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Abstract in English

The hypothalamic-pituitary-gonadal axis (HPG axis), a part of the human endocrine

system, regulates the female reproductive function. Feedback interactions between hor-

mones secreted from the glands forming the HPG axis are essential for establishing a

regular menstrual cycle. Mathematical models predicting the time evolution of hormone

concentrations and the maturation of ovarian follicles are useful tools for understanding

the dynamic behaviour of the menstrual cycle. Such models can, for example, help us

to investigate pathological conditions, such as endometriosis or Polycystic Ovary Syn-

drome. Furthermore, they can be used to systematically study the effects of drugs on the

endocrine system. In doing so, menstrual cycle models could potentially be integrated

into clinical routines as clinical decision support systems.

For the simulation-based investigation of hormonal treatments aiming to stimulate the

growth of ovarian follicles (Controlled Ovarian Stimulation (COS)), we need models

that predict hormone concentrations and the maturation of ovarian follicles in biological

units throughout consecutive cycles. Here, I propose such a mechanistic menstrual cycle

model. I also demonstrate its capability to predict the outcome of COS.

Individual time series data is usually used to calibrate mechanistic models having clini-

cal implications. Collecting these data, however, is time-consuming and requires a high

commitment from study participants. Therefore, integrating different data sets into the

model calibration process is of interest. One type of data that is often more feasible to

collect than individual time series is cross-sectional data. As part of my thesis, I de-

veloped a workflow based on Bayesian updating to integrate cross-sectional data into

the model calibration process. I demonstrate the workflow using a mechanistic model

describing the time evolution of reproductive hormones during puberty in girls. Exem-

plary, I show that a model calibrated with cross-sectional data can be used to predict

individual dynamics after updating a subset of model parameters.

In addition to the scientific contributions of this thesis, I hope that it creates attention

for the importance of research in the area of women’s reproductive health and underpins

the value of mathematical modelling for this field.
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Abstract in Norwegian

Hypothalamus-hypofyse-gonade aksen er en del av det kvinnelige endokrine systemet,

og regulerer evnen til reproduksjon. Hormoner produsert og utskilt fra tre kjertler

(hypotalamus, hypofysen, eggstokkene) p̊avirker hverandre via tilbakemeldingsinterak-

sjoner, som er nødvendige for å etablere en regelmessig menstruasjonssyklus hos kvin-

ner. Matematiske modeller som forutsier utviklingen av slike hormonkonsentrasjoner

og modning av eggstokkfollikler er nyttige verktøy for å forst̊a menstruasjonssyklusens

dynamiske oppførsel. Slike modeller kan for eksempel hjelpe oss med å undersøke patol-

ogiske tilstander som endometriose og polycystisk ovariesyndrom. Videre kan de brukes

til systematiske undersøkelser av effekten av medikamenter p̊a det kvinnelige endokrine

systemet. Derfor kan vi potensielt bruke slike menstruasjonsyklusmodeller som kliniske

beslutningsstøttessystemer.

Vi trenger modeller som forutsier hormonkonsentrasjoner sammen med modningen

av eggstokkfollikler hos enkeltindivider gjennom p̊afølgende sykluser. Dette for å

kunne simulere hormonelle behandlinger som stimulerer vekst av eggstokkfolliklene

(eggstokkstimuleringsprotokoller). Her legger jeg fram et forslag til en matematisk men-

struasjonsyklusmodell og viser modellens evne til å forutsi resultatet av eggstokkstimu-

leringsprotokoller.

For å kalibrere denne typen modell trenges individuelle tidsseriedata. Innsamling av slike

data er tidskrevende, og forutsetter høy grad av engasjement fra deltakerne i studien.

Det er derfor viktig å finne brukbare datatyper som er mindre tid- og ressurskrevende å

samle inn, og som likevel kan brukes til modellkalibrering. En type data som er enklere

å samle inn er tversnittdata. I denne avhandlingen har jeg utviklet en prosedyre for

å bruke tversnittpopulasjonsdata i modellens kalibreringsprosess, og viser hvordan en

modell kalibrert med tversnittdata kan brukes til å forutsi individuelle resultater ved

oppdatering av en del av modellens parametere.

I tillegg til det vitenskapelige bidraget, h̊aper jeg at avhandlingen min skaper oppmerk-

somhet rundt viktigheten av forskning p̊a kvinners reproduktive helse, og at avhandlin-

gen underbygger verdien av matematiske modeller i forskning p̊a kvinnehelse.
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Part I

Research overview





Chapter 1

Introduction

Biological systems, e.g. cells or organs, are built of many interacting components. Re-

search in microbiology and biochemistry generates detailed insights into the structure

and function of small units such as genes or proteins. However, studying the interac-

tions and interconnections of these small functional units is vital to understand complex

biological processes. Consequently, integrating the knowledge about the small units into

a larger context can enable a new understanding of biological processes and diseases

[Assmus et al., 2006; Kitano, 2002b; Klipp et al., 2016].

The field of complexity science is concerned with investigating systems where interacting

components give rise to non-trivial functions (complex systems). Those systems exhibit

properties such as nonlinearity, emergence and pattern formation [Kwapień and Drożdż,

2012; Mitchell, 2006, 2009]. In systems biology, we treat biological systems as complex

systems aiming for a systematic understanding [Madhavan and Mustafa, 2022]. Central

questions in systems biology are [Wolkenhauer and Mesarović, 2005]:

- How do the interactions between the components of a system contribute to the

system’s structure and function?

- How do systems give rise to higher-order functions and structure?

Scientists address these questions by combining computational and experimental tools

[Klipp et al., 2016].

Mathematical models have a central role in systems biology [Klipp et al., 2005, 2016;

Wolkenhauer and Mesarović, 2005]. Models provide us with abstract representations.

Therefore, they can help to understand higher levels of complexity [Cartier et al., 2001;

Epstein, 2008; Kohl et al., 2010] and the dynamic behaviour of a system, meaning its
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development in time [Klipp et al., 2016; Strogatz, 2018; Wolkenhauer and Mesarović,

2005]. Furthermore, Kuepfer et al. [2016] claim that models can also function as knowl-

edge management tools. Mechanistic models go beyond the data analysis – but on no

account replace a thoughtful data analysis – and therefore help to understand causal re-

lationships. Consequently, modelling can add a predictive component to the exploration

of biological systems [Assmus et al., 2006; Wolkenhauer, 2014]. Finally, Kitano [2002a]

promotes the value of computational systems biology for advancements in medicine and

pharmacology because it can help us understand the system’s interactions, robustness

and emergent properties.

Applying ideas from systems biology in medical research allows for investigating the sys-

tematic nature of diseases [Ayers and Day, 2015]. In clinical research, patient-specific

models have become popular because they pledge to improve treatment outcomes. Only

one of many examples of a patient-specific model is the work by Maleckar et al. [2021].

Here, the authors assess the risk for dangerous arrhythmia in post-infarct patients by

combining a patient-specific physiological heart model with a machine learning method-

ology. Patient-specific mathematical models can also be used for treatment planning

and response prediction. For example, Jackson et al. [2015] utilise patient-specific tu-

mour growth models to develop individualised treatment and surgery strategies. Maier

et al. [2022] and Pedersen et al. [2021] are examples that give an idea of the application

of patient-specific models to predict dosing regimes.

Overall, computational approaches and mathematical modelling have become integral

to investigating living systems and diseases. Despite that, modelling-based explorations

will never replace experimental work – rather, they provide additional approaches for

generating understanding. Thus, a symbiotic relationship between experimental and

computational work will allow us to study biological systems systematically.

1.1 Mathematical modelling of the hypothalamic-

pituitary-gonadal axis

The endocrine system is a messenger system consisting of glands secreting hormones

as messenger molecules. Those hormones regulate fundamental processes such as

metabolism, reproduction and stress responses through feedback mechanisms. They

have sensory and regulatory functions on multiple levels of organisation and different

time scales. Consequently, exploring the endocrine system can benefit from mathemati-

cal modelling [Leng and MacGregor, 2008; Zavala et al., 2019].



1.1 Mathematical modelling of the hypothalamic-pituitary-gonadal axis 5

The Hypothalamic-Pituitary-Gonadal axis (HPG axis) is part of the endocrine system

and is central to regulating reproduction. In women, the hypothalamus, the pituitary

gland, and the ovaries form the HPG axis. Those three organs communicate through

feedback loops with hormones as messenger molecules, enabling the menstrual cycle. The

major events within a menstrual cycle are the maturation of ovarian follicles (cellular

unit that carries the oocytes in females), the release of oocytes and the preparation of

the uterus lining for the implantation of a fertilised oocyte. In the absence of a fertilised

oocyte, the shedding of the uterus lining – better known as menstrual bleeding – flags the

beginning of a new menstrual cycle [Hawkins and Matzuk, 2008]. In a woman’s lifetime,

two significant changes in the endocrine regulation by the HPG axis are observed: (i)

the reactivation of the HPG axis during puberty and (ii) menopause [Hoyt and Falconi,

2015]. Between those two events, a woman experiences about 451 menstrual cycles

[Chavez-MacGregor et al., 2008].

Prior [2020] emphasises that we must view women’s reproductive health as a multidimen-

sional, interactive, dynamic, non-linear complex system to advance our understanding in

this field. In this light, mathematical modelling of the HPG axis can contribute to inves-

tigating women’s reproductive health, including diseases such as Polycystic Ovarian Syn-

drome (PCOS). Indeed, various aspects of the female reproductive axis have been subject

to mathematical modelling-based studies [Fischer-Holzhausen and Röblitz, 2022b; Zavala

et al., 2019]. Voliotis et al. [2018] present a mathematical model that underpins the role

of neuronal control for the secretion of Gonadotropin-Releasing Hormone (GnRH) and

Luteinising Hormone (LH) – both hormones are involved in regulating the menstrual

cycle. With the higher-ranking aim of developing a model that can predict the effects

of chemical compounds (e.g. drugs or toxins), J. Selgrade and P. Schlosser introduced

the first mathematical model of the human menstrual cycle that is based on the knowl-

edge of underlying mechanisms [Schlosser and Selgrade, 2000; Selgrade and Schlosser,

1999]. Their model describes the interactions between the five essential hormones that

regulate the menstrual cycle. The simulation results display the time evolution of those

hormones correctly. Harris [2002] and Clark et al. [2003] added an ovarian compart-

ment to the model introduced by J. Selgrade and P. Schlosser. This newly introduced

compartment describes the maturation of ovarian follicles and the production of ovar-

ian hormones. Harris [2002] and Clark et al. [2003] observe two stable solutions for their

model. One stable solution displays hormone profiles expected for a regular menstrual

cycle, whereas the other shows characteristics of hormone profiles observed in PCOS pa-

tients. This second stable solution allows them to investigate whether a progesterone

treatment could restore normal hormone profiles in PCOS patients. Hence, they were

the first to demonstrate the model’s applicability in simulating the effects of hormonal

treatment on hormone profiles. Reinecke and Deuflhard [2007] and Reinecke [2009] used
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the model from Harris [2002] as a starting point and increased the model complexity by

adding a description of the GnRH pulse generator as well as receptor binding and recy-

cling mechanisms. Reinecke [2009] applies the model in a pharmacological setting and

simulates the administration of hormonal contraceptives, including the effects of intake

errors. Wright et al. [2020] also test the effects of hormonal contraception on hormone

dynamics. However, they use a less complex model version than Reinecke [2009]. The

model published by Röblitz et al. [2013] is derived from the work by Reinecke [2009];

Reinecke and Deuflhard [2007]. The Röblitz et al. [2013] model focuses on describing the

GnRH receptor. Thereby, they can predict shifts in the GnRH release pattern and the

hormone profiles that result from hormonal treatments in Controlled Ovarian Stimula-

tion (COS). Mancini et al. [2018] and Sinisi et al. [2020a,b] apply the model by Röblitz

et al. [2013] in the context of precision medicine. Compared to Röblitz et al. [2013], they

cover inter-individual variability by considering multiple model parametrisations (virtual

phenotypes). In doing so, they can computationally optimise the treatment for a given

virtual phenotype.

Besides the dynamics of reproductive hormones, the development of ovarian follicles (fol-

liculogenesis) has also been subject to mathematical modelling-based studies. Clément

[1998] introduces a description of folliculogenesis on a cellular level. The proposed model

describes folliculogenesis by the time evolution of cell populations that form ovarian fol-

licles. Clément [1998] investigates the relationship between the cellular composition of a

follicle and its chances of ovulating. Recently, Clément et al. [2021] introduced a stochas-

tic model (continuous-time Markov chain model) to describe the time evolution of follicle

cell populations. Using this model, the authors study the sequence of events characteris-

ing follicle growth. Harris [2002] describes discrete developmental stages of follicles. This

description does not reveal the number of follicles in each stage but the total follicular

mass. However, this description is sufficient to describe the follicles’ hormone produc-

tion. Reinecke and Deuflhard [2007], Reinecke [2009] and Röblitz et al. [2013] adopted

this description. Lacker [1981] proposes a maturation function for each follicle. This

modelling approach allows for studying the dynamics of follicular growth in terms of fol-

licle size. Chavez-Ross et al. [1997] refine the maturation function from Lacker [1981] to

describe non-identical follicles. Considering non-identical follicles makes the model phys-

iologically more plausible and allows for the observation of a follicle growth behaviour

similar to what is described for PCOS patients. Lange et al. [2019] expanded this work

further and introduced a maturation function that incorporates the competitive interac-

tions between follicles. With this formulation, the authors can investigate the selection

of a single follicle from a cohort of growing follicles in mono-ovulatory species. The ba-

sis for the maturation function in Lacker [1981], Chavez-Ross et al. [1997], and Lange

et al. [2019] is semi-mechanistic. As an alternative, Shilo et al. [2022] introduce a matu-
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ration function motivated by the knowledge about the physiological processes regulating

folliculogenesis. This allows the authors to describe the relationship between hormonal

unbalance observed in PCOS patients and disruptions in folliculogenesis.

Whereas there are several models published dealing with the HPG axis in women of

reproductive age, very little modelling work addresses the immature and maturating

HPG axis during childhood and puberty. So far, the modelling approaches aim to predict

individual characteristics, such as puberty onset, or to find applicable puberty markers.

Cole et al. [2014] use a mixed-effect model for estimating individuals’ puberty timing and

intensity. Bruserud et al. [2020] combine breast development stage with hormone lev-

els to study the predictive value of endocrine profiles for breast development forecasts.

Those models can potentially be used as clinical discussion support systems. However,

they are not applicable to investigate fundamental questions such as (i) What regulates

and triggers the reactivation of the HPG axis during puberty? or (ii) How is the os-

cillatory hormone release pattern established over time? Nevertheless, those questions

are subjects of ongoing experimental research [Terasawa, 2022; Uenoyama et al., 2019],

and a combination of experimental and computational approaches will help us to un-

derstand the multi-factorial activation process of the HPG axis during puberty [Ojeda

et al., 2006]. A possible application of mathematical models is their integration into

the investigation of the regulatory network controlling the inhibition of the GnRH pulse

generator during childhood.

Compared to other fields in systems biology, women’s reproductive health has received

comparatively little attention. Therefore, this work, hopefully, will contribute to creating

awareness that the menstrual cycle and related disorders need to be investigated further.

Looking forward, our perception of the menstrual cycle should shift from a private matter

to a subject that is (i) of scientific interest because there are many open questions

and (ii) of social interest because it has significant implications for the health and life

quality of people worldwide. For example, PCOS, an endocrinopathy where the ovaries

produce pathologically high amounts of androgens, affects about 4%–20% of women of

reproductive age worldwide. Since PCOS can cause irregular menstrual cycles and the

absence of ovulation, it can lead to infertility. Hence, its consequences can significantly

impact the life quality of patients. However, the underlying cause of PCOS is poorly

understood, and the treatment strategies are mostly symptom-oriented [De Leo et al.,

2016; Deswal et al., 2020].

The clinical investigation of the menstrual cycle and related disorders is challenging and

time-consuming because (i) only a few species exhibit menstrual cycles, and (ii) the time

scale of the process (an average menstrual cycle length is 28 days) is comparably long.

Therefore, combining experimental with computational approaches will benefit its in-
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vestigation. Mathematical modelling can be integrated in various ways into women’s

reproductive health studies. As it has been demonstrated in previously published re-

search articles, e.g. Harris [2002], Reinecke [2009] and Röblitz et al. [2013], one great

value of mechanistic menstrual cycle models is that they provide a tool to make a pre-

diction about the effects of hormonal treatments on the hormone profiles. Also, it would

be conceivable that those models become part of toxin risk assessment studies [Lip-

scomb et al., 2012; Schlosser and Selgrade, 2000]. Furthermore, modelling can support

the investigation of pathological cases such as PCOS [Harris, 2002; Shilo et al., 2022].

PAEON [2017], Mancini et al. [2018] and Sinisi et al. [2020a,b] emphasise the potential

of mechanistic menstrual cycle models as clinical decision support systems for person-

alised treatment planning. Finally, an industrial application of a menstrual cycle model

is InSilicoENDO by InSilicoTrails [InSilicoTrials]. It is a tool to simulate treatment pro-

tocols of assisted reproduction medicine in virtual patients aiming to reduce, refine and

replace animal tests and to improve clinical trials.

As previously published menstrual cycle models, the model presented in Fischer-

Holzhausen and Röblitz [2022a] (Paper A) describes the hormone profiles of consecu-

tive menstrual cycles correctly. The novelty of the presented model is its description

of the ovarian follicles. This model describes each ovarian follicle with a maturation

function. Consequently, simulation results display growth trajectories of the individual

follicles. These simulation results can be compared to ultrasound measurements. This

comparison to clinical data monitoring folliculogenesis was not feasible with previously

published models, e.g. Schlosser and Selgrade [2000], Harris [2002], Reinecke [2009] and

Röblitz et al. [2013]. Furthermore, this change in the model formulation enables the pre-

diction of the growth of follicles under hormonal treatment (see Paper B [Fischer et al.,

2021]), which offers the potential use of the model as a clinical decision support system

in reproductive medicine.
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1.2 Outline

My modelling work on aspects of the endocrinology of the female reproductive system,

which I conducted as a PhD candidate at the University of Bergen, is summarised in three

research articles. Paper A introduces a mathematical model of the HPG axis in women.

Paper B presents a systems pharmacological study investigating the effects of different

hormonal treatment strategies on hormone dynamics and ovarian follicle growth using

the model from Paper A. Paper C shows how cross-sectional data can be integrated into

the model calibration process of a mathematical model. The presented model aims to

predict individuals’ sex hormone dynamics during puberty. Furthermore, I have been a

co-author of a Review article summarising modelling approaches developed to describe

different aspects of the human menstrual cycle and follicular maturation. (Note that the

review article does not count for the articles needed for an article-based thesis.)

This thesis is divided into two parts: “Research overview” and “Scientific articles”. The

chapters in “Research overview” provide the biological and methodological background

for the work presented in Paper A, B and C. The last chapter of this part comprises

short summaries of these articles, followed by a discussion and an outlook. The three

complete scientific papers and the review can be found in “Scientific articles”. They are

listed as follows:

Paper A S. Fischer-Holzhausen and S. Röblitz. Hormonal regulation of ovarian

follicle growth in humans: Model-based exploration of cycle variability

and parameter sensitivities. Journal of Theoretical Biology, page 111150,

2022

Paper B S. Fischer, R. Ehrig, S. Schäfer, E. Tronci, T. Mancini, M. Egli, F. Ille,

T. H. Krüger, B. Leeners, and S. Röblitz. Mathematical Modeling and

Simulation Provides Evidence for New Strategies of Ovarian Stimulation.
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Chapter 2

Endocrinology of the female

reproductive system

Hormones are essential signalling molecules that enable communication between tissues

and organs in multi-cellular organisms. The positive and negative feedback interactions

between hormones regulate physiological processes such as stress response, reproduc-

tion, and excretion [Hiller-Sturmhöfel and Bartke, 1998]. Glands are the organs that

are responsible for the synthesis and release of hormones. Reproduction is primarily

regulated by the interplay of hormones originating from three units: the hypothala-

mus, the pituitary gland, and the gonadal glands. These three glands form the so-called

Hypothalamic-Pituitary-Gonadal axis [Hawkins and Matzuk, 2008].

Even though all mammals share the same reproductive system and regulatory units

[Nowak, 2018; Yin and Ma, 2005], only a limited number of species (humans and other

higher order primates [Emera et al., 2012], elephant shrews [van der Horst and Gillman,

1941], some bats, e.g. wild fulvous fruit bats [Emera et al., 2012], and spiny mice

[Bellofiore et al., 2018]) exhibit menstrual cycles. More often, female mammals have

estrous cycles. The most significant difference between an estrous and a menstrual cycle

is the fate of the inner lining of the uterus (endometrium) in the absence of conceiving.

Whereas species exhibiting an estrous cycle absorb the endometrium into the system

(resorption), mammals with a menstrual cycle experience menstruation, which denotes

the recurrent shedding of the endometrium [Nowak, 2018].

The human menstrual cycle comprises four key elements: menstruation, follicular phase,

ovulation, and luteal phase. Fig 2.1 displays the two phases of the menstrual cycle

(follicular and luteal phase) and the events that mark the transition from one phase to

the other (ovulation and menstruation). Menstruation marks the first day of a menstrual
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cycle and the beginning of the follicular phase. The maturation of ovarian follicles

characterises this phase of the menstrual cycle. At the end of the follicular phase, one

ovarian follicle (in rare cases, more than one) will release its mature oocyte in the process

called ovulation. After ovulation, the remaining cellular material of the ovarian follicle

forms the corpus luteum, and the luteal phase begins. During this phase, the released

oocyte travels through the fallopian tube to the uterus; the endometrium is thickened

and prepared for the possible implantation of a fertilised oocyte. If the oocyte is not

fertilised, the corpus luteum will break down approximately ten days after its formation,

and menstruation begins [Hawkins and Matzuk, 2008; Jabbour et al., 2006].

Figure 2.1: Schematic representation of the key elements characterising a men-
strual cycle. The menstrual cycle starts with the first day of menstruation, which marks
the beginning of the follicular phase. During the follicular phase, ovarian follicles matu-
rate, and the endometrium thickens. Around mid-cycle, one ovarian follicle releases its
oocyte during ovulation, and the remaining cellular components form the corpus luteum.
Supposed the oocyte is not fertilised during the luteal phase, menstruation begins. [This
figure is created with Biorender.com]
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The menstrual cycle (Fig. 2.1) is governed by the endocrine control of the HPG axis

(Fig. 2.2). The hypothalamus, the pituitary, and the ovaries are the three units build-

ing the HPG axis in women. During childhood, the secretion of GnRH is suppressed,

and the HPG axis is inactive. Hence, there is a lack of reproductive function before

puberty. With the onset of puberty, the HPG axis starts to mature, and the amounts

of reproductive hormones in the system increase. That causes characteristic changes

such as the transformation of body shape and sex organs, the growth of body hair and

changes in social behaviour [Ellison et al., 2012; Oakley et al., 2009]. A milestone of

girls’ puberty is the first menstrual bleeding (menarche) occurring between the age of 10

to 16 [Eckert-Lind et al., 2020; Marques et al., 2022; Pinyerd and Zipf, 2005]. About 1-2

years after menarche, the endocrine control of a regular and ovulatory menstrual cycle

is established [Carlson and Shaw, 2019].

The positive and negative feedback relationships between five hormones, secreted from

the three glands of the HPG axis, are central to controlling the menstrual cycle

(Fig. 2.2). The hypothalamus, located above the brainstem, synthesises and releases

the Gonadotropin-Releasing Hormone. The role of GnRH is to stimulate the release of

the Follicle-Stimulating Hormone (FSH) and the Luteinising Hormone from the pitu-

itary gland. GnRH has a characteristic pulsatile release pattern controlled by the GnRH

pulse generator, a functional unit of the hypothalamus formed by a subpopulation of

neurons. This release pattern varies throughout a menstrual cycle, and its variation is

mainly regulated by Estradiol (E2) and Progesterone (P4) [Bliss et al., 2010; Herbison,

2018; Nagae et al., 2021; Pohl and Knobil, 1982]. Having this release pattern provides

the system with two beneficial properties: (i) it prevents the desensitisation of the pitu-

itary gland to GnRH [Belchetz et al., 1978; Ulloa-Aguirre and Timossi, 2000], and (ii)

variations in the release pattern allow for more complex signalling patterns [Haisenleder

et al., 1991; Thompson and Kaiser, 2014; Ulloa-Aguirre and Timossi, 2000]. In partic-

ular, FSH signalling is favoured at low GnRH release pulse frequencies, whereas high

GnRH release pulse frequencies promote LH synthesis. FSH and LH are synthesised and

released from the pituitary gland, which is located underneath the brain behind the nose

bridge. Both hormones reach the ovaries via the bloodstream, where they have regula-

tory functions in the process of folliculogenesis. The ovaries are the main location of E2

and P4 production and secretion [Christensen et al., 2012; Hawkins and Matzuk, 2008].

E2 and P4 form a feedback loop back to the hypothalamus and pituitary gland.
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Figure 2.2: Schematic representation of the endocrine regulation of the HPG
axis. The interplay between the hypothalamus (blue), pituitary (pink) and ovaries (red)
has a central role in ensuring female reproduction. The hypothalamus secrets GnRH. It
stimulates the synthesis and release of FSH and LH from the pituitary. Growing ovarian
follicles (represented in yellow) are the primary source of E2 during the follicular phase.
E2 secreted alone has positive feedback on the hypothalamus and the pituitary. LH
triggers the release of a mature oocyte (ovulation). The corpus luteum (represented in
orange), formed after ovulation, produces E2 and P4. The simultaneous secretion of
these two ovarian hormones has an inhibitory effect on the hormone secretion from the
hypothalamus and the pituitary. [This figure originates from [Fischer-Holzhausen and
Röblitz, 2022b]]
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At birth, the ovaries provide a large pool of resting follicles, which declines in size over

a women’s lifetime. Notable is that only a small fraction of those follicles will ovulate,

whereas the majority of follicles undergo atresia [Faddy and Gosden, 1996; Faddy et al.,

1992]. At puberty, the recruitment of follicles for further maturation begins. Baerwald

et al. [2003a,b] provide experimental evidence supporting that maturation of ovarian

follicles in humans is a synchronized process. The authors describe that groups of 4-

14 ovarian follicles (called follicular cohorts or follicular waves) enter the maturation

process together. Furthermore, the authors detect two to three of those follicular waves

appearing per menstrual cycle. One wave is observed during the follicular phase, also

called the major wave, and up to two minor waves emerge during the luteal phase.

However, only one follicle – in rare cases, two follicles – selected from the major wave

ovulates around mid-cycle. A follicle selected for ovulation is also called the dominant

follicle.

Folliculogenesis and hormone dynamics interact as shown in Fig. 2.3. FSH stimulates

the growth of ovarian follicles. At this, the concentration and duration of elevated FSH

levels have an important regulatory function [Fauser and van Heusden, 1997; Schipper

et al., 1998]. FSH needs to exceed a threshold (FSH threshold concept) to stimulate the

growth of ovarian follicles. The limited duration of the elevation in the FSH concentration

ensures the full maturation of a single follicle (FSH window concept) [Fauser, 1994;

Schipper et al., 1998].

