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Abstract

As part of the field of mathematical optimisation, derivative-free optimisation is the study

of optimisation methods that are not granted full access to the derivative of the objective

function. In this master’s thesis, three derivative-free optimisation methods known from

the literature that do not use the derivatives have been studied, namely the Nelder–Mead

method, the conditional trust-region method and the discrete gradient method. For each

of these methods, besides recalling a description and a convergence statement, focus was

given on providing motivation and background for increased understanding of the method

without requiring specific prior knowledge in derivative-free optimisation. Different types

of differentiability as total differentiability or subdifferentiability have been recalled for

general usage in the understanding of those methods. As part of the description of the

discrete gradient method, Wolfe’s method for finding a minimum norm vector in a convex

set is recalled, with a modified statement for proven convergence. Each of the methods

are accompanied with an implementation for use with the MATLAB programming and

numeric computing platform, or a reference to one such existing implementation is given.

Numerical experiments were performed to compare the quality of variants of the methods.





Acknowledgements

During my entire master’s studies at the University of Bergen, I had the opportunity

to learn from Jan, in the courses taught by you and through the meetings we had for

a reading course and this master’s thesis, with you as supervisor. I greatly enjoyed the

discussions we had about optimisation and the mathematics of it, the ways to present a

topic, academia in general, with from time to time a conversation about how we perceive

Norway, both having moved from abroad. I left our meetings each time with enthusiasm

to further dig into a topic, and the regularity of them made me feel welcome in Norway;

thank you for everything.

I furthermore want thank my sister, mother and father and my friends, also for their

support in moving to Norway in the first place to study optimisation, and what allowed

me to write this thesis. Ik heb superveel genoten van mijn tijd in Bergen, en ben heel blij

hier naar toe te zijn gegaan, ondanks dat ik niet altijd de beste ben in contact houden.

Dank jullie wel voor dit onvergetelijke avontuur!

In the period of working on this thesis, I also followed Norwegian language courses,

causing some variation of things to work on, which only has helped in writing this thesis.

Tusen takk for ei fin tid!

Pim Heeman

Friday 12 May 2023





Contents

1 Introduction 1

2 Differentiability and Optimality 3

2.1 Total differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Subdifferentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Descent direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Nelder–Mead Method 17

3.1 Simplices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Original variant of the Nelder–Mead method . . . . . . . . . . . . . . . . . . 18

3.2.1 Counterexamples of convergence to a minimiser . . . . . . . . . . . . . 22

3.2.2 Convergence properties . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Convergent variants of the Nelder–Mead method . . . . . . . . . . . . . . . . 26

3.3.1 Non-expansion Nelder–Mead Method . . . . . . . . . . . . . . . . . . . 26

3.3.2 Fortified-Descent Simplicial Search Method . . . . . . . . . . . . . . . 27

3.4 Termination criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Criteria for Fortified-Descent Simplicial Search Method . . . . . . . . 33

3.4.2 Other criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Trust-Region Methods 37

4.1 Fully linear and fully quadratic models . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Trust-region minimisation methods . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Examples of fully linear and fully quadratic models . . . . . . . . . . . . . . . 47

4.3.1 Interpolation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Underdetermined models . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Λ-poisedness improvement algorithms . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Minimisation sub-problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

vii



5 Discrete Gradient Method 69

5.1 Idea and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Method description and convergence properties . . . . . . . . . . . . . . . . . 73

5.3 Nearest point in a polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Numerical Experiments 81

6.1 Nelder–Mead method variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Inter-method comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Non-differentiable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A Algorithm Implementations 89

Symbols 101

Bibliography 103

viii



List of Algorithms

3.1 Nelder–Mead Method ([16]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Fortified-Descent Simplicial Search Method (FDSS) ([38] with parameters fixed

and notation heavily adjusted to fit the current presentation) . . . . . . . . . 28

4.1 Derivative-Free Trust-Region Method (first order) ([12]) . . . . . . . . . . . . 45

4.2 Calculating Lagrange polynomials for sample set ([12]) . . . . . . . . . . . . . 61

4.3 Improving poisedness via Lagrange polynomials ([12]) . . . . . . . . . . . . . 61

4.4 Improving poisedness via LU factorisation ([10] and [12]) . . . . . . . . . . . . 63

4.5 Improving strongly poisedness ([12]) . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Fletcher–Reeves Conjugate Gradient Method ([11]) . . . . . . . . . . . . . . . 66

4.7 Truncated Fletcher–Reeves Conjugate Gradient Method ([11]) . . . . . . . . . 67

5.1 Discrete Gradient Method ([2]) . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Wolfe’s method for finding that point in a polytope nearest to the origin (ge-

ometrical) ([40]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Wolfe’s method for finding that point in a polytope nearest to the origin (al-

gebraic) ([40] in exact version with modification on calculation of θ)) . . . . . 78

ix



List of Figures

2.1 Plot of the function f : R2 → R defined by (2.4) on the interval [−2, 2] ×
[−2, 2]. On top of this function f are points

(
x, x2

)
marked, being points with

f
(
x, x2

)
= x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The subdifferential of two different continuous functions f : R → R visualised

at 0. With f being only non-differentiable at 0, the gradient when approaching

0 from the left and from the right is shown, visualised by an affine line at f (0)

whose slope corresponds to the value of the gradient. The subdifferential is

visualised similarly, with lines with their slope in the subdifferential being

marked light gray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 All operations the Nelder–Mead method can apply in an iteration, shown for

a 2-dimensional simplex represented by 3 vertices. . . . . . . . . . . . . . . . 21

3.2 One step of the execution of the Nelder–Mead method on the function (x, y) 7→
x2−y (y − 2) with the initial simplex represented by the vertices (1, 0), (0,−3)
and (0, 3). The reflection point for the worst vertex, on the x-axis, yields the

same function value as the worst vertex itself, so an inner contraction is tried,

with success; this is repeated with the simplex approaching the degenerated

simplex represented by the vertices (0, 0), (0,−3) and (0, 3), with clearly none

of those vertices corresponding to a minimum or stationary point of the function. 23

3.3 Simplices used over the course of the FDSS method using Implementation A.1

of the so-called Rosenbrock function (x, y) 7→ 100
(
y − x2

)2
+(1− x)2 as found

in [30] with starting point (−1.2, 1), for which the start simplex used here

is represented by the vertices {(−1.2, 1) , (−0.2, 1) , (−1.2, 2)}. In it’s initial

stage while converging to the minimum at (1, 1), two inside contraction steps,

followed by an outside contraction, an inside contraction and reflection step

are identifiable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



4.1 Example of two interpolation sets poised for linear interpolation in R2, with

one being a slightly modified version of another, with different Λ-poisedness

as consequence. It can easily be seen that all interpolation sets in R2 that

are Λ-poised with Λ = 1 are of the form of the first figure, where for every

interpolation point the two other interpolation points must lay parallel on the

tangent of the other point, while that point must lay on the boundary. . . . . 53

4.2 Example of two interpolation sets poised for quadratic interpolation in R2, with

one being a slightly modified version of another, with different Λ-poisedness as

consequence. The base set of interest B in this example is the ball with radius

1 centred around the origin, B (0; 1), with the interpolation set Y consisting of

the origin and five points on the ball with equal distance between them, with

(1, 0) included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Two different functions, found in [21], to illustrate the independence of differ-

entiability and semi-smoothness with the extreme cases; the one on the left is

non-differentiable, but semi-smooth, while the one on the right is differentiable,

but not semi-smooth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Base points and discrete gradient iteration points evaluated over the course

of the FDSS method using Implementation A.3 of the so-called Rosenbrock

function (x, y) 7→ 100
(
y − x2

)2
+ (1− x)2 as found in [30] with starting point

(−1.2, 1). The red points mark the iteration points, with the green points

those on which the discrete gradient is evaluated. . . . . . . . . . . . . . . . . 75

5.3 Application of Wolfe’s method for finding the nearest point in a polytope

on two two-dimensional point sets, P . In both cases, P1 is first considered,

as point nearest to the origin. Not being a solution for the problem, P3 is

considered, with the nearest point in the convex hull of P1 and P3 being R.

Then, not being the result either, P2 is considered, whose affine hull spans the

whole space, and thus the origin being the point in the affine hull of P . In one

case, this point is also in the convex hull, while in the other case, we get S as

point in the convex hull on the line between 0 and R. With S lying on the

line segment between P3 and P2, we seek the point nearest to the origin here,

as T , for our solution in the other case. . . . . . . . . . . . . . . . . . . . . . 77

6.1 Contour plot of (x, y) 7→ max
{
x2 + y4, (2− x)2 + (2− y)2 , 2e−x+y

}
, with the

red dot indicating the (global) minimum of the function. . . . . . . . . . . . . 86

xi



List of Implementations

A.1 MATLAB R2022b implementation of Algorithm 3.2 (fdss.m). . . . . . . . . . 89

A.2 MATLAB R2022b implementation of Algorithm 5.3 (wolfe.m). . . . . . . . . 94

A.3 MATLAB R2022b implementation of Algorithm 5.1 (dgm.m). . . . . . . . . . 96

xii



Chapter 1

Introduction

As part of mathematical optimisation, derivative-free optimisation is the study of optimisa-

tion where full access to an important tool used in regular optimisation is no longer granted:

the access to the derivative of the objective function. In mathematical optimisation, a local

minimum of function is sought, possibly under some constrains regarding the feasibility of

points. The derivative on such points takes the value zero – except for points on the bound-

ary of the set of feasible points – while we otherwise commonly are able to directly extract

information from the derivative on the direction to follow to find a local optimum, making

the derivative a powerful tool for finding optima.

However, for some problems, the full derivative of the objective function is not available,

and traditional methods that require this full access can no longer be applied to those prob-

lems. An example of such a problem can be found in [6], where a description is given of the

problem of choosing of 31 design variables that would minimise a measure of vibration of a

helicopter rotor blade. A measure was given by a complex simulation rather than by a direct

sets of mathematical expression of which the derivative could be taken, and because of the

complexity and the running time, it is unworkable to directly approximate the full derivative

by other means, as numerical or automatic differentiation. Nevertheless, for optimisation

methods that only uses direct function evaluations, a surrogate model was created with a

shorter running time, on the cost of having less accuracy, and the function values to work

on being more noisy than the underlying model is. Taking the derivatives of this surrogate

model would therefore lead to unsatisfactory results.

With this in mind, the goal of derivative-free optimisation methods are to find a local

optimum based on function evaluations of the objective, where those evaluations can be both

costly and noisy. A measure of the effectiveness of the method are therefore both the quality

of the obtained solution, and the number of function evaluations needed for this.

We emphasise that we assume certain mathematical properties on the underlying objec-

tive function, as for example differentiability. Derivative-free optimisation is then the math-

ematical study in finding methods with proven convergence for problems as described above,
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where we need underlying assumptions on the function for those theorems. It here differs

with blackbox optimisation, where no such assumptions are made, and the so-called heuristics

as simulated annealing are studied, for more ad-hoc solution methods. Three recent works

providing a greater overview on derivative-free optimisation are [18], providing an overview of

publications on derivative-free optimisation, [1], stating several derivative-free and blackbox

optimisation algorithms with a short analysis, and [12], describing some derivative-free opti-

misation algorithms, and especially providing background in the derivative-free trust-region

method.

In this work, we review three derivative-free optimisation methods: the Nelder–Mead

method in Chapter 3, as one of the earliest methods of its kind, the conditional trust-region

method in Chapter 4, where a well-known method known from the regular setting was ad-

justed to fit in the derivative-free setting, and the discrete gradient method in Chapter 5, as

method that does not assume the objective function to be continuously differentiable for its

convergence statements. To convey the ideas behind the methods best, we restrict ourself to

the unconstrained setting in presentation of those methods, with a note that variants for the

constrained case do exist in the literature. We start by recalling some concepts of differentia-

bility in Chapter 2, and conclude this work with some numerical experiments in Chapter 6.

Lastly, for a selection of the algorithms encountered, a MATLAB implementation has been

made available in Appendix A.
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Chapter 2

Differentiability and Optimality

In this chapter, our goal is to come up with a way of describing conditions for a solution

of an unconstrained minimisation problem to be optimal based on intrinsic properties of

the objective function. We will start by defining a generalisation of differentiability in more

dimensions that will help us in defining optimality conditions. Then, we will consider non-

differentiable functions for which we want to have defined nevertheless similar properties,

to be used in defining optimality conditions too. Lastly, based on this, we state the actual

optimality conditions. For solutions that are not optimal, we furthermore provide guidance

in finding a solution providing a lower objective values, to be used by more sophisticated

optimisation methods, with a direction that at least in the immediate neighbourhood provides

a lower function value.

2.1 Total differentiability

Commonly known from the one-dimensional setting, the derivative of a function describes

the effect of a fixed change in function argument on the resulting function value, by providing

some value for each point in the domain of that function. For a real function g : R→ R, the
derivative g′ : R→ R at point x ∈ R is defined as

g′ (x) := lim
t→0,t∈R

g (x+ t)− g (x)
t

.

However, for more general functions f : Rn → Rm, the domain is multi-dimensional, and we

cannot capture all changes in this domain with a single scalar value, as t did in the previous

equation. Thus, we need a generalisation of the derivative for multi-variate real functions f .

We can describe one notion of the derivative by encoding some direction explicitly in

the definition of the derivative, effectively reducing the dimension in which a change can be

made to a one-dimensional space. This gives rise to the following definition of the directional

derivative:

3



Definition 2.1. Let S ⊆ Rn and f : S → Rm. The one-sided directional derivative of f at

x ∈ S in the direction d ∈ Rn is given by1

f ′ (x; d) := lim
t→0+

f (x+ td)− f (x)
t

. (2.1)

One could then define differentiability of multi-variate real functions f as a property that

holds if the directional derivative exists in all possible directions, just as a real function is

differentiable if the derivative exist. However, as noticed in [23], several useful properties of

differentiability in one dimension are then no longer implied for those multi-variate functions;

differentiable functions on R are continuous, but functions for which the directional deriva-

tive in all directions exist are not necessarily continuous, since only straight directions are

considered:

Example 2.1. Define

f (x, y) =

1, y = x2, x ̸= 0

0, otherwise.

Visually, in a contour plot of this two-dimensional function, the parabola y = x2 would

represent points on which f takes value 1 (except on (0, 0)), with 0 on all other points.

Let d = (d1, d2) ∈ R2 \ (0, 0) and let t0 > 0 be such that t0d2 = (t0d1)
2. Then,

t0d2 = t20d
2
1 ⇔ d2 = t0d

2
1 and for every 0 < t < t0, td2 = t · t0d21 ̸= t2d21 = (td1)

2. Thus,

for every direction d, there exists a t0 > 0 such that for all 0 < t < t0, td2 ̸= (td1)
2,

and f (td) = 0.

The directional derivative of f at (0, 0) exist thus in every direction d ∈ R2, with the

following value:

f ′ (0; d) = lim
t→0+

f (td)− f (0)
t

= lim
t→0+

0− 0

t
= 0.

This function f is clearly not continuous though, as continuity does consider all paths

of reaching a point, including paths taking the form of a parabola:

lim
(x,x2)→(0,0)

f
(
x, x2

)
= 1 ̸= 0 = f (0, 0) .

Compositions of directionally differentiable functions are not necessarily directionally dif-

ferentiable either, and consequently, we take the following definition as our definition of (total)

differentiability for multi-variate functions instead, for which those two properties do hold:

Definition 2.2 ([23]). Let S ⊆ Rn and f : S → Rm. Then, f is (totally) differentiable at

1Some, e.g. [23], reserve the notion of a plain directional derivative to the two-sided one, with the 0+ in
the limit condition replaced by 0. We follow here the notation of [9] to be in line with the definition of a
to-be-seen generalisation of the directional derivative.
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x ∈ S if there exists an m× n matrix G such that

lim
h→0

f (x+ h)− f (x)−Gh
∥h∥

= 0. (2.2)

The (unique) matrix G ∈ Rm×n is then called the total derivative – or simply derivative for

short – of f at x, denoted by Df (x) and can be viewed as a function Rn → Rm×n.

It follows from this definition that the derivative itself is a linear operator. We write Ck (S, S′),

or plainly Ck if the domain and codomain are clear from the context, as set containing all

functions f : S → S′ for which all lth derivatives exist and are continuous, with l = 0, . . . , k.

With the earlier mentioned properties for differentiable one-dimensional functions holding

with this other definition, total differentiability is indeed a stronger concept than directional

differentiability, as the following theorem shows:

Theorem 2.1 ([23, Thm. 5.1]). Let S ⊆ Rn and f : S → Rm. If f is differentiable at x ∈ S,
then all directional derivatives of f at x exist and for all directions d ∈ Rn,

f ′ (x; d) = Df (x) · d. (2.3)

However, even if a function is continuous and its directional derivatives exist and are zero in

all directions, the function is not necessarily differentiable, and thus, the previous theorem

cannot be reversed, as we can conclude from the following example:

Example 2.2 (inspired by [42]). Define g (t) = 1/
(
1 + t2

)
and

f (x, y) =

x · g
((
y − x2

)
/
(
x2 + y2

)2)
, (x, y) ̸= 0

0, otherwise.
(2.4)

A plot of this function can be found in Figure 2.1.

We study the differentiability of f in the origin, (0, 0), with f (0, 0) = 0, and start by

considering points
(
x, x2

)
on a path that takes the place of h in the necessary condition

of differentiability, (2.2). For such points, f
(
x, x2

)
= x holds, and we will compare the

rate of reaching f (0, 0) = 0 along the path
(
x, x2

)
with the paths by following both

axes x and y in a straight line.

In the case of following the axes, we are interested in the directional derivative of f at

(0, 0) in the directions e1 and e2, given respectively by

f ′ ((0, 0); (1, 0)) = lim
t→0

f (t, 0)− f (0, 0)
t

= lim
t→0

1

t
· t · g

(
−t2/t4

)
= lim

t→0
g
(
−1/t2

)
= lim

t→0

1

1 + t4
= 0

5



and

f ′ ((0, 0); (0, 1)) = lim
t→0

f (0, t)− f (0, 0)
t

= lim
t→0

1

t
· 0 · g

(
t/t4

)
= lim

t→0

1

t
· 0 · g

(
1/t3

)
= lim

t→0

1

t
· 0 · 1

1 + t6
= 0.

Thus, for f to be differentiable, it should hold that Df ≡ 0, as can be seen by

plugging in both results of the directional derivatives in (2.3) to fulfil the linearity of

the derivative. However, should f be differentiable, then (2.2) should hold too, and

thus at (0, 0) for the path
(
x, x2

)
, it should hold that

0 = lim
x→0

f
(
x, x2

)
− 0− 0

∥(x, x2)∥
= lim

x→0

x√
x2 + x4

in particular. However, we have

lim
x→0±

x√
x2 + x4

= ± lim
x→0±

√
x2/ (x2 (1 + x2)) = ± lim

x→0±

√
1/ (1 + x2) = ±1,

and thus, f cannot be differentiable, since the two previous formulas are in contradic-

tion.

As special notation, we recall the gradient of some function f : Rn → Rm as the transpose

of the derivative: ∇f (x) := Df (x)T ∈ Rn×m. For twice-differentiable – for which the

derivative is differentiable – real functions f : Rn → R, the Hessian is then defined as the

gradient of the derivative: ∇2f (x) := ∇Df (x) = D (Df) (x)T ∈ Rn×n.

2.2 Subdifferentiability

A natural question after having seen differentiable functions is if certain ‘useful’ properties

can be generalised to non-differentiable functions too, to later allow reasoning about the

optimality conditions as mentioned at the beginning of this chapter using properties common

for both differentiable and non-differentiable functions. A broad class of such functions is

the class of convex functions, that are directionally differentiable without necessarily being

totally differentiable.

Definition 2.3. Let f : Rn → R. Then, f is convex if for all z1 ̸= z2 ∈ Rn and λ ∈ (0, 1),

f (λz1 + (1− λ) z2) ≤ λf (z1) + (1− λ) f (z2) .

If the above condition holds with a strict inequality, f is more specifically called strictly

convex.

6
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Figure 2.1: Plot of the function f : R2 → R defined by (2.4) on the interval [−2, 2]× [−2, 2].
On top of this function f are points

(
x, x2

)
marked, being points with f

(
x, x2

)
= x.

An example of a convex function is a quadratic function, while a non-trivial cubic function

is not.

For convex functions in general, we can conveniently derive a different expression for the

directional derivative, compared to our previous expression (2.1) involving a limit:

Lemma 2.2 ([3]). Let f : Rn → R be a convex function and x ∈ Rn a point in the domain of

f . Then, all directional derivatives of f at x exist and for all directions d ∈ Rn, it holds that

f ′ (x; d) = inf
t>0

f (x+ td)− f (x)
t

. (2.5)

Now, for differentiable convex functions, rewriting this new expression (2.5) using (2.3) gives

f ′ (x; d) ≤ f (x+ td)− f (x)
t

⇔ ∀t > 0, d ∈ Rn (2.6a)

∇f (x)T 1

t
(y − x) ≤ 1

t
(f (y)− f (x))⇔ ∀t > 0, y ∈ Rn, d =

1

t
(y − x) (2.6b)

f (x) +∇f (x)T (y − x) ≤ f (y) . ∀y ∈ Rn (2.6c)
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For non-differentiable functions f in x, the gradient ∇f (x) for which this inequality is ful-

filled2 does not exists, but instead, we can look for other vectors in the place of ∇f (x) for

making (2.6c) valid:

Definition 2.4. Let f : Rn → R be a convex function. Then, the subdifferential of a convex

function of f at x ∈ Rn is given by

∂cf (x) =
{
ξ ∈ Rn : f (y) ≥ f (x) + ξT (y − x) , ∀y ∈ Rn

}
.

Elements ξ ∈ ∂cf (x) are called subgradients of f at x.

With the subdifferential being a generalisation of the gradient in (2.6c), which in (2.6) was

equivalent with (2.6a) involving the directional derivative, we can link the subdifferential

and the directional derivative together too, such that values of the directional derivative

in all direction is enough for knowing the subdifferential, and in reverse, that knowing the

subdifferential is enough for knowing the directional derivative in any direction:

Theorem 2.3 ([3]). Let f : Rn → R be a convex function. Then, for all x ∈ Rn,

(i) f ′ (x; d) = max
{
ξTd : ξ ∈ ∂cf (x)

}
for any d ∈ Rn ,

(ii) ∂cf (x) =
{
ξ ∈ Rn : ∀d ∈ Rn, f ′ (x; d) ≥ ξTd

}
.

A next step in generalisation the notion of differentiability is to come up with a expression

taking over the function of the directional derivative in case it doesn’t exist, for a more

generalised version of Theorem 2.3.(ii). Commonly used in proofs of the previous theorem

though (see e.g. [3, Thm. 2.28] and [7, Thm. 3.1.8]) is that the subadditivity of Rn → R, d 7→
f ′ (x; d) for all x ∈ Rn: for all d1, d2 ∈ Rn, f ′ (x; d1 + d2) ≤ f ′ (x; d1) + f ′ (x; d2) holds, and

our generalisation might need this too.

The first generalisation of the directional derivative to encounter is the Dini directional

derivative. Inspired by the definition of the definition of the (total) Dini derivative in [26], it

has later been used in a directional way (e.g. in [7]), leading to the following definition:

Definition 2.5. Let f : Rn → R. The upper Dini directional derivative of f at x ∈ Rn in

the direction d ∈ Rn is given by

f+ (x; d) := lim sup
t→0+

f (x+ td)− f (x)
t

and the lower Dini directional derivative by

f− (x; d) := lim inf
t→0+

f (x+ td)− f (x)
t

.

2In fact, equality occurs in (2.6c) for differentiable functions in general in the statement below; in our quest
for finding a generalisation of the gradient, we do not focus on this in our motivation.

8



Clearly, the upper and lower Dini directional derivative in the direction d at some point x

always exist and if the (regular) directional derivative of the function exists, then its value

equals that of both the upper and lower Dini directional derivative.

With this generalisation of the directional derivative, the following provides a natural-

following generalisation of the subdifferential of a convex function, which as mentioned is

inspired by Theorem 2.3.(ii):

Definition 2.6. Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn. Then,

the upper Dini subdifferential of f at x is given by

∂+f (x) =
{
ξ ∈ Rn : ∀d ∈ Rn, f+ (x; d) ≥ ξTd

}
and the lower Dini subdifferential by

∂−f (x) =
{
ξ ∈ Rn : ∀d ∈ Rn, f− (x; d) ≥ ξTd

}
.

However, both mappings d 7→ f+ (x; d) and d 7→ f− (x; d) are not subadditive, and an

equivalent statement as given by Theorem 2.3.(i) by simply replacing the directional derivative

and its corresponding subdifferential with the Dini variant – which would state that f± (x; d)

equals max
{
ξTd : ξ ∈ ∂±f (x)

}
for any d ∈ Rn – does not hold in general, as shown in the

following example:

Example 2.3 (choice of function f inspired by [7]). Define f (x) = − |x|.
This function is directionally differentiable at 0 in any direction d ∈ R with the value

f ′ (0; d) = lim
t→0+

f (0 + td)− f (0)
t

= lim
t→0+

− |td|
t

= − |d| ,

and thus, the upper and lower Dini directional derivative are given by the same value:

f+ (0; d) = f− (0; d) = − |d|. However, this function d 7→ − |d| is not subadditive:

− |1 +−1| = 0 > −2− 1 +−1− |1|+− |−1|.
We will now check if nevertheless the equivalent statement of Theorem 2.3.(i) for the

Dini directional derivatives can be fulfilled. The upper and lower Dini subdifferential

of f at 0 for this are given by

∂+f (0) = ∂−f (0) =
{
ξ ∈ R : ∀d ∈ R, f− (0; d) ≥ ξd

}
= {ξ ∈ R : ∀d ∈ R,− |d| ≥ ξd}

= {ξ ∈ R : ∀d ∈ R, |d| ≤ −ξd} .

