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We do these things not because they are

easy, but because we thought they were

going to be easy

-J.F. Kennedy (paraphrased)
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Abstract in English

Modern radiotherapy tends to be highly conformal, meaning that a high and uniform

dose is delivered to the target volume and as little dose as possible to the surrounding

normal tissue. The total radiation dose is delivered across several smaller daily fractions,

typically spanning several weeks. During and between these fractions, internal organs

are constantly in motion due to factors such as breathing, changes to bladder filling state,

intestinal movement and external influences. Nevertheless, the position of the target and

relevant organs at risk (OARs) are determined based on a static 3D scan acquired before

start of treatment. A common safeguard which is used to take such motion into account

is the addition of margins around the target. These margins reduce the chance of missing

parts of the target, yet increases dose to the healthy tissue surrounding the target. The

margin size is based on statistics from previous patients. However, for the most part, the

statistical methods used are very simple, and typically based on an assumption of rigid

patient motion. Similarly, motion of the OARs is commonly neglected. For estimation

of dose to the OARs, it is common to assume that the organ shape at the static scan is

representative for its shape during treatment.

The work in this thesis concerns the use of techniques from Bayesian statistics for mod-

elling inter-fraction organ motion and deformation. The goal is to estimate accurately

the statistical distribution of shapes for one or more organs for a given patient. The dis-

tribution provides knowledge of how the patient’s organs might move and deform during

the radiotherapy course. This information is useful for the evaluation of radiotherapy

plans, prediction of adverse effects, so-called motion-robust radiotherapy planning, the

generation of margins and more. The methods presented in this thesis have been eval-

uated for predicting deformations of the rectum of prostate cancer patients. For these

patients, the rectum is a crucial OAR that is affected by both early and late side effects

including leakage, bleeding and pain.

Compared to existing methods, the Bayesian approach developed and implemented in

this thesis offers two advantages: first, combining population statistics and individual

data leads to more accurate estimates of the patient-specific distribution. Secondly, the
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new methods estimate the distribution of the so-called systematic error in addition to

variations from fraction to fraction.

The systematic error is the difference between the estimated shape/position of an organ

at the planning stage and its average shape/position during therapy, and was the subject

of paper I. Here, we were able to reduce the systematic error of the rectum in 33 out

of 37 prostate cancer patients using a straightforward method to combine the shape of

the rectum at the planning CT with the population mean shape. We also evaluated

the impact of this improvement on the estimation of dose to the rectum. We found no

significant improvement on the estimation of two presumably relevant dose parameters

(equivalent uniform dose and D5%). However, we did find significant reduction in the

bias of the estimated dose-volume histogram in the range from 52.5 Gy to 65 Gy.

Paper II contains the central work of this project. It presents two organ deformation

models based on Bayesian methods. The input data to these algorithms are organ shapes

derived from 3D scans. The methods can take a varying number of such inputs from a

given patient, and will produce more accurate results the more inputs they are given.

They provide an estimate of the mean shape of the organ, as well as the uncertainty

of this mean, in addition to the distribution of the variation of shapes from fraction to

fraction. The methods were evaluated in the task of estimating coverage probabilities,

i.e. the probability that the organ will cover a certain point in the patient coordinate

system, for the rectum of prostate cancer patients. For this evaluation, tens of thousands

of organ shapes needed to be converted to so-called binary masks, which are 3D arrays

of points in the patient coordinate system where the value of each point is 1 if the point

is inside the organ and 0 if it is outside. This was enabled by the highly efficient point-

in-polyhedron software presented in paper III, which was developed for this project.

The models were given varying number of scans, from 1 to 10, as input, and compared

to two existing (non-Bayesian) models. The estimates of the coverage probability pro-

duced by the new models were significantly more similar to the ground truth than those

produced by the existing models, at least up to three input scans. The main differ-

ences between the two new algorithms are their of conceptual complexity and accuracy,

and the choice of method in a given application will therefore come down to a trade-off

between these qualities.

An application for the models derived in paper II, concerning patients receiving re-

irradiation for recurrent prostate cancer, is presented in paper IV. We introduce a way

of estimating the expectation and uncertainty of the accumulated dose to the rectum

from the two treatment courses. The method is based on “representative shapes” of the

rectum, that is, shapes that are probable and also particularly favourable or unfavourable



ix

in terms of dose. The advantage is that these shapes can be used as a visual aid for

the oncologist or dose planner, and that the method can be implemented using existing

features of treatment planning systems.

Overall, this thesis provides novel solutions to the central challenge of organ motion

mitigation in RT. The presented models are the first to simultaneously exploit population

and patient specific organ motion and addressing both systematic and random errors.
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Samandrag p̊a norsk

Moderne str̊alebehandling mot kreft er skreddarsydd for å gje ein høg str̊aledose tilpassa

svulsten (m̊alvolumet), mens s̊a lite dose som mogleg vert gitt til det friske vevet omkring.

Den totale dosen vert levert over nokre veker i daglege “fraksjonar”, noko som reduserer

biverknader. Under og mellom desse fraksjonane rører dei indre organa p̊a seg heile tida

p̊a grunn av pust, fylling av blæra, tarmar si rørsle og ekstern p̊averknad. Likevel vert

posisjonen til m̊alvolumet og relevante risikoorgan bestemt p̊a grunnlag av eit statisk

3D-skann som er tatt før behandlinga startar. Den vanlege måten å sikre seg mot kon-

sekvensar av denne rørsla er å legge til marginar rundt svulsten. Slik sikrar ein å treffe

målvolumet, men til gjengjeld f̊ar det friske vevet meir dose. Marginane sin storleik er

fastsett ved hjelp av statistikk over tidlegare behandla pasienter. Dei statistiske meto-

dane som vert brukte er ofte enkle, og tek berre omsyn til rigid rørsle, alts̊a at heile

kroppen rører seg i eitt. Dessutan vert det ikkje teke omsyn til rørsla til risikoorgan.

For å berekne dose til risikoorgana er det vanleg å anta at forma til organa i planleg-

gingsskannet er representative for forma deira under behandling.

Arbeidet i denne avhandlinga handlar om å bruka teknikkar fr̊a Bayesiansk statistikk

for å modellere korleis organ rører og deformerer seg mellom fraksjonane. Målet er

å estimere nøyaktig den statistiske fordelinga av rørsle for eit eller fleire organ til ein

pasient. Fordelinga gjev innsikt i korleis organa forandre seg medan behandlinga g̊ar for

seg. Denne innsikta er nyttig for evaluering av str̊aleterapiplanar, statistisk prediksjon av

biverknader, s̊akalla robust planlegging og å berekna størrelsen p̊a marginar. Metodane

som vert presentert er evaluerte for endetarmen (rektum) sine rørsler hj̊a prostatakreft-

pasientar. For desse pasientane er rektum eit viktig risikoorgan, som kan bli ramma

b̊ade av akutte og seine biverknader, som lekkasje, bløding og smerter.

Samanlikna med eksisterande metodar har den Bayesianske tilnærminga to fordelar: For

det første gir kombinasjonen av populasjonsstatistikk og individuelle data meir nøyaktige

anslag av den pasientspesifikke fordelinga. For det andre estimerer dei nye metodane den

s̊akalla systematiske feilen i tillegg til variasjonar fr̊a fraksjon til fraksjon.

Den systematiske feilen er forskjellen mellom den estimerte forma p̊a organet under
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planlegging, og gjennomsnittsforma til organet under bestr̊aling. Denne typen feil var

tema for artikkel I. Her fekk vi til å redusere den systematiske feilen til rektum hj̊a 33

av 37 prostatakreftpasientar ved å bruke ein metode som kombinerer forma p̊a rektum

under planlegginga og gjennomsnittsforma i populasjonen. Vi vurderte og om denne

forbetringa hadde p̊averknad p̊a estimering av summert dose til rektum. Metoden gav

ikkje signifikant forbetring for to antatt relevante parametrar (ekvivalent uniform dose og

D5%), men gav signifikant reduksjon av bias p̊a det estimerte dose-volum-histogrammet

i intervallet 52.5 Gy til 65 Gy.

Hovudarbeidet i dette prosjektet er publisert i artikkel II. Der presenterer vi to modellar

for organrørsle basert p̊a Bayesianske metodar. Inndata til desse metodane er organ-

former som er henta fr̊a 3D-skanningar. Metodane kan ta ulikt tal slike former, og

produserer meir nøyaktige resultat jo fleire former dei f̊ar. Dei gjev anslag av gjennom-

snittsforma og kor stor uvissa om denne forma er, i tillegg til anslag av fordelinga av

variasjon av former fr̊a fraksjon til fraksjon. Vi evaluerte metodane etter kor godt dei

kunne berekne “dekningssannsyn”, alts̊a sannsynet for at organet skal dekke eit gitt

punkt i pasientkoordinatsystemet til ei gitt tid. For denne berekninga måtte titusen-

vis av organformer gjerast om til s̊akalla binærmasker, som er 3D-matriser av punkter

i pasient-koordinatsystemet der verdien til eit punkt er 1 dersom punktet er inne i or-

ganet, og 0 elles. Denne berekninga var mogleg p̊a grunn av programvare som blei

implementert for dette prosjektet, og som er presentert i artikkel III. Ogs̊a her var det

prostatakreftpasientar sitt rektum som vart brukt til evaluering. Berekningane til dei

nye metodane var likare det sanne dekningssannsynet enn tilsvarande berekningar fr̊a

tidlegare metodar, i signifikant grad, i alle fall opp til tre input. Forskjellen mellom

dei to nye algoritmane er i hovudsak kompleksiteten og nøyaktigheita, og valet mellom

algoritmane i ein gitt bruk vil vere ei avveging mellom desse faktorane.

Vi viste ein m̊ate modellane kan verte brukte i artikkel IV, som handlar om pasientar som

f̊ar re-bestr̊aling for tilbakefall av prostatakreft. Her brukte vi modellane til å berekne

forventa akkumulert dose til rektum fr̊a dei to behandlingane, og ogs̊a uvissa rundt den

forventa dosen. Metoden er basert p̊a “representative former” av rektum, alts̊a former

som rektum kan ta som er sannsynlege, men lite fordelaktige. Desse formene kan brukast

som visuell hjelp for onkologar og doseplanleggjarar, og metoden kan implementerast ved

hjelp av eksisterande funksjonar i programvaren for behandlingsplanlegging.

Overordna gir denne avhandlinga nye løysingar for den sentrale utfordringa med å re-

dusere konsekvensar av organrørsle i str̊aleterapi. Dei presenterte modellane er dei første

som utnyttar statistikk for populasjonen og data fr̊a den enkelte pasienten samstundes,

og som tar omsyn til b̊ade systematiske og tilfeldige feil.
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Chapter 1

Introduction

Radiotherapy (RT) is currently one of the four main modalities of cancer treatment, along

with surgery, chemotherapy and immunotherapy. In Norway, 38% of cancer patient were

treated with RT in 2012 (Borras et al. 2015), while studies indicate that 50% of patients

would benefit from RT (Barton et al. 2014; Borras et al. 2015). RT as a treatment for

cancer dates back to the end of the 19th century, with the discovery of x-rays in 1895

by Wilhelm Röntgen, and the discovery of natural radioactivity and its sources by Henri

Becquerel, Marie Curie and Pierre Curie in 1896-1898. Experiments with the equivalent

of today’s external beam radiation therapy EBRT for treatment of breast cancer using

Röntgen tubes were started as early as 1896. In the early days of EBRT, the radiation

was given with very low dose rates due to limitations of the available technology. As a

result, the treatment was necessarily “fractionated” as it had to be given over several

days or weeks to achieve anything near sufficient radiation dose. The discovery of the

advantages of fractionation is usually credited to French biologist Claude Regaud in the

1910s (Foray 2012). Today, fractionation is the norm for most curative RT. Typically, 25-

40 fractions are given in total, with five fractions per week over the course of 5-8 weeks,

although the current trend is towards shorter therapy courses. The main advantage of

fractionation is that differences in radiosensitivity between tumors and normal tissue

lead to better recovery of normal tissue under smaller daily fractions of radiation.

A crucial step in the advent of precision EBRT was the invention 3D x-ray imaging

through computed tomography (CT) in the 1970s. Together with the multi-leaf colli-

mator and treatment-planning software, this later enabled 3D conformal RT (3D-CRT),

where each radiation field is sculpted to the target. Further advances enabled dose mod-

ulation, which, coupled with with inverse plan optimization, made possible the highly

conformal modern techniques of intensity-modulated RT (IMRT) and volumetrically

modulated arc therapy (VMAT). Figure 1.1 illustrates how VMAT tailors dose to the
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Figure 1.1: Example of dose distributions for 3D-CRT (left) and VMAT (right) plans
for the same patient.

target (right) compared to 3D-CRT (left).

In a typical RT workflow, after diagonsis and prescripition, an initial CT scan of the

patient, called the planning CT (pCT), is acquired. On the pCT, oncologists or other

experts delineate the prescription doses and any organs at risk (OARs). A planning

expert then uses a treatment planning system (TPS) to create an optimized RT plan,

which contains machine instructions for the delivery of RT, according to prescribed dose

to the target and constraints on the dose to the OARs. The quality and soundness of

the plan is then verified in a rigorous quality assurance process. Finally, treatment is

delivered according to the quality-assured plan over the course of the following weeks.

While higher precision in RT is generally seen as a great advantage, the combination of

conformity and fractionation can cause problems. High precision requires that patients

are set up identically for treatment delivery each day as they were during the pCT scan.

Any discrepancy, or setup error, will cause a geometrical miss of the delivered dose.

Image guided RT, where an in-treatment-room image (e.g. a cone beam CT (CBCT)) is

taken before delivery, and the patient position is shifted to match the pCT to the CBCT,

has decreased setup errors considerably in the last decades. However, setup errors are

only one part of the daily changes between treatment fractions. Breathing motion, filling

and emptying of the stomach, bladder and intestines and so forth cause displacements

and deformations of internal organs. These motions should be taken into account when

administering RT.

With more patients being cured from their disease, there is an increased focus on limit-

ing the risk of permanent damage of normal tissue. To ensure that an RT-plan is within

acceptable risk, the normal tissue complication probability (NTCP) is sometimes calcu-

lated from models based largely on the dose to OARs as seen in the pCT. Due to the use

of the pCT to calculate dose, these models are also affected by geometrical uncertainties

(Ong et al. 2022; Scaife et al. 2015).
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Geometrical errors are commonly divided into systematic and random errors. Systematic

errors are errors that are constant over all treatment fractions, while random errors are

caused by random shifts in geometry around the mean position or shape from fraction

to fraction. Systematic errors are introduced during the planning phase, and the typical

example is the setup error in the pCT, i.e. the shift in the geometric origin in the pCT

compared to the average position of the origin during treatment. Deformations of the

patient geometry also cause systematic errors, due to the difference between the shape

in the pCT and the average shape during treatment. A relevant example is described in

Fontenla et al. (2001b):

Consider the following two cases: (1) the rectum happened to be full at

the time of the planning scan, thereby displacing the prostate anteriorly, and

(2) the rectum happened to be empty at the time of the planning scan, thereby

allowing the prostate to move posteriorly. In the first case, the motions of

the prostate over the course of therapy, relative to its location on the plan-

ning scan, will tend to be systematically posterior over the entire treatment

course. In the second case, they will be systematically anterior over the entire

treatment course.

Systematic errors may lead to consistent overdosage to OARs or underdosage to targets

at all fractions, while random errors causes a blurring of the dose (van Herk et al.

2000). The models proposed in this thesis are the first of their kind to actually reduce

the systematic errors by estimating the mean organ shape from a combination of the

pCT and population data. In this case, the remaining systematic errors derive from the

difference between the true mean shape and the estimated mean shape, rather than the

shape at the pCT.

The approach taken to safeguard against geometrical uncertainties in the clinic is usually

to introduce margins around the clinical target volume (CTV). The CTV extended with

margins is referred to as the planning target volume (PTV). The margins are commonly

based on the well known margin-recipes by Stroom et al. (1999) and van Herk et al.

(2000), which require estimates of the population standard deviations of both random

and systematic errors for the specific target. These margin recipes are based on exact

solutions to certain statistical uncertainty problems that are really only valid under

special assumptions such as a rigid and spherical CTV. However, margins can also be

generated by statistical models such as those presented in this thesis. The method of

Stroom et al. (1999) is especially well suited for this, since it relies on constant coverage

probability, which is easy to compute with these models.

There are several weaknesses of handling geometrical uncertainties in the PTV concept
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Figure 1.2: Example of a VMAT RT-plan for re-irradiation of recurrent prostate cancer.
The PTV has been cropped at the rectum, according to the local clinical procedure for
these patients.

(Unkelbach et al. 2018): An underlying assumption is that the dose is conformal within

the PTV, so that if the CTV moves only within the PTV, the CTV is given the same

dose in every fraction. Heterogeneity of the dose is therefore not accounted for. Further,

the same dose is prescribed to the whole PTV even if the probability of the tumor

moving to specific locations within the PTV may be low. The concept of margins around

OARs, named planning risk volumes (PRVs) was proposed in ICRU report 62 (1999).

However, the problem of overlap between the PTV and OARs is aggravated by PRVs,

which have not gained mainstream acceptance in the clinic (Stroom and Heijmen 2006).

Instead, the dominating paradigm for OARs is to assume that the shape of the organ

at the pCT is representative, so that dose assessment for that shape is still valid during

treatment delivery. Figure 1.2 shows the CTV, PTV and rectum for a patient receiving

re-irradiation for recurring prostate cancer. The figure illustrates how the PTV, and

therfore the dose, has been cropped at the rectum for fear of inducing adverse effects.

A practical alternative to the PTV concept is robust radiotherapy planning, where ge-

ometric uncertainties of both targets and OARs are included in the objective function

used to optimize the plan. Most early robust RT planning techniques assumed rigid

shifts of either the patient (i.e. setup errors) or organs (Li and Xing 2000; Lind et al.

1993; Lof et al. 1995; Unkelbach and Oelfke 2004; Unkelbach and Oelfke 2005). Birkner

et al. (2003) introduced deformations into such models, decomposing the organs into a
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set of deforming tetrahedron-shaped volume elements, but without the ability to actu-

ally measure the required probability distribution of the deformation. Baum et al. (2006)

presented an efficient approach to robust optimization based on coverage probabilities,

which in practice can be derived from both rigid and deformable models. Treatment

course simulations, where a simulated anatomy is sampled for each fraction, and the op-

timization takes all simulated fractions into account (Fredriksson et al. 2021; Xu et al.

2014) is also well suited for statistical deformation models, and so is the method of

Sobotta et al. (2010), which is based on an objective function which is evaluated for

multiple realizations of the patient anatomy in each iteration. Today, most commercial

TPSs offer some kind of robust optimization (Biston et al. 2020).

Geometrical uncertainties in a fractionated treatment can also be reduced if the radio-

therapy plan is adjusted to fit the daily anatomical variations, which is the subject of

adaptive radiotherapy (ART) (Yan et al. 1999). Examples of ART strategies include

re-planning when existing plans fail to meet given criteria, and plan-of-the-day strate-

gies, where, after a preliminary scan (typically CBCT) before each fraction, a plan can

be selected from a library of pre-existing plans prepared before start of treatment . Or-

gan deformation models can play a role in adaptive workflows, e.g. through generating

likely organ shapes for plan library creation (Nie et al. 2012; Rigaud et al. 2019) or mod-

elling intra-fraction deformations (Fransson et al. 2021; Li et al. 2011b; Liu et al. 2021).

For the rectum, intra-fraction motion can be nearly as large as inter-fraction motion if

the time of delivery is on the order of 10-20 minutes (Kleijnen et al. 2015). Further-

more, robust planning and evaluation can be valuable in reducing the effort invested in

re-planning, as each additional plan comes with a cost (McComas et al. 2022).

1.1 Statistical motion models

Statistical models of organ motion and deformation can be used to improve the precision

of margins, for robust optimization and robust evaluation, to increase understanding and

visualization of organ motion and to generate plan libraries for adaptive radiotherapy.

There has been extensive research into organ deformation models in the recent decades.

An early precursor to the algorithms used in this thesis are the 2D point distribution

models (PDMs) presented by Cootes et al. (1992, 1994). The statistics of shape coordi-

nate vectors were calculated using principal component analysis (PCA), similarly to the

present use. However, all the points needed to be manually drawn and labeled for corre-

spondence in a set of training images. The PDMs were used together with statistics of

grayscale levels around each point to locate similar shapes in new images. As such, the

algorithm performs 2D auto-segmentation based on local deformable image registration.
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Many deformation models in practical use rely heavily on deformable registration of

images or contours. Yan et al. (1999) was the first to use deformable registration in

organ motion modelling, although that term was not used at the time. They created

a mesh representation of the organ volume (not just the surface), and used a physical

model of the elastic properties of organ tissue together with finite element modelling

(FEM) to deform the mesh of the planning CT into the organ shapes at later CTs.

Accumulated dose was calculated by bootstrapping from these shapes together with

random sampling from an estimated distribution of setup errors, and summing dose

to each node in the mesh over all samples. An early fully deformable model for the

rectum in particular was devised by Hoogeman et al. (2002). The rectum is modelled

as a deformable tube and unwrapped, slice by slice, to a sheet. Thus one rectum-sheet

can be mapped to another, and statistics can be calculated. The method was used to

quantify patient-specific variations in rectum shape and dose to the rectal wall.

A patient-specific precursor to the methods in this thesis was presented in Söhn et al.

(2005), who used a point distribution model on top of deformable contour registration

based on the FEM algorithm of Liang and Yan (2003). They used PCA to visualize the

deformation modes of individual patient’s rectum, bladder and prostate simultaneously.

The method, with variations in registration methods (both image based and contour

based) has reached wide adoption in the literature1. The downside of the method is that

many individual scans are needed to model the patient-specific deformation patterns.

Probably the earliest population-based organ deformation model was presented in

Mageras et al. (1996). They used a simplistic algorithm to find point-to-point corre-

spondence in each 2D-slice of organ shapes. Instead of assuming any distribution, the

shape changes of a set of reference patients were applied directly to the pCT shape of a

new patient, and dose-volume histograms (DVHs) were calculated for each deformation.

The end goal was generating uncertainty bars on the new patient’s DVHs. Another pop-

ulation based model was derived by Budiarto et al. (2011), based largely on techniques

from the intra-patient model by Söhn et al. (2005). This model requires a set of training

data from previous patients, and inter-patient contour registration is used in addition

to intra-patient registration. The underlying assumption is that a new patient has the

same deformation modes as those observed in the training data, on top of a different

mean organ shape. They applied the model to the prostate and seminal vesicles, and

showed that about 75% of the variance of out-of-sample patients could be explained by

the first 15 eigenmodes from the training data. The method can be used when only a

1E.g. Fransson et al. (2021), Hysing et al. (2011), Söhn et al. (2012), Thor et al. (2013b), Thörnqvist
et al. (2013a,b), and Xu et al. (2014) (pelvic organs), Badawi et al. (2010), Dhou et al. (2020), and Li
et al. (2011b) (lung), Hysing et al. (2011) (small bowel), Nie et al. (2012) and Tsiamas et al. (2018)
(head and neck).



1.1 Statistical motion models 7

planning CT from the new patient is available. With minor variations, this method has

also been widely adopted2. A potential improvement to the population model of Budi-

arto et al. (2011) was presented in Rios et al. (2017). They used a mixed-effect model

where the variance of the PCA-modes are calculated based on a combination of the train-

ing data and the current patient’s data. As such, the goal is similar to that of this thesis.

However, there are some major weaknesses of their proposed method: No variance infor-

mation can be computed from a single scan, and this means that the method is no better

than the original population model when only the planning CT is available. Since only

the intra-patient deformations are modeled, the method cannot compensate for system-

atic errors. Further, as in the model by Budiarto et al. (2011), the deformation modes

are based on the population only, and not updated for the individual patient, so only

deformation patterns present in the training data can be modeled.

The combination of population and individual data was proposed as early as 2001, in

Fontenla et al. (2001b), who developed a non-parametric model of the parameters of

deformation functions for CT images from a population of patients. The model could

combine population and individual variations by including deformations from the current

patient in the non-parametric distribution. This has not been shown in practical use

though; the model was applied to the prostate, bladder and rectum in Fontenla et al.

(2001a), but only for patient-specific data, and only using affine transformations as

opposed to fully deformable registration.