At the end of the luteal phase, FSH starts to rise. That increase in the FSH level trig-

gers the growth of ovarian follicles of the major wave. During the early follicular phase,

all follicles of that wave compete for dominance. Their secretion of E2 is critical for

this competition. As a consequence of follicular growth, the E2 concentration increases

and causes an inhibition of the FSH secretion from the pituitary gland. Hence, the FSH

level decreases, falling under the threshold necessary to stimulate follicular growth. One

follicle of the major wave has an advantageous precondition compared to other follicles

of the same wave and continues growing without further FSH stimulation. Its secre-

tion of E2 and inhibin promotes the growth suppression of the other follicles further

[Ginther et al., 2001; Macklon and Fauser, 2001]. Eventually, one follicle becomes domi-

nant and increases its E2 production. This increase in the E2 level stimulates the release

of LH, which peaks around mid-cycle and stimulates the ovulation of the dominant folli-

cle [Hawkins and Matzuk, 2008; Richards et al., 2010]. During ovulation, the dominant

follicle releases its oocyte, and its cellular parts form the corpus luteum. Due to the dis-

integration of the dominant follicle, its E2 production stops [Buffet et al., 1998; Reed

and Carr, 2015]. After ovulation, the corpus luteum becomes the primary source of E2

and P4. The simultaneous release of E2 and P4 from the corpus luteum suppresses the

release of FSH [Devoto et al., 2009; Stocco et al., 2007], causing an endocrine environ-
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Figure 2.3: Illustration of hormone and follicle dynamics throughout one men-
strual cycle. The upper panel shows the folliculogenesis, including the ovulation of
a dominant follicle around mid-cycle. The middle panel shows the FSH profile. The
dashed line indicates the FSH threshold. The lower panel shows the hormone dynam-
ics of E2, P4 and LH. The vertical dotted line highlights the alignment of the LH peak
with the ovulation.
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ment that does not promote the competition between follicles [Baerwald et al., 2003a].

Consequently, follicle selection for dominance does not occur during the luteal phase. In

cases where the oocyte, released during the last ovulation, did not get fertilised, the cor-

pus luteum degrades. Consequently, E2 and P4 levels decrease towards the end of the

luteal phase [Devoto et al., 2009; Stocco et al., 2007] and menstruation begins.

The feedback loops of the HPG axis result in oscillatory hormone dynamics (Fig. 2.3).

The period of this oscillatory pattern is better known as Menstrual Cycle Length (MCL).

On average, a menstrual cycle takes 28 days, and a healthy MCL ranges from 21 to 40

days [National Health Service, 2023]. Inter- and intra-individual variabilities are reported

and can have various causes. The literature discusses the effect of intrinsic and extrinsic

factors on MCL. Discussed intrinsic factors are: body weight, age, age at menarche,

genetic factors and ovarian function. According to Campbell et al. [2021], the MCL’s

age-dependent shift is the best documented intrinsic factor. Several studies suggest

longer MCL for obese women [Grieger and Norman, 2020; Lay et al., 2021; Tayebi et al.,

2018], but the picture is not clear yet. Diseases such as endometriosis and PCOS impinge

on MCL. Shift work is a possible extrinsic factor for MCL variability because it disrupts

the circadian rhythm. Other extrinsic factors under investigation include exercise and

consumption habits (dietary, alcohol, smoking, and drugs). Overall, it is essential to

understand the causes of variability in MCL because it is an indicator for reproductive

health [Campbell et al., 2021].

Infertility

Interruptions in the endocrine regulation of the human menstrual cycle (Fig. 2.2 and

Fig. 2.3) impair reproductive function and can cause infertility. For example, the ab-

normal hormone secretion pattern observed in PCOS patients increases the probability

of experiencing anovulatory cycles and developing ovarian cysts. Furthermore, it may

impair the ability of the endometrium to prepare for a possible pregnancy. All those

factors compromise conceiving.

In a clinical sense, a couple is categorised as infertile if they do not conceive within

the first year of unprotected intercourse during the fertile phase of the menstrual cycles

[Evers, 2002]. According to the WHO [World Health Organization, 2022], infertility

affects approximately 15% of people of reproductive age. Since infertility prevents people

from fulfilling their desired social role, it has significant implications for their lifes [Greil

et al., 2010]. Consequently, those individuals suffer not only from unwanted childlessness

and its underlying cause but also from the resulting psychological and psycho-social
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burdens [Chow et al., 2016; Ho et al., 2020; Malina and Pooley, 2017]. Due to the high

number of affected individuals and its drastic consequences, infertility can be seen as a

global health issue [World Health Organization, 2022].

The causes of infertility are diverse. In about 85% of all cases, dysfunctions in the fe-

male or/and male reproductive system are the reason for infertility [Carson and Kallen,

2021]. In one-third of cases, a female factor is responsible for the experienced condition.

Typical dysfunctions that cause the failure of the female reproductive system are dis-

orders that cause anovulation/irregular ovulations (oligo-ovulation), such as PCOS and

endometriosis, or abnormalities of the fallopian tubes [Unuane et al., 2011].

In many cases, In Vitro Fertilisation (IVF) can lead to a successful pregnancy by combin-

ing an oocyte and a sperm cell outside the human body (in vitro) and then reimplanting

the fertilised oocyte into the uterus. It is a three-step procedure: (i) egg retrieval through

Controlled Ovarian Stimulation, (ii) fertilisation of oocytes in the laboratory, and (iii)

embryo transfer into the uterus [Anwar and Anwar, 2016]. In COS, the patient under-

goes a hormone treatment to synchronise the maturation of multiple ovarian follicles,

which are subsequently removed from the ovaries [Macklon et al., 2006].

There are several protocols established for COS. The most commonly applied protocols

are the GnRH agonist protocol and the GnRH antagonist protocol [Karimzadeh et al.,

2010]. Often, COS goes along with significant discomfort [Zech et al., 2015] and the risk of

developing Ovarian Hyperstimulation Syndrome (OHSS) [Whelan III and Vlahos, 2000].

Enlarged ovaries are the most prominent characteristic of OHSS, but its symptoms range

from abdominal pain, nausea and vomiting to severe complications such as acute renal

failure [Kumar et al., 2011]. Another challenge in COS is patients showing only low

numbers of maturating oocytes as treatment response (poor responder) [Polyzos and

Sunkara, 2015]. Both the excessive and poor treatment response impair the success rate

of COS. Consequently, there is an interest in developing new protocols that will increase

the treatment’s success and decrease its side effects [Polyzos and Sunkara, 2015; Zech

et al., 2015].

Follicle growth in cohorts allows for new COS protocols [Sighinolfi et al., 2018]. One

example is the stimulation during the luteal phase. This new stimulation strategy tries to

prevent follicles of a minor wave from undergoing atresia. Therefore, FSH is administered

to widen the FSH window [Kalra et al., 2008; Kuang et al., 2014b; Rombauts et al.,

1998]. Another new strategy that takes advantage of the presence of multiple follicular

waves within a menstrual cycle is the double stimulation protocol. Here, two consecutive

stimulation cycles are performed, which increases the number of oocytes retrieved in the

time span of one menstrual cycle [Kuang et al., 2014a; Vaiarelli et al., 2018]. Overall,
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those new protocols hold promises. They are more flexible concerning treatment timing

and, consequently, also applicable for patients where time is a limiting factor, e.g., cancer

patients. Also, they might increase success rates of COS or decrease side effects [Sighinolfi

et al., 2018]. Hence, various patient groups could benefit from new COS approaches.

In conclusion, infertility is a condition that various factors can cause but usually goes

along with significant effects on the lives of individuals. IVF offers individuals suffering

from infertility alternatives to natural conceiving. However, the treatment procedure, the

side effects, and the not negligible failure rates are stressors for patients [Verhaak et al.,

2007]. In addition, in many cases, more than one treatment cycle is needed [Wade et al.,

2015]. Therefore it is crucial to investigate new approaches and protocols for COS that

further increase success rates and reduce treatment time and side effects. Additionally,

treatment protocols tailored to patients’ needs are desirable [Sighinolfi et al., 2018].

For treatment testing and personalised treatment optimisation, mathematical models

describing the human menstrual cycle hold the promise to be helpful. Models could be

applied to predict the effects of drugs on the menstrual cycle. Such simulation-based

studies could help us better understand the consequences of, for example, hormonal

medication for the reproductive system. Furthermore, those models could be integrated

into developing new drugs and treatment protocols because they provide us with a tool

to reduce the experimental effort, making the drug development process safer and more

efficient. A possible clinical application of menstrual cycle models is their use as clinical

decision support systems in the context of IVF. A model that can predict individual

IVF outcomes under different treatment conditions would be a valuable tool [Ehrig et al.,

2016; Mancini et al., 2018; PAEON, 2017].
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Chapter 3

Mechanistic modelling in systems

biology

Lazebnik [2002] explains why systems approaches are needed to understand biological

systems using the illustrative example of comparing a radio with a signalling pathway.

He states that both are similar because they convert signals and are composed of small

functional units. According to Lazebnik [2002], we need knowledge about the interactions

of functional units and the consequences of those interactions to be able to understand

how a radio works, i.e. more than an in-depth understanding of the functional units is

required to grasp the functionality of a radio. The same applies to systems in biology,

such as signalling pathways or endocrine regulation. We must understand the functional

units and their interactions to understand their dynamic behaviour.

In science, models are used to understand, explain and predict the behaviour of real

objects or systems. There are various ways to formulate scientific models, e.g. graphi-

cal representations such as diagrams, physical analogues or mathematical formulations

and computer simulations. Mathematical modelling and simulation provide practical

approaches and tools to gain a deeper understanding of the dynamic behaviour and

higher-level functions we observe in biological systems. Often, the aim is to mimic and

predict the system’s behaviour, thereby gaining new insights [Gunawardena, 2014; Klipp

et al., 2016; Wolkenhauer, 2014]. There are two main groups of mathematical models: (i)

empirical models and (ii) mechanistic models [Smye and Clayton, 2002]. Observations,

e.g. experimental data, mainly guide the construction of an empirical model. On the

contrary, mechanistic models are based on a theory or prior knowledge we have about the

system. Mechanistic models are a central element in the field of computational systems

biology.
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To formulate a mechanistic model, prior knowledge and assumptions about the biological

system can be translated into a system of Ordinary Differential Equations (ODEs) in

a step-wise process (Fig. 3.1) [Madhavan and Mustafa, 2022]. Such systems of ODEs

allow us to study the time evolution of a set of interacting objects. However, systems

of ODEs are only one possible formulation of mechanistic models. Other examples of

model frameworks are systems of partial differential equations, agent-based models or

Boolean models [Klipp et al., 2016].

During the modelling process, one aims for a “good” and “useful” model [Smye and

Clayton, 2002; Wieland et al., 2021] with regard to:

- Accuracy: minimal error between model trajectories and measured data

- Predictive value: formulation of experimentally testable hypotheses based on sim-

ulation

- Complexity: model size tailored to the purpose

- Plausibility: mechanistic description and parameter ranges within the model con-

text

- Usefulness: model serves its purpose.

At the beginning of the mechanistic modelling process (Fig. 3.1), the model’s scope and

purpose are set, and prior knowledge about the system is gathered. Prior knowledge

may be found in the literature and in databases (KEGG [Kanehisa and Goto, 2000],

Reactome [Fabregat et al., 2018], BioModels [Le Novere et al., 2006; Malik-Sheriff et al.,

2020]). The amount of available prior knowledge and data limits the possible model

complexity [Cvijovic et al., 2014].

In the “Design” step (Fig. 3.1), this systematically collected prior knowledge provides

the foundation for a qualitative description of the system (conceptual model). The

conceptual model represents all mechanisms and interactions presumably essential for the

system and its behaviour; it is often realized as a cartoon-like schema. The conceptual

model provides the basis for constructing a mechanistic model and, therefore, is an

integral part of the model building process.

In the context of this thesis, the chosen modelling framework is the system of ODEs

(Sec. 3.1). In this setting, model parameters (e.g. synthesis or clearance rates) must

be specified. In some cases, these parameters are found in the literature or measured

directly. However, it is prevalent that at least a subset of model parameters needs to
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Figure 3.1: Illustration of the ODE model construction, calibration and anal-
ysis workflow. The presented workflow consists of five steps. (1) A model scope is
defined, and knowledge about the system is gathered. (2) Design: Based on the knowl-
edge of the system, a diagram of its components and their interactions is constructed
and translated into a set of ODEs. (3) Model building: The mathematical model needs
to be implemented in a programming language of choice to perform numerical simula-
tions. Model parameters are either derived during model calibration or from literature
research. Different approaches can be applied to assess parameter identifiability (see
Wieland et al. [2021]) (4) Model analysis and verification: Various methods are available
to analyse the model uncertainty and sensitivity (see Villaverde et al. [2022a]). (5) Us-
age. Curved grey arrows indicate that this workflow is an iterative and interdisciplinary
process. Results from steps (3) and (4) can also be used to guide further experimental
investigations.

be estimated based on experimental data (model calibration (Sec. 3.2)). The model

calibration is vital to building a “good” model that can generate meaningful predictions.

Besides model calibration, model analysis and verification are also integral parts of the

model building process. From an identifiability analysis, one gains knowledge about

ambiguities in the model structure and tests whether the available data is sufficient

to estimate parameter values with finite Confidence Intervals (CIs) (Sec. 3.3) [Wieland

et al., 2021]. Both the model structure and the parameter values are subject to un-

certainty [Mitra and Hlavacek, 2019; Schaber et al., 2009], which needs to be assessed

(Sec. 3.4). Perturbations in the model input can propagate through the model, which can
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be investigated by applying a Sensitivity Analysis (SA) (Sec. 3.5) [Sumner et al., 2012].

Identifiability analysis, uncertainty quantification and sensitivity analysis are essential

to evaluate a model’s robustness and predictive value and, thereby, its applicability [Eck

et al., 2016].

As Fig. 3.1 shows, constructing an ODE model is an iterative process, where simulation

results may guide experiments, and the modelling process integrates insights from exper-

iments. Especially model building and analysis provide valuable information concerning

the following two questions [Wolkenhauer and Mesarović, 2005]:

- Is the amount and quality of the available experimental data sufficient to construct

a model that can serve its purpose?

- Is knowledge about the underlying mechanisms missing?

Mathematical models, in general, serve various purposes [O’Malley and Dupré, 2005]. In

a so-called model-driven experimental setting, the model guides experimental decisions.

A model can also be used to test different hypotheses – a special case of hypothesis test-

ing being model selection. In model selection, the aim is to identify the most plausible

model structure from a population of models [Kirk et al., 2013; Schaber et al., 2009]. In

medical research, one important model purpose is the ability to make (patient-specific)

predictions, e.g. a treatment outcome or a disease progression [Hastings et al., 2020;

Kohl and Noble, 2009; Wierling et al., 2015]. One example of a predictive model that

fits the context of this thesis is the work by Gavina et al. [2022]. Gavina et al. [2022]

use a menstrual cycle model to estimate the minimum dosage for different contracep-

tive medications and to determine the optimal dosage timing to achieve contraception.

Furthermore, mathematical models can also help to investigate drug effects, as Wright

et al. [2020] demonstrate. The authors use a mechanistic model of the menstrual cycle to

study how hormonal contraception might affect the hormone dynamics of the menstrual

cycle and thereby prevent ovulation.

So far, I have based my discussion about modelling on the five criteria (see page 22)

for a “good” model. Cho and Wolkenhauer [2003] and Wolkenhauer [2014] give an

additional argument for the value of modelling. Both argue in favour of the value of the

modelling process itself because it can be interpreted as a way to collect and integrate

knowledge about the system in question. Thus, model construction enables systematic

thinking about the system. Furthermore, the modelling process can reveal, for example,

knowledge gaps and core dynamics/components of the system.

In conclusion, a mathematical model built thoroughly in terms of complexity and ac-

curacy is a valuable addition to the experimental investigation of biological systems
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[Aderem, 2005]. Such a model can be used for various tasks, such as predicting long-

term dynamics or behaviour under perturbation. Furthermore, modelling allows for

the investigation of features of the biological system that result from the interaction of

its components (emergent properties) [Aderem, 2005]. Eventually, the modelling cycle

(Fig. 3.1) enforces a systematic way of thinking that can help to deepen our understand-

ing of a complex system.

This thesis presents a modelling-based investigation of the dynamic behaviour of repro-

ductive hormones in girls and women. The known regulatory feedback loops between

reproductive hormones are encoded in mechanistic models, formulated as systems of non-

linear ODEs. In the following sections, I introduce the general principles that guided my

model formulation and analysis.

3.1 Principles of model construction

Endocrine systems can be interpreted as non-linear dynamic systems, where the con-

centration of each hormone changes in time due to their regulatory interactions. One

possible way to capture an endocrine system mathematically is to translate it into a set

of ODEs. Solving those constitutes a way to investigate the system’s dynamic behaviour

computationally [Strogatz, 2018].

Generally, a system of ODEs is defined as

dx(t, θ)

dt
= f(x, t, θ), (3.1)

where f(x, t, θ) is a function that describes the derivative of the system’s components

(e.g. hormone concentrations) in time. To investigate the system’s time evolution,

Equation 3.1 is integrated for a given set of initial conditions x0 and parameters θ.

Solving this initial value problem yields x(t, θ), e.g. the hormone concentration at each

time point. For most systems in biology, an analytical solution of the ODE can not be

obtained. Consequently, the initial value problem has to be solved numerically.

The models considered in this thesis describe the time evolution of each reproductive

hormone by its synthesis-clearance relationship, as illustrated in Fig 3.2. The respective

ODE describing the rate of change of hormone S1 reads:

dS1

dt
= ksyn · stimS2 − kclS1, (3.2)
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ksyn and kcl are the rate constants for the synthesis and clearance of S1, respectively. The

variable stimS2 denotes the stimulatory effect that the hormone S2 has on the synthesis

of S1 (Fig. 3.2).

Figure 3.2: Schematic representation of a synthesis-clearance relationship. This
example system consists of two components: S1 and S2. S1 is synthesised with the rate
constant ksyn and removed from the system with rate constant kcl. S2 has a stimulating
effect on the synthesis of S1.

Often, giving detailed mechanistic descriptions of feedback interactions is not possible.

For stimulatory and inhibitory feedback mechanisms, Hill functions can be utilised as a

heuristic/quantitative description. The positive Hill function for stimulatory interactions

(H+) and the negative Hill function for inhibitory interactions (H−) are given by the

following equations:

H+(Si, T
j
i , n

j
i ) =

(Si/T
j
i )

nj
i

1 + (Si/T
j
i )

nj
i

H−(Si, T
j
i , n

j
i ) =

1

1 + (Si/T
j
i )

nj
i

.

(3.3)

The regulatory effect of Si on Sj is characterised by the Hill threshold T j
i > 0 and the

Hill exponent nj
i > 0. If the concentration of Si approaches T j

i , its regulatory action

establishes. The value of nj
i determines the steepness of the switch-like behaviour that

a Hill function exhibits, i.e. with higher nj
i values, the switch is more rapid [Reinecke,

2009; Santillán, 2008].

Mathematical models in systems biology vary in complexity and abstraction. Conse-

quently, the size of the system of ODEs and the dimension of the associated parameter

space differ too. Several tools and techniques have been established to calibrate and

analyse ODE models [Villaverde et al., 2022a]. The following sections give an overview

of well-established methods, focusing on those used for the research conducted for this

thesis.



3.2 Parameter estimation 27

3.2 Parameter estimation

Model calibration is one important step of the model building process. The model cali-

bration aims to fit the model’s prediction to experimental data [Banga, 2008; Raue et al.,

2013b; Schmiester et al., 2020]. In the context of this thesis, fitting means finding a set

of model parameters for which the error between the simulation trajectory (the solution

of the corresponding initial value problem) and given data is minimised. Hereby, model

parameters can be directly derived from experiments or inferred from the data using

statistical estimators. Determining a model parameter directly from experiments/the

literature is only possible if the parameter relates directly to a biological observable. Be-

cause of the level of abstraction we encounter in the mathematical model, this direct

measurement is often not feasible. A direct measurement, for example, fails for the Hill

threshold and exponent (Eq. 3.2) because the Hill function is a mechanistic simplifica-

tion. Those parameters that can not be measured need to be estimated by applying

statistical model fitting methods [Ashyraliyev et al., 2009; Jaqaman and Danuser, 2006;

Schittkowski, 2002].

The estimation of parameters θ of a mathematical model as given in Eq. 3.1 with ex-

perimental data is called the inverse problem [Tarantola, 2006]. The inverse problem

is the reverse of the forward problem, which is solving the initial value problem for a

given set of parameters [Otten, 2003]. The inverse problem entails several challenges,

such as parameter identifiability (Sec. 3.3), noise present in the data [Ashyraliyev et al.,

2009; Aster et al., 2018], the shape of the error landscape and the uniqueness of optimal

solutions.

The objective of parameter estimation is to find the set of model parameters that fits

the data best. One way to solve such a parameter estimation problem is to consider it

as a regression problem of a statistical model

y(t) = x(t, θ) + ϵ(t, σ), (3.4)

with y(t) presenting the measurements and x(t, θ) denoting the solution of Eq. 3.1. The

random noise summarising all the effects resulting in a variance of the data around the

model prediction x(t, θ) is given by ϵ(t, σ). Often it is assumed that ϵ(t, σ) is normally

distributed [Schmiester et al., 2020]. However, alternative noise models are, for example,

the Laplace or the Cauchy distribution [Maier et al., 2017].

Finding the parameters θ in Eq. 3.4 usually resembles an optimisation problem.

One possible formulation of such an optimisation problem is minimising the func-
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tion J(θ) = d(y(t), x(t, θ)), which describes the distance between the data y(t) and the

model’s predictions x(t, θ). Minimizing the distance between the model prediction and

the data yields an optimal parameter set θ̂ [Moles et al., 2003; Raue et al., 2013b; Sun

et al., 2011].

In systems biology, a commonly used approach for parameter estimation is Maximum

Likelihood Estimation (MLE) ( Sec. 3.2.1). The resulting Maximum Likelihood (ML)

estimate is the parameter set that maximises the probability of observing the data un-

der the given model [Myung, 2003]. In some cases, however, it is preferable to choose a

Bayesian estimator, for example, when dealing with noisy or sparse data. In a Bayesian

setting, prior knowledge about the model parameters represented as prior parameter

distributions gets updated by using additional information (e.g. experimental data),

resulting in posterior parameter distributions. From these distributions, statistical mea-

sures such as the mode, which is of interest for Maximum A Posteriori (MAP) estimation

(Sec. 3.2.2), can be computed [Kramer and Sorenson, 1988; Wilkinson, 2007]. MLE and

MAP rely on the formulation of a parametric likelihood function that gives a measure for

the probability of a certain parameter set resulting in the observation of the given data.

For some models, it is not straightforward to formulate such a parametric likelihood

function. In these cases, Approximate Bayesian Computation (ABC) [Csilléry et al.,

2010; Liepe et al., 2014; Toni et al., 2009] provides a valuable alternative (Sec. 3.2.3).

The ABC algorithm bypasses the likelihood function by simulation and comparison of

the data y(t) with the simulation trajectory x(t, θ) based on user-defined criteria. Over-

all, there is no general solution to all parameter estimation problems, which makes the

task challenging.

3.2.1 Maximum likelihood estimation

In MLE, we search for the most likely model parameters given some observed data. With

this, the likelihood function L(θ) is a joint probability, i.e. the product of the conditional

probabilities of observing the data given the parameter set θ. For a data set with Nt

independent observations for each of the Nobs observed species, the likelihood function

reads [Fisher, 1922; Myung, 2003]:

L(θ) =
Nt∏

i=1

Nobs∏

j=1

p(yi,j|θ). (3.5)

Here, yi,j denotes the data point of the j-th species observed at the i-th time point.
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The ML estimate θ̂ML(y) is the parameter set for a given data set y(t) that maximises

L(θ). Because L(θ) > 0 and log is monotone,

θ̂ML(y) = argmax
θ∈Θ

L(θ) = argmin
θ∈Θ

(−log(L(θ))). (3.6)

In other words, with θ̂ML(y), we have the highest probability of obtaining the data y(t).

When estimating parameters in systems biology, we often assume that:

- the only source for a mismatch between the model trajectories x(t, θ) and the data

y(t) is measurement noise

- the measurements are uncorrelated, and their noise is normally distributed.

Then −log(L(θ)) can be written as weighted sum of squared residuals [Raue et al., 2013a;

Schmiester et al., 2020]:

−log(L(θ)) =
Nt∑

i

Nobs∑

j

(yi,j − xj(θ, ti))
2

2σ2
i,j

+ const. (3.7)

Thus, the MLE is equivalent to the minimum in the objective function formulated as

the mean squared error. The optimal parameter set θ̂ML(y), resulting from numerical

optimisation, is a point estimate and, therefore, does not provide information about the

uncertainty of the forecast. Combining MLE with an investigation of the uncertainty

(Sec. 3.4) allows for gaining a more complete picture of the model parameters [Etz, 2018;

Myung, 2003; Villaverde et al., 2022a].

3.2.2 Maximum a posteriori estimation

The aim of MAP estimation is to estimate the mode of the posterior distributions of the

model parameters. The posterior distribution p(θ|y) can be expressed following Bayes

theorem:

p(θ|y) = p(y|θ)p(θ)
p(y)

. (3.8)

p(θ|y) denotes the conditional probability density of a parameter set given the data.

p(y|θ) is the conditional probability of observing a data set given a set of parameters.
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For a fixed data set y(t), p(y|θ) is equal to the likelihood L(θ) (Sec. 3.2.1). p(θ) and p(y)

are the probabilities of observing θ or y without any conditions. Because p(y) refers to

the data and is therefore fixed, p(y) is a normalizing constant [Etz and Vandekerckhove,

2018; Mitra and Hlavacek, 2019; Villaverde et al., 2022b]. Consequently, the posterior

in Eq. 3.8 can be phrased as proportional to the product of the likelihood and the prior:

p(θ|y) ∝ L(θ)p(θ). (3.9)

The posterior p(θ|y) can be approximated numerically using a sampling strategy. Typi-

cally, Markov Chain Monte Carlo (MCMC) sampling algorithms are utilised to approx-

imate the posterior distribution by creating a large number of samples [Andrieu et al.,

2003]. The Metropolis–Hastings (MH) algorithm is a popular example of a MCMC algo-

rithm. An acceptance-reject strategy forms its foundation. Here, the decision is based on

comparing the values of f(θ), where f(θ) is chosen to be proportional to p(θ|y). Start-

ing from an arbitrary set of parameters θ0, the MH algorithm realises a Markov chain in

the parameter space by executing repeatably the following two steps:

1. Proposing step: sampling a parameter set θ
′
based on the current set of parameters

θ∗

2. Accept-reject step: θ
′
is tested against the Metropolis criterion r = f(θ

′
)

f(θ∗)

– if r ≤ u with u being a random number from the uniform distribution u ∈ [0, 1]

then θ
′
is accepted and replaces θ∗

– else r > u with u being a random number from the uniform distribution

u ∈ [0, 1] then θ
′
is rejected

Over the sampling time, the Markov chain will converge towards a stationary distri-

bution, approximating the desired parameter posterior distribution [Hastings, 1970;

Metropolis et al., 1953]. The mean of this posterior distribution is the MAP estimate.

Additional statistical measures, such as the median or percentiles, can be computed from

the posterior distribution.

3.2.3 Approximate Bayesian Computation

The ABC method enables the estimation of parameter distributions without calculating

a likelihood. The simplest ABC approach is an acceptance-reject sampling routine [Kirk

et al., 2013; Liepe et al., 2014; Pritchard et al., 1999], as follows:
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1. Create a parameter set θ∗ by sampling each parameter θi from its proposal distri-

bution πi(θi)

2. Calculate x(θ∗, t) by solving the forward problem

3. Compare x(θ∗, t) with the data set y(t). If the difference between x(θ∗, t) and y(t)

is sufficiently small, θ∗ is accepted.