For d = 0, the condition holds trivially for all values ξ ∈ R. For d > 0, |d| = d and

the condition becomes d ≤ −ξd ⇔ 1 ≤ −ξ ⇔ ξ ≤ −1. However, for d < 0, |d| = −d
and the condition becomes −d ≤ −ξd ⇔ d ≥ ξd ⇔ ξ ≥ 1, and thus, both Dini
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subdifferentials of f at 0 are empty: ∂+f (0) = ∂−f (0) = ∅. An equivalent version of

Theorem 2.3 does thus not hold.

As alternative, we will consider the so-called Clarke directional derivative, which is defined

for the following type of functions:

Definition 2.7. Let f : Rn → R and x ∈ Rn. Then, f is called locally Lipschitz continuous

at x if there exist K > 0 and ϵ > 0 such that

|f (y)− f (z)| ≤ K ∥y − z∥ for any y, z ∈ B (x; ϵ) . (2.7)

Lemma 2.4 ([3]). Let f : Rn → R be continuously differentiable at x ∈ Rn. Then, f is locally

Lipschitz continuous at x.

A function is not locally Lipschitz at some point if it is unbounded steep: x 7→
√
|x| is an

example of a function that is not locally Lipschitz at 0, having asymptotes to ∞ and −∞
there.

With this, we can recall the Clarke directional derivative as the following:

Definition 2.8 ([9]). Let f : Rn → R. The Clarke directional derivative of f at x ∈ Rn in

the direction d ∈ Rn is given by

f◦ (x; d) := lim sup
y→x
t→0+

f (y + td)− f (y)
t

. (2.8)

Lemma 2.5 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn.

Then, all Clarke directional derivatives of f at x exist for all directions d ∈ Rn.

With this, we will see another generalisation of the subdifferential, defined in the same spirit

as the upper and lower Dini subdifferential was:

Definition 2.9. Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn. Then,

the Clarke subdifferential of f at x is given by

∂◦f (x) =
{
ξ ∈ Rn : ∀d ∈ Rn, f◦ (x; d) ≥ ξTd

}
.

Elements ξ ∈ ∂◦f (x) are called subgradients of f at x.

As desired, this generalisation of the directional derivative is actually subadditive, and the

equivalence of Theorem 2.3.(i) can using this be proved too for the Clarke directional deriva-

tive:

Lemma 2.6 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn.

Then, the Clarke subdifferential ∂◦f (x) of f at x is non-empty, convex and compact set.
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Theorem 2.7 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn.

Then,

f◦ (x; d) = max
{
ξTd : ξ ∈ ∂◦f (x)

}
for any d ∈ Rn. (2.9)

However, getting the subadditivity and this equivalence being proved came at the cost

of the Clarke directional derivative not necessarily coinciding with the regular directional

derivative, if this exists, as shown in the following example, using the same function as in the

previous example on the Dini directional derivative:

Example 2.4. Define f (x) = − |x|.
As seen in Example 2.3, this function is directionally derivative at 0 with the directional

derivative given for any d ∈ R by

f ′ (0; d) = − |d| .

With help of the triangle inequality, we can almost immediately see that f is everywhere

locally Lipschitz continuous, for K = 1 in (2.7):

|− |y| − (− |z|)| = ||y| − |z|| ≤ |y − z| .

We will now calculate Clarke directional derivative of x 7→ − |x| in direction d ∈ R, by
relating it to the Clarke directional derivative of −f : x 7→ |x|. Using the definition of

the directional derivative, we write

(−f)◦ (0; d) = lim sup
y→0
t→0+

f (y + td)− f (y)
t

= lim sup
y→0
t→0+

|y + td| − |y|
t

.

Then, with a lower bound, found with some estimation of the lim sup, of

(−f)◦ (0; d) ≥ lim
s→0+

∣∣s2 + sd
∣∣− ∣∣s2∣∣
s

= lim
s→0+

|s| (|s+ d| − |s|)
s

= lim
s→0+

|s+ d|− |s| = |d| ,

and an upper bound, found with the triangle inequality, of

(−f)◦ (0; d) ≤ lim sup
y→0
t→0+

|y|+ |td| − |y|
t

= lim sup
y→0
t→0+

|td|
t

= lim sup
y→0
t→0+

|td|
t

= |d| ,

we conclude (−f)◦ (0; d) = |d|.
For the Clarke directional derivative, we use the general relation (with z := y + td)

(−f)◦ (x; d) = lim sup
y→x
t→0+

−f (y + td)− (−f (y))
t

= lim sup
z→x
t→0+

−f (z)− (−f (z − td))
t
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= lim sup
z→x
t→0+

f (z − td) + f (z)

t
= f◦ (x;−d)

to conclude f◦ (0; d) = |−d| = |d| as well.
Thus, the Clarke directional derivative and the regular directional derivative of x 7→ |x|
are different for all non-trivial directions.

For convex functions though, the Clarke directional derivative coincides with the regular

directional derivative, and the Clarke subdifferential agrees thus with the regular subdiffer-

ential for convex functions:

Theorem 2.8 ([3]). Let f : Rn → R be a convex function. Then, for all x ∈ Rn

(i) f◦ (x; d) = f ′ (x; d) for any d ∈ Rn,

(ii) ∂◦f (x) = ∂cf (x).

With the concept of the Clarke subdifferential derivative providing a true generalisation of

the subdifferential for convex functions with the equivalence of Theorem 2.3 – providing a

relation between the subdifferential and directional derivative, which we will soon use in

defining the optimality conditions – holding as well, we will in what follows drop the Clarke

specification when referring to the Clarke subdifferential, with the symbol ∂ instead of ∂◦.

We conclude this section on subdifferentiability by relating the subdifferential with the

gradient, by means of the following three theorems:

Theorem 2.9 ([3]). Let f : Rn → R be a locally Lipschitz continuous and differentiable

function at x ∈ Rn. Then,

∇f (x) ∈ ∂f (x) .

Theorem 2.10 ([3]). Let f : Rn → R be a continuously differentiable function at x ∈ Rn.

Then,

{∇f (x)} = ∂f (x) .

Theorem 2.11 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn

and define Ωf ⊂ Rn as the set of points at which f is not differentiable. Then,

∂f (x) = conv {ξ ∈ Rn : there exists a sequence {xk} ⊂ Rn \ Ωf

such that xk → x and ∇f (xk)→ ξ} .
(2.10)

With Lipschitz continuous functions being almost everywhere differentiable, and the set of

non-differentiable points Ωf being a null set, the above theorems provide a different way to

compute and visualise the subdifferential of some function, by thinking of the subdifferential

as the set of vectors that provide a smooth transformation between all the gradient vectors

when approaching a non-differentiable point from different directions. A visualisation in the
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Figure 2.2: The subdifferential of two different continuous functions f : R→ R visualised at
0. With f being only non-differentiable at 0, the gradient when approaching 0 from the left
and from the right is shown, visualised by an affine line at f (0) whose slope corresponds
to the value of the gradient. The subdifferential is visualised similarly, with lines with their
slope in the subdifferential being marked light gray.

two-dimensional case is shown in Figure 2.2, with the calculation of the subdifferential for

our example function x 7→ − |x| below:

Example 2.5. Define f (x) = − |x|, an everywhere locally Lipschitz continuous func-

tion.

This function is only not differentiable at 0, while being continuous differentiable on

(−∞, 0) and (0,∞), with the derivative being described by the constant functions 1

and −1 on those intervals. Thus, the subdifferential of f at 0 is given by ∂f (0) =

conv {1,−1} = [−1, 1].

2.3 Optimality conditions

Having seen different ways to measure the change in function value at some point, we can

now state the optimality conditions for unconstrained mathematical optimisation problems

– or the conditions on points in Rn to be considered a solution of a minimisation problem.

One type of such points are the local minima, for which the function value is smaller than

the function values at all surrounding points, and the global minima, in which we take the

whole domain into account for this comparison:

Definition 2.10. Let f : Rn → R. A point x∗ ∈ Rn is then called a local minimum of f if
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there exists a δ > 0 such that

f (x∗) ≤ f (x) for any x ∈ B (x∗; δ) .

Similarly, if this inequality holds for any x ∈ Rn, we call x∗ more specifically a global

minimum.

For recognising such a point, we can use the following theorem, stating necessary condi-

tions for a point to be a local minimum for locally Lipschitz continuous functions, including

continuously differentiable functions. Commonly-known proofs (e.g. in [3]) use (2.9), the

equality that as generalisation of the regular directional derivative holds for the Clarke di-

rectional derivative, but not for the upper and lower Dini directional derivative:

Theorem 2.12 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x∗ ∈ Rn.

If the point x∗ is a local minimum of f , then

0 ∈ ∂f (x∗) and f◦ (x∗; d) ≥ 0 for any d ∈ Rn. (2.11)

For a continuously differentiable function, the first condition in (2.11) could be stated as

0 = ∇f (x∗), using Theorem 2.10. We treat special attention to points fulfilling this first

condition, being potential local minimisers, while being able to exclude points not fulfilling

this criterion in a less stringent way than checking both conditions would give:

Definition 2.11. Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn. If

0 ∈ ∂f (x), we call x a stationary point or first-order critical point.

Coming back to the figure at the end of the previous section, we can recognise a local minimum

in Figure 2.2b at x = 0, with a vector with zero slope being marked light gray, and thus

0 ∈ ∂f (0). In this case, f only has a local minimum being a global minimum, and seeking

for a stationary point leads us to this point. In general, as motivation for studying stationary

points, this property holds in general for convex functions:

Theorem 2.13 ([3]). Let f : Rn → R be a convex function at x∗ ∈ Rn.

Then x∗ is a global minimum of f if and only if 0 ∈ ∂f (x) or f◦ (x∗; d) ≥ 0 for any

d ∈ Rn.

We now restrict ourself to twice continuously differentiable functions, for a different pair

of sufficient and necessary conditions on a local minimum. As necessary condition, we get

the following theorem, similar to Theorem 2.12:

Theorem 2.14 ([11]). Let f : Rn → R be a twice continuously differentiable function. If

x∗ ∈ Rn is a local minimum of f , then

0 = ∇f (x∗) and dT∇2f (x∗) d ≥ 0 for any d ∈ Rn.
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The reversed statement, but this time under the same assumptions, is then the following:

Theorem 2.15 ([11]). Let f : Rn → R be a twice continuously differentiable function and

x∗ ∈ Rn. If

0 = ∇f (x∗) and dT∇2f (x∗) d > 0 for any d ∈ Rn \ {0} ,

then x∗ is a (strictly isolated) local minimum of f .

Based on this, we can define a different type of critical point:

Definition 2.12. Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn. If

∇f (x) = 0 and dT∇2f (x∗) d > 0 for any d ∈ Rn, we call x a second-order critical point.

2.4 Descent direction

In the previous section, we have seen conditions for a point being a local minimum, as goal

for optimisation points to find. In the course of optimisation methods, an important concept

to find such points is the concept of a descent direction, which provides us a direction from

some (iteration) point to (at least locally) a point with a lower function value:

Definition 2.13 ([3]). Let f : Rn → R and x ∈ Rn. The direction d ∈ Rn is a descent

direction for f at x if there exists an t0 > 0 such that for all t ∈ (0, t0],

f (x+ td) < f (x) .

For (locally) Lipschitz continuous functions, the following theorem is about the existence

of a descent direction:

Theorem 2.16 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x ∈ Rn.

The direction d ∈ Rn is then a descent direction if

ξTd < 0 for all ξ ∈ ∂f (x∗) or f◦ (x∗; d) ≥ 0.

Along with the first-order necessary conditions for a local minimum from Theorem 2.12, those

two theorems tell us that for some Lipschitz continuous function, either the zero vector is in

the subdifferential at some point, or some descent direction exists. An explicit direction can

be obtained by the following:

Lemma 2.17 ([3]). Let f : Rn → R be a locally Lipschitz continuous function at x. Then

either 0 ∈ ∂f (x) or, for ξ∗ = argminξin∂f(x) ∥ξ∥, −ξ∗/∥ξ∗∥ is a descent direction.

For continuously differentiable functions, we recall the concept of the steepest descent

among descent direction as the descent direction such that following that direction in the
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linearised version of the function provides the greatest decrease, e.g. a direction d∗ such that

d∗ := argmin∥d∥=∥∇f(x)∥ f (x) + ∇f (x)
T d, where we decided the norm of d∗ to be without

loss of generality ∥∇f (x)∥, out of all strictly positive values it could have been, as we so far

are only interested in the direction and not it’s magnitude. To find d∗, using [32], because of

Cauchy-Schwarz, we can write

∇f (x)T d ≤ ∥∇f (x)∥ ∥d∥ ⇔ ∇f (x)T d

∥d∥
≤ ∥∇f (x)∥ ,

where the upper bound in this inequality is reached for any d = −λ∇f (x) for λ ∈ R. Setting
λ = 1 then gives us the steepest descent direction: d∗ = −∇f (x).
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Chapter 3

Nelder–Mead Method

In 1965, [24] was published, describing what later became known as the Nelder–Mead method

for function minimisation. The method operates by having a simplex formed of n+1 linearly

independent points in the n-dimensional parameter space of the function, and moving the

simplex through the space towards (hopefully) the minimiser, adjusting itself to the landscape.

No theoretical properties of the method have been given in the original paper describing the

method, and examples for which the method fails to converge to a minimiser in the theoretical

sense have been discovered later with only scare convergence results proved; despite this,

the usage of the method is widespread, for example in the MATLAB numeric computing

environment.

In this chapter, we review the original Nelder–Mead method. We then look at one of

the described modified versions that are in the spirit of the original method, but for which

convergence to a minimiser has been proved for broad classes of functions, in contrast to the

original method.

3.1 Simplices

The concept of a simplex – a Latin adjective for ‘simple’ – was first described in [31]. A

simplex S (d+ 1) represented by d + 1 suitably positioned point was described as being the

simplest way to span a d-dimensional linear space, with the simplex itself consisting of all

points that were inside all the facets spanned by the points. Specifically, an 1-dimensional

simplex is a line segment, a 2-dimensional simplex a triangle, a 3-dimensional simplex a

tetrahedron, et cetera.

In an n-dimensional Euclidean space, a simplex is described as the convex hull of n + 1

affinely independent points. Given n + 1 points y0, y1, . . . , yn, those points are called

affinely independent if the vectors to reach n of those from the remaining point, the base

point, are linearly independent, or without loss of generality, those points are affinely in-

dependent if the vectors y1 − y0, y2 − y0, . . . , yn − y0 are linearly independent. Thus,
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{
y1 − y0, y2 − y0, . . . , yn − y0

}
forms a basis of Rn for y0, y1, . . . , yn affinely independent

points.

As measure of a property of a simplex, the volume of a simplex Y represented by the

n+ 1 points y0, y1, . . . , yn is, for L =
[
y1 − y0 y2 − y0 · · · yn − y0

]
∈ Rn×n known to be

vol (Y ) =
|det (L)|

n!

as found in [34], with the diameter of the simplex Y being defined as

diam (Y ) := max
y,y′∈Y

∥∥y − y′∥∥ .
During iterative algorithms where a simplex is being modified, as happens in the soon-

described Nelder–Mead method, one would prefer a safeguard from the simplex becoming

degenerate – the points being no longer affinely independent. For this to happen, the volume

has to become zero and thus, a natural measure to avoid degeneracy could be to bound a

number proportional to the volume away from zero. To let this be a scaling-invariant measure,

the concept of the normalised volume was introduced in [38], with the following definition:

von (Y ) := vol

(
1

diam (Y )
Y

)
=

1

diam (Y )n
vol (Y ) .

As an example of the normalised volume being scaling invariant, the 2-dimensional simplex

represented by the vertices {(1, 1) , (1 + t, 1) , (1, 1 + t)} has the same normalised volume for

all positive values t, corresponding to the internal angles staying the same too, whereas the

volume itself, given by t2/2, converges to zero for t→ 0.

3.2 Original variant of the Nelder–Mead method

The Nelder–Mead method was inspired by the previous work [33], published in 1962, in

which optimisation of dynamic processes was described using regular simplices as Evolution-

ary Operation. Roughly speaking, a regular simplex – a simplex solely composed of lower-

dimensional regular simplices with a regular triangle, the smallest-dimensional simplex, being

an equilateral triangle – was conceptualised in the input domain of the process, with each

vertex corresponding to some parameters for which an observation of the performance of

the dynamic process could be made. Then, the vertex in this simplex corresponding to the

worst observation was reflected over the centroid of the other vertices in the input domain to

change a single vertex of the regular simplex, if at least all observations were recent enough;

otherwise, a not-recent-enough observation was updated. This way, the sequence of simplices

will move to an optimum, also as it moves in the dynamic process, and circle around the

optimum with a distance dictated by the step size once arrived.
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When considering the static problem of minimising a mathematical function, by allowing

the size of the faces of the simplex from the previously described method to change, the

optimum could get approached indefinitely close, making such a modified method a potential

derivative-free method for function minimisation: the Nelder–Mead method was created and

published in [24], only three years after publication of the work that inspired this:

Algorithm 3.1 (Nelder–Mead Method ([16])).

Input Let f : Rn → R be the function to be minimised and Y 0 the vertices of a non-

degenerate starting simplex. Furthermore, we require the following constants as

parameters of the method:

� 0 < ρ: the parameter defining the ratio of length for reflection;

� 1 < χ: the parameter defining the ratio of length for lengthening the reflection

for expansion;

� 0 < γ < 1: the parameter defining the ratio of length for shortening the

reflection for contraction;

� 0 < σ < 1: the parameter defining the ration of length for shrinking.

Output The point corresponding to the lowest function value of f in R found so far at

iteration k for k →∞: y0k.

Initialisation Set k = 0.

Step 1 (restructuring) Order the vertices of Y k based on their function value such

that it holds that

f
(
yik
)
≤ f

(
yjk

)
, ∀i ≤ j (3.1)

in accordance with tie-breaking rules (see directly after this algorithm).

Compute the centroid of all-but-the-worst point y1k, . . . , y
n−1
k : x̄k :=

∑n−1
i=0 y

i
k/n.

Step 2 (reflecting) Compute the point xrk resulted from a reflection of the worst point

ynk over the computed centroid x̄k:

xrk := x̄k + ρ (x̄k − ynk )

and evaluate it on f as f (xrk).

If the function value of this point suffices f
(
y0k
)
≤ f (xrk) < f

(
yn−1
k

)
, e.g. is

comparable with the function values of the remaining vertices that are not the best

or worst, ynk is replaced with xrk in Y k resulting in Y k+1, k is set to k + 1 and a

new iteration is started by continuing in Step 1.

Step 3 (expanding) If f (xrk) < f
(
y0k
)
, the reflected point yields a better function value
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than the previously best point. We check if a continuation in this direction yields

an even better function value by calculating

xek := x̄k + χρ (x̄k − ynk )

and evaluating it on f as f (xek).

If f (xek) < f (xrk), y
n
k is replaced with xek in Y k resulting in Y k+1. Otherwise, ynk

is replaced with xrk instead. In any case, k is set to k + 1 and a new iteration is

started by continuing in Step 1.

Step 4 (contracting) Now, f
(
yn−1
k

)
≤ f (xrk) and a so-called contraction step is taken

by evaluating a point between ynk and x̄k or between x̄k and xrk, depending on which

side of the centroid looks the most promising based on the function value of the

reflection compared to that of the current worst point:

Step 4a (outside contraction) If f (xrk) < f (ynk ), calculate

xck := x̄k + γρ (x̄k − ynk ) = x̄k + γ (xrk − x̄k) = (1− γ) x̄k + γxrk.

If f (xck) ≤ f (xrk), y
n
k is replaced with xck in Y k resulting in Y k+1, k is set to

k + 1 and a new iteration is started by continuing in Step 1.

Step 4b (inside contraction) Otherwise, if f (ynk ) ≤ f (xrk), calculate

xcck := x̄k − γ (x̄k − ynk ) = (1− γ) x̄k + γynk .

If f (xcck ) < f (ynk ), y
n
k is replaced with xcck in Y k resulting in Y k+1, k is set to

k + 1 and a new iteration is started by continuing in Step 1.

Step 5 (shrinking) If no points are replaced so far, a shrink step is taken by replacing

every point yik in Y k with yik+1 = y0k + σ
(
yik − y0k

)
for i = 0, . . . , n resulting in

Y k+1, k is set to k + 1 and a new iteration is started by continuing in Step 1.

To ensure a well-defined unique execution of the method above given the input data,

a rule has been introduced by [16] according to which is decided how to order vertices

when multiple orderings fulfil equation (3.1): the so-called tie-breaking rules. For a non-

shrinking operation, the incoming vertex is assigned the highest possible index that fulfils

the constraints. For a shrinking operation, if the function value of the only vertex kept,

y0k, is the minimum of what would be the new simplex Y k+1, then this vertex is kept at

index 0: y0k+1 = y0k.

In the description above, the Nelder–Mead method was stated by following the description

in [16] from 1998 instead of the original description found in [24], as the description in the

latter is less suitable for mathematical analysis due to not being completely clear on how
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original reflection expansion
outside

contraction

inside

contraction

(a) The four different operations that can be applied on the worst vertex: an
inside contraction, outside contraction, reflection and expansion. The worst
vertex is here the one originally on the left.

originalshrink

(b) The shrink op-
eration, with on the
left the best vertex.

Figure 3.1: All operations the Nelder–Mead method can apply in an iteration, shown for a
2-dimensional simplex represented by 3 vertices.

to resolve ambiguity. A difference in the description of the Nelder–Mead method is that for

the well-defined one, the better of the reflection and expansion point is selected, while in the

original form, the expansion point is chosen whenever it provides an improvement over the

best vertex, regardless of the relative value of the expansion point over the reflection point.

Studying the operations above in Algorithm 3.1, it can be seen that, except for the time a

shrink step is taken, at each iteration k, the worst vertex ynk is removed from the simplex Y k

and replaced in the otherwise identical simplex Y k+1 to be used in the next iteration k + 1

by

ŷk = x̄k + τ (x̄k − ynk ) (3.2)

for different values of τ , namely:

1. τ = ρ ∈ (0,∞) for a reflection; accepted if the resulting function is moderate compared

to the others;

2. τ = χρ ∈ (ρ,∞) for an expansion; in case the reflection step yielded a value better

than already present in the simplex, the best of the reflection and expansion point is

accepted;

3. τ = γρ ∈ (0, ρ) for an outside contraction, if the reflection point only improved the

worst value; the outside contractor is accepted if better than the reflector;

4. τ = −γ ∈ (−1, 0) for an inside contraction, if the reflection point did not provide any

improvement; the inside contractor is accepted if better than the reflector.

If none of those steps above are taken, a shrink step, with parameter σ, is taken, as last

resort. All those options are visualised in Figure 3.1.
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As standard values for those parameters are ρ = 1, χ = 2, γ = 1
2 and σ = 1

2 commonly

chosen, providing perfect symmetry for a reflection step and making the expansion step twice

as large with the contraction and the shrink step half as large. Leading to such a natural

image, those values are sometimes assumed to be taken during convergence analysis for the

sake of simplicity and their widespread usage.

3.2.1 Counterexamples of convergence to a minimiser

After being published, the Nelder–Mead method has been frequently used, despite little being

known about the convergence of the method for different types of functions. Through the

years though, several functions were found for which the Nelder–Mead does not converge to

a minimiser, making it possible to narrow in any case the class of functions for which the

Nelder–Mead method possibly always would converge to a minimiser.

In 1985, an example of a non-convex differentiable 2-dimensional function was published

in [41] in sketch form by providing a contour plot for which the Nelder–Mead method was

claimed to converge to a non-minimiser by taking only shrink steps. Subsequently, in [20], it

was claimed that the point to which convergence took place is a stationary point, though.

In that same publication [20] from 1998, more examples of problems were given for which

convergence to a point that is not a minimiser occurs by applying the original Nelder–Mead

method. An important difference between the original method that inspired the Nelder–Mead

method, published in [33], and the Nelder–Mead method itself came up: in the first, the

simplices cannot become degenerate, while they can in the latter. In the case of the simplex

becoming degenerate, the faces do no longer span the parameter space Rn, which could cause

convergence to a non-minimiser; and indeed, with the function (x, y) 7→ x2 − y (y − 2) and

initial simplex with the vertices (1, 0), (0,−3) and (0, 3), as mentioned in [20], this is the

case; see Figure 3.2 for a visualisation of this problem.

The main class of functions studied in [20] though were 2-dimensional functions for which

so-called ‘repeated focused inside contraction’ (RFIC) steps were taken: starting from the

initial simplex, only inside contraction steps are taken in that case towards one of the points

of the initial simplex, which always stays part of the simplex, but might not necessarily be

a minimiser of the original function – although it has to be stationary point. Examples of

a strictly convex differentiable 2-dimensional function exhibiting this behaviour were given,

with a proof showing that such behaviour cannot occur for functions smoother than three-

times differentiable functions.

3.2.2 Convergence properties

While we now have seen that convergence is not guaranteed in general for a broad class of

functions, we would pose the question for which class of functions convergence actually does

happen.
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Figure 3.2: One step of the execution of the Nelder–Mead method on the function (x, y) 7→
x2 − y (y − 2) with the initial simplex represented by the vertices (1, 0), (0,−3) and (0, 3).
The reflection point for the worst vertex, on the x-axis, yields the same function value as the
worst vertex itself, so an inner contraction is tried, with success; this is repeated with the
simplex approaching the degenerated simplex represented by the vertices (0, 0), (0,−3) and
(0, 3), with clearly none of those vertices corresponding to a minimum or stationary point of
the function.

