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Figure A.1: Optimization history a) Parameter set at the endpoint of each optimisation run. It can be seen that many
parameters keep their value in different local optima. b) Values of the negative log-likelihood function at the end of
each optimization run.
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Figure A.2: MCMC Sampling based confidence intervals. Illustrated percentiles are derived from model simulations
with 150000 parameter sets drawn from the stationary distribution. Confidence intervals (99%, 95%, 90%) are
represented as grey areas. The median of the sampling based simulation trajectories is gives as a colored line.
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Figure A.3: Parameter correlation in the population-average model. The upper right half of the matrix contains the
pairwise Pearson correlation coefficients. The lower left half shows the corresponding bi-variate densities resulting
from marginalization.
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Abstract
The aim of ovarian stimulation in fertility treatment is to in-
crease the number of large follicles and hence the number of
eggs that can be retrieved for in vitro fertilisation (IVF). How-
ever, large inter- and intra-individual variability in the menstrual
cycle and ovarian response to stimulation drugs complicate
treatment planning and prediction. Hence, many mathematical
models have been developed to support treatment decisions.
In this article, we give an overview of mechanistic models that
cover different aspects of the processes involved in normal
menstrual cycles and ovarian stimulation, including hormonal
regulation and follicular maturation. We also review statistical
models that have been designed to predict different IVF
outcome criteria. Finally, we outline the use of mathematical
models for in-silico clinical trials in reproductive endocrinology.
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Introduction
Approximately 15% of people of reproductive age are
affected by infertility [67], and unwanted childlessness
puts a psychological and psycho-social burden on many
of them [27,41,14]. This makes infertility and its con-
sequences a global health issue. In 85% of all cases of
infertility, the underlying causes are dysfunctions in the

female or/and male reproductive system [13]. Female
factors, such as ovulatory disorders, endometriosis and
tubal abnormalities, are responsible for approximately
one-third of all cases [62].

The hypothalamic-pituitary-gonadal (HPG) axis is
central to enable reproduction in both sexes. In females,
the HPG axis regulates the menstrual cycle, including

the maturation and release of oocytes, the periodic
release of reproductive hormones, as well as the prepa-
ration of the female body for a possible pregnancy.
This is enabled through the feedback interactions be-
tween ovarian hormones, mainly progesterone (P4) and
oestradiol (E2), the pituitary hormones luteinising
hormone (LH) and follicle-stimulating hormone (FSH),
and the hypothalamic hormone gonadotropin-releasing
hormone (GnRH), see Fig. 1. GnRH stimulates the
release of FSH and LH. Both regulate follicular matu-
ration [15]. However, the initial recruitment of follicles

from the ovarian reservoir is independent of LH and
FSH [44]. Within each menstrual cycle cohorts of fol-
licles, called waves, start growing as a result of increasing
FSH levels, see Fig. 2 [4e6]. Growing follicles produce
E2, which enables a feedback loop back to the hypo-
thalamus. Usually one follicle of the cohort, rarely
multiple follicles, ovulates around mid-cycle. During
ovulation, the follicle releases its oocyte, and the sac
forms the corpus luteum, which produces ovarian hor-
mones in the luteal phase. If the oocyte is not fertilised
and pregnancy does not occur, the corpus luteum decays

and a new cycle begins [15]. Failure in this endocrine
network is one cause of infertility.

Treatment options for infertility depend on its cause
and the patient itself. In vitro fertilisation (IVF) is a
form of assisted reproductive technology (ART) that can
result in a successful pregnancy for patients suffering
from different causes of infertility. IVF can not only be
used to overcome female infertility but also assist in
cases of male infertility. Intracytoplasmic sperm injec-
tion (ICSI), a technique where a sperm cell is injected

directly into the egg cell, may be used for patients with
low sperm quality or number. IVF treatment proceeds
in three steps: (i) egg retrieval through controlled
ovarian stimulation (COS), (ii) fertilisation of oocytes in
the laboratory and (iii) embryo transfer into the uterus
[2]. COS aims to stimulate the growth of multiple
ovarian follicles synchronously by the administration of
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gonadotrophins [40]. Several COS protocols are avail-
able. The conventional GnRH agonist protocol and the
GnRH antagonist protocol are well established [30].

