediction, it can come close and it has the potential 

merits of lesser need in the number of training instances and decreased computational 

complexity18,90. 

 

Full spectrum prediction 

A CNN-based architecture was developed for the prediction of full spectra including also 

non-backbone ions91. The method does not rely on peak annotation, instead it uses a binned 

m/z range up to 2000 Da with a bin width of 0.1 resulting in a vector of 20,000 dimensions as 

a target for predicted intensities. A one-hot encoding for the input sequence is used to predict 

doubly and triply charged unmodified higher energy collisional dissociation (HCD) spectra, 

for which many training instances are available. About 1.5 million spectra were needed to 

reach saturation in prediction accuracy. Since much fewer charge one and four HCD spectra 

were available for training, multitask learning92, in which multiple learning tasks are 

addressed simultaneously to benefit from commonalities, was applied in the prediction of less 

frequent charge states. An auxiliary prediction task, which is the precursor charge prediction, 

is integrated into the model as a focusing method to avoid catastrophic forgetting93. The 

prediction of electron transfer dissociation (ETD) spectra was enabled by similar integration 

with the HCD model by including a pseudo-predictor for the fragmentation type. Future work 

in full spectrum prediction could include the extension to other fragmentation methods as, for 

instance, electron transfer/high-energy collision dissociation94 (EThcD) or ultraviolet 

photodissociation95 (UVPD) which are less well understood. Furthermore, the applications of 

feature attribution methods might shed light onto the mechanisms behind the generation of 

non-backbone ions. For the assembly of the training data, care needs to be taken to prevent 

excess of fragments originating from co-fragmented peptides.  
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Modified and cross-linked peptides 

Posttranslational modifications (PTMs) are covalent modifications to proteins that can occur 

on the amino acid side chains or on the termini. Their presence changes the masses of the ion 

series members and can also have profound influences on the peak intensities. Furthermore, 

they can give rise to additional fragments, due to modification-specific neutral losses. For 

instance, a phosphorylated serine or threonine can produce an additional ion series caused by 

the loss of H3PO4 whereas an immonium ion peak indicates the presence of a phosphorylated 

tyrosine. Transfer learning was used to modify pDeep296 to predict spectra containing 

modifications. The model was first pretrained on a large dataset of spectra from unmodified 

peptides. The full model consists of an input layer, two bi-directional LSTM layers and an 

output layer which was augmented with nodes representing b- and y-ions caused by the PTM 

neutral loss. In the transfer learning step, only the first LSTM layer and the output layer are 

fine-tuned, while the rest of the model is frozen in its pre-trained state. It was found that in 

particular when only a small number of spectra carrying the PTM are available, the 

performance of the transfer learned mode is better than the performance of a model trained 

from scratch96. For phosphorylation analysis, the investigators found their prediction of 

fragment ion intensities of the H3PO4 loss to be helpful for site localization. The input 

sequence features are represented by a 20-dimensional one-hot encoding vector per amino 

acid plus another vector per amino acid representing the modification in case there is one 

present. This latter vector is filled with counts of atom types occurring in the modification, 

thereby encoding its atomic composition. A similar model has recently been used for 

retention time prediction of modified peptides97. The representation can likely be improved in 

the future, since it cannot represent complex PTMs such as glycosylation98 adequately, does 

not distinguish isomers and inherently interpolates between atomic compositions of 

modifications, which is likely not optimal for representing chemical properties. Fragment 

spectrum prediction is particularly important for the site localization of PTMs such as 

phosphorylation when working in a spectral library context99. DeepPhospho100 is another 

deep learning model that integrates spectral library prediction into a DIA workflow by using 

a transformer network for the prediction  of peptide fragmentation patterns.     

 

Another class of peptides for which specialized methodology is needed for spectrum 

prediction is produced in cross-linking (XL) mass spectrometry101. Here, pairs of peptides are 
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produced that are covalently connected by a linker that joins two amino acids, one from each 

of the two peptides. The fragmentation patterns of each of the peptides are influenced by the 

presence of the other peptide, which makes their prediction harder than for linear peptides. 