While formalising, [16] shined some light on this, and especially for strictly convex func-

tions, several properties were discovered: in particular for the standard parameters, con-

vergence to a minimiser has been shown for the 1-dimensional functions and the diameter

of the simplex converging to zero has been shown for the 2-dimensional functions, without

convergence of this simplex – reduced to a point – to a specific point shown. Furthermore,

no shrink steps are taken for strictly convex functions:

Lemma 3.1 ([16]). Let f : Rn → R be the function to be minimised and Y 0 the vertices of a

non-degenerate starting simplex.

If f is strictly convex, then no shrink steps are taken in the course of the Nelder–Mead

method when applied to f with starting simplex Y 0.

The proof follows from intuitively clear idea that the function value of a strictly convex

function for a point corresponding to a convex combination of other points should be strictly
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less than the function value for those other points itself. The convex combination for the

inside or outside contraction with x̄k and respectively ynk or xrk yields therefore always a

point with a strictly better function value, and the contraction point is accepted; hence, the

fail-safe shrink step is not taken.

No other results on the convergence of the original Nelder–Mead method have been dis-

covered to the our best knowledge, until in 2022 [14] was published, in which convergence of

the original method is studied for a convergence result under some assumptions on the steps

taken. The convergence is studied using notation briefly brought up by [16], by writing the

state at each iteration – the vertices – as matrix and the operation on the vertices as matrix

too, to make a state change by applying an operation matrix on the state matrix, and making

it possible to analyse the behaviour through using linear algebra.

The state matrix, representing the set of vertices that makes up a simplex, is for iteration

k written as1

Sk =
[
y0k y1k · · · ynk

]
.

Since, if no shrink step is taken at iteration k, only a single vertex is changed between

the simplex Y k and Y k+1 and this incoming vertex can be described in terms of (3.2), the

state matrix for iteration k + 1 can be described, up to the requirement of fulfilling (3.1) for

the order of vertices in accordance to the function value, by

SkT (τ) =
[
y0k y1k · · · ŷk

]
,

where the transformation matrix, T (τ) must fulfil

T (τ) =

[
In

1+τ
n e

0 −τ

]
∈ R(n+1)×(n+1) (3.3)

for e =
[
1 1 · · · 1

]T
and for some τ depending on the operation taken in iteration

k, as in (3.2). Then, by applying on the product above a permutation matrix Pj =[
e1 . . . ej−1 en+1 ej+1 . . . en ej

]
∈ R(n+1)×(n+1) to make sure the vertices are all

correctly ordered according to (3.1) and the tie-breaking rule, we can write

Sk+1 = SkT (τ)Pj (3.4)

for some τ and j depending on the exact operation taken in iteration k, if no shrink step

was taken. Otherwise, should a shrink step be taken, then all-but-one vertices are changed

instead, and the new state matrix, up to the ordering, is given by

SkT shr (σ) =
[
y0k y0k + σ

(
y1k − y0k

)
· · · y0k + σ

(
ynk − y0k

)]
,

1Note that (3.1) is now assumed to be fulfilled in accordance to the tie-breaking rules.
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such that the transformation matrix T shr (σ) is given by

T shr (σ) =

[
1 (1− σ) eT

0 σIn

]
∈ R(n+1)×(n+1) (3.5)

and the state matrix for iteration k + 1 can be written as

Sk+1 = SkT shr (σ)P (3.6)

for P ∈ R(n+1)×(n+1) a permutation matrix.

In other words, the state at every iteration k + 1 can be written as function depending

on the state at iteration k and its action, as

Sk+1 = SkTkP
k (3.7)

for TkP
k ∈ T for T a finite set of actions, independent of the vertex values; because of

this finiteness, the actions can be pre-calculated for a given problem size (consisting of the

dimension information), and those actions can be analysed to extract properties from it.

We partition this set of actions T in two disjoint sets, W1 and W2, with actions in W1

corresponding to inside and outside contractions whose incoming vertex is positioned on the

first or second position, and shrink steps, and with the remaining actions in W2.

For convergence properties, in those infinite products, lower (block) triangular matrices

would be convenient, with the product of two of such matrices also having this property,

and according to the following lemma from [14], a single similarity transformation exists that

makes this happen:

Lemma 3.2 ([14]). Given

F =

[
1 −eT

0 In

]
,

for all TkP
k ∈ T , we can write

F−1TkP
kF =

[
1 0

bk Ck

]
.

With this lemma, we can state the convergence theorem as found in [14] about the original

Nelder–Mead method:

Theorem 3.3 ([14]). Let f : Rn → R with n = 1, . . . , 8 and assume Y 0 is non-degenerate.

Let ∥A∥ϑ be an induced matrix norm such that for all TkP
k ∈ W1, ∥Ck∥ < 1. Then, let

constants 0 < q < 1 ≤ Q be such that ∥Ck∥ϑ ≤ q < q for all TkP
k ∈ W1 and 1 ≤ ∥Ci∥ϑ ≤ Q

for all TkP
k ∈ W2. Lastly, let an κ ∈ N be such that q1−κ ≤ Q ≤ q−κ.

Assume that there exists a µ ∈ (0, 1) such that t1 (k) ≥ µk + κt2 (k) for tj (k) counting
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how many actions in the iterations up to k were taken from Wi, or assume that only finitely

many actions from Wi are taken in the course of the method. Then, convergence to a point

happens for the vertices of the Nelder–Mead method when applying that method on f : there

exists an ŷ ∈ Rn such that for all i = 0, . . . , n,

lim
k→∞

yik = ŷ.

Despite the strong consequence of Theorem. 3.3, it is not trivial to apply the theorem: one

should analyse the steps for a given class of functions to show that steps from W1 and W2

are balancing, and thus, the issue of convergence of the original Nelder–Mead method is not

settled yet.

3.3 Convergent variants of the Nelder–Mead method

Motivated by the lack of general convergence properties of the original Nelder–Mead method

for – relatively to other methods – reasonable functions, several variants of the original

Nelder–Mead method have been proposed that try to tackle this by proving convergence for

a broader range of functions. Despite those being different, understanding those variants can

help understanding the original method too.

3.3.1 Non-expansion Nelder–Mead Method

In the 2012 work [17], a restricted version of the Nelder–Mead method has been studied for

two-dimensional problems. In this version, no expansion step is ever taken, and instead of

deciding between the expansion and reflection step, the reflection step is always taken, with

the primary advantage of forcing the volume of the simplex represented by the vertices to be

non-increasing. For this simplified method, convergence to a minimiser can be proved for a

specific class of functions:

Theorem 3.4 ([17]). Let f : R2 → R be twice continuously differentiable with bounded level

sets and everywhere positive definite Hessian function to be minimised and Y 0 the vertices of

a non-degenerate starting simplex.

Then the algorithm converges to the unique minimiser of f .

According to [17], after experiments for which convergence results could be established, it

could be seen that

expansion steps are almost never taken in the neighbourhood of the optimum.

Expansion steps are typically taken early on, forming part of the ‘adaptation to

the local contours’ that constituted the motivation for Nelder and Mead when

they originally conceived the algorithm [24]
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such that studying this restricted method as a way to understand the original method better

could be perceived as less far-fetched than one could initially think.

3.3.2 Fortified-Descent Simplicial Search Method

In 1999, another version was published in [38], with proven convergence to a minimiser for

continuously differentiable functions; the fortified-descent simplicial search method, which

tries to explicitly overcome the shortcomings of the original Nelder–Mead method where the

simplex might become arbitrarily flat with stagnation in the decreasement of the function

value before having reached a stationary point.

Highly inspired by the Nelder–Mead method, the new FDSS method has the same concept

of steps the Nelder–Mead method has, and thus, a reflection, expansion, inside and outside

contraction and shrink step are present in the description. A non-shrink step is taken only if

this keeps the interior angles – expressed by the normalised volume – of the simplex (uniformly

in the course of the method) away from zero, to avoid the simplex from becoming arbitrarily

flat and not spanning the whole space, easily preventing convergence to a minimiser. The

shrink step can always be taken – the interior angles stay the same when shrinking – and can

for this method too be seen as a last resort step.

Furthermore, as long as no new point is discovered which improves the simplex Y k that

iteration k was entered with, only a shrink step can be taken, leading to the concept of

sub-iterations. During a sub-iteration l with simplex Y kl (with Y k0 := Y k), vertices in Y kl

are identified that, if paired up with the vertices of Y k based on their relative corresponding

function value, are good enough, as in belonging to a pair for which the vertex in the old Y k

providing a worse value than in the new Y kl , and bad, as in not being good enough. If all

vertices would be good enough, then we declare the worst vertex nevertheless as bad, to keep

the method improving. In every sub-iteration, a non-shrink step (reflection, expansion and

inside and outside contraction) can now be tried by keeping the good enough vertices and

improving any of the bad vertices to be good enough too. If on first sight no such new vertex

can be identified, or this would make the simplex too flat, a shrink step is taken and a new

sub-iteration l + 1 within the same iteration k is entered; otherwise, a new iteration k + 1 is

entered.

Lastly, as a new concept, the idea of fortified descent was introduced to avoid the im-

provement to stagnate prematurely and help the convergence property. This was done by

guiding the decrease with a function which has exactly this property.

The version presented in [38] provides multiple degrees of freedom in terms of choosing

bad vertices to improve, of how to measure this improvement and generalises furthermore the

concept of reflection, expansion and contraction. In the description below as Algorithm 3.2,

in line with what was discovered by [38] to yield the best performance when the steps applied

as in the original Nelder–Mead method, are those degrees fixed, simplifying the notation

furthermore and using the discovered results.

27



Algorithm 3.2 (Fortified-Descent Simplicial Search Method (FDSS) ([38] with param-

eters fixed and notation heavily adjusted to fit the current presentation)).

Input Let f : Rn → R be the function to be minimised and Y 0 the vertices of a non-

degenerate starting simplex.

Furthermore, we require the following constants as parameters of the method:

� 0 < ρ: the parameter defining the ratio of length for reflection;

� 1 < χ: the parameter defining the ratio of length for lengthening the reflection

for expansion;

� 0 < γ < 1: the parameter defining the ratio of length for shortening the

reflection for contraction;

� 0 < σ < 1: the parameter defining the ration of length for shrinking;

� 0 < ν ≤ von
(
Y 0
)
: the parameter defining the threshold for the simplex being

used being too flata;

� 0 < θr < 1: parameter related to the acceptance of a reflection step;

� α, β: two continuous functions (ϕ : [0,∞)→ [0,∞) and limt→0 ϕ (t)/t = 0 for

ϕ = α, β and ∀c > 0, inft≥c α (t) > 0) forcing the fortified descent.

Output The point corresponding to the lowest function value of f in R found so far at

iteration k for k →∞: y0k.

Initialisation Set k = 0.

Step 1 (iteration initialisation) Set l = 0 and Y kl = Y k.

Step 2 (restructuring) Order the vertices of Y kl based on their function value in such

way that it holds that

f
(
yikl
)
≤ f

(
yjkl

)
, ∀i ≤ j

and let mkl be the greatest index (0 ≤ mkl ≤ n− 1) such that f
(
yikl

)
≤ f

(
yik
)
for

all 0 ≤ i ≤ mkl.

Compute the centroid of the best mkl points y
0
kl
, . . . , y

mkl
−1

kl
and it’s corresponding

‘centroid function value’: x̄kl :=
∑mkl

−1

i=0 yikl/mkl and x̄
f
kl
:=
∑mkl

−1

i=0 f
(
yikl

)
/mkl.

Let ∆kl be the diameter of the current simplex: ∆kl = diam
(
Y kl
)
.

Step 3 (reflecting) Compute the points xr0kl , . . . , x
rn−mkl
kl

resulted from a reflection of

the remaining worst points y
mkl
kl

, . . . , ynkl over the computed centroid x̄kl

xrikl := x̄kl + ρ
(
x̄kl − y

mkl
+i

kl

)
, ∀i, 0 ≤ i ≤ n−mkl
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and evaluate those on f as f
(
xrikl

)
. Let the simplex represented by the best mkl

vertices and the n−mkl new vertices be

Y kl
r =

{
y0kl , . . . , y

mkl
−1

kl
, xr0kl , . . . , x

rn−mkl
kl

}
.

If von
(
Y kl
r

)
≥ ν and

min
0≤i≤n−mkl

f
(
xrikl

)
≤ f

(
y
mkl

−1

kl

)
− α (∆kl) (3.8)

min
0≤i≤n−mkl

f
(
xrikl

)
≤ f

(
y
mkl

−1

kl

)
− θr

(
f
(
ynkl
)
− x̄fkl

)
+ β (∆kl) (3.9)

is fulfilled, continue with Step 4 by trying an expansion in addition to the successful

reflection. Otherwise, continue with Step 5 and try a contraction instead for a

reflection.

Step 4 (expanding) Calculate expansions points:

xeikl := x̄kl + χρ
(
x̄kl − y

mkl
+i

kl

)
, ∀i, 0 ≤ i ≤ n−mkl .

Let the simplex represented by the best mkl vertices and the n −mkl new vertices

be

Y kl
e =

{
y0kl , . . . , y

mkl
−1

kl
, xe0kl , . . . , x

en−mkl
kl

}
.

If von
(
Y kl
e

)
≥ ν and

min
0≤i≤n−mkl

f
(
xeikl

)
≤ f

(
y
mkl

−1

kl

)
− α (∆kl) (3.10)

min
0≤i≤n−mkl

f
(
xeikl

)
≤ f

(
y
mkl

−1

kl

)
− θr

(
f
(
ynkl
)
− x̄fkl

)
+ β (∆kl) (3.11)

is fulfilled, accept the expansion by setting Y k+1 = Y kl
e ; otherwise, set Y k+1 = Y kl

r .

In any case, set k to k + 1 and continue with Step 1 in a new iteration.

Step 5 (contracting) Calculate one of the contractions, depending on which seems the

most promising:

Step 5a (inside contraction) If min0≤i≤n−mkl
f
(
xrikl

)
< f

(
ymkl

)
, calculate

xcikl := x̄kl + γρ
(
x̄kl − y

mkl
+i

kl

)
, ∀i, 0 ≤ i ≤ n−mkl

Step 5b (outside contraction) Otherwise, calculate

xcikl := x̄kl − γ
(
x̄kl − y

mkl
+i

kl

)
, ∀i, 0 ≤ i ≤ n−mkl
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Let the simplex represented by the best mkl vertices and the n −mkl new vertices

be

Y kl
c =

{
y0kl , . . . , y

mkl
−1

kl
, xc0kl , . . . , x

cn−mkl
kl

}
which is indexed in such a way such that, by letting ycikl be an element of Y kl

c , it

holds that

f
(
ycikl

)
≤ f

(
y
cj
kl

)
, ∀i ≤ j.

Then, if von
(
Y kl
c

)
≥ ν and it holds that

f
(
y
cmkl

+1

kl

)
≤ f

(
y
mkl

+1

k

)
mkl

+1∑
i=0

f
(
ycikl

)
≤

mkl
+1∑

i=0

f
(
yik
)
− α (∆kl) ,

(3.12)

and thus, intuitively speaking, if Y kl
c yields no worsening of the already best mkl ver-

tices and one worse vertex of the original simplex used when iteration k was entered,

and an improvement actually, then accept the new simplex by setting Y k+1 = Y kl
c ,

setting k to k + 1 and continuing with Step 1.

Step 6 (shrinking) If no new simplex is accepted so far, a shrink step is taken by

calculating

xsikl := y0kl + σ
(
yikl − y

0
kl

)
, ∀i, 0 ≤ i ≤ n

and writing by the new shrunken simplex as

Y kl
s =

{
xs0kl , x

s1
kl
, . . . , xsnkl

}
.

If

min
0≤i≤n

f
(
xrikl

)
≤ f

(
y0k
)
− α (∆kl) , (3.13)

accept the shrinkage by setting Y k+1 = Y kl
s , setting k to k+ 1 and continuing with

Step 1. Otherwise, set Y kl+1 = Y kl
s , setting l to l + 1 and continue with Step 2.

aIn the implementation in Implementation A.1, the factor 1
n!

is removed from the definition of the
normalised volume von as it is a quickly-growing constant that can be easily compensated by adjusting
ν, since it’s upper bound is affected too.

A visualisation of the change of simplices through the parameter space can be found in

Figure 3.3 for a 2-dimensional function.

An even more simplified version can be found in [12], which differs from the version stated

above roughly by, after a failed initial reflection step with mk0 = n − 1, continuing with a

new sub-iteration by setting mk1 = 1, hereby rotating the whole simplex in what is called a
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Figure 3.3: Simplices used over the course of the FDSS method using Implementation A.1
of the so-called Rosenbrock function (x, y) 7→ 100

(
y − x2

)2
+ (1− x)2 as found in [30] with

starting point (−1.2, 1), for which the start simplex used here is represented by the vertices
{(−1.2, 1) , (−0.2, 1) , (−1.2, 2)}. In it’s initial stage while converging to the minimum at
(1, 1), two inside contraction steps, followed by an outside contraction, an inside contraction
and reflection step are identifiable.

safeguard rotation.

A convergence theorem for this method is then the following, stated in terms of the first

computed centroid at every iteration:

Theorem 3.5 ([38]). Let f ∈ C1 be the function to be minimised and Y 0 the vertices of a

non-degenerate starting simplex. Assume that f is uniformly bounded from below on Rn.

Define L (Y ) := {x ∈ Rn : f (x) ≤ miny∈Y f (y)}.

� If L
(
Y 0
)
is bounded, then either the method quits at some iteration k with a stationary

point of f or the method does not quit and at least one accumulation point of (x̄k0)k∈N
is a stationary point of f .

� If f is uniformly continuous on L
(
Y 0
)
, then either the method quits at some iteration

k with a stationary point of f or the method does not quit and every accumulation point

of (x̄k0)k∈N is a stationary point of f .
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In the description of Algorithm 3.2, multiple fortified-descent criteria are present. The

first criterion for reflection (3.8) (and the very similar one for expansion (3.8)), the criterion

for contraction (3.12) and the criterion for a shrink (3.13) all boil down to, as shown in [38],

f
(
yik+1

)
≤ f

(
yik
)

m∑
i=0

f
(
yik+1

)
≤

m∑
i=0

f
(
yik
)
− α (∆kl)

as acceptance criterion that should be fulfilled to leave iteration k for somem that depends on

mkl for l the last sub-iteration in iteration k, and this is used for proving that the diameters

approaches zero (under the conditions stated in Theorem 3.5. The two stronger criteria for

reflection (3.8) and (3.9) (and the very similar ones for expansion (3.10) and (3.11)) are used

for proving the convergence to the stationary points.

As reported by [38] for four different function minimisations for which original Nelder–

Mead method converges, the performance of Algorithms 3.1 and 3.2 are very comparable:

both methods take either the same number of function evaluations with the same function

value upon termination, of slightly better values. In Chapter 6, more comparison results will

be reported.

3.4 Termination criteria

In the previous sections, we have seen the original Nelder–Mead method and different min-

imisation methods based on the Nelder–Mead method. As minimisation methods in their

current description, the algorithms do not terminate, but instead keep trying to get closer

to a stationary point, in general to the expense of evaluating the (possible costly) function

f more often. In practice, one would like to receive a definitive answer to the minimisa-

tion problem as approximation of a local minimum of the original function after some finite

amount of time, and thus, a termination criterion is desired to decide whether one can stop

looking for a (better) solution.

One type of termination criteria could be based on the execution of the method itself,

and could consist of termination upon having executed a certain number of iterations or

having evaluated the function f a certain number of times; if evaluation of this function

takes some resources, a certain budget might be accounted, and termination of the method

occurs when all the resources are taken. Another type of termination criteria could be based

on the actual points in the simplex; how they are positioned in the parameter space and

what function value corresponds to those could make us decide that this pattern corresponds

to being close enough to a minimiser for termination of execution of the method. In two

following subsections, we discuss several of those, starting with criteria for the FDSS method

where the simplex is guaranteed non-degenerate, and followed by more heuristic-like criteria.
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3.4.1 Criteria for Fortified-Descent Simplicial Search Method

For a stopping criterion to be used with the FDSS, we will measure the gradient of the ob-

jective function f at the current best point based on the already evaluated points, as done

by [38], but shown there without intermediate steps. For this, in line with the convergence

statement from Theorem 3.5, we assume f to be differentiable, and compare the calculated

gradient it with zero, Then, if the gradient is small enough and comes below a certain thresh-

old, we can declare the method as having been successful in finding a stationary point, and

terminate execution of it.

For showing this results here, we recall the definition of the directional derivative from

earlier:

f ′ (x; d) := lim
t→0+

f (x+ td)− f (x)
t

. (2.1)

In coming up with an expression for the gradient at y0kl , we will then use the already evaluated

function values at the n+1 points in the simple Y kl , by considering the directional derivative

in the (scaled) direction of yikl − y
0
kl
, for i = 1, . . . , n:

f ′

y0kl ; yikl − y
0
kl∥∥∥yikl − y0kl∥∥∥
 = lim

t→0+

f

(
y0kl + t

yikl
−y0kl∥∥∥yikl−y0kl

∥∥∥
)
− f

(
y0kl

)
t

= lim∥∥∥yikl−y0k−l

∥∥∥→0+

f

(
y0kl +

∥∥∥yikl − y0kl∥∥∥ yikl
−y0kl∥∥∥yikl−y0kl

∥∥∥
)
− f

(
y0kl

)
∥∥∥yikl − y0kl∥∥∥

= lim∥∥∥yikl−y0kl

∥∥∥→0+

f
(
yikl

)
− f

(
y0kl

)
∥∥∥yikl − y0kl∥∥∥ .

Under the assumption of the diameter converging to zero in the course of the iterative method

for k →∞, which follows under certain assumptions from Theorem 3.5, by using the relation

(2.3) between the directional derivative and the derivative, using also the definition of the

gradient – we can write, thus for k →∞,

f ′

y0kl ; yikl − y
0
kl∥∥∥yikl − y0kl∥∥∥
 = ∇f

(
y0kl
)T yikl − y

0
kl∥∥∥yikl − y0kl∥∥∥

f
(
yikl

)
− f

(
y0kl

)
∥∥∥yikl − y0kl∥∥∥ = ∇f

(
y0kl
)T yikl − y

0
kl∥∥∥yikl − y0kl∥∥∥

f
(
yikl
)
− f

(
y0kl
)
= ∇f

(
y0kl
)T (

yikl − y
0
kl

)
.

By combining those n equations and assuming in addition all y0kl − y
i
kl

to be linearly inde-
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pendent, and the normalised volume of the simplex thus being non-zero, we can write, for

k →∞ again, 
f
(
y1kl

)
− f

(
y0kl

)
...

f
(
ynkl

)
− f

(
y0kl

)
 = ∇f

(
y0kl
)T

y1kl − y

0
kl

...

ynkl − y
0
kl

 ,
or, written differently,

∇f
(
y0kl
)
=


(
y1kl − y

0
kl

)T
...(

ynkl − y
0
kl

)T

−1 

f
(
y1kl

)
− f

(
y0kl

)
...

f
(
ynkl

)
− f

(
y0kl

)
 . (3.14)

as thus also reported by [38]. In line with the assumption of the diameter converging to zero,

a stopping criterion might then consist of demanding for diam
(
Y kl
)
≤ ϵ1 the norm of the

right-hand side of (3.14) being smaller than ϵ2, for both ϵ1, ϵ2 > 0 (with possibly ϵ1 = ϵ2).

However, with (3.14) involving the inverse of a square matrix, this stopping criterion can

be considered to be computationally heavy, and in this same [38], an alternative expression

of 
(
f
(
y1kl

)
− f

(
y0kl

))
/
∥∥∥y1kl − y0kl∥∥∥

...(
f
(
ynkl

)
− f

(
y0kl

))
/
∥∥∥ynkl − y0kl∥∥∥


was suggested, where the two norms of these expressions were reported to differ ‘only by a

constant factor’.

3.4.2 Other criteria

For the FDSS method, we got lucky by having affinely-independent points around the best

point in each (sub)iteration and being able to derive a direct approximation for the gradient

of this. We aren’t that lucky for the Nelder–Mead method in general though, as the simplex

can become arbitrarily flat, as we have seen earlier. Several heuristics have been found helpful

to guide the decision of quitting the algorithm.

In [41, Chp. 2.4], a comparison was made between two earlier used stopping criteria and

a newly introduced one. We add a different existing criterion to this discussion, found below:

� The criterion mentioned in the original Nelder–Mead publication [24] is inspired by

what they call the ‘standard error’ and is given by√√√√ 1

n

n∑
i=0

(
f
(
yik
)
− ȳfk

)2
< ϵ1
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for ȳfk :=
∑n

i=0 f
(
yik
)
/(n+ 1)2 and ϵ1 > 0 being the threshold parameter.

An careful observation reveals that this stopping criterion is fulfilled for vertices on the

same contour line, while being undecided of the distance between the points, allowing

significant level changes in the interior of the simplex, making it possible for vertices to

be maxima instead too.

� In [25], the different criterion of

f (yn)− f
(
y0
)
≤ ϵ2 and

1

n

n∑
i=0

∥∥yik − yik+1

∥∥ < ϵ3

was stated, for ϵ2, ϵ3 > 0, which, after having tested different not-mentioned stopping

criteria, led to

the most reliable relation between the convergence parameters and the accu-

racy attained.

