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THE WEAK VARIABLE SHARING PROPERTY

Abstract

An algebraic type of structure is shown forth which is such that if it is a charac-

teristic matrix for a logic, then that logic satisfies Meyer’s weak variable sharing

property. As a corollary, it is shown that RM and all its odd-valued extensions

RM2n−1 satisfy the weak variable sharing property. It is also shown that a proof

to the effect that the “fuzzy” version of the relevant logic R satisfies the property

is incorrect.
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1. Introduction

The variable sharing property—that A→ B is a logical theorem of a logic
only if A and B share a propositional variable—is a hallmark of relevant
logics. The property was first shown to hold for the logic E—Anderson
and Belnap’s logic of entailment—as well as Ackermann’s logic of “rigorous
implication” by Belnap in [2]. One of the logics that this property rather
surprisingly turned out not to hold for is the logic RM—Anderson and
Belnap’s logic R augmented by the mingle axiom A→(A→A); Meyer and
Dunn discovered that ∼(A→A)→(B→B) is a theorem of RM (cf. [6]).

Even though Meyer did acknowledge that such theorems do undermine
the raison d’être of the enterprise of relevant logics, Meyer thought that
RM was “good enough, when some relevance is desirable” [1, p. 393].
Relevant logics allow for no relevance exceptions: If A → B is a logical
theorem, then A must be relevant to B in the sense that A and B must
share a propositional variable. Logics like classical logic, on the other

Presented by: Yaroslav Shramko
Received: November 12, 2022

c© Copyright by Author(s),  Lódź 2023
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hand, allow for exceptions: As a consequence of the interpolation theorem
we have that if A ⊃ B is a logical theorem of classical logic, then either
A and B will share a propositional variable, or either ∼A or B are logical
theorems. The notion of relevance ensured to hold for logics like RM is
somewhere in between these two, and is brought out by the weak variable
sharing property (WVSP), that if A→ B is a logical theorem, then either
A and B share a propositional variable, or both ∼A and B are logical
theorems. This property, then, allows for relevance exceptions, but only
for antecedents and consequents which are, respectively, logically rejected
and logically forced, as it were.

Meyer showed that RM does indeed satisfy (WVSP). Unlike Belnap’s
original variable sharing property, however, (WVSP) does not automati-
cally extend to any sublogic of a logic for which it holds. Neither does
Meyer’s original proof of the property easily generalize to other logics. Be-
tween classical logic and RM there are the n-valued logics RMn, where
n > 2. In fact, classical logic can be identified as RM2. Dunn showed
in [5] that any such logic RMn for even n’s, fail to satisfy (WVSP), and
stated, albeit without giving a proof, that every odd-valued RMn satisfy
(WVSP). Robles and Méndez gave a (WVSP)-proof in [9] which covers the
four-valued logic BN4 as well as an “entailment” version of that logic.1

This paper generalizes that proof so as to make it also apply to RM and
all the odd-valued RMn’s (as well as other logics satisfying certain condi-
tions).

There are two interesting sublogics of RM which both fail to satisfy
the variable sharing property, but for which the status of the weak version
is unsettled, namely RUE and RD—R augmented by, respectively, the
axiom A ∧ ∼A → B ∨ ∼B and (A → B) ∨ (B → A).2 A proof to the
effect that RD—“fuzzy R”—satisfies (WVSP) was put forth by Yang in
[14]. That proof, however, is faulty. This paper ends inconclusively by
pointing out the error and thus reopens the question as to whether RD
satisfies (WVSP). In light of the general (WVSP)-proof, however, one way
of making progress on whether RUE and RD do satisfy (WVSP) is pointed
out as interesting.

1I am very grateful to Yaroslav Shramko who pointed out that my original proof
was quite similar to that given in [9].