Newer protocols are based on the follicular wave theory
[6], which motivates ovarian stimulation at different
time points within a menstrual cycle [54]. Protocols
which start ovarian stimulation at a random time point
are of particular interest in the context of fertility
preservation in cancer patients, where time is a deter-
mining factor [64,12]. Stimulation treatments that start
during the luteal phase have been used to treat patients
who did not respond to conventional protocols [50,29] as
well as women with normal ovarian response [33].
Double stimulation protocols comprise two consecutive

treatment cycles and offer more opportunities for oocyte
retrieval in a shorter time interval [32,63]. Overall, it is
challenging to find the best therapy for an individual
patient in order to achieve the best treatment outcome

in terms of pregnancy and live birth rates while simul-
taneously decreasing treatment-related risks like ovarian
hyperstimulation syndrome [53].

Mathematical modelling can improve our understanding
of complex regulatory networks involving multiple levels
of organisation, such as endocrine systems [73,37].
Computational models can also be helpful to answer
scientific questions in cases where appropriate model
organisms are not available, and experimental in-
vestigations are challenging. Until recently, a menstrual
cycle was only observed in primates. Evidence of a
menstruating rodent was provided [9]. Since every
model is a simplification and based on assumptions, it is

important to find a model that is appropriate for the
research question [66,65]. Mathematical models can be
divided into two main groups: (i) empirical models and
(ii) mechanistic models [7,51]. Empirical models are
statistical models and therefore data driven. They are
tailored towards prediction and are widely used in
medical research [26]. An example in the scope of this
review is the prediction of menstrual cycle length
[47,39]. Mechanistic models are process-based and
consider the elements forming a system and their in-
teractions [11]. Their strength lies in generating,

testing, and refining hypotheses [20]. An example is the
model by Ref. [31] that provides evidence for the
follicular wave theory.

In the following, we give an overview of statistical
models (Sec. 2) and mechanistic models (Sec. 3) that

Figure 1

Schematic representation of the hypothalamic-pituitary-gonadal
(HPG) axis. Gonadotropin-releasing hormone (GnRH) is synthesised in
the hypothalamus and released into the hypophyseal portal circulation
system in a pulsatile manner. In the pituitary, GnRH stimulates the syn-
thesis of luteinising hormone (LH) and follicle-stimulating hormone (FSH)
and their release into the blood. LH and FSH regulate follicular maturation
in the ovaries. FSH stimulates follicular growth, whereas LH triggers the
ovulation of a dominant follicle. Growing follicles (yellow) produce
oestradiol (E2). After ovulation (dark grey), the corpus luteum (orange)
produces both E2 and progesterone (P4). E2 and P4 exhibit feedback
mechanisms on the hypothalamus and the pituitary, which closes the loop
(created with BioRender.com).

Figure 2

Current Opinion in Endocrine and Metabolic Research

Illustration of the follicular wave theory. Small follicles are available
throughout the menstrual cycle. With the beginning of a new menstrual
cycle, the follicle-stimulating hormone level (FSH, pink line) starts rising
and stimulates the growth of a cohort of follicles. Until mid-cycle, one
follicle will be selected for ovulation. During the luteal phase, another
cohort of follicles starts growing. However, none of those follicles will
ovulate due to the low level of FSH.
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have been developed to simulate and predict
IVF treatment outcomes, including the number of
mature oocytes after ovarian stimulation and pregnancy
rates. In addition, we briefly review the use of mathe-
matical models in in-silico clinical trials (ISCT) related
to IVF treatment (Sec. 4).

Prediction of IVF outcomes
A review by Ref. [56] summarises the statistical
methods and available software tools for scoring embryo
quality and predicting pregnancy rates. The review
emphasises the role of these models as a clinical decision
support tool, and that the final decisions need to be

made by the practitioners and laboratory staff. Another
publication from the same group [55] gives an overview
of statistical models based on patient and/or embryo
characteristics for predicting pregnancy and/or live birth
rates. The authors suggest that the way forward would
be in enriching, improving and strengthening the
reproducibility and prognostic value of current models
instead of suggesting new ones. However, both the
definition of new success criteria as well the advance-
ment of computational methods and tools, particularly
in the fields of machine learning (ML) and artificial

intelligence (AI), has led to the development of new
models over the past years, which we briefly review in
the following.

An intermediate marker of successful outcome in IVF/
ICSI cycles, which has been introduced by the
POSEIDON group,1 is the ability to retrieve the number
of oocytes needed to achieve at least one euploid embryo
for transfer, i.e., an embryo that contains a normal
number of chromosomes. In Ref. [21], members of the
POSEIDON group developed a statistical model to es-
timate the minimum number of mature oocytes required

to obtain at least one euploid blastocyst (based on pre-
treatment information, including female age and sperm
source used for ICSI) and to estimate the individualised
probability of blastocyst euploidy per mature retrieved
oocyte. External multicentre validation is currently
ongoing using suitable ART datasets from different
countries.

