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Abstract: Octadecylazanediyl dipropionic acid (C18ADPA) is a zwitterionic amphiphile with a
dendritic headgroup. C18ADPA self-assembles to lamellar networks, which encompasses water
and forms a low-molecular-weight hydrogel (LMWG). In this study, we use the C18ADPA hydrogel
as a drug carrier for the in vivo delivery of a copper salt for wound healing in a mouse model. A
structural transition was observed based on cryo-scanning electron microscope (cryo-SEM) images
after drug loading. The C18ADPA hydrogel, which had a layered structure, transformed into a
self-assembled fibrillar network (SAFiN). The mechanical strength of the LMWG has always been
an important issue in its applications. However, due to the structural transition, both the storage
and loss moduli increased. In vivo tests showed that wound closure was faster after applying the
hydrogel formulation compared with the Vaseline formulation. For the first time, we have also
provided histological evidence of these effects on skin tissue. The hydrogel formulation exhibited
clear advantages in regenerating tissue structure over traditional delivery formulations.

Keywords: supramolecular hydrogel; wound healing; C18ADPA; copper; self-assembling

1. Introduction

Hydrogels are frequently employed in drug formulation to achieve controlled release
owing to their high fractal resistance and tortuosity [1]. The three-dimensional structure
of hydrogels restrains the motion of drug molecules, thereby controlling the release rate
through the regulation of the diffusion process [2]. Hydrogels are widely used in various
dosage forms as a moderator for sustained release. For instance, Carbopol®, a hydrogel
family made from polyacrylic acid, is used in suspensions, bioadhesive formulations, solid
dosage wet granulation, and more [3].

Low molecular weight gel (LMWG), also known as molecular gel, is a novel type
of gel [4]. In LMWGs, gelators with molecular weights below 3000 Da self-assemble to
form an organized structure via intermolecular interactions [5]. LMWG exhibits some
resemblance to the extracellular matrix [6]. Consequently, researchers anticipate promising
applications of this material in biological systems [7]. Numerous studies have demonstrated
the potential applications of LMWG in tissue engineering [8], enzyme immobilization [9],
cell culture [10], and drug delivery [11,12]. LMWG has several advantages as a drug carrier,
such as controlled release properties, biocompatibility, and biodegradability. For example,
Nilsson and colleagues used N-Fluorenylmethoxycarbonyl (Fmoc) phenylalanine to deliver
diclofenac in vivo for anti-inflammatory purposes [13]. Cao et al. demonstrated the in vitro
release of salicylic acid from a supramolecular phenylalanine-derived hydrogel [14]. Xu
and colleagues used the supramolecular hydrogel composed of pamidronate, Fmoc-Leu,
and Fmoc-Lys to reduce inflammation and the toxicity of UO22+ [15]. However, the use
of these hydrogels for in vivo drug delivery is problematic due to the poor mechanical
stability of the resulting gel system.
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Our previous studies have shown that C18ADPA forms a stable hydrogel in a nar-
row pH range [16,17]. The hydrogel exhibits a reversible bilayer-to-micelle transition
through temperature adjustment. In the case of LMWGs, adding a third component can be
challenging since gelation is based on the fine balance of supramolecular interactions [5].
Preserving mechanical stability when the third component contains metal ions is even more
difficult [18]. In this study, we present an investigation using the C18ADPA hydrogel as a
robust drug carrier, even for drugs containing metal ions. Moreover, we report, for the first
time, a histological analysis of how the LMWG, as a drug carrier, influences the regeneration
of skin tissues. A quantitative assessment of clinical features and histological parameters
revealed relatively faster healing using the formulation made from the C18ADPA hydrogel.
Compared to traditional Vaseline formulations, the C18ADPA hydrogel offers advantages
in all healing phases.