2The first axiom is sometimes called the axiom of unrelated extremes, hence the
name RUE, whereas (A → B) ∨ (B → A) is often called Dummett’s axiom, hence the
name RD.
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R Ax1–Ax12; R1–R2 RUE R +Ax13
RD R +A14 RM R +Ax15

Table 1. RM and three related logics

2. Logics defined

The consequence relation dealt with in this paper is exclusively the stan-
dard Hilbertian one. The following list of axioms and rules are used to
define some of the logics in the vicinity of RM. Their defining details are
found in Tab. 1.

Ax1 A→ A
Ax2 A→ A ∨B and B → A ∨B
Ax3 A ∧B → A and A ∧B → B
Ax4 ¬¬A→ A
Ax5 A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧ C)
Ax6 (A→ B) ∧ (A→ C)→ (A→ B ∧ C)
Ax7 (A→ C) ∧ (B → C)→ (A ∨B → C)
Ax8 (A→ ¬B)→ (B → ¬A)
Ax9 (A→ B)→ ((B → C)→ (A→ C))
Ax10 (A→ B)→ ((C → A)→ (C → B))
Ax11 A→ ((A→ B)→ B)
Ax12 (A→ (A→ B))→ (A→ B)
Ax13 A ∧ ∼A→ B ∨ ∼B
Ax14 (A→ B) ∨ (B → A)
Ax15 A→ (A→ A)
R1 A,B ` A ∧B
R2 A,A→ B ` B

Schechter showed in [10] that R ≺ RUE ≺ RD ≺ RM, where ≺ is
the strict sublogic relation. For instance, R does not have RUE’s defining
axiom (Ax13) as a logical theorem, whereas RD does, but does not suffice
for the “mingle axiom” (Ax15). Lastly, RM suffices for deriving Dum-
mett’s axiom (Ax14), but RUE does not. Only R amongst these logics,
then, satisfies Belnap’s variable sharing property since (Ax13) is an obvious
example of a theorem which violates it.
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Definition 2.1. The Dugundji sentences (cf. [4, 5, p. 10]) are the fol-
lowing formulas where any pi is distinct from pk for i 6= k.

(P2) (p1 ↔ p2)
(P3) (p1 ↔ p2) ∨ (p1 ↔ p3) ∨ (p2 ↔ p3)
(P4) (p1 ↔ p2) ∨ (p1 ↔ p3) ∨ (p1 ↔ p4)∨

(p2 ↔ p3) ∨ (p2 ↔ p4)∨
(p3 ↔ p4)

...
...

(Pn)
∨

1≤i<k≤n(pi ↔ pk)

Definition 2.2. The logic RMn for n ≥ 1 is obtained from RM by adding
every substitutional instance of (Pn+1).

Logics in the vicinity of RM are sometimes outfitted with truth-cons-
tants like the Church constants ⊥ and >, or the Ackermann constants t
and f . This paper follows the common practice of defining variable sharing
properties for the truth-constant-free fragment of the language.3

Definition 2.3. A logic L has the Weak Variable Sharing Prop-
erty (WVSP) just in case for every truth-constant-free formula A and B,
`L A→ B only if either A and B share a propositional variable, or both
`L ∼A and `L B.

To non-trivially satisfy the (WVSP), a logic must have a conditional
as a logical constant, and if it is to satisfy (WVSP) while not satisfying
the full variable sharing property, it must also have a negation. Since the
main aim of the paper is to determine some general conditions which are
sufficient for a logic to satisfy (WVSP), I have tried to keep the assumptions
of the main theorem and lemma to a minimal so that they will also apply
to logics with other sets of logical constants.

3. Matrices fit for weak variable sharing

Algebraic structures are in this paper used to provide interpretations for
logics, and to do so such structures must provide interpretations for all the
logical constants of the logic at hand. A m-ary logical constant [ will be

3See [13] for a different approach, and [7, § 6] for a discussion.
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interpreted using a m-ary function \ on the algebra in question. The arity
of such constants and functions will be left to context.

