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Phytoplankton abundance in the Barents Sea is
predictable up to five years in advance
Filippa Fransner 1✉, Are Olsen 1, Marius Årthun 1, François Counillon 1,2, Jerry Tjiputra 3,

Annette Samuelsen 2 & Noel Keenlyside 1,2

The Barents Sea is a highly biologically productive Arctic shelf sea with several commercially

important fish stocks. Interannual-to-decadal predictions of its ecosystem would therefore be

valuable for marine resource management. Here, we demonstrate that the abundance of

phytoplankton, the base of the marine food web, can be predicted up to five years in advance

in the Barents Sea with the Norwegian Climate Prediction Model. We identify two different

mechanisms giving rise to this predictability; 1) in the southern ice-free Atlantic Domain,

skillful prediction is a result of the advection of waters with anomalous nitrate concentrations

from the Subpolar North Atlantic; 2) in the northern Polar Domain, phytoplankton predict-

ability is a result of the skillful prediction of the summer ice concentration, which influences

the light availability. The skillful prediction of the phytoplankton abundance is an important

step forward in the development of numerical ecosystem predictions of the Barents Sea.
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Hosting one of the World’s largest cod-stocks1, the Barents
Sea fishery is of international importance. Reliable
interannual-to-decadal predictions of the Barents Sea

ecosystem would therefore be highly beneficial for society. The
Barents Sea ecosystem, across all trophic levels, is strongly
influenced by the inflow of Atlantic Water through the Barents
Sea Opening2–4 (Fig. 1). This warm and relatively saline water is
brought to the Barents Sea from the Subpolar North Atlantic
(SPNA) by the North- and Norwegian Atlantic currents with an
advective lag of 2–10 years3,5,6. The heat that it carries exerts a
strong influence on the temperature and sea ice extent in the
Barents Sea7–9 and thus shapes the environmental conditions for
the organisms living there. Strong co-variability has, for example,
been shown between phytoplankton activity and sea ice
extent6,10–13, where periods of low ice coverage are associated
with higher productivity. Another seminal example is the rela-
tionship between ocean temperature and the size of the cod stock,
in which larger cod-stocks are associated with warmer
waters2,3,14.

The thermal and dynamic memory residing in the Atlantic
Water that is advected northward from the SPNA provides a
potential for predicting the physical conditions of the Barents Sea
several years ahead. With retro-perspective predictions, i.e.,
hindcasts, the winter sea ice cover has been shown to be pre-
dictable up to 2 years in advance with a statistical model based on
the observed heat transport in the Barents Sea Opening9. Dyna-
mical climate prediction models have successfully produced
skillful predictions of the Barents Sea winter temperature from a
few years up to a decade in advance5,15, and it was demonstrated
that the rapid decline in the winter Arctic sea ice extent in the
Atlantic sector between 1997–2007 could be predicted 5–7 years
in advance16, in agreement with the advective time scale between
the SPNA and the Barents Sea.

The long-term predictability of the Barents Sea’s physical state,
in combination with the physical-biological couplings mentioned
above, give reason to believe that there is also a potential for
predictions of the Barents Sea ecosystem. In fact, the Barents Sea
cod stock has been shown to be predictable up to a decade in
advance by the use of statistical models fed with upstream
hydrographic anomalies3,17. However, no attempts have been
made to predict the Barents Sea ecosystem dynamically using
coupled physical-ecosystem numerical models. An important first
step in this direction is successful predictions of phytoplankton
primary production, the base of the marine food web. This
requires skillful prediction of summer hydrography and sea ice,
which is both challenging and little explored18–24. Here, we take
this first step by using retrospective decadal hindcasts, produced
with the Norwegian Climate Prediction Model (NorCPM1,25) in
which primary production is simulated by the biogeochemical
model HAMOCC26. The hindcasts have been initialized from a
reanalysis into which observed temperature and salinity has been
assimilated to bring the model as close as possible to the real state
of the climate system. By comparing the hindcasts with satellite-
derived chlorophyll and hydrographic measurements, we
demonstrate that two specific events of high phytoplankton
abundance can be predicted up to 5 years in advance in two
distinct regions of the Barents Sea, and identify the mechanisms
underlying this predictability.