Some of the fragments include the linker and the respective other peptide, which makes them 

heavier and higher charged on average. Less data are available for cross-linked peptides 

compared with linear peptides and they show high diversity due to many available cross-

linking reagents. Cross linkers can be either cleavable by mass spectrometry or non-cleavable 

resulting in two different types of fragmentation spectra. pDeepXL102 is a deep neural 

network that was trained separately on cleavable and non-cleavable XL data resulting in two 

prediction models, which are based on transfer learning. Future iterations of deep learning 

architectures possibly together with retention time predictors for cross-linked peptides103 are 

likely to improve the sensitivity of XL search engines104 when being integrated into their 

scores. 

 

DDA applications 

An important application of accurate fragment spectrum intensity prediction is its use for 

improving the matching of experimental spectra to peptide candidates. In DDA, the peptide 

database search engine decides for each given fragmentation spectrum, which among usually 

several candidates constitutes the best peptide spectrum match (PSM). An overall 

improvement in the correctness of PSM assignments results in better sensitivity, specificity, 

or both. Early attempts at intensity integration105–107 have demonstrated that this is feasible in 

principle. Recently it was shown18,108 that by using intensity information, an additional 

increase in correctness of assignments can be achieved in standard proteome searches against 

a species-specific sequence database from homo sapiens UniProt109 protein sequences, which 

contains all tryptic peptides up to a few missed cleavages. One approach directly integrated 

the intensity information into the Andromeda search engine score18 (Fig. 5a) and the other 

used percolator110,111 for the integration of spectral comparison features with the MS-GF+112 

search engine score108. The improvement in sensitivity is q-value (or PSM FDR) dependent 

and is higher at small q-values. At the standard FDR of 1%, the improvement with deep 

learning predictions was around 4%. Although the increase in identifications for standard 

proteomes is only moderate, it is expected that in larger search spaces the benefit of intensity 

prediction is higher, since on average more potential PSMs exist per precursor mass within a 

certain tolerance window, among which the correct one needs to be found. Applications with 
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larger peptide search spaces include immunopeptidomics113, proteogenomics114 and 

metaproteomics115. 

 

Immunopeptidomics focusses on peptides bound to human leukocyte antigens (HLA), which 

are generated by proteasomal degradation of intracellular proteins, followed by relocation to 

the cell surface116,117. Defining the HLA peptidomes presented on cancer cells is an intensely 

studied area of biomedical research, as these peptides provide targets for therapeutic 

intervention118,119. In contrast to proteins, which have to be digested by a specific protease for 

shot-gun proteomics, HLA peptides can be directly measured by mass spectrometry120,121, 

which comes with the challenge of an increased search space due to unspecific cleavage. 

Furthermore, the rules governing fragmentation differ from those for tryptic peptides; 

therefore, models for prediction of HLA peptide fragmentation need to be trained extensively 

also on non-tryptic peptides. Deep learning based intensity prediction was used to improve 

peptide identification in immunopeptidomics20,122. A new Prosit model was trained with more 

than 300,000 synthetized peptides representing HLA class I and II ligands and cleavage 

products of the proteases AspN and LysN, allowing the accurate prediction of fragment ion 

spectra for tryptic and non-tryptic peptides20.  The researchers reprocessed a dataset 

consisting of HLA class I peptides from 95 monoallelic cell lines123 with MaxQuant124,125 and 

PSMs were re-scored by integrating fragment intensity predictions. After reprocessing, a 1.5-

fold improvement across cell lines in terms of identified peptides was achieved on average 

(Fig. 5b). Re-scoring with the integrated intensity prediction was also applied to investigate 

the extent of proteasomal splicing126,127. These results suggest that 87% of the proposed 

proteasomal spliced HLA peptides126–128 might be incorrect. Many of these did not remain 

confident after predicted intensity-based rescoring since an equally good or better match with 

a canonical (non-spliced) peptide was found. In conclusion, the integration of intensity 

prediction is clearly beneficial for the analysis of HLA ligands. 