2. Materials and Methods
2.1. Materials

Methacrylate (>99%) and octadecylamine (>96%) were purchased from Adamas-
Beta (Shanghai, China). L-Trp, D-glucose, ethyl carbamate, and N-methylmorpholine
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Methanol (99.5%), hexane
(98%), sodium hydroxide (96%), and hydrochloric acid (36.5%) were used as received
from Tianjin Chemical Factory (Tianjin, China). White Vaseline cream was purchased
from Aladdin Industrial Corporation (Shanghai, China). Milli-Q water was used for
all the experiments. We refer the reader to our previous publications for the synthesis
of zwitterionic amphiphile 3,3′-(octadecylazanediyl) dipropionic acid (C18ADPA) (see
the chemical structure in Figure 1). The data was analyzed using a two-way ANOVA
(GraphPad Prism 9.0).
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2.2. Preparing N-(2,3,4,5,6-Pentahydroxylhexyl)-L-Trp (PHTrp)

2.04 g (10 mmol) of L-Trp was dissolved in a solution of 0.40 g (10 mmol) of NaOH
in 3 mL of methanol/water (1:1). Then, 1.80 g (10 mmol) of D-glucose were added to
this solution. Under the protection of argon gas, the mixture was stirred at 55 ◦C for
6 h to form intermediate 1, which was in-situ reduced by 1.62 g (30 mmol) of NaBH4
at room temperature for 96 h. Then, the mixture was adjusted to pH 2.5 with HCl at
0 ◦C and precipitates were formed in the solution. The filtrate was concentrated after the
precipitation was removed by filtration. The concentrate was diluted with anhydrous
ethanol and the insoluble matter was removed by filtration. After repeating this step
five times, the residue was dissolved in 10 mL of water. The PHTrp (19% yield, colorless
powders) was purified using an acidic ion exchange resin column and was eluted using a
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3% aqueous solution of N-methylmorpholine. Mp 206–207 ◦C, α20
D = +10.0 (C = 1.6, H2O).

IR (KBr): 3407, 3353, 3095, 2968, 2916, 1617, 1596, 1400, 1355, 1080, 1042, 742, 675, 534 cm−1.
ESI (+)/FT-MS (m/e): 369.15620 [M+H]+. 1H NMR(300 MHz, D2O): δ = 7.22 (d, J = 7.5 Hz,
1H), 7.20 (d, J = 7.5 Hz, 1H), 7.16 (t, J = 7.8 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 6.92 (s, 1H),
4.16 (m, J = 4.8 Hz, 1H), 3.90 (t, J = 5.1 Hz, 1H), 3.85 (m, J = 5.1 Hz,1H), 3.83 (m, J = 5.1 Hz,
1H), 3.77 (m, J = 3.9 Hz, 1H), 3.71 (d, J = 5.1 Hz, 2H), 3.27 (dd, J = 3.6 Hz, J = 12.9 Hz, 1H),
3.2 0(dd, J = 9.3 Hz, J = 12.9 Hz, 1H), 2.93 (d, J = 4.9 Hz, 2H).

2.3. Preparing the Complex of PHTrp and Cu2+ (PHTrp-Cu)

To for a suspension, 368 mg (1.0 mmol) of PHTrp and 170.5 mg (1.0 mmol) of
CuCl2·2H2O were added to 10 mL of water. Then, 40 mg (1.0 mmol) of NaOH was
added to form a clean blue solution. The solution was stirred at 60 ◦C for 10 min and was
filtered. The filtrate was purified on size exclusion chromatography (Sephadex G10) to
yield 502 mg (92%) of PHTrp-Cu (see Figure 1). ESI-/FT-MS (m/e): 500.01675. α20

D = +18.5
(C = 1.0, H2O). 1H NMR(500 MHz, D2O) δ = 7.23 (d, J = 7.5 Hz, 1H), 7.21 (d, J = 7.5 Hz, 1H),
7.18 (t, J = 7.5 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 6.93 (s, 1H), 4.07 (m, 1H), 3.83 (t, J = 5.0 Hz,
1H), 3.75 (m, J = 5.0 Hz, 1H), 3.73 (m, J = 5.0 Hz, 1H), 3.67 (m, J = 3.5 Hz, 1H), 3.61 (d,
J = 5.0 Hz, 2H), 3.31 (dd, J = 3.5 Hz, J = 12.5 Hz, 1H), 3.21 (dd, J = 9.0 Hz, J = 12.5 Hz, 1H),
2.89 (d, J = 5.0 Hz, 2H).