Results and discussion
Prediction of phytoplankton abundance in NorCPM1.
NorCPM1’s skill to predict past interannual variability in phy-
toplankton concentration, as evident in the satellite record, shows
a spatially varying pattern (Fig. 1). In the seasonally ice-covered
region (from now on referred to as the Polar Domain), a

significant positive correlation is found 2–9 years after the initi-
alization of the hindcasts (i.e., in lead years 2–9). In the Atlantic
Domain (defined as the region south of the maximum sea ice
extent in Fig. 1b–d), however, NorCPM1 shows no predictive skill
with this specific skill score. To get a better understanding of the
drivers of the phytoplankton variations during the period of
1998–2018, and the mechanisms underlying the predictability, we
analyze the time series of phytoplankton concentration, expressed
in units of carbon, and potential physical and biogeochemical
drivers in the next section. The Atlantic and Polar Domains are
analyzed separately by extracting time series from the red and
blue rectangles, respectively, in Fig. 1b–d. Due to the seasonality
of phytoplankton dynamics, we focus on the early summer sea-
son, specifically the months of May–July, which covers the cli-
matological peak concentration of phytoplankton in both the
observations and model (thick lines in Supplementary Fig. S1a,
b). Three-monthly means were chosen to minimize issues related
to the lack of observational data and mismatch in the timing of
the spring bloom.

Local drivers of phytoplankton predictability. In the Polar
Domain, satellite observations show a positive anomaly in the
phytoplankton abundance stretching over the 2000s and 2010s.
The phytoplankton abundance increased, overall, between 2000
and 2010 (Fig. 2a). After this, the concentration has remained
relatively stable. The reanalysis, which acts as a pseudo-
observation25,27, shows a similar behavior, showing that the
assimilation of temperature and salinity also constrains the
modeled phytoplankton dynamics. After removing the linear
trend in the observed and modeled time series to exclude varia-
bility on longer time scales than resolved by our time series, the
NorCPM1 hindcasts successfully predict the observed phyto-
plankton concentration up to lead year 5 (see also Supplementary
Table S1 and Fig. S2). This means that the skill for longer lead
years seen in Fig. 1 mainly comes from the linear trend in the
time series. To verify that the predictive skill is not a result of
external forcing, such as climate change, and that the predict-
ability comes as a result of skillful initialization of the climate
prediction model and its hindcasts, we analyze the evolution of
the historical simulation. The historical simulation is an ensemble
mean of 30 realizations that has been run under historical
external forcing, including atmospheric greenhouse gasses, aero-
sols and solar radiation. The ensemble averaging eliminates the
intrinsic climate variability, i.e., variability that arises from
internal oceanic and atmospheric processes. The historical
ensemble average is consequently a measure of the impact of the
external forcing, including climate change, on the system.
Between 2005 and 2014 (marked in blue shading), both the
observations and the hindcasts show a similar evolution, which
differs from the historical simulation. This indicates that a large
part of the positive anomaly is a result of intrinsic climate
variability, and that the predictability comes from skillful initi-
alization of the hindcasts.

What caused this positive anomaly in phytoplankton concen-
tration, and why was it predictable? Several studies have
attributed the high Arctic primary production and phytoplankton
abundance during this period of time to a drop in the sea ice
extent11,12,28,29, which increases the light availability and, thus,
expands the area where phytoplankton can grow, as well as the
length of their growing season. This pronounced drop in sea ice
extent, associated with higher sea surface temperature and
increased light availability, is also evident in our Polar Domain,
both in satellite observations and the reanalysis, and is predicted
in the hindcasts at lead year 5 (Fig. 2c, d, Supplementary Fig. S3a,
and Table S1). The anomalously low sea ice concentration is not
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seen in the historical simulation, corroborating that the event of
high phytoplankton concentration and low sea ice extent was
caused by climate variability. Associated with the negative
anomaly in sea ice concentration, the reanalysis also shows a
weakening of the vertical stratification and increased mixed
layer depths (Supplementary Fig. S3c, d). This is a result of
increasing surface salinity (not shown) that most likely follows
the reduced input of meltwater in spring. A reduced vertical
stratification increases the vertical mixing and can alleviate
nutrient limitation, but can also increase the light limitation of
the phytoplankton. However, the density difference anomaly that
is predicted by the hindcasts at lead year 5 is not large enough to
impact the mixed layer depth (Supplementary Fig. S3c and
Table S1), and should, therefore, also have a negligible impact on
the phytoplankton predictability.