In later years, computational methods in medical image processing have largely focused

on deep learning. The deep learning studies tend to focus on the application rather than

the underlying model, however, in several applications (e.g. autosegmentation (Minaee

et al. 2022), deformable image registration (Xiao et al. 2021)), there must necessarily

be an understanding of the statistics of organ deformation within the neural network.

But the network itself is considered a black box, and we can only examine its input and

output. A possible route to modelling deformations using deep learning is the generation

of multiple likely organ shapes or CT images from one or more inputs, as proposed by

Pastor-Serrano et al. (2022, preprint). A major advantage of their method is that it

generates full CT images, which is difficult with the traditional PCA population model

(a lone example is Szeto et al. (2017)).

2E.g. Tilly et al. (2017) (cervix), Argota-Perez et al. (2022) and Tsiamas et al. (2018) (head and
neck), Owens et al. (2022) (colon and rectum), Rios et al. (2017) (bladder), Bondar et al. (2014) (rectal
CTV) Magallon-Baro et al. (2019) (stomach, duodenum, bowel) Furmanová et al. (2021) (pelvic organs)
and Szeto et al. (2017) (thorax).
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1.2 Bayesian methods in motion management

Combination of population and individual statistics through Bayesian methods have

previously been applied to the problem of setup errors, i.e. rigid shifts of the whole

body, in radiotherapy. A Bayesian model for setup errors was first introduced by Lam

et al. (2005), further explored by Herschtal et al. (2012, 2015) and van Herk et al. (2009)

and recently revisited in Fornacon-Wood et al. (2022a) and Sevillano et al. (2019). The

model treats shifts in the x, y and z-direction as independent and normal distributed,

and applies a normal-inverse-gamma prior to the mean and variance of the error. If the

errors in each direction can be measured during therapy (e.g. through fiducial markers

seen on daily CBCTs), the expected mean and variance of the error can be updated, and

margins adapted accordingly. The model presented in section 4.6.2 is partially inspired

by the work of Lam et al. (2005).

1.3 Rectal toxicity and re-irradiation

The models in this thesis have been evaluated for the rectum of prostate cancer patients.

Under prostate cancer RT, rectal toxicity is a major concern. Acute toxicity includes

diarrhea, increased frequency of stools, incontinence, rectal bleeding, abdominal cramps,

urgency, mucus loss and pain (De Meerleer et al. 2004). The most common late toxicities

are rectal bleeding and mucous discharge/leakage (Zelefsky et al. 2008). Giordano et al.

(2006) found that 51.3% of patients had some form of gastrointestinal complications five

years after RT, versus 31.9 percent of patient who did not receive RT. The the risk of

late complications increases exponentially with the volume of the rectum irradiated with

high dose (Huang et al. 2002). There may also be fractionation effects (Widmark et al.

2019) and differences between IGRT regimes (McNair et al. 2008; Rudat et al. 2016;

Silverman et al. 2016; Singh et al. 2013).

In the calculation of NTCP for the rectum of prostate cancer patients, accounting for

motion may provide better predictions (Shelley et al. 2017). Accumulating dose over

multiple CT or CBCT scans can provide good results (Ong et al. 2022; Scaife et al.

2015; Shelley et al. 2017), but depend on accurate deformable registration in addition to

the drawback of requiring several scans. A model based purely on rigid shifts of the organ

shape at the pCT was proposed by Thor et al. (2013a), but did not improve prediction.

Prostate cancer patients with recurrent primary tumor sometimes receive a second round

of RT. These patients are at particularly high risk for toxicity (Munoz et al. 2021). The

tissue repair that occurs between the primary treatment and re-irradiation will increase
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radiation tolerance to some extent, but exactly how much is uncertain (Abusaris et al.

2012). There is also significant difficulty in estimating the accumulated dose of the

two treatments locally in the OARs, and inter-fraction organ deformation increases this

complexity further. Organ deformation models therefore have a potential to improve

decision making in this context.
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Chapter 2

Background: Bayesian inference

Inference means deriving conclusions from reasoning and evidence, and Bayesian in-

ference is the process of using data and models to derive conclusions based on Bayes’

rule. In this process, Bayes’ rule is used to update belief in a hypothesis when new data

becomes available. The antithesis of Bayesian inference is frequentist inference, which

deals with p-values and confidence intervals. For the interested reader, discussions of the

differences are found in e. g. Efron (2005) and Fornacon-Wood et al. (2022b).

Bayes’ rule (or Bayes’ theorem) is given by

Pr(B|A) = Pr(A|B)Pr(B)

Pr(A)
, (2.1)

where A and B are two events, Pr(·) represents a probability of an event, and Pr(A|B)

refers to the probability of A conditioned on B, i.e. the probability of event A given

that B has occurred. This formula, named after the English Reverend Thomas Bayes

(1701-1761), can be used to find conditional probabilities given some prior information.

In (2.1), Pr(B) is the prior probability of the event B, i.e. the probability of B without

information about A.

Bayes’ theorem can be used for discrete numerical random variables, for example, A

could be the event that X = 1 while B is the event that Y = 2. However, for continuous

random variables, the probability of a specific value is always zero. Luckily, Bayes

theorem also works for probability densities. The probability density of X at a value x

is defined as

fX(x) = lim
∆x→0

Pr(X ≥ x and X < x+∆x)

∆x
. (2.2)

In words, the probability density at x is the probability that the value of X falls in an

interval around x, divided by the size of that interval, as the size of the interval goes to
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zero. The probability density-version of Bayes theorem is

fX|Y (x|Y = y) =
fY |X(y|X = x)fX(x)

fY (y)
, (2.3)

The shorthand f(x|y) is commonly used for fX|Y (x|Y = y). In Bayesian inference, the

y in equation (2.3) is observed data. The denominator f(y) is constant as a function of

x, and the equation can often be solved without knowledge of f(y) since the left-hand

side of (2.3) must adhere to the nature of probability density functions (pdfs), that all

probabilities must integrate to 1, i.e.
∫ +∞
−∞ f(x|y)dx = 1. Taking the integral with respect

to x of both sides of (2.3), we then find f(y) =
∫ +∞
−∞ f(y|x)f(x)dx.

Example
A classical example application of Bayes rule is the probability that a person carries a disease

given that some test for the disease comes out positive. The accuracy of a test is often

specified through its sensitivity (the probability of correctly identifying a positive individual)

and its specificity (the probability of correctly identifying a negative individual). Let A be

the event that the test comes out positive, and B be the event that a the test subject actually

carries the disease. Then Pr(A|B) is the the sensitivity of the test, Pr(B) is the prevalence

of the disease in the population, and Pr(A) is the overall probability of a positive test. The

specificity is the probability of a negative test given that the individual does not carry the

disease, i. e. Pr(¬A|¬B). The overall probability can be calculated using the specificity,

since

Pr(A) = Pr(B)Pr(A|B) + Pr(¬B)Pr(A|¬B)

= Pr(B)Pr(A|B) + (1− Pr(B))(1− Pr(¬A|¬B)).

Given a test with a perfect sensitivity of 100% and a specificity of 99%, for a disease with a

prevalence of 1 in 1000 people, we can insert these numbers into Bayes theorem:

Pr(B|A) =
(1/1000) · 100%

100% · (1/1000) + (1− 1/1000) · (1− 99%)
. (2.4)

The (perhaps surprising) result is that an arbitrary person who gets a positive test result

actually has only 9.1% probability of actually having the disease.

In equation (2.3), f(x) is called the prior distribution, since the pdf of X represents

the prior knowledge of X, i.e. what we know of X without any information about Y .

Similarly, f(x|y) is called the posterior distribution, since it represents our knowledge

of X when the data y, which is a realization of Y , is given. The factor f(y|x) in the

numerator looks like a pdf, but in reality, when it is used to calculate the posterior, y is

constant and we consider f(y|x) a function of x. Since f(y|x) as a function of x is not

a probability density, yet is strongly linked to probability, it has been given the name

likelihood. To emphasize the fact that the likelihood is a function of x, it is sometimes
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written as L(x; y) or variants thereof. Using this terminology, we say that the posterior

is proportional to the prior times the likelihood,

f(x|y) ∝ f(x)L(x; y), (2.5)

and, again, proportionality is sufficient to determine a distribution.

To take the simplest possible example, say a scalar Y is normally distributed with un-

known mean m and known variance σ2:

Y |m ∼ N (m,σ2). (2.6)

In the Bayesian context, we treat the unknown m as a realization of a random variable

M . Let the prior distribution of M also be normal

M ∼ N (µ0, σ
2
0). (2.7)

The parameters of the prior, in this case µ0 and σ2
0, are called hyperparameters. An

expression for the posterior distribution of M given a realization y of Y is found by

inserting (2.6) and (2.7) into (2.5):

f(m|y) ∝ N (m;µ0, σ
2
0) · N (y;m,σ2) (2.8)

The calculations are somewhat intricate, but it turns out that the posterior is itself

normal:

f(m|y) = N (m;µ′
0, σ

′2
0 ), (2.9)

with

σ′2
0 = (σ−2 + σ−2

0 )−1 (2.10)

µ′
0 = σ′2

0 (
µ0

σ2
0

+
y

σ2
). (2.11)

Instead of calculating an estimate of M , as we might have done in a frequentist context,

we have found its distribution. The expected value is µ′
0, but it is associated with a

variance σ′2
0 which we interpret as uncertainty. This uncertainty can be used to calculate

the the credible interval, the Bayesian parallel to the frequentist confidence interval.

In this example, the prior for M was normal, and its posterior is also normal. When

the posterior is in the same distribution family as the prior, it is said that the prior is

conjugate to the likelihood. Conjugate priors have the advantage that their parameters

can be calculated directly from the data and the hyperparameters, as in (2.10)-(2.11).
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Mathematical tractability is therefore the reason conjugate priors are usually chosen

when no strong considerations suggest other priors. With non-conjugate priors, on the

other hand, it is usually difficult or impossible to find the posterior analytically. Instead,

one can generate samples from the posterior using Markov Chain-Monte Carlo (MCMC)

techniques. For example, a Metropolis sampler can generate samples for any distribution

as long as pdf-ratios (such as f(µ1)/f(µ2)) can be calculated. Since constants cancel in

this ratio, sampling can be performed for a posterior distribution through Bayes rule

when the prior and likelihood is given.

The posterior is the distribution of the mean M , which is a parameter of the likelihood.

However, we are often more interested in the distribution of Y given a realization y. This

is called the posterior predictive distribution. An analytical expression for the posterior

predictive cannot always be found, however, samples of the posterior predictive can

be drawn by first drawing a parameter value from the posterior distribution and then

drawing a new value from the conditional distribution (2.6) using this parameter value.

In our simple example, the posterior predictive can be found analytically, and is given

by

Y |y ∼ N (µ′
0, σ

2 + σ′2
0 ). (2.12)

The posterior predictive has a higher variance than the sampling distribution (2.6) be-

cause it takes into account the uncertainty of M . When the posterior predictive is

unknown, or overly complex, it is nevertheless not uncommon to simply plug in point-

estimates of the unknown parameter(s) into the sampling distribution (2.6), thus ignor-

ing the increased variance due to model uncertainty. This is part of the empirical Bayes

framework.

The example with an unknown mean and known variance for a univariate Gaussian

likelihood is one of the the simplest possible cases. In this thesis, distributions of high-

dimensional vectors with unknown vector and matrix-valued parameters are used. The

concepts are nevertheless the same as those shown here.

2.1 Shrinkage estimation

Bayesian models tend to lead to so-called shrinkage estimates of parameters. Consider

the previous example: if we let the prior mean µ0 be zero, then equation (2.11), the

estimate of the posterior mean, becomes

µ′
0 =

y

1 + σ2σ−2
0

. (2.13)
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Since σ2σ−2
0 is positive, the absolute value of µ′

0 is guaranteed to be smaller than that of

y. Since y itself is the frequentist estimate of the mean, this leads to the term shrinkage

estimation. If the prior mean is not zero, the shrinkage estimate is not guaranteed to

be smaller, but rather to be closer to the prior mean. This challenges our intuitive

understanding of the term shrinkage, but we still say the estimate has been shrunk

towards the prior mean. Paper 1 is based on simple shrinkage towards the prior mean

in high dimensions.

2.2 Mean-field variational inference

In high dimensions, and especially when random matrices are involved, MCMC-sampling

is very computationally intensive. An alternative set of techniques that can sometimes

be used when there is no analytical expression for the posterior are variational Bayes

methods. These are techniques used to find a closed form function that approximates

the pdf of the true posterior. The name comes from the application of calculus of

variations in the derivations of the approximations. In variational inference, we seek an

approximate posterior of the latent variable x given data y, i. e. q(x) ≈ f(x|y). Given

a class Q of candidates for q(x), the approximation is cast as an optimization problem:

Minimize the Kullback-Leibler divergence from q(x) to f(x|y),

q∗(x) = argmin
q∈Q

KL(q(x)||f(x|y)). (2.14)

The Kullback-Leibler divergence is an information-theoretic asymetric measure of differ-

ence between two pdfs, say f and g, defined as

KL(f ||g) =
∫ ∞

−∞
f(x) log

f(x)

g(x)
dx, (2.15)

which is zero when the pdfs are identical.

The most common form of variational Bayes is the mean field approximation, where the

elements of the vector x is split into different subsets, and the approximation is such

that each subset is independent from the others. Thus, if x = {x1, x2, . . . xn}, where xi
are subsets subset of the variables of the full set x, then

f(x|y) ≈ q(x) =
n∏

i=1

qi(xi) (2.16)

Here, the class Q of allowable densities are those that satisfy the equality. A coordinate

ascent algorithm exists for updating each qi(xi) based on the latest updates of the other
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functions qj(xj) for j ̸= i (Blei et al. 2017, p. 10). In the general case, this algorithm

is purely theoretical, as it updates continuous functions as opposed to their parameters

— not something that can be done on a computer. However, in the special case where

the distributions of xi are conditionally conjugate with respect to the likelihood, and

are in the exponential family of distributions, the algorithm becomes computationally

feasible. Recall that a prior distribution is said to be conjugate to a specific likelihood

if the posterior is in the same distribution family as the prior. A distribution is said to

be conditionally conjugate if the posterior distribution of one partition conditioned on

other partitions is in the same family Fi as the prior for that partition (Gelman et al.

1995), in other words if:

f(xi|xj ̸=i) ∈ Fi for all i (2.17)

→ f(xi|y, xj ̸=i) ∈ Fi for all i. (2.18)

This concept becomes clearer with an example: Let the likelihood be gaussian N (y;µ, σ2)

with unknown mean and variance with prior pdf N (µ;µ0, σ
2
0)Γ

−1(σ2;α, β), i.e. the mean

is normal distributed, the variance is inverse-gamma distributed, and they are indepen-

dent. This is not a conjugate prior. However, when conditioning the posteriors of each

of the parameters on the other parameter, they appear conjugate:

µ|y, σ2 ∼ N (µ′
0, σ

2′
0 ) (2.19)

σ2|y, µ ∼ Γ−1(α′, β′). (2.20)

Expressions can be found for the parameters µ′
0, σ

2′
0 , α

′ and β′, but these will depend on

the given µ or σ2. The mean field approximation replaces these conditional distributions

with unconditional ones. The procedure works as follows: First, find qu and qσ by taking

the expectation of the logarithm of the pdf of (2.19) with respect to σ2 and of (2.20)

with respect to µ:

ln qµ(µ) = Eσ2 [lnN (µ;µ′
0, σ

′2
0 )] + const (2.21)

ln qσ(σ
2) = Eµ[ln Γ

−1(σ2;α′, β′)] + const (2.22)

This results in expressions for the posterior hyperparameters of µ which depends on mo-

ments of σ2 and vice versa. The coordinate ascent algorithm then proceeds as follows:

Calculate the parameters of the pdf of µ based on the current guess of the relevant mo-

ments of σ2. Calculate the relevant moments of µ based on these parameters. Calculate

the parameters of the pdf of σ2 based on the moments of µ. Calculate the relevant mo-

ments of σ2 from the parameters. Repeat until convergence. More detailed explanations

with examples can be found in e.g. Bishop (2006) and Blei et al. (2017).
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Mean field variational inference was used in paper 2, and the derivation of the algorithm

for the specific model is found in paper 2, Appendix B.
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Chapter 3

Aims of the thesis

There is room for improvement in organ deformation modelling, as current models either

require many individual scans as input, or lack the ability to tailor the model to the

individual deformation patterns. The overall aim of this project was therefore to improve

upon existing statistical models for organ deformation by introducing Bayesian concepts,

and to utilize both population and patient-specific data in these models.

Specifically, the aims of the papers were:

Paper I: To reduce systematic errors by estimating the patient-specific mean shape of

recti of prostate cancer patients using a single measurement, i.e. the pCT, combined

with population data.

Paper II: To introduce new specific methods for statistical organ deformation modelling

using Bayesian techniques to combine population and patient-specific data.

Paper III: Enabling the evaluation of deformation models using coverage probability

matrices by introducing a software package for fast solving of the point-in-polyhedron

problem.

Paper IV: To estimate accumulated dose with uncertainties for the rectum of patients

receiving re-irradiation for recurrent prostate cancer, using models from paper 2.
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Chapter 4

Materials and methods

4.1 Image data

All methods presented in the papers were evaluated for recti of prostate cancer patients.

For implementation and evaluation of the methods in paper I and II, we used a data

set consisting of CT scans from prostate cancer patients enrolled in a clinical study at

Haukeland University Hospital in 20071(Ekanger et al. 2020; Hysing et al. 2018). The

patients were treated with moderately hypofractionated IMRT with three dose levels de-

livered as a simultaneous integrated boost. The treatment consisted of 25 fractions of 2.7

Gy each. Twice a week, a CT scan (resolution 0.7mm × 0.7mm × 2mm) was acquired

to monitor organ changes. The patients did not follow any particular preparation pro-

tocol before the pCTs, repeat CTs or treatment fractions. In each CT, the RT-targets

comprising the prostate, seminal vesicles and lymph nodes, were contoured by a senior

oncologist. The organs at risk, specifically the rectum, bladder, large and small bowel,

were contoured by expert physicists. For fear of adverse effects due to the moderate hy-

pofractionation, the PTV was cropped at the rectum. The study showed that there was

in practice little rectal toxicity, and this practice of cropping has since been abandoned

in our clinic.

The repeat CT-regime was adopted for 41 of the 97 patients enrolled in the study. Of

these, 37 patients were included in the final data set. In total, 373 scans (including

pCTs) were used in the evaluation.

In paper III, the same data set was used for training the deformation model. The model

was then applied to a data set from a different study, consisting of pCTs and RT-plans

1Approved by the regional ethics committee in western Norway, REK no. 2006/15727. For the
current project, all patient data had been anonymized.
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for 39 patients who received re-irradiation for recurring prostate cancer 5-10 years after

primary RT2. A pCT for the primary RT could be retrieved for 28 of the patients, for

which the treatment was heterogeneous. The re-irradiation consisted of 5 fractions of 7

Gy to the recurrent tumour in the prostate.

4.2 Data representation

The data used for the statistical models in this thesis are the hand-segmented contours of

structures seen in the CT-scans. During contouring, the expert draws the structure slice

by slice in 2D. The structure is stored together with the CT-image in the DICOM file

format (NEMA 2022). Each slice of the structure is stored as one or more 2D-polygons

(even though the 3D-structure is continuous, a in a single 2D-slice it can appear as

several unconnected structures). A visual example of this kind of representation is shown

in figure 4.1 A.

The polygonal representation is not ideal for deformation model, because the three di-

mensions are not represented equivalently. While a vertex of one of the polygons can

be moved around freely in the x-y plane without breaking the structure, it cannot be

moved in the z-direction. We therefore wish to convert the structure to what is usually

referred to as a “mesh” representation. In reality, the mesh is a polyhedron; a 3D-surface

defined by a set of contiguous polygonal (in practice triangular) faces. The computer

representation of the polyhedron typically comprises two arrays: one array of vertex

coordinates, and one of triangular faces (in terms of pointers to the three connected ver-

tices for each face). In the deformation models in this thesis, only the vertices are used.

As such, the organ representations within the deformation models can be thought of as

“point clouds”. However, the faces are necessary for volume calculation, and in general

for processing the results and converting back to DICOM format.

There are different ways of converting from the format using multiple 2D polygons to

a polyhedron, and the relative straightforward procedure we used is described in the

following section.

4.2.1 Conversion from slices to mesh

To convert a 2D-polygonal structure to a 3D-mesh, the structure was first converted

to a binary mask, i.e. a 3D array of voxels where each voxel has a value of 0 if it

2Approved by the regional ethics committee in western Norway, REK no. 2012/1868.
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Figure 4.1: Data representations for an example rectal shape. A: 2D polygon repre-
sentation (DICOM). B: Polyhedral (mesh) representation. A coarse mesh is used for
illustration purposes.

is outside the structure and 1 if it is inside the structure. This was done in 2D slice

by slice by finding pixels inside or outside the polygon structure, using a ray tracing

algorithm. The slices were then stacked to form a 3D structure. The resolution in the

x-y plane is arbitrary, and is chosen when running the ray-tracing algorithm, while the

resolution in the z-direction is determined by the input structure (in practice by the axial

CT-resolution).

Now the binary mask is interpreted as a discrete-valued function s = f(x, y, z), where the

value s is either zero or one. We are looking for a contour, also known as an isosurface,

of this function. An isosurface is the region where the value of the function crosses a

given threshold — a well known example in 2D are height contours of a map. To find

a smooth surface, the discrete valued function f was converted to a continuous-valued

function by applying a 3D low-pass filter. Finally, the marching cubes (Lorensen and

Cline 1987), a well known and widely available algorithm, was used to find the isosurface

of the function as a polyhedron.

The properties of the filter and the marching cubes threshold were chosen so that the

result was a reasonably smooth structure, and such that the original polygon vertices

were as close as possible to the polyhedron surface. In practice, high precision of this

transformation is not of great importance to the end result, due to the two-iteration

deformable registration described in section 4.3.1
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4.2.2 Conversion from mesh to slices

For exporting structures to a treatment planning system, they must first be converted

back to DICOM format. For each slice, we find the polygon around the polyhedron at a

constant z-level. Every vertex in the polygon is a location where the z-plane crosses an

edge of one of the faces of the polyhedron. This is conceptually relatively straightforward,

yet programmatically a bit more involved. Matlab™-functions for this procedure have

been published to the mathworks file exchange (Rørtveit 2022).

4.3 Contour registration

4.3.1 Rigid registration

Rigid registration is the process of aligning the coordinate systems between images.

For each patient, all CT images were rigidly aligned to gold markers implanted in the

patients’ prostates. Between patients, a “center of gravity” approach was used: The

planning CTs were aligned such that the average of all vertex coordinates matched.

Only the lower (caudal) half of the recti was used when calculating the center of gravity.

This was done because we observed that the cranial region, where the variation and

uncertainty is greatest, negatively affected the matching.

No rotation was performed in the rigid registration.

4.3.2 Deformable registration

Deformable registration is a key element in all the methods in this thesis. Deformable

registration is the process of deforming a shape so that it matches a different shape.

In this thesis, deformable contour registration is used, as opposed to deformable image

registration (DIR). In DIR, the image intensities are used as a guide to deform one image

to resemble another, whereas contour registration is purely shape-based, and the shape

of a point cloud is deformed to match the shape of another point cloud. The registration

was performed with the Matterhorn software, developed at the Erasmus MC cancer

institute in Rotterdam. The deform registration in Matterhorn uses a Thin-Plate-Spline

Robust Point Matching algorithm (Chui and Rangarajan 2003) based on the work by

Vásquez Osorio et al. (2009).

The algorithm finds a transform function (a thin-plate-spline transform) which “warps”
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the original shape into a shape similar to the target shape. The thin-plate-spline trans-

form warps not just the surface shape, but all of space, as shown in Figure 4.2. Therefore,

it can be used to interpolate and extrapolate the motion of points interior and exterior

of the organ as well.

Figure 4.2: Thin-plate-spline-transformation of the rectum from the planning CT to the
first treatment fraction for an example patient. The grid illustrates how the thin plate
spline deforms not only the surface points, but all of space, and thus can be used for
interpolation of interior points.

By replacing the target shape by the warped original shape, point-to-point correspon-

dence between the two shapes is found, as illustrated in Figure 4.3.

The process of deformably registering every shape in the data set is shown in Figure 4.4.

