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Abstract in English

The recent availability of powerful GPUs and open-source software have enabled artifi-

cial neural networks to solve several practical and industrial problems. We can apply

neural networks to critical seismic processing steps such as swell noise attenuation, seis-

mic interference attenuation, debubbling, deghosting, and deblending. Today, many of

these processing steps involve significant testing and computational time. A neural net-

work has the potential of reducing testing and computational time. In addition, neural

networks can produce good results and be robust to changes in the input data. During

the last decade, significant advancements in neural networks structures have been made

and this development will most likely increase in the future.

An array of air guns is one of the most used sources in a marine seismic acquisition.

Air guns have many advantages, which is why they are so commonly used. However,

there are a few challenges when using air guns. The air-gun release an air bubble that

oscillates and creates bubble noise after the first expansion. The bubble is quite strong

compared to the peak, but combining multiple air guns can attenuate much of the bub-

ble noise. However, a significant amount of bubble noise is still left in the far-field source

signature, which elongates the signature and disturbs the seismic image. Modeling or

estimating the bubble noise and removing it is possible but challenging because of the

complex interaction between each air bubble. To add more complexity, any change in

one air bubble will also change the other air bubbles and consequently change the bub-

ble noise observed in the far-field signature. As a result, weather, relative positions of

air guns, air gun depth, swell waves, air gun pressure, and air guns not firing can change

the source signature. Therefore, the signature could change from shot to shot over a full

survey. Some methods try to estimate the signature on each shot. However, this requires

significant quality control and testing time.

The seismic waves reflected from the sea surface are called seismic ghosts. The sea

surface reflection coefficient is close to -1, meaning that the ghost arrives with a polar-

ity shift and a small time delay. In total, we observe three ghosts, the source ghost, the

receiver ghost, and the source-receiver ghost. Ghosts are problematic because they elon-
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gate and distort the seismic signal and cause notches in the frequency spectrum, reducing

the temporal resolution. Therefore, it is important to remove the ghosts to improve the

resolution and signal-to-noise ratio, which is important before geological interpretation

or seismic inversion. We can use different acquisition geometries to attenuate the ghosts.

However, the acquisition geometry alone cannot solve the deghosting problem. There-

fore, processing methods have been developed to attenuate the ghost. One disadvantage

of many conventional methods is that they require knowledge of the source, receiver po-

sitions, and sea surface reflection coefficient. However, marine seismic surveys include

swell waves, weather, and incorrect source and receiver positions. Many conventional

methods are, therefore, sensitive to any of these factors.

In this thesis, I describe an alternative approach using a convolutional neural network

for debubbling and deghosting. For debubbling, I trained a network on real data con-

taining an extensive range of source signatures to make the network robust to signature

variations. If the signature in the prediction data is equal to one of the signatures in the

training data, the network performs well. In addition, the network can adapt to a change

in the signature in the middle of a sail line. Moreover, if the test data have similar ge-

ology to the training data, the network performs better than if not. I used real data

from two locations on the Norwegian Continental Shelf to test this method. However,

for deghosting, I created training data using demigration of stacked depth migrated im-

ages into shot gathers with and without ghosts. I need the source and receiver positions

and the sea surface reflection coefficient to create demigrated data with ghosts. I perturb

these parameters to generate variability in the ghost model, which makes the network

more robust. On synthetic data, I demonstrate the robustness of the new method to

variations in swells and sea-surface reflection coefficients. I have developed a method

for pressure-only deghosting and dual-component deghosting. Both work well on real

data when compared to conventional deterministic deghosting based on least-squares

inversion in the τ − p domain and P-Vz sum.
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Nylig har tilgjengeligheten av kraftige GPUer og ”open source”-programvare gjort det

mulig for kunstige nevrale nettverk å løse flere praktiske og industrielle problemer. Vi kan

bruke nevrale nettverk til viktige seismiske prosesseringstrinn som dønning-støydemping,

seismisk interferensdemping, debobling, deghosting og deblending. I dag krever mange

av disse prosesseringstrinnene betydelig testing og beregningstid som nevrale nettverk

har potensialet til å redusere. I tillegg kan nevrale nettverk gi gode resultater og takle

endinger i innsamlingsdataene. I løpet av det siste ti̊aret har det blitt gjort betydelige

fremskritt i å konstruere nevrale nettverk, og denne utviklingen vil mest sannsynlig øke

i fremtiden.

Luftkanoner er en av de mest brukte kildene i en marin seismikkinnsamling. Luftkanoner

har mange fordeler framfor andre kilder, som er grunnen til at de er s̊a ofte brukt. Det

er imidlertid noen utfordringer ved bruk av luftkanoner. Luftkanonen slipper ut en

luftboble som svinger mellom å utvide seg eller å trekke seg sammen. Dette skaper

boblestøy etter den første utvidelsen. Boblestøyen er ganske sterk, men ved å kom-

binere flere luftkanoner kan vi dempe mye av boblestøyen. Det er imidlertid fortsatt

en betydelig mengde boblestøy igjen i fjernfeltkildesignaturen, noe som forlenger signa-

turen og forstyrrer det seismiske bildet. Modellering og estimering av boblestøyen og

fjerning av støyen er mulig, men utfordrende p̊a grunn av det komplekse samspillet mel-

lom hver luftboble. For å gjøre det mer komplekst, vil enhver endring i en luftboble

ogs̊a endre de andre luftboblene og følgelig endre boblestøyen observert i fjernfeltsigna-

turen. Som et resultat kan været, relative posisjoner til luftkanoner, luftkanondybde,

dønninger, luftkanontrykk og luftkanoner som ikke skyter, endre kildesignaturen. Der-

for kan signaturen endre seg fra skudd til skudd i løpet av en seismisk innsamling. Noen

metoder prøver å estimere signaturen til et hvert skudd. Dette krever imidlertid bety-

delig kvalitetskontroll og testtid.

De seismiske bølgene som reflekteres fra havoverflaten kalles seismiske ”ghosts”. Havover-

flatens refleksjonskoeffisient er nær -1, noe som betyr at en ghost ankommer en hydrofon

med et polaritetsskift og en liten tidsforsinkelse. Totalt observerer vi tre ghosts, kilde-
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ghost, mottaker-ghost og kilde-mottaker-ghost. Ghosts er problematiske fordi de for-

lenger og forvrenger det seismiske signalet og for̊arsaker hakk i frekvensspekteret, noe som

reduserer oppløsningen. Derfor er det viktig å fjerne ghosts for å forbedre oppløsningen

og signal-til-støy-forholdet, noe som er viktig før geologisk tolkning eller seismisk inver-

sjon. Vi kan bruke forskjellige innsamlingsgeometrier for å dempe ghosts. Likevel kan

ikke innsamlingsgeometrien alene løse ghosts-problemet. Derfor er det utviklet pros-

esseringsmetoder for å dempe ghosts. En ulempe med mange konvensjonelle metoder er

at de krever kunnskap om kildeposisjonen, mottakerposisjoner og havoverflatens reflek-

sjonskoeffisient. I en marin seismisk undersøkelse vil vi oppleve dønningsbølger, vær og

feil kilde- og mottakerposisjoner. Mange konvensjonelle metoder er følsomme for noen

av disse faktorene.

I denne oppgaven beskriver jeg en alternativ tilnærming ved bruk av et konvolusjonelt

nevralt nettverk for debobling og deghosting. For debobling trente jeg et nettverk p̊a ekte

data som inneholdt et omfattende utvalg av kildesignaturer for å gjøre nettverket robust

for signaturvariasjoner. Hvis signaturen i prediksjonsdataene er lik en av signaturene i

treningsdataene, fungerer nettverket bra. I tillegg kan nettverket tilpasse seg en endring

i signaturen midt i en seillinje. Dessuten, hvis testdataene har lignende geologi som tren-

ingsdataene, yter nettverket bedre. Jeg brukte ekte data fra to steder p̊a norsk sokkel

for å teste denne metoden. For dehosting laget jeg treningsdata ved å bruke demigrering

av et dybdemigrert bilde til skuddsamlinger med og uten ghosts. Jeg trenger kilde- og

mottakerposisjonene og havoverflatens refleksjonskoeffisient for å lage demigrerte data

med ghosts. Jeg forandrer disse parameterne for å skape variasjon i ghosts-modellen, noe

som gjør nettverket mer robust. P̊a syntetiske data demonstrerer jeg robustheten til den

nye metoden overfor variasjoner i dønninger og hav-overflate-refleksjonskoeffisienter. Jeg

har utviklet en metode for kun trykk-deghosting og to-komponent deghosting. Begge

fungerer godt p̊a reelle data sammenlignet med konvensjonell deterministisk deghosting

basert p̊a minste kvadraters inversjon i τ − p domenet og P-Vz summering.
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Chapter 1

Introduction

1.1 Outline

The first chapter in the introduction will focus on the background, motivation, problem,

and scope of the topic of this thesis.

The second chapter in the introduction focuses on the air-guns and how they produce

bubble noise in marine seismic data. I explain why the bubble noise is a problem in seis-

mic data and why it is important to remove it. Afterward, I mention some conventional

methods of estimating and attenuating the bubble.

The third chapter in the introduction introduces the ghost and how it is produced in

marine seismic data. I mention some of the problems with ghosts and why they usually

are removed from seismic data. I describe some of the developed methods to remove

ghosts.

The fourth chapter in the introduction introduces the basic concepts of migration and

demigration. I focus on Kirchhoff depth migration and demigration in this chapter.

The fifth chapter in the introduction focuses on machine learning and artificial neu-

ral networks. Here, I mention some of the most important aspects of machine learning.

Afterward, I describe the basics of artificial neural networks, convolutional neural net-

works, and the U-net I have used for debubbling and deghosting.

The sixth chapter summarizes each paper before I present the papers themselves.



2 Introduction

The seventh chapter gives the key findings from each paper and a common context.

Afterward, I discuss my work in relation to other research. Last, I discuss future re-

search.

1.2 Background

Figure 1.1 shows that oil and gas are a major part of the world’s energy consumption

and have been since the 1950s. Even though renewable energy sources have increased in

the last decades, oil and gas consumption has also increased [Ritchie et al., 2022]. Oil

and gas will likely be a major part of future consumption until other energy sources can

replace this demand. An energy transition could take decades, so it is important to find

and extract more oil and gas until that happens.

Norway only produces around 2% of the global oil demand. However, in 2021, crude

oil and natural gas amounted to 60% of the total value of Norway’s exports of 2021

[Norwegian Petroleum, 2022]. Therefore, oil and gas export is vital to the Norwegian

economy. Norway’s (known) oil and gas reservoirs are located on the Norwegian Con-

tinental Shelf. To find oil or gas reservoirs, one usually needs geophysical methods to

identify potential reservoirs before drilling a well. Depending on the drilling conditions,

a well can easily cost 30 million USD [Oljedirektoratet, 2020]. Therefore, understanding

the subsurface is crucial to saving money and resources. Seismic methods are one of the

essential geophysical tools to image the subsurface. Seismic methods are used not only

for finding oil but also to monitor gas and oil reservoirs or CO2 storage.
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Figure 1.1: Global primary energy consumption by source from 1950 to 2021 [Ritchie

et al., 2022].

Seismic methods are used on land and in water. A marine seismic acquisition usually

consists of a vessel that drags a seismic source and streamers that contain hydrophones.

Figure 1.2 illustrates a typical marine seismic acquisition. Seismic waves are emitted

from a source that creates a displacement and pressure change in a medium. It is pos-

sible to detect seismic waves with receivers by measuring a change in displacement or

pressure. A seismic survey uses a controlled source that releases seismic waves that travel

through the earth and are later measured by receivers (Figure 1.2). The goal is gener-

ally to create an image of the subsurface or estimate the properties of the subsurface.

However, noise contaminates the raw seismic data. Therefore, removing noise while pre-

serving the signal is necessary after an acquisition. The end product is essential for

seismic interpretation and inferring geological attributes from seismic inversion. Seismic

interpretation and seismic analysis can help find valuable minerals, oil, gas, archaeolog-

ical artifacts, monitor groundwater or glaciers, etc. Therefore, companies, institutions,

and people are constantly working to create technology or methods that remove as much

noise as possible while preserving the signal.
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Figure 1.2: Illustration of a marmine seismic acquisition [Learning Geology - A Geology

Outreach Website, 2015].

In a marine seismic acquisition, the source usually consists of several air guns carefully

positioned in an array. These air guns release over-pressured air into the water that ex-

pands quickly, creating a sharp seismic pulse. However, after the first expansion, the air

bubble implodes and oscillates. Therefore, the first pulse will be accompanied by several

smaller pulses. These secondary pulses are known as bubble noise.

Another problem during a seismic acquisition relates to the water-air contact at the

water surface. The water-air reflection coefficient is close to -1. As a result, a seismic

wave that propagates upwards towards the sea surface will be reflected downwards with

almost the same amplitude and a polarity shift. This phenomenon is known as the seis-

mic ghost. The ghost arrives at the receiver with a small delay compared to the primary.

We usually remove the bubble noise and ghost to obtain seismic data with less noise

and a more accurate subsurface image. Several methods have been created to attenuate

the bubble and ghosts. The bubble noise and ghost are described later in chapters 2 and

3.

1.3 Motivation

The recent availability of powerful GPUs, open-source software, and advances in artificial

neural network structures have allowed neural networks to be applied to many geophys-

ical problems. In seismic processing, neural networks have the potential to be applied
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to many of the key processing steps (swell noise attenuation, interpolation, deghosting,

debubbling, etc.). Conventional methods often require significant testing and computa-

tional power and can be sensitive to, e.g., noise. Neural networks are potentially robust

to noise and different datasets. In addition, once trained, neural networks are compu-

tationally light and could save time. Using neural networks could change how we do

seismic processing in the long term.

With these attractive properties, an artificial neural network could be helpful for de-

bubbling and deghosting compared to traditional methods. Using neural networks for

seismic processing is still an immature field. However, during the last few years, more

research has been done within this field.

1.4 Problem

The challenge when using artificial neural networks is acquiring high-quality training

data. Ideally, training data should be diverse and contain the complex features found

in the prediction data. Using diverse training data could lead to a generalized network

that produces good results on prediction data.

The problem with deghosting and debubbling is to create training data without the

ghost or the bubble. Separation of the ghost or bubble noise is not perfect on real data.