In situ observations from the Polar Domain are very sparse,
and mostly constrained to August and September. To exclude
that the increasing phytoplankton abundance during 2005–2014
was co-driven by changes in nutrient availability at the start of the
growing season, we resort to observations of deep (50–200 m)
concentrations of nitrate and phosphate (Fig. 2b and Supple-
mentary Fig. 3b). Since the water column is fully mixed in winter
(the mean depth of the Barents Sea is only 230m), these are
expected to exhibit similar interannual and longer-term trends as
the winter surface concentration (Fig. 2b). During 2005–2014, a
negative anomaly is seen in the deep nutrient concentration both
in the reanalysis and in the hindcasts at lead year 5, showing that
the positive phytoplankton anomaly cannot be driven by

increasing nutrients in the model. The in situ observations of
nitrate and phosphate also indicate negative anomalies. These are
more variable, however, but we do note that the variability is not
much more than the typical accuracy of nitrate measurements,
which is ~2%30, compared to a mean deep nitrate concentration
of 10 μmol l−1.

In the Atlantic Domain, satellite observations show two peaks
in chlorophyll concentration; one in the early 2000s and one in
the early 2010s (Fig. 2e). The positive anomaly in the early 2000s
is also evident in in situ chlorophyll observations, which are
measured up to six times each year along the Fugløya-Bjørnøya
section across the Barents Sea Opening, and in the reanalysis,
confirming that this event is a robust feature. This specific event
(marked in red shading in Fig. 2e) is skilfully predicted in the
hindcasts in lead year 5 (see also Supplementary Fig. S4 and
Table S2). Notably, the historical simulation does not show any
peak during this period, showing that the anomalously high
phytoplankton concentration was a result of intrinsic climate
variability, and that the skillful prediction comes as a result of the
initialization of NorCPM1 hindcasts. The positive chlorophyll
anomaly seen in the reanalysis and the satellite data in the early
2010s is not predicted, which explains the overall low predictive
skill in this region for the entire period of satellite observations
displayed in Fig. 1. However, we note that the hindcasts follow
the in situ observations that show a temporal evolution
different from that in the satellite data, making it unclear
whether there is any predictability during this later period
of time.

Fig. 1 Phytoplankton predictability. a Snapshot of SST in the Subpolar North Atlantic, and the Nordic and Barents seas from the OCCI dataset67,68, daily
mean from April 15 2007. Areas with an ice cover exceeding 30% are marked in white. The pathways of the North Atlantic and Norwegian Atlantic
currents are marked with arrows. The Barents Sea Opening is marked with a red line. b–d Anomaly correlation (filled contours) between annual mean
observed (satellite-derived) chlorophyll and dynamically predicted annual mean phytoplankton carbon concentration for the period of 1998–2018, for 1 year
after the initialization (lead year 1) (b), lead years 2–5 (c), and lead years 6–9 (d). Striped regions indicate that the correlation is significantly different from
zero and also significantly different from the correlation between the hindcasts and the historical simulation. The latter criterion ensures that the skill is
associated with internal climate variability, and is not simply driven by external forcing (i.e., climate change). The blue and turquoise lines show the
maximum (1998) and minimum (2006), respectively, summer (average over May–July) sea ice extent (30%) during the period 1998–2018.
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Similar to the Polar Domain, we analyze the time series of
important drivers of primary production to understand what gave
rise to the positive phytoplankton anomaly, and its predictability
in the Atlantic Domain in the early 2000s (see also Supplemen-
tary Table S2). At lead year 5, the NorCPM1 hindcasts show
positive anomalies in the winter concentrations of phosphate
(Supplementary Fig. S3f) and nitrate (Fig. 2f) in the early 2000s.
Increased concentrations of nutrients is partly confirmed by the
available in situ data, where nitrate levels peaked in the early
2000s. In situ phosphate data, on the other hand, do not show
such a peak (Supplementary Fig. S3f), but we do note that the
magnitude of these variations are not far above the assumed
uncertainty of these observations. The positive nutrient anomalies
that co-occur with the positive phytoplankton anomaly, both in