Definition 3.1. A matrix for a logic L with logical constants

〈∼,→, [1, . . . , [n〉,

is a structure
A = 〈K,D,¬, , \1, . . . , \n〉

for which

• ∅ 6= D ⊆ K

• ¬ is a unary function on K

•  a binary function on K

• If [i is a m-ary logical constant, then \i is a m-ary function on K.

The elements in D are the designated or “true” elements of A’s value-
space K. ¬, , \1, . . . , \n are the defined propositional functions on A.

Definition 3.2. An assignment function for a matrix A is a function
I such that for any propositional variable p, I(p) ∈ K. I is extended to an
interpretation on A by letting

I(∼A) =df ¬I(A)
I(A→ B) =df I(A) I(B)

I([i(A1, . . . , Am)) =df \i(I(A1), . . . , I(Am))

• A formula A is true in A under I just in case I(A) ∈ D.

• A formula A is valid in A just in case it is true in A under every
assignment function I.

Definition 3.3. A matrix A is called a characteristic matrix for a
logic L just in case `L A if and only if A is valid in A.

Definition 3.4. A WVSP-matrix W for a logic L is a matrix for L for
which there exists sets S1 and S2 such that

• ∅ 6= Si ⊆ K, for i ∈ {1, 2}
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• S1 and S2 are both closed under all the defined propositional functions
of W

• a ∈ R & b ∈ S1 =⇒ a b ∈ U

• a ∈ S2 & b ∈ U =⇒ a b ∈ U ,

where R =df {x ∈ K | ¬x 6∈ D} and U =df K \ D.

Theorem 3.5. If a logic has a WVSP-matrix as a characteristic matrix,
then it satisfies (WVSP).

Proof: Assume that L has W as a characteristic WVSP-matrix. Fur-
thermore, let `L A→ B, where A and B are truth-constant free formulas
which share no propositional variables. For contradiction, then, assume
that either 0L ∼A or 0L B. The theorem is proven by showing that both
disjuncts lead to a contradiction.

Assume first that 0L ∼A. Since W is a characteristic matrix for L, there
is an assignment function I such that I(∼A) 6∈ D. It follows that I(A) ∈ R.
Let I ′ be just like I, except that I ′(p) ∈ S1 for every propositional variable
p occurring in B. Since S1 is closed under every propositional function, it
follows by an easy induction that I ′(B) ∈ S1. I ′ is well-defined since A and
B do not share any propositional variables. Furthermore, I ′(A) = I(A).
Since, then, I ′(A) ∈ R and I ′(B) ∈ S1, it follows by the definition of a
WVSP-matrix that I ′(A)  I ′(B) ∈ U , and so A → B is not true in W
under I ′. However, A → B is a logical theorem of L and so valid in W.
Contradiction.

Secondly, assume that 0L B. Since W is a characteristic matrix there is
an assignment function I such that I(B) 6∈ D. By definition, then, I(B) ∈
U . Let I ′ be just like I, except that I ′(p) ∈ S2 for every propositional
variable p occurring in A. As above it follows from the fact that S2 is closed
under every propositional function, that I ′(A) ∈ S2. I ′ is well-defined
since A and B do not share any propositional variables. Furthermore,
I ′(B) = I(B). Since, then, I ′(A) ∈ S2 and I ′(B) ∈ U , it follows by the
definition of a WVSP-matrix that I ′(A)  I ′(B) ∈ U , and so A → B is
not true in W under I ′. However, A→ B is a logical theorem of L and so
valid in W. Contradiction.
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Definition 3.6. A propositional fixed-point of a matrix

A = 〈K,D,¬, , \1, . . . , \n〉

is any point f ∈ K such that

(1) ¬f = f
(2) f f = f
(3) \i(f, . . . , f) = f (i ≤ n)

Lemma 3.7. A matrix W is a WVSP-matrix if it satisfies the following
three conditions, where a, b are any elements in K:

• (Fixed-point) There exists a propositional fixed-point f such that f ∈ D

• (MTf) a f ∈ D =⇒ ¬a ∈ D

• (MPf) f b ∈ D =⇒ b ∈ D

Proof: Let S1 = S2 = {f}. We then only need to show that if a ∈ R,
then a f ∈ U , and that f b ∈ U for every b ∈ U .