 

Proteogenomics114 is the study of the proteome with the aid of genomic or transcriptomic 

sequences that allow for the identification of peptides that are not part of the reference 

proteome sequences. The in-silico translation of this extended sequence space leads to an 

inflation of the peptide search space that has to be taken into consideration when identifying 

the best PSM for a spectrum. The extent of the search space inflation depends on the 

scientific question and can range from the inclusion of untranslated regions of transcripts (3’ 
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or 5’ UTRs) to the six-frame translation of the whole genome. Proteogenomics also benefits 

from an integration of predicted spectral intensities through a rescoring of PSMs in a 

percolator-based approach19. Proteogenomics search spaces were generated with ribosomal 

profiling129 and with a three-frame translation database based on RNA-seq using 

nanopores130. The latter resulted in an over 50-fold sequence database size growth with an 

associated 20-fold amino acid content increase. An improvement in the number of 

identifications was achieved over the whole range of PSM q-values (Fig. 5c), with an 

increase in identifications of around 6% at the default q-value cutoff of 0.01. 

 

Although the methods that were applied to standard proteomes, proteogenomics and 

immunopeptidomes differ and are not directly comparable, the results indicate that the 

improvement is by far the largest in immunopeptidomics, suggesting that the presence of 

non-tryptic peptides is a more important factor than the size of the search space. Another 

promising application of deep learning to the peptide identification problem is DeepMatch131, 

which circumvents the prediction of spectra and directly predicts PSM scores. Although the 

approach showed promising results in terms of identification rates, its computational 

demands turned out to be too high for it to be integrated into regular peptide search engines. 

 

DIA applications 

DIA data analysis workflows can be subdivided into spectrum-centric and peptide-centric 

approaches. Spectrum-centric software tools132–134 assemble pseudo-DDA spectra from the 

precursor and fragment features of the DIA data, which are then submitted to conventional 

search engines. In the peptide-centric approach dedicated spectral libraries are used to query 

the DIA samples for the peptides represented by the library spectra. Thus, the peptide-centric 

approach can directly benefit from library prediction. Several peptide-centric software 

frameworks have been developed36,135–143 and in principle all of them can be operated with 

predicted libraries. For standard proteomics samples of a single species without additional 

enrichments, e.g. for phosphorylation, the use of unbiased full proteome in silico predicted 

libraries for trypsin digestion were found to be feasible and beneficial143. Furthermore, error 

rates on protein identifications are under good statistical control, even when using such large 

in silico libraries143. Fig. 6a shows principal component analysis (PCA) results of tissue 

samples of different cancers measured with DIA using cancer type-specific measured 

libraries. In Fig. 6b the same data is analyzed in MaxDIA with an in silico predicted library 
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containing all human tryptic peptides including up to one missed cleavage, which resulted in 

more protein groups and better separation of tumor types in the PCA. In another example, 

HEK cell lysate was high-pH reversed-phase peptide fractionated and DIA samples were 

measured. These were analyzed using three libraries, single-shot and fractionated measured 

DDA libraries and an in-silico full proteome library (Fig. 6c). Also here the predicted library 

outperforms the measured libraries.   

  

It is of interest how the DIA performance depends on the predictor that is used for generating 

the in-silico library. The same DIA analysis was performed with full proteome spectral 

libraries predicted by Prosit, DeepMass:Prism and wiNNer (Fig. 6d). The number of proteins 

and of peptides identified is very similar between the three library generation methods, with a 

large overlap, implying that the simpler, and hence faster, wiNNer model can be used in place 

of the RNN-based models without substantial drawbacks. 

 

Several specialized spectrum prediction tools for DIA applications have recently been 

developed: Predicted peptide libraries can be refined with empirical data 144, or  hybrid 

spectral libraries can be generated that supplement an experiment-derived library with a 

protein family-targeted in-silico library145. DeepDIA146 uses instrument-specific models and 

peptide detectability prediction. MSLibrarian147 optimizes predicted spectral libraries by the 

integrated usage of spectrum-centric DIA data interpretation132 to inform and calibrate the in 

silico predicted library and analysis approach. 