Therefore, ideal training data created from real data is not possible. However, training

data created from real data contain the complex features found in the prediction data,

which are desirable when training a network. Often, the only way to perfectly separate

the ghost or bubble model is to create synthetic data. However, the main challenge with

synthetic data is to model the complex features found in real data.

1.5 Scope

This thesis aims to use a convolutional neural network with a U-net structure to remove

the ghost and the bubble noise from marine seismic data. In the first paper, I describe

how a generalized network trained on real data can remove bubble noise over an extensive

survey where the bubble noise changes. In the second paper, I use demigration to create

training data that resemble real data. This training data can help a neural network to

achieve good deghosting results on hydrophone-only data. In the third paper, we expand

our method shown in the second paper to also deghost dual-component seismic data.
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Chapter 2

Debubbling seismic data

2.1 Far-field source signature

In marine acquisitions, a seismic source often consists of an array of air guns. Air guns

are desirable because they are reliable and with good signature repeatability. Each air

gun releases compressed air into the surrounding water creating an acoustic pulse. A

bubble of air expands and contracts, but the expansion is damped with each oscillation.

Typically, the air bubble has a diameter (at standard operating depths of 5-10m) of

about 1m [Ziolkowski, 1970]. At distances r of 1m or more, the pressure field of a single

oscillating air-gun bubble can be written as [Ziolkowski and Johnston, 1997]:

p(r, t)− p∞ =
1

r
s
(
t− r

Vw

)
, (2.1)

where p(r, t) is the water pressure at distance r and time t, p∞ is the hydrostatic pres-

sure, Vw is the P-wave water velocity, and s(t) is the source function.

Figure 2.1 shows an example of a seismic response from an air gun in the far-field.

The direct arrival is followed shortly by a surface reflection (ghost). However, after the

ghost, we observe bubble pulses or bubble noise related to the air bubble oscillation. The

signature is inconveniently long and oscillatory. Its frequency spectrum is multi-peaked

and is not minimum phase [Ziolkowski et al., 1982]. The oscillation period of the air

bubble changes with the depth, air gun volume, and pressure. By carefully designing an

array of air guns with, e.g., different volumes, it is possible to attenuate the bubble noise

recorded in the vertical far-field (Figure 2.2). However, one would still record residual

bubble noise. This signature is more desirable because it is sharp, short, and with a
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smooth and broad amplitude spectrum [Ziolkowski et al., 1982].

Figure 2.1: The vertical far-field signature of 40-in3 air gun recorded by a hydrophone

300 m below the gun [Dragoset, 2000].

Figure 2.2: Far-field source signatures of individual air-guns shown with different gun

volumes (blue). The red line show the combined far-field source signature if all air-guns

are fired simultaneously [Landrø and Amundsen, 2010].

However, using an array of air guns has two consequences for the source signature.

Firstly, the signature varies with departing direction of the acoustic waves from the

source. Secondly, the signature pressure wave varies with distance from the source. The

signature pressure wave becomes independent of distance in the ”far-field” of the air-gun

array at distances greater than D2/λ, where D is the length of the array, and λ is the
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wavelength of interest [Ziolkowski et al., 1982]. If we, e.g., have a 10 m array and are in-

terested in frequencies up to 100 Hz in water, we need to be more than 7 m away from

the array. Much work has been done to understand the bubble behavior and how to

model far-field signature based on the air gun configuration [Johnson, 1994; Ziolkowski,

1970; Ziolkowski et al., 1982]. De-signature and de-bubbling are the main utilities of the

far-field source signature.

One could place a receiver in the far-field to measure the vertical far-field source sig-

nature. However, this would usually not work on the continental shelf because sea

bottom reflections contaminate the far-field signature. In addition, it is hard to know

the true relative position of the array and receiver. Therefore, one normally estimates

the far-field signature from indirect measurements or modeling techniques. If a survey

has near-field hydrophones (NFH) measurements, it is possible to estimate the far-field

signature from these measurements. Ziolkowski et al. [1982] argued that the pressure

field in the water is simply the superposition of the spherical waves from all the bubbles,

plus the reflections of these waves from the sea surface. The superposition of the direct

and reflected waves from the n sources combined create the pressure at a point (x, y, z)

in the water [Ziolkowski and Johnston, 1997]:

p(x, y, z, t)− p∞ =
n∑

k=1

[ 1

rk(t)
sk

(
t− rk(t)

Vw

)
− 1

Rk(t)
sk

(
t− Rk(t)

Vw

)]
, (2.2)

where sk(t) is the source time function of the kth source, rk(t) is the distance from the

kth source to the point (x, y, z), and Rk(t) is the distance from the virtual bubble above

the water surface to the point (x, y, z). Rk(t) simulates the source ghost. rk(t) and Rk(t)

are time-dependent because the air bubble rises towards the sea surface.

Ziolkowski et al. [1982] suggested using n hydrophones as close as possible to the air

guns but no closer than 1m. We then have the following equation:

pi(x, y, z, t)− pi,∞ =
n∑

k=1

[ 1

rik(t)
sk

(
t− rik(t)

Vw

)
− 1

Rik(t)
sk

(
t− Rik(t)

Vw

)]
, i = 1, 2, ..., n,

(2.3)

where pi(x, y, z, t)−pi,∞ is the pressure field at the ith hydrophone, rik(t) is the distance

from the kth source to the ith hydrophone, and Rik(t) is the distance from the virtual

bubble above the water surface to the ith hydrophone. We call the estimation of the

source signatures at the hydrophones notional source signatures. Once the notional sig-

natures are known, the pressure at any point (x, y, z) can be calculated using equation
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2.2, including a point in the far-field.

Using NFH to estimate the far-field source signature is generally considered the most ac-

curate method. However, when NFH measurements are unavailable, one can use other

methods. One approach estimate the source signature from sea-bottom reflections that

are aligned and stacked along one or more sail lines. However, this only works in deep

water and on geology that change below the sea bottom. Otherwise, reflections below the

sea bottom have constructive interference and contaminate the far-field estimate [Scholtz

et al., 2015]. Another method uses the direct arrival to derive the far-field signature.

Similarly to the technique using NFH, Davison and Poole [2015] use the direct arrival to

estimate the notional source signatures using equation 2.3. This method is unsuitable in

shallow water because the direct arrival quickly interferes with reflection data. Finally,

it is possible to model the far-field signature based on the air-gun configuration [Landrø,

1992].

2.2 Debubbling

Despite using carefully designed air gun arrays, a significant amount of bubble noise

is left in the far-field source signature. The bubble noise is generally unwanted in the

recorded data and, therefore, removed. However, this requires an estimation of the far-

field signature. de Jonge et al. [2022b] define the true far-field signature bubble noise

as the real bubble and the estimate of the real bubble as the bubble model (Figure 2.3).

The earth acts as a filter and is convolved with the source signature, meaning that the

real bubble interferes with deeper reflections as shown in Figure 2.3c. Consequently, the

bubble interferes with seismic reflections, which degrade the seismic image.

If the bubble model is a reasonable estimation, it is possible to find a 1D convolu-

tion operator to remove the real bubble from the seismic data. This operator is often

called the debubbling filter and is equivalent to the inverse of the bubble model. To cre-

ate the filter, one typically uses shaping or gapped deconvolution [Yilmaz, 2001]. The

filter is applied to the seismic data (Figure 2.3c) to get debubbled seismic data (Figure

2.3e). Even if the real bubble change with direction (for an air-gun array), it is usually

assumed that a 1D filter based on the vertical far-field real bubble is good enough for

debubbling. de Jonge et al. [2022b] define the measured seismic data containing only

the estimated bubble noise as the bubble modeled data (Figure 2.3d). The bubble mod-

eled data is equivalent to the difference between the seismic data with the real bubble

and the debubbled data.
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Figure 2.3: (a), (b) An example of a signature with a real bubble and bubble model,

respectively. (c) Data with real bubble. (d) Bubble modeled data. (e) Debubbled data.

[de Jonge et al., 2022b].

Debubbling is an essential step in seismic processing and improves seismic data qual-

ity. However, if we derive a convolution operator from an incorrect estimate of the real

bubble, the operator will leave residual bubble noise in the data, as shown in Figure

2.3e. Even if we know the source configuration, estimating the source signature can give

different results for different methods. Figure 2.4 shows an example of this deviation

where de Jonge et al. [2022b] have estimated the far-field source signature using mod-

eling and NFH data. During a seismic acquisition, the air guns do not always release

air with the same pressure from shot to shot. Occasionally, an air gun might not fire

(drop-out), which changes the far-field signature significantly [Grion et al., 2018]. The

physical conditions (such as weather, relative air-gun position, and the sea-surface re-

flection coefficient) can also change the far-field signature significantly within a survey

[Ni et al., 2012]. The bubbles interact and are coupled with each other, meaning that a

change in one bubble will also change the other. This interaction makes the system com-

plex and can be hard to model correctly. Therefore, it is unrealistic that we can estimate

the far-field signature perfectly and that the far-field signature does not change within a

survey. In addition, calculating the far-field signature and designing a debubbling filter
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for each shot is challenging and time-consuming.

Figure 2.4: A far-field source signature estimated using NFH (black) or modeling (red)

[de Jonge et al., 2022b].



Chapter 3

Deghosting seismic data

3.1 Seismic ghosts

A seismic source releases a seismic wavefield in all directions. Some of that energy

travels upwards to the sea surface. The reflection of the up-going seismic wavefield at

the sea surface is called the ghost. If we disregard the direct wave, the seismic wavefield

can be reflected at the source and receiver sides, shown in Figure 3.1a. Therefore, a

primary reflection is accompanied by three ghosts: the source ghost, the receiver ghost,

and the source-receiver ghost. The sea surface’s reflection coefficient depends on the

incidence angle and frequency. However, in the frequency range of 0-100 Hz, the reflection

coefficient, R, is usually close to -1 [Orji et al., 2013]. As a result, ghosts are near-total

reflections with a polarity shift within this frequency range. Figure 3.1b illustrates these

ghosts in a seismogram. The consequence of ghosts is an elongated and distorted seismic

signature. The primary reflection and ghosts interfere constructively and destructively

with different frequencies. Therefore, we observe peaks and notches in the frequency

spectrum (Figure 3.1c). The notch frequency for pressure is given by [de Jonge et al.,

2022c]:

fn = n
Vw

2∆z cosα
, n = 0, 1, ..., (3.1)

where Vw is the P-wave water velocity, ∆z is the depth of the source or receiver, and

α is the incidence angle, respectively. The frequency notch will decrease if the receiver

depth or source depth increase. However, the ghost notch at 0 Hz is present regardless

of the source and receiver depths.
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Figure 3.1: (a) Primary and ghosts arrivals shown as rays from the source to a receiver.

(b) Primary and ghosts shown in the time domain for one receiver. (c) The ghost

functions shown in the frequency spectrum for the source and receiver [de Jonge et al.,

2022c].

Ghosts reduce the temporal resolution. Therefore, it is important to remove ghosts to

improve the bandwidth and resolution. Consequently, deghosting could benefit geologi-

cal interpretation [Hammond, 1962; Schneider et al., 1964]. Figure 3.2 shows an example

of Marmousi finite-difference modeled data with and without ghosts. The source and re-

ceiver depths are 7m and 20m, respectively.

Historically, sources and receivers were located at relatively shallow depths (5-9 m)

in conventional seismic acquisitions. Shallow sources and receivers result in a high-

frequency ghost notch, which could limit the processing and imaging below the first

notch. More recently, other acquisition methods aim to attenuate the receiver ghost.

Slant streamers [Bearnth and Moore, 1989] and variable depth streamers [Rickett et al.,

2014; Soubaras and Dowle, 2010; Soubaras et al., 2012] aim to diversify the ghost notch

frequency along the streamer. Therefore, a CMP stack attenuates the receiver ghost.

However, one typically attempt to deghost the data using processing techniques be-
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fore a CMP stack. Over-under streamers is an acquisition method with cables towed in

pairs at two different cable depths, with one cable vertically above the other [Hill et al.,

2006]. Since the location of over/under towed steamers is at different depths, they also

have a different ghost notch frequency. The seismic data recorded by the over/under

towed streamers are combined into one dataset to attenuate the receiver ghost. Another

acquisition method use multi-component streamers with pressure and particle velocity

measurements to attenuate the receiver ghost [Carlson et al., 2007]. The receiver ghost

has an opposite polarity compared to the primary for pressure. In contrast, particle ve-

locity data have a primary and receiver ghost with the same polarity. When pressure

and particle velocity data are combined, the receiver ghost is attenuated. Since the re-

ceiver ghost is attenuated, multi-component streamers can be towed deeper, enhancing

the low frequencies. These acquisition configurations can help to attenuate the ghosts.

However, they cannot alone solve the ghost problem.

Figure 3.2: Example of Marmousi modeled data with and without ghosts.

3.2 Deghosting of pressure data

Deghosting of pressure data is still essential. Traditionally, one would estimate a decon-

volution filter for source or receiver deghosting:

1

G(f)
=

1

1− e2iπ2∆zf/Vw
, (3.2)

where f is the frequency, G(f) is the ghost function, and Vw is the water velocity.

Equation 3.2 assumes vertical ray paths. The simplest deghosting method uses the far-

field source signature and deterministic deconvolution [Jovanovich et al., 1983], assuming
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vertical ray paths. However, the ghosts change with the angle of propagation. As a result,

the deconvolution filter in equation 3.2 is changed:

1

G(f, kx, ky)
=

1

1− e2iπ2∆z
√

f2/V 2
w−k2x−k2y

, (3.3)

where kx and ky are the inline and crossline wavenumber.

Most receiver deghosting methods require common-shot gathers that are densely sam-

pled in the inline direction. The reason is that the inline wavenumber is not related to

the departing angle from the source but to the incidence angle for shot gathers. The rela-

tion between the departing and incidence angles is complex if the subsurface is complex.

The energy emitted at a certain angle may arrive at one or multiple other angles. Figure

3.3 shows the frequency-wavenumber (FK) domain of a shot gather and receiver gather

modeled using the Marmousi model [Martin et al., 2006]. We can observe the receiver

ghost notch in the FK shot domain 3.3a, but it is not visible in the FK receiver domain

3.3b. In contrast, source deghosting methods are best suited for receiver gathers [Vrolijk

and Blacquière, 2021]. However, the large gaps between shots limit the applicability of

source deghosting in the common-receiver domain.

Figure 3.3: A shot gather (a) and receiver gather (b) shown in the FK domain.