After a sufficiently larger number of sampling iterations, the posterior parameter distri-

bution can be constructed from all accepted θ∗.

The comparison step in the ABC method allows model calibration using non-numeric

measures. For example, in Fischer et al. [2021], the divergence between y(t) and x(θ∗, t)

is evaluated based on a comparison of characteristic features of the hormone profile (e.g.

an increase in FSH concentration 2 days before ovulation) and the physiological cycle

length (see Fig. 2 in Paper A, Part II).

3.3 Parameter identifiability

The amount and quality of available data are a bottleneck for constructing mathematical

models of biological systems. Often, systems are only partially observable - meaning

experimental data are only available for a fraction of model components. Additionally,

biological data are noisy. Whether the model parameters can be inferred with finite

confidence intervals given the model’s structure and the available data can be investigated

by performing an identifiability analysis. The results from an identifiability analysis help

to evaluate the model’s applicability [Guillaume et al., 2019] and can guide further data

collection and model reduction [Maiwald et al., 2016].

The literature defines two types of parameter identifiability: structural and practical

identifiability. A structurally identifiable model has a unique parameterisation for each

model prediction. Structural non-identifiability roots in the model’s formulation. For

example, redundancies in the model cause structural non-identifiability. Practical non-

identifiability results from the amount and quality of available data. A parameter is

practically non-identifiable if the information in the given data is insufficient to make a

precise estimate [Lam et al., 2022; Wieland et al., 2021].

Identifiability analysis tools are divided into a-priori and a-posteriori/data-driven meth-

ods. A priori methods investigate the model structure and, therefore, do not require any

data. Hence, the results do not provide information about practical non-identifiability.
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A-priori methods have their theoretical origin in various mathematical concepts. One

example is the investigation of the symmetry properties of the system by using Lie group

theory [Wieland et al., 2021]. In contrast, a-posteriori methods need data. Consequently,

their results will also indicate if the available data suits the model’s complexity. In sys-

tems biology, the Profile Likelihood (PL) approach (Sec. 3.3.1) is a popular method to

investigate identifiability [Kreutz et al., 2013; Raue et al., 2009]. This method covers

the investigation of structural and practical identifiability locally. Furthermore, the lit-

erature provides us with Bayesian approaches to characterise model identifiability [Daly

et al., 2018; Hines et al., 2014; Siekmann et al., 2012]. Here, the computed posterior

distribution reveals the parameter ranges that agree with the data, and conclusions

about parameter identifiability can be drawn based on how well the parameter ranges

are constrained. Raue et al. [2013a] compare identifiability analysis results obtained

through MCMC sampling and PLs. The authors conclude that both methods indicate

non-identifiable model parameters, but the PL results are easier to interpret.

Parameter identifiability is one aspect to be considered when constructing mathematical

models in biology. As outlined above, there are various methods to investigate identi-

fiability. Even though a fully identifiable model is desirable, it is often not achievable

due to the technical limitations of data collection. Rateitschak et al. [2012] demonstrate

that a model can be valuable and applicable for predictive work, even though it is not

fully identifiable.

3.3.1 Profile likelihood

Raue et al. [2009] introduce the idea of investigating the identifiability of model param-

eters in systems biology by using PLs [Murphy and Van der Vaart, 2000]. PLs project

the likelihood function value onto each model parameter separately, i.e. for a parameter

θi, all remaining parameters θj ̸=i are reoptimised. The Profile Likelihood of a parameter

θi reads:

PL(θi) = min
θj ̸=i

(−log(L(θ))) (3.10)

Since this approach is optimisation-based, we can employ suitable methods from opti-

misation theory as long as it is possible to express a parametric form of L(θ).

Analysing the shape of the PL (Fig. 3.3) allows for distinguishing between identifiable

and non-identifiable parameters. Identifiable parameters are characterised by a profile

bounded towards positive and negative values of θi. Hence, they have an u-shaped like-
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lihood profile (Fig. 3.3 left subfigure). Furthermore, the shape indicates structural and

practical non-identifiability. Profiles of practically non-identifiable parameters (Fig. 3.3

middle subfigure) are bounded towards either positive or negative values, whereas struc-

turally non-identifiable parameters have flat profiles (Fig. 3.3 right subfigure).

Figure 3.3: Characteristic shapes of profile likelihoods. The shape of the profile
likelihood for a parameter θi reveals the parameter’s identifiability type. An identi-
fiable parameter reaches the confidence interval threshold on both sides, thus having
a finite confidence interval. A practically non-identifiable parameter reaches the con-
fidence interval threshold only on one side, here for the lower parameter ranges. A
structurally non-identifiable parameter’s profile is flat and never reaches the confidence
interval threshold.

The confidence interval of a parameter θi gives the range of its likely values, i.e. for a

95% CI, in 5% of cases, the parameter lies outside the parameter range given by the

95% CI [Lele, 2020]. In the PL setting, the CI of a parameter θi can be defined as the

parameter range where the PL-value fulfils the following condition [Raue et al., 2009;

Venzon and Moolgavkar, 1988]:

CIα(θi|y) = {θi|PL(θi) ≤ −log(L(θ̂)) + ∆α(χ
2
1)}. (3.11)

Here, α denotes the desired significance level, and −log(L(θ)) refers to the value of the

likelihood function of the optimal parameter set (ML estimate or MAP estimate). The

threshold ∆α(χ
2
1) is the α-quantile of the χ2-distribution with one degree of freedom.

That means all values of θi which give a PL-value below the threshold are within the

confidence interval [Kreutz et al., 2012; Tönsing et al., 2018].

Calculating PLs results in easily interpretable plots (similar to the illustration in

Fig. 3.3), revealing the identifiability of parameters. Additionally, CIs can be derived to

evaluate the uncertainty of the parameter estimate. The potential and applicability of

the PL approach for analysing models in biology have been demonstrated in various pub-
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lications [Kreutz et al., 2012, 2013; Merkle et al., 2016; Tönsing et al., 2018]. Tönsing

et al. [2018], for example, compute the PLs for all model parameters of the proposed

Zika virus disease spread model and uses this information about the model parameters

to reduce the parameter space.

3.4 Uncertainty quantification

Mathematical models suffer from uncertainty. This uncertainty needs to be quantified

to evaluate the model’s usefulness and predictive value [Volodina and Challenor, 2021].

We distinguish between two sources of uncertainty: aleatoric uncertainty and epistemic

uncertainty [Hoffman and Hammonds, 1994]. Aleatoric uncertainty results from random-

ness, which occurs in all processes, e.g. noise in gene expression. Consequently, we will

observe some variation in the experimental outcome of individual runs under the same

conditions. This source of uncertainty is unavoidable, but stochastic approaches can be

used for its analysis. Epistemic uncertainty originates from incomplete knowledge, in-

cluding a lack of mechanistic understanding, incomplete measurements and measurement

errors. Therefore, model parameters derived from data will inherit uncertainty from the

model formulation and the available data. This uncertainty can be characterised by ap-

plying methods such as Bootstrapping, Markov Chain Monte Carlo methods, and the

calculation of Profile Likelihood [Kaltenbach et al., 2009; Lele, 2020].

Sampling from the posterior distribution using a MCMC algorithm gives a marginal pos-

terior distribution for each model parameter. Hence, the sampling results provide each

parameter’s statistical measures, such as mean and median; corresponding CIs can be

computed. In addition, by performing numerical simulations with parameter sets from

the stationary sampling distribution, we gain insights into the mean prediction and the

prediction uncertainty [Villaverde et al., 2019]. Consequently, this approach provides a

comprehensive parameter study, yielding parameter estimates with uncertainty measures

and information about parameter correlations. However, sampling routines, in particu-

lar, are computationally intensive [Mitra and Hlavacek, 2019], and convergence is only

ensured for identifiable models [Bayarri and Berger, 2004; Raue et al., 2013a].

As an alternative, Profile Likelihoods can be exploited for uncertainty quantification.

For each parameter, a CI can be computed from its PL (Eq. 3.11) [Raue et al., 2009].

Models in systems biology are affected by different sources of uncertainty, e.g. uncer-

tainty of the parameter estimates. Quantifying this model uncertainty is vital for the

model validation and underpins the model’s credibility [Volodina and Challenor, 2021].
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One central element is often the computation of CIs to perceive the uncertainty in the pa-

rameter estimate. However, due to the fluctuations in biological processes, even models

with well-determined parameters are subject to uncertainty. This epistemic uncertainty

can only be addressed by intense data collection and stochastic approaches.

3.5 Sensitivity analysis

ODE models are characterised by a deterministic input-output relationship. Therefore,

uncertainty in the model input propagates to the model output [Turányi, 1990]. SA in-

vestigates this relationship between model input and output, i.e. it helps to identify

model inputs that contribute the most to the variability in the model output (sensitive

inputs). Vice-versa, SA also indicates parameters that do not contribute to the vari-

ance in the model output – this information can be utilised for reducing the parameter

space [Saltelli et al., 2000; Zhang et al., 2015]. For model inputs limited to physiologi-

cally/biologically plausible ranges, SA can also be used to investigate model robustness

[van Riel, 2006].

Local SA (one-factor-at-a-time method) is derivative-based and, therefore, provides in-

formation about the effect of small changes in the model input [Morio, 2011]. The effect

of each parameter θi on each model output xj is studied independently by evaluating the

partial derivatives. Hence, the local sensitivity LSi,j of θi and xj reads:

LSi,j =
∂xj

∂θi
. (3.12)

There are several examples [Omari et al., 2020; Schoeberl et al., 2002; Yue et al., 2006],

where this technique has been used to analyse parameter sensitivity in models of biolog-

ical systems.

Unlike local SA, global SA allows for varying model input over large input value ranges.

One example of a global SA is the Sobol method. This method aims to decompose the

model output’s variance into inputs’ contributions. Since the Sobol analysis allows for

varying multiple inputs simultaneously, this method provides insights into the contribu-

tion of individual inputs and input combinations [Tosin et al., 2020; Zhang et al., 2015].

Thus, Sobol’s analysis gives a more comprehensive picture than a local SA.

Sobol indices, computed as the ratio of a partial variance to the total variance in the

model output, are derived as sensitivity measures from the Sobol analysis [Homma and

Saltelli, 1996; Qian and Mahdi, 2020; Saltelli et al., 2010]. The first-order sensitivity
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index

Si =
Vi

V
(3.13)

describes the contribution of the i-th model input, expressed as partial variance Vi, to

the total output variance V . Hence, it gives a measure for the effect of varying only this

i-th input. The second-order sensitivity index

Si,j =
Vi,j

V
(3.14)

is a measure of the contribution of a subset of two model inputs (Vi,j) to V . Consequently,

it reveals information about the effect of the interactions within this input subset. The

total-order sensitivity index for the i-th model input

ST i =
V total
i

V
(3.15)

is a combination of all contributions of the i-th input. The total variance of the i-th

input

V total
i = Vi + Vi,∼i. (3.16)

is the sum of the contribution of the i-th input alone (Vi) and in combination with all

other inputs (Vi,j).

Various works across biological modelling disciplines have demonstrated the utility of

the information provided by the Sobol analysis [Fieberg and Jenkins, 2005; Frank et al.,

2021]. Lebedeva et al. [2012] emphasise the value of this technique for the analysis of

models with uncertain parameters.

In conclusion, SA helps to better understand the relationship between model input and

model output. Furthermore, identifying sensitive inputs can guide further experimenta-

tion and model/parameter space reduction.
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3.6 Modelling of pharmacokinetics and pharmaco-

dynamics

Pharmacokinetic (PK) and Pharmacodynamic (PD) modelling attempt to investigate

drugs in silico. A PK model describes the time evolution of a drug concentration in dif-

ferent body compartments (e.g. blood or liver) from the drug’s administration until its

complete removal from the system. The central mission of PD modelling is to investi-

gate the relationship between the drug concentration and its effect. Linking PK with

PD modelling allows us to study the time delay between the drug administration and

the drug’s effect [Breimer and Danhof, 1997; Lippert et al., 2012]. Such models can, for

example, be used to investigate dosing regimes, dosing schemes and routes of adminis-

tration [Jones and Rowland-Yeo, 2013]. Thus, those models are integral to today’s drug

discovery and development.

When constructing a so-called Physiologically Based (PB) model, the biological system,

e.g. the human body, is divided into units (compartments) [Andersen, 1991]. A compart-

ment represents, for example, an organ or a tissue. The bloodstream (transport compart-

ment) interconnects all compartments. Fig. 3.4 shows a two-compartment model, which

is the simplest PB model structure [Jones and Rowland-Yeo, 2013; Nestorov, 2003]. In

this example, a drug is administered to the central compartment (representation of the

blood), distributed to the tissue compartment and eliminated from the central compart-

ment. In a two-compartment model, only one tissue compartment is considered, which

one can interpret as an abstract representation of the body, excluding the blood. Of-

ten at least a third compartment as the location for the drug elimination (e.g. liver) is

included [Upton et al., 2016].

Figure 3.4: Schematic representation of a two-compartment model. In a two-
compartment system, the drug is administered to a central compartment. The central
compartment is linked to another compartment, representing the tissues where the drug
takes effect. The drug travels between the two compartments. k1 and k−1 denote the
rate constants for the distribution between those two compartments. The drug is cleared
from the central compartment with the clearance rate constant kcl.

The number of compartments depends on the application of the model, the drug admin-

istration route, the location of drug action and the possible side effects. The number of
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compartments directly affects the model complexity by increasing the number of model

parameters (e.g. tissue volume) and, therefore, should be balanced with the amount of

prior knowledge and data. PBPK models, which are reduced in complexity by “lump-

ing” together compartments with similar properties, can be useful as Cao and Jusko

[2012] demonstrate.

Further details that can be added to those pharmacological models are, for example,

[Danhof et al., 2007]:

- Blood flow: affects the rate constant for the drug distribution [Stanski et al., 1979]

- Target binding and activation

- Drug-related feedback mechanisms

- Transport mechanisms into the cell (commonly, passive diffusion is assumed)

Two types of model parameters are described for PBPK/PD models: (i) drug-specific

parameters and (ii) system-specific parameters. Drug-specific parameters cover a drug’s

chemical and biochemical properties, such as permeability, solubility and binding prop-

erties. They can be determined in in vitro experiments and are not subject to variability

between individuals or species. Whereas system-specific parameters address physiolog-

ical properties, e.g. organ volume and surface, blood pressure and tissue composition.

Those parameters are assessed in in vivo experiments. They are subject to inter- and

intra-individual variability [Danhof et al., 2007; Kuepfer et al., 2016].

Overall, PBPK/PD models provide a flexible framework for studying drugs in a mecha-

nistic and physiologically plausible representation and have been proven useful [Kuepfer

et al., 2016; Nestorov, 2003]. The model formulation allows for model scaling for individ-

uals, subpopulations and across species [Upton et al., 2016]. In the context of this thesis,

such a modelling approach is used to integrate the administration of hormonal medica-

tion into the menstrual cycle model. With this, we were able to run in silico studies

investigating the effects of hormonal medication on hormone profiles and folliculogenesis

([Fischer et al., 2021]).
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Summary of scientific work

The endocrine regulation of the female reproductive system is complex and dynamic.

Especially in humans, its clinical investigation is challenging because a high number of

measurements (approximately every other day) over long time periods (at least one men-

strual cycle) is needed to capture fluctuations in hormone concentrations. In three scien-

tific articles and one review paper (for complete articles, see Part “Scientific articles”),

I point out how mathematical modelling provides concepts that help us to understand

the mechanisms regulating female fertility and how mechanistic models can contribute

to developing new treatment strategies.

In Chapter 4, I briefly comment on the reproducibility of computational experiments

and the accessibility of scripts. Subsequently, I will summarise the three scientific pub-

lications aggregating the research I conducted for this PhD thesis. Finally, I discuss the

results, strengths and weaknesses of the work presented in those articles. The chapter

ends with an outlook giving ideas on how the presented work could be extended.

4.1 Reproducibility and code reusability

Transparency and reproducibility of scientific results are central to their trustworthi-

ness. To allow others to reproduce reported results, it becomes more common to make

scripts that were used to generate computational results publicly available. Furthermore,

making code available for the scientific community allows for its reuse, which bares the

potential to speed up the scientific process and prevent people from repeating the same

work [Bahaidarah et al., 2022; Editors at Nature Computational Science, 2021]. Thus,

the accessibility of code is beneficial for the scientific community.
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Regardless of the benefits of publicly available code, the primary purpose of scientific code

is to answer a specific question rather than being used or reused by others. Consequently,

those codes may be unstructured and poorly documented, and a lack of reproducibility is

not uncommon. This lack of reproducibility is often caused by missing documentation,

errors in the code or missing files [Trisovic et al., 2022]. To avoid this issue, authors

can consult guidelines for good coding practices, such as Rivero and Chen [2020] or the

author guidelines by Springer Nature. Furthermore, computational experiments, such as

wetlab experiments, need thorough documentation to allow others to repeat them [Fehr

et al., 2016; Schnell, 2015].

It is also important to point out that formal training teaching young scientists how to

make code accessible and reusable is often missing [Bahaidarah et al., 2022; Trisovic

et al., 2022]. This lack of formal education may result in a lack of confidence, hindering

scientists from making their code publicly available [Barnes, 2010]. Despite that, Barnes

[2010] encourages scientists to make their code publicly available regardless of the code

quality because available code allows other scientists to engage.

I agree that making computational code publicly available is crucial to make scientific

work transparent. Furthermore, I believe that the possibility of reusing code may benefit

the scientific community. For this reason, I made my code publicly available on GitHub.

In my repositories, you will find scripts that form the scientific foundation for all the

articles discussed in this thesis. The repository of the model used for Paper A and

Paper B includes all code files necessary to create the content presented in those papers.

In principle, this allows for a complete reproduction of simulation results. However, I

believe that it requires time to understand the code thoroughly. In the case of Paper C,

I decided to publish a selection of scripts demonstrating the workflow, which is the

paper’s main contribution. These demos allow for generating most figures but not all

of the results. Of course, my decision compromises reproducibility to the benefit of

increasing the code’s accessibility and readability.

All codes are published under the MIT license so that others can reuse and modify

the codes free of charge. The links to the repositories are included in the publications.

However, GitHub repositories can be changed. Therefore, it is a better practice to archive

a GitHub repository using Zenodo (https://zenodo.org/) and refer to the archive using

Digital Object Identifiers (DOI).

In addition to creating a GitHub repository, I could have considered uploading the mech-

anistic model presented in Paper A into the BioModels database [Malik-Sheriff et al.,

2020]. The great benefit of BioModels is its independent model curation. With this, the

platform ensures model correctness and increases the potential for model reuse. How-
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ever, to publish code for methodological approaches (Paper B and Paper C), I believe

that GitHub repositories provide a better solution to make the code publicly available.

Overall, I believe that the repositories I created allow others to engage, use and reuse

the scripts underlying my work. However, I am aware that there is potential for me to

improve my code readability, documentation and publishing practice.

4.2 Paper summaries

For this thesis, I worked on mechanistic models describing the endocrine regulation

of the female reproductive system (HPG axis). The first two publications focus on

the functionality of the mature HPG axis and folliculogenesis. Paper A introduces the

first menstrual cycle model that couples hormone dynamics of the HPG axis with the

maturation of ovarian follicles in a biologically interpretable fashion. Paper B expands

on Paper A and demonstrates an application of the model in a pharmacological setting.

Paper C introduces a model of the maturation process of the HPG axis during female

puberty. The emphasis of Paper C lies on the proposed Bayesian updating workflow

that allows the incorporation of cross-sectional data in the model calibration. In the

following sections, I will summarise each scientific contribution and discuss them in this

thesis’s context.
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4.2.1 Paper A: Hormonal regulation of ovarian follicle growth

in humans: Model-based exploration of cycle variability

and parameter sensitivities

Selgrade and Schlosser [1999] published the first mathematical model of the female men-

strual cycle, which has been modified and expanded over the years, e.g. Harris [2002];

Harris and Selgrade [2014]; Reinecke and Deuflhard [2007]; Röblitz et al. [2013]. However,

the description of ovarian follicles and their maturation remained heuristic throughout

all model versions. Up to this point, follicles are not described as individual entities,

but the models describe discrete follicle maturation stages. Consequently, none of those

models predicts the size or count of ovarian follicles and the simulation results are not

comparable to ultrasound data, despite ultrasound data being the most common way to

monitor follicular growth. Thus, this heuristic description limits the model’s applicabil-

ity. For example, they can not be used to predict the effect of COS on the maturation

of ovarian follicles, which is essential from a clinical perspective.

Paper A presents a modified version of the model published by Röblitz et al. [2013]. The

main contribution of this work is replacing the heuristic description of folliculogenesis

with a semi-mechanistic maturation function describing the growth trajectory of each

ovarian follicle individually (one ODE per follicle). This description was derived from the

work by Lange et al. [2019]. Differences in growth trajectories of follicles between sim-

ulation runs result from follicle-specific parameters sampled before each simulation run.

The model introduced here is the first menstrual cycle model, which predicts ovarian

follicles in a way that allows for a comparison to ultrasound data. In the model simula-

tions, ovarian follicles grow in waves. This growth pattern is an emergent phenomenon.

Hence, this modelling work supports the hypothesis that human ovarian follicles grow in

waves.

During the model construction, we identified two aspects that made the model calibra-

tion challenging: (i) the limited availability of longitudinal data over multiple menstrual

cycles and (ii) the variability in the length of simulated menstrual cycles resulting from

random features in the follicle growth hinders an optimal alignment between measure-

ments and simulation results. Consequently, a distance measure, such as the mean

squared error, could not be defined, and classical optimisation approaches were not

feasible. Instead, we bypassed the formulation of a likelihood function using ABC to

investigate the model’s parameters. Based on the ABC study, we conclude that the

simulation output is sensitive to ensembles of parameters rather than single ones.
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4.2.2 Paper B: Mathematical modelling and simulation provide

evidence for new strategies of ovarian stimulation

In quantitative systems pharmacology, a model as presented in Paper A is useful for per-

forming in silico studies of treatment protocols. One possible scenario is the simulation-

based investigation of the effects of hormonal medications on hormone profiles, e.g.

[Röblitz et al., 2013] and [Wright et al., 2020], and folliculogenesis. Here, we use the

model proposed in Paper A for an in silico study of strategies for Controlled Ovarian

Stimulation.

Newly developed COS strategies are often based on the hypotheses that (i) ovarian

follicles grow in cohorts (follicle wave theory) and (ii) their growth is stimulated as long

as the FSH concentration is above a certain threshold (FSH window concept). In contrast

to previous models, our model exhibits (i) and (ii). Consequently, it is suitable for in

silico investigations of the effect of COS on the growth of individual follicles.

In Paper B, we integrated the administration of recombinant FSH – a hormonal medi-

cation often used in COS – in the form typical for PBPK models. We investigated the

effects of two COS protocols: ovarian stimulation during the luteal phase [Kuang et al.,

2014b] and ovarian stimulation during the late follicular phase [Zhu and Fu, 2019] and

compared simulation results with clinical data. Based on this comparison, we conclude

that the model shows the expected behaviour. In particular, the model reflects the shifts

in the hormone profiles caused by the treatment, e.g. the FSH level increases systemat-

ically. Due to an elevated FSH concentration, we expect the number of growing follicles

to increase. In the simulations, this increase in the number of follicles in response to the

drug (recombinant FSH) agrees with the clinical data. Since the clinical data used for

the comparison have been taken into account during the model calibration, these results

should be considered as a validation of the model rather than a prediction. Neverthe-

less, this work demonstrates a possible use case of mechanistic menstrual cycle models

as tools for reproductive health care.
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4.2.3 Paper C: A workflow for incorporating cross-sectional

data into the calibration of dynamic models

The amount and quality of data available for model calibration often limit the complexity

and accuracy of models in systems medicine. Individuals’ longitudinal data are valuable

for the calibration of dynamic models. However, they are particularly challenging to

collect. In contrast, the collection of cross-sectional data is often more feasible. In

Paper C, we propose a Bayesian updating workflow to incorporate cross-sectional data

into the model calibration process.

The model we use in Paper C aims at predicting individuals’ reproductive hormone

levels during puberty, and biological knowledge motivates its formulation (system of

ODEs). The interactions along the HPG axis are described in the same manner as

presented in Paper A – but in less detail. For puberty, the reactivation of the GnRH pulse

generator is central for developing the endocrine regulation of reproductive function. This

reactivation process is described semi-mechanistically by using a sigmoidal input curve

to describe the increase of GnRH release over time.

The Bayesian updating workflow proposed for the model calibration is a two-step pro-

cedure. In the first step, a population-average model describing the dynamics of the

average hormone concentrations during puberty is calibrated using cross-sectional data.

Characterising the uncertainty and sensitivity of this population-average model allows

for (i) the reduction of the parameter space and (ii) the characterisation of the discrete

marginal parameter distributions (used as prior parameter distributions in step two). In

the second step, the population-average model is translated into an individual-specific

model by updating the prior parameter distributions with individual data. To test the

approach, we synthetically created longitudinal data. Indeed, after performing the pa-

rameter update, the individual-specific model predictions recover the complete synthetic

hormone profiles, including correct future projections.

Since clinical data collection is time and resource intense, it is important to maximise

the use of collected data. As demonstrated, Bayesian updating allows for incorporating

cross-sectional data into the model calibration process. Hence, it is a valuable tool for

assessing information from various data sets for calibrating dynamic models.
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4.3 Concluding discussions

Ideas from systems biology play an important role in establishing predictive, preven-

tive, personalised and participatory medicine (also called P4 medicine), which promises

to improve healthcare, reduce costs, and inspire innovation. The diverse academic back-

grounds of researchers in systems biology can be seen as an advantage to achieving this

goal because this interdisciplinary nature increases the number of methods, approaches

and perspectives involved in the scientific discussion. Finally, the highly interdisciplinary

approach of systems biology helps us to deal with the complexity we encounter in life

science [Hood, 2013].

As for modelling and simulation, combining different approaches will allow us to make

use of their complementary strengths [Baker et al., 2018], which benefits clinical research,

as shown, for example, in Hackenberg et al. [2022]. Here, the authors link ODEs to deep

learning approaches to build a predictive model that can deal with the small data sets.

In reproductive medicine, patient-tailored healthcare remains challenging [Tesarik and

Mendoza-Tesarik, 2022]. However, the integration of modelling-based tools into clinical

routines, for example, clinical decision support systems, holds the promise to improve

the situation [Ehrig et al., 2016; PAEON, 2017].

The Avicenna Alliance, an association advocating for the regulation and deployment of

in silico methods in healthcare, emphasises the benefits of including modelling and sim-

ulation in clinical trials. Modelling and simulation would make the drug development

process more cost and time efficient and contribute to a decreased need for animal and

human testing [Avicenna Alliance]. In the context of reproductive healthcare, the use-

fulness of menstrual cycle models for in silico studies of hormonal medication, e.g. for

contraception [Wright et al., 2020] and COS [Röblitz et al., 2013], has been demonstrated.

Creating a population of virtual patients [Sinisi et al., 2020a,b] allows for a description

of subpopulations and corresponding treatment optimisation. Tailoring the treatment

protocol to a patient’s physiological condition and personal needs would optimise the

treatment outcome in terms of pregnancy and live birth while simultaneously decreasing

treatment-related risks such as Ovarian Hyperstimulation Syndrome [Sighinolfi et al.,

2017].