 

Conclusion 

The predictive accuracy of current spectral library prediction tools is advancing DDA and 

DIA data analysis. Rescoring of PSMs in DDA is improving their sensitivity-specificity 

characteristics, in particular for non-tryptic peptides. DIA data analysis can now be routinely 

performed based on unbiased full proteome prediction of spectral libraries, eliminating the 

need for measuring project-specific libraries. Despite this progress, proteomics still faces 

challenges regarding sensitivity. Although cellular proteomes can be routinely quantified 

with adequate depth, the sequence coverage of most proteins is far from complete and lags 

behind transcriptome analysis with RNA-seq. This implies that proteoforms148,149 present due 

to alternative splicing are often not resolved in shotgun proteomics due to lack of sensitivity. 

Similarly, single-cell proteomics and plasma proteomics would substantially benefit from 
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improvements in sensitivity and dynamic range of measurements.  Prediction of 

fragmentation spectra will help address these challenges by better integration of the intensity 

information into the available search engines. For this purpose, and also to accommodate 

PTMs, the intensity prediction models must be computationally efficient. Furthermore, the 

diversity of peptide classes, for instance due to labeling, PTMs and cross linking, that need to 

be considered, makes it seem unlikely that one big deep learning model that knows 

everything will be the preferred way to proceed. Instead, a multitude of specialized models, 

each one trainable with moderate effort and limited training data, should better accommodate 

the needs.  Currently, it is an open question whether efficiency for models with less training 

data is best achieved by transfer learning or by reverting to simpler models without RNNs, 

such as wiNNer. Either way, spectral prediction will have an increasingly profound impact on 

data analysis in proteomics.  
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FIGURE LEGENDS 

Fig. 1 | Fragmentation spectra in shotgun proteomics. a, The shotgun proteomics 

workflow starts by extracting proteins from samples of interest and digesting them to 

peptides by a protease, most often trypsin. Peptides are then separated by liquid 

chromatography (LC) and ionized150,151. First-level MS or MS1 spectra record the mass to 

charge ratios of peptides. In data-dependent acquisition (DDA), peptide precursors are 

selected in narrow isolation windows aiming at selecting single molecular species and 

subjected to fragmentation. The resulting fragmentation spectra, also called MS/MS or MS2, 

contain the masses of the resulting fragments which are dominated by characteristic series of 

ions.  b, A peptide is a chain of amino acids of arbitrary length. The example shows a peptide 

of length four, in which the residues R1 to R4 can be any of the 20 standard amino acid side 

chains. The blue symbols indicate products of main chain bond breakages which, if charged, 

can be detected in the mass spectrometer. c, A typical fragmentation spectrum of a peptide 

without modifications and obtained by collisional dissociation, is dominated by y- and b-ion 

series (blue). These correspond to fragments resulting from a single bond breakage of a 

peptide bond in the main chain. The b-series is generated by the N-terminal and the y-series 

by the C-terminal pieces. Additional non-regular fragments can be generated by neutral 

losses of H2O or NH3 molecules (green). In principle, the spectrum can contain other types of 

fragments originating from the precursor peptide, such as less common neutral losses or 

internal fragments from two simultaneous main chain bond breakages (orange), but these are 

usually less frequent and low abundant. However, these nonstandard fragments are in 

principle predictable and therefore useful for peptide identification. Furthermore, other 

peptides that have the same or a similar precursor m/z and retention time can be involuntarily 

co-fragmented resulting in peaks that cannot be accounted for by the peptide of interest (red). 

Additional complexity arises from the possibility that fragments can carry more than one 

positive charge, in particular for precursors of charge three or higher.  Other fragmentation 

methods create spectra that are dominated by other types of ion series due to different bond 

breakages in the main chain. For instance, spectra created by electron transfer dissociation are 

dominated by c- and z-type ions. 