Most current source and receiver deghosting methods aim to solve Equation 3.3. These

deghosting techniques are typically applied in the FK domain Lindsey [1960], frequency-

slowness domain Zhang et al. [2018], τ − p domain [Poole, 2013; Wang et al., 2013],
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or the space domain Amundsen et al. [2013a,b]. Deghosting is usually done pre-stack.

However, deghosting can also be done post-stack, shown by Soubaras [2010].

3.3 Multi-component deghosting

Multi-component streamers have hydrophones and particle velocity sensors. Usually,

the particle velocity sensors measure the vertical field (dual-component streamers). In

some cases, multi-component streamers also measure the crossline field. Multi- or dual-

component streamers are becoming more frequently used in the industry because vertical

particle velocity (Vz) data is beneficial for receiver deghosting. Therefore, these stream-

ers can be towed deeper, which enhances the lower frequencies [Carlson et al., 2007].

If we define the positive measuring direction downwards, vertical particle velocity (Vz)

data have the same receiver ghost polarity compared to pressure data. However, pres-

sure and Vz data have the opposite polarity of the up-going wavefield as shown in Figure

3.4. The receiver ghost notch frequency of particle velocity data is defined as [Carlson

et al., 2007]:

fV
n =

∣∣∣∣ Vw

2∆z cosα

(
1

2
+ n

)∣∣∣∣, n = 0, 1, ... (3.4)
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Figure 3.4: Illustration of two seismograms measured in pressure (a) and particle velocity

(b) of a single reflection with the primary, source ghost, receiver ghost, and source-

receiver ghost. (c) shows the obliquity angle (α) of the particle velocity (V⃗ ) defined as

positive downwards [Adopted from de Jonge et al. [2022a]].

The particle velocity receiver notch is located at the pressure receiver ghost peak, and

vice versa. Therefore, adding the pressure and particle velocity data results in destruc-

tive interference of the receiver ghost. However, we must correct the obliquity before

combining the pressure and Vz data. Obliquity is the deviation from the vertical and is

defined by the angle, α, shown in Figure 3.4. We can use the following equation when

computing the pressure and Vz sum [Tenghamn and Dhelie, 2009]:

PUP =
1

2
(P − FVz), (3.5)

where F is the obliquity filter:

F (ω, kz) =
ρω

kz
and kz =

√(
ω

Vw

)2

− k2
x, (3.6)

where kz is the vertical wavenumber, ω is the angular frequency, and ρ is the water

density. The inline wavenumber, kx, is usually sampled by receivers every 12.5 m along

the seismic streamer. Figure 3.5 shows an example of a normalized obliquity filter and an

FD-modeled shot gather from the Marmousi model in the frequency-wavenumber (FK)
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amplitude domain. The obliquity filter in Figure 3.5 goes to infinity as we approach

kz = 0, meaning horizontally traveling waves. As a result, we cannot use the obliquity

filter close to kz = 0 and have to mute or extrapolate the filter when we approach this

value. Estimating kz from kx is a problem when we record aliased data. The pressure

data in Figure 3.5 gets aliased as we go beyond the Nyquist frequency and observe wrap-

around. The receiver spacing for this shot gather is 12.5 m. However, if we increase

the receiver spacing or have data with higher frequencies, we observe more aliased data.

Aliased data is a problem because it will cause a wrong scaling with the obliquity filter.

As a result, the pressure and Vz sum does not fully remove the receiver ghost.

Figure 3.5: A normalized obliquity filter (left) and an example of clean Vz data in the

FK amplitude domain (right). The black stippled line indicate when kz = 0 [de Jonge

et al., 2022c]

A problem with Vz data is the strong noise measured during acquisition [Carlson et al.,

2007; Tenghamn and Dhelie, 2009]. The Vz noise is mainly the result of longitudinal,

transversal, or torsional streamer vibrations [Hlebnikov et al., 2021]. This Vz noise has

a low frequency, primarily below 30 Hz. Figure 3.6a shows an example of real Vz noise.

A seismic attenuation gain is used on this shot. Therefore, it appears that the Vz noise

increase with depth, which it does not. The Vz data is often unusable for frequencies

below ∼20 Hz [Mellier and Tellier, 2018; Peng et al., 2014; Poole and Cooper, 2018].

Therefore, we often rely on P-only deghosting for the low frequencies. However, we

compute the P-Vz sum for the high frequencies. Figure 3.6b shows an example of Vz data

with a low-cut filter. However, some methods still use pressure and Vz data on the low

frequencies but avoid contamination of Vz noise. Poole and Cooper [2018] use a multi-
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component inversion based receiver deghosting in the τ − p domain. Telling and Grion

[2022] is another example that uses inversion-based receiver deghosting with a hybrid

operator in frequency and space. Both of these and most multi-component deghosting

methods use weights to reduce the influence of Vz data on the low frequencies.

Figure 3.6: An example of Vz noise on a real shot gather (a) and the same shot gather

with a low-cut (20 Hz) filter (b) [de Jonge et al., 2022c].
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Migration and demigration

4.1 Migration

Seismic migration aims to create an image of the subsurface reflectors from a seismic

record. It can also be thought of as geometrically relocating recorded seismic events from

where they originated in the subsurface [Santos et al., 2000a]. Migration is frequently

used as an imaging technique and has been used for decades [Iversen et al., 2012]. Seis-

mic migration can be divided into time migration and depth migration. Time migration

creates an image in the time domain, while depth migration creates an image in the

depth domain. Both are frequently used; however, most research is devoted to depth

migration. Both time and depth migration requires a macro-velocity of the subsurface

[Santos et al., 2000a]. Time migration has two advantages, it is a faster process, and

the problem of estimating a velocity model for time migration is, in general, well-posed

[Iversen et al., 2012]. However, pre-stack depth migration (PSDM) is the most accurate

imaging method. Therefore, when the velocity model is complex, PSDM is usually the

method of choice [Etgen and Kumar, 2012].

Migration can also be separated into pre-stack and post-stack migration. As the name

suggests, post-stack migration is done after the stack, while pre-stack migration is done

before the stack. Post-stack migration is much faster than pre-stack migration. However,

pre-stack migration images are more accurate than post-stack migration images when

we have a complex model with dips and lateral velocity variations. Therefore, pre-stack

migration is usually preferred [Lines et al., 1994].

Kirchhoff PSDM is perhaps the most common migration method used today. This

method is applied to data in the constant offset domain, the domain with source and
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receiver pairs of a constant offset along a sail line. True-amplitude Kirchhoff constant

offset migration integral for any migration domain point (x, z) can be represented by

[Bleistein, 1987; Santos et al., 2000b]:

IM(x, z) = − 1

2π

∫∫
d2ξWM(ξ, x, z)

∂D(ξ, t)

∂t
|t=τ(ξ,x,z), (4.1)

where IM(x, z) is the migrated data, WM(ξ, x, z) is the true-amplitude migration weight

function, andD(ξ, t) is a trace in the data domain for a given surface location ξ = (ξx, ξy).

We integrate over the two-way traveltime surface τ(ξ, x, z). The two-way traveltime is

calculated with ray tracing from constant offset sources S(ξ) and receivers R(ξ) down to

a fixed migration domain point (x, z). Figure 4.1 illustrates the migration of a constant

traveltime in the time domain to a diffraction point in the depth domain. Equation

4.1 is named true-amplitude because the AVO and AVA analysis can be done after

the migration. The migration preserves the true-amplitude using the migration weight

function, WM , which varies along the traveltime curve [Santos et al., 2000a].

Figure 4.1: Illustration showing Kirchhoff migration and Kirchhoff demigration [de Jonge

et al., 2022a]
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4.2 Demigration

Seismic demigration is the reverse process of seismic migration. Therefore, true-

amplitude Kirchhoff demigration involves a weighted mapping process from the depth-

migrated image to the seismic data as shown in Figure 4.1. Consequently, the aim is to

return to the un-migrated original common-offset section. The true-amplitude Kirchhoff

constant offset demigration integral for any data domain point is (ξ, t) is [Santos et al.,

2000a; Tygel et al., 1996]:

P (ξ, t) =
1

2π

∫∫
d2xWD(x, ξ, t)

∂IM(x, z)

∂z
|z=ζ(x,ξ,t), (4.2)

where P (ξ, t) is the demigrated data, IM(x, z) is the migrated data, WD(x, ξ, t) is the

true-amplitude data weight function, and ζ(x, ξ, t) is the isochron shown in Figure 4.1.

The isochron surface, ζ(x, ξ, t), is calculated using ray tracing from a source-receiver

pair to points with a constant time t. Equation 4.2 integrates over the isochron surface

using a weighting function to preserve the true-amplitude.

Kirchhoff demigration and Kirchhoff modeling are closely related. The main difference is

that Kirchhoff modeling uses a constructed model of layers (often based on the physical

earth) with elastic parameters. However, Kirchhoff demigration uses a migrated image

as the model.

Just like Kirchhoff migration, Kirchhoff demigration also requires a macro-velocity

model. Demigration can use the same or another velocity model as used for migra-

tion. It is possible to demigrate a time-migrated image rather than a depth-migrated

image. It is also possible to do demigration pre-stack or post-stack.

Kirchhoff demigration is useful in seismic interpretation, where it is beneficial to know

what region on a reflector contributes to an observed primary reflection [Santos et al.,

2000a]. Demigration is essential in my two papers about deghosting because I use dem-

igration to create training data for the convolutional neural network. Demigration is an

easy way of creating realistic training data that contain complex features similar to real

data. Realistic training data is an advantage when training a neural network.
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Chapter 5

Machine learning and artificial

neural networks

5.1 Machine learning

Machine learning is a sub-field of artificial intelligence and covers multiple methods.

These methods learn programs from data [Domingos, 2012]. In some cases, this is an

attractive approach compared to ”traditional” methods, where one manually has to

construct the programs. Machine learning has spread rapidly in computer science, geo-

science, and other fields in the last decade. Machine learning can be categorized into

supervised, unsupervised, and reinforced learning. Reinforced learning tries to maxi-

mize a reward by taking action in an environment. Chess AI is an example of reinforced

learning. Unsupervised learning aims to find hidden structures in a dataset. Super-

vised learning aims to build a mathematical model based on training data containing

the inputs and desired outputs. From now on, I will focus on supervised learning.

5.1.1 Supervised learning

Supervised learning methods need training data which is the input and output of the al-

gorithm. The input is sometimes referred to as the feature, and the output is called the

label. Supervised learning aims to find a function through iterative optimization of an

objective function that maps the feature vectors (inputs) to labels (outputs) based on

examples. After the function is found, it can map new examples.

Classification, active learning, regression, and structured output are popular types of
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supervised learning. Classification algorithms are used when the output label is re-

stricted to a few values. Active learning can interactively ask a user to provide labels

for new data. Regression algorithms are used when the output can have any numerical

value within a range. In this thesis, I work with structured output, which involves any

task where the output is a vector or matrix with important relationships between the

different elements [Goodfellow et al., 2016].

The fundamental goal of supervised learning is to generalize beyond the examples in

the training dataset [Domingos, 2012]. Over-fitting is a common mistake in machine

learning, where the success rate on training data creates an illusion of a successful map-

ping function. However, when the mapping function is introduced to unseen data, it can

be as bad as random guessing. A validation dataset is often used to avoid over-fitting and

to tune parameters. However, it is not used during training. The data is often divided

into three parts, training data, validation data, and test data. Test data, sometimes

called prediction data, is kept separate until the very end and is used as an unbiased

evaluation of the mapping functions.

Acquiring good training data is essential if we want to generalize. A lousy algorithm

with lots and good training data beats a clever algorithm with limited and flawed train-

ing data [Domingos, 2012]. However, time and resources limit how much training data

we can use. In addition, methods require different computation times to learn from the

same training data. Therefore, we should choose a machine learning method and training

data based on the problem we want to solve.

5.2 Artificial neural networks

Deep learning and artificial neural networks are sub-fields of Machine Learning. The goal

of a neural network is to estimate some unknown function f̂ such that we can map an

input x to an output y. Feedforward networks are the most common types of artificial

neural networks used today. A feedforward neural network is defined as y = f(x;θ) and

learns the parameters θ that results in the best approximation of f̂ [Goodfellow et al.,

2016]. It is called feedforward because information flows from the input x, through the

function f , to the output y. Feedforward networks are important and widely used across

multiple disciplines.

Neural networks consists of many functions f(x) = f (n)(f (n−1)...(f (2)(f (1)(x)))...), where

each function is referred to as a layer. The network’s last layer is called the output layer,



5.2 Artificial neural networks 27

and the layers between the input and output layers are called hidden layers. The number

of hidden layers determines how ”deep” the network is, and the name ”deep learning”

stems from this terminology. During training we want f(x) to match f̂(x). Training

data provides us with both inputs x and outputs ŷ ≈ f̂(x). Note that ŷ is the train-

ing data, while y is the output of the network. The learning algorithm must decide how

to use each layer in the network to produce the desired outputs. Each layer is typically

vector- or matrix-valued, and each layer’s dimension determines the layers’ width. We

can think of each value in a layer as a unit that works in parallel with other units simi-

lar to neurons in a human brain.

Neural networks can obtain a non-linear learning algorithm which is an advantage for

non-linear problems. The strategy of deep learning is to learn a non-linear transforma-

tion ϕ to transform the input x to a transformed input ϕ(x). The idea behind neural

networks is that a simple feature can be learned from the data with one transformation.

Complex features can be learned by combining many simple (non-linear) transformations.

I use an example network with a simple structure to explain each part of a feedfor-

ward neural network. The network contains three layers, with two units in the first two

layers and one in the output layer. Figure 5.1a shows an illustration of this network.

In this network, all the units between two consecutive layers are connected, which is

called a dense neural network. Figure 5.1b shows the computations that occur from two

units in the input layer to one unit in the second layer. Each feature is multiplied by

a corresponding weight. Afterward, we take the sum of each product and feed it into a

non-linear activation function. The output from the activation function is the input to

a unit in the next layer. We can express the input to the hidden units as

g = h(W Tx+ b), (5.1)

where W are weights (but only for a single layer in contrast to θ), h(·) is the activation
function, and b is the bias. The bias is added to the product of features and weights.

We use a bias to shift the activation function. We call the forward propagation the

information flowing from the input x, through the hidden units and producing y. The

output of this network is evaluated with a loss or cost function. Afterward, the loss or

cost function gradient is used to update the weights using an optimization algorithm.