For each patient, deformable contour registration was performed between the pCT and

all repeat CTs (intra-patient registration). Furthermore, inter-patient registration was

performed by registering a reference patient’s pCT to all the other pCTs in the data

set. The reference pCT was warped to recreate the other pCTs, and the results were

further warped using the intra-patient transform functions to recreate the repeat CTs.

The precision of the inter-patient registration is lower than that of the intra-patient

registration, because there is greater variation in shapes between patients than within

the data for one patient. Therefore, we performed a second iteration of inter-patient

registration based on a new reference shape built by averaging all shapes in the data set,

as seen in Figure 4.4. The warping was then repeated from the new reference shape to

recreate all shapes in the data set. This second iteration improved the precision of the

inter-patient registration so that it was on par with the intra-patient registration.
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Figure 4.3: Illustration of how deformable registration finds point-to-point correspon-
dence. A: The original shape as blue crosses, the target shape as red dots. B: Displace-
ment vector field (DVF) found by the deformable registration algorithm as black arrows,
with original shape as blue crosses, and warped original shape as green crosses. Point-
to-point correspondence is found because the target shape is replaced by the warped
original shape. C: “Warped” original shape as green crosses, target shape as red dots.

4.4 Statistical distribution of shapes

To create a statistical model for shapes represented by P surface points, we gather the

x, y and z coordinates of the points into shape vectors :

s = [x1, y1, z1, x2, y2, z2, . . . , xP , yP , zP ]
T . (4.1)

With this representation, we can use standard multivariate statistical distributions. An

assumption for all models discussed in this thesis is that, for a specific patient, the shape

coordinates follow a multivariate Gaussian distribution:

s ∼ N (µ,R). (4.2)

The mean shape vector µ represents the patient’s mean organ shape, and the covariance

matrix R describes the variance of the coordinates as well as the covariance between

each pair of coordinates.

This data representation and data distribution underlies the patient-specific model by

Söhn et al. (2005), the population model by Budiarto et al. (2011) and the Bayesian

models in this thesis and the associated papers. The essential difference between the

models is how µ and R are estimated.
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Figure 4.4: Illustration of the inter- and intra-patient deformable registration process.

4.4.1 Patient-specific covariance matrix

The (unbiased) sample covariance matrix for a specific patient is given by

Rps =
1

J − 1

J∑
j=1

(sj − s̄)(sTj − s̄T ), (4.3)

where sj, j = 1 . . . J is the sample of shapes for that patient, and s̄ is the sample average,

i.e. s̄ = 1
J

∑J
j=1 sj. Equation (4.3) can be written in matrix form as

Rps =
1

J − 1
SST , (4.4)

where S is a matrix whose columns are the vectors sj − s̄, i.e.

S = [s1 − s̄ s2 − s̄ . . . sJ − s̄]. (4.5)
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In high-dimensional applications, the sample covariance matrix is in practice never con-

structed. Instead, the covariance matrix is represented implicitly by the sample matrix

S, which contains the same information.

The model by Söhn et al. (2005), which we refer to as the patient-specific model, uses

this covariance matrix for R and the individual sample mean for µ in equation (4.2).

4.4.2 Population covariance matrix

While the sample covariance matrix discussed in section 4.4.1 is well known and common

across a wide range of applications, the population covariance matrix discussed here is

specific for the problem at hand. Under the assumption that the shapes of patients’

organs differ in the mean, but share the same pattern of variation around this mean,

we can estimate the common population covariance matrix as the average of all patient-

specific covariance matrices in a data set:

Rpop =
1

M

M∑
i=1

Rps,i, (4.6)

where Rps,i is the sample covariance matrix of the ith patient.

Equation (4.6) can also be written in terms of sample-matrices as

Rpop =
1

M
SpopS

T
pop, (4.7)

where Spop is a matrix which contains all patient-specific sample matrices Si:

Spop = [
1√

J1 − 1
S1

1√
J2 − 1

S2 . . .
1√

JM − 1
SM ], (4.8)

where Ji is the number of samples for patient i.

Despite Rpop being a population covariance matrix, it is still an intra-patient covariance

matrix, since it describes the variation from fraction to fraction for one patient rather

than the variation between patients.

The model by Budiarto et al. (2011), which we refer to as the population model, uses

this covariance matrix for R and the individual sample mean for µ in equation (4.2).
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4.5 Principal Component Analysis

PCA is a popular technique in problems involving high-dimensional vectors. PCA finds

a representation of the sample covariance matrix comprising a set of orthogonal vectors,

called principal components (PCs), along with the variance of the data set in the direction

of each of these vectors. The first PC is the direction in which the data varies most. The

second PC is the direction in which the data varies most — in the subspace orthogonal to

the first PC. The third PC is the direction in which the data varies most in the subspace

orthogonal to both the first and the second PC, and so on. The purpose of PCA varies

between applications, but in organ deformation models the the purpose is usually one

or more of the following:

Reduce overfitting The uncertainty of the sample covariance matrix depends on the

number of samples and the number of dimensions. In high-dimensional problems,

the number of samples is almost always much smaller than the number of dimen-

sions, and the uncertainty is therefore very high. In PCA, the PCs with variance

less than some tolerance is typically discarded. In essence, we are only modelling

the subspace which we are most certain about, and simply saying we know nothing

of how the data behaves in the remaining space - only that there is less variance

there than in the principal subspace. This reduces overfitting of the covariance

matrix, because the discarded space presumably corresponds to features that are

specific to the small available data set.

Enable/simplify calculations Under PCA, data vectors can be approximated by a

low-dimensional vector of PCA scores, which are the coefficients of the vector

expressed in the basis of the PCs. This representation is easy to find due to the

orthonormality of the PCs. Furthermore, all coefficients are uncorrelated to each

other, which often simplify calculations by allowing the use of a few scalars rather

than vectors.

Visualization The covariance matrix may contain millions of values. To gain an un-

derstanding of the information it contains, it is necessary to visualize it in some

way. By reducing the covariance matrix to a set of “modes” (PCs), PCA makes it

possible to visualize typical variations of the distribution. Figure 4.5, taken from

paper II, shows how this works for a population model of the rectum.

The PCs are the eigenvectors of the sample covariance matrix, and can, in principle, be

computed by numerical eigenvalue decomposition. Often, the covariance matrix is too

large to be constructed, and the PCs are computed in some other way. For example, the
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Figure 4.5: Visualization of the first four PCA-modes for a population model for the
rectum. The blue and green shapes represent plus and minus two standard deviations
of each deformation mode relative to the population average rectum shape.

reduced singular value decomposition (SVD) of the sample matrix S gives the PCs and

their standard deviations.

Defining a matrix W whose columns are the PCs, and the diagonal matrix Σ whose

diagonal elements are the corresponding eigenvalues, R is related to W and Σ through

R = WΣW T . (4.9)

There are J − 1 non-zero eigenvalues if the covariance matrix is based on J shapes.

Thus, the dimensions of W are 3P × J − 1, where 3P is the number of elements in the

sample vectors (representing P points with three coordinates each), while Σ is J − 1 ×
J − 1. However, it is common to discard some of the PCs corresponding to the smallest

eigenvalues. In this case, (4.9) becomes an approximation instead of an equality.

The PCA-scores of a vector s are the coefficients of the vector expressed in the basis of

W . Since W is orthonormal, we can write the score vector y as

y = W T (s− s̄). (4.10)

Each element of the vector y represents a PCA-score for the corresponding PC. The

vector y has mean zero and covariance matrix Σ. Since the elements of y are uncorre-

lated, Σ is diagonal. The vector y is commonly used as a low-dimensional approximate

representation of s. The input s cannot be recreated exactly, but can be approximated:

s = s̄+Wy + ϵ ≈ s̄+Wy. (4.11)

Here, ϵ is a vector of errors - the part of s that cannot be represented by the PCs which
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are the columns of W . PCA has the property that it minimizes the variance of the error

vector ϵ.

4.6 Bayesian deformation models

In the following, a short presentation of three Bayesian deformation models is given.

The first method, presented in section 4.6.2, was the first to be developed during the

PhD-project, and has not been published. Nevertheless, it serves as an important piece

of the chronicle of how the methods in both paper I and paper II came to be. The latter

two, in sections 4.6.4 and 4.6.5, are the models introduced in paper II. The mean shape

estimation in paper I is also briefly discussed.

As in section 4.4, the distribution of an individual patient’s organ shape is modelled by

the random vector s which is distributed as

s ∼ N (µ,R). (4.12)

In a frequentist interpretation, µ and R are constant, but unknown. They can be es-

timated from data, albeit with some uncertainty. In the Bayesian interpretation, there

are no “true” parameters. Rather, the parameters are stochastic and governed by a

probability distribution. The distribution reflects the best of our knowledge about the

parameters, and is updated when we get new knowledge through new data.

4.6.1 R and µ as random and systematic error

The mean vector µ represents the average shape of the patient. Any deviation between

the estimated and the true mean represents a systematic error. The covariance matrix

R, on the other hand, describes how the organ shapes may change from fraction to

fraction in terms of the variance of each point coordinate and the covariance between the

coordinates. The variation over the mean from fraction to fraction is the random error.

In this context this is a bit of a misnomer, as the systematic error is also, statistically

speaking, random. It would not be quite correct to say that µ and R represent the

systematic and random errors, respectively, but it is certainly true that µ is related to

the systematic error while R is related to the random error.

To build a Bayesian model, either µ, R or both can be considered stochastic. Any of

these choices would create a novel method. Letting R be stochastic, an update equation
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can be found that updates the distribution of R when given new data, thus combining

population and patient-specific data to model the random error. Letting µ be stochastic,

an update equation for the distribution of µ when given new data is found, which both

models and reduces the systematic error; something that has not been done in previous

models. In the following, we have chosen to consider both µ and R stochastic.

4.6.2 A Bayesian deformation model based on PCA

The general idea of the following model is that the mean and variance of the PCA-score

of each mode follows a separate distribution. This way we avoid the complexity of matrix

distributions.

The population model of Budiarto et al. (2011) assumes that all patients share the same

covariance matrix. This covariance matrix is represented by PCs and their variances.

We loosen this assumption: suppose that the PCs are constant, but their variances

vary between patients. The independence between PCs makes this model particularly

desirable, because independent scalar distributions can be used for each PC.

This method relies on the assumption that the PCs of the intra-patient variation, i.e.

the variation from fraction to fraction for one patient, are the same as the PCs of the

inter-patient variation, i.e. the variation of mean organ shapes between patients. The

variance of the PCA-scores can, however, be different between the inter-patient and

intra-patient level. Furthermore, we assume that the intra-patient PCs are the same for

each patient, but that their means and variances differ from patient to patient.

Given a set of such PCs ψk, k = 1 . . . K, the PCA-scores ck for a shape vector s are given

by

ck = ψT
k (s− µ0), (4.13)

where µ0 is the population mean shape. The shape vector s can be approximately

reconstructed from the scores ck and the components ψk,

s ≈ µ0 +
K∑
k=1

ckψk (4.14)

Note that the computation of PCA-scores in (4.13) differs from that of the population

model by Budiarto et al. (2011), in that it is the population mean µ0 rather than the

patient mean s̄ that is subtracted from s. This means that the scores are non-zero even

when only a single observation is given. Furthermore, although the expected values of

the scores are zero at a population level, the expected value for a specific patient is
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non-zero. We model the scores ck for a given patient as normal distributed according to

ck|µk, λk ∼ N(µk, λk) (4.15)

The scores c1 . . . cK are then independent by PCA theory. At the population level, the

mean of ck is 0 by the definition of PCA, while the variance is λk, the kth largest

eigenvalue of the population covariance matrix. However, we want to find the patient-

specific mean and variance of ck for each k. We do this in a Bayesian fashion by proposing

that the mean µk and variance λk of ck are random, and distributed according to a

normal-inverse-gamma (NIG) prior distribution:

µk, λk ∼ NΓ−1(mk, τk, αk, βk). (4.16)

In a NIG distribution, λk is drawn from an inverse gamma distribution,

λk ∼ Γ−1(αk, βk), (4.17)

where αk and βk are hyperparameters called the scale and shape parameters. The dis-

tribution of µk depends on λk, and is Gaussian given λk:

µk|λk ∼ N (mk,
1

τk
λk). (4.18)

The NIG distribution is a conjugate prior to the normal likelihood. Therefore, the

posterior distribution given a sample {ck,j}Jj=1 of J realizations of ck is

µk, λk|ck,1 . . . ck,J ∼ NΓ−1(m′
k, τ

′
k, α

′
k, β

′
k). (4.19)

The posterior hyperparameters are given by

m′
k =

Jc̄k
τk + J

(4.20)

τ ′k = τk + J (4.21)

α′
k = αk +

J

2
(4.22)

β′
k = βk +

1

2

J∑
j=1

(ck,j − c̄k)
2 +

Jτkc̄
2
k

2(τk + J)
, (4.23)

where c̄k is the average of ck,1 . . . ck,J . Now, to draw samples from the posterior predictive

distribution of ck, one would first draw µk and λk from the posterior distribution (4.19),

and then use these to draw ck from the likelihood (4.15). Alternatively, one may use

point estimates µ̂k and λ̂k and insert directly into the likelihood (4.15). Choosing the
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expected value of the posterior as the point estimate, we get

µ̂k = m′
k (4.24)

λ̂k =
β′
k

α′
k − 1

. (4.25)

Each mode k has different prior and posterior parameters. To draw a new shape s∗, one

would draw new scores c∗k for each k from the respective distributions. Then s∗ can be

synthesized as in (4.14):

s∗ = µ0 +
K∑
k=1

c∗kψk. (4.26)

However, the limited number K of PCs cannot represent the patient specific mean shape

exactly, therefore the expected value of s∗ is not equal to the patient specific mean shape

µ. This problem does not appear in the traditional population model because the sample

average s̄ is used in place of µ0. To correct for this bias, we can add the approximation

error of the sample mean to the new sample s∗:

s∗ = µ0 +
K∑
k=1

c∗kψk + ϵ̄, (4.27)

where ϵ̄ is the approximation error of the sample mean,

ϵ̄ = s̄− µ0 −
K∑
k=1

c̄kψk. (4.28)

However, note that c∗k is drawn from a distribution whose mean is not c̄k, but rather
J

τk+J
c̄k, i.e. a shrunk estimate of the mean of the kth mode. It is natural to treat the

approximation error in the same fashion. Therefore, we introduce a parameter τϵ, and

finally let the new samples be drawn as

s∗ = µ0 +
K∑
k=1

c∗kψk +
J

τϵ + J
ϵ̄. (4.29)

The hyperparameters τk, αk and βk for all k as well as τϵ can be found by maximum

likelihood estimation or the method of moments based on the set of training data from

which the PCs ψk are derived. By construction, mk is zero for all k.
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4.6.3 Shrinkage towards the population mean

When developing the method in section 4.6.2, we found that the shrunk error term in

equation (4.29) was responsible for a portion of the improvement over the population

model. This term is non-randomly added to every drawn shape, and therefore represents

a systematic shift. The improvement thus represents an improvement in systematic error.

In fact, this improvement can be achieved without using the PCA model at all: Suppose

there are no PCs, i.e. K = 0. Then (4.28) becomes

ϵ̄ = s̄− µ0, (4.30)

and (4.29) becomes

s∗ = µ0 +
J

τϵ + J
ϵ̄. (4.31)

This s∗ is non-random given the sample s1, . . . , sJ , and can be considered an estimate µ̂

of the patient mean shape. Inserting (4.30) into (4.31), we get

µ̂ = µ0 +
J

τϵ + J
(s̄− µ0)

= (1− a)µ0 + as̄, (4.32)

where a = J
τϵ+J

. In other words, the sample mean shape s̄ is shrunk towards the pop-

ulation mean shape µ0 by a factor 1 − a. This discovery led to the publishing of paper

I, which uses exactly this shrinkage estimate of the patient mean shape to to reduce

systematic errors.

4.6.4 A model based on a full matrix distribution

The method in section 4.6.2 can be considered an enhancement of the population model,

since it adds patient specific means and variances of the PCA-scores. However, it still

has a weakness compared to the patient-specific model in that the PCs are never updated

when new patient-specific data becomes available. Thus, while the patient-specific model

can recreate patient-specific motion pattern given sufficient data, the NIG-model can

never do so.

In order to get a step further, the entire covariance matrix needs to be updated when

new data becomes available. To do this in a Bayesian fashion, the covariance matrix

must be governed by probability distribution of matrices.

The conjugate prior of a multivariate Gaussian likelihood with unknown mean and co-
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variance matrix is the normal-inverse-Wishart (NIW) distribution. In the scalar case

(i.e. the vector we are modelling is of dimension 1), the NIW is equal to the NIG distri-

bution. In paper II, we developed a model using the NIW as a prior and a specific point

estimate for the mean and convariance matrix, which resulted in the following update

equations:

µ̂ =
1

κ+ J
(κµ0 + Js̄) (4.33)

R̂ =
1

ν + J

(
νR̂pop +

J∑
j=1

(sj − s̄)(sj − s̄)T +
κJ

κ+ J
(s̄− µ0)(s̄− µ0)

T

)
, (4.34)

where κ and ν are new hyperparameters. Interestingly, the update equation for the mean

estimate (4.33) is identical to that of paper I.

The direct calculation of R̂ is not practical because of the size of the matrix. An efficient

way of implicitly representing R̂, which also involves PCA in the representation of R̂pop

is shown in paper II.

4.6.5 A model with separate inter and intra-patient distribu-

tions

The NIW model is an attempt at getting “the best of both worlds” from the population

and patient-specific models. Even so, we have seen that the NIG-model can outperform

the NIW-model given a single input scan. Looking more closely at the estimated mean

µ̂, we find a possible contributing factor to this phenomenon: The mean estimate for the

NIW model (4.33) is equivalent to that of the NIG model using zero PCs (4.32). The

estimated mean is a convex combination of the patient-specific sample mean and the

population mean. In the NIG-model, on the other hand, there are separate weights τk

for each PC. This is due to a more complex relationship between the inter-patient and

the intra-patient covariance matrices in the NIG-model compared to the NIW-model. In

the NIW prior, the inter-patient covariance matrix is 1
κ
R, where R is the intra-patient

covariance matrix. In the NIG model, the intra-patient covariance matrix is

R =
K∑
k=1

λkψkψ
T
k , (4.35)

whereas the inter-patient covariance matrix is

Λ =
K∑
k=1

λk
τk
ψkψ

T
k , (4.36)
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where ψk are the combined inter/intra-patient PCs. The scalar parameters τk provide ex-

tra degrees of freedom in the relationship between the inter and intra-patient covariance

matrices, which again leads to more degrees of freedom in the estimate of the patient

mean.

This suggests that we might be able to enhance the model further by making no as-

sumptions about the relationship between the inter-and intra-patient covariance matri-

ces. Consider a scenario where the intra-patient covariance matrix R is known, and the

patient mean µ is distributed as

µ ∼ N (µ0,Λ) (4.37)

for some given µ0 and Λ. Then the posterior distribution of µ given data s1, . . . , sJ is

also Gaussian (Gelman et al. 1995):

µ|s1, . . . , sJ ∼ N (µ′
0,Λ

′), (4.38)

with

Λ′ = (Λ−1 + JR−1)−1 (4.39)

µ′ = Λ′(Λ−1µ0 + JR−1s̄). (4.40)

Equation (4.40) can be used in place of the simple shrinkage estimate (4.32) from paper

I, though it requires estimation of R and Λ.

This result is valid when R is deterministic. In order to model patient-specific motion

patterns in a Bayesian framework, R must be considered stochastic. To untie R from Λ,

let the prior of µ be given by (4.37) and let the prior of R be inverse-Wishart:

R ∼ IW(Ψ, ν), (4.41)

and let R and µ be independent. The resulting joint prior for R and µ is not conjugate

to the Gaussian likelihood (4.12), and therefore the posterior is not easily calculated. In

paper II, we used the mean field variational Bayes approximation to find an approximate

posterior. In this approximation, the posteriors of µ and R are also independent, and also

Gaussian and inverse Wishart distributed, respectively. An iteration for calculating the

parameters of the posterior was found, and we also demonstrated a way to estimate the

prior parameters Ψ and Λ, and found an efficient algorithm for performing the iteration

using these estimates.
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4.7 Methods used for evaluation

4.7.1 Surface and volume similarity

An important part of the evaluation of organ deformation models is comparison of organ

shapes. It is desirable to have a single number to represent the similarity or dissimilarity

between two shapes. Two fundamentally different concepts of similarity between object

shapes are surface similarity, i.e. how far the surfaces are from each other (on average,

maximum or similar), and volumetric similarity, which compares how well the inside

volumes of the shapes match.

A common measure for surface similarity is the Hausdorff distance (HD). It has the

advantage of being defined for any two sets of points A and B, regardless of whether

there is correspondence between the points or even if they contain different number of

points. The HD is determined by the one point in any of the two sets that is furthest

from any point in the other set, and as such it is a “worst-case” measure. Defining the

minimum distance from an arbitrary point x to any point in A as

dA(x) = min
a∈A

∥x− a∥, (4.42)

the HD between A and B is given by

HDA,B = max(max
a∈A

dB(a),max
b∈B

dA(b)). (4.43)

A generalization of the Hausdorff distance to local distances, i.e. one distance per point

in A instead of a single distance for all points, is the bidirectional local distance (BLD)

(Kim et al. 2012). The BLD for a point a in A is the maximum of: the shortest distance

from a to any point in B, and the distance from a to any point b in B for which the

closest point in A is a. Mathematically, the BLD from a set A to a set B at a point a in

A, denoted BLDA,B(a), is given by

amin(b) = argmin
a∈A

∥b− a∥ (4.44)

Bmin(a) = All b such that amin(b) = a (4.45)

BLDA,B(a) = max(dB(a), max
b∈Bmin(a)

dA(b)). (4.46)

The maximum BLD is the HD.

For volumetric similarity, the most common measure is the Dice-coefficient, which is
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Figure 4.6: Coverage probability matrices for the rectal wall on a sagittal slice of the CT
scan for two example patients — a “small mover” (A) and a “large mover” (B). The red
area is the high dose volume to the prostate, that receives more than 67 Gy EQD2

defined as

Dice(C,D) = 2
|C ∩D|
|C|+ |D| (4.47)

Here |C| and |D| represent the volume of C and D, and |C ∩D| represents the volume

that is common between C and D. The Dice coefficient is 1 if the shapes are identical,

and 0 if there is no overlap between the shapes. To compute the Dice coefficient in

practice, the 3D space is divided into small voxels, and a “point containment” algorithm

determines which voxels are inside and which are outside each shape. The total volume

of a shape is the number of voxels inside the shape, and the shared volume is the number

of voxels inside both shapes.

4.7.2 Computation of coverage probability matrices

A coverage probability matrix (CPM) for an organ is a 3D matrix of voxels, where

each voxel has a value indicating the probability that the organ will cover that voxel

at any given time, as illustrated in Figure 4.6 (taken from paper II). CPMs are useful

in motion-robust radiotherapy planning and evaluation, among other applications. The

simplest way to estimate CPMs from a deformation model is by Monte-Carlo sampling:

Randomly sample many shapes based on the model, and, for each shape, find which

voxels are inside and which are outside of the shape. The coverage probability at each

voxel is determined by the fraction of random shapes that covered that specific voxel.

To find the points inside and outside the shape, a point-in-polyhedron algorithm is used.

A fast algorithm for the point-in-polyhedron problem was implemented specifically for

this use, and is presented in paper IV.
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4.7.3 Cross validation

For evaluation of the methods in paper I and paper II, we used leave-one-out cross

validation (LOOCV). Cross validation is used to avoid the inflated results that occur if

the evaluation data is included in the training database. In LOOCV, the model is re-

trained for each patient in the data set, using all the other patients’ data as training data.

While LOOCV is more costly in terms of complexity than other methods, specifically

k-fold cross validation, the advantage is that we use as much training data as possible

for each patient, and that we get an isolated result for each patient and can therefore

report the results as though the training database was the evaluation database.



Chapter 5

Summary of results

5.1 Paper I

In paper I, we introduced a method using shrinkage estimation (see section 2.1) to

estimate the patient-specific mean organ shape by combining the shape seen in the pCT

and the population mean shape. We evaluated the method using LOOCV on the recti

of prostate cancer patients. The “true” mean shape for each patient was calculated by

averaging the remaining 8-10 rectum shapes from the repeat CTs.