This time, not only the function value is taken into account, but also the amount

of changes made in an iteration, where only a small change would better represent a

stationary point.

� With the previous criterion in mind and the observation that the main value there

depends on the current size of the simplex, given the constants determining the position

of the new vertex or new vertices, [41] introduced a new criterion exactly based on this

size as
1

∆k
max
1≤i≤n

∥∥yik − y0k∥∥ ≤ ϵ4
for ∆k = max

{
1,
∥∥y0k∥∥} and ϵ4 > 0, with the explanation that

[this] measures the relative size of ths simplex by considering the length of

the longest side incident to [y0k], and stops when this length becomes smaller

than some preset value.

As motivation for this different criterion was mentioned that the main value in the

previous criterion takes greater values for a shrink step than for a contraction step,

while shrink steps are claimed to take place more often in the neighbourhood of a local

minimiser, with the shrink step being portrayed as last resort here too. Thus, the value

of ϵ5 may need to be set greater than desired, such that the method also terminates

prematurely, upon a contraction step.

� Lastly, a different stopping criterion is used in the MATLAB implementation, [37],

which could thought of as combinations the previous proposals. Here, the stopping

2The exact value for what is assumed to be the mean is not given in [24]. In [41], the normalisation factor
for both the mean and the variance is given by 1

n
instead of 1

n+1
without further discussion. The use of 1

n
in

the variance, as done in [24] too, gives rise interpretation of the points in the simplex as a (limited) sample
of points in some neighbourhood for which the main value in the criterion gives an unbiased estimator of the
variance.
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criterion consists of

max
1≤i≤n

∥∥yik − y0k∥∥∞ < ϵ5 and max
1≤i≤n

∣∣f (yik)− f (y0k)∣∣ < ϵ6

for ϵ5, ϵ6 > 0. Thus, in this case, the simplex needs to be small enough, while the points

corresponding function values are close to the best too, indeed providing the view of a

locally flat surrounding if the criterion holds.
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Chapter 4

Trust-Region Methods

An established class of minimisation methods can be described as trust-region method. In the

course of this iterative-based method, steps through the parameter space are made by locally

minimising an approximation to the objective function – chosen in such a way to allow this

minimisation to take place in an easier way than minimisation of the original function would

have – with the ultimate goal of converging to a local minimiser of the objective function.

By the nature of a local approximation, the quality of this approximation degenerates in

general the further one is away from the local area we based the approximation on — and

that contains the iteration point – and thus, a trust region is defined in every step in which

one hopes to trust the model enough to make a decent descent step.

In the field of derivative-based optimisation, a satisfying local approximation can be

obtained by creating a Taylor polynomial of sufficient low degree based on the original function

around the iteration point. However, to construct a non-trivial Taylor polynomial, derivative

information of this function needs to be accessed, which is not possible in the derivative-free

setting. In this chapter, a local approximation will instead be derived by evaluating the

objective function on a set of finitely many points and creating an approximation based on

those points, granted that those points fulfil some geometric requirements, leading to the

so-called conditional trust-region method.

We begin this chapter by assuming the existence of an approximation function with the

required general properties and by describing a minimisation method based on this class of

approximation functions. Afterwards, we describe how to construct such an approximation

function for use in the minimisation method and how to minimise those functions locally. For

simplification in notation, we assume the vector norm to be the ℓ2 norm, e.g. ∥·∥ = ∥·∥2.

4.1 Fully linear and fully quadratic models

We start by formalising the idea of a model function as approximation to the objective

function in a trust region – which we in the rest of this chapter will model in each iteration
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as a closed ball around a base point – by introducing a specific class of functions. In each

iteration, we should be able to access a model function from that class in a finite and uniformly

bounded (with respect to the trust region) number of steps, and the error between this model

function and the objective function should, apart from a constant, depend only on the size

of the trust region, where a smaller trust region should provide a smaller error.

For the definition of this general class, we assume that our objective function f is suffi-

ciently differentiable (with Lipschitz continuous gradient) in an open set containing the points

that can be evaluated in the method. For the starting iteration point x0, the set L (x0) is

defined as set that includes all potential further iteration points, which will be extended out-

wards by the maximum trust-region radius to include also all points that can be evaluated

in the course of the method. Based on this assumption, depending on the exact classification

of differentiability of the objective function, [12] defines a class of functions that have the

desired properties mentioned in the previous paragraph.

For once differentiable functions, we consider more exactly functions fulfilling the following

assumption:

Assumption 4.1 ([12]). For a set of interest S and maximum trust-region radius ∆max,

assume f : Rn → R is continuously differentiable with Lipschitz continuous gradient in an

open set containing
⋃

x∈S B (x; ∆max) ⊂ Rn, being an extended version of S.

The actual class of functions fulfilling the properties mentioned in the first paragraph is then

defined as follows:

Definition 4.1 (based on [12] with different presentation). Let f satisfy Assumption 4.1 for

a set of interest S and maximum trust-region radius ∆max.

We call a specific set of functions M ⊂ C1 (Rn,R) a fully linear class of models with

parameters (κf , κg, ν1) if the following two conditions hold:

1. For all centre points x ∈ S and trust-region radii ∆ ∈ (0,∆max], there exists a func-

tion mx,∆ ∈ M, with Lipschitz continuous gradient and the corresponding Lipschitz

constant bounded by ν1 such that

� the error between the gradient of the model and that of the objective satisfies

∥∇f (x+ s)−∇mx,∆ (x+ s)∥ ≤ κg∆ ∀s ∈ B (0; ∆) , (4.1)

and

� the error between the model and the objective satisfies

|f (x+ s)−mx,∆ (x+ s)| ≤ κf∆2 ∀s ∈ B (0; ∆) . (4.2)

We call a model function m ∈ M fully linear on B (x; ∆) with parameters (κf , κg, ν1)

if the conditions above on the errors hold for a specific x ∈ S and ∆ ∈ (0,∆max].
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2. For all m ∈ M, x ∈ S and ∆ ∈ (0,∆max], we are able to, in a finite and uniformly

bounded (with respect to x and ∆) number of steps,

� either certify that the model function m is fully linear on B (x; ∆) with parameters

(κf , κg, ν1), in which case we call m certifiable fully linear (CFL) on B (x; ∆) with

parameters (κf , κg, ν1),

� or1 a find another function m̃ ∈ M instead that is fully linear on B (x; ∆) with

parameters (κf , κg, ν1).

Thus, given a fully linear class M with some parameters, for every point in our set of

interest S, we are able to obtain a function m ∈ M whose error bounds for the value and

the gradient depend respectively quadraticly and linearly on the radius, ∆, of the region of

interest, with no restrictions for points outside this radius.

We note that Definition 4.1 does not require all functions m ∈ M to be fully linear for

any base point or trust-region radius; on the contrary, it can easily be seen that given a fully

linear classM, any set of functions M̃ such thatM⊂ M̃ is a fully linear class, and C1 itself

is also a fully linear class too – as long as there exists at least a fully linear class at all. As

we will later see when covering minimisation algorithms using fully linear and fully quadratic

classes though, we require the functions in the classes to be (approximately) minimisable in

preferably some efficient way – something that clearly can’t be accomplished by choosing C1

as class. The challenge is thus not per se to find a class in general, but to find a class with

several other nice properties, as being easily (approximately) minimisable.

Similarly to the definition of a fully linear class, a fully quadratic class of models with pa-

rameters (κf , κg, κh, ν2) can be defined for later usage in second-order minimisation methods.

We assume now the following:

Assumption 4.2 ([12]). For a set of interest S and maximum trust-region radius ∆max,

assume f : Rn → R is twice continuously differentiable with Lipschitz continuous Hessian in

an open set containing
⋃

x∈S B (x; ∆max) ⊂ Rn being an extended variation of S.

Then, this stronger class of functions is defined as follows:

Definition 4.2 (based on [12] with different presentation). Let f satisfy Assumption 4.2 for

a set of interest S and maximum trust-region radius ∆max.

We call a specific set of functionsM ⊂ C2 (Rn,R) a fully quadratic class of models with

parameters (κf , κg, κh, ν2) if the following two conditions hold:

1. For all centre points x ∈ S and trust-region radii ∆ ∈ (0,∆max], there exists a function

mx,∆ ∈M, with Lipschitz continuous Hessian and the corresponding Lipschitz constant

bounded by ν2 such that

1Note that we did not require all functions that are fully linear to be certified as such (in fact, we don’t even
require the result of the certification attempt to be consistent upon re-certification), and thus, this either–or
construction could equally well be written as or–or construction.
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� the error between the Hessian of the model and that of the objective satisfies

∥∥∇2f (x+ s)−∇2mx,∆ (x+ s)
∥∥ ≤ κh∆ ∀s ∈ B (0; ∆) , (4.3)

� the error between the gradient of the model and that of the objective satisfies

∥∇f (x+ s)−∇mx,∆ (x+ s)∥ ≤ κg∆2 ∀s ∈ B (0; ∆) , (4.4)

and

� the error between the model and the objective satisfies

|f (x+ s)−mx,∆ (x+ s)| ≤ κf∆3 ∀s ∈ B (0; ∆) . (4.5)

We call a model function m ∈ M fully quadratic on B (x; ∆) with parameters

(κf , κg, κh, ν2) if the conditions above on the errors hold for a specific x ∈ S and

∆ ∈ (0,∆max].

2. For all m ∈ M, x ∈ S and ∆ ∈ (0,∆max], we are able to, in a finite and uniformly

bounded (with respect to x and ∆) number of steps,

� either certify that the model function m is fully quadratic on B (x; ∆) with pa-

rameters (κf , κg, κh, ν2), in which case we call m certifiable fully quadratic (CFL)

on B (x; ∆) with parameters (κf , κg, κh, ν2),

� or2 a find another function m̃ ∈M instead that is fully quadratic on B (x; ∆) with

parameters (κf , κg, κh, ν2).

Compared to the definition of a fully linear class, the following changes are made for the

definition of a fully quadratic class:

� The parameters tuple has been changed from (κf , κg, ν1) to (κf , κg, κh, ν2);

� The functions in M needs to be of the class C2 instead of C1 and model function

mx,∆ now needs to have a Lipschitz continuous Hessian instead of gradient, with the

corresponding constant bounded by ν2 instead of ν1;

� An additional condition (4.3) on the error has been added, with a condition on the

Hessian. Condition (4.1) has been changed into condition (4.4) by replacing ∆ with ∆2

on the right-hand side, and similarly, condition (4.2) has been changed into (4.5) by

replacing ∆2 with ∆3 on the right-hand side.

We now state two lemmata, saying that a function that is fully linear (or fully quadratic)

for a tuple of parameters on a specific ball, is also fully linear (or fully quadratic respectively)

for the same tuple of parameters on a ball with a bigger radius and the same centre point.

2See Footnote 1, with ‘fully linear’ replaced by ‘fully quadratic’.
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We will later use this when describing ways of coming up with a fully linear or fully quadratic

model.

Lemma 4.1 ([12]). Consider a function f satisfying Assumption 4.1 for a set of interest

S and maximum trust-region radius ∆max and consider a function m being fully linear on

B
(
x; ∆̄

)
with parameters (κf , κg, ν1) with x ∈ S and ∆̄ ≤ ∆max.

Assume, without loss of generality, that κg is at least the sum of ν1 and the Lipschitz

constant of the gradient of f , and that κf ≥ 1
2κg.

Then m is fully linear on B (x; ∆) with the same parameters (κf , κg, ν1) for all ∆ ∈[
∆̄,∆max

]
.

Lemma 4.2 ([12]). Consider a function f satisfying Assumption 4.2 for a set of interest S

and maximum trust-region radius ∆max and consider a function m being fully quadratic on

B
(
x; ∆̄

)
with parameters (κf , κg, κh, ν2) with x ∈ S and ∆̄ ≤ ∆max.

Assume, without loss of generality, that κh is at least the sum of ν2 and the Lipschitz

constant of the Hessian of f , that κg ≥ 1
2κh and that κf ≥ 1

3κg.

Then m is fully quadratic on B (x; ∆) with the same parameters (κf , κg, κh, ν2) for all

∆ ∈
[
∆̄,∆max

]
.

Here, ‘without loss of generality’ refers to the fact that we can always increase the values of

the parameters of a fully linear or fully quadratic class, and end up with a comparable fully

linear or fully quadratic class respectively for the same function and set of interest.

Assuming that fully linear and fully quadratic models can be constructed, we will in the

next section review minimisation methods based on those classes. Subsequently, we will see

examples of actual fully linear and fully quadratic models.

4.2 Trust-region minimisation methods

Now that we have seen the class of fully linear and fully quadratic functions as approxima-

tion to the objective function, we will describe in this section minimisation methods that

iteratively minimise those approximations. It turns out that sufficient freedom is present in

the method for not having the need to find a local exact minimiser of the approximation

function, but only one which provide sufficient decrease compared to the some other defined

point, of which we will first describe some notions.

Two different notions of ‘points providing sufficient decrease’ are described by Cauchy

points and eigenpoints. To allow reasoning about the resulting reduction for general types of

model functions, in line with [12], we require for the rest of this section the objective function

to satisfy the following assumption:

Assumption 4.3. Assume mk is twice continuously differentiable with bounded Hessian, and

thus assume there exists a κumh > 1 such that for all points x ∈ Rn and iterations k, it holds
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that ∥∥∇2mk (x)
∥∥ ≤ κumh − 1.

The requirement of the model function being twice continuously differentiable alone is already

stronger than what is required for model functions that are fully linear, as these only need

to be once continuously differentiable. We can nevertheless justify this assumption with the

observation that for the commonly-studied classes of model functions based on polynomial

interpolation (to be seen in Section 4.3), the less restricted fully linear class (that is not a fully

quadratic class) fulfils this assumption. For functions not fulfilling this assumption though,

more specialised analysis needs to be performed. As we thus will assume twice continuously

differentiability of the model function for the rest of this section, we define with xk ∈ Rn the

iteration point as short-hand notation

gk := ∇mk (xk) and Hk := ∇2mk (xk)

for the gradient and Hessian at the base point of iteration k respectively and

βk := 1 + max
s∈B(0;∆k)

∥∥∇2mk (xk + s)
∥∥

to obtain a value βk ∈ (0, κumh], with κumh as defined in Assumption 4.3.

With this, we can consider some specific points in the ball to base the sufficiently decrease

on:

Cauchy Point

A Cauchy point of a function mk in a neighbourhood B (xk; ∆k) for ∆k > 0 is defined

as a point xCk that minimises mk along the steepest direction from xk in B (xk; ∆k),

assuming xk is not a stationary point of mk, and thus gk ̸= 0. The steepest descent

direction is, as seen earlier in Section 2.4, given by −gk, and by scaling along this

direction for the minimum with scaling factor

tCk := argmint≥0 and xk−tgk∈B(xk;∆k)
mk (xk − tgk) , (4.6)

the Cauchy point itself is defined as xCk = xk + sCk , for s
C
k := −tCk gk the Cauchy step.

Now, should the function mk be quadratic and of the form

m (xk + s) = m (xk) + gTk s+
1

2
sTHks, (4.7)

it follows, by [11], that an explicit formula for the Cauchy point can be given:

tCk =

∆k/ ∥gk∥ , gTkHkgk ≤ 0

min
{
∥gk∥2/

(
gTkHkgk

)
,∆k/ ∥gk∥

}
, otherwise.

42



This expressions minimises along the steepest direction if the function is strictly convex

and the minimiser would lay in the trust region, and otherwise places it on the boundary.

If the function is not quadratic though, we cannot expect to get an explicit expression for

the Cauchy point in general, and we can approximate the Cauchy point by backtracking.

By defining

xk (j) := xk − κjbck
∆k

∥gk∥
gk (4.8)

and looking for the smallest non-negative integer j = jC such that

mk (xk (j)) ≤ mk (xk) + κubsg
T
k (xk (j)− xk) (4.9)

for κjbck ∈ (0, 1) and κubs ∈
(
0, 12
)
as application of Armijo line-search, the approximate

Cauchy point can be defined as xAC
k := xk (jC).

The actual decreases of the model functions for the Cauchy point and the approximate

Cauchy point respectively are described by the following lemmata:

Lemma 4.3 ([11]). Let mk be a model function that can be written in the form of (4.7).

Then, it holds that

mk (xk)−m
(
xCk
)
≥ 1

2
∥gk∥min

{
∥gk∥
βk

,∆k

}
. (4.10)

Lemma 4.4 ([11]). Let mk be a model function for which Assumption 4.3 is satisfied.

Then, there exists a constant κdcp ∈ (0, 1] independent of k such that

mk (xk)−mk

(
xAC
k

)
≥ κdcp ∥gk∥min

{
∥gk∥
βk

,∆k

}
. (4.11)

Clearly, the decrease of the Cauchy point (4.10) can be described in terms of the decrease

of the approximate Cauchy point (4.11), and we will base our notion of sufficiently

decrease on the decrease of the approximate point.

Eigenpoint

In [11], for quadratic functions mk, the notion of the eigenpoint of mk in a neighbour-

hood B (xk; ∆k) for ∆k > 0 was defined, assuming Hk has a strictly negative eigenvalue

τk < 0.

For the eigenpoint, we seek a direction uk ∈ Rn such that for some κsnc ∈ (0, 1], it holds

that

uTk gk ≤ 0, ∥uk∥ = ∆k and uTkHkuk ≤ κsncτk∆2
k. (4.12)

Choosing uk to be a corresponding eigenvector to τk of Hk gives Hkuk = τkuk, such that

the last inequality of (4.12) reduces to τk ∥uk∥2 ≤ κsncτk∆
2
k. The other two equalities

(4.12) then define the direction and scaling, for a eigenvector uk that satisfies the

requirements above.
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Given a vector uk that satisfies (4.12), we define, similar to how we defined the step

size of the Cauchy point in (4.6), the step size from the current iteration point xk to

the eigenpoint as

tEk := argmint∈(0,1]mk (xk + tuk) ,

to let xEk = xk + tEkuk be the eigenpoint.

Just as in case of the Cauchy point, if mk takes the special form (4.7), we can provide

an explicit expression for the eigenpoint, as it holds that tEk = 1 in this case, according

to [11]. Otherwise, for quadratic functions in general, similar to the approach used for

calculating the approximate Cauchy point, a line search can be used for calculating the

approximate eigenpoint xAE
k , with as equivalences for (4.8) and (4.9) respectively

xk (j) := xk + κjbckuk

and

mk (xk (j)) ≤ mk (xk) + κubcτkκ
j
bck ∥uk∥

2 .

The actual decreases of the model functions for the eigenpoint and the approximate

eigenpoint respectively are described by the following lemmata:

Lemma 4.5 ([11]). Let mk be a model function that can be written in the form of (4.7).

Then, for τk a negative eigenvalue of Hk, it holds that

mk (xk)−mk

(
xEk
)
≥ 1

2
κsnc ∥τk|∆2

k. (4.13)

Lemma 4.6 ([11]). Let mk be a model function for which Assumption 4.3 is satisfied.

Then, there exists a constant κsod > 0 independent of k such that for τk a negative

eigenvalue of Hk, it holds that

mk (xk)−mk

(
xAE
k

)
≥ κsod |τk|min

{
τ2k ,∆

2
k

}
. (4.14)

Clearly this time too, the decrease of the eigenpoint (4.13) can be described in terms

of the decrease of the approximate eigenpoint (4.14), and we will base our notion of

sufficiently decrease on the decrease of the approximate point.

Requiring at least a constant factor of the decrease made by a (approximate) Cauchy or

eigenpoint can then be formalised as follows, respectively:

Assumption 4.4. Assume that a constant κfcd ∈ (0, 1) exists such that for all steps k, it

holds that

mk (xk)−mk (xk+1) ≥ κfcd
(
mk (xk)−mk

(
xAC
k

))
.

Assumption 4.5. Assume that a constant κfod ∈ (0, 1) exists such that for all steps k, it
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holds that

mk (xk)−mk (xk+1) ≥ κfod
(
mk (xk)−min

{
mk

(
xAC
k

)
,mk

(
xAE
k

)})
.

Now, assuming access to a fully linear classM on which improvement steps can be made

according to Assumption 4.4, we can apply the following first-order trust-region minimisation

method:

Algorithm 4.1 (Derivative-Free Trust-Region Method (first order) ([12])).

Input Let f ∈ C1 be the function to be minimises using the fully linear class of models

M for parameters (κf , κg, ν1) and x0 ∈ Rn a starting point.

Furthermore, we require the following constants as parameters of the method:

� 0 ≤ η0 ≤ η1 < 1 (and η1 > 0): defining a threshold for interpreting how well

the expected decrease corresponds to the obtained decrease;

� 0 < γ < 1 < γinc: controlling the size of the trust-region radius for the next

iteration step;

� ϵc > 0: threshold for the current model having enough descent as measured by∥∥gicbk

∥∥, to decide whether or not to check the fully linearity of the model;

� µ > β > 0: parameters linking the trust-region radius and the model gradient

together;

� ω ∈ (0, 1): parameter controlling the decrease of the model in the accuracy

sub-steps.

Initialisation Set k = 0.

Step 1: accuracy step If
∥∥gicbk

∥∥ > ϵc, skip the certification, set mk = micb
k and ∆k =

∆icb
k and continue with Step 2.

Otherwise, attempt to certify the fully linearity of micb on B
(
xk; ∆

icb
k

)
for pa-

rameters (κf , κg, ν1). If micb is CFL for those parameters on B
(
xk; ∆

icb
k

)
and

∆icb
k ≥ µ

∥∥gicbk

∥∥, set mk = micb
k and ∆k = ∆icb

k and continue with Step 2.

Otherwise, improve the model:

Step 1a Set i = 0 and m
(0)
k = micb

k .

Step 1b Increment i by one and use improve m
(i−1)
k to create a CFL-for-

parameters-(κf , κg, ν1) model m
(i)
k on B

(
xk;ω

i−1∆icb
k

)
.

Step 1c If ωi−1∆icb
k > µ

∥∥∥g(i)k

∥∥∥, continue with Step 1b.

Otherwise, set mk = m
(i)
k and ∆k = min

{
max

{
ωi−1∆icb

k , β
∥∥∥g(i)k

∥∥∥} ,∆icb
k

}
and continue with Step 2.
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Step 2: sub-problem solution Compute a step sk such that a fraction of the reduction

possible reduction of the Cauchy step is reduced, e.g. that Assumption 4.4 is fulfilled.

Step 3: acceptance test Evaluate f (xk + sk) to define the ratio

ρk =
f (xk)− f (xk + sk)

mk (xk)−mk (xk + sk)

to measure the successness of the step.

If ρk ≥ η1, declare the iteration successful, accept the step by setting xk+1 = xk+sk

and increase the trust-region radius by setting ∆icb
k+1 ∈ [∆k,min{γinc∆k,∆max}],

increase k by one and continue with Step 1.

Otherwise, if η1 > ρk ≥ η0 and mk is CFL for parameters (κf , κg, ν1) on

B
(
xk; ∆

icb
k

)
, declare the iteration acceptable, accept the step by setting xk+1 =

xk + sk and decrease the trust-region radius by setting ∆icb
k+1 = γ∆k, increase k by

one and continue with Step 1.

Otherwise, if ρk < η1 and mk is not CFL for parameters (κf , κg, ν1) on

B
(
xk; ∆

icb
k

)
, declare the iteration model improving, improve the model onM with

parameters (κf , κg, ν1) on B
(
xk; ∆

icb
k

)
, possibly with the value of f (xk + sk) and

continue with Step 1 with the same base point xk+1 = xk and trust-region radius

∆k+1 = ∆k and k thereafter set to k + 1.

Otherwise, if ρk < η0 and mk and mk is CFL for parameters (κf , κg, ν1) on

B
(
xk; ∆

icb
k

)
, declare the iteration unsuccessful, continue with Step 1 with the same

base point xk+1 = xk but a decreased trust-region radius ∆k+1 = γ∆k and k there-

after set to k + 1.

At first glance, it might look confusing that the ‘improvement’ algorithm for the fully linear

class is called in this algorithm at two different locations, with in Step 1 a loop that is executed

until the model is certifiable fully linear, and in Step 3 just a single call to the improvement

algorithm. And indeed, a similar algorithm as presented in [1] only contains the first step,

that is unconditionally called and after which the method does not need to be CFL. The way

the algorithm is presented above tries to make more efficient use of the evaluated points. The

improving in the accuracy step makes sure not both the magnitude of the model’s gradient,

gicbk , and the trust-region radius can become uncontrollable small, such that the fraction of

the Cauchy decreases becomes so too, and the algorithm could converge to a point that is

not a first-order critical point of f . By improving the model gradually in the last step, with

only one step at the time, we can skip the more expensive improvement during the accuracy

step, as long as the model’s gradient is steep enough and the decrease agrees enough with

that of the objective function, even if the model is not CFL.

For a convergence results of this algorithm, we assume that a minimiser exists that we

can reach:
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Assumption 4.6. Assume that f is uniformly bounded from below on L (x0).

Then, the convergence result for the first-order method is as follows:

Theorem 4.7 ([12]). Suppose Assumption 4.6 holds and let (xk)k∈Z be a sequence of base

points resulting from applying Algorithm 4.1 on f with a fully linear class of models.3 Then:

lim
k→+∞

∇f (xk) = 0.