2.4. Preparation of C18ADPA Hydrogel and PHTrp-Cu-Loaded Hydrogel

C18ADPA (0.2 g) [17,19] and NaOH (0.04 g) were mixed and dissolved in 5 mL of
distilled water. The solution was warmed up in a water bath to 70 ◦C and the mixture
gradually became transparent. The pH value was adjusted to 5. In this pH range, the
viscosity of the sample underwent a significant change. Then, the tube was removed from
the water bath and kept still at room temperature in order to form the C18ADPA hydrogel.
In order to prepare a PHTrp-Cu-loaded hydrogel, 5 mL of PHTrp-Cu solution was used
instead of distilled water.

2.5. Characterization of the Hydrogels

Rheology. The elastic modulus (G’) and viscous modulus (G”) were measured using a
TA DHR-1 rheometer (TA instrument GmbH, Newark, NJ, USA) with a plate–plate geome-
try with a diameter of 40 mm and a default gap of 1 mm. Frequency sweep measurements
were carried out in the range of 0.5–100 rad/s in the linear viscoelastic region, determined
via dynamic strain sweep measurements.

Differential Scanning Calorimetry (DSC). The DSC measurements were performed
using a TA-DSCQ2000 (TA instrument GmbH, Newark, NJ, USA) instrument. The PHTrp-
Cu-loaded hydrogel samples (about 20 mg) were sealed into aluminum pans, and the
DSC thermo-grams were recorded within a temperature range of 15–65 ◦C (heating
rate = 2 ◦C min−1) under an N2 atmosphere.

Cryo-Scanning Electron Microscopy (cryo-SEM). The morphology of the hydrogels
was studied using Cryo-SEM high-pressure freezing (Leica, Weztlar, Germany), which
prevents or minimizes damage to the hydrogel structure caused by ice crystal formation.
The samples (5 µL) were loaded on the cryo specimen holder and were then transferred into
a liquid nitrogen bath until the liquid nitrogen ceased boiling. Then, the liquid nitrogen
bath was transferred into the vacuum space for immediate vacuuming. The samples
were warmed up to −100 ◦C, and the sample surface was freeze-dried for 30 min by the
sublimation of water. The samples were investigated at a temperature of −146 ◦C and an
accelerating voltage of 3 kV or 5 kV. Imaging was performed using the analysis mode and
the backscattered electron signal.

X-ray Powder Diffraction (XRD). XRD measurements on the hydrogels were carried
out using a Bruker D8 advance diffractometer (Bruker, Billerica, MA, USA). The source of
the X-ray was Cu-α radiation with a wavelength of 0.15406 nm. The diffraction pattern was
recorded with the diffraction angle in the range of 1◦–10◦.



Pharmaceutics 2023, 15, 1119 4 of 12

Fourier transform infrared spectroscopy (FTIR). FTIR measurements were carried out
using a Thermofisher Nicolet 6700 FTIR spectrometer (Thermofisher, Waltham, MA, USA).
The samples were prepared by KBr pellets. The scan range of the wavenumber was in the
region of 4000–400 cm−1.

2.6. Animal Test

Healthy male ICR mice were purchased from the Animal Center of Peking University
and were used for the experiments. The mice were accommodated in wire topped cages
with sterile husk as a bed material and were kept at temperatures between 20–25 ◦C. Mice
were fed with commercial mice feed and water ad libitum. We intraperitoneally injected a
20% solution of ethyl carbamate in order to anesthetize the mice. Each mouse weighted
approximately 20 g and was injected with 0.14 mL of the solution. Hair was removed from
the dorsum of the mice using an electrical hair remover. The index finger and thumb were
used to fold the back at the midline and to lift the dorsal skin in order to form a sandwiched
skinfold. Then, the animals were placed in the lateral position, the 5 mm diameter biopsy
punch was pressed in order to completely remove the skin layer, and a symmetrical full
thickness resection wound was formed. The wound area was assessed and photographed
every day until the lesions were fully closed. The ethics committee of Capital Medical
University approved all the procedures (the ethics number is AEEI-2018-174). The welfare
of all the animals is ensured.

The mice were randomly divided into four groups of at least six mice. Group I (control
group) was the group that did not receive any treatment, Group II (matrix group) was
treated with 4% C18ADPA hydrogel, Group III (hydrogel group) was treated with PHTrp-
Cu-loaded hydrogel, and Group IV (Vaseline group) was treated with PHTrp-Cu-loaded
Vaseline as a group for comparison.