the hindcasts and the observations, suggest that the prediction of
the anomalously high phytoplankton is a result of the predict-
ability of the nutrient levels at the start of the productive season.
In addition, both the observational data and the hindcasts
indicate an increased nutrient consumption in the period
(Supplementary Fig. S5). Assuming a Redfield carbon:nitrogen
ratio of 106:16 of the phytoplankton, the observed (modeled)
nitrate drawdown of ~0.7(0.4) μmolN l−1 corresponds to an
organic carbon concentration of 56(32) mgCm−3, which is in
good agreement with the observed (modeled) phytoplankton
anomaly of 40(20) mgCm−3. A lower organic carbon concentra-
tion in the phytoplankton biomass, compared to the converted
nutrient drawdown, is expected due to grazing, exudation, and
other loss processes. The good agreement between the nutrient

Fig. 2 Drivers of phytoplankton predictability. Anomaly time series of a, e phytoplankton concentration (mgCm−3), b, f nitrate concentration (μmol l−1),
c, g sea surface temperature (∘C), and d sea ice concentration (%) anomalies, from in situ measurements (gray line with points), satellite products (black),
the historical simulation (orange), the reanalysis (blue) and the hindcasts at lead year 5 (red), in Polar Domain (left column) and Atlantic Domain (right
column). The phytoplankton concentration, SST and ice concentration time series are the averages over May–July. For the nitrate time series in the Polar
Domain, all available in situ data, mainly from the summer season, were used to construct the annual means, due to sparse sampling. These are compared
to the summer (May–July) concentrations from the historical simulation, the reanalysis, and the hindcast. Here, the dark blue line shows the surface winter
concentration for comparison. For the Atlantic Domain the winter nitrate concentrations (average over January–March) are shown. Note that all-time
series have been filtered by a 4-year running mean. The shaded areas refer to time periods discussed in the text.
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consumption anomaly and the phytoplankton concentration
anomaly, in both observations and the hindcasts, confirms that
prediction of the winter nutrient concentration gave rise to the
skillful prediction of increased phytoplankton activity in the early
2000s. Considering that nitrate is more limiting than phosphate
both in the observations and the model (see Supplementary
Fig. S6), and the absence of a phosphate anomaly in the in situ
record, nitrate is most likely the main driver of this positive
phytoplankton anomaly.

Satellite observations and the reanalysis show also a peak in the
summer sea surface temperature (Fig. 2g) during the early 2000s.
The hindcasts at lead year 5 reproduce this a few years late,
suggesting that it is not the main reason for the high
phytoplankton concentrations in the hindcasts. Other key drivers
for phytoplankton dynamics, including downwelling shortwave
radiation, mixed layer depth, and stratification, showed little
predictability (Supplementary Fig. S3e–h and Table S2).

Advective pathways from the Subpolar North Atlantic. What
gave rise to the predictability of the low summer sea ice con-
centration in the Polar Domain between 2005 and 2014, and the
positive nutrient anomaly in the Atlantic Domain in the early
2000s, respectively?

Yeager et al.16 showed that the 2007 winter sea ice minimum
was caused by an anomalously strong northward heat transport
from the SPNA, and that it could be predicted 5 years in advance
with their climate prediction model (CESM). Although it is not
captured by our skill score in lead year 5 due to the higher
frequency variability in the observational data (Supplementary
Table S1), NorCPM1 does predict an anomalously low winter sea
ice extent during 2005–2014 (Supplementary Fig. S7). This is the
result of an anomalously low sea ice growth due to a high heat
loss from the ocean (Supplementary Fig. S8a, b). It is interesting
to note that the predictability of this thermal ocean-ice coupling
only takes place in the winter season, and not in the summer
season (Supplementary Fig. S8c, d), suggesting that the predict-
ability of the summer sea ice extent is the result of a persistence of
the winter sea ice anomaly that extends into the summer season.
In agreement with ref. 16, the anomalously low sea ice extent and
high oceanic heat loss predicted by NorCPM1 can be related to
heat advection from the SPNA. Figure 3a–e show maps of the
residual (hindcast minus historical) upper-ocean (50–200 m)
temperature anomaly for lead years 1–5 for the hindcast
initialized in 2001. We note a positive temperature anomaly that
builds up in the SPNA (lead years 1–2), spills over into the Nordic
Seas (lead years 2–3), and enters the Barents Sea (lead years 3–5).
This positive temperature anomaly is also present in the in situ
measurements of Atlantic Water temperature at the Svinøy
section, in good agreement with the hindcasts at lead year 1,
although the hindcasts do not capture the first temperature peak
in 2002 that is present in the observational record (Fig. 3f). At the
Gimsøy section, an observed positive heat anomaly, peaking in
2004, is also reproduced by the hindcasts at lead year 3, although
with a slight delay. The in situ measurements and model
simulations clearly demonstrate the advective nature of the
temperature anomaly and suggest that the low summer sea ice
cover during 2005–2014 was caused by an anomalous advection
of heat from the SPNA, which is in line with several studies that
have shown a strong link between the heat transport through the
BSO and the Barents Sea sea ice cover, both in observations and
in models7–9,23,31.