The estimated mean rectal shapes from the shrinkage method were significantly more

similar than the pCT-shapes to the “true” mean shapes, both in Dice-score and HD,

as seen in Figure 5.1 A and C. The Dice-score improved for 33/37 patients, while the

HD improved for 28/37 patients. Additionally, the improvement was greater for patients

who had large discrepancy between the pCT and the true mean shape, as seen in figure

5.1 B and D.

The improvement in similarity did not lead to a significant improvement in D5% (the

minimum dose delivered to the 5% of the organ receiving highest dose) or equivalent

uniform dose (EUD). However, in the DVH, we saw a significant reduction in bias in the

high-dose region between 52.5 Gy and 65 Gy.
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Figure 5.1: Similarity to the individual patient mean rectum shape (individual mean
shape, IMS) for the “shrinkage estimated shapes” (SES) and the planning CT shapes
(pS) in each patient. A and C: Box plots of the similarity to the patient mean shape
of the plan shape and the shrinkage estimate as median (red line) with 25th and 75th
percentiles and maximum and minimum values (whiskers). B and D: scatter plots of the
similarity to the patient’s mean shape for the plan shape versus the shrinkage estimate.
In A and B (Dice similarity), higher is better, while in C and D (distance), lower is
better. Figure taken from paper I (Rørtveit et al. 2021).
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5.2 Paper II

In paper II, we presented two new organ deformation models based on Bayesian meth-

ods, the NIW model (section 4.6.4) and the variational Bayes model (section 4.6.5), and

evaluated these for the rectum of prostate cancer patients. In our evaluation, the varia-

tional Bayes model produced more accurate CPMs than the NIW-model. Nevertheless,

we felt that it was important to present the NIW-model since it is considerably less com-

plex, conceptually and implementation-wise. We also compared the two new methods to

the patient-specific model by Söhn et al. (2005) and the population model by Budiarto

et al. (2011).

To evaluate the two new and two old methods, we estimated the CPM for each patient

using a varying number of scans as input. We then correlated the estimated CPMs with

reference CPMs which we considered the ground truth, and which were calculated from

the remaining scans not used as input. Since there is a limited number of scans remaining

to calculate the ground truth, we evaluated the method for the original data only for up

to 3 input scans. To evaluate the convergence of the methods up to 10 input scans, we

used a PCA-based bootstrapping technique to generate a new data set of shapes.

In the evaluation with real data, both the NIW-model and the variational Bayes-model

produced CPMs with significantly higher correlation to the ground truth than the pop-

ulation model when using 1, 2 and 3 input scans. The variational Bayes model further

produced significantly better results than the NIW model for 1, 2 and 3 input scans (Fig-

ure 5.2). Also when evaluating convergence, the two Bayesian methods outperformed

both the existing methods for up to 8 input scans, after which they perform similar

to the patient-specific model (Figure 5.3). The population and patient specific model

produced approximately equal correlation to the ground truth at four scans. The popu-

lation model was superior to the patient-specific model with fewer than four scans and

vice versa.
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Figure 5.2: Correlation between the estimated CPMs and the references for the different
methods using 1-3 input scans. A: Average correlation. B: Box plots showing median,
25th and 75th percentile and minimum and maximum values (whiskers). All individual
values are also shown as circles over the box plot. Figure taken from Paper II (Rørtveit
et al. 2023).
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Figure 5.3: Average correlation between the estimated CPMs and the reference CPMs
for the different methods using 1-10 scans, based on bootstrapped data. Figure taken
from paper II (Rørtveit et al. 2023).
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5.3 Paper III

To calculate the CPMs used in the evaluation of the methods of paper II, it was necessary

to determine which voxels were outside and which were inside each of the thousands of

shapes randomly generated for the Monte Carlo calculations. In addition, the voxel grid

was quite fine, at 1× 1× 1 mm, meaning each shape contained millions of points.

Determining whether a point is inside or outside a polyhedron is called the “point-in-

polyhedron” problem, and there are many known algorithms for solving it. However,

none of the available open-source software libraries could provide the performance that

was needed for the evaluation in paper II. Therefore, a new software library was created,

that uses optimizations that are only possible when all the points to be tested are aligned

on a grid. The implemented algorithm contains several new ideas, among them a fast

and simple inexact way of dealing with edge-cases, which are a major concern in most

such algorithms. To maximize performance, the algorithm was implemented in C++,

and has a Matlab™ interface.

The software was benchmarked against an open source implementation of the algorithm

in Liu et al. (2010), on a Windows PC with an Intel(R) Core(TM) i5-9500 CPU @

3.00GHz and 16 GB of RAM. Identifying 213 million points in a polyhedron with 73000

faces took 0.24 seconds with InsidePolyhedron, and 48.7 seconds with the reference

software - i.e. a factor 200 difference. It should, however, be noted that the reference

software is more general, in that it can solve the point-in-polyhedron-problem for points

that are not aligned on a grid.

5.4 Paper IV

As an application of the organ deformation models presented in paper II, paper IV

presents a of a method to accumulate dose and estimate dose uncertainty for the rec-

tum of prostate cancer patients receiving re-irradiation. The method will automatically

adjust the uncertainty based on the model’s assessment of the two patient-specific scans

combined with population statistics. The estimates of the average dose and its uncer-

tainty are based on dose to three rectum shapes generated by the model that represent

the expected dose and plus/minus one standard deviation. The anterior region of the

rectum near the prostate moved on average 2.6mm in the direction of the dose gradi-

ent for the +1 standard deviation shapes compared to the expected shape. The patients

with highest and lowest uncertainty moved 3.4mm and 1.9mm in the dose gradient di-

rection, respectively, showing that the model implicitly differentiates between small and
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Figure 5.4: Saggital view of the estimated mean shape and plausible mean shapes repre-
senting plus and minus 1, 2, and 3 standard deviations (of dose) for an example patient.

large movers. A saggital view of representative shapes for an example patient at plus

and minus 1, 2, and 3 standard deviations is shown in Figure 5.4.

For one of three example patients, the accumulated planning CT DVH underestimates

the dose compared to the expected mean shape calculated by the model, as seen in figure

5.5, center. For this patient, D5% (5% of the volume gets at least this dose) is lower than

the 97.5th percentile. For the two other patients, the accumulated DVHs are relatively

similar to the expected DVH. The second of these patients had rectal toxicity grade 2,

while the others had no rectal toxicity.
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Figure 5.5: DVHs to the rectum for three example patients, showing the sum of the
planning CT DVHs for both therapy courses, the expected accumulated dose and the
95% credible interval, which is the Bayesian counterpart to the confidence interval.
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Chapter 6

Discussion

Current organ motion and deformation models suffer from some limitations that have

been the focus of this project. An inherent issue with the patient-specific model by Söhn

et al. (2005) is that it requires many scans to predict a patient’s deformation patterns. It

is rarely realistic to have 3-5 scans available before start of treatment, which is the main

reason for the introduction of the population model by Budiarto et al. (2011). In this

model, the deformation patterns of the “population” is measured from a set of training

data, and the average pattern is assumed to be valid for each new patient. This solves

the issue of needing many scans. On the other hand, even if given multiple scans from

a new patient, this method cannot tailor the distribution of the random error to the

specific patient. In this project, for the first time, both these methods were implemented

and evaluated for a range of inputs. They were thereby compared to the newly developed

methods from this project. The comparison and improvements are found in paper II.

The methods developed in this project solve the mentioned issues of the patient-specific

model and the population model simultaneously. Using Bayesian methodology, the esti-

mates from the population and the individual patient are merged, with the weight given

to the individual estimates increasing in proportion to the number of individual measure-

ments. With few individual scans, the population estimate dominates, with many, the

individual estimate dominates. The gradual shift from population to individual weight is

regulated by the parameter ν. With J measurements, the weight given to the individual

estimate is J/(ν + J).

Additionally, these are the first methods to estimate the distribution of the patient’s

mean organ shape. Since the expected mean shape in these models is calculated from

both population and patient-specific data, systematic errors are reduced as compared to

previous models where only the patient-specific mean shape has been used.
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As mentioned in the introduction, systematic errors are a major concern, as they will

cause parts of a structure to consistently receive too high or too low dose throughout all

fractions, as opposed to random errors that tend to be “blurred out” by fractionation

(Amer et al. 2001; van Herk 2004). Consider the well-known and much used margin

recipe by van Herk et al. (2000), which under typical considerations says the margin

should be 0.7σ + 2.5Σ, where σ is the standard deviation of the random error and Σ

is the standard deviation of the systematic error. Typically, the values of σ and Σ are

almost identical, yet more than 3 times more weight is given to the systematic error than

to the random error to ensure proper target coverage.

Reduction of systematic errors using population statistics has previously been proposed

by Hoogeman et al. (2005) who modeled the rectum as an unfolded tube using the method

developed in their previous publication (2004). They had some success in predicting the

rotation of the prostate and displacement of the upper anterior rectal wall based on a

linear regression from the volume of the rectum. Their results motivated our work in

paper I.

The improved estimation of the patient’s mean organ shape also leads to improved esti-

mates of the random error. A single observation usually does not provide any information

on the variation from fraction to fraction, i.e. the random error. This is the reason why

the mixed-effect model of Rios et al. (2017) did not show improvement over the popula-

tion model given a single input. However, in the Bayesian models with unknown mean

shape µ, the difference between the expected mean shape and the observation is a source

of information on the patient-specific deformation patterns. Thus, the Bayesian models

can provide better estimates of both the systematic and the random errors even using

only a single scan.

The systematic error is defined as µ̂ − µ, where µ̂ is the estimate of the mean and µ is

the true mean. In the conventional methods (both the population and patient specific

model), the average of the J observed shapes of a patients is used to estimate the true

mean. Under the assumption that conditions are identical during scanning and therapy,

the distribution of the systematic error is N (0, 1
J
R). Here, R is the covariance matrix

of the random error, which is the same as the covariance matrix of the observations.

In the Bayesian models, µ is considered random, therefore the distribution of µ̂ − µ

depends on the prior distribution of µ. In the NIW-model, since µ̂ is the mean of the

posterior, the systematic error is µ′ − µ′
0, which is distributed as N (0, 1

J+κ
R). Thus,

the variance of the systematic error is reduced by a factor of J/(J + κ) as compared

to the conventional methods. For the variational Bayes model, the systematic error is

distributed approximately as N (0,Λ∗), and it is not equally easy to see the reduction

in variance because of the complex relationship between Λ∗ and Ψ, but here as well a
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reduction compared to 1
J
R is guaranteed. This of course only applies if the model and

model parameters are a good fit for the data. The fit of the parameters is ensured by

the training.

While the methods presented in paper I and II are general in the sense that they can

be applied to any organ or RT-target, they have been evaluated for the recti of prostate

cancer patients. The rectum is a highly flexible organ which undergoes major deforma-

tions, in particular in response to filling and emptying of feces and gas, but also due to

the motion of other organs (Hoogeman et al. 2004; Roch et al. 2021; Scaife et al. 2015).

Additionally, the rectum is usually the dose-limiting organ for prostate cancer RT due

to its proximity to the prostate and the incidence of rectal toxicity (Schultheiss et al.

1997; Sripadam et al. 2009). Under IGRT with matching to the bony anatomy, rectal

distension has been found to be the main cause of prostate motion (Pinkawa et al. 2006).

In all the methods in paper I and II were cross-validated using LOOCV. This means

that we get a result for every patient in the data set without bias, because the training

is performed separately for each patient using the remaining patient’ data as training

data. For a complex model, both the implementation effort and running time of LOOCV

can be significant. On the other hand, LOOCV provides more data for both training

and evaluation than the simpler approach of splitting the data set in two parts, one for

training and one for evaluation.

In paper IV, a method for using the models from paper II to estimate doses in terms

of DVHs with uncertainty bands based on “representative shapes” was developed. This

method was specialized for the rectum of prostate cancer patients, but also has the

potential to be generalized. One advantage of using representative shapes is that they

make it easy for the oncologist or dose planner to see possible organ configurations

that may be problematic. Another advantage is that the TPS’s existing features for

calculating dose to a structure can be used to calculate dose uncertainty. The method

was applied to estimate accumulated dose and uncertainty for patients receiving re-

irradiation for prostate cancer. These patients are at special risk, because the OARs

have already been exposed to radiation, and the amount of repair since the previous

irradiation is unknown. On the other hand, there will usually be two pCTs available for

the patient, which makes it possible to model motion and deformation with improved

accuracy.
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6.1 Deformation model applications

Organ deformation models can be used to generate statistically meaningful margins. The

margin recipe of Stroom et al. (1999) places the margin at a contour where the coverage

probability is constant, such that the target rarely move outside of the PTV. The coverage

probability can be calculated by organ deformation models, as done for prostate OARs

in Hysing et al. (2011), and for rectal cancer targets in Bondar et al. (2014). Ramlov

et al. (2017) expanded this technique to simulate the CPM-based robust optimization of

Baum et al. (2006) by introducing multiple margins with decreasing coverage probability,

and with reduced dose objectives for margins at lower CPM boundaries.

Another important application of deformation models is the characterization and vi-

sualization of organ motion and deformation. Lung motion and deformation has been

studied by Badawi et al. (2010), Dhou et al. (2020), and Li et al. (2011a), Tsiamas et al.

(2018) studied head and neck-related structures while Rios et al. (2016) studied bladder

motion and deformation. The rectum, prostate and bladder was studied simultaneously

to characterize correlations between their motions in Söhn et al. (2005). Motion and

deformation characterization can have direct use in the clinic, e.g. Thörnqvist et al.

(2013a) characterized the motion of prostate CTVs to evaluate the required magnitude

of isotropic margins.

Many motion-robust plan optimization algorithms rely on distributions of the patient

motion (e.g. Baum et al. 2006; Birkner et al. 2003; Unkelbach and Oelfke 2004; Unkelbach

and Oelfke 2005). Such distributions can be found by organ deformation models, and

directly substituted into the robust optimization. Other algorithms rely on multiple

realizations of the patient geometry (Fredriksson et al. 2021; Sobotta et al. 2010; Xu

et al. 2014), which can also be produced by deformation models.

When robust optimization is not available, an alternative is to evaluate the robustness of

plans generated with traditional methods (Hysing et al. 2018; Söhn et al. 2012). Through

Monte-Carlo simulations, one can estimate both the expected accumulated dose and its

variance locally in the organ, which again can be used e.g. to estimate DVHs with

uncertainty bars.

Other applications include generating plan-of-the day libraries for adaptive radiotherapy

(Rigaud et al. 2019), correlating breathing motion to abdominal changes to correct for

these (Liu et al. 2021; Nakao et al. 2021), and auto-segmentation (Heimann and Meinzer

2009). Recently, Owens et al. (2022) used a pure inter-patient model to reconstruct

colorectal dose in childhood cancer survivors who had received RT with no CT simulation.
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Despite the widespread use of statistical organ motion models in research, there is little

evidence of their use in the clinic. An exception is the HYPERION dose planning

software, developed at the university of Tübingen, which has implemented the coverage

probability based robust optimization by Baum et al. (2006) as well as the Monte-

Carlo based robust optimization method by Sobotta et al. (2010). Ramlov et al. (2017)

introduced a simple way to build plans in Varian Eclipse™ that were near identical to

those produced by HYPERION. This method was used in a clinical study on EBRT

boost of lymph nodes in patients receiving brachytehrapy for locally advanced cervical

cancer (Lindegaard et al. 2017), with promising results.

An obvious hurdle in the use in clinics is the lack of implementation of such models in

commercial TPSs. Furthermore, quality assured training data needs to be available for

population models, and many scans are needed for patient-specific models. There may

also be a certain reluctance to using machine learning techniques in the clinic (Poon

and Sung 2021), though this reluctance is gradually dwindling with the introduction of

time-saving tools such as auto-segmentation and rapid automatic planning.

Bayesian models offer additional advantages and possible applications because they quan-

tify the model uncertainty. This is exemplified by paper IV, where the uncertainty

of the mean is used to produce uncertainty bands for the DVHs of patients receiving

re-irradiation. While re-irradiation is becoming more common, prescriptions and pro-

cedures tend to vary from clinic to clinic (Andratschke et al. 2022). Internationally

accepted guidelines are therefore needed, but such guidelines require modelling of previ-

ous radiation damage and repair (Paradis et al. 2019). Guidelines must build on reports

of re-irradiated cohorts, and these reports should contain information on the cumulative

dose (Andratschke et al. 2022). The algorithms presented in this thesis allow simple yet

relatively accurate (as compared to a deformable image registration approach) calcula-

tion of accumulated dose by replacing organs in both pCTs by the estimated mean shape

of the organ. Furthermore, dose uncertainty can be calculated, accounting for system-

atic error and the model uncertainty using simple means (by representative shapes) or

more complex means (Monte-Carlo simulations).

6.2 Model assumptions and potential improvements

The presented deformation models explicitly do not include rigid shifts of the patient

geometry. Rather, they model deformations relative to a fixed patient coordinate sys-

tem. Where the origin is depends on the rigid registration of images performed before

deformable registration. It is important that the model is based on data which uses
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the same origin as used in treatment. For pelvic treatments, fiducial markers or bony

anatomy is typically used as the fixed point for rigid registration. In the daily frac-

tions, IGRT-routines are used, where the patient is moved by a robotic treatment table

to match the position of the daily portal image to the pCT. However, some amount of

setup error will remain. This setup error is not included in the models, as it is not seen

in the matched images. If measured, the variance of the remaining setup error can be

included in the models by adding a constant to the covariance matrix.

The methods in papers I, II and IV all additionally require rigid registration between

patients. This is a more challenging concept because one cannot always rely on landmarks

such as fiducial markers or bony anatomy. In paper I, we used the “center of gravity”

of the lower (most caudal) half of the rectum at the pCT as a fixed point between

patients. This was chosen because this part of the rectum is more stable than the cranial

part, because it includes the part of the rectum closest to the prostate, and because it

generated satisfactory results in the estimation of the patient’s mean rectum shape. A

more complex method involving optimization was tested, but yielded no better results.

This center-of-gravity registration method was therefore carried over to papers II and

IV.

The PCA/covariance matrix-based models are linear; they do not model e.g. rotation.

To see this, consider that each PC corresponds to a linear shift in the coordinates, and

a different PCA-score means a different length of the shift. A small rotation can never-

theless be approximated by a small linear shift. Nonlinearity can be taken into account

by using a nonlinear parametrization instead of PCA, or by modelling the parameters

of a nonlinear function (e.g. the thin-plate-spline) instead of the coordinates of surface

points.

The model assumes that all scans are identically distributed. This means that it does

not account for systematic changes that may occur during radiotherapy, such as tumor

shrinkage, weight loss/gain, or diarrhea. In our evaluation data, the rectal volume did not

change significantly over time (Hysing et al. 2018). Nevertheless, modelling systematic

changes through PCA models has been shown possible by Chetvertkov et al. (2016), and

may be an interesting future direction.

While this thesis has focused on deformation of organ contours, and therefore also de-

formable contour registration, the methods can equally well be applied to the deforma-

tion of voxels of the organ of interest, and use deformable image registration (Dhou et al.

2020; Fransson et al. 2021; Li et al. 2011b; Szeto et al. 2017; Tilly et al. 2017; Tsiamas

et al. 2018). While one might imagine that this improves the accuracy of deformations

in the interior of the organ, this is not necessarily so due to lack of contrast on the CT
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scan of an organ interior. For the rectum, registering the interior will cause unwanted

warping because of the changing location of gas, so the organ interior is usually replaced

by a fixed intensity level in the CT data before deformable image registration.

The sources of error for the deformation models include errors in their input data and

in the assumptions and approximations. It is well known that organ/target delineation

varies both between and within observers. While no reports on the inter/intra-observer

variations of rectum delineations was found in a pubmed search, White et al. (2021)

reported average inter-observer variations of delineations of the mesorectum at 1.7 mm

(mean distance to agreement) and 11.1 mm (max distance to agreement, or Hausdorff

distance) on CT scans. There are also errors in the deformable registration. We measured

0.22/0.23 mm average forward accuracy of the inter/intra patient registrations used in the

papers. This may appear negligible compared to the inter-observer variation, however,

for deformable registrations, a good distance-to-agreement does not necessarily mean

a correct correspondence between shapes. Unless there are visible “landmarks” in the

scans (Vásquez Osorio et al. 2012; Wolthaus et al. 2008), there is no definite way of

quantifying the correctness of the correspondence. Nevertheless, a popular measure is

the inverse consistency, which is found by performing the deformation in the opposite

direction and checking that the result is consistent with the forward deformation. The

average backward consistency of the registrations used in the papers was 0.62 mm and

0.47 mm for the intra and inter-patient registrations, respectively. See Vásquez Osorio

(2012) for the definition of the forward accuracy and inverse consistency. The delineation

and registration errors are propagated to the distributions estimated by the deformation

models. It is important that the training data matches the input data, so contours

delineated by multiple observers should be present in the training data.

In the models in paper II, the patient-specific distributions are assumed to be Gaussian.

The same is true for the majority of applications of deformation models (see e.g. Söhn et

al. 2012). The Gaussian assumption makes life much easier for the researcher, but there

are alternatives, such as using a non-parametric distribution (Fontenla et al. 2001b).

While there is no strong evidence suggesting that the distributions are in fact Gaussian,

there is neither evidence of the opposite. The uncertainty of such assumptions underline

the importance of evaluating the models for real data.

For the Bayesian models, the performance will depend to some amount on how well

the data matches the prior. The evaluation in paper II compared the model with two

different priors to the population model, and showed that in both cases the chosen priors

outperformed a pure population model.
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6.3 Artificial intelligence

The methods in this thesis are so-called unsupervised machine learning methods; a sub-

category of artificial intelligence (AI) where the algorithm learns patterns from data.

Outside the professional sphere, however, “AI” has been practically synonymous with

“deep learning artificial neural networks” for the last decade. At the start of this project,

most well-known deep learning applications were in the category of supervised machine

learning. In supervised learning, the outcome of each measurement is also part of the

training data, and the goal is to predict the outcome (either as a category, in classifi-

cation, or as a number or vector, in regression) for new samples. These algorithms are

typically trained on massive data sets of thousands or even millions of examples, and

are excellent at categorizing which bird is in an image or whether the image contains a

traffic light.

Since then, the diversity of applications of deep neural networks have exploded, most

recently with the public release of fascinating image-from-prompt generators such as

Dall-E, Stable Diffusion and Midjourney, and not least the surprisingly knowledgeable

and eloquent advanced language model ChatGPT.

While it is not immediately clear how deep learning can be applied to organ deformation

modelling, this will almost certainly be a research topic in the future. Only recently,

a preprint detailing a deep learning structure for random generation of patient-specific

deformations has been released (Pastor-Serrano et al. 2022). This method uses both

supervised and unsupervised learning, and has some properties in common with the PCA-

based model in section 4.6.2, though it uses a U-net instead of PCA for parametrization.

A classical criticism of deep learning methods is that they act as a “black box” — they

take an input and give an output, but we have very little understanding of what happens

in between. The Bayesian models in this thesis as such have an advantage in using more

traditional statistics. However, an advantage of the black box is that it comes wrapped,

that is, the methods are available in tried and tested software packages that the data

scientist for the most part does not need to meddle with.

6.4 Hypofractionation

As the accuracy of RT increases, the trend in the clinic is toward shorter RT courses,

i.e. hypofractionation (Kavanagh et al. 2011). Cher et al. (2022) documented that the

average number of fractions for all cancers decreased from 17.5 to 13.6 between 2010
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and 2020 at one center1 which treated 22865 patients. This trend comes naturally with

higher precision in RT: fractionation is designed to allow normal tissue to heal, and as

normal tissue receives less dose, less healing is needed. But fewer fractions coupled with

organ motion leads to a new issue: With few fractions, the statistically expected dose

cannot be assumed to be equal to the delivered dose. The standard deviation of the

delivered dose is proportional to 1/
√
n, where n is the number of fractions. In shorter

RT courses, one must therefore take the variance of the delivered dose into account.

Many robust optimization algorithms already do this, e.g. Sobotta et al. (2010) and

Unkelbach and Oelfke (2004). In the evaluation of the methods in this thesis, only the

mean dose and the mean coverage probability matrix has been used. A possible direction

for future work is therefore including the variance for evaluation of motion models in

highly hypofractionated regimes.