For second-order convergence, a method is stated in [12, Alg. 10.3] that is similar to

Algorithm 4.1, where the quality of the decrease of the sub-problem is this time compared

to that of the eigenpoint, e.g. to make Assumption 4.5 fulfilled. Furthermore, as another

major difference, while the gradient of the model was a measure for the first-order method

for having reached a stationary point, a measure is in this case

σ (x) = max {∥gk∥ , |λmin (Hk)|} ,

with the second element denoting the magnitude of the most negative eigenvalue of Hk,

which corresponds to conditions in the definition of a second-order critical point. For this

second-order method, can state the stronger convergence result as follows:

Theorem 4.8 ([12]). Suppose Assumption 4.6 holds and let (xk)k∈Z be a sequence of base

points resulting from applying second-order trust-region method in [12, Alg. 10.3] on f with

a fully quadratic class of models.4 Then:

lim
k→+∞

σ (xk) = 0.

4.3 Examples of fully linear and fully quadratic models

In this section, we will consider several types of fully linear and fully quadratic models. An

approach commonly found in the literature is to create a model function whose value at

sufficient sample points around the base point equals the value of the objective function

on those points, leading to a moderate error for points outside the sample sets that are

sufficiently surrounded by other sample points. Thus, we will impose geometric requirements

on the sample set for such a set to serve as basis of a fully linear or fully quadratic model.

In the first sub-section, we will review the basics of interpolation, being the creation of

the mentioned model function equalling the objective function at specific points. In the later

sub-sections, we will consider interpolation for polynomial model functions, being of linear

or quadratic form with different amounts of interpolation points, with the corresponding

geometric requirements.

3Note that, in addition to Assumption 4.6, Assumption 4.1 is assumed to be satisfied by f as part of the
definition of a fully linear class of models

4See Footnote 3, with ‘fully linear’ replaced by ‘fully quadratic’.
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4.3.1 Interpolation conditions

Given a set of sample points Y of size p1 := p + 1, we want to construct an interpolation

model m : Rn → R of the objective function f by seeking a function such that m
(
yi
)
= f

(
yi
)

holds for all yi ∈ Y : what is left, is polishing (poliō) of the model in-between (inter) the

sample points.

We consider interpolation functions m that are written as the sum of q1 := q+1 different

functions ϕj of a certain class (e.g. polynomials), weighted by fixed coefficients αj ∈ R, as
m (x) =

∑q
j=0 αjϕj (x).

Now, by enforcing the interpolation condition m
(
yi
)
= f

(
yi
)
for all yi ∈ Y , we get

q∑
j=0

ajϕj
(
yi
)
= f

(
yi
)
, i = 0, . . . , p

or, in matrix form,

M (ϕ, Y )α = f (Y ) (4.15)

with

M (ϕ, Y ) =


ϕ0
(
y0
)

ϕ1
(
y0
)
· · · ϕq

(
y0
)

ϕ0
(
y1
)

ϕ1
(
y1
)
· · · ϕq

(
y1
)

...
...

. . .
...

ϕ0 (y
p) ϕ1 (y

p) · · · ϕq (y
p)

 , α =


a0

a1
...

aq

 , and f (Y ) =


f
(
y0
)

f
(
y1
)

...

f (yp)

 .

Now that the notation has been introduced, we will consider what happens for different

classes, and different number of points compared to the number of functions. We will consider

what happens when we require m to be a polynomial function in Rn of a degree less than or

equal to d ∈ N, e.g. m ∈ Pd
n, with a finite basis ϕ = {ϕ1, ϕ2, . . . , ϕq} of Pd

n as set of functions

to write m construct m with. Depending on the relation between q1 and p1, the interpolation

condition (4.15) might be overdetermined (q1 < p1) or underdetermined (q1 > p1). We will

start with the ideal case where the system is not under- or overdetermined though, for q1 = p1.

4.3.2 Polynomial interpolation

In this sub-section, the case of the dimension of Pd
n, and thus the number of basis functions

of Pd
n, q1, being equal to the number of interpolation points, p1, will be considered: we call

this case simply polynomial interpolation. In that case, for any basis ϕ of Pd
n, the matrix

M (ϕ, Y ) is a square p1× p1 matrix, and the matrix system (4.15) has a unique solution in α

if and only ifM (ϕ, Y ) is non-singular. By considering any other basis ψ of Pd
n, the two baseis

can be related to each other by ψ (x) = P Tϕ (x) for an invertible matrix P and any x ∈ Rn,

and we get ψ
(
yi
)T

= ϕ
(
yi
)T
P for all i = 0, . . . , p and thus M (ψ, Y ) = M (ϕ, Y )P . The

matrix system has therefore a unique solution in α if and only if M (ψ, Y ) is non-singular.
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It follows that whether or not we are able to exactly interpolate a function through a set

of sample points is independent of the specific basis chosen to determine the interpolation

coefficients, and a definition for a set being suitable to be used as set of interpolation points

can be stated in the following way:

Definition 4.3 ([12]). The set Y =
{
y0, y1, . . . , yp

}
is poised for polynomial interpolation in

Rn if the corresponding matrix M (ϕ, Y ) is non-singular for some basis ϕ in Pd
n.

It turns out that not only the poisedness of an interpolation set is independent of the basis

chosen, but even the interpolation polynomial itself is:

Theorem 4.9 (verbatim from [12]). Given a function f : Rn → R and a poised set Y ∈ Rn,

the interpolation polynomial m (x) through f at Y exists and is unique.

We will now discuss some baseis of Pd
n that can be used for interpolation, with the number

of elements in such basis is given by
(
d+n
n

)
. An intuition for this expression for the dimension

can be found by enumerating all possibilities of dividing the degree d over the available

linearly independent monomials in Pd
n up to degree 1, say 1, x1, x2, . . . , xn, to be used to

built up a basis element. Using the argument of stars and bars, we can write d stars and

have to add n bars to divide the stars over the monomials, making us seek the placement

of the n bars over d+ n options; there are
(
d+n
n

)
possibilities for such arrangement. For the

commonly encountered case of linear interpolation, with d = 1, the dimension of the space of

model functions is then given by p1 = n + 1, while for quadratic interpolation, with d = 2,

by p1 = (n+ 1) (n+ 2)/2. With an expression for the number of basis elements in Pd
n, we

consider two actual baseis of that space:

Natural basis ϕ̄

The natural basis is a basis that also appears in a (natural) multi-variate Taylor ex-

pansion for approximating functions using polynomials. Applying a Taylor expansion

up to and including order d on a function g : Rn → R (with x as input) around y to z

results in, according to [35, Thm. A.7],

g (y + z) = g (y) +

d∑
r=1

Ur (z)

r!
+ Ed

with

Ur (y) =

[(
z1

∂

∂x1
+ · · ·+ zn

∂

∂xn

)r

g

]
(y)

and Ed being a rest term, whose exact value is of no interest for defining the natural ba-

sis. We can then write f (y + z)−Ed as polynomial in z. Extracting the different terms

and ignoring the coefficients, we end up with
(
d+n
n

)
linearly independent monomials in

z, which all together form the so-called natural basis of Pd
n:
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Definition 4.4 ([12]). Let αi =
(
αi
1, α

i
2, . . . , α

i
n

)
be a tuple of numbers and define

α =
{
α0, α1, . . . , αp

)
as a set of p1 distinct tuples αi such that

∑n
j=1 α

i
j ≤ d.

We can define the ith natural basis element of Pd
n as

ϕ̄i (x) =
1∏n

j=1 a
i
j !

n∏
j=1

x
aij
j .

The terms in this basis together look like the following:

ϕ̄ =
{
1, x1, . . . , xn, x

2
1/2, x1x2, . . . , x

d−1
n−1xn/(d− 1)!, xdn/d!

}
.

Lagrange polynomials ℓ

While the natural basis was chosen independent of the interpolation points, a basis

consisting of Lagrange polynomials depends actually on those points, by choosing the

coefficients of the polynomials in such a way that there is a unique polynomial for each

point having value 1 at that point, and 0 at all the others:

Definition 4.5 ([12]). Given a set of interpolation points Y =
{
y0, y1, . . . , yp

}
, a set

of polynomial functions {ℓ0, ℓ1, . . . , ℓp} ⊂ Pd
n (for p1 the dimension of Pd

n) is called a set

of Lagrange polynomials if

ℓj
(
yi
)
= δij .

It is shown in [12] that the set of Lagrange polynomials for a poised set of interpolation

polynomials forms a basis of Pd
n. Thus, the unique interpolation polynomial can be

clearly written as

m (x) =

p∑
i=0

f
(
yi
)
ℓi (x) (4.16)

as for each yi as argument to m, all terms except for f
(
yi
)
vanish, and it thus holds

that m
(
yi
)
= f

(
yi
)
.

At the beginning of this sub-section, we have seen the condition for an interpolation set

Y to be poised for polynomial interpolation to be that the matrix M (ϕ, Y ) is non-singular

for some basis ϕ. We are now interested in whether we can define something that expresses

the well-poisedness of an interpolation set, where a set that is better poised than another set

might yield a lower error between the model and the original function on those points that

are not in the interpolation set, in some bounded area.

Since it is enough for an interpolation set Y to be poised that the matrix M (ϕ, Y ) is

non-singular for some basis ϕ, a natural question is whether a measure of the singularity of

M (ϕ, Y ) is a measure of well-poisedness too. A traditional measure of non-singularity of a

matrix A is the condition number κ (A) = ∥A∥
∥∥A−1

∥∥, which, according to [15], up to a factor

of the norm of A, is reverse-proportional to the distance to any singular matrix. According
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to [12] though, for any interpolation set Y and scalar κ̄ > 0, there is a basis ϕ of Pd
n such

that k (M (ϕ, Y )) = κ̄, and the condition number depends on the scaling of Y , and thus, in

general, the condition number for a basis and scaling in general doesn’t provide insight in

the well-poisedness. In the special case of the natural basis ϕ̄ and scaled-down version of Y

though, the condition number does, as we are now going to see.

We define a specific scaled version of Y =
{
y0, y1, . . . , yp

}
as Ŷ , being the set centred

relative for y0 at the origin with radius 1. We write, for ∆ = ∆(Y ) := max1≤j≤p

∥∥yi − y0∥∥,
Ŷ =

{
ŷ0 := 0, ŷ1 :=

(
y1 − y0

)
/∆, . . . , ŷp :=

(
yp − y0

)
/∆
}
. (4.17)

We can then write in the linear and quadratic case M̂ =M
(
ϕ̄, Ŷ

)
respectively asM

(
ϕ̄, Ŷ

)
=[

1 0

1 L̂

]
and M

(
ϕ̄, Ŷ

)
=

[
1 0

1 Q̂

]
, with, for d = 1,

L̂ =


ŷ11 ŷ12 · · · ŷ1n
...

...
. . .

...

ŷn1 ŷn2 · · · ŷnn

 , (4.18)

and, for d = 2 with p = p1 − 1 = (n+ 1) (n+ 2)/2− 1,

Q̂ =


ŷ11 ŷ12 · · · ŷ1n

1
2

(
ŷ11
)2

ŷ11 ŷ
1
2 · · · 1

2

(
ŷ1n
)2

...
...

. . .
...

...
... . . .

...

ŷp1 ŷp2 · · · ŷpn
1
2 (ŷ

p
1)

2
ŷp1 ŷ

p
2 · · · 1

2 (ŷ
p
n)

2

 . (4.19)

Note that both L̂ and Q̂ are, in case of interpolation, square matrices that are non-singular

if and only if Ŷ is poised (in the linear or quadratic interpolation sense respectively), which

is clearly poised if and only if Y is poised in the same sense.

Now, for a quadratic interpolation model, we will state a theorem describing the error

between the model function and the objective function in the ball around y0 with radius ∆,

which was defined as the maximum distance between y0 and the other points. The model

function is in that case twice continuously differentiable with non-trivial Hessian, and we

require the objective function to have related properties to be able to capture the contours

of the objective function well:

Assumption 4.7 (notation inspired by [12]). Assume Y =
{
y0, y1, . . . , yn

}
⊂ Rn is a poised

set of sample points in the quadratic interpolation sense in the ball B = B
(
y0; ∆ (Y )

)
of

radius ∆ = ∆(Y ).

Assume f is twice continuously differentiable in an open domain Ω containing B and ∇2f

is Lipschitz continuous in Ω.

The actual theorem is then as follows:
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Theorem 4.10 ([12]). Assume function f , interpolation set Y and radius ∆ = ∆(Y ) fulfil

Assumption 4.7 with the Lipschitz constant of ∇f2 being denoted by γf and that m is the

quadratic interpolation polynomial of f on Y . Then, a bound on the error between the function

f and the model m and their derivatives in B = B
(
y0; ∆ (Y )

)
is given by

∥∥∇2f (x+ s)−∇2m (x+ s)
∥∥ ≤ 3

2

√
2pγf

∥∥∥Q̂−1
∥∥∥∆,

∥∇f (x+ s)−∇m (x+ s)∥ ≤ 3

2

(
1 +
√
2
)√

pγf

∥∥∥Q̂−1
∥∥∥∆2

and

|f (x+ s)−m (x+ s)| ≤
(
1

4

(
6 + 9

√
2
)√

pγf

∥∥∥Q̂−1
∥∥∥+ 1

6
γf

)
∆3

for all s ∈ B (0; ∆).

With a bound for the quadratic case being stated here, a similar error bound for the linear

case can be found in Sub-section 4.3.4, where Theorem 4.16 provides as special case bounds for

the error for interpolation based on a set of p1 = n+1 points that are poised in interpolation

sense.

Tempting as it may seem, those two theorems on the error are not enough to state that

interpolation based on a linear or quadratic polynomial yields respectively a fully linear of

fully quadratic model for some constants, as exactly at the places in the inequalities describing

the error where otherwise in the definition of a fully linear of quadratic model the constant

would appear, a dependency on a set Y that can change is present, making that factor not

constant under different interpolation sets. Instead, we seek an upper bound of
∥∥∥M̂−1

∥∥∥,
which in itself is already an upper bound for

∥∥∥L̂−1
∥∥∥ and

∥∥∥Q̂−1
∥∥∥, possibly by restricting

ourselves to interpolation sets that would fulfil such a bound. As we desire to easily enforce

such bounds (by, for example, changing some points in the interpolation set) in a finite and

uniformly bounded (with respect to the trust region) number of steps for a fully linear or

fully quadratic class, we need to seek a reachable upper bound, and one such is given by the

idea of Λ-poisedness:

Definition 4.6 ([12]). Given a positive constant Λ and a set of interest B ∈ Rn, a poised

set Y =
{
y0, y1, . . . , yp

}
of interpolation points is said to be Λ-poised (in the interpolation

sense) if

Λ ≥ max
0≤i≤p

max
x∈B
|ℓi (x)|

for the (unique) basis of Lagrange polynomials {ℓ1, ℓ2, . . . , ℓp} corresponding to Y .

We could imagine Λ-poisedness as a measure of how well Y spans B. If all interpolation points

in Y are present in B, then for each interpolation point, there is a Lagrange polynomial which

evaluated at that point yields the value 1, while yielding the value 0 at all the other points.
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(a) Contour plot of one of the Lagrange polyno-
mials of an interpolation set consisting of three
points on B (0; 1) with equal distance. This set
is clearly Λ-poised for Λ = 1 on B (0; 1): the val-
ues of the Lagrange polynomials never exceed 1
in the set.
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(b) Contour plot of the Lagrange polynomials
corresponding to the top point of the same in-
terpolation set as in the previous, but with (1, 0)
swapped over the vertical axis, to (−1, 0). This

set is Λ-poised for Λ = 1+ 1
2
√
3
+

√
3
2 ≈ 2.1547 on

B (0; 1).

Figure 4.1: Example of two interpolation sets poised for linear interpolation in R2, with one
being a slightly modified version of another, with different Λ-poisedness as consequence. It
can easily be seen that all interpolation sets in R2 that are Λ-poised with Λ = 1 are of the
form of the first figure, where for every interpolation point the two other interpolation points
must lay parallel on the tangent of the other point, while that point must lay on the boundary.

The function values at other points are determined by the moderate Lagrange functions,

being a polynomial of some lower degree, with thus a restricted degrees of freedom. Now,

the greater Λ, the greater the deviation from values between 0 and 1 for a point in B, which

because of the restricted freedom likely means that some part of B is less covered by the

interpolation set, Y . Intuitively, it thus might be desirable to work with an interpolation set

that is Λ-poised for a small value of Λ, and indeed, as we will see, the value of Λ is directly

correlated to the maximum error of an interpolation polynomial in a restricted area, under

certain assumptions.

Before reviewing some examples, we present several properties of Λ-poisedness, that easily

follow from the definition:

Lemma 4.11 (verbatim from [12]). Let B, Y ⊂ Rn.

(i) If B contains a point in Y and Y is Λ-poised in B, then Λ ≥ 1.

(ii) If Y is Λ-poised in a given set B, then it is Λ-poised (with the same constant) in any

subset of B.

(iii) If Y is Λ-poised in B for a given constant Λ, then it is Λ̄-poised in B for any Λ̄ > Λ.
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(a I) Contour plot of the Lagrange polynomial
corresponding to (0, 0).
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(a II) Contour plot of the Lagrange polynomial
corresponding to (1, 0).

(a) The original interpolation set on the original ball. The interpolation set is clearly Λ-poised for
Λ = 1: none of the Lagrange polynomials take a value greater than 1 on this ball.
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(b I) Contour plot of the Lagrange polynomial
corresponding to

(
− 1

2 , 0
)
.
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(b II) Contour plot of the Lagrange polynomial
corresponding to (1, 0).

(b) The interpolation set with (0, 0) replaced by
(
− 1

2 , 0
)
on the original ball. This interpolation set

Λ-poised for Λ = 4
3 > 1: for the Lagrange polynomial corresponding to the new internal point, the

only degree left by the other points is contracting, and thus, the maximum value is attained in the
centre, whose value must be greater than 1 to allow any non-centre point to take 1 as value.

Figure 4.2: Example of two interpolation sets poised for quadratic interpolation in R2, with
one being a slightly modified version of another, with different Λ-poisedness as consequence.
The base set of interest B in this example is the ball with radius 1 centred around the origin,
B (0; 1), with the interpolation set Y consisting of the origin and five points on the ball with
equal distance between them, with (1, 0) included.
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In Figures 4.1 and 4.2, examples of the poisedness of an interpolation set Y ⊂ R2 fully

inside the set of interest B = B (0; 1) are shown for both linear and quadratic interpolation,

for which, as shown earlier, respectively 2 + 1 = 3 and (2 + 1) (2 + 2)/2 = 6 interpolation

points are required. As a consequence of the previous lemma, the smallest possible value of Λ

for those examples, while keeping Y fully contained in B, for the Λ-poised sets is Λ = 1. It can

easily be seen that extending the set of interest B while keeping the same interpolation sets

will increase the value of Λ; points for which the Lagrange functions yield higher functions are

now included in B, increasing the maximum of the function values of the Lagrange functions

in B, and thus Λ.

A relation between
∥∥∥M̂−1

∥∥∥ and Λ-poisedness is then established by means of the following

theorem:

Theorem 4.12 (verbatim from [12]). If M̂ is non-singular and
∥∥∥M̂−1

∥∥∥ ≤ Λ, then the set Ŷ

is
√
p1Λ-poised in B (0; 1).

Conversely, if the set Ŷ is Λ-poised in B (0; 1), then
∥∥∥M̂−1

∥∥∥ ≤ θ
√
p1Λ for θ a constant

depending on n and d, but independent of Ŷ and Λ.

Thus, if we only consider interpolation sets whose scaled and shifted variant is Λ-poised sets,

then the factors on the right-hand sides of the inequalities found in Theorems 4.16 and 4.10

are bounded by a constant depending on Λ, and we can use linear and quadratic polynomial

interpolation to establish fully linear and fully quadratic models. Luckily, according to some

lemmata in [12], Y being Λ-poised in B is equivalent to Ŷ being Λ-poised in 1
∆B ⊂ B (0; 1),

and thus we don’t need per se to transform Y into the scaled and shifted one to consider the

Λ-poisedness of it, and can modify Y directly.

What is left to show for using polynomial interpolation as fully linear or fully quadratic

class is the existence of an improvement algorithm that creates a fully linear or fully quadratic

class respectively in a finite and uniformly bounded (with respect to the trust region) number

of steps. We will review such an algorithm in Section 4.4.

4.3.3 Polynomial regression

In the previous sub-section, we have seen how a fully linear and fully quadratic models could

be created. This was done by using linear and quadratic polynomials respectively in a q1-

dimensional space and interpolating them on p1 points with the original objective function,

with p1 = q1. In this sub-section, we consider the case where p1 > q1, e.g. the case where

we have more points than the dimension of the polynomial space, and the interpolation

conditions cannot be fulfilled for every point, as we have to few degrees of freedom for doing

so.

In this case, (4.15) can in general not be attained for some coefficient vector α ∈ Rq1 , and
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we seek instead a solution of the problem

M (ϕ, Y )α
l.s.
= f (Y ) (4.20)

for a basis ϕ of Pd
n, meaning that we want a solution fulfilling

min
α∈Rq1

∥M (ϕ, Y )α− f (Y )∥ . (4.21)

The condition (4.21) is called a least-squares regression condition, as we are minimising the

difference between the left-hand side and right-hand side of the equation in the ℓ2 norm.

As this least-squares regression condition has a unique solution ifM (ϕ, Y ) has full column

rank, andM (ϕ, Y ) having full column rank is independent of the choice of basis ϕ, according

to [12], a notion for a sample set being poised for polynomial least-squares regression can be

defined in the following way:

Definition 4.7 (verbatim from [12]). The set Y =
{
y0, y1, . . . , yp

}
is poised for polynomial

least-squares regression in Rn if the corresponding matrix M (ϕ, Y ) has full column rank for

some basis ϕ in Pd
n.

Note the similarity with the interpolation case: in fact, in the case of p1 = q1, the matrix

M (ϕ, Y ) having full column rank is equivalent to this matrix being invertible, and being

poised in the interpolation sense can be seen as a special case of being poised in the regression

sense. As in the interpolation sense, the least-squares regression polynomial induced by a

poised set exists and is unique:

Theorem 4.13 (verbatim from [12]). Given a function f : Rn → R and a poised set Y ∈ Rn,

the least-squares regression polynomial m (x) exists and is unique.

In the case of polynomial interpolation, we were able to construct an interpolation poly-

nomial of degree d by creating Lagrange polynomials of the same degree d whose value at the

corresponding interpolation point is 1 and 0 at all other interpolation points. Clearly, as the

number of points is now bigger than the degree, we cannot construct such exact Lagrange

polynomials anymore, and can only approximate them:

Definition 4.8 (taken from [12]). Given a set of sample points Y =
{
y0, y1, . . . , yp

}
, with

p > q, a set of p1 = p+ 1 polynomial functions {ℓ0, ℓ1, . . . , ℓp} ⊂ Pd
n (for p1 the dimension of

Pd
n) is called a set of regression Lagrange polynomials if

ℓj
(
yi
) l.s.
= δij .

This regression condition here is equivalent to stating that for each regression Lagrange

polynomial corresponding to point yj , a vector αj
ϕ is desired as solution ofM (ϕ, Y )αj

ϕ
l.s.
= ej+1

for each j = 0, . . . , p. According to [12], the least-squares regression polynomials exist and
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are uniquely defined for a poised set, and the unique least-squares regression polynomial m

can be written as

m (x) =

p∑
i=0

f
(
yi
)
ℓi (x) ,

just as in the case of polynomial interpolation.

Just as in the case of polynomial interpolation as well, we are interested in the error

between the model function and the objective function. A known error bound for all x in the

convex hull formed by Y , rewritten by [12], is

|f (x)−m (x)| ≤ 1

(d+ 1)!
νdp1ΛℓΛ

d+1 (4.22)

with Λ being the diameter of the smallest ball B (Y ) containing Y , νd an upper bound on

the d+ 1th derivative of f and

λℓ = max
0≤i≤p

max
x∈B(Y )

|ℓi (x)| .

By bounding the right-hand side of (4.22), the error could be bounded, just as ways to bound

the error in the case of polynomial interpolation were provided using Λ-poisedness. However,

naively bounding each factor on this right-hand side would require the number of sample

points, p1, to be bounded from above, ruling the possibility of taking as many points as

possible into account out, which would have been desirable for getting as much information

as possible.

To overcome this problem, the concept of strong Λ-poisedness (in the regression sense)

will be introduced. Motivated by a derivation in [12], we say that a set Y is strongly Λ-

poised if it can be partitioned into l = ⌊p1/q1⌋ subsets of q1 points that are each Λ-poised

(in the interpolation sense) and possibly another subset of less than q1 points. Formally, the

definition of strong Λ-poisedness (in the sense of linear regression) is the following:

Definition 4.9 ([12]). Given a positive constant Λ and a set of interest B ∈ Rn, a poised set

Y =
{
y0, y1, . . . , yp

}
of sample points is said to be strongly Λ-poised (in the regression sense)

if5
q1√
p1

Λ ≥ max
x∈B
∥ℓ (x)∥ (4.23)

for the (unique) set of Lagrange regression polynomials {ℓ0, ℓ1, . . . , ℓp} corresponding to Y ,

with ℓ =
[
ℓ0 ℓ1 · · · ℓp

]T
.

We will in practice in the improvement algorithms mainly work with the motivation of this

definition, rather than trying to directly modify (4.23).

5Note that this time the l2 norm is used, as opposed to the l∞ norm that is used in the definition of
(regular, non-strong) Λ-poisedness.
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With this, we will state a theorem about the error between the model and the objective,

similarly to what was done in the previous section. In the overdetermined case this time, we

will consider though only the situation of an overdetermined quadratic model. The case of

an overdetermined linear model that is not an (overdetermined) quadratic model can then

be treated as underdetermined quadratic model, which will briefly be brought up in the next

sub-section.