 

Fig. 2 | DDA and DIA. A mass spectrometric cycle typically consists of a full scan recording 

the signals of peptides that are currently eluting from the liquid chromatography plus a 

number of MS/MS spectra, three in this example, containing fragmentation signals. a, In 
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DDA mode ions are isolated for fragmentation in narrow windows that change from cycle to 

cycle. b, In DIA mode the ions are selected in sets of wide mass windows that are the same in 

all cycles. The window sizes can range from a few Dalton41 to a single window covering the 

whole mass range152,153. 

 

Fig. 3 | Machine learning. a, The fragmentation spectrum prediction is a regression problem 

with peptide sequences and metadata as input and spectral intensities as output. The sequence 

is usually fed in by either one-hot encoding, corresponding to indicator variables, or through 

an embedding layer154. One-hot encoding uses binary vectors of length 20 per sequence 

position, containing only zeroes and ones as entries encoding the standard amino acids, and 

possibly more to represent modified amino acids. An embedding layer finds linear 

combinations of input features, akin to a principal component analysis that best represent 

them. One-hot encoding is just a particular choice of variables, whereas an embedding layer 

dynamically determines the feature representation and adds to the computation time for 

model training. b, A computational neuron receives the numerical inputs aj which are 

modulated by excitatory (positive) or inhibitory (negative) weights wj, biased by w0 and 

evaluated by the activation function g to produce the output which is fed into other 

computational neurons. c, A multilayer perceptron arranges computational neurons in a 

multi-layered structure with a directional (‘feed-forward’) information flow. d, Transfer 

learning. Part of the model trained on big data is frozen and only the remaining layers are 

trained on a smaller specialized dataset. e, The available data is split into three parts, training, 

test and validation set, which serve different purposes. f, Cross validation. The example 

shows five-fold cross validation, in which the available data is split into five equally sized 

parts. Each part serves once as the test set while the remaining data comprises the training 

and validation parts. g, Typical dependence of prediction accuracy on the number of training 

instances. The more training examples are used, the better the correlation between true and 

predicted spectra. Both models reach some asymptotic performance at an infinite number of 

training instances. Although model B’s asymptotic performance is worse in the example it 

learns better if only little training data is available. 

 

Fig. 4 | Machine learning strategies for ion series intensity prediction. a, Bidirectional 

RNN architecture of DeepMass:Prism. b, Fixed peptide length models, e.g. implemented in 
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MS2PIP, which uses random forests. For ease of comparison a multilayer perceptron is used 

here as well.  c, Sequence window-based prediction with wiNNer.  

 

Fig. 5 | DDA applications. a, Identification rate improvement as a function of q-value on a 

HeLa dataset when integrating intensity predictions by DeepMass:Prism, wiNNer and 

MS2PIP into the Andromeda score. (Adapted from Fig. 6b in ref. 18.) b, Peptides gained, 

shared, and lost when rescoring MaxQuant results with intensity prediction information 

compared with Spectrum Mill analysis123 on 92 monoallelic cell lines. (Adapted from Fig. 3a 

in ref. 20) c, The number of identified spectra as a function of varying FDR levels for RNA-

seq based proteogenomics searches with (orange) and without (blue) using spectral prediction 

information. (Adapted from Fig. 1b in ref. 19.) 

 

Fig. 6 | DIA applications. a, Principal component analysis of tissue samples measured with 

DIA runs. Ellipses indicate samples of same tissue origin. (Adapted from Fig. 2f in ref. 155.) 

b, Re-analysis of the data in a, using predicted libraries in MaxDIA. c, Venn diagram of the 

number of genes covered by protein groups in the analysis of fractionated HEK cell lysate 

when using three different libraries. (Based on Fig. 6c in ref. 143.) d, Venn diagrams of gene 

and peptide counts when using three different library prediction methods (Adapted from 

Supplementary Fig 11 in ref. 143.)  
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