What about the Atlantic Domain, where nutrient concentra-
tions at the start of the productive season was the main driver of
the positive phytoplankton anomaly in the early 2000s?
Considering that the nitrate concentration in the BSO also is

predictable at a 5-year lead, advection from the SPNA is the most
probable mechanism underlying this predictability. Figure 3j–n
shows maps of the residual (hindcast minus historical) nitrate
anomaly for lead years 1–5 for the hindcast starting in 1998. In
1999–2000 (lead years 1–2), a positive nitrate anomaly builds up
in the easternmost SPNA. It spills into the eastern Nordic Seas
and travels northward with the Atlantic Water along the
Norwegian coast in 2001 and 2002 (lead years 3–4). In 2003, at
the 5-year lead, it enters the Barents Sea. The advective nature of
this positive nitrate anomaly is corroborated by the in situ
measurements of Atlantic Water nitrate at the Svinøy and
Gimsøy sections, where it is manifested as peaks in 2000 and
2001, respectively. The modeled time series at these stations
confirms that the model predicts the nitrate anomaly at lead years
2 and 4, respectively. The peak in nitrate in the early 1990s seen
in the in situ measurements at both Svinøy and Gimsøy sections
might be related to issues in the measurements themselves; it is
well known that the measurement of nutrients were plagued with
biases up until recent decades32. Therefore we do not emphasize
these early peaks.

It is interesting to note the temporal shift in the positive
temperature and nitrate anomalies at the Svinøy and Gimsøy in
Fig. 3f–i, i.e., they do not occur simultaneously. This could either be
a result of air–sea heat fluxes modifying the temperature anomalies
en-route to the Barents Sea, or it suggests that the temperature and
nitrate anomalies are linked to separate water masses. A detailed
analysis of ocean heat budget and the temperature (heat) anomalies
along the Atlantic Water pathways in the Nordic and Barents Seas
is not performed here, which would be needed to quantify the
separate roles of remote (advection) versus local (air–sea heat
exchange) forcing in generating the temperature anomaly. Previous
studies have, however, shown that advection is the dominant
contributor to the heat anomalies in the Atlantic Domain of the
Nordic Seas, and that air–sea heat fluxes play a secondary role33–35.
Furthermore, since the nitrate and temperature anomalies already
are shifted in the SPNA and southern Nordic Seas (compare
Fig. 3f–i, respectively), it rather points to the argument of different
water masses. Earlier studies have related a reduction of nutrients
in the Nordic Seas with a contraction of the North Atlantic
Subpolar Gyre, leading to an intrusion of more subtropical,
nutrient-poor, waters36,37. It is also well known that a contraction
of the subpolar gyre leads to warmer waters entering the Nordic
Seas38,39. The subpolar gyre index, a proxy for the strength of the
subpolar gyre circulation, shows a positive anomaly peaking in
1999, and a negative anomaly with a low in 2001 (Fig. 2 in ref. 40).
This timing is broadly consistent with the positive nutrient
anomaly detected south of Svinøy in 1999, and the positive
temperature anomaly that we start following in 2002, respectively
(Fig. 3), and can therefore explain the appearance of these
anomalies.

For the Barents Sea, the results in Supplementary Figs. S2, S4,
S7, S9–S13 and Tables S1, S2 show absence of predictive skill in
some of the lead years preceding lead year 5 for several of the
variables analyzed. This may be a result of the role the advection
plays in the predictability, in combination with spatial variations
in the ability of the assimilation scheme to synchronize the
reanalysis with the observational data. Fig. 6e in ref. 25 shows that
the synchronization in NorCPM1 performs better further
upstream, in the SPNA, compared to the Nordic Seas, which
could explain the higher predictive skill at longer lead years in the
Barents Sea.