Back-propagation allows the information from the cost function to flow backward through

the network to compute the gradient [Goodfellow et al., 2016]. Each of these steps is

explained in more detail later in this section.
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Figure 5.1: (a) Illustration of a simple dense neural network with three layers (Adopted

from Goodfellow et al. [2016]). (b) Illustration showing the flow of information from two

units in the first layer to one unit in the second layer.

5.2.1 Activation functions

There are many different activation functions. In modern neural networks, the default

recommendation is to use the rectified linear unit (ReLU) [Goodfellow et al., 2016].

ReLU is defined as h(z) = max{0, z}, where z = W Tx + b. Figure 5.2 shows some

of the most used activation functions. The output units often use different activation

functions compared to the hidden units. Examples of output activation functions are the

identity (linear) function for a continuous output or the sigmoid function for a binary

output.
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Figure 5.2: Activation functions that are often used in neural networks.

5.2.2 Loss functions

Depending on the problem, different loss functions are used. For a regression problem,

the most common loss function is the mean squared loss (MSE):

L(f(x;θ), ŷ) =
1

2m

m∑
i=1

(
ŷ(i) − f(x;θ)(i)

)2
. (5.2)

The mean absolute loss (MAE) is also often used:

L(f(x;θ), ŷ) =
1

m

m∑
i=1

∣∣ŷ(i) − f(x;θ)(i)
∣∣. (5.3)
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A more complex cost function, known as the structural similarity index (SSIM), is a

metric that measures the similarity of two images [Wang et al., 2004]. In contrast, MSE

and MAE assume that each pixel is independent.

For a classification problem, the log-loss function is often used:

L(f(x;θ), ŷ) =
1

m

m∑
i=1

(
ŷi log f(x;θ)

(i) + (1− ŷi) log(1− f(x;θ)(i))

)
. (5.4)

Depending on the problem, these and other metrics can give different errors, influencing

the gradient descent.

5.2.3 Gradient descent and backpropagation

The goal during training is to minimize (or maximize, depending on the metric) the loss

by selecting appropriate values for the weights. We update the weights using gradient

descent:

θt+1 = θt − γ∇θL(xn, ŷn), (5.5)

where γ is the learning rate. The gradient descent converges towards a local minimum.

To compute the gradient, we back-propagate the errors through the network. Backprop-

agation is an efficient way to calculate the gradient, which repeatedly uses the chain

rule of calculus. If we use the following function as example: y = f(g(x)) = f(z) and

z = g(x). The chain rule states that

dy

dxi

=
∑
j

dy

dzj

dzj
dxi

. (5.6)

When using backpropagation, we want to estimate the gradient of the weights:

∇θL(xn, ŷn) =

(
∂L(xn, ŷn)

∂w1

, ...,
∂L(xn, ŷn)

∂wk

)
, (5.7)

where k is the number of weights. Figure 5.3 show how back-propagation is used to

update the weights of an example network. In this example, the partial derivatives ∂Lw4

and ∂Lw5 are related to the weights from the last hidden layer to the output layer.

Usually, there are multiple hidden layers with multiple units in each layer, which quickly



5.2 Artificial neural networks 31

equates to many weights that need updating.

Figure 5.3: Illustration of how the chain-rule and back-propagation is used to update

weights.

5.2.4 Optimization algorithms

Optimization algorithms have the goal of finding the weights θ of a neural network that

reduces a loss function L(D), where D is a dataset containing training data [Goodfellow

et al., 2016]. Neural network optimization algorithms differ from traditional optimiza-

tion algorithms mainly because when training neural networks, the goal is not necessarily

to find the minimum of a loss function but to reduce the loss function in the hope that

it will improve the network performance on a test dataset. However, in traditional op-

timization algorithms, the main goal is to find the minimum of a loss function. Neural

network optimization algorithms do not usually stop based on a loss function criterion

on the training dataset but on a validation dataset.

Computing the gradient of the loss for every training example ∇θL(xn, ŷn) can be ex-

pensive. Therefore, one usually takes the average loss to batches of random examples

before the gradient is calculated. As a result, the approximate (noisy) gradient is cal-

culated quickly. Small batches can offer regularization effects, perhaps because of the

noise they bring to the calculation of the gradient.

The most basic optimization algorithm is the gradient descent method in Equation 5.5.

However, multiple other optimization algorithms are better behaved and can accelerate

the training process. However, the most used optimization algorithm for neural net-
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works is probably Stochastic Gradient Descent (SGD) and its variants. In contrast to

Gradient Descent, SGD uses mini-batches to compute the average gradient:

∇θL =
l∑

i=1

∇θL(xi, ŷi), (5.8)

where l is the size of the minibatch. The minibatch size is usually small and chosen to

be a power of 2 (because that will make GPUs run more efficiently). One epoch is one

pass through the whole training data N , meaning we estimate the gradient N/l number

of times. It is normal to run multiple epochs before training is complete.

Different adjustments to the SGD algorithm use momentum or adaptive learning rate.

Momentum uses the current gradient and the sum of previous gradients to update param-

eters. Adaptive learning adjusts the learning rate during training. Examples of adaptive

learning algorithms are AdaGrad, RMSProp, and Adam [Goodfellow et al., 2016].

5.3 Convolutional neural network

Convolutional neural networks (CNNs) are commonly used on image data. CNNs use

convolution in place of general matrix multiplication in at least one of their layers [Good-

fellow et al., 2016]. Convolution of two discrete 1D functions x and w is given by:

s(t) = (x ∗ w)(t) =
∞∑

α=−∞

x[α]w[t− α]. (5.9)

In CNNs, x is referred to as the input, w as the kernel, and s sometimes as the feature

map. Equation 5.9 can be expanded to include 2D, 3D, or any higher dimensional

functions. During training, the goal is to learn the weights of the kernels. Figure 5.4

illustrates a 2D convolution of a 3 × 4 input and 2× 2 kernel.
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Figure 5.4: Illustration of a 2D convolution [Goodfellow et al., 2016].

CNNs have sparse interactions between input and output units in contrast to matrix

multiplication, where all input and output units interact. However, the sparsity depends

on the kernel size, and CNNs have sparse interactions because the kernel is smaller than

the input. Figure 5.5 shows a network with sparse interactions and a fully connected

network. Figure 5.5 also shows that units in deeper layers can interact with a large por-

tion of the input in a deep CNN. CNNs assume meaningful features are closely connected

within tens or hundreds of pixels. Therefore, CNNs store fewer parameters, reducing the

memory requirement and computational cost.

Another difference between CNNs and traditional neural networks is that the kernel

weights in a CNN can be used more than once [Goodfellow et al., 2016]. In contrast,

weights in a traditional network are used exactly once when computing the layer’s out-

put. In a CNN, each kernel weight is used at every input position (sometimes excluding

boundary pixels). As a result, we only need to learn one set of parameters for all locations
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rather than one set of parameters at each location. CNNs can, therefore, significantly

reduce the memory requirement.

Figure 5.5: Showing a CNN network with sparse interactions (left) and a dense network

with fully connected units (right). The arrows indicate which units interact with each

other. The h3 unit in the last layer receives information from the gray-colored units.

An attractive feature of CNNs is that layers have a property called equivariance to

translation [Goodfellow et al., 2016]. If the input changes, the output will change in the

same way. For example, if we shift the input image, the output will also be shifted with

the same representation compared to the output of a non-shifted image.

5.3.1 Pooling

Convolutional layers often consist of three stages: the convolution stage, then an activa-

tion function is used, and in the last stage, we use a pooling function [Goodfellow et al.,

2016]. A pooling function reduces the dimensions of the data by computing a summary

statistic of nearby outputs into a single unit. One of the most popular pooling functions

is max pooling, which calculates the maximum output within a rectangular neighbor-

hood. Pooling functions such as the L2 norm, average, or weighted average are also used.

Pooling functions help make the network invariant to small translations of the input. In

other words, if we translate the input by a small amount, the output is similar to the

output of a non-translated input. Invariant to small translations are helpful when we

care more if a feature is present rather than the exact location of a feature. Pooling

function can also make the network more efficient because it reduces the dimension.



5.3 Convolutional neural network 35

5.3.2 U-net

U-net is a CNN structure first introduced by Ronneberger et al. [2015]. The name of

this network is inspired by the u-shaped architecture that uses upsampling and down-

sampling. This structure is similar to an encoder-decoder network typically used for

dimension reduction. However, the U-net use skip connections which copy feature maps

from one layer to another. Skip connections are used to maintain high-resolution fea-

tures from the contracting path to the expansive path. The encoder part of the network

downsamples the number of pixels, while the decoder part upsamples the number of

pixels. Pooling functions can be used for downsampling. In contrast, transposed convo-

lution upsample the number of pixels, which is an operation that goes in the opposite

direction of a convolution [Dumoulin and Visin, 2016]. Figure 5.6 depicts an example

of convolution and transposed convolution. In this example, the convolution of a 4 × 4

input with a 3 × 3 kernel with unitary stride and no padding results in a 2 × 2 output.

Therefore, the transposed convolution could be calculated with a convolution of a 2× 2

input on a 3 × 3 kernel with a unitary stride and 2 × 2 zero padding. The stride is the

distance between two consecutive positions of the kernel. This network has a structured

output, such as an image, which makes it suitable for image segmentation, image pro-

cessing, etc. Figure 5.7 shows the U-net by Ronneberger et al. [2015], which they used

for biomedical segmentation problems. However, the U-net has been used in various dis-

ciplines, including seismic processing [de Jonge et al., 2022b,c; Hlebnikov et al., 2022;

Vrolijk and Blacquière, 2021]. Since the U-net uses downsampling to reduce the image

size, it is more efficient than a CNN with no downsampling. In addition, the downsam-

pling increases the network’s receptive field, which can be an advantage [Lucas et al.,

2018].
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Figure 5.6: Depiction of convolution and transposed convolution.

Figure 5.7: The U-net structure used by Ronneberger et al. [2015].
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Abstract
Deghosting of marine seismic data is an important and challenging step in the seismic
processing flow. We describe a novel approach to train a supervised convolutional
neural network to perform joint source and receiver deghosting of single-component
(hydrophone) data. The training dataset is generated by demigration of stacked depth
migrated images into shot gathers with and without ghosts using the actual source
and receiver locations from a real survey. To create demigrated data with ghosts, we
need an estimate of the depth of the sources and receivers and the reflectivity of the
sea surface. In the training process, we systematically perturbed these parameters
to create variability in the ghost timing and amplitude and show that this makes the
convolutional neural network more robust to variability in source/receiver depth, swells
and sea surface reflectivity. We tested the new method on the Marmousi synthetic data
and real North Sea field data and show that, in some respects, it performs better than
a standard deterministic deghosting method based on least-squares inversion in the τ-p
domain. On the synthetic data, we also demonstrate the robustness of the new method
to variations in swells and sea-surface reflectivity.
KEYWORDS
data processing, modelling, noise, signal processing, seismics

INTRODUCTION
Ghosts are the result of a reflection of the up-going seismic
wavefield at the sea surface on the source and receiver side
as shown in Figure 1 (we do not consider the direct wave in
this research). A consequence of this ghost reflection is that a
reflection from a subsurface structure (black ray in Figure 1a)
will be followed by a source ghost, a receiver ghost and a
combined source–receiver ghost that elongates and distort the
seismic signature. These events interfere constructively and
destructively at different frequencies and create a complex
recorded trace (Figure 1b). As a result, we observe peaks and
notches in the frequency spectrum (Figure 1c). Ghost notches
within the seismic bandwidth are problematic because they

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original
work is properly cited.
© 2022 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists & Engineers.

attenuate some frequencies and reduce the temporal resolu-
tion (Carlson et al., 2007; Poole, 2013). Removing ghosts
improves the bandwidth, resolution and signal-to-noise-ratio
of the seismic data, bringing benefits for seismic inversion
and geological interpretation (Song et al., 2015). Referring to
Figure 1a, a successful source and receiver deghosting would
imply that up-going energy on the source side (green and
blue rays) and down-going energy on the receiver side (red
and green rays) will be removed. In other words, we remove
the source, receiver and source–receiver ghosts (blue, red and
green rays).

The frequency and amplitude of the ghost notches are
dependent on the reflectivity and incidence angle at the water
surface, the depth of the source and receivers and the water

Geophysical Prospecting 2022;1–26. wileyonlinelibrary.com/journal/gpr 1

6.2 Article II 53



2 DE JONGE ET AL.

F IGURE 1 (a) Ray paths from a source (star) to receivers (squares) of the primary (black), source ghost (blue), receiver ghost (red) and
source–receiver ghost (green). (b) The primary and ghosts in the time domain for one receiver. (c) Ghost functions for the source (blue) and receiver
(red). The ghost notch frequency formula (Aytun, 1999) is shown in Figure 1c, where 𝑣1, Δ𝑧, and 𝜃 are the water velocity, source/receiver depth, and
incidence angle, respectively.

velocity. With an increase in source or receiver depth, there is
a decrease in the notch frequency as shown in Figure 1c and
the following equation (Aytun, 1999):

𝑓𝑛 = 𝑛
𝑣1

2 Δ𝑧 cos (𝜃)
, 𝑛 = 0, 1,… , (1)

where 𝑣1, Δ𝑧 and 𝜃 are the water velocity, source/receiver
depth and incidence angle, respectively. The ghost notch at
0 Hz follows this rule when 𝑛 = 0 and is present regardless
of the source and receiver depth. Removing the 0 Hz notch
will recover valuable low-frequency information.

Historically, the conventional seismic acquisition solu-
tion to the deghosting problem was to locate sources and
receivers at relatively shallow depths, typically 5–9 m and
to limit the processing and imaging to the frequencies below
the first notch. The deghosting was done by deterministic
deconvolution (Jovanovich et al., 1983) with the assumption
of vertical ray paths and a best-guess sea surface reflectivity.
Although other approaches, such as slant streamers (Bearnth
& Moore, 1989) or over-under streamers (Hill et al., 2006),
were proposed, shallow sources and receivers dominated
until the recent advent of broadband seismic acquisition.
First, a multi-component streamer approach was proposed

by Carlson et al. (2007), which allowed the streamers to
be towed deeper, enhancing the low frequencies. Later,
variable-depth streamer acquisition and processing solutions
were also proposed (Soubaras & Dowle, 2010; Soubaras
et al., 2012; Rickett et al., 2014).