6.5 Particle therapy

Organ motion models also have potential applications in particle therapy, where an

additional challenge compared to photon RT is range uncertainty due to the fact that

the position of the Bragg peak where the particles leave most of the dose is highly

dependent on the properties (particularly the density) of the tissue through which the

beam travels. Therefore, taking organ motion into account through robustness and/or

adaptation is even more crucial in particle therapy. Several statistical models have been

proposed, but most do not directly model organ deformations (Holloway et al. 2017; Park

et al. 2013; Unkelbach et al. 2009), despite organ deformations together with systematic

anatomical changes being the greatest sources of range uncertainty according to Lomax

(2020). Since a deformation model used for range uncertainty must take the tissue density

into account, the most promising approaches are those that generate full synthetic CT

scans (Pastor-Serrano et al. 2022; Szeto et al. 2017). However, it is not clear that they

conserve the important water equivalent path length between training data and output.

The problem of statistically accounting for organ deformation is largely an unsolved

problem in particle therapy, and is a natural direction for future research.

6.6 On patient preparation

The patients in our validation data did not follow any particular preparation protocol. In

general, various preparation techniques and instructions are used to reduce the anatom-

1Department of Radiation Oncology at the Universiy of Michigan Medical School
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ical variation for a patient, such as routines for eating/drinking and toilet visits (Graf

et al. 2012; Stasi et al. 2006), special diets (McNair et al. 2011), laxatives (Nijkamp et al.

2008), insertion of rectal balloons (Wachter et al. 2002), emptying rectal gas (Ogino et al.

2008) or daily enemas (Fiorino et al. 2008; Yahya et al. 2013). Some of these techniques

cause additional discomfort for the patient, and have become less common or even su-

perfluous with the advancement of IGRT and ART. Studies have shown that a highly

distended rectum at the pCT is associated with decreased local control (de Crevoisier

et al. 2005; Heemsbergen et al. 2007). Silverman et al. (2016) found that modern IGRT

eliminated this effect, while Engels et al. (2009) came to the opposite conclusion. One

might think that the resulting recommendation should be to keep conditions as similar

as possible between the pCT and the therapy fractions. As argued by Roach (2005),

some patients have a consistently distended rectum. However, the recommendations of

de Crevoisier et al. (2005) was to eliminate large rectums at the pCT stage using enemas

or other means. This has led to a practice, in some centers, of rectal emptying for the

pCT only, while no intervention is performed during therapy. This causes a (presumable

large) bias of the pCT relative to the treatment. While it may be possible to compen-

sate for this bias in a deformation model, from a statisticians point of view, the pCT

and the treatment should always be performed under as similar conditions as possible.



Chapter 7

Conclusions

The main contribution of this thesis is the introduction of new methods to estimate the

random and systematic errors due to organ deformation in RT. Through the evaluation

of the methods, we have shown that it is possible to efficiently predict patient specific

motion patterns for the rectum using Bayesian techniques to combine population and

patient-specific data.

For the rectum of prostate cancer patients, it is possible to achieve a significant reduction

in systematic error due to organ deformations (in both volumetric and distance measures)

using a combination of the rectal shape seen in the pCT and the population mean shape.

Whether the reduced systematic error resulted in significant differences in estimated dose

depended on the dose level that was examined. The clinical importance of the method

will therefore depend on the prescribed treatment and normal tissue dose constraints.

In this doctoral work, two new models based on Bayesian methods were developed. Both

these models were shown to more accurately predict organ motion patterns than models

using only population data or only patient-specific data for the rectal wall of prostate

cancer patients. Due to the novel way of estimating the patient mean shape, the models

performed better than the existing population model even when using a single input, i.e.

the pCT. The models are further able to improve in accuracy given more inputs, thus

getting the “best of both worlds” from pure population or pure patient-specific models.

We were further able to use one of the models as an application to assess dose in patients

undergoing re-irradiation. We have presented a method of estimating the accumulated

dose and its uncertainty based on “representative shapes” of possible rectum deforma-

tions that can be useful for visual aid.
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Chapter 8

Future perspectives

Current trends in RT-research are largely focused on new technologies: Adaptive RT

using MR-linacs and the Varian Ethos™ system, proton and heavy ion therapy, and

(though not yet clinically) FLASH (ultra high dose-rate) RT. These are fantastic, and

of course also expensive, technologies that require significant extra work and training

for clinicians. The fact is, even in clinics that offer such great treatment options, the

vast majority of patients are treated with photons on traditional linacs, and this will

likely continue to be true for the foreseeable future (Baumann et al. 2020). One of the

great advantages of modelling is that it involves only software, and can therefore offer

improvements in treatment for all suitable patients practically free of cost. That is not

to say that modelling cannot also provide advantages when used with new technology

— as long as there are geometric uncertainties in RT, there will be a need for statistical

models. One may expect that advanced motion and deformation modelling will be part

of the standard RT-planning in the future, perhaps performed implicitly by the TPS,

and surely marketed as “AI”.

A natural path of further research is the exploration of applications of the models,

including the possibility of implementing models in TPSs through external scripts. This

can for example be done by creating the representative shapes presented in paper IV

to produce expected DVHs with error bars. While paper IV focused on re-irradiation

patients, the methods are also applicable for general patients. The advantage of this

technique is that the TPSs own computation of DVHs can be used. The representative

shape can even be used in the TPSs optimization algorithm.

The patients in our re-irradiation study had considerable urinary toxicity. We are cur-

rently investigating the relationship between accumulated dose to the bladder and uri-

nary toxicity for these patients, using dose accumulation based on techniques from this
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thesis.

Other possible future studies include applying the models to different organs, or to

multiple organs as well as RT-targets to model correlation between these. The models’

potential for calculating accumulated dose and their potential use in robust optimizations

should also be evaluated.

One of the obstacles for wider usage of statistical deformation models is the need to

perform contour-based deformable registration, which is typically not implemented in

commercial TPSs. But what if the model itself could be used for deformable registration?

It is possible to create an objective function for deformable registration that includes both

a metric for the difference between the target shape and the proposed deformed shape,

as well as the probability of the proposed deformation. To achieve this, a probabilistic

model is required. This might seem circular, as deformable registration is necessary to

create the model in the first place. However, this is only in the training phase; for a

new patient, the model is already in place and can therefore be used for deformable

registration as well as prediction of individual motion patterns. Furthermore, it might

be possible to train the model using an iterative approach, where a guess of the model

is used for deformable registration to start with, and both the training and registration

is repeated in an iterative fashion, gradually improving both.

The current models are purely data-driven, in other words, they do not include any mod-

elling of the physical properties of tissue (though the deformable registration usually does

to some extent). This has certain advantages in terms of simplicity and reduced num-

ber of assumptions. However, this also means that the models are unable to anticipate

motion that is not seen in the training data. A simple way to include assumptions for

possible motion patterns may be to induce constraints on the covariance matrix estimate.

The precision matrix, which is the inverse of the covariance matrix, has the desirable

property that the entry for any two coordinates that are conditionally uncorrelated is

zero. Two coordinates being conditionally uncorrelated means that their correlation can

be deduced from the correlation between these coordinates and other coordinates. We

can assume that points that are not near each other are conditionally independent, to

build a highly sparse precision matrix. This kind of precision matrix will be able to an-

ticipate deformations not seen in the training data, which can be important in e.g. the

previously mentioned application of deformable registration.
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Abstract
Purpose: In radiotherapy (RT), the planning CT (pCT) is commonly used to
plan the full RT-course.Due to organ deformation and motion, the organ shapes
seen at the pCT will not be identical to their shapes during RT. Any difference
between the pCT organ shape and the organ’s mean shape during RTwill cause
systematic errors.We propose to use statistical shrinkage estimation to reduce
this error using only the pCT and the population mean shape computed from
training data.
Methods: The method was evaluated for the rectum in a cohort of 37
prostate cancer patients that had a pCT and 7–10 treatment CTs with rectum
delineations. Deformable registration was performed both within-patient and
between patients, resulting in point-to-point correspondence between all rec-
tum shapes, which enabled us to compute a population mean rectum. Shrink-
age estimates were found by combining the pCTs linearly with the population
mean.
The method was trained and evaluated using leave-one-out cross validation.
The shrinkage estimates and the patient mean shapes were compared geo-
metrically using the Dice similarity index (DSI), Hausdorff distance (HD), and
bidirectional local distance.Clinical dose/volume histograms,equivalent uniform
dose (EUD) andminimum dose to the hottest 5% volume (D5%) were compared
for the shrinkage estimate and the pCT.
Results: The method resulted in moderate but statistically significant increase
in similarity to the patient mean shape over the pCT. On average, the HD was
reduced from 15.6 to 13.4 mm, while the DSI was increased from 0.74 to 0.78.
Significant reduction in the bias of volume estimates was found in the DVH-
range of 52.5–65 Gy,where the bias was reduced from−1.3 to−0.2 percentage
points, but no significant improvement was found in EUD or D5%,
Conclusions: The results suggest that shrinkage estimation can reduce sys-
tematic errors due to organ deformations in RT. The method has potential to
increase the accuracy in RT of deformable organs and can improve motion
modeling.

KEYWORDS
organ deformation, organ motion, rectum, systematic errors, treatment uncertainties
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1 INTRODUCTION

The planning CT (pCT) is used as a representation
of the patient anatomy during treatment. Changes to
the patient anatomy and its organ shapes during treat-
ment cause differences between the planned and the
delivered doses.1 Discrepancies between the pCT
anatomy and the average anatomy during treatment are
called systematic errors, since they affect every frac-
tion. While this term is often used to describe the dis-
crepancy in setup position, systematic errors also occur
when an organ of interest has a different shape in the
pCT as compared to its average shape during treatment.
This study focuses on this latter systematic shape error.
Potential systematic errors in organs-at-risk (OARs) can
be accounted for through robust optimization,2 or with
margins (planning OAR volumes, PRVs).3 Unlike these
methods, the presented method aims to predict and cor-
rect for the systematic error. Correcting for systematic
setup error (i.e., without deformation) by using several
scans, typically taken during the first few fractions of
RT, has been investigated.4 A similar method can be
used to handle deformation, using deformable regis-
tration from multiple scans to find an average shape,5

but this would require adaptive re-planning unless all
scans are taken before the first treatment. The pre-
sented method, on the other hand, requires only a sin-
gle scan. Image-guidance has been successful in reduc-
ing the systematic errors for the target volumes, but for
shape changes and for many OARs, mitigation strate-
gies based on rigid re-alignment are insufficient, call-
ing for more resource demanding adaptive RT.6,7 Even
adaptive RT with replanning at every fraction is not
a perfect remedy, since intra-fraction motion can be
considerable.8,9

For the rectum, one of the dose-limiting OARs in both
prostate and cervical cancer RT, the shape of the organ
seen in the pCT directly influences the dose that can
be safely administered to the tumor. Dose objectives
used for planning come from dose-response models,
and the majority of these models are based on the dose
to the pCT-shape of the rectum.10–12 Stronger response
prediction has been achieved by accounting for rectal
motion,13–15 but estimates of the average delivered dose
to the rectum are resource expensive, demanding both
frequent images and complex software, limiting its use.

In this study, we aim to derive a model that enables
estimation of a patient’s mean rectal shape from the
pCT scan only. To solve the obstacle of requiring multi-
ple imaging input to assess the average shape,we apply
the statistical method of shrinkage estimation combined
with information from a deformable population model of
the rectum.

2 MATERIALS AND METHODS

In statistics, shrinkage estimation is a well-known tech-
nique used to reduce variance in estimates,16 not to be

confused with physical/anatomical shrinkage.The organ
shape used in planning can be considered an estimate
of the mean organ shape. Reducing the variance of
this estimate means reducing the average difference
between the planning shape and the average shape
during treatment and therefore corresponds to reducing
systematic shape errors. One important aspect of the
proposed method is the calculation and use of a mean
organ shape across the population – the population
mean shape (PMS). Intuitively, the shrinkage method
can be understood through the principle of “regression
toward the mean”: if a single sample taken from an indi-
vidual is extreme, the next sample taken from the same
individual is likely to be closer to the population mean.
Our hypothesis is therefore that the true mean shape
of an organ can be estimated with lower variance by
combining information from the pCT shape (pS) and the
PMS.

For computation of the PMS, we rely on deformable
registration of organ contours. We used a variant of
the thin plate spline - robust point matching (TPS-RPM)
algorithm.17,18 Each shape is represented by a set of
points on the organ surface (a mesh representation).
The algorithm finds a transform function (a TPS function
in this case) which can be used to transform a reference
structure into a shape as similar as possible to a target
structure. Transforming the reference structure is com-
monly referred to as «warping». By replacing the target
structure by the warped reference structure, we end up
with a one-to-one correspondence of points in the two
shapes.

To find point-to-point correspondence between the
surface points on all rectum shapes in the dataset, we
used the method first presented in Budiarto et al.19 The
method is illustrated in Figure 1.First,we performed reg-
istration from a reference patient’s pCT rectum struc-
ture to each of the other patients’pCT rectum structures
(inter-patient registration). Since our data set contains
multiple scans for each patient, we then performed reg-
istration from the rectum structure in each pCT to each
of the same patient’s other rectum shapes (intra-patient
registration). Since there is now a point-to-point corre-
spondence between all shapes, we were able to aver-
age the coordinates of the points across all CTs to find
a population mean rectum shape.

After the (preliminary) PMS had been built, the pro-
cedure was repeated, with the preliminary PMS tak-
ing the place of the global reference shape. This was
done to increase the accuracy of the intra-patient reg-
istrations, and similar to the procedure used in Budi-
arto et al.19 In practice, the deformable registration
was split in two steps – finding the transform function
and applying it (warping). In the intra-patient step, the
transform function was found between the original pS
(not the warped reference shape) and the treatment
CT shapes. To find the final treatment CT shapes, the
global reference was warped twice, first from its origi-
nal shape into the pCT shape of the specific patient,
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F IGURE 1 Procedure for using inter- and intra-patient registration to compute the individual mean shapes (IMS) and the population mean
shape (PMS)

and then from the pCT shape to the treatment CT
shape.

For a new patient, deformable registration needs only
be performed between the patient’s pS and the PMS.
Thus, the procedure in Figure 1 is only needed in order
to build the PMS and to evaluate the method.

With point-to-point correspondence, we can com-
pare and combine rectal shapes. For each shape, the
coordinates of the points were gathered into a vector:

[x1, y1, z1, x2, y2, z2,… , xN, yN, zN]
T .

Let the PMS and the pS be described by such vector
representations. The shrinkage estimated shape (SES)
of the patient mean shape can then be computed as:

SES = pS + 𝜆 (PMS − pS) .
Here, 𝜆 is the shrinkage factor—a value between 0

and 1 that determines weighing between the pS and the
PMS. A small 𝜆 means little shrinkage, that is, that the
SES is close to the pS, while a large 𝜆 means that the
SES is closer to the PMS.

Matching the coordinate systems of the PMS and
the pS was secured by a rigid shift of the PMS before
combining with the pS. The shift was performed such
that the center of gravity, that is, the coordinate average,
matched between the PMS and the PS. We saw that
the cranial region, where the variation and uncertainty
is greatest, negatively affected the matching; therefore,
we left out the 50% most cranial points when calculating
the center of gravity.

2.1 Computing the shrinkage factor

The value of the shrinkage factor 𝜆 that minimizes the
mean squared error (MSE) over the training set can be
found analytically.The treatment CT rectum shapes (but
not the pCT shapes) was used to estimate each patient’s
individual mean shape (IMS),which was used as the tar-
get in the optimization of the shrinkage factors. Given
the PMS vector, the pSi vector, and the IMSi vector for
patient i, the MSE is given by

MSE (𝜆) = 1
LN

L∑
i = 1

‖pSi + 𝜆 (PMS − pSi) − IMSi‖2,
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with a minimum at

𝜆MMSE = ∑L
i=1 (IMSi − pSi)

T (PMS − pSi)
∑L

i=1 ‖PMS − pSi‖2
.

2.2 Validation

The method was evaluated using the rectum shapes
of 37 prostate cancer patients, who each had a pCT
and seven to 10 treatment CTs acquired during their
course of RT – a total of 373 CT scans. The CT reso-
lution was 0.7 mm in-plane and 2 mm in the z-direction.
The rectum shapes for all CTs were contoured by expert
physicists and quality assured by two independent
physicists.

The SESs used for validation were produced using
leave-one-out cross validation (CV), where for each
patient, the data were separated into a test set con-
taining this patient only, and a training set comprising
the remaining 36 patients. The training set was used to
compute the PMS and the shrinkage factor for the test
patient’s SES. The SESs computed this way were used
in all validation.

2.2.1 Volumetric similarity

To reduce the systematic error, the SES must resem-
ble the IMS more than the pS does. We used the Dice
similarity index (DSI) to assess the similarity between
shapes. The DSI between two shapes X and Y is
defined as 2|X∩Y |

|X |+|Y | , where | ⋅ | indicates volume, and ∩
is the intersection operator. The DSI ranges from 0 to 1,
with a higher value indicating more overlapping shapes.
For each patient, both the pS and the SES were com-
pared to the IMS to evaluate improvement in the novel
method.

2.2.2 Surface similarity

The DSI is related to the proportion of the volume that is
shared between two structures, but the actual numbers
can be hard to interpret.A more tangible measure might
be to compare distances between surfaces, in our case
between the pS and the IMS and between the SES and
the IMS, with results in mm. We used the bidirectional
local distance (BLD) as a distancemetric.The BLD,intro-
duced by Kim et al.,20 is an extension to the Hausdorff
distance (HD) to include local,pointwise distances. If the
one-directional local distance from a point a in mesh A
to a mesh B is defined as

OLD (a, B) = min
b∈B ‖a − b‖,

then the bi-directional local distance from a to B is

BLD (a, B) = max
(
OLD (a, B) ,maxSa, B

) .
Where Sa,B is the set of all local distances
OLD(b ∈ B,A) where the endpoint in A is a.

We present results for the median, mean, and maxi-
mum BLD, where the latter is the same as the HD.

We also used the BLD to study the spatial distribu-
tion of the systematic error. We averaged the distance
from the pS to the IMS for each point on the organ
surface across the population. Changes to the spatial
distribution from the shrinkage estimate were analyzed
by comparing the pointwise distances between the pS
and the IMS to the pointwise distances between the SES
and the IMS.

2.2.3 Evaluation of dosimetric impact

Dosimetric evaluation was based on a retrospective
analysis of clinical IMRT plans for locally advanced
prostate cancer, including treatment to the prostate,
seminal vesicles, and the pelvic lymph nodes.Hypofrac-
tionated RT was prescribed in 25 fractions simultane-
ously delivering fraction doses of 2.7Gy to the prostate
clinical target volume, 2.4Gy to prostate and seminal
vesicles and 2.0Gy to a larger target also including
the pelvic lymph nodes, see Hysing1 for details. For all
patients, the structures pS, IMS,and SES were imported
into Varian Eclipse for dosimetric analysis. We do not
have available the true accumulated dose over all frac-
tions. As a substitute, we used the dose-volume his-
togram (DVH) based on the IMS as a representation
of the ground truth. This removes systematic errors, but
does not take into account the random variations that
occur from fraction to fraction.

For dosimetric comparison, the population average
DVH and its 95% confidence interval was computed
separately for the pS, SES, and IMS. In addition, two
parameters were extracted from the DVHs: The equiv-
alent uniform dose (EUD) with a volume factor of 12
and the minimum dose to the hottest 5% volume (D5%).
These parameters have been shown to correlate with
late rectal toxicity by Söhn et al.32 and Thor et al,33

respectively. The average differences between these
parameters from the PS to the IMS and from the SES
to the IMS were computed.

2.2.4 Statistical tests

All tests and calculations were performed usingMatlab v
R2020b with the statistics andmachine learning toolbox.
All significance levels were set at α = 0.05.
The 95% CI of all the geometric similarity and dosi-

metric metrics was calculated by the bootstrap method



6582 REDUCING SYSTEMATIC ERRORS IN RADIOTHERAPY

F IGURE 2 Population average systematic error over the rectum (represented by the population mean shape [PMS] rectum), for the pS
versus the shrinkage estimated shape (SES). (a) Local distance (bidirectional local distance [BLD]) between the pS and the individual mean
shape (IMS). (b) Local distance (BLD) between the SES and the IMS. (c) Difference between (a) and (b), that is, improvement when using SES

TABLE 1 Results for the geometric comparison metrics: Dice similarity index (DSI), median and mean bidirectional local distance (BLD),
and Hausdorff distance (HD)

pS to IMS SES to IMS Improvement
μ σ μ σ μ CI p-value % +

DSI 0.74 0.07 0.78 0.06 0.04 (15%) 0.03–0.06 5.8 e-6 89%

Median BLD (mm) 2.9 1.0 2.4 0.7 0.5 (17%) 0.3–0.7 2.0 e-5 84%

Mean BLD (mm) 3.6 1.1 3.1 1.0 0.5 (13%) 0.3–0.7 2.7 e-5 84%

HD (mm) 15.6 5.8 13.4 4.9 2.2 (14%) 1.2–3.2 1.8 e-4 76%

Note: For DSI, the average improvement in percent was calculated by dividing the absolute improvement (0.04) by the maximum achievable improvement (1–
0.74 = 0.26).
Abbreviations: CI, confidence interval; IMS, individual mean shape; SES, shrinkage estimated shape.
The column symbols are μ: mean; σ: standard deviation;% +: percentage of of patients with improvement.

with one million samples.The Wilcoxon signed rank test
was used to test for difference in the median values in
DSI, since the DSI is bounded between 0 and 1 and
therefore not normally distributed. For the other values,
the paired t-test was used, after testing for evidence
against normality with the Anderson-Darling test.

3 RESULTS

The PMS shape in Figure 2 shows the spatial dis-
tribution of systematic errors being heterogeneously,
distributed over the rectum. The population average
pointwise distance from the pS to the IMS was largest
in the cranial end, with values in the range of 5–7 mm
(Figure 2a). The average distance decreased steadily
toward the caudal part of the rectum to below 2 mm.

The minimum MSE shrinkage factor for the whole 37-
patient dataset was 0.37. Under CV, where one patient
was held out of the training data for each validation, the

shrinkage factors ranged from 0.34 to 0.38.Using these
factors to estimate the SES for each patient decreased
the average distance between the SES and the IMS
across the population for most parts of the rectum (Fig-
ure 2c).The population average improvement was great-
est, an error reduction of 2 mm, at the cranial-anterior
part of the rectum.

The results for the geometric similarity metrics are
shown in Table 1. All metrics showed moderate (13%–
17%) but statistically significant improvement. The indi-
vidual results for the DSI and the median BLD are
shown in Figure 3. Although the average improve-
ment is moderate, a very high percentage of patients
did show improvement – 33/37 had improvement in
DSI, 31/37 in median and mean BLD, and 28/37
in HD.
The rectum shapes (pS,SES,and IMS) of three exam-

ple patients are shown in Figure 4.These patients repre-
sent the 10th, 50th, and 90th percentiles in terms of DSI
improvement and illustrate the SES model for different
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F IGURE 3 Similarity to the individual patient mean for the shrinkage estimated recti and the planning CT recti in each patient. (a and c) Box
plots of the similarity to the patient mean shape of the plan shape and the shrinkage estimate as median (red line) with 25th and 75th
percentiles and maximum and minimum values (whiskers). (b and c) scatter plots of the similarity to the patient’s mean shape for the plan
shape versus the shrinkage estimate. In (a) and (b) (Dice similarity), higher is better, while in (c) and (d) (distance), lower is better

geometries. In the 90th percentile patient, the pS shows
more bending in the lower (anorectal) flexure than the
average, but the shrinkage estimate has overcompen-
sated this feature. In the 50th percentile patient where
the mean rectum volume was reduced compared to the
pS, the shrinkage estimate reduced the volume further,
and thereby achieved better conformity to the IMS.In the
10th percentile patient, the mean rectum was larger, and
the shrinkage method compensated for this.

Population average DVHs derived from the pS, SES,
and IMS structures are shown in Figure 5. In the low
dose region, the pS and SES show similar bias. In the
higher dose region, the SES is closer to the IMS. The

differences were significant (p < 0.05) for doses in the
range of 52.5–65.0 Gy. In this range, the bias was, on
average, reduced from −1.3 percentage points to −0.2
percentage points.