Creating models that describe the periodic changes in reproductive hormones and fol-

liculogenesis is the first step towards building clinical decision support systems for re-

productive healthcare. The endocrine interactions of the menstrual cycle are complex

in that hormones have different signalling effects depending on their concentration and

the simultaneous secretion of other hormones. For example, E2 alone stimulates the se-

cretion of pituitary hormones, whereas this stimulation is not observed if E2 and P4 are
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secreted simultaneously. Because the signalling chains are complex, the model building

process as a way of knowledge collection is valuable in itself [Kuepfer et al., 2016]. Fol-

lowing this argument, a mechanistic menstrual cycle model is valuable for representing

and systematically understanding the complex regulatory system.

The simulation-based studies of hormonal medication for contraception [Wright et al.,

2020] and COS [Röblitz et al., 2013] lack a biologically interpretable prediction of fol-

licular growth. However, follicle maturation is a central aspect of both medications.

Therefore, I argue that the model proposed in Paper A is better tailored for such studies

and present a simulation-based investigation of COS protocols in Paper B. The simula-

tions show the effects of hormonal treatment on hormone levels and predict the number

of follicles that mature during the treatment. Since, COS aims at achieving a sufficient

number of mature oocytes (at least three) without an unsafe elevation in hormone levels,

predicting the number and size of maturating follicles besides the changes in hormone

levels is of main interest for a clinical decision support system for COS protocols.

Unfortunately, the clinical data used for Paper B do not represent information about

individuals. Therefore, repeating similar simulation studies with individuals’ treatment

data (treatment protocol, hormone levels, ultrasound data) would be a reasonable next

step in moving towards a precision medicine tool.

Also, repeating the simulation-based study of the effects of hormonal contraception con-

ducted by Wright et al. [2020] with the modified model (Paper A) would allow for investi-

gating the effect of hormonal contraception on folliculogenesis. Such a study would be of

interest because ovulation suppression is one possible mechanism of action for hormonal

contraception.

Besides its clinical application, a mechanistic menstrual cycle model can also be useful

to deepen our understanding of the consequences of the interactions in the system, e.g.

by observing emergent properties. In Paper A and Paper B, we observe the growth of

ovarian follicles in cohorts in the simulation results. This behaviour is such an emergent

property. Therefore, this observation underlines that the interplay between hormones is

essential for folliculogenesis and suggests that abnormal folliculogenesis, e.g. described

in patients with PCOS or endometriosis, is likely related to endocrine disruptions.

As pointed out above, a mechanistic ODE model is a practical framework for menstrual

cycle models. The model presented in Paper C is also biologically motivated, and for-

mulated as a set of ODEs. Here, this formulation was necessary to demonstrate the

proposed workflow. Indeed, whether a statistical or machine learning model would have

a higher predictive value for individual predictions of the stage of pubertal development

remains open. The drawback of a non-mechanistic modelling approach, however, is that



4.3 Concluding discussions 47

it is not biologically interpretable and motivated.

Inevitably, there is value to mechanistic menstrual cycle models. However, both a model

reduction and recalibration of the model presented in Paper A and used in Paper B are

needed to push the model towards becoming a tool for personalised medicine. The cur-

rently available data (daily hormone measurements throughout one menstrual cycle for

individuals with a cycle length of 28 days) poses a bottleneck for the model’s calibration

because these data do not represent inter- and intra-individual variability in cycle length.

Today those hormone concentrations are measured in blood samples. Consequently, col-

lecting more comprehensive data sets, e.g. bi-daily hormone concentration measurements

over multiple menstrual cycles, is time-consuming, resource-intense and requires a sig-

nificant commitment from study participants. However, the new “Hormonix” method

[Platt, 2020], which enables monitoring reproductive hormones in saliva samples, bares

the potential to increase the availability of longitudinal hormone measurements. In addi-

tion to longitudinal hormone measurements, corresponding ultrasound data monitoring

folliculogenesis would be valuable but are not publicly available yet.

A problem pointed out in Paper A is that the model complexity is not optimally aligned

with the amount of available data. As a consequence, the menstrual cycle model is

non-identifiable. Even though parameter identifiability is essential during model calibra-

tion, in our case, a fully identifiable model will probably not be obtained, even with an

improvement in the amount of data available. Two important reasons for that are: (i)

some species such as GnRH are not measurable, and (ii) model parameters, e.g. Hill co-

efficients, can not be directly linked to experimental observables. However, this does not

necessarily mean that the model is not valuable, as Rateitschak et al. [2012] argue.

Beyond searching for additional data sources, I suggest a systematic reduction and re-

construction of the menstrual cycle model. The presented model can be seen as a “legacy

model” that has been modified and improved over the last 20 years. Considering a mod-

ularisation of the model would allow for adjusting the model’s complexity, making it

straightforward to tailor the model to its purpose. I would suggest dividing the model

into a core mechanistic model consisting of all hormonal interactions and “optional add-

ons”, such as detailed receptor binding mechanisms. The receptor binding mechanisms

are of importance for pharmacological studies but could be neglected for the hormone

regulation itself. Overall, this step is work-intense, but I believe it would benefit the

model’s accessibility and reuse.

For model calibration and analysis, there exists an established set of tools in systems

biology, for example, summarised in Villaverde et al. [2022a]. As demonstrated in Pa-

per A and Paper C, the literature provides more model calibration and analysis methods.
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However, those are not yet well-established in the field of computational systems biology.

In Paper A, we use the ABC method for calibration of the model as an alternative to MLE

or MAP. Here, the formulation of an objective function measuring the distance between

model simulations and experimental data is not feasible because the variability in cycle

length prevents an alignment between measured and simulated concentration profiles.

Using ABC allows for comparing the concentration profiles based on their shape and,

therefore, does not restrict the cycle length to 28 days.

With Paper C, we touch on the fact that longitudinal clinical data are often sparse or

unavailable. Since clinical data collection is time and resource intense, it is vital to

unleash the full potential of data sets. To address this challenge, we advocate for finding

methods that allow for including additional information sources like cross-sectional data,

symbolic data or covariates in the model calibration process. In Paper C, we demonstrate

the value of Bayesian updating to integrate cross-sectional data in the model calibration

process. Overall, there is room for improvement in how clinical data is shared and

reused within the scientific community. I believe our obligation as scientists is to use the

available resources to their full potential.

4.4 Future prospects

Looking forward, it would be valuable to modify the menstrual cycle model (Paper A)

such that it describes the characteristic hormone imbalances observed in patients diag-

nosed with endometriosis. The most notable shift in the pathological endocrine profile

is an elevated E2 level, which results from the endometriotic tissue being an additional

location of E2 production [Bulun et al., 2012; Chantalat et al., 2020]. Reducing the

E2 level and suppressing ovulation using endocrine agents are essential components of

endometriosis management, besides the surgical removal of the endometriotic tissue [An-

dres et al., 2015; Chapron et al., 2019; Crosignani et al., 2006]. Progestins, synthetic

steroid hormones with properties similar to P4, are a well-established group of endocrine

agents for managing endometriosis symptoms. However, the administration of such

progesterone-only pills can cause side effects such as mood changes, migraine and the

formation of ovarian cysts. Here, mathematical modelling can inform the minimal dosage

and the optimal dosing strategy. The model modification suggested above could be used

to perform simulation-based studies of contraceptive medications used for endometrio-

sis management, similar to the approaches presented in Gavina et al. [2022] and Riggs

et al. [2012].
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As for the open question about the type of model to be used in Paper C, the most excit-

ing direction would be a combination of mechanistic and machine learning approaches.

Guided by the example of the Lotka-Volterra systems presented in Rackauckas et al.

[2020], I suggest formulating the model as a system of universal differential equations.

Therein, the hormone interactions would be described mechanistically, as it has been

established, and the input function, describing the reactivation of the GnRH pulse gen-

erator (described with a semi-mechanistic description in Paper C), would be represented

as a neural network. A symbolic representation of the input function could be recovered

after training the model described above. This recovered input function holds the poten-

tial to be biologically interpretable and could contribute to deepening our understanding

of the reactivation of the HPG axis.
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a b s t r a c t

We present a modelling and simulation framework for the dynamics of ovarian follicles and key hor-
mones along the hypothalamic-pituitary–gonadal axis throughout consecutive human menstrual cycles.
All simulation results (hormone concentrations and ovarian follicle sizes) are in biological units and can
easily be compared to clinical data. The model takes into account variability in follicles’ response to stim-
ulating hormones, which introduces variability between cycles. The growth of ovarian follicles in waves is
an emergent property in our model simulations and further supports the hypothesis that follicular waves
are also present in humans. We use Approximate Bayesian Computation and cluster analysis to construct
a population of virtual subjects and to study parameter distributions and sensitivities. The model can be
used to compare and optimize treatment protocols for ovarian hyperstimulation, thus potentially form-
ing the integral part of a clinical decision support system in reproductive endocrinology.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The interplay between the hypothalamus, the pituitary gland
and the gonadal glands regulates and maintains the menstrual
cycle. Gonadotropin-releasing hormone (GnRH) is responsible for
the release of the two gonadotropins: follicle stimulating hormone
(FSH) and luteinizing hormone (LH) from the pituitary gland. Gon-
adotropins have feedback actions on folliculogenesis, meaning the
maturation of the ovarian follicle, and thereby the production of
ovarian hormones. In turn, ovarian hormones such as estradiol
(E2) and progesterone (P4) affect LH and FSH release both directly
and indirectly via GnRH signalling (Speroff and Fritz, 2005).

In this work, we present a nonlinear differential–algebraic sys-
tem of equations (DAEs) to model the time-evolution of these five
key hormones and the growth dynamics of ovarian follicles. The
mechanistic model adopts the interplay of these five hormones
from previously published models of the menstrual cycle (Clark
et al., 2003; Reinecke and Deuflhard, 2007; Röblitz et al., 2013).
As a novelty, our model connects the hormone dynamics to the
time evolution of the diameter of ovarian follicles. Since the unit
of the follicular diameter is given in units of millimeter, our simu-
lation results can be compared to ultrasound measurements. Every
emerging follicle is described by an ordinary differential equation

(ODE) with follicle specific parameters. The work of Lange et al.
(2019) inspired the mathematical formulation of the follicular
growth. The coupling of the follicle model to a hormone dynamics
model makes it possible to perform in silico studies of the interplay
between sex hormones and follicular growth behaviour during
normal menstrual cycles, as well as under ovarian hyper-
stimulation treatment conditions (Fischer et al., 2021).

In a series of articles Schlosser, Selgrade, and Harris-Clark intro-
duced a mathematical model of the hormone control system
(Selgrade, 2001; Clark et al., 2003). Their model combines pituitary
hormone dynamics of LH and FSH with the dynamics of the ovarian
hormones P4, E2, and inhibin. Reinecke and Deuflhard (2007)
expanded and modified the model from Clark et al. (2003). Major
changes were the incorporation of a GnRH pulse generator respon-
sible for the release of GnRH, equations for the GnRH concentra-
tion, receptor binding mechanisms and addition of further
feedback interactions to LH, FSH, and ovarian hormone dynamics.
Röblitz et al. (2013) added further mechanistic details and re-
parameterized the model from Reinecke and Deuflhard (2007) in
order to simulate treatments with GnRH analogues. Mathematical
models and numerical simulations have proven themselves useful
to get a better understanding of various aspects of the menstrual
cycle, for example to study the polycystic ovary syndrome (PCOS)
(Chavez-Ross et al., 1997), to create virtual patient cohorts for in
silico clinical trials (Sinisi et al., 2020; Sinisi et al., 2020), or to sim-
ulate ovarian stimulation protocols (Reinecke and Deuflhard, 2007;
Fischer et al., 2021).

https://doi.org/10.1016/j.jtbi.2022.111150
0022-5193/� 2022 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Ovarian hormone dynamics and the growth behaviour of ovar-
ian follicles are closely associated. Their interactions are crucial to
enable female fertility. The literature contains different approaches
for modelling follicle growth. The work by Selgrade (2001) and
Clark et al. (2003) used the description of follicular masses in dis-
crete stages to simulate folliculogenesis. As a result, the discrete
number of active follicles is unknown in the model. Another
approach focused on the cellular activity of theca and granulosa
cells (Clément et al., 1997). Both cell types play an essential role
in ovarian hormone production. The authors in Reinecke and
Deuflhard (2007) proposed combining the first two approaches
by describing a granulosa- and a theca-cell mass instead of a folli-
cluar mass, thereby focusing on the location of ovarian hormone
production. An entirely different approach is modeling the dynam-
ics of single follicles instead of follicular or cellular masses (Lacker
and Akin, 1988; Chavez-Ross et al., 1997; Lange et al., 2019). The
simulation of individual follicles allows for the comparison to
ultrasound measurements (Lange et al., 2019) and for observing
pathological behaviour such as PCOS (Chavez-Ross et al., 1997).

In this paper, we combine the approaches from Röblitz et al.
(2013) and Lange et al. (2019) into a model that couples hormone
dynamics with the growth dynamics of individual follicles. Com-
pared to already existing approaches, our model is the first model
that can be used to simulate both hormone concentrations and fol-
licle sizes throughout consecutive menstrual cycles, with or with-
out ovarian stimulation treatment. The two key questions we want
to answer with our model are the following. Does follicular compe-
tition combined with hormone dynamics result in follicular
waves? Are there single parameters that are particularly sensitive
for cycle length, follicular count, or abnormal hormone profiles? In
this paper, we address these two questions by running simulations
and by combining a search in parameter space with model-
checking techniques for parameter space exploration. The model
is evaluated quantitatively by using hormone profile data. Its pre-
dictive power has been tested previously in Fischer et al. (2021),
where we showcased the use of the coupled model to perform a
simulation based study of ovarian hyper-stimulation protocols. In
the following, we introduce this modelling and simulation frame-
work for the menstrual cycle in more detail.

2. Model construction and biological background

The flowchart in Fig. 1 gives an abstract representation of the
interaction network governing the menstrual cycle. The hypothala-
mus releases GnRH in a pulse fashion. GnRH stimulates the synthe-
sis and release of pituitary hormones LH and FSH (Marshall and
Griffin, 1993). In the ovaries, LH and FSH regulate folliculogenesis.
Each growing follicle faces one of two fates: either apoptosis or
becoming the dominant follicle, which releases its egg cell during
ovulation. The remaining parts of the dominant follicle transform
into the corpus luteum. Follicles are recruited in cohorts and the
majority of recruited follicles undergo apoptosis (Fortune, 1994).
Growing follicles are the main source of E2, while the corpus
luteum produces both E2 and P4. Through the blood stream, E2
and P4 arrive at the hypothalamus and the pituitary gland, where
their feedback interactions modulate the GnRH, LH and FSH
dynamics. This process results in quasi-periodic hormone profiles
with a cycle length of 25 to 35 days (Bakos et al., 1994; Harlow,
2000; Bull et al., 2019). However, the average cycle length shows
a high variability between women and is age-dependent. One cycle
consists of two characteristic phases: the follicular phase and the
luteal phase. The ovulation of one follicle, in rare events also mul-
tiple follicles, separates the two phases. The timing of ovulation
mainly determines the cycle length. Therefore, the observed fluctu-

ations in the length of the follicular phase are larger than those in
the luteal phase (Bull et al., 2019).

Our model is formulated as a semi-explicit differential–alge-
braic system of the form:

dx
dt ¼ f t; x t; hð Þ; y t; hð Þð Þ
0 ¼ g t; x t; hð Þ; y t; hð Þð Þ; ð1Þ

with a pair of state variables x t; hð Þ; y t; hð Þð Þ depending on the time t
and parameters h. The dynamics of x t; hð Þ are described by ODEs,
whereas the dynamics of y t; hð Þ are described by algebraic
equations.

Since feedback interactions are often unknown or too complex
to be modeled in detail, Hill functions are a common tool to
describe feedback interactions in a qualitative manner. Stimulatory
functions (Hþ) and inhibitory functions (H�) are given by the fol-
lowing equations:

Hþ Si; T
j
i;n

j
i

� �
¼ Si=T

j
ið Þn

j
i

1þ Si=T
j
ið Þn

j
i

H� Si; T
j
i;n

j
i

� �
¼ 1

1þ Si=T
j
ið Þn

j
i

:

ð2Þ

When the regulator species Si approaches a threshold Tj
i > 0, it reg-

ulates species Sj. The Hill exponent nj
i > 0 influences the rapidity of

the regulatory process. A menstrual cycle includes both fast and
slow processes. This is reflected by different exponents in the Hill
functions, that is by a different steepness of the sigmoidal response
curves. If the Hill exponent is high enough, the qualitative response
changes rapidly within a small range of values in the independent
variable, whereas for low Hill exponents (n < 2) the Hill function
effectively behaves closer to a Michaelis–Menten type response.

Parameters and their units are given in the list of parameters in
Appendix A.1. Hill thresholds and other parameters were explored

Fig. 1. Flowchart of key mechanisms of the menstrual cycle. Solid lines indicated
feedback interactions encoded in the model. Positive feedback is encoded by arrows
and negative feedback is presented by bars. Dotted lines represent the following
other types of interactions: FSH release from the pituitary to the blood, the LH
concentration dependent ovulation of dominant follicles, and the production of E2
and P4 by the corpus luteum. Reading the figure from top to bottom, the endocrine
signalling that runs the menstrual cycle can be summed up as follows. GnRH
stimulates LH. FSH is both stimulated and inhibited by GnRH. LH and FSH effect
follicular maturation. Growing follicles produce E2, which stimulates the release of
LH. A sufficiently high LH concentration triggers the ovulation of a follicle which
then transitions into the corpus luteum. The simultaneous release of E2 and P4 by
the corpus luteum inhibits the release of GnRH. Additionally, P4 has an inhibitory
effect on LH and FSH. E2 stimulates or inhibits GnRH concentration dependent on
the E2 concentration.
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with the ABC method (Section 3), whereas the Hill exponents were
adopted from previous models. Units for hormone concentrations
are adopted from clinical data to enable the comparison between
experimental data and simulation results. The time scale of reac-
tion rates is ’per day’. Characteristics of the simulation results such
as cycle length are on a time scale of four weeks. The model is ini-
tiated in the early follicular phase of the menstrual cycle. This
phase is characterized by low concentrations of all four hormones.
The initial conditions are chosen accordingly (available from the
code in the GitHub repository).

Our model of the menstrual cycle can be divided into two parts.
The first part describes the hormone dynamics in the hypothala-
mus and the pituitary. These equations are mainly based on the
work of Röblitz et al. (2013) and partially overlap with other pre-
viously published models (Clark et al., 2003; Reinecke and
Deuflhard, 2007; Lange et al., 2019). The second part covers follic-
ular growth (Lange et al., 2019) and ovarian hormone dynamics.
Both parts are connected through feedback interactions, which
closes the loop.

2.1. Hypothalamus and pituitary model

GnRH is released from the hypothalamus in a pulse pattern
(Carmel et al., 1976; Knobil et al., 1980; Martin et al., 1998). To
account for pulsatile release, a release frequency, freq tð Þ, and
amount of released GnRH, mass tð Þ, are included in the equation
for the GnRH concentration, G tð Þ:

freq tð Þ ¼ f 0 � H� P4 tð Þ; Tfreq
P4 ;nfreq

P4

� �
� 1þ Hþ E2 tð Þ; Tfreq

E2 ;nfreq
E2

� �� �
ð3Þ

mass tð Þ ¼ m0

� Hþ E2 tð Þ; Tmass;1
E2 ;nmass;1

E2

� �
þ H� E2 tð Þ; Tmass;2

E2 ;nmass;2
E2

� �� �
ð4Þ

d
dt

G tð Þ ¼ mass tð Þ � freq tð Þ � kGon � G tð Þ � RG;a tð Þ þ kGoff � GRa tð Þ

� kGdegr � G tð Þ: ð5Þ
Hereby, f 0 is the basal frequency and m0 the basal mass. Both are
modulated by Hill functions due to the feedback actions of steroids.
While P4 only has an inhibitory effect on GnRH dynamics, E2 can
exhibit both positive and negative feedback actions (Nakai et al.,
1978). During the luteal phase, E2 and P4 cooperatively inhibit
the GnRH frequency (Goodman et al., 1981). During the period lead-
ing up to the preovulatory LH surge, E2 suppresses GnRH pulse size
and thereby reduces the amount of released GnRH (Evans et al.,
1994). Estradiol’s feedback action on the GnRH release switches
prior to ovulation from negative to positive, and thereby induces
a GnRH surge in the late follicular phase (Christian and Moenter,
2010).

GnRH signalling in the pituitary is receptor mediated. The GnRH
receptor belongs to the class of G-protein coupled receptors (GPCR).
It is important to include the receptor binding mechanism in the
model to enable simulation of drug administration. The works by
Shankaran et al. (2007) and Riccobene et al. (1999) provide the
basis for the receptor binding model used here. Four different
receptor states are considered: (i) active GnRH receptors, RG;a, with
the ability for GnRH binding, (ii) inactive GnRH receptors, RG;i,
which are not able to bind GnRH, (iii) active GnRH-receptor com-
plexes, GRa, which mediate downstream feedback actions, and (iv)
inactive GnRH-receptor complexes, GRi. Table 1 lists all processes.
The corresponding set of ODEs reads:

d
dt

RG;a tð Þ ¼ kGoff � GRa tð Þ � kGon � G tð Þ � RG;a tð Þ � kRG;ainter � RG;a tð Þ

þ kRG;irecyRG;i ð6Þ

d
dt

RG;i tð Þ ¼ kGRidiss � GRi tð Þ þ kRG;ainter � RG;a tð Þ � kRG;irecy � RG;i tð Þ þ kRG;isyn

� k
RG;i
degr � RG;i tð Þ ð7Þ

d
dt

GRa tð Þ ¼ kGon � G tð Þ � RG;a tð Þ � kGoff � GRa tð Þ � kGRainact � GRa tð Þ

þ kGRiact � GRi tð Þ ð8Þ

d
dt

GRi tð Þ ¼ kGRainact � GRa tð Þ � kGRiact � GRi tð Þ � kGRidegr � GRi tð Þ � kGRidiss

� GRi tð Þ ð9Þ
As suggested by Schlosser and Selgrade (2000), equations for LH and
FSH are based on synthesis–release–clearance relationships. The

basal LH-synthesis rate, bLH
syn, is stimulated by E2 and the active

GnRH-receptor complex and inhibited by P4. Eqs. (12) and (13)
account for the release of LH from the pituitary into the blood
stream and the related volume change. LH is cleared from the blood

with a clearance rate constant kLHcl . LH dynamics are formulated as
follows:

SynLH tð Þ ¼
bLH
syn þ kLHE2 � Hþ E2 tð Þ; TLH

E2 ;n
LH
E2

� �
1þ kLHP4 � P4 tð Þ

TLHP4

� �nLH
P4

� 1þ H� freq tð Þ; TLH
freq;n

LH
freq

� �� �
ð10Þ

RelLH tð Þ ¼ bLH
rel þ kLHGRa � Hþ GRa tð Þ; TLH

GRa ;n
LH
GRa

� �� �
� LHPit tð Þ ð11Þ

d
dt

LHPit tð Þ ¼ SynLH tð Þ � RelLH tð Þ ð12Þ

d
dt

LHBlood tð Þ ¼ 1
VBlood

� RelLH tð Þ � kLHcl � LHBlood tð Þ: ð13Þ

FSH in the pituitary, FSHPit , has a synthesis rate constant bFSH
syn , which

is inhibited by P4 and high GnRH frequencies (Marshall and Griffin,
1993). The release of FSH from the pituitary, RelFSH tð Þ, is stimulated
by the active GnRH receptor complex, GRa tð Þ and inhibited by the
amount of E2 (Shaw et al., 2010). The transition between compart-
ments with different sizes (pituitary to blood, blood to ovaries) is
related to a change in concentration, which is included in the equa-
tions through different compartment volumes. In the ovaries, FSH

Table 1
Summary of all GnRH receptor binding mechanisms that are included in the model
equations.

Process Rate

Binding of GnRH to active GnRH receptors kGon � G tð Þ � RG;a tð Þ
Dissociation of active receptor complex kGoff � GRa tð Þ
Recycling of inactive to active receptors kRG;i

recy � RG;i tð Þ
Deactivation of active to inactive receptors kRG;a

inter � RG;a tð Þ
Synthesis of inactive receptors kRG;i

syn

Degradation of inactive receptors kRG;i

degr � RG;i tð Þ
Inactivation of active receptor complex kGRa

inact � GRa tð Þ
Activation of inactive receptor complex kGRi

act � GRi tð Þ
Degradation of inactive GnRH receptor complexes kGRi

degr � GRi tð Þ
Dissociation of inactive receptor complex kGRi

diss � GRi tð Þ
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binds its receptor located at the follicles’ surfaces with the binding

rate kFSHon � RFSH tð Þ � FSHOv tð Þ. FSH is cleared from the blood with clear-

ance rate constant kFSHclBlood
and the ovaries with clearance rate con-

stant kFSHclOv
. The ODEs describing the FSH concentrations in the

system read:

SynFSH tð Þ ¼ bFSH
syn

1þ P4 tð Þ
TFSHP4

� �nFSH
P4

� H� freq; TFSH
freq;n

FSH
freq

� �
ð14Þ

RelFSH tð Þ¼ bFSH
rel þkFSHGRa �Hþ GRa tð Þ;TFSH

GRa ;n
FSH
GRa

� �
�H� E2 tð Þ;TFSH

E2 ;nFSH
E2

� �� �
�FSHPit tð Þ

ð15Þ

d
dt

FSHPit tð Þ ¼ SynFSH tð Þ � RelFSH tð Þ ð16Þ

d
dt

FSHBlood tð Þ ¼ 1
VBlood

� RelFSH tð Þ � kFSHBlood þ kFSHclBlood

� �
� FSHBlood tð Þ ð17Þ

d
dt

FSHOv tð Þ ¼ VBlood

VOv
� kFSHBlood � FSHBlood tð Þ

� kFSHon � RFSH tð Þ � kFSHov
clOv

� �
� FSHOv tð Þ ð18Þ

The dynamics of the FSH receptor on the surface of follicles is mod-
eled as follows: FSH binds to free receptors, RFSH , with a binding rate

constant kFSHon , forming a FSH-receptor complex FSHR that dissociates

with rate constant kFSHdis . The inactive receptors RFSH;dis get reactivated

with rate constant kFSHrecy.

d
dt

RFSH tð Þ ¼ kFSHrecy � RFSH;dis tð Þ � kFSHon � FSHfoll tð Þ � RFSH tð Þ ð19Þ

d
dt

FSHR tð Þ ¼ kFSHon � FSHfoll tð Þ � RFSH tð Þ � kFSHdis � FSHR tð Þ ð20Þ

d
dt

RFSH;dis tð Þ ¼ kFSHdis � FSHR tð Þ � kFSHrecy � RFSH;dis tð Þ: ð21Þ

2.2. Ovarian model

The authors in Lange et al. (2019) propose an ODE that
describes the growth behaviour of a single follicle. We adjusted
the equation and integrated hormone dependencies. Here, the size
of each follicle xi which is recruited during the simulation time, is
described as follows:

d
dt

xi ¼ Hþ FSHR; TFSHR ið Þ;nFSHRð Þ

� n� xið Þxi c� j
X
j

xmj � lxmi
 ! !