There are also studies that focus on predicting the total
number of oocytes. Ref. [1] demonstrated that results
from random forest analysis were consistent with a

generalised linear regression model suggesting that fol-
licle sizes of 12e19 mm (but not the total number of
follicles) on the day of trigger had the greatest predic-
tive importance for the number of oocytes and number
of mature oocytes retrieved. This knowledge enables
the accurate determination of trigger efficacy and could
potentially also be used to determine the optimal day of
trigger administration.

Ref. [60] introduced a logistic regression model based
on seven predictors for estimating the assisted fecundity
of women before starting the first IVF/ICSI cycle, which
translates into the probability of live birth in the first
treatment cycle. This kind of prediction complements
the approach of estimating cumulative and cycle-
specific probabilities of live birth over multiple treat-
ment cycles.

A great challenge for ART is a poor ovarian response,
which refers to an unexpected low number of oocytes
upon stimulation treatment. Using univariate and
multivariate logistic regression analyses, Ref. [69] devel-
oped a statistical model based on four predictors (anti-
Müllerian hormone, antral follicle counts, basal FSH, and
age, in order of their significance) in order to estimate the
probability of poor ovarian response and to assess the true
ovarian reserve. Similarly, Ref. [38] developed a statistical
model that can predict the probability of clinical preg-

nancy failure in poor ovarian responders before embryo
transfer in IVF/ICSI procedure.

ML models allow for including an increased number of
features and to untangle their complex relationships.
Ref. [8] compared two widely used ML methods (sup-
port vector machines with different kernel functions and
artificial neural networks) with logistic regression models
for the prediction of different IVF outcome criteria.
They demonstrated that theMLmethods are superior to
the standard statistical models. The authors argue that

ML algorithms, as opposed to classical statistical models,
can take into consideration complex associations be-
tween different parameters and can consequently better
utilise the synergism between these associated parame-
ters. In the same direction, Ref. [25] used 25 attributes
in combination with a feature selection algorithm to
assess the prediction ability of IVF pregnancy success for
five different ML models. Two features, namely indica-
tion of infertility factor and the number of mature eggs,
were selected by all classifiers, and antral follicle count
(AFC) was selected by four methods. Moreover, age was
ranked highest by three of the classifiers, which is

consistent with other studies. The authors demonstrated
that the prediction performance of all five classifiers
improved with the selected features compared to using
all features. Their article also includes a summary of
studies that applied ML techniques for the classification
of IVF outcomes. Those techniques differ in the ML
technique used, the attribute/feature selection tech-
nique used, the list of selected features, the validation
(training/test procedure), and the performance measure
reported. These differences make it difficult to compare
the methods with each other and also limit their trans-

ferability to other clinics due to variations in the amount
and quality of data. The publication of codes as well as
the availability of benchmark datasets would be prefer-
able in order to increase the reproducibility and reus-
ability of ML methods and results.1 https://www.groupposeidon.com/.
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Modelling follicular maturation on a
systems level
Both classical statistical models as well as ML models
are based on predefined input and output variables.
They do not explicitly include time as a variable and can
therefore not be used to predict system behaviour over
time, e.g., the growth of ovarian follicles. For this pur-
pose, process-based models have been developed, which
will be summarised in the following.

Moment models that describe the response of
follicles in IVF
Ref. [72] developed a mathematical model that de-
scribes how the discrete follicle size distribution
evolves over time, whereby it is assumed that the

number of follicles activated during an IVF cycle is
constant, i.e., that no new follicles start growing during
stimulation. The kinetics of follicle growth is modelled
as a function of injected FSH, and the follicle properties
are represented in terms of the moments of the (un-
known) statistical size distribution. Initial data from
two treatment days (follicle sizes and prescribed FSH
dose on days 2 and 5) of an individual patient are used
to obtain patient-specific model parameters and predict
the follicle size distribution for the remaining treat-
ment days, whereby the dose is not adjusted but con-

stant throughout treatment. The authors demonstrate
that the follicle size distribution predicted by the
moment model is in good agreement with the actual
size distribution seen in the IVF cycle data for five
patients.

In [71], the authors extended their model by an optimal
control approach in order to predict the optimum FSH
dosage for the desired treatment outcome, which is to
have as many follicles as possible in the largest size class.
A proof of concept based on data from five patients was

presented in Ref. [71], before the model was tested in a
double-blinded trial involving 10 patients [45]. Even
though the cohort size was small, the results from
Ref. [45] demonstrate that model-based treatment
planning can lead to lower doses and fewer tests and
monitoring requirements along with higher numbers of
mature follicles and a similar percentage of good quality
eggs compared to standard treatment routines.