These new configurations in acquisition help to attenuate
the receiver side ghost and illustrate the benefits of broadband
seismic. However, changes in acquisition geometry alone
cannot solve the deghosting problem. For multi-sensor acqui-
sition, the particle velocity measurements are typically noisy
and unusable for frequencies below 15–20 Hz (Peng et al.,
2014; Mellier & Tellier, 2018; Poole & Cooper, 2018). For
variable-depth acquisition, notch diversity dilutes the impact
of the receiver ghost over a range of frequencies, but & a
processing solution is still necessary to remove the receiver
ghost wavefield. In addition, both acquisition methods sup-
press only the receiver side ghost, leaving the source side
ghost untouched.

Consequently, source and receiver side deghosting of
single-sensor (hydrophone) seismic data is still important.
The simplest single-sensor deghosting method consists of
deterministic deconvolution as mentioned above. In the past
decades, more advanced methods have been introduced.
Aytun (1999) modelled a flat streamer receiver ghost and
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removed the ghost in the fourier-wavenumber (f-k) domain.
Soubaras (2010) used joint deconvolution of migration and
a mirror migration. Amundsen et al. (2013b, 2013a) per-
form a space-domain deghosting based on a Green’s function.
Amundsen and Zhou (2013) presented a source and receiver
deghosting method using the inverse Fourier transform. Fur-
thermore, frequency-slowness domain inversion for deghost-
ing was described by Zhang et al. (2018). In addition, Poole
(2013) and King and Poole (2015) performed a τ-p domain
inversion for deghosting.

Recently, multiple papers using neural networks in seismic
processing have been published. Examples of seismic pro-
cessing applications of a network are interpolation (Greiner
et al., 2019; Fang et al., 2021), denoising (Klochikhina et al.,
2020), seismic interference noise attenuation (Sun et al.,
2019) and debubbling (de Jonge et al., 2021). An advantage of
a neural network is its ability to recognize patterns in the data
and adapt to changing patterns. An example of this is given
by de Jonge et al. (2021), who showed how a generalized net-
work can debubble data when the source signature changes
from shot to shot.

We have found three papers using machine learning for
the application of deghosting. Vrolijk and Blacquiere (2020)
use a neural network for source deghosting in the common
receiver domain. They use conventional receiver deghosting
in the common shot domain to create training data and later
apply a trained network in the common receiver domain for
source deghosting. A drawback with this approach is that the
quality of the conventional receiver deghosting used in the
training could limit its accuracy. Almuteri and Sava (2021)
use a network for deghosting trained on the Marmousi model
and Sigsbee model and tested on the Amoco statics test
model. Their method needed the real data acquisition geome-
try and seafloor bathymetry to create training data. Peng et al.
(2021) demonstrated a new network structure called DUnet
on a deghosting example. However, they use conventional
deghosting on part of the survey to create training data with
and ‘without’ ghosts and apply the trained network to the rest
of the survey.

A challenge with supervised neural networks is acquir-
ing training data that contain complex features similar to the
real data. Some papers show how to use pure synthetic data
to train a network that is later used on real data (Zu et al.,
2020; Qu et al., 2021). Other papers show how to train a
network on synthetic data and use real data for fine-tuning
(Cunha et al., 2020; Li et al., 2020). Another option is to
use conventional deghosting methods to create training data
(Peng et al., 2021). In addition, some papers utilize similar-
ities between training and inference datasets in two different
domains, respectively (Siahkoohi et al., 2018; Greiner et al.,
2019; Vrolijk & Blacquière, 2021).

In this paper, we propose a new approach for source
and receiver deghosting using demigration-based supervised

learning for hydrophone-only seismic data. We use the
acronym DEGDEM (DEGhosting using DEMigration-based
supervised learning) for this method. Training data are mod-
elled by Kirchhoff demigration (Santos et al., 2000a) from
a pre-stack depth migration (PSDM) image creating a set of
ghosted and non-ghosted shot gathers with the real source/
receiver geometry for the training. The demigrated shot gath-
ers are termed the synthesized data (as opposed to synthetic
data) as they are generated from PSDM images from real
recorded data. There are several advantages of DEGDEM.
First, we do not need to build a detailed P-wave velocity and
density model for the synthetic modelling. Instead, a smooth
velocity model is used, which is also used in the migration
and is easily available. Second, for a given velocity model, the
inverse of true-amplitude migration is true-amplitude dem-
igration (Santos et al., 2000b) so the training data will be
similar to the real data.

The proposed method is used on real data from the North
Sea, Tampen area (CGG, 2020). In addition, we tested
DEGDEM on synthetic finite-difference data using the
Marmousi model (Martin et al., 2006). The tests on the
Marmousi model allowed us to quantify the effect of training
approaches to make the network adaptable to changes in
receiver depth and the reflection of the sea surface. It also
allowed us to quantify the sensitivity to residual ghosts in
the PSDM image. We also test DEGDEM on multiples with
ghosts. This test is important because the training data from
the demigration does not contain multiples. Results on both
synthetic and real data are compared with a conventional
deghosting method by Poole (2013).

METHODOLOGY

Training, validation and test data

A challenge with supervised neural networks is to find or
create training data – with and without ghosts – that is sim-
ilar to the real data. Ideally, using real data as training data
would be the preferred option. However, obtaining marine
seismic data without ghosts is not straightforward. One option
is to use an existing hydrophone-only deghosting method to
attenuate the ghost and use data before and after deghost-
ing for training (Peng et al., 2021). The main problem with
this approach is that the network is trained on data that are
not perfectly deghosted. For that reason, it is hard for the
network to achieve better results than conventional deghost-
ing. A second option is to use deghosting from multi-sensor
streamer acquisitions. This would involve training a network
to produce the sum of preasure and vertical velocity data
from hydrophone data and using this network for a nearby
hydrophone-only dataset. Towed streamer accelerometer data
are not always available, and the accelerometer recordings
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F IGURE 2 An illustration of the DEGDEM workflow used in this paper. Several processing steps remove unwanted energy and are followed
by migration to obtain a stacked PSDM image followed by demigration to generate synthesized shot gathers for the training.

are often noisy, particularly at low frequencies. Another
option is to use synthetic data generated in a velocity–density
model using, for example, finite-difference modelling. The
challenge with this approach is building a velocity–density
model, which will lead to finite-difference data mimicking the
spectral content, phase shift and event complexity of the real
data.

The new approach, DEGDEM (DEGhosting using DEMi-
gration-based supervised learning), described in this paper
involves generating synthesized shot gathers by Kirchhoff
demigration (Hubral et al., 1996; Santos et al., 2000a) from
a seismic image. The seismic image is a representation of the
true subsurface reflectivity and is created from seismic data
using Kirchhoff migration. As Kirchhoff migration and dem-
igration can be regarded as inverse processes (Hubral et al.,
1996; Santos et al., 2000b) or adjoint processes (Schuster,
1993), the synthesized seismic data will closely resemble the
recorded seismic data. The demigration approach is described
in more detail in the subsection ‘Kirchhoff demigration’.

The DEGDEM workflow is illustrated in Figure 2. As part
of a standard processing flow, recorded data proceed through
several processing steps including denoise, deblending,
designature, debubbling, deghosting and demultiple. This
creates shot gathers with (ideally) an impulsive wavelet, no
ghosts and no multiples in Figure 2-R4. These data are then
binned, interpolated and regularized into a number of offset

classes, which are Kirchhoff migrated and finally stacked to
create the pre-stack depth migration (PSDM) image. Using
the migration velocity, this PSDM image is demigrated to
create synthesized shot gathers with ghosts (Figure 2-S2)
and without ghosts (Figure 2-S3) using the real source and
receiver positions in the training area. A number of shot
gather pairs (S2–S3) are used in the training process. We
use the terminology training area for the area in the PSDM
image that is used to create synthesized data, later used
as training data. The prediction area is where we apply
the network. We can use identical training and prediction
areas or use a subset of the prediction area as the training
area. Moreover, the network can either be used on the data
from the same acquisition (step R2 in Figure 2) or another
acquisition.

Kirchhoff demigration

Santos et al. (2000a) show how to use Kirchhoff demigra-
tion to compute what we term synthesized seismograms.
True-amplitude Kirchhoff demigration can be regarded as
the inverse process (Hubral et al., 1996; Santos et al.,
2000b) or adjoint process (Schuster, 1993) of true-amplitude
Kirchhoff migration, where it is described as seismic mod-
elling with the Kirchhoff integral. It involves returning
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F IGURE 3 An illustration showing how to create data with
ghosts using Kirchhoff demigration from a PSDM image. The source
and receivers are placed above the sea surface (dotted black line) to
create the ghosts. Water velocity is used above the sea surface.

from a true-amplitude depth migrated section to the origi-
nal pre-migration common offset data in time. Demigration
has particularly suited for machine-learning-based training
because the synthesized data are similar to the original data
going into the migration. We use a PSDM-stacked image,
a smooth velocity model and Kirchhoff demigration to cre-
ate synthesized training data. With Kirchhoff demigration,
we can create synthesized data for any acquisition geometry.
We create the source, receiver and source–receiver ghosts by
placing the source and receiver in a mirror position above
the sea surface as illustrated in Figure 3. Later, we multi-
ply by the sea surface reflectivity to get the correct polarity
and amplitude. A ghosted shot gather, 𝐷𝑖(𝑥𝑗, 𝑡𝑘), is mod-
elled by a linear combination of four ghost-free shot gathers
(𝑃𝑖(𝑥𝑗, 𝑡𝑘), 𝑃 𝑆𝐺

𝑖 (𝑥𝑗, 𝑡𝑘), 𝑃 𝑅𝐺
𝑖 (𝑥𝑗, 𝑡𝑘), 𝑃 𝑆𝑅𝐺

𝑖 (𝑥𝑗, 𝑡𝑘)):

𝐷𝑖
(
𝑥𝑗, 𝑡𝑘

)
= 𝑃𝑖

(
𝑥𝑗, 𝑡𝑘

)
+𝑅𝑃𝑆𝐺

𝑖
(
𝑥𝑗, 𝑡𝑘

)
+𝑅𝑃𝑅𝐺

𝑖
(
𝑥𝑗, 𝑡𝑘

)

+𝑅2𝑃𝑆𝑅𝐺
𝑖

(
𝑥𝑗, 𝑡𝑘

)
, (2)

where P is the dataset using the actual source and receiver
locations, 𝑃𝑆𝐺 is the dataset using the mirror source location,
𝑃𝑅𝐺 is the dataset using the mirror receiver location, 𝑃𝑆𝑅𝐺

is the dataset using the source and receiver mirror locations,
R is the reflectivity of the water surface, 𝑖 is the shot number,
𝑥𝑗 is the offset and 𝑡𝑘 is the time. This means that we cre-
ate four datasets: (1) the ghost-free primary, P, by using the
original source and receiver positions (black ray in Figure 3),
(2) the source ghost, 𝑃𝑆𝐺, by placing a source at the mir-
ror position above the sea surface (red ray in Figure 3), (3)
the receiver ghost, 𝑃𝑅𝐺, by placing a receiver at the mirror
position above the sea surface (green ray in Figure 3) and (4)
the source–receiver ghost, 𝑃𝑆𝑅𝐺 by placing both a receiver
and a source at the mirror positions above the sea surface
(white ray in Figure 3). The reflectivity of the water surface,
R, results in a polarity shift when multiplied with arrivals (2)

and (3). The ghost-free dataset is P, while the dataset with
ghosts is created using Equation (2), which is a linear combi-
nation of all four datasets. As a result, we get synthesized data
with and without ghosts as shown in Figure 4b,c. During the
training, the input to the network is synthesized shot gathers
with ghosts (Figure 5a), and the outputs are synthesized shot
gathers without ghosts (Figure 5b).

Convolutional neural networks

A convolutional neural network (CNN) uses convolutions
instead of general matrix multiplications (Goodfellow et al.,
2016). By doing this, the network has sparse interactions
between the neurons in the network. In particular, the kernel
size determines the number of interactions from one layer to
the next. A CNN is typically used when it is assumed that the
meaningful features are local. As a result, sparse interactions
can save memory and computational cost.

In this paper, we used a CNN structure called a U-net
(Ronneberger et al., 2015). This structure is made up of an
encoder and decoder with skip connections. The encoder
downsamples the number of pixels, and the decoder upsam-
ples the number of pixels. Various pooling functions (max-
imum, average, L2, etc.) can be used to downsample the
number of pixels. In contrast, a transposed convolution can
be used to upsample the number of pixels. Transposed con-
volution is an operation that goes in the opposite direction
of a normal convolution. Dumoulin and Visin (2016) show
several examples of transposed convolution. The U-net is dif-
ferent from an encoder—decoder because it contains skip
connections that copy feature maps from one layer to another.
Since the U-net uses downsampling and consequently reduces
the image size, it is also more efficient than a CNN with
no downsampling. Another benefit of the U-net downsam-
pling is the increased receptive field of the network (Lucas
et al., 2018). In contrast, only the size of the convolutional
kernel determines the receptive field of a CNN with no
downsampling.

The structure of our U-net has also been used in de Jonge
et al. (2021) showing good results. Furthermore, the structure
is shown in Figure 6 and the hyperparameters are shown in
Table 1. In addition, we compare this U-net with the Dunet
presented by Peng et al. (2021). The Dunet has many struc-
tural similarities with the U-net. More information about the
Dunet can be found in Peng et al. (2021). These two net-
works are used for all our tests. That said, the goal of this
paper is not to find the optimal network structure, rather it is
focused on creating training data that can be used to get high-
quality deghosted data. We believe that training data are one
of the most important aspects when using a neural network to
achieve good deghosting results.
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F IGURE 4 Common channel gathers before migration (a), demigration without ghosts (b), and demigration with ghosts (c). Data before
migration are modelled with FD. A zoom is used in all three plots focusing on a single event where arrows highlight the primary (black), source
ghost (red), receiver ghost (green) and source–receiver ghost (white).

F IGURE 5 Demigrated shot gather with
ghosts (a) and without ghosts (b).

RESULTS

This section is divided into two parts: (1) synthetic data,
which focuses on various tests to understand the problems and

advantages of DEGDEM (DEGhosting using DEMigration-
based supervised learning), and (2) real data, which focuses
on one specific example from the Tampen area in the North
Sea.
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F IGURE 6 The U-net structure used in this paper. The numbers represent the number of feature maps at each stage in the network. The
hyperparameters are shown in Table 1.