: ð22Þ

This equation includes follicle specific parameters as well as param-
eters which are shared among all follicles. The following five param-
eters are common for all follicles: (i) maximum size of each follicle,
n, (ii) growth rate c, (iii) strength of competition, j, (iv) fractal
dimension m, and (v) proportion of self-harm l. l relates to the role
of androgen in follicular maturation and atresia during the late fol-
licular phase. The source of androgen are the follicles themselves,
and the inhibitory effect of androgen on follicular maturation
appears to be important to ensure mono-ovulation (Hillier and
Tetsuka, 1997; Franks and Hardy, 2018). The parameter m has been
fixed to m ¼ 2 in all simulations, meaning that the strength of com-

petition is proportional to the follicular surface area. The positive
Hill term in front of the equation contains a follicle specific thresh-
old, TFSHR ið Þ, which we refer to as FSH sensitivity threshold value.
This follicle-specific threshold causes individual growth behaviour.
Follicular growth is stimulated if the FSH-receptor complex concen-
tration approaches and exceeds this threshold. This formulation is
related to the biological finding that follicle growth does not occur
below a certain level of FSH and that follicles respond differently to
FSH (Brown, 1978). In our simulation, the threshold values are sam-
pled from a normal distribution. Overall, whether a follicle starts
growing depends on various factors, such as the current hormone
levels, its FSH sensitivity threshold value, and the number and size
of competing follicles.

We model the time points at which follicles are recruited as a
Poisson point process with parameter k being equal to the
expected number of follicles that start growing within a time inter-
val of certain length. The Poisson parameter k is modulated by the
FSH concentration because the number of recruited follicles is
affected by the FSH level:

k ¼ k0 � 1þ sPoisFSH � Hþ FSH Tð Þ; TPois
FSH ;n

Pois
FSH

� �� �
The FSH window concept stresses the importance of elevated FSH
levels for the selection of a dominant follicle (Baerwald et al.,
2011; Fauser et al., 1997; Adams et al., 1993). The time period dur-
ing which FSH is above a certain threshold effects the number of fol-
licles reaching the dominant follicle’s size (Schipper et al., 1998;
Baird, 1990). This concept is incorporated in our model. Coupling
j, which is the parameter addressing the competition for domi-
nance between follicles, to a negative Hill term causes an FSH-
dependant decrease in follicular competition.

j ¼ j0 � H� FSH; TjFSH;n
j
FSH

� �
: ð23Þ

Follicle growth is stimulated by FSH and inhibted by P4 (Baird et al.,
1984). Therefore, two Hill functions modulate the growth rate c:

c ¼ c0 � H� P4; TcP4;n
c
P4

� � � Hþ FSHR; TcFSHR;n
c
FSHR

� �
: ð24Þ

A major source of E2 are growing follicles and the dominant follicle
produces the most E2 (Baird and Fraser, 1975; McNatty et al., 1976;
Hiller et al., 1981), considered by the model with a size-dependant
E2 production. We assume the E2 production by growing follicles to
be proportional to the follicular surface term FS,

FS ¼ p �
X

Hþ xi; TFS;nFSð Þ � xið Þ2: ð25Þ
The positive Hill function with TFS ¼ 15 accounts for the fact that
larger follicles have a higher contribution to the E2 production.

The overall E2 production is the sum of basal production, bE2
syn, the

E2 production by follicles (first addend in Eq. 26), and the E2 pro-
duction of the corpus luteum after the ovulation of a dominant fol-
licle (second addend in Eq. 26):

E2 tð Þ ¼ bE2
syn þ sFS � FSþ hE2 � exp �wE2 t � TOvu þ sð Þð Þ2

� �
ð26Þ

Similarly, P4 is produced by the corpus luteum:

P4 tð Þ ¼ bP4
syn þ hP4 � exp �wP4 t � TOvu þ sð Þð Þ2

� �
ð27Þ

The parameters for steroid production during the luteal phase, i.e.,
peak heights hE2; hP4, and inverse peak width wP4, were estimated
by fitting Gaussian curves to the data from 12 healthy patients
(Fischer et al., 2021; Röblitz et al., 2013). The peaks’ center position
TOvu þ sð Þ is set with respect to the last time point of ovulation, Tovu.

Overall, we were able to decrease the number of parameters
from 119 (114 parameters in Röblitz et al. (2013) and 5 parameters
in Lange et al. (2019)) to 82, mainly by replacing the heuristic
description of the follicular growth dynamics used in Röblitz
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et al. (2013) by the equation from Lange et al. (2019). A detailed
parameter list can be found in Appendix A.1.

2.3. Model simulation

In the presented model, 13 ODEs and 2 algebraic equations
describe the hormone dynamics. The number of ODEs describing
follicular growth increases with simulation time because a new
ODE is created for each follicle that is initialized at a given time
point. Moreover, the model exhibits a stochastic behaviour because
the initial times of follicles and the FSH sensitivity of follicles fol-
low random processes. This causes variability within a simulation
and between simulations.

Prior to the simulation, parameter values and initial conditions
are loaded from files and the simulation time interval [tb; te] is set
(Algorithm1). In addition, the entries of an array with follicle-
specific FSH sensitivity threshold values, TFSHR ið Þ, are sampled from
a normal distribution.

During the simulation, the global simulation time [tb; te] is
divided into sequential time intervals t; tn½ �, whereby tn are either
the time points at which new follicles emerge or the time points
of ovulation. In any case, the simulation has to stop at these inter-
mediate time points. This results in a more complex code structure,
which is represented in Algorithm1.

Algorithm1: Model simulation

Input: begin time tb, end time te, initial system state
x tbð Þ; y tbð Þ

Output: system state x teð Þ; y teð Þ
Initialize
t ¼ tb; x tð Þ ¼ x tbð Þ; y tð Þ ¼ y tbð Þ; startNewFollicle ¼ 1;
whilet 6 tedo
ifstartNewFollicle ¼¼ 1 then
sample time s at which the next follicle emerges;
tnextStart ¼ t þ s;

end if
if tnextStart < te then
tn ¼ tnextStart;

else if
tn ¼ te;

end if
tspan ¼ t; tn½ �;
x tf
� �

; y tf
� �� �

; t 6 tf 6 tn  DAE solver with event
detection
iftf < tn then
startNewFollicle ¼ 0; .ovulation occurd in tspan
else iftf ¼¼ tn then
startNewFollicle ¼ 1;
ifthe right hand side of the ODE for a new follicle is

positive then
initiate a new follicle;

end if
end if
update the destinies of all follicles;

t ¼ tf ;
end while

The starting time of a new follicle, tnextStart , is determined from
an exponential distribution with parameter 1=k, the inverse Pois-
son parameter. At each time point tnextStart , a new follicle is initial-

ized with size yfoll0 and specific FSH sensitivity value TFSHR ið Þ. Then
the right hand side of the ODE, which can be interpreted as a
growth rate corresponding to this new follicle, is evaluated. A neg-
ative right hand side means a decrease in size, i.e., the new follicle
cannot start growing under the conditions at this specific time
point and is hence rejected. In case of a positive growth rate, the
new follicle is added to the list of active follicles and the ODE sys-
tem is extended by one equation.

The time integration is evaluated by an event function that
checks at every time step if an ovulation occurred. An ovulation
is detected if the following two criteria are met:

- the largest follicle is at least 18 mm in size
- the value of LH is greater than the threshold parameter
TLH ¼ 25mIU

mL

Whenever the integration stops, either because ovulation occurred
or because a new follicle is initiated, the destinies of all follicles are
updated. For this purpose, the state of maturation for each follicle
is evaluated based on the right hand side of the ODE system. Four
possible follicular destinies are defined: (i) ovulation, (ii) growth,
(iii) decreasing, and (iv) large but no ovulation because of too
low LH concentrations.

The simulation output covers time courses of hormone concen-
trations and follicles’ diameters. In addition to that, there is a read-
out of the number and time points of ovulation and cycle lengths.
The model and the simulation algorithm have been implemented
in MATLAB and are accessible on GitHub (https://github.com/SoFi
work/GynCycle_newVersion). Numerical simulations have been
performed using the ODE solver ode15s.

3. Methods

We used Approximate Bayesian Computation (ABC) with sum-
mary statistics to investigate the parameter space. The goal is to
find parameters that have narrow value ranges and that can there-
fore be interpreted as sensitive, and to find parameter clusters.

3.1. Population of models, model checking, and sensitivity analysis

Sensitivity analysis methods help to understand how uncer-
tainty and noise in the model input effect the model output and
its ambiguity. Classical sensitivity analysis algorithms evaluate
model outputs at specific time points. However, these methods
are not applicable to the presented model because of variation in
simulation results, such as cycle length and composition of follicu-
lar cohorts, prevent the specification of a set of evaluation time
points. Alternatively, ABC can be used to study parameter spaces
and sensitivities and to estimate parameters. The overall idea of
all ABC-based approaches is to bypass the evaluation of a likeli-
hood function by performing high numbers of simulations which
are compared to observed data (Toni et al., 2009). Our ABC algo-
rithm is based on the ABC rejection sampler introduced by
Pritchard et al. (1999) and consists of the following four steps:

1. A parameter vector ĥ is sampled from a prior distribution p hð Þ.
2. Using ĥ as model parameters, a data set bD is generated by

simulation.

3. bD is evaluated with respect to a set of defined criteria and will
either be accepted or rejected.

4. Return to step 1.
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We defined two sets of prior distributions: (i) p hð ÞHormones for
parameters associated with hormone dynamics, and (ii)
p hð ÞFollicles for parameters used in the follicular growth equation.
Parameters that were used to create the two model populations
are marked (⁄) in the parameter list given in Appendix A.1. In
all cases, model parameters were sampled from uni-variate log
normal prior distributions with mean l ¼ h0, where h0 denotes
the original parameter value (Appendix A.1), and standard devia-
tion r ¼ 0:15.

The comparison between simulations is challenging because of
the stochastic elements included in the model. The composition of
follicle cohorts varies between simulations because the time points
of follicle initialization and the follicle-specific sensitivities to FSH
are sampled prior to each simulation run. Differences in the follic-
ular cohort composition influence the hormone dynamics and the
selection of the dominant follicle. To study the effects of variation
in the model parameters on the simulation results, we needed to
ensure that the effects we observe are not caused by differences
in follicular cohort composition. Therefore, the initialization time
points and FSH sensitivity values of the follicles were fixed for all
simulations performed for the ABC analysis. However, we still
observe variations in cycle length and offset between simulations
with different parametrizations. Therefore, a distance function to

evaluate the difference between bD and D is not applicable. Instead,
the following three characteristics (Fig. 2) were assessed as sum-
mary statistics for each simulation run and were used for the
comparison.

- At least 75% of the FSH profiles of consecutive cycles have to fol-
low a characteristic profile as it is illustrated in Fig. 2.

- The mean cycle length has to be between 21 and 40 days
(Rosenfield, 2013 and National Health Service, 2021 state that
most cycles are within this range.)

- The variability in cycle length needs to be smaller than 4 days.

The simulation time was set to 300 days, which ensures that about
13 consecutive menstrual cycles can be evaluated (Fig. 2a). The FSH
profile of each simulated cycle was evaluated automatically by
checking three properties which give the profile its characteristic
shape (Fig. 2b):

- decrease of the FSH concentration between 5 and 3 days before
ovulation

- increase of the FSH concentration right before ovulation
- decrease of the FSH concentration after ovulation

Each cycle within a simulation run was marked by the ovulation of
the dominant follicle. This characteristic time point was used as a

reference time point to calculate the average rate of change of the
FSH profile within a defined time interval. The cycle length of all
menstrual cycles within one simulation was also evaluated auto-
matically by measuring the time difference from one ovulation to
the next one (Fig. 2a).

We observed that in simulations with a regular FSH profile, also
the remaining hormone profiles are physiologically reasonable.We
therefore only analysed FSH profiles for the summary statistics.
This observation can certainly be attributed to the fact that the
model represents a fully closed feedback loop.

Based on the summary statistics, simulation runs were classi-
fied as successful or unsuccessful, whereby successful simulations
constitute a virtual patient population. A simulation was classified
as successful if all of the above criteria were satisfied. For each
parameter we thus obtained one distribution from successful sim-
ulations and one distribution from unsuccessful ones. The similar-
ity between these two discrete distributions was evaluated using
the Jensen–Shannon divergence, which is a symmetric and
smoothed formulation of the Kullback–Leibler divergence (Lin,
1991).

3.2. Parameter clustering

For each of the two model populations, created by variation in
either the follicle or the hormone parameters, the parameter
spaces of the two subgroups (accepted and rejected simulations)
were analysed with the aim to find parameter dependencies and
clusters. By comparing the individual parameter distributions of
successful and unsuccessful simulations, we explore differences
in the parameter ranges between these two groups.

For this purpose, we applied a spectral clustering method, the
robust Perron cluster analysis (PCCA+) (Röblitz and Weber,
2013), to a pairwise similarity matrix. The similarity between
two parameter vectors i and j; sij, was derived from the pairwise
distance dij as sij ¼ 1� dij, whereby pairwise distances were nor-
malized such that maxi;jdi;j ¼ 1. For the distance measure dij, we
used a path-based distance measure based on connectedness
rather than compactness (Fischer et al., 2001). This criterion cap-
tures data sources that are spread out on a low-dimensional man-
ifold which is embedded in a high dimensional data space. The
connectedness criterion considers two objects as similar if there
exists a mediating path without an edge with large cost, whereby
we used the Euclidian distance as cost function. This distance can
be computed by solving the minimax path problem (also called
bottleneck shortest path problem) on the complete undirected
graph, which asks for the path between two points that minimizes
the maximum edge capacity. We used the minimax variant of the
Floyd-Warshall algorithm to solve this problem.

Fig. 2. Sketch of simulation results to illustrate the assessment of summary statistics. Grey lines are individual ovarian follicles. The FSH profile is given in red. Ovulations
(ovul) of a dominant follicle are marked by terminating growth trajectories. a) Within each simulation multiple consecutive menstrual cycles are observed. A cycle is defined
from one ovulation of a follicle to the next one. b) The shape of each FSH profile is evaluated based on three characteristic slopes: i) a decrease during the late follicular phase
(five to two days prior to ovulation), (ii) an increase during the two days before ovulation, and (iii) a decrease during the luteal phase (during seven days after ovulation).
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4. Results

4.1. Model simulation

The model enables simulations of consecutive cycles as repre-
sented in Fig. 3, which displays simulated follicular growth trajec-
tories (Fig. 3e) and hormone profiles (Fig. 3a-d) of three menstrual
cycles originating from the same simulation. The zoom in panel
(3f) showcases the interplay between follicular growth and hor-
mone dynamics. Fundamental features of the interaction are
apparent. Follicles grow under elevated FSH levels and the peak
in LH concentration triggers the ovulation of the largest active fol-
licle. Increased P4 concentrations during the luteal phase prevent
the growth of any large follicles.

Furthermore, follicles grow in cohorts/waves consisting of
about five follicles. The property that follicles grow in distinct

cohorts (one cohort during the follicular phase and one during
the luteal phase) is not implemented in the model itself. This emer-
gent behaviour is rather a result of the interplay between hor-
mones and follicles covered by the model. The elevated P4 levels
during the luteal phase prevent ovulation. Hence, there is no dom-
inant follicle when the P4 level is high. The ovulation of the dom-
inant follicle, which is visible as a terminated growth trajectory
around day 15, is aligned with the LH peak.

Fig. 4 shows the hormone profiles (LH, FSH, E2, and P4) of three
consecutive cycles and pooled hormone data for one menstrual
cycle from 12 healthy women (data set from Röblitz et al., 2013).
The three consecutive cycles originating from one simulation and
were overlaid by shifting them along the time axis. All curves are
aligned on the day of ovulation. Simulated peak concentrations
and concentration ranges agree with the data set. The overall shape
of simulated hormone profiles are also comparable to the data. The

Fig. 3. Example simulation of three consecutive cycles. Panels a-d) show the time-evolution of the four hormones P4, LH, E2, and FSH. Panel e) illustrates the growth
trajectories of follicles within this time frame. Panel f) is a zoom into the second cycle represented on the left.
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simulated cycle lengths range from 22.7 to 27.8 days. A detailed
overview of the cycle length distribution is presented in Appendix
A.2.

However, there are notable discrepancies between the data and
the simulation results. The measured FSH profiles show a longer
rise of FSH during the follicular phase from day 1 to day 10
(Fig. 4b). The simulated LH peak is shifted to the left compared
to the peak in the data (Fig. 4 a). There is also a mismatch between
the data and the simulated hormone profile for E2 during the early
follicular phase up to day 5 (Fig. 4a).

4.2. Model Analysis

To investigate the parameter space, we created two populations
of models, one focusing on hormone dynamics and one focusing on
follicular growth behaviour. Each population is composed of 1000
parameter realizations. Follicles were initialized with the same
follicle-specific properties (FSH sensitivity and start times) to
ensure that variability is not caused by changes in the initial com-
position of the cohort of follicles. Each simulation was checked
automatically according to the shape of the FSH profile, the cycle
length and its variability (Fig. 2). A simulation that meets all three
criteria was categorized as successful. Since the duration of a cycle
is measured from one ovulation to the next one, ovulations of two
follicles shorty after each other cause an incorrect cycle length.
Hence, successful simulations contain only mono-ovulatory cycles.
This bias is negligible, because we rarely observed the ovulation of
multiple follicles around mid-cycle in our simulation results.

Figs. 5a) and b) show the numbers of successful and unsuccess-
ful simulations in the two populations of models. For both popula-
tions about 1=3 of the parameter realizations give successful
simulations. The event plots in Figs. 5c) and d) illustrate the criteria
on which 100 randomly selected unsuccessful simulations failed.
In all of these 100 simulations, it is the FSH profile that does not
satisfy the criteria, whereas in both model populations abnormal

cycle length or cycle length variability are less often the reason
for failure.

Fig. 5e) shows the distribution for the model parameter l,
which is one of the parameters varied to create the follicle specific
model population. The distribution of l differs between successful
simulations (green histogram) and unsuccessful simulations (red
histogram), with a Jensen-Shannon divergence of 0.13. For all other
parameters striking differences are not present (Figs. A.7 and A.8).
Using Pearson correlation, we investigated the relationship
between l and the average cycle length as well as between l
and the variance of the cycle length. A negative linear correlation
was found between l and the average cycle length (Pearson corre-
lation coefficient = �0.71, see Fig. 5f). The analysis was repeated for
an alternative follicle initialization, which gave comparable results
(A.4).

By applying a clustering method on the multivariate parameter
distributions, we aimed at finding parameter clusters to classify
simulations. Our hypothesis was that parameters that lead to suc-
cessful and unsuccessful simulations, respectively, will fall into dif-
ferent clusters. We applied PCCA+, which did not indicate any
clusters in the parameter space.

5. Discussion

This work presents and explores a novel mathematical model of
the menstrual cycle, which combines hormone dynamics and fol-
licular growth in a mechanistic manner. None of the previously
published models allowed for simultaneously simulating hormone
dynamics and follicular maturation throughout consecutive men-
strual cycles. The applicability of our model in a medical setting
is demonstrated in Fischer et al. (2021), which can be considered
as a validation for the presented model.

The growth of ovarian follicles in cohorts of about five follicles
can be observed as an emerging property in our simulation results.
While the growth of ovarian follicles in cohorts is a well-described

Fig. 4. Comparison of simulated hormone profiles for LH, FSH, P4 and E2 and pooled hormone data from 12 healthy women. Simulated hormone profiles and measurement
data are aligned with the ovulation at day 13. Grey dots represent the pooled data set. For each hormone, three consecutive cycles are overlaid.
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phenomenon in some mono-ovulatory species such as cattle, it
counts as hypothesis in human. Our model can be considered as
further evidence that follicular waves also occur in human.

Differeences between patients’ data and simulation trajectories
are visible in Fig. 4. We argue that the difference in cycle length
contributes to the mismatches. The simulated average cycle length
ranges from 22.7 to 27.8 days (Fig. A.6), which is within the phys-
iological range (Bull et al., 2019). The cycle length is unfortunately
not specified in the data set, but we estimated it to be about
28 days. Therefore, simulated cycles can be about five days shorter
than in the data set. In line with the literature (Bull et al., 2019), we
implemented the model in a way that little variation occurs in the
length of the luteal phase. It is therefore the follicular phase that
causes variation in cycle length and that is responsible for shorter
simulated cycles (compared to the duration of the follicular phase
in the patients’ data). A shorter follicular phase in the simulations
compared to the data explains the shift of the LH peak as well as
the shorter period of the FSH rise.

It is also important to note that neither the parameters in the
follicle model nor in the equations for E2 and P4 were optimized
using these data, in contrast to the parameters in the hormone
model, which had previously been estimated from these data
(Röblitz et al., 2013). Therefore, a re-parameterization of the model
could improve the difference between data and simulation curves,
but parameter estimation for the given model is challenging. Most
of the parameters included in the current model version are non-
identifiable given the available data. One reason is that there is
simply not enough data available given the complexity of the
model.

The balance between available data and model parameters
could be improved with a systematic model reduction. However,
this would result in losing parts of the model for which no mea-
surement data are available at the moment, e.g., the GnRH receptor
binding model. By removing that part of the model, treatments
with GnRH analogues could not be simulated any more.

Moreover, the data we could access only covers hormone pro-
files for one cycle, and does not provide any information about

individuals’ cycle lengths or variability. Since our model simulates
consecutive cycles, data sets covering multiple menstrual cycles
would be preferable.

We used an ABC-based approach to investigate model parame-
ters in more depth. Our hypothesis was that parameters for suc-
cessful/unsuccessful simulations would form clusters. However,
PCCA + cluster analysis did not reveal clusters in the parameter
space. We conclude that there is no particular subset of parameters
that leads to non-biological simulation results. Instead, our analy-
sis indicates that the composition of the complete parameter set
determines the fate of a simulation.

By comparing the parameter distributions or each parameter
with respect to the simulation fate of successful and unsuccessful
simulations, we did not find parameters that are restricted to nar-
row ranges of values. This leads us to the conclusion that non of the
selected parameters is particularly sensitive. A clear limitation of
our approach is that the parameter distributions were not derived
from data.

Based on the Jensen–Shannon divergence, the distribution of l
differs between successful and unsuccessful simulations. The cor-
relation between l and the cycle length is in line with biological
knowledge. l encodes a process that results in follicle atresia.
Hence, if l is higher, more follicles undergo atresia, which reduces
competition and results in earlier emergence of a dominant follicle.

As demonstrated in Fischer et al. (2021), the model can be used
to simulate controlled ovarian stimulation protocols. However, the
model formulation does not allow for an application to all patho-
logical cases. The mathematical formulation of the follicular
growth adopted from Lange et al. (2019) does not allow for the
arrest of multiple premature follicles as it is described for the Poly-
cystic Ovary Syndrome (PCOS). Therefore, this model is not eligible
to describe PCOS or to simulate ovarian stimulation protocols in
PCOS patients. Cell-based models of follicular morphogenesis such
as the one proposed in Monniaux et al. (2016) could allow for a
simulation-based exploration of PCOS. Note that the model could
potentially also be used to further investigate the relationship
between follicles in mono-ovulatory species compared to poly-

Fig. 5. Summary of the model analysis. The left box sums up results for the population of models that resulted from variation of parameters important for hormone dynamics,
whereas the right box shows results for the model population based on variation of follicle parameters. Each population consists of 1000 randomly drawn parameter
realizations. Histograms in Figures a) and b) present the count of successful (green) and unsuccessful (red) simulations for each population of models. The event plots in
Figures c) and d) illustrate the cause of failure for 100 failed simulations from each population (top/blue: failure due to irregular FSH profile, middle/red: failure due to
abnormal cycle length, bottom/yellow: failure due to abnormal cycle length variability). Figure e) shows the distribution of parameter l, which is the proportion of self harm
included in the follicle growth equation. The solid black line shows the prior distribution of l used for sampling. The green and red distributions are the parameter
distributions for successful and unsuccessful simulations, respectively (Jensen-Shannon divergence = 0.13). Figure f) demonstrates the negative linear correlation between l
and the average cycle length (Pearson correlation coefficient = �0.71).
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ovulatory species, since these mechanisms are still poorly under-
stood (Sirotkin et al., 2017).

To conclude, our presented modelling approach is the first one
that allows for simulation-based studies of the interplay between
hormones and ovarian follicles throughout consecutive menstrual
cycles. Therefore, it can be used to test new treatment strategies
for ovarian hyper stimulation in silico. Our simulation results dis-
play variability in the cycle dynamics as a result of stochasticity in
the recruitment process of follicles. To our knowledge, none of the
previously published models contains stochastic elements result-
ing in variability between cycles, which resembles intra-
individual variability. The growth of follicles in cohorts is an emer-
gent property of the implemented mechanistic interactions
between hormones and follicles, which supports the follicular
wave theory in humans. Re-parameterization of the model could
increase its predictive values, but this would require longitudinal
ultrasound measurements of follicles as well as hormone profiles
throughout consecutive cycles from several individuals.
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New approaches to ovarian stimulation protocols, such as luteal start, random start or
double stimulation, allow for flexibility in ovarian stimulation at different phases of the
menstrual cycle. It has been proposed that the success of these methods is based on the
continuous growth of multiple cohorts (“waves”) of follicles throughout the menstrual cycle
which leads to the availability of ovarian follicles for ovarian controlled stimulation at several
time points. Though several preliminary studies have been published, their scientific
evidence has not been considered as being strong enough to integrate these results into
routine clinical practice. This work aims at adding further scientific evidence about the
efficiency of variable-start protocols and underpinning the theory of follicular waves by
using mathematical modeling and numerical simulations. For this purpose, we have
modified and coupled two previously published models, one describing the time course of
hormones and one describing competitive follicular growth in a normal menstrual cycle.
The coupled model is used to test ovarian stimulation protocols in silico. Simulation results
show the occurrence of follicles in a wave-like manner during a normal menstrual cycle and
qualitatively predict the outcome of ovarian stimulation initiated at different time points of
the menstrual cycle.

Keywords: endocrinological networks, systems biology, follicular dynamics, ordinary differential equations,
assisted reproductive technologies

INTRODUCTION

Infertility is a worldwide problem. According to the World Health Organization, about 48.5 million
couples worldwide were affected by unwanted childlessness in 2010, and the number continues to
grow (1). Men and women are just as likely to contribute to the couple’s infertility (2). Infertility as a
disease of the female reproductive system affects approximately 10% of women of reproductive age
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worldwide (3). Unbalanced hormone levels are one cause, in a
wide range of conditions, leading to infertility. For many couples,
unwanted childlessness is a burden. Assisted reproductive
technologies (ART) provide strategies to deal with infertility.
Both unwanted childlessness and ART increase the risk for
negative psycho-social functioning, such as depression and
anxiety disorders (4–6), whereby the treatment burden has
fallen mainly on women (2). Therefore, new ART approaches
deserve to be highlighted. We want to add further scientific
evidence for the efficiency of those new approaches by using
mathematical modeling and numerical simulations.

Female reproduction is essentially enabled by a feedback
mechanism between ovarian hormones, mainly progesterone
(P4) and estradiol (E2), and the pituitary hormones luteinizing
hormone (LH) and follicular stimulating hormone (FSH), see
Figure 1. The hormone interaction network is important for
regulating folliculogenesis. While the initial recruitment of
follicles does not depend on gonadotropins (7, 8), the growth
of cohorts of larger follicles relies on a stimulatory effect of FSH.
FSH signaling is mediated by the expression of FSH receptors on
granulosa cells (9, 10). The gonadodropins LH and FSH are
responsible for follicular estradiol production. LH stimulates

androstenedione production, which is the substrate for the
FSH stimulated aromatase reaction producing estradiol (8, 11,
12). Around mid-cycle, usually one dominant follicle ovulates
and releases an oocyte. The remaining parts of the dominant
follicle transform into the corpus luteum, which has a key role in
preparing the body for a possible pregnancy. If the oocyte is not
fertilized, the corpus luteum decays and a new cycle starts (13–
15). Interruptions in the feedback system are one reason
for infertility.