Just as in the interpolation case, we connect the concept of poisedness with the matrix

M̂ . By seeking the reduced singular value decomposition as M̂ = Û Σ̂V̂ T , for Û a matrix

with orthonormal columns and V̂ an orthonormal matrix, we can write error bounds in terms

of
∥∥∥Σ̂−1

∥∥∥. We first write our general assumptions for the theorem:

Assumption 4.8 ([12]). Assume Y =
{
y0, y1, . . . , yp

}
⊂ Rn, with p1 = p + 1 >

(n+ 1) (n+ 2)/2, is a poised set of sample points (in the quadratic regression sense) in the

ball B = B
(
y0; ∆ (Y )

)
of radius ∆ = ∆(Y ).

Assume f is twice continuously differentiable in an open domain Ω containing B and ∇2f

is Lipschitz continuous in Ω.

Then, the error bounds are given by the following theorem:

Theorem 4.14. Assume function f , sample set Y and radius ∆ = ∆(Y ) fulfil Assump-

tion 4.8 with the Lipschitz constant of ∇f2 being denoted by γf and that m is the quadratic

least-squares regression polynomial of f on Y . Then, a bound on the error between the func-

tion f and the model m and their derivatives in B = B
(
y0; ∆ (Y )

)
is given by

∥∥∇2f (x+ s)−∇2m (x+ s)
∥∥ ≤ (γf +

√
2p̄

1
2 /2 · γf

∥∥∥Σ̂−1
∥∥∥)∆,

∥∇f (x+ s)−∇m (x+ s)∥ ≤
(
γf +

(
n

1
2 +
√
2p̄

1
2

)
/2 · γf

∥∥∥Σ̂−1
∥∥∥)∆2

and

|f (x+ s)−m (x+ s)| ≤
(
1

2
γf +

(
1

2
+

1

2
n

1
2 +

1

4

√
2p̄

1
2

)
γf

∥∥∥Σ̂−1
∥∥∥)∆3

for all s ∈ B (0; ∆), with p̄ = n (n+ 1)/2.

Lastly, the following theorem provides the direct connection between strong Λ-poisedness

and Σ̂−1, with the equivalent in the previous sub-section being Theorem 4.12:

Theorem 4.15 (verbatim from [12]). If Σ̂ is non-singular and
∥∥∥Σ̂−1

∥∥∥ ≤√q1/p1Λ, then the

set Ŷ is strongly Λ-poised in B (0; 1).

Conversely, if the set Ŷ is strongly Λ-poised in B (0; 1), then
∥∥∥Σ̂−1

∥∥∥ ≤ θ q1√
p1
Λ for θ a

constant depending on n and d, but independent of Ŷ and Λ.
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4.3.4 Underdetermined models

In the previous two sub-sections, a quadratic interpolation model and regression model have

been described, for the case of p1 = q1 and p1 > q1 respectively. In this sub-section, we

briefly introduce the last case, of p1 < q1, when the model is underdetermined. In this case,

less interpolation points are available than the dimension of the polynomial space, and, in

general, multiple model functions would be able to fulfil the interpolation conditions. The

obvious advantage for using underdetermined models is that less points need to be sampled

for constructing a model than otherwise: the number of points for a full quadratic model is

of order O
(
n2
)
, which is a lot if perhaps an underdetermined model using O (n) points could

suffice.

We start by stating a general theorem about the error of a regression model with at least

n+1 sample points – which for exactly this amount of points corresponds with the dimension

of P1
n, the space of linear polynomials in R – to obtain error bounds that could help defining

a fully linear model. First, as usual, we state our assumptions:

Assumption 4.9 (notation inspired by [12]). Assume Y =
{
y0, y1, . . . , yn

}
⊂ Rn, with

p1 = p+1 ≥ n+1, is a poised set of sample points (in the linear regression sense) in the ball

B = B
(
y0; ∆ (Y )

)
of radius ∆ = ∆(Y ).

Assume f and m are continuously differentiable in an open domain Ω containing B and

∇f and ∇m are Lipschitz continuous in Ω, and that m interpolates f on Y , e.g. m
(
yi
)
=

f
(
yi
)
for all yi ∈ Y .

The actual theorem6 in this regression case is then as follows:

Theorem 4.16 ([39, Thm. 4.1] and [12, Thm. 5.4] combined). Assume functions f , m,

sample set Y and radius ∆ = ∆(Y ) fulfil Assumption 4.9 with the Lipschitz constant of ∇f
and ∇m respectively being denoted by γf and γm. Then, a bound on the error between the

function f and the model m and their derivatives in B = B
(
y0; ∆ (Y )

)
is given by

∥∇f (x+ s)−∇m (x+ s)∥ ≤ 5

2

√
p
∥∥∥L̂†

∥∥∥ (γf + γm)∆

and

∥f (x+ s)−m (x+ s)∥ ≤ √p (γf + γm)

(
5

2

∥∥∥L̂†
∥∥∥+ 1

2

)
∆2

for all s ∈ B (0; ∆).

Note that, compared to the expressions in Theorem 4.7, L̂−1 can in the general setting not be

written, as L̂ is no longer necessary a square matrix, and the Moore–Penrose pseudoinverse

6Note that, although is theorem is placed in the sub-section about underdetermined models, it strictly
speaking can be applied to any interpolation model with at least n+1 points, and thus for interpolation using
different basis too, as for quadratic polynomial interpolation (in which case one might prefer Theorem 4.10
though, since the bounds stated there are stronger.

59



L̂† comes into play, which, since L̂ is of full column rank because of Y being poised in the

linear regression sense, boils down to the left-inverse: L̂† =
(
L̂T L̂

)−1
L̂T . Thus, in the linear

interpolation sense when L̂ is square,
∥∥∥L̂∥∥∥ is present in the upper bounds of this theorem and

the model’s derivative is constant, we can as mentioned use the theory from Sub-section 4.3.2

to show that a fully linear model can be created based on linear interpolation.

The case of a real underdetermined model, is still left though, as we haven’t seen how

to bound in that case the right hand side of the inequalities found in Theorem 4.16. If we

assume that the model m (x) is a quadratic polynomial, then two different approaches can be

found in the literature: the case where the quadratic model polynomial is uniquely defined by

minimising the Frobenius norm of the upper or lower triangular part of the Hessian of m (x),

as found in [12, Chp. 5], and by minimising the minimum Frobenius norm of the difference of

(the upper or lower triangular part of) the Hessian, as described for the so-called NEWUOA

method by Powell in [28]. As a straightforward implementation of the theory results in this

case in a considerable less efficient implementation than possible, those two methods are not

part of the discussion here, and the reader is encouraged to reach out to those two sources

for a discussion that includes the creation of an efficient algorithm to maintain the model.

We will conclude this sub-section by noting that a fully linear class can be created based on

underdetermined models (that, as reported, work quite well using 2n + 1 = O (n) points,

which leads to an improvement over O
(
n2
)
for a fully determined model), with an efficient

model-improving algorithm.

4.4 Λ-poisedness improvement algorithms

In this section, we will consider algorithms that can generate in a finite and uniformly bounded

(with respect to the trust region) number of steps poised sample sets in the ball B (x; ∆)

around x ∈ Rn with diameter ∆ > 0 that are Λ-poised (in the interpolation sense) or strongly

Λ-poised (in the regression sense) for a constant Λ > 1. Then, together with the results

about fully linearity and fully quadratically of such models, by using those algorithms as

improvement algorithms, we can conclude that linear and quadratic polynomial interpolation

and regression models form actually a class of fully linear and quadratic models respectively.

We will consider in this section two methods of managing the interpolation set to fulfil

the well-poisedness requirement: one by explicitly controlling the value of the Lagrange

polynomials in the set of interest, and one more indirect method, by controlling
∥∥∥M̂−1

∥∥∥.
We start off with the first one, the one directly controlling Lagrange polynomials, and then

shortly afterwards the other. For both those methods, we first consider both methods for

the interpolation case only though, and come back to the regression case at the end of this

sub-section.

Now, given an set of pini+1 points whose function value on f has already been evaluated,

and thus are more attractive to be considered during the model creation process over other
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points whose function value is unknown, we want to select p1 interpolation points that are

poised in the interpolation sense and want to get a set of Lagrange polynomials for them.

This can be accomplished by the following algorithm:

Algorithm 4.2 (Calculating Lagrange polynomials for sample set ([12])).

Input Let {ϕ0, ϕ1, . . . , ϕp} be a basis of Pd
n (for example, the natural basis ϕ̄ or an ear-

lier approximation of the Lagrange polynomials) and let Yini =
{
y0ini, y

1
ini, . . . , y

pini
ini

}
be a set of points for which the objective function has already been evaluated. Fur-

thermore, let B ∈ Rn be the set of interest.

Output A poised (in the interpolation sense) set Y =
{
y0, y1, . . . , yp

}
with correspond-

ing Lagrange polynomials {ℓ0, ℓ1, . . . , ℓp}.
Initialisation Set i = 0, as iteration counter, and ℓi = ϕi for i = 0, . . . , p, as approxi-

mation of the basis of Lagrange polynomials.

Step 1: point selection If i ≤ pini + 1, find ji = argmaxi≤j≤pini

∣∣∣ℓi (yjini)∣∣∣. If∣∣∣ℓi (yjiini)∣∣∣ > 0, add yji to Y and swap the points at positions i and ji in Yini.

Otherwise, if no point has been added in the course of the current step, add yi =

argmaxx∈B |ℓi (x)| to Y .

Step 2: Lagrange approximation update Update

ℓi (x)← ℓi (x)/ℓi
(
yi
)

and

ℓj (x)← lj (x)− ℓj
(
yi
)
ℓi (x) , j = 0, . . . , p, j ̸= i.

Step 3: iteration counter update If i < p, set i to i + 1 and continue with Step 1.

Otherwise, we are done.

This algorithm tries including points of Yini in Y in order of encountering them. Thus, by

changing the order in which points of Yini are encountered, the set Y can be changed too,

which makes it possible to control Y by applying some heuristics. If the algorithm runs out

of points that can be included given the earlier included points, new points are selected that

were not in the set of points given as input to the algorithm.

Now, given a set of Lagrange polynomials for a poised interpolation set, we would like to

control the Λ-poisedness of the set. This can be done by means of the following algorithm:

Algorithm 4.3 (Improving poisedness via Lagrange polynomials ([12])).

Input Let Λ > 1, Y =
{
y0, y1, . . . , yp

}
be a poised interpolation set with |Y | = p1 with

corresponding Lagrange polynomials {ℓ0, ℓ1, . . . , ℓp}. Furthermore, let B ∈ Rn be
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the set of interest.

Output A Λ-poised interpolation set Y with corresponding Lagrange polynomials.

Step 1: estimating poisedness Estimate

Λcur = max
0≤i≤p

max
x∈B
|ℓi (x)|

in such a way that either Λcur > Λ or Λcur ≤ Λ can be guaranteed.

Step 2: improving poisedness If Λcur > Λ, let i be such that maxx∈B |ℓi (x)| > Λ.

Then, replace yi in Y with yi∗ such that
∣∣ℓi (yi∗)∣∣ > Λ, update the Lagrange polyno-

mials (e.g. following Step 2 in Algorithm 4.2) and continue with Step 1.

Otherwise, we are done.

This algorithm updates the interpolation set iteratively by replacing a point if the corre-

sponding Lagrange polynomial takes too large values with a point on which it takes such

value, until the magnitude of the Lagrange polynomials is below the threshold set by Λ.

A priori, it is not clear if we can expect this algorithm to finish in a finite and uniformly

bounded (with respect to the trust region) number of steps, or if it finishes at all. Luckily,

and perhaps surprisingly, the following theorem tells us it does:

Theorem 4.17 (verbatim from [12]). For any given Λ, a closed ball B and a fixed polynomial

basis ϕ, Algorithm 4.3 terminates with a Λ-poised set after at most N = N (Λ, ϕ) iterations,

where N is a constant which depends on Λ and ϕ.

However, another issue arises with this algorithm when it comes to using it as improvement

algorithm, which is that in general no points are guaranteed to be in the output that were

originally in the input – including the base point, y0. Thus, if one was to built an interpolation

or regression model around a certain point y0 as centre of the trust region, y0 has to be present

in the sample set, for which there is no guarantee after running this algorithm. At least one

more point should be then changed to take place of y0, but it is not immediately clear which

point, to not destroy the achieved Λ-poisedness.

An observant reader might notice one more issue with this algorithm as improving al-

gorithm, which is that, even if y0 from the previous paragraph is kept in the new sample

set Ynew, the new smallest ball around y0 in which all points of Ynew fit might be strictly

smaller than the original one: ∆ (Ynew) < ∆(Y ). Then, even though Ynew is Λ-poised on

B
(
y0; ∆ (Y )

)
, we can so far only guarantee that it is fully linear or fully quadratic for base

point y0 and radius ∆ (Ynew). Luckily, again, Lemmata 4.1 and 4.2 solve this issue, as a

model fully linear or quadratic on some ball is without loss of generality also fully linear or

quadratic on a greater ball.

As final remark, as shortly will be mentioned in Section 4.5, estimating if Λ-poisedness

has already been reached could be a time-consuming task, making Step 1 of the algorithm,

and the whole algorithm, quite costly.
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All in all, Algorithm 4.3 might not be the best option for improving the poisedness, and

we consider another algorithm proposed in [10], based on (pivoted) LU-factorisation. In [12],

by the same authors, a more general version with a degree of freedom left as method is

proposed, which will be the main version discussed here, and is as follows:

Algorithm 4.4 (Improving poisedness via LU factorisation ([10] and [12])).

Input Let Yini =
{
y0ini = 0, y1ini, . . . , y

pini
ini

}
be a set of points for which the objective func-

tion has been evaluated and ξ > 0 be a threshold for the pivot values. Furthermore,

let B ∈ Rn be the set of interest.

Output A poised interpolation set Y with
∥∥M (

ϕ̄, Y
)∥∥−1 ≤

√
p1ϵgrowth

ξ with ϵgrowth the

growth factor.

Initialisation Set i = 0 as iteration counter and ui = ϕ̄i for i = 0, . . . , p, with p the

dimension of Pd
n.

Step 1: origin addition Add y1 = y1ini = 0 to Y and continue with Step 3.

Step 2: point selection Choose ji ∈ {i, . . . , pini} such that
∣∣ui (yji)∣∣ ≥ ξ. If such a

point is found, add yji to Y and swap the points at positions i and ji in Yini.

Otherwise, if no point has been added in the course of the current step, add yi =

argmaxx∈B |ℓi (x)| to Y . If
∣∣ui (yi)∣∣ < ξ though, we abort the current algorithm,

and the output is not valid.

Step 3: Gaussian elimination Update for j = i+ 1, . . . , p:

uj (x)← uj (x)−
uj
(
yi
)

ui (yi)
ui (x) .

Step 4: iteration counter update If i < p, set i to i + 1 and continue with Step 2.

Otherwise, we are done.

Should this algorithm be run with Ŷ as input, then, upon success, the output is a poised,

scaled set whose non-scaled version as well is Λ-poised with p1
ϵgrowth

ξ , thanks to Theorem 4.12.

According to [10], should in Step 2 ji be chosen to maximise
∣∣ui (yji)∣∣ as partial pivoting

in Gaussian elimination, the growth factor ‘[is] expected to be of reasonable size for most

practical instances’, such that we can conclude that in practice, this algorithm provides for

a fixed constants Λ sets Y that are Λ-poised (after the mentioned scaling and unscaling

procedure).

The only thing left, is to provide conditions for which Algorithm 4.4 succeeds, e.g. is able

to create a set such that the pivot values are at least of size ξ and does not abort in Step 2.

The lower the threshold value, the higher the likelihood for the threshold to be reached, and

thus the more points to be kept, but also the less well-poised is the resulting set. On the

other hand, we cannot expect the algorithm to succeed when we set ξ to any arbitrary large
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value; we are thus looking for an upper bound for ξ to make the algorithm still succeed.

The following lemma is of great help for this:

Lemma 4.18 ([12]). There exists a number σ∞ > 0 such that for all vectors v with ∥v∥∞ = 1,

there exists a y ∈ B (0; 1) such that
∣∣vTϕ (y)∣∣ ≥ σ∞.

More specifically, according to [12] too, should vT ϕ̄ (x) be a linear polynomial, then the

corresponding value for σ∞ fulfils σ∞ ≤ 1, while it fulfils σ∞ ≤ 1
4 for vT ϕ̄ (x) being a

quadratic polynomial. We can apply this lemma to the algorithm, as we set ui = ϕ̄i at the

beginning for i = 0, . . . , p, and in each iteration i, each polynomial ui is only modified by

adding or subtracting polynomials uj for j = 0, . . . , i− 1 from it, such that the coefficient of

ui (x) corresponding to ϕ̄ (x)i is 1, and we can write ui (x) = vTi ϕ̄ (x) with ∥vi∥∞ ≥ 1. Then,

according to the lemma,
∥∥∥ 1
∥vi∥v

T
i ϕ̄ (x)

∥∥∥ ≥ σ∞ ⇔
∥∥vTi ϕ̄ (x)∥∥ ≥ ∥vi∥σ∞ ≥ σ∞, and by setting

ξ as threshold parameter in Algorithm 4.4 such that ξ ≤ σ∞, we can guarantee the algorithm

to succeed.

Now that we have discussed how to create sets that are Λ-poised, we are interested in

creating strongly Λ-poised sets. For this, we use the motivation of the definition of strongly

Λ-poisedness of a set Y , which we recall as being able to split the set Y into l = ⌊p/q⌋ subset
that are Λ-poised (and another subset of less than q1 points). This leads to the following

algorithm:

Algorithm 4.5 (Improving strongly poisedness ([12])).

Input Let Yini be a set of points for which the objective function has already been eval-

uated, and let either Λ > 1, or ξ > 0. Furthermore, let B ∈ Rn be the set of

interest.

Output Either a strongly Λ-poised set Y , possible with Λ = p1
ϵgrowth

ξ with ϵgrowth > 0

a growth factor expected to be of moderate size for most practical instances when

applying partial pivoting in Gaussian elimination in Algorithm 4.4.

Step 1 If |Yini| < qi, continue with Step 4.

Step 2 Apply either Algorithms 4.2 and 4.3, or Algorithm 4.4 to generate a poised subset

Y i.

Step 3 Remove all points in Y i from Yini, set i to i+ 1 and continue with Step 1.

Step 4 Set Y =
⋃

i Y
i, possible with the remaining points of Yini added.

We note that the number of points in the output set is highly depending on the poisedness

of the input set: should the points be badly poised, then each subset might contain many

newly generated points. One could therefore decide to break the algorithm prematurely, if

one considers the number of points in the output set as sufficient.
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4.5 Minimisation sub-problem

Part of the core idea of a trust-region method is that instead of directly minimising the ob-

jective function, a function with an easier structure, the approximation, is locally minimised

after which the result of this (hopefully) helps us in an iterative process to minimise the ob-

jective function itself. In the previous sections, we have seen the main minimisation methods

directly working on the objective function itself, and examples of the approximation; in this

section, we consider how to minimise those locally.

As seen in Section 4.2, it is not needed to seek the local minimum for this – a baseline

for the quality of the minimiser in terms of decrease is for the first-order trust-region set

by the Cauchy point in Assumption 4.4 and for the second-order trust-region in addition

set by the eigenpoint in Assumption 4.5. More specifically, the Cauchy point or the best

of the Cauchy point and eigenpoint itself can be taken as approximate minimiser while still

fulfilling the assumptions for the convergence statements, with especially the Cauchy point

being relatively easily computable. It has been claimed in though [11, Chp. 6] that such an

approach leads to slow convergence, and thus, we consider in this section more sophisticated

ways of computing a minimiser for which baseline of the Cauchy and eigenpoint is nevertheless

reached, and especially a minimiser of a quadratic polynomial from the form (4.7) for the

models considered in Section 4.3.

Finding extreme values of linear and quadratic polynomials also plays a role in the

poisedness-improving methods, but this time as maximisation problem, which is of equivalent

difficulty. However, other requirements on the minimum increase are imposed this time. The

algorithm improving the Λ-poisedness directly using Lagrange polynomials, Algorithm 4.3,

requires access to a point whose function value exceed Λ, if any, while the algorithm improv-

ing the poisedness using LU-factorisation, Algorithm 4.4, needs to find points resulting in a

function value greater than constant ξ > 0. Luckily, by bounding ξ ≤ σ∞, an explicit formula

for such points can be stated – which can be found in [12, proof of Thm. 6.7] – to fulfil the

requirements at the minimum, and we will not consider explicitly points that need to fulfil

this criterion in the rest of this section.

Now, as stated, we consider a quadratic polynomial

q (x) =
1

2
xTHx+ cTx

that we want to minimise, for ∥x∥ ≤ ∆ (with ∆ > 0 being a constant), where the constant

term of the quadratic polynomial is without loss of generality set to 0. An exact algorithm

for solving such a problem, which is of help for all problem earlier described in this section,

is described in [11, Chp. 7.3]. As stated by them though, the cost of this algorithm is not

insignificant, and we consider methods finding (in general) approximate minimisers.

As one of such alternatives, we consider a method minimising q (x) would the problem

have been unconstrained and would q (x) have been a strictly convex function (thus, would
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H have been positive definite). This method is described as follows:

Algorithm 4.6 (Fletcher–Reeves Conjugate Gradient Method ([11])).

Input Let x0 ∈ Rn be a starting point and q (x) = 1
2x

THx + cTx a strictly convex

quadratic function (that is, with H being positive definite) to be minimised.

Initialisation Set g0 = Hx0 + c, p0 = −g0 and l = 0 as iteration counter.

Output The minimiser x∗ = xl of q (x).

Step 1 If gl = 0, convergence has occurred and we stop.

Step 2 Set

αl = ∥gl∥2/pTl Hpl;

xl+1 = xl + αlpl;

gl+1 = gl + αlHpl;

βl = ∥gl+1∥2/ ∥gl∥2 ;

pl+1 = −gl+1 + βlpl,

set l to l + 1 and continue with Step 1.

As explained in [11], each next xl+1 is the minimiser of a line-search applied along the

direction p (for H being positive definite), with each direction pl being H-conjugate with

each predecessors, such that pTl Hpl′ = 0 for each l′ < l. The conjugate directions are now

chosen in such a way that the they form a nested set of subspaces of increasing dimension such

that H continues to be positive definite in those subspace, such that after l = n iterations, Rn

is spanned and the resulting point is (indeed) a (the) minimiser in Rn of the convex function

q (x).7

However, while the conjugate gradient method helps with finding the minimiser in case of

H being positive definite, we need to consider the case of H being not too, and keep in mind

the constraint ∥x∥ ≤ ∆. In the first case, it is claimed that q (x) for x on the direction pl with

base point xl is unbounded from below, and thus, the point providing the lowest value for q

along that line for ∥x∥ ≤ ∆ is on the boundary. It has been proved that once this boundary

condition is invalidated, we will not return back, and thus, we can then define the following

algorithm as truncated variant of the conjugate gradient method as follows:

7In practice, using floating-point arithmetic, convergence has not necessarily occurred after n steps. One
could modify Algorithm 4.6 to terminate once the gradient is small enough to try to tackle this problem.
Furthermore, H might be preconditioned, as shown in [11], to speed-up the approach of the minimiser of q (x),
with possibly positive effects on the convergence properties in floating-point arithmetic.
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Algorithm 4.7 (Truncated Fletcher–Reeves Conjugate Gradient Method ([11])).

Input Let x0 ∈ Rn be a starting point and q (s) = 1
2s

THs+ cT s a quadratic function to

approximately be minimised for ∥s∥ ≤ ∆.

Initialisation Set s0 = 0, set g0 = Hs0 + c = c, p0 = −g0 and l = 0 as iteration

counter.

Output The approximate minimiser s∗ = sl of q (s).

Step 0: exit step a Compute σl such that ∥sl + σlpl∥ = ∆ (by taking a square root),

and q (sl + σlpl) has the smallest value among the possible (two) options (by simple

comparing the values), set sl+1 = sl + σlpl, set l to l + 1 and stop.

Step 1 If gl = 0, convergence has occurred and we stop.

Step 2 Set κl = pTl Hp
l.

If κl ≤ 0 [and, thus, H has not the properties of a positive definite matrix], continue

with Step 0.

Step 3 Set αl = ∥gl∥2/κl.
If ∥sl + αlpl∥ ≥ ∆ [and we are going to leave the trust-region], continue with Step 0.

Step 4 Set

sl+1 = sl + αlpl;

gl+1 = gl + αlHpl;

βl = ∥gl+1∥2/ ∥gl∥2 ;

pl+1 = −gl+1 + βlpl,

set l to l + 1 and continue with Step 1.

aNote that the algorithm starts with Step 1.

One could easily see that the s1 (or s0, if g0 happened to be 0) is a Cauchy point of the

bounded quadratic model to minimise, and thus, the output point of this algorithm is a

Cauchy point:

Lemma 4.19. Let sk be generated by applying Algorithm 4.7 on mk (x). Then, Assump-

tion 4.4 is fulfilled.

As the truncated conjugate gradient method rather abruptly stops execution once the

minimum of one manifold lies on the boundary (and does not consider the other dimensions),

a natural question is whether the method can be improved, as otherwise, the resulting point

is only slightly better than a Cauchy point. In [11], a more complicated method is explained

tries to tackle this problem under the name of the Lanczos approach. In [11][Chp. 7.5.5], a

connection to the computation with the eigenpoint is also made.

67



4.6 Summary

In Section 4.1, the framework of fully linear and fully quadratic classes have been shown,

taking over the role of Taylor models in the regular trust-region method. Based on this,

the derivative-free version has then been stated in Section 4.2 in two variants: for first-order

convergence or second-order convergence, with stronger convergence properties for the latter,

but requiring also mode from the model.