Assume first, then, that a ∈ R =df {x ∈ K | ¬x 6∈ D}. If a  f 6∈ U ,
then by definition a  f ∈ D. It follows then from (MTf) that ¬a ∈ D
which contradicts the assumption that a ∈ R.

Assume now that b ∈ U . If f  b 6∈ U , f  b ∈ D. It then follows
from (MPf) that b ∈ D. This, however, contradicts the assumption that
b ∈ U =df K \ D.

The above lemma, then, captures three properties which together are
sufficient for making a matrix into a WVSP-matrix, namely the existence of
a designated propositional fixed-point, and that the algebraic equivalent of
both modus ponens and modus tollens are validated at least with regards to
the propositional fixed-point. These properties, as we shall see, are satisfied
by one of the characteristic matrices for RM as well as the characteristic
matrices for its odd-valued extensions.

Definition 3.8. Let n ≥ 1. The 2n-element Sugihara matrix S2n consists
of the elements K = {−n, . . . ,−1, 1, . . . , n}. The 2n−1-element Sugihara
matrix S2n−1, on the other hand, has value-space

K = {−(n− 1), . . . ,−1, 0, 1, . . . , n− 1}.
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The Z-element Sugihara matrix SZ has K = Z. The set of designated ele-
ments is in each case defined as D =df {n ∈ K | 0 ≤ n}. The propositional
functions ¬, ,u,t are for every Sugihara matrix defined as follows:

¬a =df −a
a u b =df min{a, b}
a t b =df max{a, b}

a b =df

{
¬a t b if a ≤ b
¬a u b else

Dunn showed in [5] that each RMn, for n ≥ 1, has the n-valued Sugi-
hara matrix as a characteristic matrix (cf. [5, thm. 9 & cor. 2]).4 Further-
more, Meyer showed that SZ is a characteristic matrix for RM (cf. [1,
p. 415, thm. 4]).5

As noted in [5, p. 10], each Dugundji sentence Pn, for n ≥ 2, is invalid
in Si for i ≥ n. Furthermore, it is easy to verify that S2 is in fact the
two-element Boolean algebra, and so RM2 simply amounts to classical
logic. RM1, on the other hand, amounts to the trivial logic since every
substitutional instance of p1 ↔ p2 is a logical axiom of RM1, and the logic
validates modus ponens. It follows, then, that there are infinitely many
RM-logics which can be ordered according to strength as follows:

RM ≺ . . .RMn ≺ RMn−1 ≺ . . . ≺ RM1.

Dunn showed that for (WVSP) fails to hold for every RM2n (n ≥ 1)
on account of

(p ∧ ∼p)→ (q1 ∨ (q1 → q2) ∨ (q2 → q3) ∨ . . . ∨ (qn−1 → qn))

being valid in S2n. It is easy to verify that the consequent is not valid in
S2n, however: By assigning −n to qn, the consequent will be evaluated to
−1. Since the antecedent and consequent do not share any propositional
variables, it follows, therefore, that RM2n—all the even-valued extensions

4RM3 is often axiomatized as RM augmented by the axiom A ∨ (A → B). That
these axiomatizations, then, are equivalent, follows from Dunn’s result, and Brady’s
result in [3] that S3 is characteristic also for RM3 axiomatized with the other axiom.

5Dunn, modifying an example by Meyer, showed that SZ is not strongly character-
istic for RM. Thus RM is not strongly complete with regards to interpretations over
SZ. He showed, however, that the Sugihara matrix over Q is strongly characteristic for
RM (cf. [5, p. 12]).