Modern assisted reproductive technologies like in vitro
fertilization (IVF) or intracytoplasmic sperm injection (ICSI)
have increased the chance for pregnancy. Ovarian stimulation,
which aims at obtaining multiple fertilizable oocytes, is a critical
step in ART (16). Since the 1980s, the long gonadotropin-
releasing hormone (GnRH) agonist protocol has been
commonly used to prepare for oocyte retrieval and in-vitro
fertilization (17, 18). This protocol starts around mid-luteal
phase with GnRH agonist administration for about 14 days.
Right after the beginning of GnRH agonist administration, a
short period of gonadotropin (FSH and LH) hypersecretion is
observable. The treatment leads to GnRH-receptor down-
regulation in the pituitary (19, 20). In the next step, the growth
of multiple follicles is stimulated by FSH administration alone,
e.g. with recombinant FSH (rFSH), or by a combination of FSH
and LH, e.g. with human menopausal gonadotropin (hMG).
Continuation of GnRH agonist administration during the
stimulation phase prevents an LH surge and hence ovulation.
In the final step, ovulation is induced by injecting human
chorionic gonadotropin (hCG) (18). Patient-specific and clinic-
dependent modifications of these general procedures are
common. The two most common alternatives are the short
GnRH agonist protocol and the antagonist protocol. Both
protocols work without downregulation, though some clinics
perform a pre-treatment phase for 10 to 25 days with a P4
antagonist that inhibits ovulation.

The stimulation phase in the short GnRH agonist protocol is
the same as in the long protocol. It includes the stimulation with
hMG or rFSH and the concurrent administration of a GnRH
agonist. The antagonist protocol also includes the stimulation
with hMG or rFSH but, in contrast to the agonist protocols, a
GnRH antagonist is administered from day 5 of the stimulation
period. The final step in all protocols is the induction of
ovulation by hCG.

In general, infertility treatment is a long-term and expensive
therapy with high dropout rates (21), mainly because it
imposes physical, mental, and emotional burdens (22). Often,
life has to be subordinated to medical procedures. Therefore,
treatment alternatives are of interest. Both the short and the
antagonist protocol are less time-consuming than the long
protocol. However, the stimulation phase in these protocols
conventionally starts in the early follicular phase. This constraint
could cause too long waiting times, e.g. for women requiring
emergency fertility preservation. Hence, the advancement of a new
class of ovarian stimulation approaches called random - and luteal
phase-start ovarian stimulation protocol (23) has progressed. In
recent years, several studies investigating ovarian stimulation

FIGURE 1 | Flowchart illustrating the interactions included in the given
model. This is a simplified feedback interactions network for the hormonal
control of the female menstrual cycle. Green arrows indicate positive
feedback effects, while red arrows express negative feedback interactions.
Gray arrows show other types of interactions. The pulsatile release of GnRH
stimulates the release of the pituitary hormones LH and FSH. These
hormones effect follicular maturation. Growing follicles produce E2 which has
a positive feedback effect on the LH concentration. A high LH concentration
triggers the ovulation of one selected follicle (light gray arrow) followed by the
formation of the corpus luteum (dark gray dashed arrow). The simultaneous
release of E2 and P4 by the corpus luteum (dark gray arrows) inhibits the
release of GnRH. Additionally, P4 has an inhibitory effect on LH and FSH.
While P4 only has an inhibitory effect on GnRH, E2 has either a stimulatory or
an inhibitory effect on GnRH, depending on the E2 level.
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protocols with various starting points have been published (24–
26). Originally, these protocols were invented for fertility
preservation in cancer patients, where time is a limiting factor
(27). However, they might be beneficial for patients outside an
oncological setting (23), though there is an ongoing debate
whether the oocyte quality differs between protocols. Other
approaches like the double ovarian stimulation, where two
waves within one cycle are stimulated, might help to increase
the number of accumulated oocytes within one treatment cycle
(28). That strategy could be of particular interest for the therapy of
poor ovarian response patients (29, 30).

One possible explanation for the success of stimulation
initiated in different phases of the cycle is the “wave” theory.
The use of high-resolution transvaginal ultrasonography has
underpinned the hypothesis that, similar to ruminants,
follicular growth and development in human is characterized
by waves (31, 32), whereby each wave involves the recruitment of
a cohort of follicles and the possible selection of a dominant
follicle. Given that multiple waves of follicles appear each cycle,
there are multiple time points during one cycle that are suitable
to start ovarian stimulation.

The mathematical model underlying this study simulates the
time-evolution of key hormones and growth behavior of multiple
follicles. In particular, we test the hypothesis that random
recruitment of follicles leads to the emergence of follicular
waves. Based on the occurrence of follicular waves that we
observe in our simulation results, we study variable-start
ovarian stimulation protocols in silico. We demonstrate
simulation results for two protocols, namely (i) stimulation
initiated in the late follicular phase and (ii) stimulation
initiated in the luteal phase. We analyze statistics of treatment
duration and numbers of follicles in our simulation results and
compare them with the literature.

MATERIALS AND METHODS

Mathematical Modeling of the Female
Menstrual Cycle
Mathematical modeling is a useful tool to better understand the
human menstrual cycle by validating or testing hypothesis in
silico, and predicting possible dynamics. A first mathematical
model for the human menstrual cycle was introduced in a series
of articles by Schlosser, Selgrade, and Harris-Clark (33). Their
model allows to simulate the time course of hormones and
follicular maturation stages over several cycles and is able to
display multiple follicular waves (34). This model was extended
by pharmacokinetic sub-models to simulate the administration
of drugs, including ovarian contraceptive pills (35, 36) and
GnRH analogs (37). These pharmacokinetic-pharmacodynamic
(PKPD) models allow to study the influence of dose and time
point of administration of various drugs on the cycle dynamics.

All those models are based on ordinary or delay differential
equations since they allow to simulate the time evolution of
hormone concentrations and follicles. Hill functions have been
used to characterize stimulatory and inhibitory effects, as it is

common practice for modeling regulatory networks. The model
by Röblitz et al. (37) consists of 33 ordinary differential equations
that describe the feedback mechanisms between the hormones
that are of particular importance for the female menstrual cycle
(GnRH, FSH, LH, E2, P4, inhibin A, inhibin B) and the
development of follicles and corpus luteum throughout
consecutive cycles. Compared to previous models, it does not
use delay differential equations and consists of fewer equations
and parameters. However, all those models have in common that
follicular growth is described in terms of activity levels of
different follicular maturation stages, but not in terms of
follicle numbers and sizes. Thus, the simulation results cannot
be compared with ultrasound data.

Amathematical model that quantifies the time evolution of the
sizes of multiple follicles comparable to observations by
ultrasound measurements in mono-ovulatory species was
presented by (38). This model contains a separate differential
equation for each follicle, whereby the structure of this equation is
the same for all follicles, but the initial follicle sizes are different.
The equations are coupled via a term that accounts for
competitive interactions between follicles. Together with the
model by (37) a previous version of the model by (38) formed
the basis for the development of computational tools to enable in
silico clinical trials in reproductive endocrinology (39, 40). In
particular, by introducing variability into model parameters (41–
43), the authors could analyze inter-individual variability in the
cycle and automatically synthesize, by means of artificial
intelligence guided by patient digital twins, optimal personalized
treatments for the patients at hand (44). However, the tools could
only be applied to the downregulation phase before follicular
stimulation, because the feedback mechanisms from the ovaries to
the pituitary were not implemented in the modified model. This
drawback motivated the development of the fully coupled model
as presented in this work. To our knowledge, this is the first
mathematical model that allows for the simulation of stimulation
protocols that start at different time points in the cycle.

Model Construction and Assumptions
The mathematical model underlying this work is the result of
modifying and coupling the two previously published models by
Röblitz et al. (37) and Lange et al. (38). In a first step, the model
by Röblitz et al. (37) was reduced by removing the equations for
the development of follicles and the corpus luteum and the
hormones produced by them (inhibin A, inhibin B, E2, P4). In
addition, we removed the equations for LH receptor binding
mechanisms, since they were not needed for our purpose. The
remaining equations were kept exactly as in (37), except for the
FSH synthesis rate. In the new model, this rate is inhibited by P4
instead of inhibin A and B [Eq. (S5) in the Supplement], since
P4 reaches its peak in the mid-luteal phase exactly as inhibin A.
The influence of inhibin B could be neglected without any
consequences for the qualitative behavior of the model. In
addition, we have introduced a new equation for the amount
of FSH that reaches the follicles [Eq. (S9) in the Supplement] to
account for delays caused by transportation and for changes in
concentration caused by different volumes. In contrast to (37),
the equations for FSH receptor binding now take into account
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FSH in the ovaries instead of the FSH blood concentration [Eqs.
(S10)–(S12) in the Supplement].

Instead of re-introducing a corpus luteum into the model
equations, we decided to use algebraic equations to directly
model the amounts of E2 and P4 produced in the luteal
phase of the cycle [Eqs. (S23) and (S25) in Supplement S1].
The model describes E2 and P4 levels in the luteal phase by
Gaussian-shaped curves with fixed parameters based on fits to
experimental data (for P4 see Figure S1 in Supplement S3). This
simplification is based on the observation that the variability in
the length of the luteal phase is significantly lower than the
variability in the length of the follicular phase (45).

We modified the follicle equation introduced by (38) in a way
that the hormone dynamics in the system have a direct effect on
the follicular growth behavior [Eqs. (S20)-(S22) in Supplement
S1]. The maturation of each follicle is modeled by a separate
ODE. All ODEs have the same structure and include both shared
and follicle specific parameters. Each follicle carries two random
properties that are follicle specific, hence there are two follicle
specific parameters: the time point at which a follicle is recruited,
and its FSH sensitivity. The following assumptions are made
about these two parameters:

• The time point at which a follicle is recruited and starts
growing is follicle-specific and follows a Poisson process. The
overall number of follicles that are recruited within a specific
time interval is a Poisson random variable. The parameter of
this distribution, in the following named Poisson parameter,
corresponds to the probability that a given number of follicles
is recruited in a fixed time interval. In the model, the Poisson
parameter is modulated by the FSH concentration: if the FSH
concentration is above a certain threshold, more follicles are
recruited.

• The second property is a follicle specific FSH value, referred to
as FSH sensitivity threshold value, which has to be exceeded
in order to stimulate the follicle’s growth. This refers to the
biological finding that follicle growth does not occur below a
certain level of FSH (46), and that any two follicles might
respond differently to FSH, even if the two have the same size,
because they differ in the FSH receptor density. The
distribution of the FSH sensitivity threshold values in the
population of follicles is assumed to follow a normal
distribution. Follicles that are more sensitive to FSH, i.e.
which require less FSH to start growing, have a competitive
advantage for being selected as the dominant follicle. Whether
a follicle becomes dominant, however, depends on both its
FSH sensitivity and its recruitment time point.

The competition between follicles, which is represented by a
common parameter [Eq. (S22) in Supplement S1], is inhibited
by FSH concentrations above a certain threshold, taking into
account the “FSH window concept” (47–49). This concept is
based on the observation that the period of time during which
FSH is above a certain threshold effects the number of follicles
reaching the dominant follicle’s size (50, 51). Moreover, we
assume that the follicular growth rate is inhibited by P4 and

stimulated by the FSH receptor complex level in a threshold
dependent way [Eq. (S21) in Supplement S1] (52).

Growing follicles are the main source of E2 in the female body
and the dominant follicle produces the most E2 (12, 53, 54).
Estradiol is produced by granulosa cells, which proliferate and
form a multilayered structure. This is included in the model by
an additional term in E2 production which is dependent on the
follicular size [Eqs. (S24) and (S25) in Supplement S1].

To sum up, the coupling between the hormone dynamics
model and the follicular growth model is realized as follows
(compare Figure 1). The levels of FSH in the blood and of the
FSH receptor complex enter into the equations for the follicles in
a threshold dependent way. In addition, the LH level plays a role
in determining the time point of ovulation. Ovulation of a follicle
that exceeds the size threshold occurs 12 h after the LH level is
higher than a certain threshold. The levels of E2 and P4 in the
luteal phase depend on the time point of the last ovulation. E2
and P4 levels enter into the equations for LH and FSH synthesis
and for the frequency and mass of GnRH, in the same way as in
(37). The coupled model contains in total 72 parameters, i.e. less
than the two original models taken together (114 parameters in
(37) and 5 parameters in (38). We adopted 44 parameters from
(37) and only changed the values of three of them. A detailed
parameter list can be found in the Supplement. The model has
been implemented in MATLAB and numerical simulations were
performed using the ODE solver ode15s. The code is available at
https://github.com/SoFiwork/GynCycle.

Ovarian Stimulation Protocols
Stimulation protocols are introduced to the model by a
pharmacokinetic approach. The dosing concentrations of the
administered drug, as used in the ovarian stimulation protocols,
are calculated during the simulation based on three drug
specific pharmacokinetic parameters using the information
given by (55) [Eq. (S26) in Supplement S1]. In order to study
treatment outcomes, two different stimulation protocols were
implemented. The two studies were selected based on the
accessibility of results, the size of study cohorts and the
physiological stage of patients. Each study includes data from
more than 100 women. Patients were at the age of 18 to 40 years
with a body mass index of 18 to 30 kg/m3. All women showed
spontaneous ovulation.

Stimulation Initiated in the Late Follicular Phase
Our simulated treatment protocol for ovarian stimulation during
the late follicular phase follows the description in Zhu and Fu
(24). As a simplification, we did not vary the administered hMG
dose during the first days of stimulation. The stimulation starts
with a daily administration of 150 IU hMG when at least one
follicle measures 14 mm in diameter. After 6 days, the daily dose
is increased to 225 IU per day. We chose day 6 to change the
hMG concentration because re-examination and dose
adjustment in the clinical trial took place after 5 - 7 days. The
stimulation stops whenever at least 3 follicles reach a diameter of
at least 18 mm. The ovulation of a dominant follicle during the
stimulation phase is characteristic for this protocol.
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Stimulation Initiated in the Luteal Phase
The protocol described in (26) served as a reference to simulate
the stimulation of multiple follicular growth during the luteal
phase. In this clinical trial, the drug administration in the
simulation starts between day 1 and 3 after ovulation under
the condition that there exist follicles smaller than 8 mm.
Follicular growth is stimulated by the daily administration of
225 IU hMG. The stimulation terminates if at least three follicles
have reached a diameter of 18 mm.

RESULTS

Unstimulated Cycle
As indicated in Figure 2, the model generates quasi-periodic
solutions for all four hormones. Due to the individual growth
behavior of follicles implemented in the model, variations in
cycle length and number of follicles per cycle occur. Simulations
for a normal cycle were performed for more than 1000 time steps
in order to get an idea of the variability in the model outcome. In
total, 42 simulated menstrual cycles (here, one menstrual cycle is
defined from one ovulation to the next one) were used for a

statistical analysis. In the simulations, the average cycle length
was 30.56 days, with a standard deviation of 7.00 days (Figure S2
in Supplement). On average, 16.19 follicles greater than 4 mm
were detected during one cycle, with a standard deviation of 3.08
follicles. The results were tested for normality using the Shapiro-
Wilk test with a 95 confidence interval. A correlation between the
cycle length and the follicular count was not observed.

The simulated hormone curves are supposed to be
comparable to serum hormone concentration profiles in terms
of shape and peak values. Figures 2A–E display consecutive
menstrual cycles in the time period between day 50 and day 130
from one simulation run. The time evolution of all four hormone
profiles is illustrated, and the described interplay between
hormones and follicles is apparent.

The wave-like growth behavior of the follicles (Figure 2E) is
generated by the model itself and is not enforced by the
implementation. Figure 2G shows an example of the ovulation
of a dominant follicle that occurs 12 h after LH reached its peak
concentration. This 12-h gap is accomplished by the way the
ovulation event is defined in our model (see Discussion). Once
ovulation is detected during the run time of the simulation, the
ovulated follicle is taken out from the cohort of follicles

A

B

D

E

F

G

C

FIGURE 2 | Simulation results of the female menstrual cycle model are displayed. The left column illustrates the simulation outcome for two menstrual cycles and
the right column zooms into details. Here, one cycle is defined from one ovulation to the next one. Sub-figures (A–D) represent the simulated hormone concentration
profiles for LH, FSH, E2 and P4. (E) portrays growth trajectories of follicles >4 mm. The ovulation of a dominant follicle is indicated by terminating trajectories, as
seen for example around day 80 of the simulation. (F) illustrates competition between follicles indicated by crossing growth trajectories. (G) Points out that the
ovulation of a dominant follicle occurs 12 h after the LH peak concentration as a result of the way the ovulation process is implemented in the model.
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(indicated by the terminating trajectory in Figure 2G). This
follicle no longer contributes to steroid production. Keeping it in
the simulation would needlessly increase computational time.
The growth behavior of follicles causes variation in the length of
the follicular phase. In contrast to that, the luteal phase has a
constant length of 14 days due to its implementation.

The follicular growth equation, as introduced by (38) and
modified for the given model, includes a term addressing the
competition for dominance between follicles. In the simulation
results, its effect is visible by crossing growth trajectories (Figure
2F). This crossing only is possible because each follicle has its
specific parameters. As it can be seen in Figure 2, competition is
stronger during the early follicular phase before a dominant
follicle emerges.

Ovarian Stimulation
The simulations of ovarian stimulation initiated in the luteal phase
or the late follicular phase are characterized by the growth of
multiple follicles. Additionally, the ovulation of a dominant follicle
during a stimulation protocol occurs only during stimulation in

the late follicular phase. In the model, the competition term is
inhibited by high FSH concentrations, enabling the growth of
multiple follicles under stimulatory treatment.

Figure 3 exemplarily displays hormone concentration profiles
and follicle development for one simulation of each treatment
approach. Additionally, error bars at four characteristic time
points (one day before treatment, one day after first drug
administration, six days after first drug administration, last day
of drug administration) indicate the variability in the hormone
levels between 20 simulations using the same treatment
conditions. The characteristic time points where chosen in a
way that the results are easily comparable to the clinical data. In
both cases, the FSH concentration rises with each day of the
treatment. Due to the growth of multiple large follicles, which are
the main source of E2, the E2 level increases significantly during
ovarian stimulation. The levels are almost ten times higher
compared to the normal cycle (Figure 2C).

Simulations of an ovarian stimulation during the luteal phase
are dominated by high P4 levels during the stimulation with
hMG. The high P4 concentration prevents the ovulation of
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C

FIGURE 3 | Simulation results for two different ovarian stimulation protocols. The growth of multiple large follicles, caused by the stimulation treatment, is characteristic
for both strategies. The left column represents simulation results from a luteal phase stimulation protocol, while the right column shows the effect of a stimulation during
the late follicular phase. Sub-figures (A–D, F–I) exemplary represent hormone profiles originating from one simulation in red. Purple dots and error bars represent mean
values and variances, respectively, from 20 simulations at four characteristic time points: 1 day before the stimulation treatment starts, 1 day after starting the
treatment, 6 days after starting the treatment, and the last day of treatment. Sub-figures (E, J) illustrate the growth trajectories of the follicles.
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follicles (through the negative feedback mechanisms of P4 on
LH). The concentrations of LH, FSH, P4 and E2 in Figures 3A–
D are comparable to observations by (26).

Figure 3J illustrates the follicular growth behavior
under stimulation in the late follicular phase, initiated after
the occurrence of a dominant follicle. The ovulation of
the dominant follicle is followed by an increase in P4
concentration comparable to non-treated conditions. The E2
level decreases after the ovulation of the dominant follicle but
starts to increase again. This increase is caused by multiple large
follicles as a result of the stimulation.

Figure 4 represents the individual outcomes (treatment
duration and follicular count) of 20 simulations per treatment
protocol. The mean and standard deviation of these results are
given in Table 1. The simulation results for ovarian stimulation
initiated in the luteal phase match the observations from Kuang
et al. (26). The simulated treatment duration for the late follicular
phase stimulation approach is noticeably lower than the clinical
observations, which goes along with comparably low counts of
follicles >14 mm. Figure 4 convincingly shows that simulations
differ among each other even if non-follicular parameters are the
same in all simulations. Hence, the individual growth behaviors
of the follicles have a major effect on treatment simulations
and outcomes.

DISCUSSION

The mathematical model developed in this work addresses the
interplay between pituitary hormones, ovarian hormones and
follicular growth. Simulation results for the unstimulated cycle
agree qualitatively and quantitatively with observations reported
in literature. In particular:

• The time evolution of the four hormone profiles for LH, FSH,
P4 and E2 is consistent with the scientific literature (56).

• An average cycle length of around 29 days, ranging from
cycles with a duration of 22–25 up to 36 days, is reported in
experimental studies (56–58). The simulation results are in
line with these observations.

• In the literature, it is described that the variability in the
length of the follicular phase is significantly higher than for
the luteal phase (58, 59). The given simulation results fulfill
the same property.

• The observed intra-cycle variability of 7 days is comparable to
experimental results by (58).

• (32) observed the emergence of two to three waves carrying 4
to 14 follicles greater than 4 mm. The given simulation results
of 16.19 ± 3.08 follicles in two waves per cycle match their
experimental investigations.

A B

DC

FIGURE 4 | Simulation outcomes of 20 independent cycles for each treatment: ovarian stimulation induced either during the luteal phase (top, A, B) or the late
follicular phase (bottom, C, D). In the upper row (A, B), follicular counts and treatment duration for the luteal phase stimulation approach are displayed (red: follicles
10–14 mm; purple: follicles >14 mm). On average, 11.1 ± 3.5 follicles with a diameter of 10 to 14 mm and 8.9 ± 3.7 follicles with a diameter >14 mm are observed.
The average treatment duration is 9.4 ± 0.7 days. The lower row (C, D) shows follicular counts and treatment durations for simulated stimulations in the late follicular
phase. A treatment cycle takes about 6.0 ± 0.7 days. The average count of follicles with diameters 10 - 14 mm is 6.3 ± 2.2 and the one for follicles >14 mm is 8.0 ±
2.2. (Numbers refer to mean ± standard deviation.)
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The discontinuity in the profile of the E2 curve (Figure 2 at
day 85 of the simulation) is related to the growth behavior of the
follicles and is caused by atresia of larger sub-dominant follicles.

By comparing the results in Table 4, it is visible that variations
in the experimental data are higher than in the simulation results.
That indicates the fact that the inter-individual variability in
human is higher than the variability between simulations sharing
one set of non-follicular parameters. The stochastic growth
behavior of follicles is the only source of variability between
simulations. According to (24), the LH concentration under
stimulatory treatment in the late follicular phase is not
supposed to increase after the ovulation of the dominant
follicle due to the inhibitory effect of P4. However, this effect is
not visible in the simulation results (Figures 3F–J). This might
be due to the comparably lower P4 concentrations in the
simulation results. Here, the P4 concentration at day 6 is about
0.99 ± 0.6 ng/mL, whereas the figures published by (24) indicate
P4 concentrations up to more than five times as high. In the
present model, the P4 concentration is linked to the formation of
the corpus luteum as the only source of P4. Minor P4 sources
such as the adrenal cortex are neglected. However, the equations
for the P4 concentration matches experimental measurements
quite well (Figure S1 in Supplementary Material). A relation
between the high LH concentrations, the low P4 concentrations
and the follicular growth behavior are conceivable as well. Since
the simulated treatment duration is several days shorter than
those in the clinical observations, it appears that follicles are
growing too fast during the simulation of ovarian stimulation. If
this is the reason for the mismatch between the simulation results
and the observations by (24), two explanations are credible: (i)
the model parameters should have other values, or (ii) at least
one mechanism is missing. However, at this point it was not
possible to compare the simulated follicular growth under
treatment to detailed experimental investigations since
ultrasound measurement data were not available from literature.

Another reason for the mismatch could be that we could not
simulate the clinical treatment procedures in full detail. In a
clinical setting the dose is adjusted according to the treatment
response, which is based on an evaluation of follicular growth
during the stimulation procedure. Since the criteria for dose
adjustment were not described in the available publications, we
did not implement adjustments in our model.

We have not yet simulated double ovarian stimulation due to
technical difficulties with the model implementation. However,
we will do this in future work in order to address some of the
problems that are still unsolved (60), for example the choice of
the best day to start the second stimulation or the necessity of
using a GnRH antagonist during the second stimulation.

Finally, we want to point out that clinical data are mainly
reported as summary statistics, usually in terms of means and
standard deviations, and for very few indicators, e.g. treatment
duration or number and sizes of follicles on certain treatment
days. However, with our model-based approach we could go
beyond a simple comparison of moments. Since the model
simulations generate distributions, we could compare them
with data from literature if the publications about clinical trial
outcomes reported the complete data distributions.

CONCLUSION

This study demonstrates how mathematical modeling and
simulations can contribute to enhance our mechanistic
understanding of ovarian stimulation protocols. In particular,
our approach allows to study the extend of variability in both
treated and untreated cycles. The model simulations confirm that
follicular size is not a reliable parameter for determining
treatment outcome since the receptor status of each individual
follicle (modeled by the FSH sensitivity threshold) and the
timing of growth matter. However, we cannot (yet) make use
of that knowledge in a clinical setting as long as the receptor
status cannot be inferred from measurements. Making
predictions on the level of individuals, either in-vivo or in-
silico, will therefore remain notoriously difficult. However,
models that include random effects can be used to quantify
uncertainties in the predictions. Even though these uncertainties
might be large, being aware of what could happen as well as
identifying outliers can assist in making decisions. Moreover, the
model presented here could be used to compare the outcome of
different treatment strategies in terms of specific success criteria
(e.g. average number of follicles larger than a threshold size at the
end of the stimulation), similar to the approach in (39). This
requires to first validate the model with data from other
stimulation protocols. For example, in order to compare the
two protocols simulated here with the three currently most often
used protocols (long, short, and antagonist), we would need data
on each protocol from cohorts that are comparable in terms of
size and physiological stage (e.g. race, age, BMI). We therefore
invite clinicians to share their data and to join interdisciplinary
research projects with the ultimate goal to develop model-based
clinical decision support systems.

TABLE 1 | Comparison between simulation results and clinical observations.

Luteal phase ovarian
stimulation

Late follicular phase
ovarian stimulation

Kuang et al.
(26)

Simulation Zhu and Fu
(24)

Simulation

Num. of follicles
with

13.9 ± 7.8 11.1 ± 3.5 6.3 ± 2.2

diameter 10 -
14 mm
Num. of follicles
with

11.1 ± 5.5 8.9 ± 3.7 11.7 ± 6.2 8.0 ± 2.2

diameter >
14 mm
Duration of
treatment

10.2 ± 1.6 9.4 ± 0.7 10.93 ± 1.66 6.0 ± 0.7

with hMG

Ovarian stimulation is induced either during the luteal phase or the late follicular phase.
Each of the two studies includes data from more than 100 woman. Patients were at the
age of 18 – 40 years with a body mass index of 18 – 30 kg/m3. All woman showed
spontaneous ovulation.
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ABSTRACT

Mathematical modelling and dynamic simulations are commonly used in systems medicine to investi-
gate the interactions between various biological entities in time. The level of model complexity is
mainly restricted by the number of model parameters that can be estimated from available experimen-
tal data and prior knowledge. The calibration of dynamic models usually requires longitudinal data
from multiple individuals, which is challenging to obtain and, consequently, not always available.
On the contrary, the collection of cross-sectional data is often more feasible. Here, we demonstrate
how the parameters of individual dynamic models can be estimated from such cross-sectional data
using a Bayesian updating method. We illustrate this approach on a model for puberty in girls with
cross-sectional hormone measurement data.