Conclusions
Our results show that two events of anomalously high phyto-
plankton abundance in the Barents Sea are predictable up to
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5 years in advance. This is, to our knowledge, among the longer
predictability horizons reported for phytoplankton dynamics,
based on retro-perspective hindcasts compared with observa-
tional data, in the global ocean27,41,42. We identify two different
mechanisms giving rise to this predictability: in the ice-free
Atlantic Domain it results from the advection of nutrient
anomalies from the SPNA, while in the seasonally ice-covered
Polar Domain it results from anomalous heat advection. We
connect these anomalies to specific events of contraction and
expansion, respectively, of the North Atlantic Subpolar Gyre. The
mechanisms underlying the predictability are, therefore robust
features that most likely will persist in the future. However, with
the diminishing sea ice cover, the impact of the heat anomalies on

the Arctic Ocean primary productivity will likely become less
important in the Barents Sea, but more important in the Arctic
interior, where seasonal sea ice cover is quickly becoming the
norm. Predictability of Barents Sea primary production may
therefore be dominated by variability in the advection of nutrients
from the SPNA, in the future.

Nevertheless, the multi-year predictability of the base of the
marine food web in the Barents Sea demonstrated here adds
confidence to the emerging number of studies3,22,27,41–46 sug-
gesting that near-time predictions of marine ecosystems may be
feasible. Future research will need to investigate if, and how, this
predictability can translate up to higher trophic levels in the
Barents Sea.

Fig. 3 Advective pathways.Maps showing the anomaly residual (hindcast minus historical) of 50–200m annual mean temperature (∘C) for lead years 1–5
(a–e) in the hindcast initialized in November 2001, and annual mean nitrate (μmol l−1) for lead years 1–5 (j–n) for the hindcast initialized in November
1998. Time series of 50–200m annual mean temperature and nitrate concentration, respectively, at the Svinøy (f, g) and Gimsøy (h, i) sections from
in situ measurements (gray line with points), the historical simulation (orange), the reanalysis (blue) and the hindcasts at lead year 1 (f), 2 (g), 3(h), and
lead year 4 (i) (red). Purple shading marks the respective hindcasted temperature and nitrate anomalies that are discussed in the text.
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Methods
Model simulations. We used simulations produced with the Norwegian Climate
Prediction Model (NorCPM125) for the sixth Coupled Model Intercomparison
Project (CMIP647) Decadal Climate Prediction Project (DCPP48). NorCPM1 is
based on the Norwegian Earth System Model (NorESM126,49) that has a global
coverage, and includes the atmospheric model CAM4-OSLO with a 2-degree
horizontal resolution, the ocean circulation model MICOM with a 1-degree hor-
izontal resolution, the ocean biogeochemical model HAMOCC26, the land model
CLM4 and the sea ice model CICE4. HAMOCC simulates the dynamics of carbon,
nitrogen, phosphorus, silicate and iron, and has one generic phytoplankton and
one generic zooplankton group. Phytoplankton growth is constrained by the
availability of light, nitrate, phosphate and dissolved iron, and the ambient tem-
perature. The simulations used here include one extended historical simulation,
one reanalysis, and one set of decadal retrospective predictions (hindcasts). The
historical simulation was performed in 30 realizations (members) using CMIP6
historical forcing from 1850 to 2014, and was extended to 2029 by using SSP2-
4.5 scenario forcing, in accordance with the DCPP protocol25,48. Each member was
initialized by randomly selecting years (January months) from a preindustrial
simulation, ensuring that they all had different climatic states (i.e., that they started
from different oceanic and atmospheric states). A 30 member large reanalysis was
performed for the period 1950 to 2018 with monthly assimilation of temperature
and salinity anomalies using an Ensemble Kalman Filter50,51, where ocean obser-
vations updates both the ocean and sea ice states (referred to as the assim-i2
simulation in ref. 25). No assimilation of biogeochemical properties was
performed22. Decadal hindcasts, consisting of 10 members each, were initialized on
November 1st every year from the reanalysis (referred to as the hindcast-i2
simulations in ref. 25). For further details on the simulation setup, the reader is
referred to ref. 25.