The Weak Variable Sharing Property

of RM—cannot satisfy (WVSP).
Dunn also stated, albeit without proof, that the odd-valued extensions

RM2n+1 for n ≥ 1 satisfy (WVSP) (cf. [5, cor. 5]).6 That this is indeed
correct, is an easy consequence of the above lemma and theorem:

Corollary 3.9. RM and every RM2n−1, satisfy (WVSP).

Proof: 0 is a propositional fixed-point for SZ as well as of each S2n−1,
where n ≥ 1. Furthermore, every such Sugihara matrix validates both
modus ponens and modus tollens generally, and so also with regards to the
propositional fixed-point. By Lem. 3.7, then, these matrices are WVSP-
matrices. Since they are also characteristic matrices for RM and RM2n−1,
it follows from Thm. 3.5 that these logics satisfy (WVSP).

3.1. Meyer’s WVSP-proof in comparison

As we shall soon see, there are RM-related logics for which it is currently
unknown whether (WVSP) holds. With that in mind it is important to
get clear on which features are utilized in the two types of WVSP-proof
available—the one displayed in this paper, and that used in Meyer’s original
proof for RM.7 This subsection briefly outlines Meyer’s proof and compares
it with the one displayed in this paper.

As already mentioned, the method used in above theorem is a gener-
alization of that found in Robles and Méndez’ [9, prop. 8.5].8 The above
corollary shows, then, that the method is quite powerful as it generalizes

6Dunn, however, stated that (WVSP) fails to hold for RM1 (cf. [5, cor. 5]). This is
evidently incorrect since `RM1

A for every formula A.
7Meyer’s proof can be found as RM84 in [1, p. 417].
8I should also mention that Robles’ gave in [8] a proof that RM3 satisfies (WVSP)

which also uses the same type of approach as in [9]. That proof, however, contains a
regrettable flaw. The following (nitpickingly) explains the error:

Robles’ proof is a proof by contradiction wherein it is assumes (1) that `RM3
A→ B,

and (2) that A and B are such as to share no propositional variable, yet (3) either
0RM3

∼A or 0RM3
B. The heart of her error is that she takes the latter assumption

to yield that there are interpretations I and I′ over the RM3 matrix such that either
I(∼A) 6∈ D or I′(B) 6∈ D. The proof is then split into two cases with the latter one left
to the reader. In the first, however—where I(∼A) 6∈ D is the leading assumption—she
uses both I and I′ to construct an interpretation I′′ which is such that I′′(A→ B) 6∈ D
where the fact appealed to is that I(A) = 1 and I′(B) = −1. The existence of I,
however, is conditioned upon 0RM3

∼A being the case, and the existence of I′ is
similarly conditioned upon 0RM3

B being the case, and so unless both these hold, one
cannot assume that both I and I′ exist.
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to cover many logics. This contrasts to Meyer’s original proof which so far
at least, has not been made to work for other logics.

The method used here relies on the availability of propositionally closed
substructure—subsets of the value-space of the algebra which are closed
under all the operations used for interpreting the propositional connectives
of our language. In the case of the RM-logics, this is realized by the
presence of a fixed-point: 0 is a fixed-point for every propositional function
in both SZ as well as in the odd-numbered Sugihara matrices. Meyer’s
original proof that RM satisfies (WVSP) in contrast, does not rely on
such a fixed-point. Rather, it relies on a certain sort of translation being
possible. As I will show, however, it can be seen as a variant of the main
theorem presented in this paper.

As in the main theorem, Meyer proof relies on the logic having a char-
acteristic matrix. SZ∗ , Meyer showed, is yet another characteristic matrix
for RM, where Z∗ is Z \ {0}. An outline of Meyer’s proof, then, goes as
follows: Assume that A → B is a logical theorem and that A and B fail
to share any propositional variables. For contradiction it is then assumed
that there is some assignment function which makes A true, i.e., that there
is some I such that I(A) ≥ 1. From I a new interpretation I ′ is defined
which assigns to any propositional variable not occurring in A the value
1, and to any p occurring in A the value I(p) + I(p). A little calcula-
tion will then show that I ′(A) > 1 and I ′(B) = ±1, and therefore that
I ′(A→ B) = ¬I ′(A)u I ′(B) = ¬I ′(A) < −1 contradicting the assumption
that A → B is a logical theorem and hence valid in SZ∗ . “By parity of
reasoning,” as Meyer put it, one similarly obtains a contradiction from the
assumption that there is some I which fails to make B true.