The results for the dose metrics EUD and D5% are
shown in Table 2. For both metrics, the SES gave a
better dose estimate on average, but the improvement
was not significant. This can be anticipated by investi-
gating Figure 6, which shows the structures with dose
for an example patient. The higher doses are restricted
to the anterior-middle part of the rectum.The high dose
(D5%) region is where the similarity between the SES
and PS to the IMS is the greatest.
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F IGURE 4 Example recti in three different patients with the planning structure (red), the shrinkage estimated rectum (green), and the
individual mean shape (blue). The patients were chosen based on their percentiles in terms of improvement in Dice index to the mean rectum,
ranging from poorer (left) to better (right)

F IGURE 5 Population average DVHs of the three rectum structures individual mean shape (IMS) (blue), planning shape (pS) (red) and
shrinkage-estimated shape (SES) (green). The magnification shows the region where the SES showed significantly less bias than the IMS, that
is, the dose range from 52.5 to 65.0 Gy

TABLE 2 Comparison of dosimetric parameters between the pS and the SES. The column symbols are μ: mean; σ: standard deviation

IMS pS error SES error Improvement
μ σ μ σ μ σ μ CI p-value

D5% (Gy) 55.8 3.6 −1.4 3.3 −0.6 3.4 0.8 0.0–1.7 0.070

EUD (Gy) 49.0 2.5 −1.1 2.1 −0.6 2.4 0.5 0.0–1.2 0.11

Abbreviations: CI, confidence interval; EUD, equivalent uniform dose; IMS, individual mean shape; SES, shrinkage estimated shape.
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F IGURE 6 2D view of rectum and PTV structures with dose color wash for an example patient. The PTVs, from outermost to innermost, are
PTV50, PTV60, and PTV67.5. (a) sagittal view, (b) transversal view. The dose threshold is 50 Gy, identical to the prescription to the PTV50 and to
the lowest dose level used to assess rectal exposure in our planning procedure

4 DISCUSSION

The proposed method showed significantly improved
geometric similarity to the patient mean rectum. The
average improvement is about 15% in terms of both dis-
tance and volume.However, this is just the average; sev-
eral patients had much greater improvement (Figure 3).
A positive trait is that the patients that have the greatest
systematic error in the pCT are those that typically see
the greatest improvement. Also, the method is low-risk,
as few patients see worse systematic errors.

Whether this improvement is important will depend
on the application, the dose distribution, and other fac-
tors. In our dataset, the improvements in geometric
similarity did not translate into significant improvement
of estimated accumulated dose to the rectum.This may
be due to the procedures of image-guidance that we
used. All treatment CTs were rigidly aligned to gold
markers in the prostate, following our clinical procedures
of RT for these patients. This means that all move-
ments are relative to the prostate, and there are no
fixed points in the rectum. The volume of the rectum
near the prostate is therefore rather stable, which con-
tributes to the relatively low improvement in the anterior
region where the highest doses are located (Figure 2c).
For the example patient seen in Figure 6, the SES is
closer to the IMS almost everywhere except in the high-
dose region, where the SES, the pS, and the IMS are
all very similar. Because the patients were part of a trial
in hypofractionation, extra care was taken to avoid rec-
tal toxicity by cropping the planning target volume (PTV)
where it would otherwise overlap with the rectum, also
seen in Figure 6. Clinical results have proven this fear
unfounded, and the practice has since been changed
into cropping the rectum in such cases.1

Systematic shape errors due to rectal deformation
have previously been studied by Hoogeman et al.21 and

Haekal et al.22 There, the treatment CTs were not regis-
tered to gold markers, and, contrary to our results, both
studies found the largest systematic errors in the ante-
rior region. As such, the current results are a testament
to the success of fiducial markers. If the higher doses
were delivered to volumes where the systematic shape
errors are greater, we would likely have seen higher
impact from the method also in the dosimetric anal-
ysis. We can therefore expect to see different results
if the method is applied to different patient groups,
for example, bladder or cervical cancer, or different
OARs.
The amount of dose degradation in EUD and

D5% that is acceptable is not known for the rectum.
This is likely dependent on several factors additional
to organ motion, for example, dose distribution and
delivery modality, nonuniform radio-sensitivity of the
rectum.13,23,24 In our clinical procedure, the patients in
the present study were planned for a maximum of 60 Gy
(about 62GyEDQ2) delivered to 10 cc of the rectal vol-
ume and with restrictions to the volume receiving 50 Gy.1

This resulted in very little rectal toxicity, indirectly indicat-
ing that the obtained changes to the EUD from pCT in
these patients were acceptable.25

Since dose accumulation across fractions is difficult,
we used the dose to the IMS as a substitute for the true
dose when comparing dose-volume parameters. Under
the assumption that the rectum is in a dose region with
a constant gradient, the dose to the IMS will be the
same as the expected accumulated dose to the deform-
ing organ. This is because each voxel moves both into
higher and lower dose regions, which, in the mean, can-
cel each other out.a Although this assumption is false,

a Formally, if x is the (random) position of a voxel, with distribution p(x), and
D (x) = Gx is the dose at position x, with constant gradient G, then E[D(x)] =∞∫−∞ D(x)p(x)dx = G

∞∫−∞ xp(x)dx = GE[x] = D(E[x]).
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the smoothness of the gradient outside the PTV justi-
fies the use of the dose to the IMS as an approximation
of the true accumulated dose.

We have chosen to present both volumetric (DSI)
and distance-based (DS and BLD) similarity metrics for
the evaluation of our proposed method.Distance-based
metrics are easier to interpret and are more relevant for
radiotherapy (RT), for example, to assess the influence
of deformation in relation to a dose gradient.The DSI,on
the other hand, includes the whole structure as opposed
to a single point and is a common metric to evaluate the
performance of deform registration.

The deformable registration will introduce some geo-
metric distortion. The distortion is greater for inter-
patient registration than the intra-patient, since there
is no “true” transformation between patients. However,
the improvement in DSI is itself a proof-of -concept of
the inter-patient registration.Our registrations were opti-
mized to yield high forward accuracy and backward
consistency. The average forward accuracy (see Osorio
et al.18 for definition) was measured at 0.23 mm for the
intra-patient registrations and 0.22 mm for the second
iteration of inter-patient registrations (0.56 mm in the
first iteration). In addition, the obtained vector fields were
checked visually.Our results thus reflect a rather meticu-
lous verification of the registrations,which may be more
difficult to achieve in commercial registration software.

The choice to use the 50% most caudal points in
the rigid alignment between the pS and the PMS was
relatively arbitrary; we saw the need to exclude the
cranial part of the rectum and at the same time include
the points near the prostate, but apart from that, the
exact percentage of points chosen did not make a great
difference. The method can potentially be improved by
optimizing the rigid shift w.r.t geometry or dose using
training data.

Hoogeman et al.26 have previously investigated the
possibility of predicting systematic changes to the rec-
tum and prostate based on the pCT rectal volume alone.
For the rectum, they achieved best results in the upper
anterior part,with a 30% improvement in one coordinate
(AP). Their results are, however, not directly compara-
ble to ours, as their images were aligned to the bony
anatomy instead of gold markers.

In this paper,we have looked at the possibility of mea-
suring dose on the SES to estimate the accumulated
dose to the rectum. In clinical applications, discrepan-
cies between the SES and the pS—either geometrically
overall, locally at key regions or in calculated dose —
could be used for screening of patients for further imag-
ing, or for additional verification based on in-treatment
CBCTs, which may again indicate adaptive RT.

Other applications include motion as well as
normal-tissue complication probability modeling. Many
deformable organ motion models do not account for
systematic error or require multiple CTs to do so.19,27–31

Such models can be improved or simplified by replacing
the pS or the multiple-CT average by the SES. For

voxel-based normal tissue complication probability
(NTCP) models, the method can be used to reduce the
bias in the pCT.

It is also possible to use the method in plan optimiza-
tion: A robust optimization algorithm may for example
consider the pS and the SES as separate scenarios.
One complicating factor is the need to take into account
the correlation between target motion and the motion
of OARs; for example, the SES rectum may overlap
with the target. However, the method does not need to
be restricted to a single organ. A potential solution is
therefore to include multiple organs (in this case,at least
the rectum and the prostate) in the shrinkage method.
Still, inclusion of the target is not straightforward, as
tumor shrinkage must be taken into account. The accu-
racy of the predicted anatomy should be verified through
daily CBCT scans.

5 CONCLUSIONS

The shrinkage method was successfully applied to
improve estimates of the individual mean rectum
shapes of prostate cancer patients when only the plan-
ning CT is available.Themethod reduced the systematic
shape changes, especially for patients where the simi-
larity between the planning CT and the individucal mean
shape was poor. The method could be applied to more
complex motion modeling, plan optimization as well as
toxicity assessments.
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Abstract
Objective.Organ deformationmodels have the potential to improve delivery and reduce toxicity of
radiotherapy, but existing data-drivenmotionmodels are based on either patient-specific or
population data.We propose to combine population and patient-specific data using a Bayesian
framework. Our goal is to accurately predict individualmotion patterns while using fewer scans than
previousmodels.Approach.Wehave derived and evaluated twoBayesian deformationmodels. The
models were applied retrospectively to the rectal wall from a cohort of prostate cancer patients. These
patients had repeat CT scans evenly acquired throughout radiotherapy. Eachmodel was used to create
coverage probabilitymatrices (CPMs). The spatial correlations between these estimatedCPMs and the
ground truth, derived from independent scans of the same patient, were calculated.Main results.
Spatial correlationwith ground truthwere significantly higher for the Bayesian deformationmodels
than both patient-specific and population-derivedmodels with 1, 2 or 3 patient-specific scans as
input. Statisticalmotion simulations indicate that this result will also hold formore than 3 scans.
Significance.The improvement over previousmodelsmeans that fewer scans per patient are needed to
achieve accurate deformation predictions. Themodels have applications in robust radiotherapy
planning and evaluation, among others.

1. Introduction

In radiotherapy (RT), the dose is carefully shaped to the patient anatomy as seen in theCT acquired before start
of treatment (planCT), to achieve a good compromise between disease control and risk of inducing
complications. Since the variability of the organ positions and deformations is unknown before start of
treatment, differentmeasures have been adopted to safeguard againstmotion uncertainties through planning
margins (Stroom et al 1999, vanHerk et al 2000), robust optimization (Unkelbach et al 2018) and/or treatment
plan adaptation (Yan et al 1997).

A statisticalmodel for the deformation of organs of individual patients using principal component analysis
(PCA) of the organ’s surface shape vectors wasfirst proposed by Söhn et al (2005). Themain drawback of the
patient-specificmodel is that the number of data samples (in the formof organ contours derived from3D
images) per patient is often low, which limits the robustness of themotion estimates (Thörnqvist et al2013b).
Budiarto et al (2011) proposed a population based statisticalmodel, under the assumption that, although the
size, shape and position of organs differ greatly between patients, the patterns of deformation are generally the
same. The advantage is that an estimate of a patient’s deformation patterns exists evenwhen only a single
observation is available.When applied to prostate target deformation, they showed that about 50%of the
variation could be explained by 15 population deformationmodes (i.e. principal components). Subsequent uses
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of the populationmodel include Bondar et al (2014), who used it to createmargins for rectal cancer patients,
Rios et al (2017), whomodeled bladder deformation for prostate cancer RT, Szeto et al (2017)whomodeled daily
variations in the thorax, andMagallon-Baro et al (2019), whomodeled deformation in the stomach, duodenum
and bowel for pancreatic cancer RT. Aweakness of the populationmodel is its inability tomodel patient-specific
deformation patterns, evenwhenmultiple scans are available for the patient in question. The aimof the current
work is to combine the strengths of the population and patient-specificmodels by introducing Bayesianmodels
that take in to account both the population deformation patterns (in terms of a prior distribution) and patient-
specificmeasurements, forming an individualized posterior distribution. Bayesianmodels have previously been
applied to the problem rigid shifts of the patient, termed setup errors (Lam et al 2005,Herschtal et al 2012).

In this paper, we introduce twoBayesianmodels, which differ in their choice of priors. The choice ofmodel
to usewill be a trade-off between accuracy and simplicity.We derive necessary algorithms to efficiently calculate
the approximate posterior distributions in high dimensions.We apply the introducedmodels to a realistic
example with complexmotion, in terms of the rectal wall of prostate cancer patients.We use themodels to
estimate coverage probabilitymatrices (CPMs), i.e. 3D-arrays of voxels where the value in each voxel is the
probability that the voxel will be covered by the rectal wall at any given time.We compare the accuracy of CPMs
estimated using the twoBayesianmethods, the patient-specificmodel by Söhn et al (2005) and the population
model by Budiarto et al (2011). In addition to the presentation of newmodels, this is to our knowledge the first
comparison between these two previousmodels, as well as the first time such an organ deformationmodel has
been applied to the rectum.

2.Methods

In the class of deformationmodels that we study, an organ shape is represented by a set of points on the organ
surface, as illustrated infigure 1. These representations are derived fromorgan contours segmented from3D
images. The x, y and z coordinates of allP points are gathered into a shape vector s:

[ ] ( )= ¼s x y z x y z x y z, , , , , , , , , . 1P P P
T

1 1 1 2 2 2

With this representation, we can use standardmultivariate statistical distributions.
To compare organs across scans, we need corresponding points between all shapes in the data set. This

correspondence is found using deformable and rigid contour registration bothwithin and between patients.
Details are beyond the scope of the current work, but can be found inRørtveit et al (2021).

Figure 1.A rectum shape represented by a set of organ surface points.
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Due to the random character of the organ shape, a set of shape vectors s1,K, sJ derived from J scans of a
patient is described as J realizations of the randomvariable s. For all the followingmethods, the shape
coordinates for a specific patient are assumed to follow amultivariate Gaussian distribution:

( ) ( )m~ s R, . 2

Themean shape vectorμ represents the patient’smean organ shape, and the covariancematrixR describes the
variance of the coordinates aswell as the covariance between each pair of coordinates.Whenμ andR are given,
we can use the distribution to drawnew randomorgan shapes for the patient. The difference between the
previous patient-specific and populationmodels and the Bayesianmodels introduced in section 2.3 is howμ and
R are estimated. In the Bayesianmethods,μ andR are considered random samples from specific prior
distributions, whose parameters are calculated from the training data. Point estimates ofμ andR are derived
from the posterior distributions. Due to the high dimensions of the shape vectors, all covariancematrices are
parametrized using principal component analysis (PCA), see e.g. Fujikoshi et al (2010, chapter 10). Under PCA, a
covariancematrix is represented by a few eigenvectors and corresponding eigenvalues. These are usually found
through singular value decomposition (SVD) of a datamatrixD, whose columns are normalizedmean-
subtracted samples, such thatR=DDT.

In the following sections, we showhowμ andR are estimated in the previous and the newmodels.

2.1. Patient-specificmodel
In the patient-specificmodel introduced by Söhn et al (2005), only data from the patient under consideration is
used. Themean shapeμ is thus set to the average of the J available shapes s1, s2,K,sJ for that patient;

¯ ( )åm = =
=

s
J

s
1

, 3
j

J

j
1

whileR is set to the patient-specific sample covariancematrix R̂ps:

ˆ ( ˆ )( ˆ ) ( )å m m=
-

- -
=

R
J

s s
1

1
. 4

j

J

j j
T

ps
1

2.2. Populationmodel
The populationmodel introduced by Budiarto et al (2011) rests on the assumption that the covariancematrix is
the same for all patients, and only themean differs. Themean is calculated as themean shape vector for the
individual patient as in (3). The covariancematrix is the average of the sample covariancematrices R̂i for each
patient iin the training set. GivenM patients, where patient ihas Ji shapes denoted ¼s si i J,1 , i, the estimated
population covariancematrix is

ˆ ˆ ( ¯ )( ¯ ) ( )å å å= =
-

- -
= = =

R
M

R
M J

s s s s
1 1 1

1
. 5

i

M

i
i

M

i j

J

i j i i j i
T

pop
1 1 1

, ,

i

2.3. Bayesianmodels
In Bayesian inference, new data is combinedwith prior knowledge (such as population statistics) in the formof a
prior distribution, which describes howwewould expect a quantity to behave before any specific evidence is
taken into account. The result of the combination of the prior and data is a posterior distribution.

In the following, themean and covariancematrix for a given patient are considered randomparameters
that vary across the population according to a prior distribution defined by the probability density function (pdf)
f (μ,R).When data for a newpatient is available, we can compute the posterior pdf ofμ andR given s, where
s= {s1, s2,K,sJ}, denoted f (μ,R|s), through Bayes theorem:

( ∣ ) ( ∣ ) ( )
( ) ( )m

m m
=s

s

s
f R

f R f R

f
,

, ,
. 6

Bayes theorem gives us a distribution of the possible values ofμ andR, as opposed to single values. Nevertheless,
due to the complexity of the posterior distributions in our subjectmatter, we shall resort to looking at point
estimates ofμ andR, such as the expected value ormode of the posterior.

The Bayesianmodels we present differ in the selection of the prior distribution.We resort to priors that
result in computationally feasible posterior distributions, sinceMarkovChain-MonteCarlomethods are
computationally expensive in high dimensions. In the following sections, we present two priors which each
represent a Bayesianmodel.
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2.3.1. Normal-inverse-wishart prior

2.3.1.1. Background
Wepresent a short background to aid the intuitive understanding of the normal-inverse-wishart (NIW)
distribution.More details can be found in e.g. Bishop (2006).

A combined population and patient-specific covariancematrix R̂ can be calculated by a simple weighted
average,

ˆ ˆ ( ) ˆ ( )l l= + -R R R1 , 7spop p

for someweightλ between 0 and 1. Theweight should be proportional to the number J of scans used to compute
the estimates. By setting l = n

n+ J
for some parameter ν, we obtain

ˆ ( ˆ ˆ ) ( )
n

n=
+

+R
J

R JR
1

. 8spop p

Wecan achieve the same result by assuming an inverseWishart (IW) prior forR and using a specific point
estimate for the posterior, as shown below.

IW is amatrix distribution, and a conjugate prior to themultivariate Gaussian likelihoodwith knownmean
and unknown covariancematrix. Thismeans that the posterior distribution forR is also IW, and the parameters
are obtained from equations involving the prior parameters and the data. The parameters of the IW are the scale
matrixΨ and the degrees of freedom ν. Formally, ifμ is given, and the prior forR is IW,

( ) ( )n~ YR , , 9

and the likelihood is Gaussian,

∣ ( ) ( )m~ s R R, , 10

then the posteriorR|s, where s= {s1, s2,K, sJ} is also IW,

∣ ( ) ( )n~ Y¢ ¢sR , , 11

with posterior parameters

( )( ) ( )å m mY¢ = Y + - -
=

s s 12
j

J

j j
T

1

( )n n¢ = + J. 13

In order to obtain (8) as a point estimate forR, we define ˆnY = Rpop and set the posterior point estimate to
ˆ = Y¢

n ¢
R 1 . Inserting both these expressions into (12), we get⎛⎝⎜ ⎞⎠⎟ˆ ˆ ( )( ) ( )ån

n m m=
+

+ - -
=

R
J

R s s
1

. 14
j

J

j j
T

pop
1

The parameter ν determines theweight between the population covariancematrix and the sample covariance
matrix of the newpatient, and can be selected either by tuning or by optimization.One can think of ν as encoding
the strength of our belief that R̂pop can represent our new patient’s covariancematrix.

In reality,μ is not given. One could replaceμ by m̂ from (3), but this will lead to bias in the covariancematrix
estimatewhen J is small (to see this, consider equation (14)when J= 1 and therefore m̂ = s1). Instead, we
consider bothμ andR random, and look for a joint prior distribution.

2.3.1.2. Normal-Inverse-Wishart distribution
The conjugate prior for themultivariate Gaussian likelihoodwith both unknownmean and covariance is the
Normal-Inverse-Wishart (NIW) distribution. In theNIW,R is IW-distributed as in (9) , butμ andR are not
independent. The conditional distribution ofμ givenR is Gaussian:

∣ ( ) ( )m m
k

~ R R,
1

. 150

Here,μ0 is the populationmean, and the scalarκ represents the ratio of the variance between scans of the same
patient (intra-patient) to the variance between patients (inter-patient). Thus, theNIWhas the parametersμ0,κ,
Ψ and ν, andwewrite

( ) ( )m m k n~ YR, , , , . 160

Since this is a conjugate prior, the posterior is alsoNIW, andwe canwrite

∣ ( ) ( )m m k n~ ¢ ¢ Y¢ ¢sR, , , , 170
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with

( ¯) ( )m
k

km¢ =
+

+
J

Js
1

180 0

( )k k¢ = + J 19

( )n n¢ = + J 20

( ¯)( ¯) (¯ )(¯ ) ( )å k
k

m mY¢ = Y + - - +
+

- -
=

s s s s
J

J
s s . 21

j

J

j j
T T

1
0 0

Note the similarity between (18) and (14): Both are weighted averages between population and patient-specific
estimates, with theweight of the patient-specific estimate proportional to the number of patient-specific samples
J. Hence, both ν andκ are parameters which determine theweight between the population and patient-specific
estimates.

Thefinal termof (21) can be considered a correction for the uncertainty of the samplemean, whichmakes
the equation different from (12), where themeanwas assumed to be known.

Themaximuma-posteriori (MAP) estimate ofμ is the expected value of the posterior, m¢0, sowe let

ˆ ( ¯) ( )m
k

km=
+

+
J

Js
1

. 220

Whenonly a single observation for the newpatient is available, i. e. J= 1, (22) becomes identical to the shrinkage
estimation fromRørtveit et al (2021).

As for the IW-case, we let ˆnY = Rpop and ˆ = Y¢
n ¢

R .1 Inserting this into (21) yields

⎟

⎛⎝⎜ ⎞⎠
ˆ ˆ ( ¯)( ¯)

(¯ )(¯ ) ( )

ån
n

k
k
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+
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=

R
J

R s s s s

J

J
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1

. 23

j

J

j j
T

T

pop
1

0 0

In practice, we never construct the full covariancematrix R̂. Instead, it is represented by a datamatrix which is
augmentedwith extra columns, such that ˆ¢ ¢ =D D RT . Given the population datamatrixD, where ˆ=DD RT

pop,
and the patient-specific datamatrix Swhose columns are ¯-s sj for j= 1KJ, the augmented datamatrix is⎡⎣⎢ ⎤⎦⎥(¯ ) ( )

n
n m¢ =

+ +
-D

J
D

kJ

k J
s S

1
. 240

2.3.2. Variational bayesmodel
The covariancematrix ofμ describes how the individualmean varies frompatient to patient, andwe shall refer
to it as the inter-patient covariancematrix. In theNIW-model, thismatrix is

k
R1 , according to (15). But the

assumption that the intra-patient covarianceR is proportional to the inter-patient covariancemay in practice
not be fulfilled. Amore flexible approach is to separate the two, whichmotivates the followingmodel.

Assume that themeanμ is Gaussian distributed according to

( ) ( )m m~ L , . 250

Here,μ0 is the populationmean, andΛ is the inter-patient covariancematrix. Assume further thatR is IW
distributed according to (15), andμ andR are independent (unlike in theNIWmodel); i.e.