TABLE 1 Hyperparameters used in the U-net shown in Figure 4
Loss function Mean square error
Optimization Adam (learning rate = 0.0001)
Kernel sizes for convolution 3×3
Kernel size for max pooling 2×2
Kernel size for transposed convolution 2×2
Stride for convolution 1×1
Stride for max pooling 2×2
Stride for transposed convolution 2×2
Activation function ReLU
Batch size 4
Epochs 200

Synthetic data

Evaluating the quality of the deghosting results is often diffi-
cult on real data because we do not know the true ghost-free
data. For that reason, we have conducted a synthetic analysis.
In addition, this synthetic analysis can tell us more about the
advantages and limitations of using DEGDEM. In the syn-
thetic analysis, we used the Marmousi model (Martin et al.,
2006) and acoustic finite-difference (FD) modelling to model
data with and without the ghosts. The DEGDEM workflow
for the synthetic analysis is shown in Figure 7 and is sim-
ilar to the workflow shown in Figure 2. The FD data were
modelled using the Marmousi P-wave velocity and density

(Martin et al., 2006) shown in Figure 8. The source is placed
at 6 m depth and a streamer with hydrophones at 20 m depth.
The receiver and shot increments are 12.5 and 6.25 m, respec-
tively. The offset to the first receiver is 147m.Mirror locations
above the sea surface for the source and receiver were used to
model the ghosts as described in the section ‘Methodology –
Kirchhoff demigration’. As a result, we have two datasets –
one with ghosts and one without.

A smooth velocity model (Figure 9a) was used for the travel
time calculations in Kirchhoff demigration. This velocity
model was a smooth version of theMarmousi model shown in
Figure 8.WeKirchhoff migrated and stacked the FDmodelled
data without ghosts to generate a pre-stack depth migration
(PSDM) image shown in Figure 9b. Both the smooth velocity
model and the PSDM image were used to create synthesized
data with Kirchhoff demigration. The mirror source and
mirror receiver technique described in the ‘Methodology –
Kirchhoff demigration’ subsection was used to create data
with and without ghosts. As a result, wemodelled shot gathers
with and without ghosts that were used for training the neural
network.

In this subsection, we describe several tests to identify some
advantages and disadvantages of DEGDEM. The first test,
entitled baseline test (first row in Table 2), relates to a neural
network trained and tested on ghosts that were modelled using
the correct source locations, receiver locations and sea surface
reflection coefficient. The second and third tests, entitled the
swell wave test and the reflection coefficient test (second and
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F IGURE 7 An illustration of the DEGDEM workflow used for the synthetic tests. First synthetic data with and without ghosts are modelled
using FD and the Marmousi model. The ghost-free data are migrated to obtain the PSDM image. The PSDM image together with Kirchhoff
demigration is used to generate synthesized shot gathers with and without ghosts.

F IGURE 8 The Marmousi models for P-wave velocity (a) and density (b) are used to generate synthetic data.

third rows in Table 2), examine the sensitivity of the network
used in the first test to swell waves and changes in the sea
surface reflection coefficient. In both the second and third
tests, we also re-train the U-net and DUnet using different
training data attempting to make the network more robust to
swell waves and changes in sea surface reflectivity. The fourth

test, entitled residual ghost (fourth row in Table 2), uses a
PSDM image containing residual ghost to generate training
data for DEGDEM. This test investigates how sensitive the
network is to residual ghost in the PSDM image. The fifth
test, entitled multiple test (fifth row in Table 2), investi-
gates if the network can attenuate ghosts of surface-related
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F IGURE 9 Smooth P-wave velocity model (a) and PSDM image (b). Both of these models are used to create synthesized data with Kirchhoff
demigration.

TABLE 2 NRMS error (common channel domain, channel 15) when using conventional deghosting, standard DEGDEM (U-net or DUnet) for
deghosting, or generalized DEGDEM (U-net or DUnet) for deghosting. Each result is separated into the various tests in this subsection

Conventional
Standard DEGDEM
(U-net)

Standard DEGDEM
(DUnet)

Generalized
DEGDEM (U-net)

Generalized
DEGDEM (DUnet)

Baseline test 0.0030 0.0032 0.0033 N.A. N.A.
Swell wave test 0.0171 0.0044 0.0064 0.0039 0.0078
Reflection

coefficient test
0.0058 0.0039 0.0050 0.0031 0.0028

Residual ghost 0.0171 0.0070 0.0081 N.A. N.A.
Multiple test 0.0040 0.0042 0.0040 N.A. N.A.

multiples. This test is important because the synthesized
data do not contain surface multiples, in contrast to real data.
A summary of all results from this subsection is shown in
Figure 10 and Table 2, while more detailed descriptions of
the tests are given in their respective subsections. Here, a
generalized DEGDEM represents a network that has been
trained to be more robust to swell waves or changes in sea
surface reflection coefficient.

To quality control our results, we use common channel
gathers (channel 15) before deghosting, after deghosting, and
the difference. We evaluate a normalized root mean square
(NRMS) error measurement in the common channel domain
given by the equation:

𝑒NRMS = 𝑒RMS

𝑦max − 𝑦min
= 1

𝑦max − 𝑦min

√∑𝑛
𝑖 = 1 (�̂�𝑖 − 𝑦𝑖)2

𝑛
,
(3)

where 𝑦𝑖 is the data without ghosts, �̂�𝑖 is the deghosted data
and 𝑛 is the number of samples.

Baseline test
In this test, we trained a network using the DEGDEM work-
flow shown in Figure 7 using the correct source locations,
receiver locations and sea surface reflection coefficient. We
used 2340 pairs of synthesized training shot gathers (with and
without ghosts) to train the CNN. Afterwards, we applied the
CNN on 2340 of FD shot gathers (with ghosts) within the
training area and 321 FD shot gathers outside the training area.
In the next subsections, all synthetic tests use the same train-
ing area and prediction area as in the baseline test. We ran 200
epochs in this test and ensuing tests. We compared the neu-
ral network result with the conventional deghosting method
of Poole (2013). Figure 11 shows the results using conven-
tional deghosting and DEGDEM (U-net) deghosting within
the training area. DEGDEM (U-net), DEGDEM (DUnet) and
conventional deghosting NRMS errors were 0.0032, 0.0033
and 0.0030, respectively. The NRMS error was calculated
using all samples from 0.5–3 s and 2002–16,607 m. All syn-
thetic tests in the following subsections use the same window

6.2 Article II 61



10 DE JONGE ET AL.

F IGURE 1 0 Bar graph showing NRMS error (common channel domain, channel 15) when using conventional deghosting, a standard
DEGDEM (U-net or DUnet) for deghosting or a generalized DEGDEM (U-net or DUnet) for deghosting. Each result is separated into the various
tests in this subsection.

to calculate the NRMS error. The amplitude spectrum in this
test and all ensuing synthetic tests were calculated using the
same window as the NRMS error. Figure 11 and the NRMS
errors demonstrate that DEGDEM and conventional deghost-
ing both have low error. Referring to the amplitude spectra,
in general the conventional deghosting worked better than
DEGDEM at the ghost peak frequencies, and DEGDEM per-
formed better at the ghost notches (except for the last notch at
approximately 75 Hz). DEGDEM may have performed better
than conventional deghosting in the ghost notches because the
training data were similar to the prediction data, which is one
of the advantages when using demigration to create training
data. In other words, it was already familiar with the ‘spiky’
nature of the prediction input. The conventional deghosting,
on the other hand, was more general and did not have a
bias towards any wavelet or geology. We also observe that
DEGDEM performed less well in the area of conflicting dips
in the centre of the section compared to the DEGDEM in areas
of less complex geology. In this perfect scenario, the conven-
tional method performed better than DEGDEM in general.
DEGDEM (U-net) was used on FD data outside the training
area to demonstrate that the network works on data with sim-
ilar geology. The results are shown in Figure 12, where the
training area is to the right of the dashed line. TheNRMS error
is shown for each shot and does not change significantly when
DEGDEM is applied to data outside the training area. As an
additional test, we exclude the central part of the Marmousi
model as training data (shown in Figure 13). Data outside the
dashed lines were used as training data. The central part of the
model contained more complex geology with steeply dipping
layers and faults. The amount of training data was still 2340
shot gather pairs by including the test data from the previous
test (shown in Figure 12). The results are shown in Figure 13,

where the NRMS error does not change significantly in the
central part of the model.

Sensitivity and generalization of streamer depth
and sea surface reflection coefficient
Ocean waves, bad weather and the imperfect positioning of
receivers are a natural part of a marine seismic acquisi-
tion. The sea surface reflection coefficient may also change
from shot to shot or with offset and is not always known.
Consequently, a ghost model based on nominal reflectivity
coefficients and receiver depths may be inaccurate. We will
investigate how robust the neural network is to these changes.
A key feature of neural networks is their adaptability. Con-
sequently, it may be possible to train a neural network on
many different streamer depths and sea surface reflection
coefficients. By using this approach, it could be possible to
generalize the network. A generalized network would be a big
advantage and easy to use on real data. We use the network
from the ‘Baseline test’ subsection and train new networks
that have been generalized on either streamer depth or sea
surface reflection coefficient.

We start by focusing on streamer depth. In our test, we
simulated a swell wave that changes the height of the water
column above the receivers as shown in Figure 14. For sim-
plification, we model the swell wave as a sinusoid wave:

𝐴 (𝑥) = 𝐵sin (𝑘 (𝑥 − 𝜙)) , (4)

where 𝐵 is the amplitude, 𝑘 is the wavenumber, 𝑥 is the off-
set and 𝜙 is the phase shift. The swell wave parameters are
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F IGURE 1 1 Common channel gather (channel 15) displays for (a) data with ghosts; (b) data without ghosts; (c) conventional deghosting;
(d) DEGDEM deghosting; (e) residual noise left after conventional deghosting (difference between no ghosts and conventional deghosting);
(f) residual noise left after DEGDEM deghosting; (g) amplitude spectrum of data with ghosts (black solid line), without ghosts (red dashed line),
conventional deghosting (green dashed line) and DEGDEM deghosting (blue dashed line).

6.2 Article II 63



12 DE JONGE ET AL.

F IGURE 1 2 Common channel gathers (receiver 15) before deghosting (a), conventional deghosting (g), DEGDEM deghosting (c),
conventional deghosting error (d), DEGDEM deghosting error (e) and a zoom of the DEGDEM deghosting (f). The area shown in subfigures a, b, c,
d and e is indicated by a blue rectangle in subfigure f. Right of the dashed line is used as a training area. The red and green lines show the NRMS
error using DEGDEM and conventional deghosting, respectively.

shown in Figure 14. These parameters are chosen to be real-
istic to swell waves during acquisition. Ideally, we would do
FD modelling with a ‘wavy’ curved upper surface as shown
in Figure 14. However, it is difficult, in practice, to do FD
modelling with a curved surface to create a ghost model
that changes as a function of offset. Instead, we approximate
the variability in the ghost model by changing the vertical
receiver ghost positions as shown in Figure 14. We follow a
similar workflow to create synthesized data from the section
‘Methodology – Kirchhoff demigration’. However, the verti-
cal positions of receivers above the still-water line change as
a function of offset and also change for each shot, as shown
in Figures 14 and 15. The swell wave changes for each shot
by using a phase shift from Equation (3) that depends on the
shot increment and relative wave speed. We assume that the
source ghost does not change during this test and acquisi-
tion in general. The air-gun array is often positioned close to
the sea surface and follows the vertical motion of the waves.
This scenario generates a receiver ghost that changes with
offset and from shot to shot, as shown in Figure 15c,d. The
swell wave moves slowly compared to the seismic waves so
we can assume that the sea surface does not change within

a shot record. We assume furthermore that the tilt of the sea
surface is negligible because of the small ratio between the
wave height and wavelength. Modelling a ghost this way is a
simplification of a real marine environment. A more realistic
dynamic sea surface could be modelled using the approach
by Blacquière and Sertlek (2019). However, this test should
be realistic enough to help understand how sensitive the
network is to changes in the ghost model. The effect of these
swell waves on the receiver ghost is visible on a shot gather
and a common channel gather shown in Figure 15. We first
test the network trained on a constant streamer depth of 20 m
(from the ‘Baseline test’ subsection) and the conventional
deghosting method by Poole (2013) using parameters con-
sistent with a constant streamer depth of 20 m. The NRMS
error using the DEGDEM (U-net) deghosting, DEGDEM
(DUnet) deghosting and conventional deghosting is 0.0044,
0.0064, and 0.0171, respectively. Figure 16 shows the DEG-
DEM (U-net) and conventional deghosting results and errors
using both methods. Both DEGDEM and the conventional
deghosting leave residual ghost that appears as a ‘grainy’
pattern in Figure 16, because of the cyclical period of the
swells. To make DEGDEM more robust to errors in streamer

64 Papers



DEGHOSTING BY DEMIGRATION-BASED SUPERVISED 13

F IGURE 1 3 Common channel gathers (receiver 15) before deghosting (a), conventional deghosting (b), DEGDEM deghosting (c), the
conventional deghosting error (d), the DEGDEM deghosting error (e) and a zoom out of the DEGDEM deghosting (f). The area shown in subfigures
a, b, c, d and e is indicated by a blue rectangle in subfigure f. The area between the dashed lines is not used as training data. The red, green and blue
lines show the NRMS error using DEGDEM, conventional deghosting and the previous DEGDEM network (shown in Figure 12), respectively.

depth, we trained a U-net and a DUnet on flat streamers
with depths ranging from 18 to 22 m with a 0.5-m incre-
ment. The NRMS error using the U-net and DUnet are
0.0039 and 0.0078, respectively. TheU-net shows an improve-
ment from training only on one streamer depth. However,
the DUnet showed a worse result, which indicated that this
structure might not be ideal when making a robust network
to swell waves. There are endless opportunities to create
training data with streamer depth perturbations. In this exam-
ple, we show the simplest perturbation. However, a constant
streamer depth perturbation is sufficient to make the U-net
more robust to changes in streamer depth due to swells. The
results also show that both networks are less sensitive to
changes in streamer depth compared to conventional deghost-
ing. Note that it is possible to incorporate a variable sea
surface datum in conventional deghosting (see, e.g., King &
Poole, 2015). However, this could complicate the workflow
as it requires the computation of wave heights prior to the
deghosting.