In Section 4.3 we have seen polynomial linear or quadratic interpolation models, that are

possibly overdetermined or underdetermined, with different theorems providing bounds on

the error between the model and the objective, and their gradient or Hessian, if applicable.

By enforcing the sample set of points to base the interpolation one to be well-poised, the

error bounds depend apart from a constant only on the trust-region size, and those models

form a fully linear or fully quadratic model.

What is left for being able to create a fully linear or fully quadratic class based on those

interpolation models, is the ability to obtain a model in a bounded number of steps, which

in this case translates to the ability to obtain a well-poised set of sample points. With the

preference to keep as many points as possible to restrict the number of evaluations, algorithms

for this are presented in Section 4.4.
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Chapter 5

Discrete Gradient Method

After having seen the trust-region method, being explicitly designed for continuously differ-

entiable functions, and the Nelder–Mead method, with a simple intuition, the method in this

chapter has been designed to work for (a subset of) non-differentiable functions.

The discrete gradient method, as first described in [2], has been inspired by the concept

of the subdifferential, which provides for a non-stationary point a descent direction. By

getting with accurately sufficient accuracy such points too by calculating the so-called discrete

gradient, this method is also able to find descent directions and find stationary points.

In this chapter, we review the discrete gradient method and its convergence properties. To

study this, different properties of functions are described, to classify the functions convergence

takes place for. Furthermore, we study the sub-problem of this method, for which we want

to find the point in a polytope nearest to the origin, and we provide an improved version of

an algorithm known from the literature.

5.1 Idea and background

The goal of the iterative discrete gradient method for non-differentiable functions is to approx-

imate with different precision the subdifferential at the current iteration point well enough to

either obtain a descent direction to create the next iteration point, or to conclude that a local

minimum is reached at the current iteration point, for the current precision. Depending on

how satisfied we are with the current precision, we either increase the precision, or we return

from the method. One of the properties the objective functions is assumed to have is the

property of Lipschitz continuity. Functions with this property are almost everywhere differ-

entiable and Theorem 2.11 provides for such functions a way to compute the subdifferential

at some iteration point as convex hull of the limit of the gradient of the points converging to

this iteration point.

In this setting, we will approximate those gradients with the so-called discrete gradient.

In the definition of the discrete gradient, we write G for the set of all vertices of a hypercube,
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as

G :=

{[
e0 · · · en−1

]T
∈ Rn : ∀j = 0, . . . , n− 1, |ej | = 1

}
.

The definition of the discrete gradient is then as follows:

Definition 5.1 ([2]). Let f : Rn → R and x ∈ Rn. A discrete gradient of f at x is defined as

the vector Γi (x, d, e, λ, α) =
[
Γi
0 · · · Γi

n−1

]T
for d ∈ Sn−1, i = argmaxj ∥dj∥, e ∈ G, λ > 0

and α ∈ (0, 1] with its components being defined by

Γi
j :=


(
λαjej

)−1
(f (xj)− f (xj−1)) , j ̸= i

(λdi)
−1
(
f (x+ λd)− f (x)− λ

∑n−1
j=0,j ̸=i Γ

i
jdj

)
, otherwise

(5.1)

for the points x0 := x+ λd and xj = x0 + λ
[
αe1 α2e2 · · · αjej 0 . . . 0

]T
∈ Rn.

In line with our motivation of defining the discrete gradient for non-differentiable func-

tions, the definition of Γi
i has been chosen by [2] in such a way that its norm is bounded by a

constant determined by the objective function, and that its inner product with d makes the

following expression to hold:

f (x+ λd)− f (x) = λΓi (x, d, e, λ, α)T d. (5.2)

We can compare the role of the discrete gradient in the similar formula from the Mean-Value

Theorem, for an expression for the gradient at a point between x and x + λd, for some

κ ∈ [0, 1]:

f (x+ λd)− f (x) = λ∇f (x+ κλd)T d. (5.3)

Example 5.1. Let f : R2 → R, (x, y) 7→ x2 + y2, x = (0, 0), λ = 1/2 and d =(
1/2,
√
3/2
)
. With these parameters, we compute a discrete gradient of f at x, and

compare the value with the regular gradient of f at some point, to compare (5.2) and

(5.3) directly.

As additional parameters as needed for the computation of the discrete gradient, we

take in this example i = 2, e = (1, 1) and α = 0.5. The points to evaluate f on, besides

x itself, are given by the following points in the surrounding of x:

x0 = x+ λd =
(
1/4,
√
3/4
)

x1 = x0 + λ (αe1, 0) =
(
1/2,
√
3/4
)

x2 = x0 + λ
(
αe1, α

2e2
)
=
(
1/2, 1/8 +

√
3/4
)

Filling in (5.1) for this results in a vector Γi (x, d, e, λ, α) such that Γi (x, d, e, λ, α)T d =
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0.875. The gradient of f is given by ∇f (x, y) =
[
2x 4y

]T
, such that, for the point

x+ κλd with κ = 1/4, λ∇f (x+ κλd)T d = 0.875 holds as well.

With this, the idea is to let λ in the definition of the discrete gradient represent the

precision we query the discrete gradient for, with the precision being given by a sequence

(λk)k∈Z of positive numbers converging to zero. This way, by calculating discrete gradient

vectors at x in randomly-chosen directions for those values λk, we strive for getting a better

approximation of the subdifferential ∂f (x) at x. However, to get a meaningful approxima-

tion following this motivation, we need to impose more restrictions on the behaviour of the

function; the function has to be semi-smooth:

Definition 5.2 ([22]). Let f : Rn → R and x ∈ Rn. Then, f is called semi-smooth at x if

� f is locally Lipschitz continuous at x, and

� for all directions d ∈ Rn, for all sequences (λk)k∈Z of positive numbers with λk → 0+ and

all sequences (θk)k∈Z and (xk)k∈Z of vectors with θk/λk → 0 and gk ∈ ∂f (x+ λkd+ θk),

the sequence
(
gTk d

)
k∈Z has exactly one accumulation point.

Lemma 5.1. Let f : Rn → R be a semi-smooth function at x ∈ Rn. Then, for each d ∈ Rn,

f ′ (x; d) exists and for a sequence (gk)k∈Z fulfilling the properties from Definition 5.2,

f ′ (x; d) = lim
k→∞

gTk d. (5.4)

Thus, for a non-differentiable function that is semi-smooth at some point x, the subgradient

vectors the closer to x should nevertheless behave in a regular way. More specific, contin-

uously differentiable functions are always semi-smooth. This way, for the discrete gradient

method, our goal is to expect the approximations of the subdifferential to have a meaningful

interpretation. An example of two functions having otherwise two different properties on this

matter can be found in Figure 5.1.

We can relate (5.4) with a formula known from the derivative setting, as we have by

Theorem 2.1 for f a differentiable function at x ∈ Rn, for all d ∈ Rn,

f ′ (x; d) = ∇f (x)T d.

Lastly, as property to have for the functions to apply the discrete gradient method on,

we recall a (natural) generalisation of the subdifferential, based on (2.9):

Definition 5.3 ([13]). Let f : Rn → R. Then is f called quasidifferentiable at x ∈ Rn if it is

directionally differentiable and there exists a pair of convex and compact sets ∂f (x) , ∂f (x) ⊆
Rn such that it holds that

f ′ (x; d) = max
{
ξTd : ξ ∈ ∂f (x)

}
+min

{
ξTd : ξ ∈ ∂f (x)

}
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Figure 5.1: Two different functions, found in [21], to illustrate the independence of differen-
tiability and semi-smoothness with the extreme cases; the one on the left is non-differentiable,
but semi-smooth, while the one on the right is differentiable, but not semi-smooth.

for every d ∈ Rn.

The pair
(
∂f (x) , ∂f (x)

)
is then called a quasidifferential, with ∂f (x) the subdifferential

and ∂f (x) the superdifferential.

As generalisation, to be used for the discrete gradient method on non-differentiable functions,

it has been shown in [13] that continuously differentiable functions are quasidifferentiable and

quasidifferentiable functions form a linear space that is also closed under the point-wise min

and max functions.

All in all, we consider functions for which the following assumption holds:

Assumption 5.1. Assume that f : Rn → R is a semi-smooth, quasidifferential function

whose subdifferential and superdifferential of a quasidifferentiable function for any x ∈ R are

polytopes.

Assume furthermore, that for the expression1 for λ > 0 and d ∈ Rn

f (x+ λd)− f (x) = λf ′ (x; d) + o (λ, d) ,

it holds that λ−1o (λ, d) converges uniformly to 0 for λ→ 0.

With the needed classification of functions – which according to [4] includes differentiable,

non-smooth convex and non-smooth DC functions – we can state the theorem relating the

discrete gradients with the subdifferential of a Lipschitz function by looking at the convex

set of some discrete gradients, given in the set

D0 (x, λ, α) = cl conv
{
Γi (x, d, e, λ, α) ∈ Rn : g ∈ Sn−1, e ∈ G

}
. (5.5)

1From the definition of the directional derivative, (2.1).
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Concluding this section, we present the main theorem, which can be considered the equivalent

of Theorem 2.11, but easier applicable:

Theorem 5.2 ([2]). Consider a function f : Rn → R for which Assumption 5.1 holds.

Then, for any ϵ > 0, there exist λ0 > 0 and α0 > 0 such that

D0 (x, λ, α) ⊂ ∂f (x)⊕B (0; ϵ) for any λ ∈ (0, λ0] , α ∈ (0, α0] .

Furthermore, we are able to extract a descent direction from the set D0 (x, λ, α), equivalent

to Lemma 2.17:

Lemma 5.3 ([2]). Let f : Rn → R. Then, there exist λ0 > 0 and α0 > 0 such that either

0 ∈ ∂f (x) or −ξ∗/∥ξ∗∥ is a descent direction, where ξ∗ = argminξ∈∂f(x) ∥ξ∥.

5.2 Method description and convergence properties

In the previous section, a sketch of the discrete gradient method has been given, with different

classifications of functions on which those ideas could be applied. With this motivation and

the last two results, a more precise description of the discrete gradient method is given by

the following:

Algorithm 5.1 (Discrete Gradient Method ([2])).

Input Let f : Rn → R be the function to be minimised and x0 ∈ Rn a starting point.

Furthermore, we require the following constants as parameters of the method:

� α ∈ (0, 1]: controlling the factor of the step size in calculating the discrete

gradient;

� c ∈ (0, 1) and c2 ∈ (0, c]: controlling the required decrease for a serious step

to take place and to search in a discrete descent direction;

� (dk)k∈Z with dk > 0 and limk→∞ dk = 0 and (λk)k∈Z with λk > 0 and

limk→∞ λk = 0: controlling the threshold for an inner iteration to be finished

and the step size respectively.

Output A sequence of iteration point (xk)k∈N.

Initialisation Set k = 0.

Step 1 (inner iteration initialisation) Set l = 0, xkl = xk and choose d′k ∈ Sn−1

and e′k ∈ G. Choose i = argmaxj=1,...,n |gj | and compute the discrete gradient

vkl = Γ (xkl , d
′
k, e

′
k, λk, α) at xkl.
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Step 2 (inner iteration termination) Compute

v̄kl = argminv∈V̄ (xkl)
∥v∥ .

If ∥v̄kl∥ ≤ δk, set xk+1 = xkl, set k to k + 1 and continue with Step 1 in a new

outer iteration.

Step 3 (inner iteration classification) Compute

dkl = −
v̄kl
∥v̄kl∥

.

If

f (xkl)− f (xkl + λkdkl) ≥ cλk ∥v̄kl∥ , (5.6)

the decrease is sufficient for a serious step to be taken as next step, and we continue

with Step 4. Otherwise, a null step is taken, and we continue with Step 5.

Step 4 (serious step) Apply a line search starting at xkl in the direction of dkl with

parameter tkl > 0 such that for xkl+1
:= xkl + tkldkl, it holds

a that

f (xkl)− f
(
xkl+1

)
≥ c2tkl ∥vkl∥ . (5.7)

Choose d′kl ∈ Sn−1 and e′kl ∈ G and compute the discrete gradient for the next

iteration as

vkl+1
= Γ

(
xkl , d

′
kl
, e′kl , λk, α

)
,

which will be the only element of the set of computed discrete gradients for the new

inner iteration point so far: V̄
(
xkl+1

)
=
{
vkl+1

}
.

Set l to l + 1 and continue with Step 2.

Step 5 (null step) Keep the current iteration point: xkl+1
= xkl and compute the dis-

crete gradient for the next iteration in the new direction as

vkl+1
= Γ (xkl , dkl , e, λk, α) ,

which will be added to the set of discrete gradients for the current inner iteration

point:

V̄
(
xkl+1

)
= conv

(
V̄ (xkl) ∪

{
vkl+1

})
.

Set l to l + 1 and continue with Step 2.

aThis line search allows faster convergence, by allowing a wider exploration of a descent direction. For
theoretical convergence, tkl = λk suffices though.

A visualisation of the change of iteration points through the parameter space can be found

in Figure 5.2 for a 2-dimensional function.
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Figure 5.2: Base points and discrete gradient iteration points evaluated over the course of
the FDSS method using Implementation A.3 of the so-called Rosenbrock function (x, y) 7→
100

(
y − x2

)2
+ (1− x)2 as found in [30] with starting point (−1.2, 1). The red points mark

the iteration points, with the green points those on which the discrete gradient is evaluated.

Two different approaches for the line search in Step 3 are reported. In [2] and [4], it has

been suggested to seek the biggest value mkl ∈ N such that for tkl = mklλk, (5.7) holds, with

an algorithm incrementing mkl and checking this condition for each increment. Thus, in the

direction of dkl from point xkl , given a point of sufficient decrease in function value, a line

search is executed for a point in the same direction that is farther away, but might provide

a slightly less decrease than the original point. The goal here is thus to rather seek the step

with the longest step size that still fulfils the decrease condition, at the cost of potentially

many function evaluations as the step size is each time increased with the same amount.

An alternative was used in the implementation that accompanies [3, Chp. 17]. Here, we

seek the smallest value pkl ∈ N such that for tkl = v̄kl/2
pkl , (5.7) holds, or tkl < λkl , in which

case tkl is set to λkl . Compared to the first approach, instead evaluating increasingly farther

away points, points becoming closer to iteration point are evaluated starting from a point at

some distance, v̄kl , until we are closer than the already-found descent point since (5.6) holds.

With this, this approach has the advantage of the number of steps being more regular.
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A convergence theorem for the discrete gradient method is then the following:

Theorem 5.4 ([2]). Consider a function f : Rn → R for which Assumptions 5.1 and 4.6

hold. Let (xk)k∈N be a sequence of iteration points resulting from applying Algorithm 5.1 on

f .

Then, for every accumulation point x̂ of that sequence (xk)k∈N, it holds that 0 ∈ ∂f (x̂).

As termination criterion for practical usage, it has been suggested in[4] to terminate at

iteration k once both λk and δk are smaller than some threshold η > 0. A rationale for this

can be found by considering Theorem 5.2. The smaller the value of λk, the smaller the value

ϵ – measuring the uncertainty in our approximation of the subdifferential at some point –

can take in this theorem. The smaller δk, the smaller the norm of a minimum-norm vector in

this subdifferential approximation, and with 0 indicating a stationary point, the greater the

chance of having found a stationary point.

5.3 Nearest point in a polytope

An important part of the discrete gradient method – found in Step 2 in the version shown

in Algorithm 5.1 – is the retrieval of a point inside a polytope that is nearest to the origin,

for which we will review in this sub-section an algorithm first described in [40]. Here, an

algorithm specifically designed for the problem of finding this minimum-norm vector of a

convex set was presented, as opposed to solving this with a description of the problem as

input for some generic (quadratic programming) solver.

The idea behind the algorithm is that while finding a point nearest to the origin in a

convex hull is difficult, finding such point in an affine hull can be done more easily, and that

checking the optimality of such point as solution of the original problem can also easily be

checked. The algorithm below, as geometrical variant found in [40], is moving points in and

out in the set in some structured until the correct points for the affine hull are chosen:

Algorithm 5.2 (Wolfe’s method for finding that point in a polytope nearest to the

origin (geometrical) ([40])).

Input Let P ⊂ Rn be a set of finite points.

Output The point in convP nearest to the origin.

Initialisation Leta Q ⊂ P and X ∈ convQ.

Step 1 If X = 0 or the hyperplane
{
x ∈ Rn : XTx = XTX

}
separates P from the origin,

return with X.

Otherwise, a point in P on the side of the origin is added to Q.

Step 2 Let Y the point in aff Q nearest to the origin.

If Y ∈ ri convQ, replace X by Y and continue with Step 1.
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(a) P = {P1 = (1, 2) , P2 = (3, 1) , P3 = (−4, 0)}
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(b) P = {P1 = (1, 2) , P2 = (3, 0) , P3 = (−4, 0)}

Figure 5.3: Application of Wolfe’s method for finding the nearest point in a polytope on two
two-dimensional point sets, P . In both cases, P1 is first considered, as point nearest to the
origin. Not being a solution for the problem, P3 is considered, with the nearest point in the
convex hull of P1 and P3 being R. Then, not being the result either, P2 is considered, whose
affine hull spans the whole space, and thus the origin being the point in the affine hull of P .
In one case, this point is also in the convex hull, while in the other case, we get S as point in
the convex hull on the line between 0 and R. With S lying on the line segment between P3

and P2, we seek the point nearest to the origin here, as T , for our solution in the other case.

Step 3 Otherwise, if Y ̸∈ ri convQ, let Z be the nearest point to Y on the line segment

XY through convQ.

Since X is in convQ and Z not, Z lies on the boundary of convQ and a point

in Q is not on the face of convQ. Delete from Q this point, replace X by Z and

continue with Step 2.

aA possible choice of Q in the initialisation phase would be a singleton containing the nearest point
to the origin of P .

Two examples of application of this method can be found in Figure 5.3.

A proof of correctness of this algorithm can be found in [40], where it is shown that the

algorithm visits only a finite number of combinations of points in Q, and thus terminates in

finite time. In [19], it has then been shown that with some specific insertion rule, the method

can take exponential time.

Based on this geometric interpretation, an algebraic method too was proposed in [40],

which would be suitable for implementation in common programming patterns by a direct

translation of the geometric steps. Exactly with the aim of an implementation, the version as

stated there has got several safeguards that allow imprecision in finite-precision arithmetic, by

allowing a wider range to pass through conditional statements. For the purpose of analysis, in

the description below, those safeguards are left out, but are instead present in the MATLAB

implementation from Implementation A.2.

The (exact) algebraic version of Algorithm 5.2 is given below. The sub-problem of this

method, of finding the minimum-norm vector in an affine hull, is solved by solving the (easy)

problem for the initial data, keeping data structures needed for solving this and updating

those when points are moved in and out the current point set. Four different methods for

doing this have been described in [40], of which ‘method D’ from Section 5 has been used in
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MATLAB implementation in Implementation A.2.

Algorithm 5.3 (Wolfe’s method for finding that point in a polytope nearest to the

origin (algebraic) ([40] in exact version with modification on calculation of θ))).

Input Let P ⊂ Rn be a set of m finite points.

Output The point in convP nearest to the origin

Initialisationa Let J0 = argminj∈{0,...,m}
∥∥P j

∥∥.
Set w0 =

[
1
]T

and S0 =
[
J
]T

and X0 = P J0. Set m0 = 1 and k = 0.

Step 1 Let Jk+1 = argminj∈{0,...,m−1}X
T
k P

j.

If XT
k P

J
k+1 > XT

k Xk, return with Xk.

Otherwise, we add the Jth point of P to our current set of points to take into

account by setting wk0 =
[
w0
k . . . w0

mk
0
]T

and Sk0 =
[
S0
k . . . S0

mk
Jk+1

]T
.

Set mk0 = mk + 1 and set l to l + 1.

Step 2 We define the matrix P (Sk) as the matrix P where every ith column corresponds

to the Si
kth vector from P , thus P (Sk) :=

[
PS0

k . . . PS
mk−1

k

]
.

Then, solve for (λ, v)kl with λkl ∈ R and vkl ∈ Rmkl


mkl

−1∑
i=0

vikl = 1;

λkl1+ P (Skl)
T
P (Skl)vkl = 0.

(5.8)

If, for all i ∈ {0,mkl − 1}, vikl > 0, set wk+1 = vkl and Sk+1 = Skl, set k to k + 1,

set Xk = P (Sk)wk and continue with Step 1.

Step 3 Let

θkl := max
i∈{0,...,mkl

−1},
wi

kl
−vikl

>0

vikl/
(
vikl − w

i
kl

)
. (5.9)

and set zkl+1
= θwkl + (1− θ) vkl.

Then, let jkl ∈ {0, . . . ,mkl − 1} such that w
jkl
kl

= 0, and remove the jklth com-

ponent from zkl and Skl for weights and points to apply the weights on in the

next sub-iteration: wkl+1
=
[
w0
kl

. . . w
jkl−1

kl
w

jkl+1

kl
. . . w

mkl
kl

]T
and Skl+1

=[
S0
kl

. . . S
jkl−1

kl
S
jkl+1

kl
. . . S

mkl
kl

]T
. Decrement mkl by one, set l to l + 1 and

continue with Step 2.

aHere we used the choice as mentioned in Footnote a in Algorithm 5.2.

Compared to the original method as described in Section 4 of [40] though, the calculation

of θkl with (5.9) in Algorithm 5.3 differs to match the geometric variant of the same algorithm.
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In [40], θkl is calculated with the value

min
{
1, min

i∈{0,...,mkl
−1},

wi
kl
−vikl

>0

wi
kl
/
(
wi
kl
− vikl

)}
. (5.10)

The following example shows us how using this original formula (5.10) not only results in

an algorithm whose interpretation does not match the geometrical interpretation, but even

results in never-ending execution:

Example 5.2. Let P = {P1 = (1, 2) , P2 = (3, 0) , P3 = (−4, 0)}, a set of m = 3 points

in R2, which we will now treat individually as vectors in R2. We wish to compute

the minimum norm vector in convP , and use Algorithm 5.3 for this. We consider two

versions of this algorithm: one by using the version as exactly stated here, and one by

using (5.10) in place for (5.9), as done in [40]. A visualisation of this problem can be

found in Figure 5.3b.

In the initialisation phase, we calculate J0 = 1, since the norm of the first point,
√
5,

is strictly smaller than the norm of the other points, namely 3 and 4. Thus, we set

w0 =
[
1
]T

and S0 =
[
1
]
, with m0 = 1. Our starting point is X0 =

[
1 2

]T
.

Then, in Step 1, we calculate J1 = 3, corresponding to the value of j resulting in

the smallest value for XT
1 P

j – compare
[
2 0

] [1 3 −4
2 0 0

]
=
[
5 3 −4

]
. From this

calculation, we can directly derive that X0 is not the minimum norm vector according

to our stopping condition, and we continue with Step 2 with w10 =
[
1 0

]T
and

S10 =
[
1 3

]T
.

In Step 2, we look for the minimum norm vector in the affine hull of
{
P 1, P 3

}
,

e.g. a point v10 that fulfils (5.8). A calculation reveals that this holds for

(λ, v)10 =

(
64/29,

[
20/29 9/29

]T)
, and since this point v10 is in the relative in-

terior of the convex hull of
{
P 1, P 3

}
, we continue with Step 1 in iteration k = 1, with

w1 =
[
20/29 9/29

]T
and S1 =

[
1 3

]T
.

Then, the termination criterion is still not fulfilled, and with J2 = 2 is Step 2 entered,

with w10 =
[
20/29 9/29 0

]T
and S10 =

[
1 3 2

]
. The minimiser in the affine

hull of P is this time calculated, resulting in v10 =
[
0 3/7 4/7

]
– for the origin as

resulting point when taking v10 as weights over P using S10 as guide for which point

corresponds to which point.

However, since the first component of v10 is zero, v10 is not in the relative interior

of the convex hull represented by P , and Step 3 is entered, with computation of θ10 .

Computation using (5.9) results in a value of 0, such that w11 = v10 , and with the

removal of the first zero component, the minimum norm vector in Step 2 in the affine
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hull of
{
P 2, P 3

}
is computed, for v11 =

[
3/7 4/7

]
. This lies within the relative

interior of the convex hull of
{
P 2, P 3

}
, and corresponding to the point X2 = 0. Clearly

this point is the minimum norm vector, and we return with this point.

However, should we have computed θ10 using the original formula from [40] with (5.10),

then we would have gotten θ = 1 instead, resulting in z11 = w10 , or simply no change

in our current point. With the zero component in z11 corresponding to the weight of

the most recently added point, we enter Step 2 with the same parameters as we did

the first time this step was entered – termination never occurs.

The reason for failing with the choice of value for θkl from [40] is that it in general not

results in the nearest point to Y on XY , using the terminology from the geometrical variant.

For a derivation of the value of θkl for which this is done, we are looking instead for a minimal

value for 0 ≤ θ ≤ 1 such that for all i, 0 ≤ θwi + (1− θ) vi ≤ 1 holds, and the resulting point

is a convex combination of points. Since∑
i

θwi + (1− θ) vi = θ
∑
i

wi + (1− θ)
∑
i

vi = θ + 1− θ = 1,

the requirement of θwi + (1− θ) vi ≥ 0 is clearly enough for implying θw1 + (1− θ) vi ≤ 1

too, and we will only show for which values of θ the first requirement explicitly holds.