( ) ( ) · ( ) ( )m m m n= L Y f R R, ; , ; , . 260

Unfortunately, this prior is not conjugate to theGaussian likelihood (2), and there is no simple expression for the
posterior. However, bothμ andR follow tractable posterior distributionswhen conditioned on the other, namely

∣ ( ) ( )m m= ¢ L¢sR, , 270

and

∣ ( ) ( )m n= Y¢ ¢sR , , . 28

Prior distributions with this property are said to be conditionally conjugate to the likelihood. The conditional
posterior parameters m¢, L¢, Y¢ and n¢ are

( ) ( ¯) ( )m m¢ = L + L +- - - - -JR JR s 290
1 1 1 1

0
1

( ) ( )L¢ = L +- - -JR 301 1 1
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( )( ) ( )å m mY¢ = Y + - -
=

s s 31
j

J

j j
T

1

( )n n¢ = + J. 32

The derivation of (27)–(32) is given in appendix A.
Since bothμ andR are unknown, the left hand sides of (29)–(31) cannot be computed directly from the right

hand sides. An alternative is to use an approximativemethod, known asMean FieldVariational Bayes (MFVB)
(Gelman et al 1995). Thismethod is applicable for conditionally conjugate priors, and is a technique used to
approximate a complicated posterior distribution by a simpler distribution. The joint posterior distribution of
the dependent parameters are approximated by twomarginal posterior distributions by assuming
independence. In our case, we are looking for densities qμ() and qR() such that

( ) ( ) ( ∣ ) ( )m m»mq q R f R S, . 33R

In appendix B, we show that qμ() is amultivariateGaussian pdf, and qR() is an inverseWishart pdf,

( ∣ ) ( ) · ( ) ( )* * * *m m m n» L Ysf R N R, ; , ; , , 340

where the parameters are

( ) ( )* * *nL = L + Y- - -J 351 1 1

( ¯) ( )* * * *m m n= L L + Y- -J s 360
1

0
1

( )( ) ( )* * * *å m mY = Y + - - + L
=

s s J 37
j

J

j j
T

1
0 0

( )*n n= + J. 38

Equations (35)–(37)must be solved forΨ*,Λ* andμ*, but solving them analytically is not possible.We use
instead a common iterative technique, where, starting at an initial guess for the parameters, the equations are
iterated until convergence. IfΨ*(0) is the initial guess forΨ*, we get the following algorithm:

for i = 1K (until convergence)do
( )( ) ( )* * *nL = L + Y- - - -Ji i1 1 1 1

( ¯)( ) ( ) ( )* * * *m m n= L L + Y- - -J si i i
0

1
0

1 1

( )( )( ) ( ) ( ) ( )* * * *m mY = Y + å - - + L= s s Ji
j
J

j
i

j
i T i

1 0 0

end for

The iteration is guaranteed to converge to a local optimum, but not necessarily to the global optimum.Whether
wefind the global optimumor not depends on the starting point. In our case, the prior and the approximate
posterior have the same parameters, so the obvious choice of starting point is the corresponding parameter of
the prior, i.eΨ*(0) = Ψ.

Finally, we extract point estimates ofμ andR.We let ˆ *m m= 0 . For the point estimate of R̂, see section 2.4.4.
Althoughwe are not directly interested inΛ*, it is needed in order to calculate the other parameters.Λ*

represents the uncertainty about themean *m0 , and as such still contains information thatmay be valuable
depending on application. Equation (35) contains the inversion of 3matrices, all of which are of dimension
P× P. This is not practical; e.g. in our validation data,P is over 50000, so such an inversionwould require on the
order of 1014floating point operations. However, thesematrices are highly redundant, as they are estimated
from limited data. In practice, we have found that all three update equations (35), (36) and (37) can be computed
efficiently without ever constructing anyP× Pmatrices, andwith inversion ofmuch smallermatrices only. The
details of the efficient computation are given in appendix C.

2.3.3.Workflow
Whennewdata for a patient becomes available in the formof organ contours derived from3D-scans, the first
step is to obtain point-to-point correspondence between this patient’s shapes and the shapes in the training data
by deformable registration to the global reference shape. Next, the resulting shape vectors s1,K, sJ are used as
input to one of the algorithms in this section to produce patient-specific estimates of the posteriormean and
covariancematrix. How to use these further depends on the specific application.

However, the algorithms require additional parameters, specifically the hyper-parametersμ0,Ψ and ν as well
asκ orΛ depending on themodel. In this section, these parameters have been assumed given. In the next
section, we showhowwe can obtainμ0,Ψ andΛ from training data.

6

Phys.Med. Biol. 68 (2023) 055009 ØLRørtveit et al



2.4. Estimatingmodel parameters from training data
Bayesian algorithms require specification of the hyperparameters of the prior. For the presentmodels, these are
μ0,κ,Λ,Ψ and ν, withκ specific to theNIW-model andΛ specific to the variational Bayesmodel.The vector and
matrix valued parametersμ0,Λ andΨ are estimated from training data. Assume that data in the formof shape
vectors si,j fromM patients are available, where i is the patient number and j is the scan number, and patient i has
Ji scans.

2.4.1. Populationmean
The priormeanμ0 is the populationmean shape, which is simply calculated as the average of all the individual
mean shapes in the training data:

¯ ( )å å åm = =
= = =M

s
M J

s
1 1 1

. 39
i

M

i
i

M

i j

J

i j0
1 1 1

,

i

2.4.2. Population covariancematrix
The population covariancematrixRpop, defined in (5), is in practice represented by its principal components and
their variances. PCAof such amatrix has been dubbed ‘simultaneous component analysis’ (SCA) (Timmerman
andKiers 2003), since all patients are assumed to share the same principal components. The datamatrix which is
input to SCA contains all the columns from the patient-specific datamatrices in the training data:

[ ] ( )= ¼D
M

D D D
1

, 40Mpop 1 2

whereDi is

[ ¯ ¯ ¯] ( )=
-

- - ¼ -D
J

s s s s s s
1

1
. 41i

i
i i i i i J,1 ,2 , i

The covariancematrix ˆ =R D DT
pop pop pop is used for both the classical populationmodel and theNIW-model.

In the variational Bayesmodel, the scalematrixΨneeds to be invertible.Wewill use a regularization
approach for thismodel, wherewe add a constant δΨ times the identitymatrix, I ,to the scaled sample
covariancematrix:

ˆ ( )n d n dY = + = +Y YR I D D I. 42T
pop pop pop

This structure, together with the similar structure of the inter-patient covariancematrix,makes it possible to
compute the update equations(35)–(37) efficiently through the procedure detailed in appendix C.

2.4.3. Inter-patient covariancematrix
In the variational Bayesmodel, we also need to estimate the covariancematrixΛ ofμ, the inter-patient
covariancematrix. Thismatrix describes the uncertainty ofμ. By definition,

[( )( ) ] ( )m m m mL = - -E , 43T
0 0

where E[] is the expected value operator.We do not have direct observations ofμ, but we have estimates, s̄i. A
natural extension of the sample covariancematrix suggests an estimator of the form

ˆ (¯ ˆ )(¯ ˆ ) ( )å m mL =
-

- -
=M

s s
1

1
. 44

i

M

i i
T

b
1

0 0

This estimate ofΛ is biased, since the samplemean s̄i is not equal to the truemeanμ.We show in appendixD
that the expected value of L̂b is

[ ˆ ] [ ] ( )L = L +E cE R , 45b

where = å =c
M i

M
J

1
1
1

i
. The bias is therefore inversely proportional to the number of scans per patient. SinceRpop

is an unbiased estimate ofE[R], we can get an unbiased estimate ofΛ as

ˆ ˆ ( )L = L - cR . 46b pop

However, since both L̂ and R̂pop are low rank, and they range over different subspaces, the resultingmatrix is not
positive semidefinite. Thismakes PCA a bitmore complicated, but it is still possible. Details are given in
appendix E. As for the intra-patient covariancematrix, the inter-patient covariancematrixmust also be
invertible, therefore we add a regularization factor δΛI. Additionally, sinceΛ expresses our uncertainly about the
mean estimate, wewant to have the possibility of increasing its overall size, sowe introduce a constantmultiplier
α, whichfinally leads to
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ˆ ( )a dL = L + LI. 47

2.4.4. Probabilistic PCA
In theNIW-model, we used the point estimate Y¢

n ¢
1 forR, where Y¢ is the posterior scalematrix, and n¢ is the

posterior degrees of freedom. In the variational Bayesmodel, this is less straightforward. The posteriorΨ* can be
expressed as * * *d+ YD D IT for someD* and some *dY. The posterior *dY is approximately proportional to the

prior δΨ, andwith a large δΨ, the estimate * * * *
* * *

dY = +
n n n YD D IT1 1 1 places an unreasonable amount of

variance on the shape coordinates. For this reason, we introduce a newparameter δR, and set the point estimate
ofR to

ˆ ( )
*

* *
*n
n
n

d= +R D D I
1

. 48T
R

For the prior distribution, the point estimate forR is found by replacing the posterior parameters values in (48)
by the equivalent prior parameters. This yields

ˆ ( )d= +R D D I. 49T
R0 pop pop

WhenDpop is found through PCA, this structure fits the description of probabilistic PCA (PPCA) introduced by
Tipping andBishop (1999). Theirmethod provides amaximum likelihood estimate for δR given by

( )åd l=
- = +P K

1
, 50R

k K

P

k
1

whereλk is the kth largest eigenvalue of the population covariancematrix in (5) (i.e. the variance of the kth
principal component), andK is the number of eigenpairs not discarded in PCA. In other words, δR is the average
variance of the discarded dimensions.

3. Evaluation

3.1.Material
For evaluation, we used data from37 patients with locally advanced prostate cancer. Each patient had 9-11CT
scans taken during treatment (typically 2 per week), including the planCTused for RT dose planning. No
laxatives were administered to the patients before or during treatment. The rectumwas definedwith content
from the recto-sigmoid flexure to the anal verge. One single expert physicist contoured rectumon all CT scans
for all patients, and all contours were reviewed and corrected by another expert physicist. This yielded a total of
373 rectum shapes, whichwere used in leave-one-out cross-evaluation. Details about the patients and treatment
can be found inHysing et al (2018). All shapes from theCT scanswere converted tomesh representations with
corresponding vertices, using deformable registration. Since toxicity is related to dose to the rectal wall and not
its content, we evaluated themethods on the rectal wall. Since the inner wall is not seen onCT scans, we assumed
3mmwall thickness, as in Sanguineti et al (2020).

3.2. Parameter values
The values of the scalar parameters were tunedmanually. The values we used are shown in table 1. For the
parametersK-intra and ν, which are applicable tomultiple algorithms, we used the same value for allmodels.

3.3. Coverage probabilitymatrices
To calculate predictedCPMs,μi andRiwasfirst estimated for each patient i using the patient-specific,
population, and twoBayesianmethods. For eachmethod, 500 random rectal wall shapes per patient were then
generated based on the distributions ( )m R,i i . For each generated shape, we foundwhich voxels (on a
1× 1× 1 mmgrid)were covered by the rectal wall using an in-house developed ray-tracing algorithm. The

Table 1.Parameter values for allmodels. K-intra is the number of principal
components used to compute the intra-patient covariancematrix,K-inter
is the same for the inter-patient covariancematrix, ν andκ are scalar
hyperparameters of the IW/NIWdistributions, δΛ and δΨ are
regularization parameters for thematrices used in the variational Bayes
iteration, andα is theweight of the inter-patient covariancematrix.

K-intra K-inter ν κ δΨ δΛ α

12 20 6 0.25 240 000 80 000 4
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coverage probability of each voxel was defined as the fraction of generated rectal walls covering that voxel. This
procedure was repeated using one, two and three input scans for eachmethod.

We used the remaining independent Ji− 3 scans for each patient to compute reference CPMs. Since
relatively few scans (6–8)were then available, we used the bootstrapping procedure detailed in section 3.4with
this data to generate smoothCPMs. The reference CPM for each patient was computed by drawing 500
bootstrapped rectal wall shapes, and setting the coverage probability of each voxel equal to the proportion of
these shapes that covered the voxel.

The predictedCPMs and referenceCPMs (the ground truth)were compared in terms of their normalized
cross-correlation:

( ) ( )
( ) ( )

( )
å

=
å

å

Î

Î
Î

c
p v p v

p v p v
, 51

v V

v V
v V

predict true

predict
2

true
2

whereV is the set of all voxels, and ppredict(v) and ptrue(v) are the predicted and true coverage probabilities at voxel
v, respectively.

3.4. Convergence behaviour
To analyse convergence of the fourmethodswithout re-using structures for both training and testing, we created
a virtual data set for each patient in the original data set by using a PCA-based bootstrapping procedure: For each
patient, wefirst calculated the principal components using all the patient’s available shapes.We then calculated
the PCA-scores for each shape: ci,j,k, where i is the patient number, j is the scan number and k is the component
number. To generate a new random scan for patient i, a newPCA-score *ck was drawn for each component
number k, and a new shape *si was synthesized according to

¯ ( )* *å= +
=

s s c w , 52i i
k

J

k i k
1

,

i

wherewi,k is the kth principal component vector for patient i. The *ck values were drawn randomly from the
existing values ci,j,k for j= 1K Ji, i.e. by bootstrapping. Since the principal component scores are uncorrelated,
suchmixing of the scores should create realistic new shapes. The bootstrapping proceduremeans that no specific
distribution has been assumed.

For each patient, we generated 10 shapes using this procedure. These shapes were used as input to themodels
to estimate CPMs. The estimatedCPM for each patient was compared to the reference CPM for that patient,
whichwas generated using all individual scans.

3.5. Impact of the uncertainty parameter δR
For the variational Bayesmodel, the parameter δRnaturally occured from the equations and the requirement
that the covariancematrixmust be non-singular. The PPCAmethod that we used tofind δR can also be used for
the othermethods.We therefore tested the effect of δR on the the populationmodel, theNIWmodel and the
variational Bayesmodel, and compared the result to non-probabilistic PCA, i. e. δR= 0. PPCA is not practical for
the patient-specificmodel with as few as 3 input scans, since it requires that some principal components are not
used. For the populationmodel, δRwas set constant, while for theNIWand variationalmethod, it was updated
according to the update equations forΨ, which leads to

( ) ( ) ( )d
n
d=

+
n

n

n
0 , 53R R

where n is the number of scans.
Themotivation for this additional evaluationwas to avoid a bias in favour of the variational Bayesmodel.

4. Results

Visual comparison of the four first population intra-patientmodesfits with anatomical expectations (figure 2).
Thefirstmode ismainly bending of the anorectal flexure; in the bent state, the rectum is less filled than in the
straight state. The secondmode shows stretching and compressing of the rectum in the caudal–cranial direction.
The thirdmode showsmainly stretching of the top of the rectum in the left-right direction, while the fourth
mode shows bending left-right of the top of the rectum.A general finding is that themost caudal third of the
rectum, up to slightly above the anorectalflexure,moves very little. This is corroborated byfigure 3, which shows
coverage probabilities of the rectumwall for two example patients, a ‘smallmover’ and a ‘largemover’.

The Bayesianmodels take advantage of population data alsowhen estimating the patient-specificmean
rectum m̂ . Figure 4 shows how themean estimatesmay differ with the Bayesianmodels for an example patient,
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Figure 2.The four greatest population intra-patient deformationmodes. The green and blue shapes represent+2 and−2 standard
deviations of the deformationmode from the populationmean rectum shape. A videowith animation of the deformationmodes is
available in the supplementarymaterial.

Figure 3.Coverage probabilitymatrices for the rectal wall on a sagittal slice of theCT scan for two example patients—a ‘smallmover’
(A) and a ‘largemover’ (B). The red area is the high dose volume to the prostate, that receivesmore than 67 Gy EQD2.

Figure 4.Estimatedmeans and actualmean rectum shape for an example patient. A: PlanCT rectum shape, input to estimation
algorithms. B:Mean rectum shape estimated byNIWmodel. C:Mean rectum shape estimated by variational Bayesmodel. D: Actual
mean rectum shape over 9 scans.
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given a single input scan. For this patient, themean shape from variational Bayesmodel had the greatest
similarity with the truemean shape.

The average correlation between the estimatedCPMs and the references is shown infigure 5(A), while
figure 5(B) shows the spread of the results among the individual patients. The twoBayesianmethods outperform
both the existingmodels, with the variational Bayesmodel showing superior results to theNIW-model. The
results are summarized in table 2, where the patient-specificmodel has been left out since it performs poorly
with as few as three scans. The differences between the population,NIWand variational Bayesmodel were
consistently significant (p< 0.05). In comparison to the best existingmodel (the populationmodel), the
variation Bayesmodel improved correlationwith the reference CPM in 35 out of 37 patients when using a single
input scan (figure 6).

4.1. Convergence behaviour
The twoBayesianmethods both outperform the patient-specificmodel with up to 6 scans, and outperforms the
populationmodel for any number of scans (figure 7). As the number of input scans increases, the patient-specific
model and the twoBayesianmodels appear to converge toward the trueCPM,while the populationmodel
improves onlymoderately. This is to be expected, since, in the populationmodel, the covariancematrix
representing the random error is never updated. All improvement seen in the populationmodel is therefore
from reduction of error in themean estimate, often referred to as systematic error. The performance of the
patient-specificmodel is comparable to that of the populationmodel when both are given 4 scans. Formore than
4 scans, the patient-specificmodel outperforms the populationmodel. The variational Bayesmodel consistently
performs slightly better than theNIW-model.

4.2. Impact of the uncertainty parameter δR
For all themodels, PPCA through the addition of the δRparameter increases correlation as compared to
ordinary PCA, as shown infigure 8. The difference between themodels with andwithout the uncertainty

Figure 5.Correlation between the estimatedCPMs and the references for the differentmethods using 1–3 input scans. A: Average
correlation. B: Box plots showingmedian, 25th and 75th percentile andminimumandmaximumvalues (whiskers). All individual
values are also shown as circles over the box plot.

Table 2.Difference in CPMcorrelation between the population, NIWand variationalmodels using one, two and
three scans.Here,Δμ is the difference in average value of theCPMcorrelations, and%+ is the percentage of patients
that saw improvement with the firstmethod over the second.

NIWversus pop.model

Variational versus pop.

model Variational versusNIW

Δμ p-value %+ Δμ p-value %+ Δμ p-value %+

1 scan 0.026 6.2e-5 78 0.058 1.2e-8 95 0.032 2.2e-6 81

2 scans 0.014 1.8e-4 81 0.027 2.5e-6 86 0.013 1.2e-3 70

3 scans 0.015 2-2e-6 89 0.023 8.0e-7 89 0.008 0.01 62
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parameter is greatest when using a single scan. Although the differences between themodels decreased, both
Bayesianmethodswith ordinary PCA still perform the same as, or better than the populationmodel with PPCA.

5.Discussion

Both the newmodels outperform the existing populationmodel significantly. Conceptually, theNIWmodel is
only slightlymore complex than the populationmodel, so there is little rationale for rather using the population
model. Additionally, figure 6 shows that the Bayesianmodels are robust, as evidenced by the fact that 35 out of 37
patients had improved result with the variational Bayesmodel over the populationmodel (29/37 for theNIW-
model without PPCA). There is therefore very little risk involved inmoving to a Bayesianmodel.

It is to be expected that the new algorithmswill performworse for some patients due to the randomnature of
the data.Nevertheless, we examined the data for the two patients who performedworsewith the variational
Bayes than the populationmodel using one scan to see if therewere notable patterns.While no conclusion can be

Figure 6.Correlation between the estimatedCPMs and the references; comparison between the traditional populationmodel and the
proposed variational Bayesmodel. All points above the ‘x = y’ line represent patients forwhich the variational Bayesmethod
produced a better CPMestimate than the populationmodel.

Figure 7.Average correlation between the estimatedCPMs and the reference CPMs for the differentmethods using 1–10 scans, based
on bootstrapped data.
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reached, it seems that, for these patients, the rectal shape in the pCT is coincidentally similar to themean shape
over all CTs.

The choice between the twoBayesianmethods is a tradeoff betweenmodel accuracy and complexity. The
main concernwith the variational Bayesmodel is the conceptual rather than the computational complexity—it
ismore challenging to implement and requiresmore parameters than theNIWmodel.When using PPCA, the
NIWmodels performance gets close to that of the variational Bayesmodel.

As expected, the patient-specificmodel cannot compete with the othermodels when few scans are available.
Thismodel still has an advantage in that no training data from the population is required. Additionally,
deformable registration ismore readily available between contours of the same patient than between contours of
different patients. There are therefore applications where the patient-specificmodel is the only available option.
However, in these cases, care should be taken that sufficient scans are available, as shown infigures 5 and 7.

The convergence analysis infigure 7 shows that we have achieved the goal of combining the advantages of
bothmodels; requiring few scans to achieve good accuracywhile also improving accuracywithmore scans. At
around eight scans, the patient-specificmodel catches upwith the Bayesianmodels. This is to be expected -at
that point, the Bayesianmodels put very little weight on the population data since there is sufficient patient-
specific data for an accuratemodel.

We have evaluated themodel for the rectum, a highlyflexible and deformable organ. The ability of the
method tomodel other organswill depend on the amount of individual variation and the ability of the training
data to replicate the variations that appear in the population. The fact that themodels combine patient-specific
data with the training data suggests that they should out-performpurely population basedmethodswhen there
is great variability in the individual deformation. It is also possible tomodelmultiple organs simultaneously, as
donewith the individualmodel in Söhn et al (2005). Thismay be advantageous, as correlations between the
deformations of the different organs and their relative positions are taken into account.

As far as our experience goes, the variational Bayes iteration is not sensitive to the selected starting guess of
the scalematrixΨ*, it appears to converge to the same solution regardless of starting point. The iteration takes
less than a second to run for a single patient. Generating aCPMwith a resoluton of 1 mm (about 3million
points) from500 generated shapes took about 5 seconds on a standard PC. In practice, themain computational
effort will be spent on deformable registration, which takes about 2minutes for a single registration in our setup5

5.1. Applications
The calculation ofCPMsplay a key role inmany applications of organdeformationmodels (Price and
Moore 2007). TheCPMs can be used for robust RTplanning (Baum et al 2006), or to calculatemargins based on
the formula of Stroom et al (1999), as inHysing et al (2011), Thörnqvist et al (2013a),Magallon-Baro et al (2019).
In Ramlov et al (2017), Lindegaard et al (2017), CPMswere used clinically to reduce toxicity in nodal boosting of
cervical cancer RT.Applications besidesCPMs include robust evaluation through treatment course simulation
(Söhn et al 2012,Hysing et al 2018), generation of plan libraries for RTpersonalized tomotion (Rigaud et al 2019)

Figure 8.Comparison of ordinary and probabilistic PCA for differentmodels. Each symbol represents the average correlation between
the estimatedCPMs and the references.

5
Matterhorn software fromErasmusMC (Rotterdam), running on an Intel i7-4600U2.1 GHzCPU.
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andmotion-robust optimization (Sobotta et al 2010,Unkelbach et al 2018). Recently,Owens et al (2022)used a
pure inter-patientmodel to reconstruct colorectal dose in childhood cancer survivorswhohad receivedRTwith
noCT simulation. Thus, applications also extends to improving evaluation of complications fromRT.

The Bayesian approach offers additional advantages because it quantifies themodel uncertainty. Consider
for example the robust evaluation in Söhn et al (2012), Hysing et al (2018): predicting dose-volume histograms
(DVHs)with uncertainties (such as 5th and 95th percentiles).When using a non-Bayesian deformationmodel,
the correctness of the predicted values rely on the correctness of themodel’s parameters.With a Bayesianmodel,
the uncertainty of the parameters will translate to additional uncertainty regarding the dose-volume histogram,
thus increasing the difference between the expected value and the 5/95 percentiles.

Interfractional geometrical errors in RT are often divided into systematic and randomerrors. The random
error is themotion around themean shape and position at each fraction, while the systematic error is the
difference between the actualmean and the estimatedmean, usually the shape and position at the planCT. In
terms of the deformationmodels, the systematic error is the difference between the estimated and the true
patientmean, m̂ m- . The presented Bayesianmodels reduces the systematic error as compared to the previous
methods by utilizing population datawhen estimating m̂ (see figure 4). In addition, the newmodels provide a
personalized distribution for the systematic error in terms of the posterior inter-patient distribution. Thewidely
appliedmargin recipe by vanHerk et al (2000) uses the formula 2.5Σ+ 0.7σ, whereΣ andσ are the standard
deviations of the systematic and random errors, respectively. Because the distribution of both the systematic and
randomerrors aremodeled under the Bayesian framework, it is in principle possible to use similar recipes for
margins due to deformation.

5.2. Choice of evaluationmetric
The cross-correlationmetric puts proportionally higherweight on voxels that have a high coverage probability.
Since a large portion of the organ tends to overlap inmost or all shapes for one patient, allmethodswill tend to
produce relatively high correlation values. Therefore, the differences between themethodsmay seem small.We
still choose to use thismetric because of its simplicity and ease of reproduction.

5.3. Gaussian likelihood
Both the Bayesianmodels and themodels we compare tomake the assumption that the data for a given patient is
multivariate Gaussian distributed. This has been a standard assumption in applications of deformationmodels
(e.g. Söhn et al 2012, Rios et al 2017). In the high dimensions that we operate in, it would require unrealistically
many individual scans to disproveGaussianness. Nevertheless, this assumption is a possible source of error,
which showcases the need to evaluate themodel against real data.

It should be possible to adapt the patient-specific and populationmodels to use a nonparametric
distribution of the PCA-scores as in Fontenla et al (2001), but this has not yet been demonstrated. In a Bayesian
model, a non-Gaussian likelihoodwouldmake calculating the posteriormathematically intractable.