Second, a simple test was done to test the sensitivity and
generalization of the sea surface reflection coefficient. The
real reflection coefficient will change with incidence angle

and frequency and is dependent on the sea state (Orji et al.,
2013; Asgedom et al., 2017), which makes it complicated to
estimate. We simplify by assuming that the reflection coeffi-
cient is constant.We generate FD data with a reflection coeffi-
cient of−0.92 for both the source and receiver ghosts. We test
the baseline networks that are trained on data with a reflection
coefficient of−1 from the subsection ‘Baseline test’.We com-
pare these networks with the conventional deghosting method
by Poole (2013) using parameters consistent with a reflec-
tion coefficient of −1. The NRMS error using DEGDEM
(U-net), DEGDEM (DUnet) and conventional deghosting is
0.0039, 0.0050, and 0.0058, respectively. Moreover, a gener-
alized U-net and DUnet were trained on reflection coefficients
ranging from −0.90 to −1 with an increment of 0.02. The
NRMS error using the U-net and DUnet was 0.0031 and
0.0028, respectively. These results indicate that the networks
were less sensitive than the conventional method to the change
in sea surface reflection coefficient. In addition, the result
also showed a significant improvement if the networks were
generalized.

Water velocity can also change during the acquisition
and deviate from the estimated water velocity, consequently
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F IGURE 1 4 Illustration showing how receiver depth changes with offset and between shots because of swell waves. It also demonstrates how
we create the receiver ghost by changing the ghost receiver height (HW) above the still-water line.

F IGURE 1 5 (a) The swell wave amplitude above the still-water line as a function of receiver number. (b) The swell wave amplitude above the
still-water line as a function of shot number. (c) Shot gather with source and receiver ghosts. (d) Common channel gather with source and receiver
ghosts. (e) and (f) show how the data would look like without the swell wave in a shot gather and a common channel gather, respectively. The top
black and white events are the primary and source ghost, respectively. The following white and black events are the receiver and source–receiver
ghosts, respectively.
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changing the time lag of the ghosts. However, it is likely that
a generalized DEGDEM would be able to account for these
changes equally well as changes in timing caused by other
factors (such as swells).

Sensitivity to residual ghost in the reflectivity
model
One potential limitation of the workflow shown in Figure 2
is the presence of a residual ghost in the data before migra-
tion. The residual ghost is caused by imperfect deghosting
and will be included in the PSDM image after migration and,
consequently, the synthesized demigrated training data. To
investigate this, we apply a deliberately imperfect deghost-
ing on the synthetic data, which will lead to residual ghosts
in the PSDM image. The first part of the workflow shown in
Figure 7 is changed to the workflow shown in Figure 17.

We use synthetic data with swell waves from the previous
subsection ‘Sensitivity and generalization to streamer depth
and sea surface reflection coefficient’. We deghosted the data
using conventional deghosting assuming 20m streamer depth,
which led to imperfect deghosting and residual ghosts as
shown in Figure 16c. This deghosted data ended up in the
PSDM image, and we created synthesized data using Kirch-
hoff demigration with a 20-m streamer depth. These data
were used to train the U-net and DUnet that were applied
to data with swell waves. The result using the DEGDEM
(U-net) deghosting and DEGDEM (DUnet) deghosting gave
an NRMS error of 0.0070 and 0.0081, respectively. The error
using conventional deghosting and DEGDEM (U-net) are
shown in Figure 18. As shown in the previous subsection,
the NRMS error using conventional deghosting and a U-net
trained on data from a clean reflectivity model (but 20 m con-
stant streamer depth) were 0.0171 and 0.0044 (Figure 16),
respectively. These results show an improvement from the
conventional method. However, these results also show that
the networks are sensitive to residual ghost in the PSDM
image.

Surface-related multiples in the test data
Up to this point, we have shown examples of primary reflec-
tions (which correspond to only one reflection from each
reflector or diffractor in the subsurface) containing ghosts.
However, real data also contains multiple reflections (which
experience more than one reflection from the subsurface)
which also have ghosts. One potential limitation of the

DEGDEMworkflow (Figure 2) is that Kirchhoff demigration
does not consider all waves which have ghosts, such as con-
verted waves or multiples. Surface and internal multiples are
problematic because they interfere with primary reflections.
As a result, suppression of multiples is an essential prereq-
uisite for accurate seismic imaging and interpretation. We
will test how the network reacts when exposed to multiples
in the synthetic FD data. One option to model all surface-
related multiples is to use a free surface boundary condition
in the FD modelling. However, with this option, we cannot
generate data with multiples and without ghosts, which we
need for our ground truth. In addition, if we use a free sur-
face boundary condition, we cannot remove themultiples after
deghosting to identify any primary damage caused by the
deghosting. Therefore, we avoid a free surface boundary con-
dition and generate the first-order surface-related multiples
by first placing the source 900 m (twice the water depth of
450 m) above its original position and create synthetic FD
data. Similarly, we place the receivers 900 m above their orig-
inal position and create synthetic FD data. These two datasets
are combined and multiplied by the sea surface reflection
coefficient (−1) and the zero-offset reflection coefficient at
the water bottom to create a close approximation to first-
order multiples. Most of the multiple energy is caused by the
first-order multiple. The difference is small between our mul-
tiple models and the multiples we get using a free surface
boundary condition in the FD modelling. The data with and
without multiples included are shown in Figure 19a,b with
blue arrows highlighting surface-relatedmultiples.We use the
same networks as in the subsection ‘Baseline test’ and apply
them to this data with surface-related multiples. Figure 19
shows the results using DEGDEM (U-net) and conventional
deghosting. After deghosting, we remove the surface-related
multiples to investigate if there is any primary damage or
imperfect deghosting caused by the multiples (Figure 19e,f).
Visually, we observe the source, receiver and source–receiver
ghosts removed from the data using either DEGDEM or
conventional deghosting. In addition, the primaries seem to
be preserved at locations where primary and multiple over-
laps. However, the blue arrow at 2 s in Figure 19g,h shows
some error in deghosting. The NRMS error using DEGDEM
(U-net), DEGDEM (DUnet) and conventional deghosting
before demultiple is 0.0042, 0.0040 and 0.0040, respectively.
As in the baseline test, the conventional deghost worked better
than DEGDEM at the ghost peak frequencies, and DEG-
DEM performed better at the ghost notches. This simple test
demonstrates that the networks can remove ghosts of multi-
ples. A combination of source- and receiver-side multiples
along with other multiple generators would complicate this
analysis.
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F IGURE 1 6 (a) Conventional deghosting, (b) DEGDEM deghosting, (c) Conventional deghosting zoom (shown as a red rectangle in subfigure
a), (d) DEGDEM deghosting zoom, (e) conventional deghosting error (NRMS = 0.0171) and (f) DEGDEM deghosting error (NRMS = 0.0044).

Real data: PL988 Tampen

The real data used in this paper are from a survey located in
the North Sea, Tampen area (PL988) off the western coast
of Norway. CGG acquired these data in 2015 and 2016.
The survey used a variable streamer depth configuration

(Soubaras & Dowle, 2010; Soubaras et al., 2012) with dual-
level source arrays (Siliqi et al., 2013) as shown in Figure 20.
In total, the survey has 12 streamers and two sources. We have
data before deghosting, a PSDM image and a smooth veloc-
ity model. Using the survey geometry for all cables and both
sources, we generated a trained CNN model using DEGDEM
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F IGURE 1 7 Workflow used to test the sensitivity to residual ghost in the PSDM image.

F IGURE 1 8 (a) Conventional deghosting error (NRMS = 0.0171) and (b) DEGDEM deghosting error (NRMS = 0.0070).

and applied the network on the real data before deghosting
and compared it with conventional deghosting (Poole, 2013).
We assumed a single level source at 6 m for conventional
deghosting and DEGDEM for simplicity purposes. Due to
this assumption, both deghosting results will be suboptimal.
The Discussion section will highlight that the resolution of
some of these features is significantly improved by using
conventional deghosting with a dual-level source.

We show our results in common channel gathers. This
domain was chosen because we have variable streamer depth
data and in this domain, we can clearly observe the ghost
notches in the amplitude spectrum. In addition, the time delay
from the primary to the ghosts is approximately the same.
We show our results in channel 15 and channel 50 for source
1 and streamer 6 (Figure 20). The offset, depth and notch
frequency for channel 15 are approximately 324 m, 10.5 m
and 71 Hz, respectively. For channel 50, the offset, depth
and notch frequency are approximately 762 m, 18.3 m and
41 Hz, respectively. We show only results using the U-net.

The DUnet was also used but showed similar results to the
U-net and is consequently not shown. The results from chan-
nel 15 are shown in Figure 21. The amplitude spectrum in
Figure 21g (calculated from 0.3 to 1.5 s) shows that DEG-
DEM deghosting has more energy around the ghost notch.
The results (Figure 21c,d,e,f) show an increased resolution
using DEGDEM deghosting. In Figure 21d,f, we also see an
event (highlighted by the top-left blue arrow) that has almost
disappeared using conventional deghosting but remains vis-
ible using DEGDEM deghosting. The blue arrows, in
Figure 21d,f, show examples with better-defined reflectors
using DEGDEM deghosting. The results from channel 50 are
shown in Figure 22. The amplitude spectrum in Figure 22g
(calculated from 0.92 to 1.24 s) shows that the DEGDEM
deghosting has more energy around the ghost notches. A
similar observation was made during the inspection of the
synthetic data. Analysis of potential residual ghost energy
is challenging in shallow water areas where multiple rever-
berations cross-cut other arrivals. It will certainly be the
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F IGURE 1 9 Common channel gathers without ghost and with multiples (a), without ghosts and without multiples (b), conventional
deghosting (c), DEGDEM deghosting (d), conventional deghosting with multiples removed (e), DEGDEM deghosting with multiples removed
(f), conventional deghosting error (g), and DEGDEM deghosting error (h). Deghosting is done before removing the multiples.

case that in some areas ghost arrivals will coincide with pri-
mary or multiple arrivals from other reflectors. The green
arrows, in Figure 22a,b, highlight two arrivals with similar
timing to anticipated receiver ghost energy. Figure 22c,d,e,f
shows some arrivals with similar timing after deghosting. This
energy is slightly weaker on the DEGDEM deghosting com-
pared to the conventional deghosting. Figure 23 shows the

results of a shot gather. This domain illustrates that DEGDEM
has removed some linear noise and weak diffraction energy.
As a result, DEGDEM deghosting appears less noisy. How-
ever, given the data used in the DEGDEM training was after
migration and demigration, which is known to contain inher-
ently clean data, this result is not surprising. This linear noise
is dipping in the opposite direction of the primary and is quite
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F IGURE 2 0 (a) Top view of the survey geometry and (b) cross section of streamer 6. Channel 15 and channel 50 are highlighted since we
look at results from these channel gathers.

different from the training data. As a result, the network might
not know how to handle or deghost this noise.

DISCUSSION

Synthetic data

The synthetic tests followed the same workflow as we would
use on real data (excluding some processing steps such as
deblending and designature because we modelled ‘clean’
finite-difference (FD) data without these types of noise). FD
modelling was used to create the pre-stack depth migration
(PSDM) image. Afterwards, we modelled training data with
Kirchhoff demigration using the PSDM image. The network
was then applied to the FD data. This approach avoided creat-
ing training data and prediction data using the samemodelling
approach, which could bias the results.

The ‘baseline test’ demonstrated that the neural network
removed most of the ghosts and recovered amplitude in the
notches (Figure 11). In addition, it also showed that the net-
work can be trained on one part of the data and applied

successfully to another. The conventional deghosting worked
better than DEGDEM (DEGhosting using DEMigration-
based supervised learning) when source/receiver depth and
sea surface reflectivity coefficient are perfectly known. DEG-
DEM may have performed better than conventional deghost-
ing in the ghost notches because the training data were similar
to the prediction data, which is one of the advantages when
using demigration to create training data. In other words, it
was already familiar with the ‘spiky’ nature of the predic-
tion input. The conventional deghosting, on the other hand,
was more general and did not have a bias towards any wavelet
or geology. In addition, DEGDEM performed less well than
the conventional deghosting on conflicting dipping events.
This is believed to be because these conflicting dips were
less well represented in the training data of the convolutional
neural network (CNN). It could also be related to inaccurate
demigration in the complicated areas because the migration
result that leads to the PSDM image is poor in those areas.
The demigration affects the training data in terms of simi-
larity between the training data and prediction data. Another
reason could be related to DEGDEM using the shot gather
domain which might not be ideal for source deghosting.
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F IGURE 2 1 Results on real data shown in the common channel gather (channel 15). (a) and (b) Data with ghosts. (c) and (d) Conventional
deghosting. (e) and (f) DEGDEM deghosting. The red area in subfigures a, c and e is used as a close-up in subfigures b, d, and f. (g) Amplitude
spectrum for data with ghosts (black), DEGDEM deghosting (blue) and conventional deghosting (green). The blue arrows indicate places where the
resolution is increased.

Conventional source deghosting is often carried out on
receiver gathers since the source ghost notch will be a function
of apparent slowness in this domain, e.g., visible in the ff-k
domain. However, the source ghost notch may be incorrect in
the shot gather since the relation between the emission and
incidence angles is not straightforward in a complex medium

(Blacquière & Sertlek, 2019). As a result, energy with one
emission angle may arrive with another or multiple angles.
Correspondingly, the receiver ghost notch is better defined in
the shot gathers. Consequently, receiver deghosting is often
done in shot gathers. Instead of doing both the source and
receiver deghosting in one operation on shot gathers, we
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F IGURE 2 2 Results on real data shown in the common channel gather (channel 50). (a) and (b) Data with ghosts. (c) and (d) Conventional
deghosting. (e) and (f) DEGDEM deghosting. The red area in subfigures a, c, and e is used as a close-up in subfigures b, d, and f. (g) Amplitude
spectrum for data with ghosts (black), DEGDEM deghosting (blue) and conventional deghosting (green). Black arrows indicate the primary or
multiple, and green arrows indicate places with receiver ghosts. The vertical dashed blue line is the location of the shots shown in Figure 23.

could create a CNN for source deghosting on receiver gath-
ers and another CNN for receiver deghosting on shot gathers.
However, this is a topic for future research.