Notice that S1 =df {−1, 1} and S2 =df Z∗\S1 are both closed under the
propositional function corresponding to all the logical constants of RM.
As in the above theorem, let

U =df K \ D = Z∗ \ {x ∈ Z∗ | x ≥ 1} = {x ∈ Z∗ | x ≤ −1},

and let U ′ =df U \ S1 and R′ =df R \ S1 = {x ∈ Z∗ | x ≥ 2}. It is then
easy to verify that if a ∈ R′ and b ∈ S1, then a b ∈ U , and that if a ∈ S2
and b ∈ U ′, then a b ∈ U .

Meyer’s proof, then, relies on the fact that if I(A) ∈ R, then by trans-
lating the interpretation I by setting I ′(p) = I(p) + I(p), I ′(A) ∈ R′.
Similarly, if I(B) ∈ U , one needs to prove that the translated interpreta-
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tion I ′ is such that I ′(B) ∈ U ′. Of course, translating thus does work in
case of SZ∗ , but it is not evident that such a translation will work in other
cases. A case in point is the finite Sugihara matrices for which I(p) + I(p)
will simply not be an element of the matrix in many cases.

Meyer’s proof, then, is very much alike the one shown forth in this
paper. Whereas the latter, however, works effortlessly when the matrix
in question has a propositional fixed-point, a Meyer-type translation may
make the presence of such a point redundant. In the search for a suitable
characteristic matrix for a logic, however, it might at least be easier to try
to find one with a propositional fixed-point, rather than one admitting of
Meyer’s type of translation.9

Although the proof offered here does contribute towards a more general
way of proving that a logic satisfies (WVSP), the fact that RM and its odd-
valued extensions satisfy (WVSP) is not news. What is a more recent claim,
however, is that the weaker logic RD also satisfied (WVSP). The next
section goes through an incorrect WVSP-proof and affirms the unsettled
nature of the question as to whether either RUE or RD do in fact satisfy
the weak variable sharing property.

4. An incorrect WVSP-proof

Yang has offered a proof to the effect that RD satisfies (WVSP). This
section explains why that proof is incorrect.

Yang’s proof can be found as theorem 2.ii in [14]. As it stands it is
correct had it only been claimed to hold for RM3 rather than for RD.10

9A further cause for thinking that making Meyer’s translation-approach work for
other logics will be difficult is the fact that the propositionally closed substructure
{−1, 1} of SZ∗ contains the values any assignment function must assign to the Ack-
ermann constant t and its negation f . The Ackermann constant is axiomatized using
the axioms t and t → (A → A). A characteristic matrix for a logic will suffices for
showing that t can be added conservatively, and so one might hope that {I(f), I(t)}
would be the needed propositionally closed substructure of a characteristic matrix for,
say, RD as well. However, it cannot be a propositionally closed substructure of the
characteristic matrix for any logic weaker than RM yet contained in R as it would
require that f → t be a logical theorem of the logic, and adding f → t as a logical axiom
to R yields the logic RM (f → t yields in R ∼(A → B) → (B → A) (cf. [12, p. 33]),
which yields the mingle axiom A → (A → A) if added to R (cf. [10, pp. 122f])). Thus
the propositionally closed substructure needed to make Meyer’s proof work cannot be
identified as {I(f), I(t)} which makes the search for a suitable translation even harder.