The percentage of wound contraction (PWC). The PWC was calculated based on the
percentage reduction of the original wound size [20]. The wound area was measured using
a digital caliper. The PWC was calculated based on the initial wound area (A0) and the
wound area on the nth day (An). The PWC was calculated based on the following equation:

PWC =
A0 −An

A0
× 100% (1)

The animal test was randomized and double-blinded. Data are presented as mean ± SD
(standard deviation). The group size was determined on the basis of the results from a
preliminary experiment. Statistical significance for all the wound healing studies were
determined using the student’s t-test. The results were considered statistically significant
when p < 0.05.

Histology study. Skin tissues were collected on day 2 and day 8. The tissue samples
were fixed in 10% formalin solution, dehydrated in a graded alcohol series, starting from
50% and increasing to 75%, 90%, and 100%, cleared in xylene, and embedded in paraffin
wax. Then, the tissue sections were stained with Hematoxylin–Eosin (H&E) [21].

3. Results and Discussion
3.1. Hydrogel Structure

A C18ADPA solution forms a hydrogel when the concentration is higher than 2%.
The strength of the gel increases with C18ADPA concentration. In order to ensure good
mechanical strength for topical use, in this study, all the experiments were conducted with
4% C18ADPA hydrogels. A 4% C18ADPA hydrogel was translucent at 50 ◦C and turbid at
25 ◦C. The PHTrp-Cu hydrogel shows the same blue-colored light scattering behavior as
the aquo complex of copper (Figure 2). The PHTrp-Cu hydrogel forms very quickly. During
cooling at room temperature, the transition of the hydrogel was completed within 30 min.
The storage modulus G’ and the loss modulus G” were raised by nearly one order of
magnitude once PHTrp-Cu (0.5%) was added to the hydrogel (Figure 3), indicating that the
PHTrp-Cu molecules were incorporated into the gel structure and enhanced the mechanical
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strength of the hydrogel. Examination of the DSC thermogram (Figure 4) confirmed the
interaction between PHTrp-Cu molecules and the hydrogelators. The hydrogel without
PHTrp-Cu showed a gel-to-gel transition at 43.3 ◦C (Tg) and an additional endothermic
peak at 48.8 ◦C (Tm) [17]. The corresponding peaks in the PHTrp-Cu hydrogel (Figure 4)
were shifted to higher temperatures, 47.6 ◦C (peak 1) and 51.4 ◦C (peak 2), respectively. The
latter temperature, which was similar to the 49.5 ◦C observed for the xerogel, was attributed
to the melting of the alkyl chains (Tm). In addition to Tg and Tm, another endothermic
peak at 56.6 ◦C (peak 3 in Figure 4) resulted from the interactions between PHTrp-Cu and
the hydrogel structure.