5.4. Parameter values
The values of the scalar parameters in table 1were hand tunedwith the objective tomaximize theCPM
correlations. Since it is not possible to evaluate the accuracy of the estimated distribution for a newpatient
without havingmany individual scans, onemust in practice trust that parameter values that workedwell for the
training data also workswell for newpatients. If newdata source is in someway different from the training data
(e.g. a different imagemodality or IGRT routine, a different diagnosis or otherwise different type of patient), the
parameters should at least be evaluated for this kind of data. However, in such cases Bayesian inference should
performbetter than a pure population approach, as it tailors the distribution to the data at hand.

The parameterκ for theNIW-model was set to 0.25. Using equation (18), wefind that, given one input scan,
this represents an shrinkage factor of 0.2; i.e the estimatedmean is ‘shrunk’ by a factor 0.2 towards the population
mean (Rørtveit et al 2021). The parameter ν, the number of degrees of freedomof theWishart distribution, was
set to 6 for both theNIWand the variationalmodel. Normally, ν represents the number of samples fromwhich
Ψwas computed. However, this is under the assumption that these samples were all drawn from the same
multivariate Gaussian distribution. In our case, the samples were drawn fromM differentGaussian distributions
with covariancematricesRi, none of whichmatch a future patient’s covariancematrix. Therefore, we aremuch
less certain aboutR, andwe need to choose a value for ν that ismuch smaller than the total number of
observations in the training data.

When tuning the values of δΨ and δΛ, we found that these needed to be set surprisingly large to achieve
satisfactory results. Possibly, some assumptions or parts of themodel do not actuallyfit the datawell, and
increasing the regularization values then compensates for the poorfit. This underscores the importance of
evaluating themodels with realistic data, and tailoring the parameters to the case at hand.
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5.5.Degenerate inverseWishart distribution
The inverseWishart distribution is usually defined in terms of the (forward)Wishart distribution: If a random
n× nmatrixG isWishart distributedwith ( )n~ YG , , then its inverseG−1 is inverseWishart distributed
with ( )n~ Y- -G ,1 1 . However, when ν< n, theWishart distribution is degenerate, as anymatrixGwith a
non-zero probability density has rank ν and is therefore singular. Then this definition of the IWdistribution
does notwork. A singular inverseWishart distribution is defined through the pseudo-inverse ofW (Cook and
Forzani 2011, Bodnar et al 2016). Unfortunately, this distribution is not well behaved, and does not have afinite
expected value. Sincewe do not explicitly use the distribution, but rather a point estimate, this does notmake a
difference when using themodels as described in this paper.However, caremust be taken if using the full
Bayesianmodel as described in section 5.6, as individual realizations ofG can have very large eigenvalues.

5.6. Extensions
Wehave applied themodels to the rectum alone, however, for use in e.g. robust optimization, it would be
advantageous tomodel several structures simultaneously so that the correlation between structures are taken
into account.

In the evaluation of the algorithms, we used point estimates forμ andR as opposed to a full distribution.We
have thus ignored the uncertainty in themodel itself, and therefore sinned against the Bayesian philosophy.We
chose to do this for the sake of computational complexity. However, it is possible to account for the additional
uncertainty:When performingMonte-Carlo sampling, onewould first sampleμ andR from the posterior
distribution every time before sampling s from ( )m R, . The resulting distribution of s is called the posterior
predictive distribution. Particularly the sampling ofR is computationally intensive. An alternative approach
might therefore be to use a point estimate forRwhile samplingμ, as systematic errors are often of greater
importance than random errors.

The presentedmodels have been applied to deformably registered organ surfaces. Amore common formof
deformable registration is the deformation of 3D-images with image intensities. Since both types of registration
produce deformation vector fields, it is possible, with some adaptions, to apply thesemodels to deformed images
aswell.

6. Conclusions

Wehave implemented and evaluated twoBayesianmethods formodelling organ deformation occuring during
RT treatment. TheNIWand the variational Bayesmodels both outperformed previous organ deformation
models when applied to the rectal wall of prostate cancer patients.
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AppendixA.Derivation of the conditional posteriors

The pdf for themultivariate Gaussian distribution for a vector x of dimension p is⎛⎝ ⎞⎠( ) ( ) ∣ ∣ ( ) ( ) ( )m
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The joint pdf ofμ,R and the samples S= {s1, s2,K,sn}, based on our prior and our likelihood is
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Using the property of the trace ( ) ( )=ABC CABtr tr and the fact that a scalar is its own trace, the sumwithin the
exponential can bewritten as
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To condition (A.4) onμ and S, we can leave out any factors not containingR - that is, the first term in the
exponenial. Using (A.6), wefind

⎜ ⎟⎛⎝ ⎞⎠
( ∣ )

∣ ∣ ([ ( )( ) ] )
( ) ( )

( ) å

m

m m

n

µ - Y + - -

µ Y¢ ¢

n- + + +

=

-



f R S

R s s R

R

,

exp
1

2
tr

; , , A.7

p n

i

n

i i
T1 2

1

1

with

( )( ) ( )å m mY¢ = Y + - -
=

s s A.8
i

n

i i
T

1

and

( )n n¢ = + n, A.9

which concludes the derivation of the conditional posterior forR.
Next, we condition (A.4) onR and S tofind
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Looking actively for aGaussian distribution, wewant tofind that the terms inside the exponential are equal to
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for some L¢ and m¢, with any constant term c. Grouping the terms that are quadratic inμ, we find
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therefore, if this is aGaussian distribution, wemust have
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Setting this equal to the linear terms in (A.11), we have
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Appendix B. Variational approximation

Tofind the functions qμ and qR, we follow the procedure presented inGelman et al (1995). Theminimizing
functions are given by
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Following the lines of the derivation in appendix A, wefind
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Finally, we replace themoments in (B.6), (B.7) and (B.15) by themoments from the approximate distributions
qμ and qR. SinceR, according to (B.13), is inverse-Wishart distributedwith scalematrixΨ* and ν* = ν+ n
degrees of freedom, its inverseR−1 isWishart-distributedwith scalematrixΨ*−1 and ν+ n degrees of freedom.
Its expectation isE[R−1]= ν*Ψ*−1. Thereforewefind
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AppendixC. Efficient computation of the update iteration

The key tofinding the estimatedmean and covariancematrix for a patient is iteration over the update equations,
repeated here for convenience:
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Only ν* can be calculated directly. The other parameters rely on each other, and therefore require an iteration to
converge to the correct values.

Putting the iteration number i in a superscript (replacing ·*), we canwrite the iteration as
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Wecan see that we need to supply a starting guess for the first valueΨ(0).5 A natural starting guess isΨ(0) = Ψ.
In theory, the iteration represented by equations (C.5)–(C.7) can be implemented directly in any numerically

oriented programming language.However, this would require storing and inverting very largeP× Pmatrices,
which is not attainable in practice. However, due to the structure ofΨ andΛ (when estimated as in sections 2.4.2
and 2.4.3), memory and computation requirements can be drastically reduced.

BothmatricesΛ andΨ can be represented as an outer product of a datamatrix with itself plus a scalar
multiple of the identitymatrix:

( )dL = +L L LD D I C.8T

( )dY = +Y Y YD D I. C.9T

Here,DΨ andDΛ areP×NΨ andP×NΛmatrices, withNΛ,NΨ= P.Multiplying a vector a by such amatrix is
much faster than the generalO(P2)figure, since e. g.

( ) ( ) ( )d dL = + = +L L L L L La D D I a D D a a, C.10T T

which is easily computed inO(NΛP) time. Furthermore, it is also fast to solve an equation such asΛx= b.
Throughout this derivationwe shallmake heavy use of the following special case of theWoodburymatrix

identity, which holds for anymatricesA andB and scalar δ as long as the involved inversions are possible:

( ) ( ) ( )d d d d+ = - +- - - - -I ABA I A B A A A . C.11T T T1 1 1 1 1

Thismeans that the inverses ofΛ andΨ can also bewritten in the formDCDT+ δI for someD,C and δ.

C.1. ComputingΛ(i)

We shall show later thatΨ(i) can bewritten for any i as

( )( ) ( ) ( ) ( ) ( )dY = + YD G D I, C.12i i i i T i

for some ( )dY
i andG( i), andwhere

[ ] ( )( ) ( )= L YD D D C.13i i

for some ( )
YD i of dimension P× (NΨ+ n). Inserting (C.8) and (C.12) into (C.5), we get

[( ) ( )( ) ] ( )( ) ( ) ( ) ( ) ( )d n dL = + + + +L L L
- - - -

Y
- - -D D I n n D G D I . C.14i T i i i T i1 1 1 1 1 1 1

Using thematrix inversion lemma (C.11) on both the inner inverses of (C.14), we get

[ ( ) ( )
( ) ( ) ] ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

d d d n d

n d d

L = - + + +

- + +
L
-

L
-

L L L L
-

L Y
- -

Y
- - -

Y
- - - - - - - -

I D I D D D n n I

n n D G D D D C.15

i T T i

i i i i i T i i T

1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

In order to group the terms, note that

( ) ( )( ) ( )d d- + =L
-

L L L L
-

L
- -D I D D D D QD , C.16T T i i T1 1 1 1

whereQ is a block-diagonalmatrix⎡⎣⎢ ⎤⎦⎥( ) ( )d d= - +L
-

L L L
-

+ ´ +Y Y

Q
I D D

0
. C.17

T

N n N n

1 1

Wealso define

( ) ( )( ) ( ) ( ) ( ) ( ) ( )d d= - +Y
-

Y
- -L G D D C.18i i i i i T i1 1 1

and

( ) ( )( ) ( )n= + + -F Q n n L C.19i i 1

Now,we canwrite

( ( ) ) ) ( )( ) ( ) ( ) ( ) ( )d n dL = + + +L
-

Y
- - - - -n n I D F D , C.20i i i i i T1 1 1 1 1 1

Applying thematrix inversion lemma again, we find

( )( ) ( ) ( ) ( ) ( ) ( )d dL = - - -I D H D , C.21i i i i i i T1 1

5
Given that the iteration starts with the equation forΛ(1). If we had startedwith one of the other equations, a starting guess for at least one

other parameter would need to be provided.
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where

[ ] ( )( ) ( ) ( ) ( ) ( )d= +- - - - -H D D F C.22i i T i i i1 1 1 1 1

and

( ( ) ) ( )( ) ( )d d n d= + +L
-

Y
- - -n n . C.23i i1 1 1 1

equation (C.21) gives us an expression forΛ(i)using only lower dimensionalmatrices and scalars. In practice, we
never constructΛ(i)

—it is represented implicitly byD( i),H( i) and δ( i) through (C.21).

C.2. Computing ( )m i
0

Through the derivation ofΛ(i), we have already come a longway towards computing ( )m i
0 .We canwrite (C.6) as

( )( ) ( ) ( )m = L r , C.24i i i
0

with

( ) ¯ ( )( ) ( )m n= L + + Y- - -r n n s . C.25i i1
0

1 1

Thefirst termof (C.25) is constant, and can be computed once. Using thematrix inversion lemma on (C.8), we
find

( ) ( ) ( )m d m d d mL = - +-
L
-

L
-

L L L L
-

LD I D D D C.26T1
0

1
0

1 1
0

The last termneeds to be computed for each iteration.Wefind it by using thematrix inversion lemma on (C.12):

¯ ( ( ) ) ¯ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d dY = - +-
Y

-
Y

-
Y

- -s I D G D D D s C.27i i i i i i i T i i T1 1 1 1 1

¯ ( ¯) ( )( ) ( ) ( ) ( )d= +Y
- s D L D s C.28i i i i T1

Finally, inserting (C.21) into (C.24), wefind

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m d d= - - -r D H D r . C.29i i i i i i i T i
0

1 1

C.3. ComputingΨ(i)

The update equation forΨ is

( )( )

( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

å

å

m m

d m m

Y = Y + - - + L

= + + - - + L

=

Y Y Y
=

s s n

D D I s s n . C.30

i

j

n

j
i

j
i T i

T

j

n

j
i

j
i T i

1
0 0

1
0 0

Wecan augment the datamatrixDΨ by inserting new columnswhich are themean-subtracted data vectors;

[ ] ( )( ) ( ) ( ) ( )m m m= - - ¼ -Y YD D s s s , C.31i i i
n

i
1 0 2 0 0

andwefind

( )( ) ( ) ( ) ( )dY = + + LY Y YD D I n . C.32i i i T i

Inserting (C.21), we get

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d d dY = + + -Y Y Y
- -D D I n I D H D C.33i i i T i i i i i T1 1

Wewant to group the terms of this equation, but run into a slight problem:One term contains ( )
YD i , while

another term containsD( i−1) (which contains )( )
Y
-D i 1 . In practice, this can easily be resolved by replacingD( i−1)

byD( i); this is in linewith the algorithmphilosophy of always using themost recent guess of each parameter, and
also guarantees that the equations (C.1)–(C.3) hold at convergence (at convergence, we haveD( i) = D( i−1)).
Now, to group the terms,first note that

( )( ) ( ) ( ) ( )=Y YD D D KD , C.34i i T i i T

where ⎡⎣⎢ ⎤⎦⎥ ( )= ´

+

L L

Y

K
I

0
. C.35

N N

N n

Thus, we canwrite

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )d d dY = - + +YD K n H D n I. C.36i i i i i T i
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Wenow see thatwemust have

( )( ) ( ) ( )d= -G K n H C.37i i i

and

( )( ) ( )d d d= +Y Y n C.38i i

in order forΨ(i) to bewritten as

( )( ) ( ) ( ) ( ) ( )dY = + YD G D I. C.39i i i i T i

C.4. Initial values
Initially, wewant to getΨ(0) = Ψ, i. e. ( ) ( ) ( ) ( )d d+ = +Y Y Y YD G D I D D IT T0 0 0 0 which achieve by setting

( )( )d d=Y Y C.400

[ ] ( )( ) =Y Y ´D D 0 C.41P n
0

( )( ) =G K . C.420

However,G(0) is not invertible, whichmakes it impossible to compute L(0) as in (C.18). Instead, L(0)must be
initialized to ⎡⎣⎢ ⎤⎦⎥( ) ( )( ) ( ) ( )d d

=
- +

´

Y
-

Y Y Y
-

L L
L

I D D

0
. C.43

N N

i T i
0

1 1

C.5. Algorithm summary

Input:μ0,DΛ,DΨ, δΨ, δΛ, s1Ksn, ν

Output: *m0 ,D
*,G*, *dY , δ

*,H*⎡⎣⎢ ⎤⎦⎥= ´

+

L L

Y
K

I

0
.

N N

N n⎡⎣⎢ ⎤⎦⎥( )d d= - +L
-

L L L
-

+ ´ +Y Y

Q
I D D

0

T

N n N n

1 1

( ) ( )d m d d m¬ - +L
-

L
-

L L L L
-

Lq D I D D DT T1
0

1 1
0 /*q isΛ−1μ0

*/

[ ]( ) =Y Y ´D D 0P n
0

[ ]( ) ( )¬ L YD D D0 0

( )d d¬Y Y
0

( )m m¬0
0

0⎡⎣⎢ ⎤⎦⎥( )
( ) ( ) ( )d d

¬
- +

´

Y
-

Y Y Y
-

L L
L

I D D

0N N

T
0

1 0 0 1

i← 0

repeat

i ← i + 1

( ( ) )( ) ( )d d n d¬ + +L
-

Y
- - -n ni i1 1 1 1

F( i)←Q + n(ν + n)L( i−1)

( )( ) ( ) ( ) ( ) ( )d¬ +- - - - -H D D Fi i T i i i1 1 1 1 1

( )( ) ¯( ) ( ) ( ) ( ) ( )n d¬ + + +Y
- - - - -r q n n I D L D si i i i i T1 1 1 1 1

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )m d d¬ - - -r D H D ri i i i i i i T i
0

1 1

[ ]( ) ( ) ( ) ( )m m m¬ - - ¼ -Y YD D s s si i i
n

i
1 0 2 0 0

[ ]( ) ( )¬ L YD D Di i

( ) ( )d d d¬ +Y Y ni i

G( i)←K − nδ( i)H( i)

( )( ) ( ) ( ) ( ) ( ) ( )d d¬ - +Y
-

Y
- -L G D Di i i i i T i1 1 1

until ( ) ( ) m m- <- i i
0 0

1

( )*m m¬ i
0 ,D* ← D( i),G* ← G( i), ( )*d d¬Y Y

i , δ* ← δ( i),H* ← H( i)

/* Implicit, not computed:Λ* = δ*I − δ*D*H*D*T */

/*Implicit, not computed: * * * * *dY = + YD G D IT */
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AppendixD. Bias of the inter-patient covariancematrix estimate

Weestimate the inter-patient covariancematrix as

ˆ (¯ ˆ )(¯ ˆ ) ( )å m mL =
-

- -
=M

s s
1

1
. D.1

i

M

i i
T

1
0 0

This is the sample covariancematrix of s̄i, as opposed toμwhichwe are interested in. But s̄i are not identically
distributed if Ji varies.We can show that

[ ˆ ] (¯ ) ( )åL =
=

E
M

s
1

cov . D.2
i

M

i
1

To avoid clutter, the proof of this result is given at the end of the appendix.
The covariancematrix of a samplemean based on n i.i.d. samples is always given by 1/n times the covariance

matrix of one sample. In otherwords,

(¯ ∣ ) ( )m =s R
J
Rcov ,

1
. D.3i

i

Nowwe can use the law of total covariance, which states, for two scalar randomvariables a and b,

( ) [ ( ∣ )] ( [ ∣ ] [ ∣ ]) ( )= +a b E a b c E a c E b ccov , cov , cov , . D.4

In our case, we get

(¯ ) [ (¯ ∣ )] ( [¯ ∣ ]) ( )m m= +s E s R E s Rcov cov , cov , D.5i i i⎡⎣⎢ ⎤⎦⎥ ( ) ( )m= +E
J
R

1
cov D.6

i

[ ] ( )= + L
J
E R

1
D.7

i

since, by definition, cov(μ)=Λ. Inserting (D.7) into (D.2) yields

⎜ ⎟⎛⎝ ⎞⎠[ ˆ ] [ ] [ ] ( )åL = L + = L +
=

E
M J

E R cE R
1 1

, D.8
i

M

i1

where

( )å=
=

c
M J

1 1
. D.9

i

M

i1

,
Proof of (D.2):
We start bymanipulating (D.1):

ˆ (¯ ˆ )(¯ ˆ ) ( )å m mL =
-

- -
=M

s s
1

1
D.10

i

M

i i
T

1
0 0

⎜ ⎟⎛⎝ ⎞⎠¯ ¯ ˆ ˆ ¯ ˆ ˆ ¯ ( )å å å åm m m m=
-

+ - -
= = = =M

s s s s
1

1
D.11

i

M

i i
T

i

M
T

i

M

i
T

i

M

i
T

1 1
0 0

1
0

1
0

⎜ ⎟⎛⎝ ⎞⎠¯ ¯ ˆ ˆ ( ¯ ) ˆ ˆ ( ¯ ) ( )å å å åm m m m=
-

+ - -
= = = =M

s s s s
1

1
D.12

i

M

i i
T

i

M
T

i

M

i
T

i

M

i
T

1 1
0 0

1
0 0

1

⎜ ⎟⎛⎝ ⎞⎠¯ ¯ ˆ ˆ ˆ ˆ ˆ ˆ ( )å m m m m m m=
-

+ - -
=M

s s M M M
1

1
D.13

i

M

i i
T T T T

1
0 0 0 0 0 0

⎜ ⎟⎛⎝ ⎞⎠¯ ¯ ˆ ˆ ( )å m m=
-

-
=M

s s M
1

1
, D.14

i

M

i i
T T

1
0 0

wherewe used ˆ ¯m = å = s
M i

M
i0

1
1 . Taking the expectation, and using the general formula

[ ] ( ) [ ] [ ]= +E xx x E x E xcovT T , wefind

⎜ ⎟⎛⎝ ⎞⎠[ ˆ ] [¯ ¯ ] [ ˆ ˆ ] ( )å m mL =
-

-
=

E
M

E s s ME
1

1
D.15

i

M

i i
T T

1
0 0
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( (¯ ) [¯ ] [¯ ] )

( ( ˆ ) [ ˆ ] [ ˆ ] ) ( )

å

m m m

=
-

+

-
-

+

=M
s E s E s

M

M
E E

1

1
cov

1
cov D.16

i

M

i i i
T

T

1

0 0 0

⎜ ⎟⎛⎝ ⎞⎠(¯ ) ( ˆ ) ( )å m=
-

-
=M

s M
1

1
cov cov , D.17

i

M

i
1

0

since [¯ ] [ [¯ ∣ ]] [ ] [ ˆ ]m m m m= = = =E s E E s E Ei i 0 0 . Looking at ( ˆ )mcov 0 , wefind

⎜ ⎟⎛⎝ ⎞⎠( ˆ ) ¯ ( )åm =
=M

scov cov
1

D.18
i

M

i0
1

(¯ ) ( )å=
=M

s
1

cov , D.19
i

M

i2
1

since s̄i are independent (though not identically distributed). Inserting (D.19) into (D.17) yields

⎜ ⎟⎛⎝ ⎞⎠[ ˆ ] (¯ ) (¯ ) ( )å åL =
-

-
= =

E
M

s
M

M
s

1

1
cov cov D.20

i

M

i
i

M

i
1

2
1⎛⎝ ⎞⎠ (¯ ) ( )å=

-
-

=M M
s

1

1
1

1
cov D.21

i

M

i
1

(¯ ) ( )å=
=M

s
1

cov . D.22
i

M

i
1

,

Appendix E. PCA for the bias-corrected inter-patient covariancematrix

The bias-corrected inter-patient covariancematrix estimate is given by

˜ ˆ ˆ ( )L = L - cR , E.1pop

where = å =c
M i

M
J

1
1
1

i
. Thismatrix is not positive semidefinite, and cannot be expressedwith a real-valued data

matrixD as L̃ = DDT . It can, however, be expressed as

˜ ( )L = AB , E.2T

where [ ]= LA D cDpop and [ ]= -LB D cD T
pop .

As usual L̃ is too big to practically perform eigenvalue decompostion on.However, there is a relation
between the eigenvalue decomposition ofABT and that ofBTA . The latter is a smallmatrix, and its eigenvalue
decomposition can easily computed using any numerical software package. Given the kth eigenvalueλk and the
kth eigenvector vk ofB

TA, the kth eigenvalue of L̃ isλk, and the kth eigenvector is

( )=w Av . E.3k k

Aproof of this result is given at the end of the appendix. The scale ofwk is arbitrary, sowewant to normalize it as

( )
 

¢ =w
w

w
. E.4k

k

k

As usual in PCA,we discard the eigenpairs corresponding to the smallest eigenvalues. In this case, since the
matrix is not positive semidefinite, several of the eigenvalues will be negative.We need to discard all eigenpairs
corresponding to negative eigenvalues, sincewe cannot have negative variance for any of themodes (which
would lead to a complex datamatrix). The PCA-reduced covariancematrix can nowbe represented by a data
matrix D̃ CAP as

˜ ˜ ˜ ( )L = D D , E.5CA CA CA
T

P P P

with

˜ [ ] ( )l l l= ¢ ¢ ¼ ¢D w w w . E.6CA K KP 1 1 2 2
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Proof of (E.3):
Letwk be an eigenvector ofAB

T, andλk be the corresponding eigenvalue, i. e.

( )l=AB w w . E.7T
k k k

Wecan transformABT intoBTA bywhat wemay call a pseudo-similarity transformation:

( ) ( ) ( )= =+ -A AB A A A A AB A B A, E.8T T T T T1

whereA+ denotes the pseudo-inverse ofA. Also note that AA+ is a projectionmatrix onto the subspace spanned
byA. Sincewk, as an eigenvector ofAB

T, is already in this subspace, we have

( )=+AA w w . E.9k k

Using the three previous equations, we can nowwrite

( ) ( )l= = =+ + + + +B A A w A AB AA w A AB w A w . E.10T
k

T
k

T
k k k

This shows thatλk is an eigenvalue ofB
TA, with corresponding eigenvector vk= A+wk. However, wewant tofind

wk given vk. Using (E.9) again, we find

( )= +v A w E.11k k

( ) = =+Av AA w w . E.12k k k

,
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