10I should note that Yang’s definition of RD—his name for it is FR, “fuzzy R”—
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Yang notes that the axioms of RD are all true on every interpretation over
the RM3 algebra, which is true, but insufficient for deriving the wanted
conclusion. Yang assumes that A and B are formulas which do not share
any propositional variables and that either 0RD ∼A or 0RD B. The goal,
then, is to show that there is an interpretation in which A→ B fails to be
true, and therefore that A→ B fails to be a theorem of the logic. The proof
is split into three cases with all of them making the same mistake: from
the assumption that 0RD C to infer that there is a RM3-interpretation I
such that I(C) = −1. The proof, then, fails to provide an interpretation
in which A→ B fails to hold, and therefore also that A→ B fails to be a
theorem of RD.

Let’s briefly look at an example where Yang’s proof goes wrong: Let A
be the formula r ∧ ∼r and B the formula ∼(p → p) → (q → q), where
r, then, is distinct from both p and q. Now it is easy to verify that
0RD ∼(p→ p)→ (q → q) for distinct propositional variables p and q.11

However, there are no RM3-interpretation I such that I(∼(p→ p)→ (q →
q)) = −1, nor any I ′ such that I ′((r∧∼r)→ (∼(p→ p)→ (q → q))) = −1
since both these formulas are theorems of RM and so are both valid in the
RM3-matrix.

This, then, reopens the question whether logics like RD, as well as the
other logics [14] calls “relevant fuzzy logics,” do in fact satisfy (WVSP).
Additionally, whether RUE satisfies (WVSP) is also an open question.

The heart of the error in Yang’s proof is easily seen to be that the
RM3-matrix is not a characteristic matrix of RD. Both Meyer’s original
proof, as well as that shown forth in this paper rely on the logic in question
having a characteristic matrix of a certain sort. As far as I know, neither
RD nor RUE have been shown to have a characteristic matrix. As noted

is different in that Yang defines it as including the Ackermann constants t and f and
defines ∼A as A → f . If one only allows f to occur thus, it is easy to show, however,
that the logics are theorem-wise identical. Yang also states the linearity axiom as ((A→
B) ∧ t) ∨ ((B → A) ∧ t), but notes (cf. [14, prop. 2.iii.3]) that (A → B) ∨ (B → A) is
a theorem of all the logics that he considers. Yang also defines the logics to have the
fusion connective as a primitive one. In RD, however, it is definable using negation and
the conditional, and so adding it yields a conservative extension. Lastly, I should also
note that his proof is stated to hold not only for RD, but for eight different logics in
total—see [14, def. 5]—amongst them RM and its distributionless variant. His proof
does not hold for any of these logics for the same reason as it doesn’t work for RD.

11A model is easily found using MaGIC—an acronym for Matrix Generator for Im-
plication Connectives—which is an open source computer program created by John K.
Slaney [11].
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above, then, finding one with a propositional fixed-point would suffice to
show that the logic in question satisfies (WVSP). Neither of the available
WVSP-proofs, I should stress, indicate that such a characteristic matrix is
required for the property to hold true, and so it might be possible to find a
WVSP-proof which utilizes different properties. Alas, this paper must end
inconclusively on this matter, but leaves both the status of a characteristic
matrix and that of (WVSP) for both RUE and RD as interesting open
questions for further research.

5. Summary

This paper has shown forth a certain algebraic structure which was used
to prove Meyer’s weakened version of the variable sharing property—that
if A → B is a logical truth then either do A and B share a propositional
variable, or both ∼A and B are logical theorems. It was shown that if
a logic has such a structure as its characteristic matrix, then it satisfies
Meyer’s property. As a consequence of results by Meyer and Dunn for the
logics RM as well as its odd-valued extensions RM2n−1 (for n ≥ 1), it
was then shown that these logics have such algebraic structures as their
characteristic matrices and therefore satisfy Meyer’s property. The paper
also showed that a proof of Meyer’s property for the “fuzzy” extension of
the relevant logic R is incorrect.
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