The mesoscopic structure of the hydrogels and the supramolecular packing of C18ADPA
with PHTrp-Cu were characterized using cryo-SEM and XRD analysis. For the C18ADPA
hydrogel, cryo-SEM clearly revealed the 3D structure; the layered structure interconnected
and encompassed the liquid phase in the open spaces (Figure 5a). After loading with
PHTrp-Cu, significant changes were observed in the hydrogel structure (Figure 5b). The in-
tact layers of the C18ADPA hydrogel transformed into a fibrillar network in the PHTrp-Cu
hydrogel [22]. The self-assembled fibrillar network (SAFiN) traps water molecules through
capillary forces. This change on a mesoscopic scale has led to an increase in the mechanical
strength of the hydrogel.
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The change in the constructive unit for the PHTrp-Cu hydrogel was rather interesting.
Therefore, low-angle XRD (L-XRD) was used to reveal the molecular packing of both the
hydrogels (Figure 6). For the C18ADPA hydrogel, the L-XRD data showed the existence of
two lamellar structures (1 and 2). The d-spacing of lamellae-1 was d1 = 4.1 nm, which is
commensurate with the d-spacing observed in (001) reflections of the crystalline lamellar
bilayers of octadecyl ammonium crystals [23,24]. Thus, in close connection to the octadecyl
ammonium crystals, lamellae-1 consisted of crystalline lamellar bilayers composed of polar
and nonpolar layers. As for lamellae-2 (d2 = 3.1 nm), a peak was observed at a position
very close to that of the d-spacing for the lamellar structure of the xerogel (d = 3.6 nm),
which was indicative of the existence of a lamellar structure in which alkyl chains are fully
interdigitated [25]. The PHTrp-Cu hydrogel also has the lamellar structure as a building
unit for the SAFiN structure. Similar to the C18ADPA hydrogel, two lamellar structures
were found and the d-spacing for both lamellae increased. Lamellae-1, with compact
packing, has d-spacing of 4.3 nm and lamellae-2, with the interdigitated alkyl chain, has
d-spacing of 3.1 nm. The L-XRD results revealed that even though the morphology of the
hydrogel changed after adding PHTrp-Cu, mesoscopically, the essential built-up structure
was still lamellar. The two lamellar structures correspond very well with the analysis of
the DSC results. Since the origin of the two lamellae were due to the crystalline bilayers
and the interdigitated alkyl chain, lamellae-1 is then correlated with the endothermic peak
of Tm and lamellae-2 is correlated with the endothermic peak of Tg. In order to further
analyze the change in C18ADPA after loading PHTrp-Cu, we compared the FTIR spectra
(Figure 7) to reveal the interactions between the molecules.
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The FTIR spectra was presented in two parts (Figure 7). In the range of 2000–700 cm−1,
we used a smaller scale of transmittance in order to identify all the peaks. At 3267 cm−1,
the OH stretch absorption from glucose was identified for the PHTrp-Cu hydrogel sample.
The peak was narrow, indicating that the OH groups were in a nonpolar environment [26].
C18ADPA is a zwitterionic surfactant. In the headgroup, the acid groups (–COOH) and the
weak base (the tertiary amine) may react and form a complex salt [27]. In the hydrogels,
the spectrum of a carboxylic acid:amine 2:1 complex shows bands attributable to this
species [28]. The formation of a 2:1 complex indicates that the reaction is effectively
complete. It is characterized by a ν(C=O) band at 1733 cm−1, a ν(C-O) band at 1183
cm−1, νs(CO2–) at 1391 cm−1, and νAs(CO2–) at 1620 cm−1 for the C18ADPA hydrogel.
Three changes were noticed after the addition of PHTrp-Cu: first, the intensity of the
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ν(C=O) band at 1733 cm−1 significantly decreased; second, the νAs(CO2–) band moved to
1592 cm−1; and third, a ν(C-O) stretch band appeared at 1120 cm−1. We also observed that
the ν(C-O) band at 1183 cm−1 was relatively small. Putting this information side-by-side,
we realized that the interaction between the headgroups may go through a transition from
a 1:2 complex to a 1:1 complex after adding PHTrp-Cu to the hydrogel. The compact
arrangement of the three headgroups within the 2:1 complex suggested a smaller effective
area of the headgroups compared to the headgroups within the 1:1 complex. This drove
the system to adopt a higher curvature self-assembly after adding PHTrp-Cu and forming
the SAFiN structure [29].

3.2. Animal Test

The hydrogel, as a drug delivery matrix, accelerates wound repair (Figure 8). The
same dose of 57 ± 2 mg of PHTrp-Cu was applied using the hydrogel and Vaseline cream
once per day for groups III and IV, respectively. The number of mice, the dose, the area of
wound spots, and the experimental duration were decided based on a preliminary study.
Postoperative observation showed that there was a contraction of the wound area already
on the first day. The majority of the wound area had closed by day 7–8, and the remaining
area was too small to be precisely recorded. The environment and the drug formulations
were not sterile; therefore, we observed small, inflamed areas on day 2 after the operation.
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were taken on day 0, 2, 5, and 8 for the different groups, and there were six mice in each group.