Since the model does not include hormone dynamics
and does not consider outcomes other than follicle
number and sizes, the risk of ovarian hyperstimulation

syndrome still needs to be checked by the physician,
which might overrule the model-based treatment sug-
gestions in many cases.

Cellular population models
Ovarian follicles carry two types of hormone-sensitive
cells: (i) LH-responsive theca cells and FSH-responsive
granulosa cells. Both cell types are crucial for the

development of ovarian follicles and ovarian hormone
production. Proliferation and cellular signalling processes
of these cells have been investigated experimentally and
by mathematical modelling [16]. Recently, Ref. [18]
introduced a continuous-time Markov chain model for
cell population dynamics to identify events in follicle
maturation. Modelling follicular maturation on different
levels of organisation, for example, by incorporating cell

dynamics in follicle population dynamic models, can be
valuable to characterise the pool of follicles over the
lifetime of individuals [17,10].

Models based on follicular maturation stages and
masses
A number of models have been developed [24,48,49,46]
in which discrete stages of follicular maturation are
defined as a state variables to describe follicular growth
dynamics. Thereby, each maturation stage encodes a
specific capability to produce ovarian hormones, but
the variables do not refer to the size or number of folli-
cles in that stage of maturation. However, this heuristic
approach is useful to study different aspects of the

female menstrual cycle. For example, Refs. [49,68] used
this approach to model drug administrations, while
Ref. [46] investigated follicular wave dynamics. Ref. [23]
used the model to investigate the effect of testosterone
on normal menstrual cycles and ovulatory function. The
model provides a framework to investigate polycystic
ovary syndrome and ovulatory dysfunctions.

Follicle population models
A mathematical formulation for ovarian follicle matura-
tion dynamics in terms of number and sizes of follicles
was first introduced to the literature by Refs. [34,35].
Ref. [52] used this model to predict ovarian response in

stimulation treatments. Ref. [59] modified the Lacker’s
model in order to simulate higher ovulations rates, i.e.,
double and multiple ovulations, in sheep and cattle.
Based on these previous modelling attempts for follic-
ular maturation on the level on individual follicles,
Ref. [36] introduced a follicular growth equation that
includes competition between follicles, with the follic-
ular size as state variable. All these models, however, can
only be used to simulate one follicular wave. Ref. [22]
coupled the Lange model with the hormone dynamics
along the HGP axes. The coupled model allows us to

study the interplay between hormone dynamics and
follicular maturation throughout consecutive menstrual
cycles and can be used to simulate ovarian stimulation
protocols with random start times.

Treatment computations and in-silico
clinical trials
Mechanistic models can be used as a safe and efficient
tool to predict patient-specific treatment outcomes as
part of ISCT. Those approaches promise to decrease
experimental efforts, including animal and human
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testing, and optimise the individual treatment outcome.
The group of E. Tronci developed methods and software
based on intelligent search strategies, and statistical
model checking to find sets of model parameters that
result in physiologically meaningful model behaviours
[61,43]. In Ref. [57], they applied these methods to
compute huge populations of virtual patients (VPs) for a
non-identifiable quantitative virtual physiological human

(VPH) model of the human menstrual cycle, including
drug treatments [49]. Using the same VPH model,
Refs. [42,58] showcased how VPs can be used to support
precision medicine. Their work demonstrates how to
compute a personalised down-regulation treatment
protocol (a protocol used for assisted reproduction) that
maximises the aimed outcome while simultaneously
minimising the risk for severe side effects.

These methods and software tools have reached a high
level of technological readiness, and the indispensable

next step would be to test their performance in clinical
trials. In particular, ethical and legal issues need to be
considered carefully before such tools can become part
of clinical practice [19].

Conclusion
This review summarises different mathematical ap-
proaches to model follicular maturation and ovarian

stimulation in humans, see Fig. 3. It demonstrates how
medical research in the context of female health already
has or might in the future benefit from computational
work, such as statistical and mechanistic modelling.
Statistical models are a powerful tool to predict different
outcome criteria of IVF treatment based on both patient
and embryo characteristics. In particular, ML models
help determine which phenotype and cycle factors are

the most useful in making predictions.

Mechanistic modelling, with its way of thinking about
complex dynamical systems in biology, can provide
valuable insights on its own [20]. In particular, mecha-
nistic models can be used to test the hypothesis about
the underlying processes and identify parameters on
which measurement efforts should be focused on.
Moreover, they can be combined with pharmacokinetic
models to study drug administration schemes, which is
not possible with statistical models. Recent publications

have demonstrated how mechanistic and ML models
can be combined to infer hidden dynamics in biological
networks and enable robust predictions, e.g., Ref. [70].
This is certainly a promising avenue for future research.