A clear conclusion of the synthetic tests is that DEG-
DEM was less sensitive to swells, variations in sea surface

reflection coefficient and errors in shot/receiver depths than
the conventional method. An example was demonstrated on
the data without and with swells where we observed a mod-
erate change in the normalized root mean square (NRMS)
error (0.0032–0.0044) using DEGDEM (U-net) compared to
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F IGURE 2 3 Results on real data on a shot gather. (a) Data with ghosts. (b) Conventional deghosting. (c) DEGDEM deghosting. Black arrows
indicate the primary or multiple and green arrows indicate the timing of the receiver ghost. The shot location is shown in Figure 22 as a vertical
dashed blue line.

the significant change in NRMS error (0.0030–0.0171) of
the conventional method. It is possible to estimate the sea
state (Orji et al., 2012) and use it to improve the deghosting
(King & Poole, 2015; Vrolijk & Blacquière, 2018), but this
adds more complexity to the deghosting process. Our results
showed that the U-net can be made more robust to errors in
streamer depths and sea surface reflection coefficients. This
is potentially advantageous since there will always be some
error when estimating these parameters on real data.

The test to investigate the sensitivity to residual ghost in
the PSDM image showed, not surprisingly, that the networks
performed less well than in the case where a fully ghost-free
PSDM image was used. The DEGDEM (U-net) NRMS error
using a clean PSDM image was 0.0044 versus 0.0070 when
using a residual ghost PSDM image. However, the NRMS
error was 0.0171 using the conventional deghosted data that
went into the PSDM image. This suggests that DEGDEM can
still improve on the quality of deghosting exhibited in the
supplied PSDM image.

The final test demonstrated that the networks can deghost
data with surface-related multiples (Figure 19) and preserve
primaries interfering with multiples. This result is important
since surface-related multiples are present in real data.

Real data

Our results show that the network was able to deghost real
three-dimensional (3D) data. Comparing our results with the

conventional method by Poole (2013) shows that the net-
work resulted in higher amplitudes at the ghost notches.
Figure 24 shows both conventional deghosting and DEGDEM
at the second ghost peak (60 ± 2 Hz) and first ghost notch
(42 ± 2 Hz). Both conventional and DEGDEM give similar
results in the ghost peak (Figure 24c,d). Figure 24e,f does
not clearly show that DEGDEM is able to recover a more
coherent signal in this ghost notch. It is not easy to assess
DEGDEM’s ability to ‘fill’ the notch on real data. In addi-
tion, it is hard to assess the level of residual ghost energy
in shallow water data due to the overlap of primary and
reverberating multiple arrivals. We highlight an example of a
possible residual ghost arrival, which was slightly weaker in
theDEGDEM result compared to the conventional deghosting
result.

In the real data example, we assumed a single-level source
for both DEGDEM and conventional deghosting. Dual-level
source deghosting was beyond the scope of our analysis
mainly due to the added complexities it introduces for the
demigration stage of the DEGDEM workflow. Nevertheless,
Figure 25 shares some insight into what uplift may be
provided by this approach. Figure 25 (left) shows results
from joint source and receiver deghosting results assuming a
single-level source as described in the previous section, and
Figure 25 (right) shows results from joint source and receiver
deghosting assuming a dual-level source (Poole et al.,
2015). The image respecting the dual-level source setup
looks sharper compared to the single-level source approach.
It is possible that both the conventional and DEGDEM
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F IGURE 2 4 (a) Conventional deghosting using the full spectrum, (b) DEGDEM deghosting using the full spectrum, (c) conventional
deghosting at the peak frequency, (d) DEGDEM deghosting at the peak frequency, (E) conventional deghosting at the notch frequency and (F)
DEGDEM deghosting at the notch frequency. Blue arrows indicate a coherent signal. Red arrows indicate what we interpret as noise or lack of
coherent signal

deghosting could have given a better result if we had used a
dual-level source.

Our results demonstrate that a network can be used on real
data with good results. The main limitation of DEGDEM is
the dependency on a PSDM image. This is similar to the
‘chicken-and-egg’ problem where we need to do deghosting
to get a PSDM image but need the PSDM image to do deghost-
ing. However, there are many such problems in seismic

processing. One example is the dependency on a PSDM image
to create multiple models for demultiple, but demultiple data
are needed to make the PSDM image (Brittan et al., 2011;
Martin et al., 2011). Another example is the dependency on
a velocity model for PSDM, but PSDM is needed to make a
velocity model (Chang et al., 1996). A PSDM image is not
always available, for example, in a new acquisition area or the
early phase of a processing project. However, a PSDM image
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F IGURE 2 5 Conventional deghosting when we assume a single-level source (a) or a dual-level source (b). Blue arrows indicate better-defined
reflectors

could be available from another acquisition in the same area
or, as demonstrated here, from the same acquisition. Inac-
curacy of migration velocity and limitation of PSDM could
affect the performance of DEGDEM. It should also be noted
that DEGDEM is computationally expensive since we need
to create the demigrated training data, train a CNN, apply
the CNN to the data and include an extra migration of the
data. Assuming we already have a PSDM image, DEGDEM
(U-net) is approximately 40 times slower when training and
predicting on the same area compared to the conventional
method used in this paper. For DEGDEM, this time includes
demigration, training and prediction. The computation time
for conventional deghosting and DEGDEM is highly depen-
dent on the parameters and amount of training data used.
However, it is possible that a network could be trained only on
a representative part of the data and applied to the rest, similar
to the method of de Jonge et al. (2021). Using that approach
could eventually make DEGDEM faster than the conventional
deghosting (assuming a PSDM image is already available). In
principle, the basic idea behind the training approach in DEG-
DEM could be used for purposes other than deghosting, such
as interpolation, demultiple, debubble, designature and more.
However, investigating a similar workflow for these problems
is a topic for future research.

CONCLUSION

The results in this paper have demonstrated that DEGDEM
(DEGhosting using DEMigration-based supervised learning)
is capable of removing the source and receiver ghosts on both

synthetic and real data. On synthetic tests, we observe that the
network was significantly less sensitive to errors in streamer
depth and sea surface reflection coefficient compared to
conventional deghosting.

On real data, DEGDEM showed a good level of energy
in the ghost notch and provided locally better resolution
compared to conventional deghosting. We examined a poten-
tial residual ghost arrival, which looked weaker on the
DEGDEM result, but as discussed, it is hard to assess the
level of residual ghost in shallow water datasets as many
arrivals overlap. We demonstrated the robustness of DEG-
DEM to unknown changes in sea-state, receiver position
and sea surface reflectivity, which are unavoidable on real
data.
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Chapter 7

Conclusion, discussion, and future

work

In this chapter, I mention the key findings from each paper and put them into a common

context. Then, I briefly discuss why my research is important and how it relates to similar

research. Finally, I discuss possible future research directions.

7.1 Key findings

The key findings from each paper can be summarized as follows:

• In paper 1, we trained a network on real data containing a large range of source

signatures. This diversity made the network robust and adaptive to signature

variations which is an advantage if the signature change during an acquisition.

The network performs well if the signature in the test data is equal to one in the

training data. We also investigated the network sensitivity to geology within an

extensive survey and two surveys on the Norwegian Continental Shelf (NCS). If

the test data are from geology similar to the training data, the network performs

better than if not. However, even when we applied the network to a different part

of the NCS, the network could still reduce most of the bubble noise.

• In paper 2, we created training data with and without ghosts using demigration

of a stacked depth-migrated image. We showed on synthetic data that a convo-

lutional neural network was more robust than a conventional deghosting method

to variability in source/receiver depth, swells, and sea surface reflectivity. In ad-

dition, on synthetic data, we demonstrated that it is possible to make a network
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more robust to, e.g., swells by perturbing the receiver depth in the training data.

On real North Sea data, in some respects, the neural network performed better

than a standard deterministic deghosting method which was based on inversion in

the τ − p domain.

• In paper 3, we expand upon the method in paper 2 to include dual-component data

in training and prediction. The dual-component training data is created using dem-

igration of a stacked depth-migrated image into vertical particle velocity data and

pressure data. We test our method on synthetic Marmousi and real North Sea

data with dual-component streamers. We compare the method with conventional

dual-component deghosting using pressure and vertical velocity summation. The

synthetic results show that the method can accurately remove the ghosts with only

minor errors. Our method is less sensitive to spatially aliased data than the con-

ventional method. On real data, the neural network deghosting show consistency

with conventional deghosting, both within and outside the training area.

Papers 2 and 3 are closely related because both aim to remove ghosts. Paper 1 aims to

remove the bubble noise. These are two important processing steps done after a conven-

tional marine seismic acquisition.

Paper 1 investigates creating a generalized neural network that can handle different

source signatures. Paper 2 investigates how a generalized network can help with deghost-

ing. In paper 2, we made the network robust to receiver depth and sea surface reflection

coefficient changes. We did not investigate generalization in the third paper, but the gen-

eralization research done in the second paper is likely valid for the work done in paper

3. The ghost model and source signature can change during a seismic survey. There-

fore, the network’s ability to generalize and adapt to changes in the prediction data is

an attractive feature. It can allow less testing and quality control time compared to con-

ventional methods.

Paper 1 demonstrated that the network is somewhat sensitive to the geology over a

large survey and for two different surveys. However, even when we applied the network

to a survey on a different part of the Norwegian Continental Shelf, the network could

remove most of the bubble noise. We did not attempt to apply a trained network to an-

other part of the NCS in papers 2 or 3 for deghosting. However, in these two papers, we

used only part of a sail line as the ”training area” (the training area is the area from the

pre-stack depth migration (PSDM) image that is used to create training data). How-

ever, when we apply the network to the full sail line, the deghosting quality seems to be

the same. Based on the results from papers 1, 2, and 3, a network works well, at least
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within the same survey, if the geology does not change too much.

The papers show that the network can be used readily without much testing. In all pa-

pers, we always compare with the conventional methods that professional geophysicists

have extensively tested. This means we compare high-quality results acquired during, in

some cases, weeks or months of testing. Even though our results show good quality, it is

possible to use pre-trained networks for debubbling or deghosting quickly after seismic

surveys as a fast track. It is also possible to use a trained network from another survey

and data from the new survey to fine-tune the network.

7.2 Discussion

All three papers focused on how training data could be used to solve the debubbling or

deghosting problem. While the structure of a neural network is important to acquire

good results, extensive research to develop neural networks has already been done, and

plenty of resources can be found easily. However, creating training data for debubbling

and deghosting is an immature field. People have created training data using differ-

ent approaches in other related neural network processing steps. Some papers use pure

synthetic data as training data [Qu et al., 2021; Zu et al., 2020]. Other papers train

a network on synthetic data and use real data for fine-tuning [Cunha et al., 2020; Li

et al., 2021]. Another option is to utilize similarities between training and prediction

data in two different domains [Greiner et al., 2019; Siahkoohi et al., 2018; Vrolijk and

Blacquière, 2021]. Some papers use conventional methods to create real training data

[Peng et al., 2021]. In paper 1, we ”add” synthetic bubble noise to real debubbled data.

Therefore, this training data is not fully synthetic or fully real. In papers 2 and 3, we

create training data using demigration that looks highly realistic and is arguably not

fully synthetic. Regardless, we create training data containing complex features similar

to real data, which is an advantage.

The main limitation in the second and third papers is that we need a PSDM image

to create training data. This limitation is similar to the ”chicken or the egg” dilemma,

where we need to remove the ghost before we create the PSDM image but need the

PSDM image for deghosting. In paper 2 and paper 3, we solved this problem by using

a conventional deghosting method before creating a PSDM image. However, there are

other seismic processing examples with this problem. Some demultiple methods require

a PSDM image to create multiple models, but demultiple is required to create a PSDM

image [Brittan et al., 2011; Martin et al., 2011]. Also, some velocity model building
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methods require a PSDM image, but the PSDM image requires a velocity model [Chang

et al., 1998]. However, in a standard modern processing project, the processing from the

raw data to the PSDM image is repeated iteratively to create better and better images.

Therefore, a PSDM image could be available early in a processing project. In addition,

as we have seen from papers 2 and 3, the PSDM image from the full survey area is not

needed to create training data. Therefore, one could create a PSDM image of a smaller

area and predict the full survey. There are many possibilities, and the method from pa-

pers 2 and 3 could be a nice tool among other deghosting methods.

A pre-trained neural network for deghosting or debubbling could be used quickly on

newly acquired seismic data. The pre-trained network could be trained on, e.g., a neigh-

boring area with an available PSDM image. Alternatively, a pre-trained network from

recently acquired seismic data could be used on extensions of the original survey, e.g.,

where a new extension is done each season. Pre-trained networks for different process-

ing tasks open the possibility of quickly processing raw data to the final PSDM image

with good results.

7.3 Future work

There are several interesting future research paths in all three papers. In the first paper,

I perturbed the source signature to make the network robust to changes in bubble noise.

The perturbation was done by changing the phase and amplitude of one or two source

signatures. However, more sophisticated methods could create a larger range of realistic

source signatures. An option would be to model source signatures believed to be found

in the data. Perhaps, a more sophisticated method of sampling these signatures (e.g.,

pseudo-randomly) could be done.

It could also be possible to use time migration to create a reflectivity image instead

of depth migration. Time demigration would then be used to create training data.

Creating images from time migration is less computationally expensive than depth mi-

gration. Also, time-domain images are usually available relatively early in the processing

sequence [Iversen et al., 2012]. Therefore, time-domain images may be available earlier

and we can create training data sooner at a reduced computational cost.

Kirchhoff depth migration is generally sensitive to the velocity model. However, since

we are doing both migration and demigration, the dependency on the velocity model

could be eliminated or reduced since these are reverse processes. Therefore, having a
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well-defined velocity model might not be important before creating training data through

demigration. This thesis did not investigate the importance of the velocity model for

migration and demigration. However, this would be interesting for future research.

In paper 2, we created a PSDM image from data with residual ghost noise. Conse-

quently, the demigrated training data was created from this PSDM containing residual

ghost noise. However, the network could deghost the data better than the data used to

create the PSDM image. This indicates that it could be possible to update the PSDM

image to improve the deghosting iteratively. This process would be quite expensive when

using depth migration and demigration. However, time migration and demigration could

be a better option.

Demigration could also be used to create training data for other processing steps. The

paper by Hlebnikov et al. [2022] has already shown that demigration-based supervised

learning can be used for offset class interpolation. Most likely, demigration-based su-

pervised learning could be used to interpolate data close to zero-offset, between shots,

or shot lines. Perhaps it is possible to train a network to remove multiples by creat-

ing demigrated training data with and without multiples. Another possibility could be

to remove swell noise by creating demigrated data with and without swell. Swell noise

could be extracted from real data without any signal (e.g., at the end of the sail line)

and added to the demigrated data. Perhaps, demigration could also be used to denoise

Vz data using a similar approach. These options are only a few possible ways to use

demigration-based supervised learning for processing seismic data.
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