Observational data. Satellite-derived chlorophyll concentration, used in sections
“Prediction of phytoplankton abundance in NorCPM1” and “Local drivers of
phytoplankton predictability”, spanning 1998-present, were obtained from the OC-
CCI dataset52. Satellite-derived sea ice concentration and SST, used in section
“Local drivers of phytoplankton predictability”, were obtained from the HadISST
dataset53(https://www.metoffice.gov.uk/hadobs/hadisst/). In situ measurements of
macro-nutrients (nitrate and phosphate), used in the section “Local drivers of
phytoplankton predictability”, from the Barents and the Nordic seas from
1980–2017 are provided by the Norwegian Institute of Marine Research (IMR) and
are available at http://www.imr.no/forskning/forskningsdata/infrastruktur/
viewdataset.html?dataset_id=104 (last access: 28 June 2022). In situ measurements
of temperature and salinity from CTD casts in the Barents Sea, used for the time
series analysis in the sections “Local drivers of phytoplankton predictability”, were
obtained from the ICES data portal54. In the section “Advective pathways from the
Subpolar North Atlantic”, we additionally used preprocessed products of annual
mean Atlantic Water (50–200 m depth) temperature and salinity from the
hydrographic sections of Svinøy, Gimsøy, and Fugløya-Bjørnøya in the Barents Sea
Opening, obtained from ICES (https://ocean.ices.dk/core/iroc55).

Data analysis and processing. We analyzed the predictability by evaluating the
skill of the NorCPM1 hindcasts to predict observed temporal variations during the
period where satellite data, in situ data, and model simulations are overlapping
(1998–2018). To exclude variability on longer time scales than resolved by our time
series, the time series were first linearly detrended. The prediction skill was then
evaluated by (1) measuring the co-variability between detrended observed time
series and the detrended simulated hindcasts through anomaly correlation and
(2) thereafter by comparing their amplitude of variations through variances. If the
correlation was significanly greater than zero, and if the variance of the hindcasted
time series was of the same order of magnitude as the variance of the observed time
series, we considered that the hindasts skilfully predict the observations. The
significance of the correlations was determined by calculating 95% confidence
levels with a bootstrap approach, using 1000 bootstraps22. To identify the drivers of
phytoplankton predictability we analyzed time series of key drivers of biological
production, including temperature, sea ice cover, stratification, and the con-
centration of the macro-nutrients phosphate and nitrate, in surface and deep
waters. To exclude that any predictive skill was caused by external forcing, such as
anthropogenic greenhouse gases, aerosols, or volcanic eruptions, the skill was
compared to that of the historical simulation, i.e., if an event that is present in the
observed and hindcasted time series also exists in the historical simulation, it is
considered to be a result of external forcing. To test the similarity between the
hindcasted and historical time series we did two tests. If the correlation between the
hindcasted and historical time series was significanly different from the correlation
between the hindcasted time series and the observations, we considered that the
predictive skill did not come from external forcing. If the correlations were not
significantly different, we additionally compared the variance of the hindcasted and
historical time series. If the variance of the historical simulation was one order of
magnitude less than that of the hindcasted time series, we considered that the
variability of the hindcasted time series was not a result of external forcing.

For the sake of clarity, we only present the ensemble means of the various
simulations. For comparing model fields with satellite data, both products were

regridded to 1 × 1-degree grids. For the comparison of the modeled phytoplankton
abundance (expressed in carbon concentration) with the observed chlorophyll
concentration, we used a C:Chl ratio of 120 to convert from mgChl m−3 to
mgC m−3, which is of the same order of magnitude as what has been observed in
polar and subarctic waters56,57. We acknowledge that the C:Chl ratio can be highly
variable58. However, with the few in situ measurements of this ratio that exist for
the Barents Sea, we do not know how it varies on seasonal-to-interannual time
scales, and thus, prefer to adopt the simpler approach. In the end, the exact choice
of the C:Chl ratio will not significantly change the results presented since the
analysis focus on interannual anomalies of phytoplankton abundance. We decided
not to compare modeled primary production with satellite-derived primary
production since the satellite NPP products contain several additional steps of data
processing and, thus, larger uncertainties, compared to the satellite
chlorophyll data.