The review here focuses on follicular dynamics, and
there are several ongoing modelling efforts in closely
related areas, for example, on the endometrial cycle

Figure 3

Current Opinion in Endocrine and Metabolic Research

This review gives an overview of different mathematical modelling approaches focusing on ovarian follicle maturation and female health. There are two
main model types, namely statistical models and mechanistic models, both branching into sub-classes depending on the application. Each sub-class links
to one of its most recent references, which are also cited in this review.

Modelling follicle growth and ovarian stimulation Fischer-Holzhausen and Röblitz 5

www.sciencedirect.com Current Opinion in Endocrine and Metabolic Research 2022, 26:100385



[3]. Also, we did not discuss modelling approaches
based on images, as this would be out of the scope for
this review. The reader interested in the application of
ML methods to predict embryo ploidy from images is
referred to Ref. [28] and references therein. It is likely
that in future, different models and model types will
be combined in order to achieve an even more holistic
picture of the processes that are involved in

female fertility.
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“Rateitschak et al. [2012] demonstrate”

Page 32 Typo: “limitations of the data collection” - corrected to “limitations of data 
collection”

Page 32 Typo: “Profile likelihoods” - corrected to “Profile likelihood”

Page 33 Typo: “sub-figure” - corrected to “subfigure” 

Page 33 Grammatical error: “practical non-identifiable” - corrected to “practically non-
identifiable”

Page 33 Grammatical error: “structural non-identifiable” - corrected to “structurally non-
identifiable”

Page 33 Grammatical error in Figure 3.3: “practical non-identifiable” - corrected to 
“practically non-identifiable”

Page 33 Grammatical error in Figure 3.3: “structural non-identifiable” - corrected to 
“structurally non-identifiable”

Page 33 Typo in caption of Figure 3.3: “shapes the profile” - corrected to “shapes of profile”

Page 33 Typo: “denoted” - corrected to “denotes”

Page 33 Inconsistent capitalisation: “profile likelihoods” - corrected to “PLs”

Page 34 Grammatical error: “Tönsing et al. [2018] … computes … and uses” - corrected to 
“Tönsing et al. [2018] … compute … and use”

Page 34 Inconsistent capitalisation: “Markov chain Monte Carlo” - corrected to “Markov 
Chain Monte Carlo”

Page 35 Grammatical error: “propagates into the model output” - corrected to “propagates to 
the model output”

Page 35 Grammatical error: “decompose … variance in outputs’ contributions“ - corrected to  
“decompose … variance into its outputs’ contributions“

Page 36 Missing subscript: “Vi,j” - corrected to “Vi,j”

Page 36 Grammatical error: “Lebedeva et al [2012] emphasises” - corrected to “Lebedeva et 
al [2012] emphasise”
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Page 36 Missing word: “SA helps better understand” - corrected to “SA helps to better 
understand”

Page 36 Misspelling: “pharmacodyanimics” - corrected to “pharmacodynamics”

Page 36 Inconsistent capitalisation in Figure 3.4: “drug” - corrected to “Drug”

Page 36 Typo: “administrated” - corrected to “administered”

Page 38 Typo: “sub-population” - corrected to “subpopulation” 

Page 39 Grammatical error: “to understand better the” - corrected to “to understand the”

Page 40 Typo: “wet-lab” - corrected to “wet lab”

Page 40 Typo: “computation” - corrected to “computational”

Page 42 Wrong comma: “in the follicle growth, hinders” - corrected to “in the follicle 
growth hinders ”

Page 44 Typo: “semi-mechanically” - corrected to “semi-mechanistically”

Page 45 Missing word: “interdisciplinary increases” - corrected to “interdisciplinary nature 
increases”

Page 45: Typo: “health care” - corrected to “healthcare”

Page 45: Typo: “sub-population” - corrected to “subpopulation”

Page 45 Typo: “conditions” - corrected to “condition”

Page 46 Typo: “model-building” - corrected to “model building”

Page 46 Typo: “developmental” - corrected to “development”

Page 47 Typo: “could” - corrected to “would”

Page 47 Grammatical error: “valuable but is” - corrected to “valuable but are”

Page 47 Grammatical error: “Rateitschak et al. [2012] argues” - corrected to “Rateitschak et 
al. [2012] argue”

Page 48 Typo: ”well established” - corrected to “well-established”

Page 47 Grammatical error: “clinical data is” - corrected to “clinical data are”

Page 48 Typo: “symbolical” - corrected to “symbolic”
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