Keywords systems biology · parameter estimation · female puberty · Bayesian updating

1 Introduction

Mechanistic models formulated as systems of ordinary differential equations (ODE) are widely used to study the
dynamic behaviour of biological systems (Motta and Pappalardo, 2013). Often, only a limited number of model
parameters are known, and at least a subset of the model parameters must be estimated to construct a useful model. The
model calibration (parameter estimation) is typically done by fitting the model to experimental data, which poses several
challenges (Gábor and Banga, 2015). In systems biology, we often encounter parameter landscapes with multiple local
optima, complicating the parameter optimization. Additionally, there are different sources of uncertainty, such as a
lack of prior knowledge, noisy data, ambiguities in the model structure and a mismatch between model complexity and
available data. Despite those challenges, model calibration and analysis are central to creating a meaningful model
(Villaverde et al., 2022). For the calibration of a dynamic model, one needs information about the system’s time
evolution (longitudinal data/time-series data). In general, data collection is time and resource-consuming, and the
collection of time-series data comes with additional challenges (Udtha et al., 2015). Especially in clinical studies, the
acquisition of longitudinal data requires a long-term commitment of study participants (Robinson et al., 2007), and the
number of samples that can be taken is limited. Consequently, the data sets are sparse in the number of time points,
and the sample size tends to be small (Greenland et al., 2016). In addition, populations often show a high inter- and
inter-individual variability (Sebastian-Gambaro et al., 1997; Friedman et al., 2015). Consequently, performing model
calibration with clinical data is challenging, and the resulting model uncertainty can limit the model’s applicability, e.g.,
the prediction of an individual dose-response or disease progression (Briggs et al., 2012).

With this work, we aim to address the problem of small and sparse individual time-series data that often poses a
bottleneck for calibrating dynamic models with clinical applications. We suggest a Bayesian approach incorporating
data sets with observations from many individuals at one sampling time point (cross-sectional data) into the model
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calibration. The workflow we propose is similar to the method explained in (Tariq et al., 2016). The authors in (Tariq
et al., 2016) aim to predict the individual patient outcome by (1.) calibrating a population-average model using the
pooled longitudinal data of patients and (2.) “personalizing” the population-average model for a given individual using
a Bayesian parameter estimation method. In contrast to (Tariq et al., 2016), we use a cross-sectional population sample
to calibrate the population-average model. The advantage of using a cross-sectional population sample is that the data
collection is less challenging and time-consuming than time-series data. However, cross-sectional population data
does not contain information about individual dynamics. The question we want to address with this work is whether a
cross-sectional population data set can be used to construct individual dynamic models.

We demonstrate our approach using a mechanistic model describing the time evolution of three reproductive hormones
over the time course of puberty in girls. The model describes a simplified feedback network between these three
hormones. The population-average model is calibrated using cross-sectional data of 601 healthy Norwegian girls
from the Bergen Growth Study (BGS, 2006; Madsen et al., 2020, 2022). Subsequently, the model analysis guides a
reduction of the parameter space and the re-estimation of model parameters in a Bayesian setting (Bayesian updating)
to personalize the population-average model.

2 Materials and methods

In the following sections, we introduce the mechanistic model used to demonstrate our method, the calibration and
analysis steps of the population-average model, and the translation of the population-average model into individual-
specific models.

Mathematical model

During childhood, reproductive hormones such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), and
estradiol (E2) are not secreted at concentrations that trigger reproductive function. This lack of reproductive function
during childhood is primarily caused by the suppression of the gonadotropin-releasing hormone (GnRH) pulse generator
– a functional unit in the brain that regulates the synthesis and release of GnRH (Krsmanovic et al., 2009; Herbison,
2018). The reactivation of the GnRH pulse generator during puberty is key for developing the reproductive system and
activating the hypothalamic–pituitary–gonadal axis (HPG axis) (Naulé et al., 2021; Uenoyama et al., 2019; Terasawa,
2022).

Figure 1: Schematic representation of hormone interactions and re-activation of the HPG axis. With the onset
of puberty, the release of GnRH gets enabled. As a result, the signalling along the HPG axis starts working. GnRH
stimulates the release of FSH and LH. FSH has a positive feedback effect on E2. E2 again stimulates the release of LH.
Additional interactions between those hormones are not represented, because the model neglects them.

The model we introduce describes regulatory feedback loops between GnRH, FSH, LH and E2 (Fig. 1). All are critical
elements of the HPG axis and the reproductive system. We encode the reactivation process of the GnRH pulse generator
in a semi-mechanistic way by using a sigmoidal input curve for the increase of GnRH release over time,

f(t) =
1

1 + (e−fs(t−fm))
. (1)

The parameter fs determines the steepness of the curve, i.e., how rapidly the activity increases and the parameter
fm determines the time point at which f(t) reaches half of its maximum, i.e., the time at which the pulse generator
reaches half of its total activity. This formulation is motivated by the observation that GnRH increases gradually and
independently of gonadal activity (Terasawa, 2022).

Experimental studies have shown that ovaries can be stimulated before puberty (Wildt et al., 1980; Plant, 2015) and that
the HPG axis begins to function when GnRH levels become high enough (Ellison et al., 2012). Those observations
motivated us to base the mathematical model formulation of the hormone interactions during pubertal development on a
previously developed model for the human menstrual cycle (Fischer-Holzhausen and Röblitz, 2022).

2
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Compared to the menstrual cycle model, the model of the hormone dynamics during female puberty can be drastically
reduced in the number and complexity of the ordinary differential equations and parameters. This significant model
reduction is possible because the hormone concentrations during puberty do not reach the same peak concentrations as
in menstrual cycles. Consequently, we removed all processes from the original model that remained inactive during
puberty due to high thresholds of the regulating hormones. Note that the reduced model can, therefore, not be used to
simulate late puberty or the first menstrual bleeding (menarche).

A synthesis-clearance relationship describes the dynamics of each hormone. The regulatory interactions (illustrated in
Fig. 1) are approximated using Hill functions – a common way to encode feedback interactions as threshold-dependent
processes without mechanistic details. Positive Hill functions describe positive feedback actions as sigmoidal curves
and are denoted as H+(S, T, n) = Sn/(Tn + Sn). The regulator species S regulates another species in a threshold-
dependant manner with threshold T > 0. The Hill exponent n > 0 influences the sigmoidal curve’s steepness and
thereby the regulatory process’s rapidity (Santillán, 2008). The proposed model reads as follows:

dFSH(t)

dt
= kFSH

syn · f(t)− kFSH
cl · FSH(t), (2a)

dE2(t)

dt
= kE2

syn ·H+(FSH(t), TE2
FSH , nE2

FSH)− kE2
cl · E2(t), (2b)

dLH(t)

dt
= kLH

syn · f(t) ·H+(E2(t), TLH
E2 , nLH

E2 )− kLH
cl · LH(t). (2c)

Modulation of the synthesis rate constants kFSH
syn and kLH

syn by the function f(t) in Eqs. (2a) and (2c), respectively,
represents the stimulatory action of GnRH on the release of the pituitary hormones FSH and LH (Marques et al., 2022).
FSH stimulates the growth of ovarian follicles, hence the release of E2 (Brown, 1978) included in Eq. (2b) via a positive
Hill function with FSH concentration threshold TE2

FSH and Hill exponent nE2
FSH . The ovarian hormone E2 has a positive

effect on LH (Reed and Carr, 2015), modelled using a positive Hill function with threshold TLH
E2 and Hill exponent

nLH
E2 .

The model is implemented in Python3 (Van Rossum and Drake Jr, 1995), and numerical simulations were
performed using SciPy (Virtanen et al., 2020). A model and workflow demonstration is available at
https://github.com/SoFiwork/CrossSectional2Individual.

Experimental data and pre-processing

We use the cross-sectional data set from the Bergen Growth Study 2 (BGS2) (BGS, 2006) to calibrate a population-
average model. The BGS2 study includes hormone blood concentrations with chronological age for E2 (No. = 547),
LH (No. = 600), and FSH (No. = 599). (Madsen et al., 2020) and (Bruserud et al., 2020) describe the data collection
and the cohort composition in detail.

To make the data usable for the calibration of the population-average model, we estimate the continuous mean and
standard deviation using the rolling window calculation function provided by the pandas package (Wes McKinney,
2010; The pandas development team, 2020) with a window size of 50 observations.

For the model adaptation to individual time-series data, we use simulated data, because clinical time-series data was
unavailable for this work. We simulate time-series data by performing a forward simulation using a parameter set from
the stationary parameter distribution of the population-average model, which we obtain from an uncertainty analysis.
We add Gaussian noise to the simulated data points and time points to account for noise.

Population-average model calibration

Figure 2 illustrates our workflow to calibrate and analyse the population-average model. Our routine consists of three
main steps:

1. Model calibration using maximum likelihood (ML) estimation
2. Identifiability analysis using profile likelihoods (PL)
3. Uncertainty quantification using the Metropolis-Hastings (MH) sampling algorithm and Sobol sensitivity

analysis

In the first step, we estimate model parameters θ by fitting the model to the processed population-average data y

using maximum likelihood estimation. The aim is to find a set of parameters θ̂ML(y) that minimizes the negative
log-likelihood. When assuming additive Gaussian measurement noise, this optimisation problem corresponds to

3
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Figure 2: Workflow for calibrating and analysing the population-average model. The pipeline inputs are the
mechanistic model and the cross-sectional data set (grey arrows). In the first step, a set of model parameters θ that
minimizes the distance between the model and the moving average of the cross-sectional data is estimated using ML
estimation. In a second step, the likelihood is profiled for each parameter θi to identify parameters that can/can not
be estimated within bounded confidence intervals. In the third step, the sensitivity and uncertainty of the model are
quantified. Sensitivity analysis is performed using the Sobol method. A Markov chain Monte Carlo simulation reveals
information about the model uncertainty.

minimizing the least squares error between simulated trajectories x(θ) and associated measurement data y, weighted by
the estimated standard deviation (Cox and Hinkley, 1979; Eliason, 1993). We use the open-source Python Parameter
EStimation TOolbox (pyPESTO) (Schälte et al., 2022) to solve the ML estimation with a multi-start optimization (500
runs). We apply a quasi-Newton method (L-BFGS-B) provided by SciPy (Virtanen et al., 2020) as an optimization
algorithm and calculate the gradients numerically with a 3-point finite difference schema provided by the SciPy
optimization library (Virtanen et al., 2020). Tab. 1 contains the parameter search regions.

In the second step, an identifiability analysis is performed by calculating the profile likelihoods (Murphy and Van der
Vaart, 2000; Raue et al., 2009) for each model parameter numerically. In doing so, we gain information about
ambiguities in the model structure and whether the available data is sufficient to estimate parameter values with finite
confidence intervals. In this context, parameters that can not be determined with finite confidence intervals are called
non-identifiable. There exist two types of non-identifiable parameters. Structurally non-identifiable parameters are
the consequence of redundancies in the model formulation. Practically non-identifiable parameters lack precision

4
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because the data do not provide enough information (Wieland et al., 2021; Raue et al., 2009; Kreutz et al., 2013). With
a step-wise optimization routine, we obtain a PL for each parameter. Hereby, the parameter θi is varied around its
optimal value, and for each value of θi, all remaining parameters θj ̸=i are re-optimized using, for example, the ML
estimation method. In this work, we use the routine implemented in the pyPESTO package (Schälte et al., 2022) to
calculate the profile likelihoods around the optimized model parameters from step one.

In the third step, the model uncertainty is quantified using the Metropolis-Hastings algorithm (Metropolis et al., 1953;
Hastings, 1970), to obtain random samples of model parameters according to the likelihood function constructed in
step one (Valderrama-Bahamóndez and Fröhlich, 2019). We use an adaptive parallel tempering sampler available in
pyPESTO (Schälte et al., 2022) for the MH sampling. Geweke test (Geweke, 1992) is applied to the sampling chain
to determine the burn-in period, i.e., the early proportion of the sampling chain that may not converge to the target
distribution.

Sensitivity analysis allows studying model output uncertainty resulting from perturbations in the model input (Saltelli
et al., 2004). Here we use the Sobol method (Sobol, 1993), which is a variance-based global sensitivity analysis
technique. This method quantifies the contribution to the uncertainty in the model output by each parameter individually
and by parameter interactions. We use the implementation of Sobol’s sensitivity analysis provided by the SALib
package (Herman and Usher, 2017). We decided to allow for parameter perturbations of up to 20% around the estimated
parameter value θ̂ML(y).

The results of the model calibration and analysis steps are:

- a parameter point estimate
- identification of identifiable parameters
- identification of sensitive parameters
- distribution and confidence interval of each parameter

We use this information to enable the translation from a population-average model to an individual-specific model, as
outlined in the following.

Individual-specific model calibration

We use a Bayesian parameter estimation framework (Wakefield, 1996; Tariq et al., 2016) to transform the population-
average model into an individual-specific model that can be used to predict the individual time-evolution of hormones
(Fig. 3). In a Bayesian framework, the posterior distribution p(θ|y) is proportional to the product of the likelihood
function L(θ|y), which describes the probability of observing the data y given a parameter set θ, and the prior
distribution p(θ). Here we use this idea to update our population parameter set (prior parameter distributions p(θ))
using individual time-series data y in the likelihood function to obtain an individual parameter set p(θ|y) as posterior
parameter distribution.

In our approach, the prior parameter distribution p(θ) originates from the uncertainty quantification of the population-
average model, where we sampled from the likelihood function using MCMC sampling. Hereby, we obtain histograms
of all marginal parameter distributions, to which we then fit continuous log-normal distributions. For the Bayesian
parameter estimation, we use the product of these one-dimensional continuous distributions as prior distribution p(θ).
In doing so, we lose information about the correlation between the parameters, but we gain an analytical representation
of the priors, from which it is easy to sample.

The likelihood L(θ|y) is based on calculating the mean squared error between the individual time-series data y and
the simulated model trajectories for a given parameter set θ. We solve the Bayesian parameter estimation problem
by sampling from the posterior p(θ|y) using the MH algorithm provided by pyPESTO package(Schälte et al., 2022).
Hereby, we obtain individual-specific parameter sets. To reduce the complexity of the parameter estimation problem,
we do not perform this approach in the full 12-dimensional parameter space but only on those parameters that were
identified as sensitive in the Sobol analysis.

Results and Discussion

We now present the results for calibrating the population-average model, following the workflow in Fig. 2, and its
translation into an individual-specific model according to the Bayesian adaptation workflow described in Fig. 3. The
data from the Bergen Growth Study 2 is used to calibrate the population-average model, whereas the individual-
specific model is calibrated with simulated data. We present the population-average model’s results, followed by the
individual-specific model.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 19, 2023. ; https://doi.org/10.1101/2023.01.17.523407doi: bioRxiv preprint 



A workflow for incorporating cross-sectional data A PREPRINT

Figure 3: Workflow for Bayesian updating to generate an individual-specific model fit. Individual-specific parameter
sets are obtained from a Bayesian parameter estimation approach. The parameter distribution generated with MCMC
sampling applied to the population-average model with the cross-sectional data is employed as prior knowledge. For
calculating an individual-specific likelihood, only the first 75% of the data points of an individual’s longitudinal data set
are used. An individual-specific posterior distribution of the parameters is approximated with MCMC sampling. This
parameter distribution can be used for predicting the individual’s hormone dynamics.

Population-average model

The 12 model parameters were first estimated using ML estimation to find the parameter set that minimizes the error
between simulated hormone time-evolution and the averaged hormone concentrations from the BGS2 data. From the
multi-start optimization, we selected the parameter set that resulted in the smallest least-squares error between simulated
trajectories and data, see Tab. 1. Fig. 4 shows the simulated trajectory with this optimal parameter set. However, the
plot of the optimisation history (Fig. A.1 in the Appendix) indicates the existence of several alternative parameter sets
which fit the data comparably well.

Figure 5 represents the PL for each model parameter. The shape of the profile discloses the type of identifiability.
Confidence intervals for each parameter (Tab. 1) were derived from the intersection between the profile and the line
indicating 95 % confidence interval (Fig. 5). Because all profiles are bounded either towards plus or minus infinity, we
can conclude that the model does not have structurally non-identifiable parameters. The parameter profiles presented in
Fig. 5(a, c, e, f, j, k) indicate identifiablilty showing finite confidence intervals (Tab. 1). The remaining six parameters
are practically non-identifiable. Their confidence intervals miss either lower or upper bounds.
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Table 1: Summary of population-average model parameters. Model parameters are estimated using ML estimation
with a search space restricted by the parameter intervals given in the column "Search region". Confidence intervals
result from the analysis of the profiled likelihoods for each parameter.

Parameter and
unit

ML Search re-
gion

Estimated pa-
rameter value
θ̂ML(y)

Profile likelihood-
based confidence
interval

MCMC sampling region

kFSH
syn

[
mIU
a·mL

]
[10−3, 150.0] 126.77 [102.80, 137.98] [10−9, 150.0]

kFSH
cl

[
1
a

]
[10−7, 150.0] 10−7 [−∞, 0.24] [10−9, 10.0]

kE2
syn

[
mIU
a·mL

]
[10−3, 150.0] 26.82 [7.98, 43.79] [10−9, 150.0]

kE2
cl

[
1
a

]
[10−7, 150.0] 0.43 [−∞, 0.62] [10−9, 10.0]

TE2
FSH

[
mIU
mL

]
[10−3, 20.0] 3.50 [2.39, 6.16] [10−9, 50.0]

nE2
FSH [1] [1.0, 5.0] 4.05 [2.72, 5.00] [10−9, 10.0]

kLH
syn

[
ng

a·mL

]
[10−3, 150.0] 149.87 [133.03,+∞] [10−9, 150.0]

kLH
cl

[
1
a

]
[10−3, 150.0] 10−3 [−∞, 0.47] [10−9, 10.0]

TLH
E2

[
ng
mL

]
[10−3, 10.0] 8.85 [3.39,+∞] [10−9, 50.0]

nLH
E2 [1] [1.0, 5.0] 2.00 [1.01, 2.20] [10−9, 10.0]

fs
[
1
a

]
[10−3, 10.0] 0.39 [0.29, 0.45] [10−9, 10.0]

fm [a] [5.0, 25.0] 22.53 [18.53,+∞] [10−9, 50.0]

a b c

Figure 4: Population-average model simulation results. Representation of the model trajectories of the three
sex hormones (FSH, LH, E2) resulting from numerical simulations with the parameter set given in Tab. 1. The
moving average is marked as grey lines, and grey areas are the moving standard deviation of the data. The individual
measurement points are marked as grey crosses.

One way to handle practical non-identifiable parameters is model reduction. The authors in (Tönsing et al., 2018)
suggest that parameters with likelihood profiles that flatten out towards minus infinity can be set to zero. We deliberately
decided not to apply this approach to our model, because we would remove all clearance terms. The presence of the
clearance terms in our model represents the prior biological knowledge, that hormones have a finite lifetime. However,
that is not visible in the cross-sectional data. Consequently, we have a model that is not fully identifiable, increasing the
uncertainty in the model output.

We performed uncertainty quantification in terms of a full MCMC sampling of the likelihood function (see Tab. 1 for
search regions). The marginals of the resulting parameter distribution are illustrated as violin plots in Fig. 6. The ML
estimates (Tab. 1) lie within the sampled range (marked as green x) but do not agree with the median or mean of the
sampled parameter densities. This is not unexpected because the model is not fully identifiable, and there exist multiple
local optima (Raue et al., 2013).

The Sobol analysis (Fig. 7) reveals that the parameters of the sigmoidal input curve are the most sensitive ones.
Additionally, their effect on the uncertainty in the simulation outcome increases with time. Initial values are sensitive
during earlier time steps and lose their effect over the simulation time. Other sensitive parameters are TE2

FSH and nE2
FSH ,

which are both among the identifiable parameters. Perturbations in all other model parameters did not show notable
effects on the simulation outcome. Note that sensitivity and practical identifiability are two different concepts because
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a b c

d e f

g h i

j k l

Figure 5: Profile likelihood for each model parameter θi. The likelihood profile and the ML estimate (marked as a
cross) are shown for each parameter separately. The analysis reveals that kFSH

syn (panel a), kE2
syn (panel c), TE2

FSH (panel
e), nE2

FSH (panel e) nLH
E2 (panel j), and fs (panel k) are identifiable. In contrast, parameters kFSH

cl (panel b), kE2
cl0 (panel

d), kLH
syn (panel g), kLH

cl (panel h) TLH
E2 (panel j), and fm (panel l) are practically non-identifiable.

sensitivity does not consider any experimental data. Hence sensitive parameters can be practically non-identifiable
(e.g. fm), and practically identifiable parameters do not necessarily need to be sensitive (e.g. nLH

E2 ).
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a

b

c

Figure 6: Representation of stationary parameter distributions from MCMC sampling as violin plots. Each violin
(grey area) represents a kernel density estimate for each marginal parameter distribution derived from its histogram.
Horizontal black lines mark the minimum and maximum of the distributions. Green crosses mark ML estimates.

Individual-specific model

Translating the population-average model to an individual-specific model requires re-estimating model parameters.
Based on the Sobol sensitivity analysis (Fig. 7), we selected fs, fm, TE2

FSH , and nE2
FSH for re-estimation. All other

eight parameters remained at the values given in Tab. 1. Reducing the parameter space to sensitive parameters avoids
re-estimating parameters that do not affect the model output and thereby increases the efficiency of the MCMC sampling.
The initial values of the three hormones were inferred directly from the data as the first data point of the time-series.

For the Bayesian parameter estimation of individual parameter distributions, we not only utilize the results from the
sensitivity analysis but also the results from the uncertainty analysis of the population-average model. The insights
about the model parameters are used to construct prior parameter distributions. Those prior distributions are updated,
resulting in individual posterior distributions with a likelihood solely based on the individual data. By construction,
parameter correlations (Fig. A.3 in the Appendix) are neglected by the prior but rediscovered after updating the
parameter distributions (Fig. 8).

We used a set of simulated data, generated by a forward simulation with a parameter set from the stationary distribution
of the MCMC sampling performed for the population-average model, as an individual data set to demonstrate our
adaptation approach. Only one simulated individual is displayed because the range of variability covered by the
stationary distribution is not large (see Fig. A.2). The simulation results of the individual-specific model are summarized
in Fig. 9. Figs. 9 (a-c) allow for a comparison between the cross-sectional data and the simulated time-series. As
expected, the individual data set generated with parameters from the stationary distribution of the population-average
model lies within the cross-sectional data set. Figs. 9 (d-f) show simulated trajectories for the individual-specific
model. Note that we only used the first three measurement points of the simulated time-series to estimate the individual
parameter distributions. The remaining data points can be used to evaluate the model’s predictive performance. All
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First Sobol index Total Sobol index

FS
H

LH
E2

Figure 7: Representation of parameters’ first and total Sobol index over the simulation time. Sensitivity values are
encoded as grey scale values (black = highly sensitive and white = not sensitive). For clarity, this figure only represents
parameters that are sensitive.

fs

fs

fm

fm

TFSH
E2

nFSH
E2

nFSH
E2TFSH

E2

Figure 8: Parameter correlation in the individual-specific model. The upper right half of the matrix contains the
pairwise Pearson correlation coefficients. The lower left half shows the corresponding bi-variate densities resulting
from marginalization. The marginal parameter distributions are given diagonal.

data points, except the last data point of the LH time-series, are within the 99 % confidence interval, generated
based on 100000 solutions with parameter sets from the stationary distribution. Figs. 9 (g-j) demonstrate that the
population-parameter distributions have been updated for the individual-specific model. For a quantitative comparison
between the distributions, the value of the Jensen-Shannon divergence (JSD) between the prior and each posterior is
plotted in Fig. 9 (k). It is visible that the posterior distributions of the two parameters from the input curve, fm and fs,
differ more from the prior than the distributions of the Hill function’s parameters TE2

FSH and nE2
FSH . So far, this is only

an observation, and further investigations are needed to draw any biological conclusions.
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Figure 9: Individual-specific model simulation. Figures (a-c) illustrate the location of simulated time-series data in
the cross-sectional data set. Figures (d-f) show the simulated result of the individual-specific model. The presented
percentiles (99.0% - light grey, 95.0% - grey, 90.0% - dark grey) are derived from 100000 model simulations with
parameter sets from the stationary posterior distribution. Figures (g-j) show the four updated parameters’ marginal
distributions (grey - population parameters, green - individual parameters). Those figures indicate that all distributions
are updated. Figure k represents the JSD, quantifying the difference between the two distributions for each parameter.

3 Conclusion

In this work, we propose a workflow incorporating cross-sectional clinical data into calibration of an individual-
specific dynamic model. We demonstrate that a population-average model calibrated with a cross-section data set
can be translated into an individual-specific model using Bayesian updating. However, the presented study has some
limitations, which we would like to point out in the following.

Using a well-established benchmark model would better underline the value of the proposed workflow. However, we
did not have access to a cross-sectional data set for a well-established mechanistic model. We, therefore, decided to
construct a mechanistic model for the time evolution of sex hormones during puberty in girls to be able to demonstrate
our model calibration pipeline.

The model formulation itself is motivated by biological knowledge (bottom-up approach). Therefore, it would be
interesting to compare it to alternative model formulations that fit the data, especially statistical models derived from
a top-down approach. One could argue that machine learning (ML) models are expected to have a better predictive
performance than mechanistic models. However, ML models are known to be data-hungry and would need training data
of high quality and quantity, which are usually not available in a clinical context (Baker et al., 2018). In conclusion, the
model formulation was not the central objective of this work, and therefore, we did not investigate alternatives.
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From an algorithmic perspective, the construction of the prior distributions for the individual-specific model calibration,
as performed in this work, is a subject for discussion. Some kernel density estimation could be applied to the
full-dimensional parameter space sample as an alternative to marginalisation. This also results in an analytical
representation of the prior from which one can sample, but this representation will depend on the selected bandwidth.
Another alternative would be sampling importance re-sampling (SIR), which is based on re-weighting the prior
samples. However, this approach assumes that the individual under consideration is sufficiently well-represented by
the population-average model given by the prior, which might not always be true. Finally, in a continuous clinical
monitoring context, particle filters that allow for sequential data processing are usually more efficient than MCMC
methods (Maier et al., 2020).

Another limitation of this work is using simulated longitudinal data instead of clinical data for individual-specific model
calibration. Such clinical longitudinal data have been collected, as part of the Copenhagen Puberty Study1. In future, we
aim to work with these clinical data to systematically assess the predictive performance of individual-specific dynamic
models.

Overall, finding individual-specific dynamic models is of interest because they form a basis for further analysis. For
example, clustering individual models in the parameter space can help identify phenotypes. We hope that our work
advocates the use of Bayesian methods as a means to integrate different data sources into mathematical models.
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A Appendix

A.1 Optimisation history

Fig. A.1 shows the waterfall plot from the multi-start optimisation to demonstrate the convergence of the optimization
runs.

A.2 Simulation of the population-average model

Fig. A.2 displays percentiles resulting from simulations with sampled parameter sets from the stationary solution of
the Metropolis-Hastings sampling routine. It gives an impression of the model uncertainty. For the interpretation of
Fig. A.2, one has to keep in mind that the moving average of the data is used for model calibration and sampling and
not the cross-sectional data set itself (grey marks in Fig. A.2). As a result, it is not surprising that the percentiles do not
cover the entire spread of the BGS 2 data set.