A time series analysis was performed for two different regions within the Barents
Sea; a northern Polar Domain located in the seasonally ice-covered region
(74.5–77.5∘N, 27.5–52.5∘E, blue box in Fig. 1), and a southern Atlantic Domain
located in ice-free waters (70.5–72.5∘N, 19.5–32.5∘E, red box in Fig. 1). Here, the
data were divided into seasonal means for winter (January to March), and summer
(May to July). We also performed a time series analysis of annual mean properties at
two upstream hydrographic sections in the Nordic Seas. The procedure of extracting
in situ data within the domains and at the sections depended on the data
availability. For the Polar Domain, all available measurements within the blue box in
Fig. 1 were extracted. For the Barents Sea Opening, in situ measurements from the
Fugløya-Bjørnøya hydrographic section were extracted. Here, we removed all data
north of 73∘N and south of 72∘N to minimize the influence of outflowing Polar
Water and Norwegian Coastal Water, respectively59. To be comparable to satellite
data, we use the uppermost layer (0–5m) of the modeled fields for surface water
properties. From the in situ measurements, which are generally sampled every 5 m,
we use data from the uppermost 30m for surface water properties. For deep water
properties we restricted ourselves to the depth range of 50–200m. In the section
“Advective pathways from the Subpolar North Atlantic”, we used preprocessed time
series of annual mean Atlantic Water (defined as water in the depth range of
50–200m) temperature at the hydrographic sections. These values have been
calculated with data from three hydrographic stations centered around one single
position, given as 63∘N, 3∘E for the Svinøy section, 69∘N, 12∘E for the Gimsøy
section, and 73∘N, 20∘E for the Barents Sea Opening. To stay consistent with the
temperature analysis, we extracted all observational data of nutrients within one
degree of latitude and longitude from the same locations. Modeled temperature and
nitrate concentration from the grid cell closest to these locations were extracted for
the model-data comparison. To remove the year-to-year variability that is more
influenced by chaotic atmospheric processes, and enhance the multi-year variability
in which the more predictable oceanic processes reside, we applied a 4-year running
mean on all-time series. To investigate the spatial coherence of the time series at the
stations, maps of modeled residual anomalies of temperature and nitrate, averaged
over 50–200m, were produced. The residual anomalies were constructed by
subtracting the historical simulation from the hindcasts. A similar methodology was
used by ref. 60 to separate the internal variability from any externally forced
variations. Note that for these maps, the time series were not subject to any running
mean. All figures in the manuscript and the Supplementary Information were
created with Python (https://www.python.org/). The arrow showing the pathway of
the North Atlantic and Norwegian Atlantic currents in Fig. 1a) was created with
Krita (https://krita.org/en/) and Inkscape (https://inkscape.org/).

Data availability
The CMIP6 DCCP NorCPM1 simulations25,61–63 are available at the ESGF node: https://
esgf-node.llnl.gov/search/cmip6/. Satellite-derived chlorophyll from the OC-CCI
dataset52,64 can be obtained at: https://climate.esa.int/en/projects/ocean-colour/data/ and
ftp://oc-cci-data:ELaiWai8ae@oceancolour.org. HadISST data53 were obtained from
https://www.metoffice.gov.uk/hadobs/hadisst/ and are ⓒ British Crown Copyright, Met
Office, 2020, provided under a Non-Commercial Government Licence http://www.
nationalarchives.gov.uk/doc/non-commercial-government-licence/version/2/. In situ
measurements of nutrients from the Barents and the Nordic seas65 are available at http://
www.imr.no/forskning/forskningsdata/infrastruktur/viewdataset.html?dataset_id=104
(last access: 28 June 2022). In situ measurements of temperature and salinity from CTD
casts in the Barents Sea can be obtained from the ICES data portal54. Preprocessed
products of annual mean Atlantic Water (50–200 m depth) temperature and salinity
from the hydrographic sections of Svinøy, Gimsøy, and Fugløya-Bjørnøya in the Barents
Sea Opening, were obtained from ICES (https://ocean.ices.dk/core/iroc55).

The SST data66,67 used for Fig. 1a is found at https://data.ceda.ac.uk/neodc/esacci/sst/
data/lt/Analysis/L4/v01.1/2007/04/15.

Code availability
The NorCPM1 model code can be obtained at GitHub (https://github.com/
BjerknesCPU/NorCPM1-CMIP6). The Python scripts used to analyze the model and
observational data can be obtained upon request to the authors.
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