The wound healing was evaluated by the percentage of wound closure [30]. From
day 2, group III (hydrogel formulation) showed a significant reduction in wound area
compared to the other groups (Figure 9). The wound closed much faster in the hydrogel
group and the Vaseline group. On day 8, these two groups showed an 80–88% reduction in
wound area. The order of healing during the whole healing process was as follows: the
hydrogel group > the Vaseline group > the matrix group > the control group (Figure 9).
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Skin tissues collected on days 2 and 8 were used for the histological analysis (Figure 10).
As seen in Figure 10, edema was present with expanded space in the deep dermis and the
near wound site for Group I on day 2. The skin edges were healthy and the wound extended
to the surface of the deep dermis. The superficial layer of the wound was lined by a thin
crusting. Collagen fibers could already be seen from day 2 [31,32]. For the matrix group,
edema was still the most predominant feature, but the tissue was less edematous than
Group I. Crusting could also be observed in the outer epidermis. Edema and fibrin strands
were evident. For Group III, the edema and fibrous appearance resolved significantly. The
interstitial layer and the dermis had greater numbers of mononuclear cells. The wound
edge with adjacent healthy skin is clearly present. For Group IV, the wound exhibited
widespread crusting, and the edges were clearly demarcated. The wound extended to
the surface of the deep dermis. Furthermore, the number of hair follicles increased a lot
compared to the other groups.
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Figure 10. Histological images of wound healing in mice. Images of tissue sections stained with
hematoxylin and eosin showing histological changes during the process of wound healing post-injury
on day 2 and day 8 for the different groups. Group I is the control group, Group II is the matrix group
with the C18ADPA hydrogel, Group III is the group treated with the hydrogel loaded with PHTrp-Cu,
and Group IV is the Vaseline group. ED is epidermis; DM is dermis; the black arrows are edema, and
the red arrows are hair follicles. Bars represent 200 µm (n = 3).
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On day 8, for Group I, the wound had widespread crusting and the edges were clearly
demarcated. The collagen fibers were thick with a predisposition to form irregular bundles.
Widespread crusting can still be found. For Group II, the wound had a low amount of
collagen fibers. The wound appeared closed and healed, but was distinct from the adjacent
undamaged skin. The inflammatory phase is still the most predominant feature, but it was
less edematous. Fibroblasts and new blood vessels were evident. For Group III, the wound
had almost completely healed. The keratinocyte layer, fibroblasts, and endothelial cells
formed an integral part of the repaired tissue. The collagen fibers at the wound site were
very well organized. For Group IV, the wound contracted and the dermis was very well
organized in comparison to day 2. The dermis of the wound site had less dense collagen
compared to the adjacent healthy dermis. The staining of the healthy side is more distinctly
purple–pink due to well organized bundles of collagen.

We compared the histological results and concluded the following:
Epithelialization: The regenerated epidermis could be observed on day 2, and the

epithelialization of the wound tissue on day 8 was significantly better than that on day 2.
The sign was significantly greater in the hydrogel group and the Vaseline group than in
Group I and II.

Vascularization: New vessels formed on day 2 in the treatment groups (Group III and
IV), and angiogenesis significantly increased in all the groups on day 8. Compared with
the other three groups, the hydrogel group had the highest vascularization score on day 8.

Granulation: On day 2, the epidermis, dermis, and subcutaneous tissues were injured
in each group. On day 8, slightly more advanced granulation tissue began to form in the
dermis. Among the groups, the C18ADPA hydrogel group with PHTrp-Cu had the thickest
granulation tissue area. In contrast, irregular formation of granulation tissue was observed
in the Vaseline group with PHTrp-Cu.

Collagen deposition: on day 2, collagen deposition was observed in all the groups.
On day 8, a large number of new collagen fibers formed in the dermis. On day 8, collagen
regeneration increased significantly in the hydrogel group and the Vaseline group.

4. Conclusions

Self-assembly is at the core of many biological transformations. Understanding the
principles of self-assembly would help us to create functional materials for biological use.
This study is an example of such. We thoroughly studied the structural transition of the
C18ADPA hydrogel and its function as a transdermal drug carrier. The structure of the hy-
drogels was studied on three levels, macroscopically by rheology and DSC, mesoscopically
by cry-SEM and L-XRD, and microscopically by FTIR. The SEM images clearly showed
the transition from a layered structure to a SAFiN after adding the model drug, PHTrp-Cu.
The mechanical strength, which is often a problem for molecular hydrogels, increased
in this case. The structural transition was finally confirmed by FTIR spectra with the
transition from a 1:2 complex to a 1:1 complex. Most interestingly, the process of wound
healing was rather fast, and the skin tissue showed much earlier collagen deposition during
regeneration, which may relate to the similar natures of the hydrogel and the biological
tissue. We believe that the advantages brought about by this material will open up new,
previously unexplored pathways in the application of molecular hydrogels as transdermal
drug delivery matrices.
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