A.3 Parameter correlations

Fig. A.3 shows the pairwise Pearson correlation coefficients between model parameters together with the bivariate
distributions resulting from the MCMC sampling of the likelihood for the population-avarage model.
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Figure A.1: Optimization history a) Parameter set at the endpoint of each optimisation run. It can be seen that many
parameters keep their value in different local optima. b) Values of the negative log-likelihood function at the end of
each optimization run.
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Figure A.2: MCMC Sampling based confidence intervals. Illustrated percentiles are derived from model simulations
with 150000 parameter sets drawn from the stationary distribution. Confidence intervals (99%, 95%, 90%) are
represented as grey areas. The median of the sampling based simulation trajectories is gives as a colored line.
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Abstract
The aim of ovarian stimulation in fertility treatment is to in-
crease the number of large follicles and hence the number of
eggs that can be retrieved for in vitro fertilisation (IVF). How-
ever, large inter- and intra-individual variability in the menstrual
cycle and ovarian response to stimulation drugs complicate
treatment planning and prediction. Hence, many mathematical
models have been developed to support treatment decisions.
In this article, we give an overview of mechanistic models that
cover different aspects of the processes involved in normal
menstrual cycles and ovarian stimulation, including hormonal
regulation and follicular maturation. We also review statistical
models that have been designed to predict different IVF
outcome criteria. Finally, we outline the use of mathematical
models for in-silico clinical trials in reproductive endocrinology.
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Introduction
Approximately 15% of people of reproductive age are
affected by infertility [67], and unwanted childlessness
puts a psychological and psycho-social burden on many
of them [27,41,14]. This makes infertility and its con-
sequences a global health issue. In 85% of all cases of
infertility, the underlying causes are dysfunctions in the

female or/and male reproductive system [13]. Female
factors, such as ovulatory disorders, endometriosis and
tubal abnormalities, are responsible for approximately
one-third of all cases [62].

The hypothalamic-pituitary-gonadal (HPG) axis is
central to enable reproduction in both sexes. In females,
the HPG axis regulates the menstrual cycle, including

the maturation and release of oocytes, the periodic
release of reproductive hormones, as well as the prepa-
ration of the female body for a possible pregnancy.
This is enabled through the feedback interactions be-
tween ovarian hormones, mainly progesterone (P4) and
oestradiol (E2), the pituitary hormones luteinising
hormone (LH) and follicle-stimulating hormone (FSH),
and the hypothalamic hormone gonadotropin-releasing
hormone (GnRH), see Fig. 1. GnRH stimulates the
release of FSH and LH. Both regulate follicular matu-
ration [15]. However, the initial recruitment of follicles

from the ovarian reservoir is independent of LH and
FSH [44]. Within each menstrual cycle cohorts of fol-
licles, called waves, start growing as a result of increasing
FSH levels, see Fig. 2 [4e6]. Growing follicles produce
E2, which enables a feedback loop back to the hypo-
thalamus. Usually one follicle of the cohort, rarely
multiple follicles, ovulates around mid-cycle. During
ovulation, the follicle releases its oocyte, and the sac
forms the corpus luteum, which produces ovarian hor-
mones in the luteal phase. If the oocyte is not fertilised
and pregnancy does not occur, the corpus luteum decays

and a new cycle begins [15]. Failure in this endocrine
network is one cause of infertility.

Treatment options for infertility depend on its cause
and the patient itself. In vitro fertilisation (IVF) is a
form of assisted reproductive technology (ART) that can
result in a successful pregnancy for patients suffering
from different causes of infertility. IVF can not only be
used to overcome female infertility but also assist in
cases of male infertility. Intracytoplasmic sperm injec-
tion (ICSI), a technique where a sperm cell is injected

directly into the egg cell, may be used for patients with
low sperm quality or number. IVF treatment proceeds
in three steps: (i) egg retrieval through controlled
ovarian stimulation (COS), (ii) fertilisation of oocytes in
the laboratory and (iii) embryo transfer into the uterus
[2]. COS aims to stimulate the growth of multiple
ovarian follicles synchronously by the administration of
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gonadotrophins [40]. Several COS protocols are avail-
able. The conventional GnRH agonist protocol and the
GnRH antagonist protocol are well established [30].

Newer protocols are based on the follicular wave theory
[6], which motivates ovarian stimulation at different
time points within a menstrual cycle [54]. Protocols
which start ovarian stimulation at a random time point
are of particular interest in the context of fertility
preservation in cancer patients, where time is a deter-
mining factor [64,12]. Stimulation treatments that start
during the luteal phase have been used to treat patients
who did not respond to conventional protocols [50,29] as
well as women with normal ovarian response [33].
Double stimulation protocols comprise two consecutive

treatment cycles and offer more opportunities for oocyte
retrieval in a shorter time interval [32,63]. Overall, it is
challenging to find the best therapy for an individual
patient in order to achieve the best treatment outcome

in terms of pregnancy and live birth rates while simul-
taneously decreasing treatment-related risks like ovarian
hyperstimulation syndrome [53].

Mathematical modelling can improve our understanding
of complex regulatory networks involving multiple levels
of organisation, such as endocrine systems [73,37].
Computational models can also be helpful to answer
scientific questions in cases where appropriate model
organisms are not available, and experimental in-
vestigations are challenging. Until recently, a menstrual
cycle was only observed in primates. Evidence of a
menstruating rodent was provided [9]. Since every
model is a simplification and based on assumptions, it is

important to find a model that is appropriate for the
research question [66,65]. Mathematical models can be
divided into two main groups: (i) empirical models and
(ii) mechanistic models [7,51]. Empirical models are
statistical models and therefore data driven. They are
tailored towards prediction and are widely used in
medical research [26]. An example in the scope of this
review is the prediction of menstrual cycle length
[47,39]. Mechanistic models are process-based and
consider the elements forming a system and their in-
teractions [11]. Their strength lies in generating,

testing, and refining hypotheses [20]. An example is the
model by Ref. [31] that provides evidence for the
follicular wave theory.

In the following, we give an overview of statistical
models (Sec. 2) and mechanistic models (Sec. 3) that

Figure 1

Schematic representation of the hypothalamic-pituitary-gonadal
(HPG) axis. Gonadotropin-releasing hormone (GnRH) is synthesised in
the hypothalamus and released into the hypophyseal portal circulation
system in a pulsatile manner. In the pituitary, GnRH stimulates the syn-
thesis of luteinising hormone (LH) and follicle-stimulating hormone (FSH)
and their release into the blood. LH and FSH regulate follicular maturation
in the ovaries. FSH stimulates follicular growth, whereas LH triggers the
ovulation of a dominant follicle. Growing follicles (yellow) produce
oestradiol (E2). After ovulation (dark grey), the corpus luteum (orange)
produces both E2 and progesterone (P4). E2 and P4 exhibit feedback
mechanisms on the hypothalamus and the pituitary, which closes the loop
(created with BioRender.com).

Figure 2
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Illustration of the follicular wave theory. Small follicles are available
throughout the menstrual cycle. With the beginning of a new menstrual
cycle, the follicle-stimulating hormone level (FSH, pink line) starts rising
and stimulates the growth of a cohort of follicles. Until mid-cycle, one
follicle will be selected for ovulation. During the luteal phase, another
cohort of follicles starts growing. However, none of those follicles will
ovulate due to the low level of FSH.
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have been developed to simulate and predict
IVF treatment outcomes, including the number of
mature oocytes after ovarian stimulation and pregnancy
rates. In addition, we briefly review the use of mathe-
matical models in in-silico clinical trials (ISCT) related
to IVF treatment (Sec. 4).

Prediction of IVF outcomes
A review by Ref. [56] summarises the statistical
methods and available software tools for scoring embryo
quality and predicting pregnancy rates. The review
emphasises the role of these models as a clinical decision
support tool, and that the final decisions need to be

made by the practitioners and laboratory staff. Another
publication from the same group [55] gives an overview
of statistical models based on patient and/or embryo
characteristics for predicting pregnancy and/or live birth
rates. The authors suggest that the way forward would
be in enriching, improving and strengthening the
reproducibility and prognostic value of current models
instead of suggesting new ones. However, both the
definition of new success criteria as well the advance-
ment of computational methods and tools, particularly
in the fields of machine learning (ML) and artificial

intelligence (AI), has led to the development of new
models over the past years, which we briefly review in
the following.

An intermediate marker of successful outcome in IVF/
ICSI cycles, which has been introduced by the
POSEIDON group,1 is the ability to retrieve the number
of oocytes needed to achieve at least one euploid embryo
for transfer, i.e., an embryo that contains a normal
number of chromosomes. In Ref. [21], members of the
POSEIDON group developed a statistical model to es-
timate the minimum number of mature oocytes required

to obtain at least one euploid blastocyst (based on pre-
treatment information, including female age and sperm
source used for ICSI) and to estimate the individualised
probability of blastocyst euploidy per mature retrieved
oocyte. External multicentre validation is currently
ongoing using suitable ART datasets from different
countries.

There are also studies that focus on predicting the total
number of oocytes. Ref. [1] demonstrated that results
from random forest analysis were consistent with a

generalised linear regression model suggesting that fol-
licle sizes of 12e19 mm (but not the total number of
follicles) on the day of trigger had the greatest predic-
tive importance for the number of oocytes and number
of mature oocytes retrieved. This knowledge enables
the accurate determination of trigger efficacy and could
potentially also be used to determine the optimal day of
trigger administration.

Ref. [60] introduced a logistic regression model based
on seven predictors for estimating the assisted fecundity
of women before starting the first IVF/ICSI cycle, which
translates into the probability of live birth in the first
treatment cycle. This kind of prediction complements
the approach of estimating cumulative and cycle-
specific probabilities of live birth over multiple treat-
ment cycles.

A great challenge for ART is a poor ovarian response,
which refers to an unexpected low number of oocytes
upon stimulation treatment. Using univariate and
multivariate logistic regression analyses, Ref. [69] devel-
oped a statistical model based on four predictors (anti-
Müllerian hormone, antral follicle counts, basal FSH, and
age, in order of their significance) in order to estimate the
probability of poor ovarian response and to assess the true
ovarian reserve. Similarly, Ref. [38] developed a statistical
model that can predict the probability of clinical preg-

nancy failure in poor ovarian responders before embryo
transfer in IVF/ICSI procedure.

ML models allow for including an increased number of
features and to untangle their complex relationships.
Ref. [8] compared two widely used ML methods (sup-
port vector machines with different kernel functions and
artificial neural networks) with logistic regression models
for the prediction of different IVF outcome criteria.
They demonstrated that theMLmethods are superior to
the standard statistical models. The authors argue that

ML algorithms, as opposed to classical statistical models,
can take into consideration complex associations be-
tween different parameters and can consequently better
utilise the synergism between these associated parame-
ters. In the same direction, Ref. [25] used 25 attributes
in combination with a feature selection algorithm to
assess the prediction ability of IVF pregnancy success for
five different ML models. Two features, namely indica-
tion of infertility factor and the number of mature eggs,
were selected by all classifiers, and antral follicle count
(AFC) was selected by four methods. Moreover, age was
ranked highest by three of the classifiers, which is

consistent with other studies. The authors demonstrated
that the prediction performance of all five classifiers
improved with the selected features compared to using
all features. Their article also includes a summary of
studies that applied ML techniques for the classification
of IVF outcomes. Those techniques differ in the ML
technique used, the attribute/feature selection tech-
nique used, the list of selected features, the validation
(training/test procedure), and the performance measure
reported. These differences make it difficult to compare
the methods with each other and also limit their trans-

ferability to other clinics due to variations in the amount
and quality of data. The publication of codes as well as
the availability of benchmark datasets would be prefer-
able in order to increase the reproducibility and reus-
ability of ML methods and results.1 https://www.groupposeidon.com/.
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Modelling follicular maturation on a
systems level
Both classical statistical models as well as ML models
are based on predefined input and output variables.
They do not explicitly include time as a variable and can
therefore not be used to predict system behaviour over
time, e.g., the growth of ovarian follicles. For this pur-
pose, process-based models have been developed, which
will be summarised in the following.

Moment models that describe the response of
follicles in IVF
Ref. [72] developed a mathematical model that de-
scribes how the discrete follicle size distribution
evolves over time, whereby it is assumed that the

number of follicles activated during an IVF cycle is
constant, i.e., that no new follicles start growing during
stimulation. The kinetics of follicle growth is modelled
as a function of injected FSH, and the follicle properties
are represented in terms of the moments of the (un-
known) statistical size distribution. Initial data from
two treatment days (follicle sizes and prescribed FSH
dose on days 2 and 5) of an individual patient are used
to obtain patient-specific model parameters and predict
the follicle size distribution for the remaining treat-
ment days, whereby the dose is not adjusted but con-

stant throughout treatment. The authors demonstrate
that the follicle size distribution predicted by the
moment model is in good agreement with the actual
size distribution seen in the IVF cycle data for five
patients.

In [71], the authors extended their model by an optimal
control approach in order to predict the optimum FSH
dosage for the desired treatment outcome, which is to
have as many follicles as possible in the largest size class.
A proof of concept based on data from five patients was

presented in Ref. [71], before the model was tested in a
double-blinded trial involving 10 patients [45]. Even
though the cohort size was small, the results from
Ref. [45] demonstrate that model-based treatment
planning can lead to lower doses and fewer tests and
monitoring requirements along with higher numbers of
mature follicles and a similar percentage of good quality
eggs compared to standard treatment routines.

Since the model does not include hormone dynamics
and does not consider outcomes other than follicle
number and sizes, the risk of ovarian hyperstimulation

syndrome still needs to be checked by the physician,
which might overrule the model-based treatment sug-
gestions in many cases.

Cellular population models
Ovarian follicles carry two types of hormone-sensitive
cells: (i) LH-responsive theca cells and FSH-responsive
granulosa cells. Both cell types are crucial for the

development of ovarian follicles and ovarian hormone
production. Proliferation and cellular signalling processes
of these cells have been investigated experimentally and
by mathematical modelling [16]. Recently, Ref. [18]
introduced a continuous-time Markov chain model for
cell population dynamics to identify events in follicle
maturation. Modelling follicular maturation on different
levels of organisation, for example, by incorporating cell

dynamics in follicle population dynamic models, can be
valuable to characterise the pool of follicles over the
lifetime of individuals [17,10].

Models based on follicular maturation stages and
masses
A number of models have been developed [24,48,49,46]
in which discrete stages of follicular maturation are
defined as a state variables to describe follicular growth
dynamics. Thereby, each maturation stage encodes a
specific capability to produce ovarian hormones, but
the variables do not refer to the size or number of folli-
cles in that stage of maturation. However, this heuristic
approach is useful to study different aspects of the

female menstrual cycle. For example, Refs. [49,68] used
this approach to model drug administrations, while
Ref. [46] investigated follicular wave dynamics. Ref. [23]
used the model to investigate the effect of testosterone
on normal menstrual cycles and ovulatory function. The
model provides a framework to investigate polycystic
ovary syndrome and ovulatory dysfunctions.

Follicle population models
A mathematical formulation for ovarian follicle matura-
tion dynamics in terms of number and sizes of follicles
was first introduced to the literature by Refs. [34,35].
Ref. [52] used this model to predict ovarian response in

stimulation treatments. Ref. [59] modified the Lacker’s
model in order to simulate higher ovulations rates, i.e.,
double and multiple ovulations, in sheep and cattle.
Based on these previous modelling attempts for follic-
ular maturation on the level on individual follicles,
Ref. [36] introduced a follicular growth equation that
includes competition between follicles, with the follic-
ular size as state variable. All these models, however, can
only be used to simulate one follicular wave. Ref. [22]
coupled the Lange model with the hormone dynamics
along the HGP axes. The coupled model allows us to

study the interplay between hormone dynamics and
follicular maturation throughout consecutive menstrual
cycles and can be used to simulate ovarian stimulation
protocols with random start times.

Treatment computations and in-silico
clinical trials
Mechanistic models can be used as a safe and efficient
tool to predict patient-specific treatment outcomes as
part of ISCT. Those approaches promise to decrease
experimental efforts, including animal and human
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testing, and optimise the individual treatment outcome.
The group of E. Tronci developed methods and software
based on intelligent search strategies, and statistical
model checking to find sets of model parameters that
result in physiologically meaningful model behaviours
[61,43]. In Ref. [57], they applied these methods to
compute huge populations of virtual patients (VPs) for a
non-identifiable quantitative virtual physiological human

(VPH) model of the human menstrual cycle, including
drug treatments [49]. Using the same VPH model,
Refs. [42,58] showcased how VPs can be used to support
precision medicine. Their work demonstrates how to
compute a personalised down-regulation treatment
protocol (a protocol used for assisted reproduction) that
maximises the aimed outcome while simultaneously
minimising the risk for severe side effects.

These methods and software tools have reached a high
level of technological readiness, and the indispensable

next step would be to test their performance in clinical
trials. In particular, ethical and legal issues need to be
considered carefully before such tools can become part
of clinical practice [19].

Conclusion
This review summarises different mathematical ap-
proaches to model follicular maturation and ovarian

stimulation in humans, see Fig. 3. It demonstrates how
medical research in the context of female health already
has or might in the future benefit from computational
work, such as statistical and mechanistic modelling.
Statistical models are a powerful tool to predict different
outcome criteria of IVF treatment based on both patient
and embryo characteristics. In particular, ML models
help determine which phenotype and cycle factors are

the most useful in making predictions.

Mechanistic modelling, with its way of thinking about
complex dynamical systems in biology, can provide
valuable insights on its own [20]. In particular, mecha-
nistic models can be used to test the hypothesis about
the underlying processes and identify parameters on
which measurement efforts should be focused on.
Moreover, they can be combined with pharmacokinetic
models to study drug administration schemes, which is
not possible with statistical models. Recent publications

have demonstrated how mechanistic and ML models
can be combined to infer hidden dynamics in biological
networks and enable robust predictions, e.g., Ref. [70].
This is certainly a promising avenue for future research.

The review here focuses on follicular dynamics, and
there are several ongoing modelling efforts in closely
related areas, for example, on the endometrial cycle

Figure 3
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This review gives an overview of different mathematical modelling approaches focusing on ovarian follicle maturation and female health. There are two
main model types, namely statistical models and mechanistic models, both branching into sub-classes depending on the application. Each sub-class links
to one of its most recent references, which are also cited in this review.
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[3]. Also, we did not discuss modelling approaches
based on images, as this would be out of the scope for
this review. The reader interested in the application of
ML methods to predict embryo ploidy from images is
referred to Ref. [28] and references therein. It is likely
that in future, different models and model types will
be combined in order to achieve an even more holistic
picture of the processes that are involved in

female fertility.
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Errata 

Page vii Misspelling: “modeller trengs” - corrected to “modell trenges” 

Page vii Missing word: “tillegg det” - corrected to “tillegg til det” 

Page xi Inconsistent spelling: “Luteinizing” - corrected to “Luteinising” 

Page xiv Misspelling: “identifiablilty” - corrected to “identifiability” 

Page xiv Misspelling: “pharmacodyanimics” - corrected to “pharmacodynamics” 

Page 3  Wrong word choice: “holistic” is a term that has been appropriated in some 
pseudoscientific circles - corrected to “systemic”

Page 4 Grammatical error: “Kuepfer et al. [2016] claims” - corrected to “Kuepfer et al. 
[2016] claim” 

Page 4  Wrong word choice: “holistic” is a term that has been appropriated in some 
pseudoscientific circles - corrected to “systemic”

Page 4 Grammatical error: “Jackson et al. [2015] utilises” - corrected to “Jackson et al. 
[2015] utilise” 

Page 4  Wrong word choice: “holistically” is a term that has been appropriated in some 
pseudoscientific circles - corrected to “systemically” 

Page 5 Grammatical errors: “who demonstrate the model’s applicability to simulate the 
effects of hormonal treatment on the hormone profiles.” - corrected to “to 
demonstrate the model’s applicability in simulating the effects of hormonal 
treatment on hormone profiles.”

Page 6 Grammatical error: “Wright et al. [2020] tests” - corrected to “Wright et al. [2020] 
test” 

Page 6 Inconsistent spelling: “characterizing” - corrected to “characterising” 

Page 6 Grammatical error: “Shilo et al. [2022] introduces” - corrected to “Shilo et al. [2022] 
introduce”

Page 7 Missing word: “an average menstrual cycle is 28 days” - corrected to “an average 
menstrual cycle length is 28 day”

Page 7 Typo: “computation approach” - corrected to “computational approach”

Page 8 Inconsistent spelling: “emphasize” - corrected to “emphasise”
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Page 8 Inconsistent spelling: “personalized” - corrected to “personalised”

Page 8 Wrong word choice: “renewal” - corrected to “novelty”

Page 9 Inconsistent spelling: “summarized” - corrected to “summarised”

Page 9 Inconsistent spelling: “summarizing” - corrected to “summarising”

Page 11 Wrong word choice: “glands” - corrected to “units”

Page 11 Missing plural: “shrew” - corrected to “shrews”

Page 11 Missing plural: “mouse” - corrected to “mice”

Page 12 Grammatical error: “Supposedly” - corrected to “Supposed”

Page 12 Grammatical error: “phase then menstruation” - corrected to “phase, menstruation”

Page 13 Wrong word choice: “glands” - corrected to “units”

Page 13 Inconsistent spelling: “Luteinizing” - corrected to “Luteinising” 

Page 13 Wrong preposition: “in” - corrected to “underneath” 

Page 13 Missing word: “both reach” - corrected to “both hormones reach” 

Page 14 Misspelling in Figure 2.2: “Hypothlamus” - corrected to “Hypothalamus” 

Page 15 Typo: “that this maturation” - corrected to “that maturation” 

Page 15 Typo: “section” - corrected to “secretion” 

Page 16  Inconsistent spelling: “Luterizing” - corrected to “Luteinising” 

Page 17 Wrong word choice: “symptoms” - corrected to “factors”

Page 18 Typo: “one-third” - corrected to “one third”

 Page 19 Typo: “increase” - corrected to “decrease”

Page 19 Misspelling: “lifes” - corrected to “lives”

Page 19 Typo: “afford” - corrected to “effort”

Page 22 Inconsistent spelling: “scheme” - corrected to “schema”

Page 22 Wrong word use: “integrative” - corrected to “integral”

Page 22 Typo: “model-building” - corrected to “model building”
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Page 23 Wrong parentheses: (model calibration)(Sec. 3.2) - corrected to (model calibration 
(Sec. 3.2)) 

Page 23 Typo: “model-building” - corrected to “model building”

Page 23 Inconsistent capitalisation: “uncertainty quantification and Sensitivity Analysis” - 
corrected to “uncertainty quantification and sensitivity analysis”

Page 23 Grammar error: “a ODE” - corrected to “an ODE”

Page 23 Misspelling: “hypothesises” - corrected to “hypotheses”

Page 26 Wrong word use: “distinctiveness” - corrected to “steepness”

Page 27 Typo: “model-building” - corrected to “model building”

Page 27  Inconsistent spelling: “minimizes” - corrected to “minimises” 

Page 27  Inconsistent spelling: “summarizes” - corrected to “summarises” 

Page 27  Inconsistent spelling: “minimizing” - corrected to “minimising” 

Page 28 Missing word: “each of Nobs” - corrected to “each of the Nobs” 

Page 29 Typo: “data set y” - corrected to “data set y(t)” 

Page 29 Typo: “data set is” - corrected to “data set y(t) is” 

Page 29 Missing comma: “and therefore does” - corrected to “and, therefore, does” 

Page 29 Typo: “denoted” - corrected to “denotes” 

Page 30 Missing word: “data set y” - corrected to “data set y(t)” 

Page 30  Inconsistent spelling: “utilized” - corrected to “utilised” 

Page 30 Inconsistent spelling: “realized” - corrected to “realised” 

Page 30 Typo: “Markow” - corrected to “Markov” 

Page 31 Misspelling: “identifiablilty” - corrected to “identifiability” 

Page 31 Grammatical error: “data is” - corrected to “data are”

Page 31 Inconsistent spelling: “parametrization” - corrected to “parametrisation”

Page 32 Inconsistent spelling: “characterize” - corrected to “characterise”
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Page 32 Grammatical error: “Raue et al. [2013a] compares” - corrected to “Raue et al. 
[2013a] compare”

Page 32 Grammatical error: “Rateitschak et al. [2012] demonstrates” - corrected to 
“Rateitschak et al. [2012] demonstrate”

Page 32 Typo: “limitations of the data collection” - corrected to “limitations of data 
collection”

Page 32 Typo: “Profile likelihoods” - corrected to “Profile likelihood”

Page 33 Typo: “sub-figure” - corrected to “subfigure” 

Page 33 Grammatical error: “practical non-identifiable” - corrected to “practically non-
identifiable”

Page 33 Grammatical error: “structural non-identifiable” - corrected to “structurally non-
identifiable”

Page 33 Grammatical error in Figure 3.3: “practical non-identifiable” - corrected to 
“practically non-identifiable”

Page 33 Grammatical error in Figure 3.3: “structural non-identifiable” - corrected to 
“structurally non-identifiable”

Page 33 Typo in caption of Figure 3.3: “shapes the profile” - corrected to “shapes of profile”

Page 33 Typo: “denoted” - corrected to “denotes”

Page 33 Inconsistent capitalisation: “profile likelihoods” - corrected to “PLs”

Page 34 Grammatical error: “Tönsing et al. [2018] … computes … and uses” - corrected to 
“Tönsing et al. [2018] … compute … and use”

Page 34 Inconsistent capitalisation: “Markov chain Monte Carlo” - corrected to “Markov 
Chain Monte Carlo”

Page 35 Grammatical error: “propagates into the model output” - corrected to “propagates to 
the model output”

Page 35 Grammatical error: “decompose … variance in outputs’ contributions“ - corrected to  
“decompose … variance into its outputs’ contributions“

Page 36 Missing subscript: “Vi,j” - corrected to “Vi,j”

Page 36 Grammatical error: “Lebedeva et al [2012] emphasises” - corrected to “Lebedeva et 
al [2012] emphasise”
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Page 36 Missing word: “SA helps better understand” - corrected to “SA helps to better 
understand”

Page 36 Misspelling: “pharmacodyanimics” - corrected to “pharmacodynamics”

Page 36 Inconsistent capitalisation in Figure 3.4: “drug” - corrected to “Drug”

Page 36 Typo: “administrated” - corrected to “administered”

Page 38 Typo: “sub-population” - corrected to “subpopulation” 

Page 39 Grammatical error: “to understand better the” - corrected to “to understand the”

Page 40 Typo: “wet-lab” - corrected to “wet lab”

Page 40 Typo: “computation” - corrected to “computational”

Page 42 Wrong comma: “in the follicle growth, hinders” - corrected to “in the follicle 
growth hinders ”

Page 44 Typo: “semi-mechanically” - corrected to “semi-mechanistically”

Page 45 Missing word: “interdisciplinary increases” - corrected to “interdisciplinary nature 
increases”

Page 45: Typo: “health care” - corrected to “healthcare”

Page 45: Typo: “sub-population” - corrected to “subpopulation”

Page 45 Typo: “conditions” - corrected to “condition”

Page 46 Typo: “model-building” - corrected to “model building”

Page 46 Typo: “developmental” - corrected to “development”

Page 47 Typo: “could” - corrected to “would”

Page 47 Grammatical error: “valuable but is” - corrected to “valuable but are”

Page 47 Grammatical error: “Rateitschak et al. [2012] argues” - corrected to “Rateitschak et 
al. [2012] argue”

Page 48 Typo: ”well established” - corrected to “well-established”

Page 47 Grammatical error: “clinical data is” - corrected to “clinical data are”

Page 48 Typo: “symbolical” - corrected to “symbolic”
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