Rewriting this requirement to

0 ≤ θwi + (1− θ) vi ⇔

0 ≤ vi + θ (wi − vi)⇔

−vi ≤ θ (wi − vi)⇔

vi ≥ θ (vi − wi) ,

we consider the three different possibilities of the values of vi and wi compared to each

other. If vi − wi = 0, then the requirement is clearly fulfilled for all values of θ. Now,

assume vi − wi > 0 instead. Then, vi/(vi − wi) ≥ θ is a requirement. We have already

vi ≥ vi − wi ⇔ vi/(vi − wi) ≥ 1, such that the requirement is fulfilled for θ ≤ 1, and thus no

additional restrictions on θ ∈ [0, 1] are imposed. Otherwise, for vi − wi < 0, the requirement

is vi/(vi − wi) ≤ θ, or, in different terms, max {vi/(vi − wi) : vi − wi < 0⇔ wi − vi > 0} ≤ θ.
However, also here vi ≥ vi − wi ⇔ vi/(vi − wi) ≤ 1 holds.

As assumption for calculating θ at all, there is an j such that vj < 0. Thus,

since wi ≥ 0 for all i, wj − vj > 0 and vj/(vj − wj) ≥ 0, from which it follows that

max {vi/(vi − wi) : wi − vi > 0} ≥ 0.

All in all, choosing θ = max {vi/(vi − wi) : wi − vi > 0} ∈ [0, 1] fulfils the requirements

and is clearly the minimum value for which the requirements are fulfilled.
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Chapter 6

Numerical Experiments

In the previous chapters, three derivative-free optimisation methods for unconstrained opti-

misation have been described: the Nelder–Mead method, the trust-region method and the

discrete gradient method. In this chapter, we describe the results of performing experiments

on these different methods and between variants of the same method. For the experiments,

the methods are applied on several problems with in their description an objective func-

tion and starting point; these problems either originate from real-world applications, or are

specifically constructed for method comparison (‘academically’).

We first compare different variants of methods inspired by the Nelder–Mead method

and then make a broader comparison between different methods by applying them on twice

continuously differentiable objective functions. Lastly, we consider functions that are not

differentiable, to motivate the discrete gradient method.

6.1 Nelder–Mead method variants

In the case of Nelder–Mead inspired methods, we have two substantially differing methods:

the original method, Algorithm 3.1, from [16] and the FDSS methods with proven convergence

for a broad class of functions, Algorithm 3.2, from [38]. As methods, there is some freedom

left for implementations to choose specific behaviour, allowing more variants that are all

in the spirit of the method by Nelder and Mead. The Nelder–Mead method in mostly its

original form is implemented in the industrially-proven MATLAB software as the fminsearch

function according to [36], with the explicit acknowledgement in [37] that ‘[the] algorithm is

not guaranteed to converge to a local minimum’, despite the FDSS method in the same spirit

having such guarantee. In this sub-section, we compare the different algorithms based on the

Nelder–Mead method and discuss advantages of some over others.

Obtaining the initial simplex in the fminsearch implementation is done by providing

a single point y0 ∈ Rn, and constructing different points y1, y2, . . . , yn by letting yi be y0

with the ith component multiplied by 1.05, or the ith component set to 0.00025 if the ith
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component turned out to be zero. Thus, the initial simplex consist of n + 1 points where

n points differ in a single dimension from the starting point. In [38], it has been suggested

to construct the initial simplex in such a way that is similar, but by adding 1 to the ith

component of yi instead.

Another degree is freedom has to do with the expansion point. In the Nelder–Mead

method as described in [16] and as implemented in the MATLAB function fminsearch, the

reflection point is accepted if the resulting function value is comparable to the other points

that are not the best or the worst, while if the reflection point was better, the expansion

point is computed, and the better of those two points is calculated. In the version described

in [38] though, it can be chosen to always compute the expansion point to be more in line

with the original method as described by Nelder and Mead themselves in [24]. The expansion

point was there accepted if it provides enough decrease compared to the current best point,

independent of the decrease of the reflection point. The FDSS method in [38] leaves enough

freedom to match the behaviour in [16] though, to not always compute the expansion point.

Lastly, different termination criteria can be chosen, as discussed in Section 3.4, where we

use the natural choice of a stopping criterion for the mode radical FDSS method.

With these options to choose from, we consider three different algorithm inspired by

the Nelder–Mead method: the MATLAB fminsearch implementation based on the method

described in [16], an implementation of the FDSS method with the above options aligned

with fminsearch and the more radical version where those options are not aligned with

fminsearch. Both latter implementations are together attached in Implementation A.1.

Those three algorithms are then tested on a sample of unconstrained problems described in

the CUTEst test set, [5], which describe an objective function to minimise and a (in this

unconstrained case trivially) feasible initial solution to start the minimisation process with.

We first compare the fminsearch variant with the FDSS variant with degrees of freedom

aligned up with the fminsearch variant on 15 different problems, for which the results are

shown in Table 6.1. For this randomly-chosen set of 15 problems, we can see that both meth-

ods terminate after the same number of function evaluations with the same objective function

value for lower-dimensional problems. For higher-dimensional problems, the FDSS variant

performs notably worse than fminsearch in terms of the final function value; even with the

latter restricted to the same number of function evaluations as the first, the FDSS method

provides for the higher-dimensional problems a worse function value than fminsearch does,

with the GROWHTLS on the intersection between lower-dimensional and higher-dimensional

problems as exception, where FDSS ends up with a better function value.

We now compare fminsearch with the other FDSS method which is less aligned with

choices made for the fminsearch implementation on the same problem set as for our pre-

vious comparison, with the results of the current comparison shown in Table 6.2. In case

both methods finish successfully, for the lower-dimensional problems, it varies which method,

fminsearch or the more radical FDSS, is better in terms of function value and number of
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problem (n)
fminsearch

FDSS
(fminsearch-style)

fminsearch

(eval. limited to FDSS)

f∗ eval. f∗ eval. f∗ eval.

PARKCH (15) 1.7648 · 103 4653 2.1157 · 103 384 2.0996 · 103 384
STRATEC (10) 2.3246 · 103 1296 2.7060 · 103 282 2.4028 · 103 282
COOLHANSLS (9) 0.0638 583 8.9812 · 105 325 454.4300 325
BIGGS6 (6) 0.0057 803 0.2927 225 0.2614 225
HIMMELBF (4) 318.5717 459 1.6543 · 103 165 359.1637 165
BROWNDEN (4) 8.5822 · 104 333 8.5822 · 104 322 8.5822 · 104 323
GROWTHLS (3) 1.2189 306 1.2120 270 1.2190 271
BARD (3) 0.0082 226 0.0082 226 ” ”
ENGVAL2 (3) 8.8115 · 10−10 279 8.8115 · 10−10 279 ” ”
HELIX (3) 3.5759 · 10−4 142 3.5759 · 10−4 142 ” ”
CUBE (2) 2.5263 · 10−10 166 2.5263 · 10−10 166 ” ”
CLUSTERLS (2) 6.8693 · 10−12 117 6.8693 · 10−12 117 ” ”
BRKMCC (2) 0.1690 76 0.1690 76 ” ”
ZANGWIL2 (2) −18.2000 67 −18.2000 67 ” ”
CLIFF (2) 0.2007 54 0.2007 54 ” ”

Table 6.1: Application of the fminsearch implementation of the Nelder–Mead method and
an implementation of FDSS (from Implementation A.1) aligned with fminsearch on 15
functions from the CUTEst data set ([5]). Reported for both implementations is the optimal
solution found after default termination and the number of function evaluations it took for
this solution to find; furthermore, the optimal solution found by fminsearch by restricting
the number of evaluation to match that with FDSS is reported too.

evaluations. However, for the same problems as where the fminsearch-like FDSS provided

worse results than fminsearch, the more radical version of FDSS doesn’t provide better

results either.

This time though, the method explicitly fails before successfully terminating, as the lim-

ited working precision of the device (using double-precision IEEE Standard 754 numbers)

results in basic assumptions not holding anymore that prevent the algorithm from continuing

in a proper way. One mode of failure is that of the normalised volume changing under a

shrink step, when it should be unchanged. With the shrink step being a ‘last resort’ step

that should always result in a valid configuration, the normalised volume can in that case

become after a shrink step be under the threshold, which directly affects further steps taken,

and could result in only shrink steps being taken if the normalised volume cannot be enough

increased directly by other steps. Another mode of failure is when the affect of α (∆kl) in

(3.8) or (3.10) is too small, e.g. if f
(
y
mkl

−1

kl

)
− α (∆kl) = f

(
y
mkl

−1

kl

)
, while α (∆kl) > 0

should hold. A point that has been thought to provide sufficient decrease is then accepted

when it not necessarily does provide sufficient decrease, which can result in the same points

being brought in time after time and the method getting stuck in an infinite loop.

For both variants of FDSS, we can conclude that for higher-dimensional problems, FDSS
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problem (n)

fminsearch
FDSS

(radical)

fminsearch

(eval. limited to FDSS)

f∗ eval. f∗ eval. f∗ eval.

PARKCH (15) 1.7648 · 103 4653 2.0810 · 103 1005* 2.0837 · 103 1005

STRATEC (10) 2.3246 · 103 1296 2.5853 · 103 699* 2.3502 · 103 700

COOLHANSLS (9) 0.0638 583 0.3493 803* - -

BIGGS6 (6) 0.0057 803 0.2614 491* 0.0573 491

HIMMELBF (4) 318.5717 459 1.3798 · 103 345* 318.5717 345

BROWNDEN (4) 8.5822 · 104 333 8.5822 · 104 393 - -

GROWTHLS (3) 1.2189 306 12.8952 448� - -

BARD (3) 0.0082 226 0.0082 166 0.0082 167

ENGVAL2 (3) 8.8115 · 10−10 279 1.9819 · 10−8 164 4.3897 164

HELIX (3) 3.5759 · 10−4 142 1.4109 · 10−7 142 ” ”

CUBE (2) 2.5263 · 10−10 166 1.2698 · 10−8 157 3.4292 · 10−9 158

CLUSTERLS (2) 6.8693 · 10−12 117 1.6480 · 10−10 63 0.0013 64

BRKMCC (2) 0.1690 76 0.1690 57 0.1690 58

ZANGWIL2 (2) −18.2000 67 −18.2000 53 −18.2000 54

CLIFF (2) 0.2007 54 0.1998 107 - -

* Termination because of the normalised volume.
� Termination because of the fortified-descent criterion vanishing.

Table 6.2: Application of the fminsearch implementation of the Nelder–Mead method and
an implementation of FDSS (from Implementation A.1) not aligned with fminsearch on 15
functions from the CUTEst data set ([5]). Reported for both implementations is the optimal
solution found after default termination and the number of function evaluations it took for
this solution to find; furthermore, the optimal solution found by fminsearch by restricting
the number of evaluation to match that with FDSS is reported too, if applicable.

performs worse than fminsearch, while for smaller-dimensional problems, it differs, with

fminsearch not providing substantially worse results than FDSS in those cases they are not

the same. Thus, although the FDSS has theoretical convergence, the more classical Nelder–

Mead method through fminsearch provides better results for a randomly-chosen set of twice

continuously differentiable functions and is less affected by practical limitations on number

precision, which motivates the less widespread usage of FDSS over the more classical Nelder–

Mead method, and the motivation for the MATLAB software having implemented only the

original Nelder–Mead method.

6.2 Inter-method comparison

After having compared different versions of Nelder–Mead methods, in this section, we com-

pare the different methods seen so far: besides (one of the versions of the) Nelder–Mead

method, we consider the trust-region method – both a derivative-free version and a version

using derivatives – and the discrete gradient method as well for our comparison. For be-

ing able to take the trust-region method using derivatives into account, we consider solely
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problem (n)
PDFO fminunc DGM

f∗ eval. f∗ eval. f∗ eval.

PARKCH (15) 1.6237 · 103 10 000 1.6237 · 103 25 2.0602 · 103 9492.5

STRATEC (10) 2.2218 · 103 10 000 2.2123 · 103 119 - -*

COOLHANSLS (9) 0.0028 10 000 5.5500 · 10−4 816 0.0108 10 007

BIGGS6 (6) 0 687 0.0057 42 9.0000 · 10−6 9597.5

HIMMELBF (4) 318.5717 292 318.7808 202 319.6807 5420.5

BROWNDEN (4) 8.5822 · 104 100 8.5822 · 104 12 8.5822 · 104 2502

GROWTHLS (3) 1.0040 1526 1.1034 10 001 2.7929 · 103 52.5

BARD (3) 0.0082 84 0.0086 193 0.0083 3943

ENGVAL2 (3) 0 135 6.7000 · 10−5 109 0.0020 3000

HELIX (3) 0 55 9.5000 · 10−5 754 2.2000 · 10−5 4019

CUBE (2) 0 111 0 32 0.0017 2170

CLUSTERLS (2) 0 56 0 14 0 251.5

BRKMCC (2) 0.1690 20 0.1690 4 0.1690 392

ZANGWIL2 (2) −18.2000 17 −18.2000 2 −18.2000 243

CLIFF (2) 0.1998 100 0.1998 27 1.3092 · 103 2018.5

* Aborted execution since invalid function values were encountered during application of the method
on the unconstrained problem.

Table 6.3: Application of the PDFO implementation of the derivative-free trust-region
method, the fminunc implementation of the derivative-using trust-region method and an
implementation of DGM (from Implementation A.3) on 15 functions from the CUTEst data
set ([5]). In the context of PDFO are COOLHANSLS and higher-dimensional problems solved
using NEWUOA while smaller-dimensional problems were solved using UOBYQA. Reported
for both implementations is the optimal solution found after default termination and the
number of function evaluations it took for this solution to find; once the number of function
evaluations exceeds 10000, the method is terminated too. Since the discrete gradient method
is a non-deterministic method, the reported values for this method are the mean of a sample
of four runs.

objective functions that are twice continuously differentiable.

For the trust-region method using derivatives, we consider two variants made by Powell:

UOBYQA – ‘unconstrained optimisation by quadratic approximation’ as described in [27] –

for lower-dimensional problems and NEWUOA – the newer version as described in [27] based

on UOBYQA – for higher-dimensional problems, using the MATLAB interface in [29] to the

otherwise mostly original implementation. An important difference between the two methods

is that, for some n-dimensional problem, UOBYQA uses quadratic interpolation and requires
1
2 (n+ 1) (n+ 2) points within the trust region of the model, while NEWUOA can work with

an underdetermined model, with 2n + 1 points as common number. The difference in the

number of points is especially noticeable for higher-dimensional problems, which NEWUOA

preferred for such problems.

For the trust-region method that does use derivative information, the industrially-proven

fmincon as described in [37] is used. Here, over the course of the application of this method

on twice continuously differentiable functions, in addition to the objective function values,

the gradient and Hessian of the objective function was made available.
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Figure 6.1: Contour plot of (x, y) 7→ max
{
x2 + y4, (2− x)2 + (2− y)2 , 2e−x+y

}
, with the

red dot indicating the (global) minimum of the function.

Lastly, for the discrete gradient method, we use our implementation from Implementa-

tion A.3. With the same problems as used in Table 6.1 and Table 6.2, Table 6.3 then shows

the result of applying those three methods. We can see in those three tables that, under

the default termination criteria, most of the methods are comparable in terms of the func-

tion value found for the same problem, with the same objective function and starting point.

Moreover, in those cases, the derivative-free trust-region method is taking mostly less func-

tion evaluations than the Nelder–Mead method and the discrete gradient method do. When

comparing both trust-region methods, one using derivatives and one not, the trust-region

method not using derivative information takes mostly less function evaluations for a compa-

rable result, providing a slight favour for the methods using derivative information when it

is available in terms of execution time.

6.3 Non-differentiable functions

In the previous section, different methods were considered, including the discrete gradient

method. Looking at Table 6.3 on twice continuously differentiable functions though, we could

conclude that the discrete gradient method needs considerably more function evaluations than

the other methods considered, which could raise the question on the practical purpose of the

discrete gradient method.

An example of the problem of minimising a two-dimensional function that can be written

as the maximum of quadratic functions, can be found in [8], with a visualisation of the contour
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plot in the area of interest in Figure 6.1. Along the places marked white in this figure is the

function non-differentiable, with a (global) minimum at (x∗, y∗) = (1.13904, 0.89956) with a

corresponding function value of 1.95222. Applying with starting point (2, 2) fminseearch

and the discrete gradient method (with four different seeds for the randomness) from Im-

plementation A.3 results in this value being reached, while the PDFO trust-region method

fails at (1, 1), on the intersection between the three functions, with the minimum not being

reached.
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Appendix A

Algorithm Implementations

What follows is a listing of implementations of some reviewed algorithms, namely of the

FDSS method and the discrete gradient method, including a method for finding the nearest

point a polytope. The source code of each implementation is embedded in the digital PDF

version of this document under the file name specified in the caption of each algorithm.

Listing A.1: MATLAB R2022b implementation of Algorithm 3.2 (fdss.m).
1 function [x,fval ,exitflag ,output] = fdss(fun ,x0,options , ...
2 showgraph ,fminsearchstyle)
3 %FDSS Multidimensional unconstrained nonlinear minimisation (Fortified -
4 % Descent Simplicial Search)
5
6 % Implementation based on algorithm inspired by
7 % Paul Tseng. Fortified -descent simplicial search method: A general
8 % approach. SIAM J. Optim., 10(1) :269 -288 , 1999.
9 % doi :10.1137/ S1052623495282857.

10
11 alpha = @(t)(1e-5)*min (0.5*(t^2),t);
12 beta = @(t)(1e6)*(t^2);
13 nu = 1e-5;
14 rho = 1;
15 chi = 2;
16 gamma = 1/2;
17 sigma = 1/2;
18 thetar = 0.01;
19 epsilon = 1e-3;
20
21 n = length(x0);
22
23 if nargin < 5
24 fminsearchstyle = true;
25 end
26 if nargin < 4
27 showgraph = false;
28 end
29 defaultopt = optimset( ...
30 'Display ','notify ', ...
31 'MaxFunEvals ' ,200*n, ...
32 'MaxIter ' ,200*n, ...
33 'TolFun ', 1e-4, ...
34 'TolX', 1e-4 ...
35 );
36 if nargin < 3
37 options = defaultopt;
38 end
39
40 Display = optimget(options ,'Display ',defaultopt ,'fast');
41 MaxFunEvals = optimget(options ,'MaxFunEvals ',defaultopt ,'fast');
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42 MaxIter = optimget(options ,'MaxIter ',defaultopt ,'fast');
43 TolFun = optimget(options ,'TolFun ',defaultopt ,'fast');
44 TolX = optimget(options ,'TolX',defaultopt ,'fast');
45
46 iterations = 0;
47 funcCount = 0;
48 function y = evalcount(x)
49 funcCount = funcCount +1;
50 y = fun(x);
51 end
52
53 function delta = diam(xs)
54 delta =0;
55 for i = 1:n+1
56 delta=max(delta ,max(sqrt(sum((xs(:,i) - xs).^2,2))));
57 end
58 end
59
60 function [delta ,von] = simplex(xs)
61 delta = diam(xs);
62 von = abs(det(xs(:,2:end) - xs(:,1)))/delta^n;
63 end
64
65 if fminsearchstyle
66 xs = x0;
67 usual_delta = 0.05;
68 zero_term_delta = 0.00025;
69 for j = 1:n
70 newx = x0;
71 if newx(j) ~= 0
72 newx(j) = (1 + usual_delta)*newx(j);
73 else
74 newx(j) = zero_term_delta;
75 end
76 xs(:,j+1) = newx;
77 end
78 else
79 xs = [x0 x0+eye(n)];
80 end
81
82 ys = cellfun(@evalcount ,num2cell(xs.',2));
83
84 if strcmp(Display ,'iter')
85 fprintf('\n')
86 fprintf ([' Iteration Func -count min f(x) ' ...
87 'Procedure\n']);
88 fprintf(' %5.0f %5.0f %12.6g %s\n', ...
89 0, 1, ys(1), '')
90 end
91
92 [ys,ysI] = sort(ys);
93 xs = xs(:,ysI);
94
95 if n == 2 && showgraph
96 figure('Name','FDSS Progress ','NumberTitle ','off');
97 xlabel('x');
98 ylabel('y');
99 hold on

100 axis equal
101 title('Simplices over time')
102 end
103
104 [delta ,von] = simplex(xs);
105 nu = min(nu,von);
106
107 k = 0;
108 operation = 'initial simplex ';
109 unfinished = 1;
110 while unfinished
111 l = 0;
112 lxs = xs;
113 lys = ys;
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114 while 1
115 iterations = iterations + 1;
116
117 if iterations >= MaxIter
118 output.message = ['Exiting: Maximum number ' ...
119 'of iterations has been exceeded ' newline ...
120 ' - increase MaxIter option.' newline ...
121 ' Current function value: ' ...
122 num2str(lys (1),'%12.6f') ' ' newline ' '];
123 exitflag = 0;
124 unfinished = 0;
125 break
126 end
127
128 if funcCount >= MaxFunEvals
129 output.message = ['Exiting: Maximum number ' ...
130 'of function evaluations has been exceeded ' ...
131 newline ' - increase MaxFunEvals ' ...
132 'option.' newline ' Current function ' ...
133 'value: ' num2str(lys (1),'%12.6f') ' ' newline ...
134 ' '];
135 exitflag = 0;
136 unfinished = 0;
137 break
138 end
139
140 if fminsearchstyle ...
141 && max(max(abs(lxs(:,2:end)-lxs(:,1)))) ...
142 < max(TolX ,10* eps(max(lxs(:,1)))) ...
143 && max(abs(lys (2: end)-lys (1))) ...
144 < max(TolFun ,10* eps(lys (1)))
145 output.message = ['Optimisation terminated:' ...
146 newline ' the current x satisfies the ' ...
147 'termination criteria using OPTIONS.TolX of ' ...
148 num2str(TolX ,'%e') ' ' newline ...
149 ' and F(X) satisfies the convergence ' ...
150 'criteria using OPTIONS.TolFun of ' ...
151 num2str(TolFun ,'%e') ' ' newline ];
152 exitflag = 1;
153 unfinished = 0;
154 break
155 end
156
157 % This condition can be made true with default
158 % parameters from FDSS paper and initial simplex
159 % initialisation and PARKCH problem from the CUTEst
160 % dataset.
161 if von < nu
162 output.message = ['Return from fdss because the ' ...
163 'normalised volume is too small after shrink ' ...
164 'operation.' newline ' '];
165 exitflag = 0;
166 unfinished = 0;
167 break
168 end
169
170 if n == 2 && showgraph
171 DTo = delaunayTriangulation(lxs(1,:).',lxs(2,:).');
172 Co = convexHull(DTo);
173 plot(DTo.Points (:,1),DTo.Points (:,2),'.', ...
174 'MarkerSize ' ,10)
175 plot(DTo.Points(Co ,1),DTo.Points(Co ,2),'r')
176 end
177
178 if ~fminsearchstyle && delta <= epsilon ...
179 && norm((lys (2:end ,:)-lys(1,:)) ...
180 ./ sqrt(sum((lxs(:,2:end) - lxs(:,1)).^2 ,2))) ...
181 < epsilon
182 output.message = ['Optimisation terminated:' ...
183 newline ' the norm current gradient -like ' ...
184 'matrix satisfies the termination criterium ' ...
185 'of ' num2str(epsilon ,'%e') ' ' newline ];
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186 exitflag = 1;
187 unfinished = 0;
188 break
189 end
190
191 if strcmp(Display ,'iter')
192 fprintf ([' %5.0f %5.0f %12.6g ' ...
193 '%s\n'],iterations ,funcCount ,lys(1),operation)
194 end
195
196 m = find(lys -ys > 0,1);
197 if size(m,1) == 0 || m(1,1) == n+1
198 m = n;
199 end
200
201 xm = sum(lxs(:,1:m) ,2)/m;
202 ym = sum(lys (1:m))/m;
203
204 xsr = xm + rho*(xm - lxs(:,m+1: end));
205 ysr = cellfun(@evalcount ,num2cell(xsr.',2));
206
207 lxsr = [lxs(:,1:m) xsr];
208 lysr = [lys (1:m);ysr];
209 [deltar ,vonr] = simplex(lxsr);
210
211 % This condition can be made through with default
212 % parameters from FDSS paper , Matlab 's fminsearch R2022b
213 % initial simplex initialisation and PARKCH problem from
214 % the CUTEst dataset.
215 if min(ysr) <= lys(m) - alpha(delta) ...
216 && min(ysr) >= lys(m)
217 output.message = ['Return from fdss because the ' ...
218 'fortified -descent criterium vanishes in ' ...
219 'the current precision.' newline ' '];
220 exitflag = 0;
221 unfinished = 0;
222 break
223 end
224
225 if vonr >= nu && min(ysr) <= lys(m) - alpha(delta) ...
226 && min(ysr) <= lys(m) - thetar *(lys(end)-ym) ...
227 + beta(delta)
228 if fminsearchstyle && lys (1) <= min(ysr)
229 operation = 'reflect ';
230 xs = lxsr;
231 ys = lysr;
232 delta = deltar;
233 von = vonr;
234 else
235 xse = xm + chi*rho*(xm - lxs(:,m+1: end));
236 yse = cellfun(@evalcount ,num2cell(xse.',2));
237
238 lxse = [lxs(:,1:m) xse];
239 lyse = [lys (1:m);yse];
240 [deltae ,vone] = simplex(lxse);
241
242 if vone >= nu ...
243 && (( fminsearchstyle ...
244 && min(yse) <= min(ysr)) ...
245 || (~ fminsearchstyle ...
246 && min(yse) <= lys(m) ...
247 - alpha(delta) ...
248 && min(yse) <= lys(m) ...
249 - thetar *(lys(end)-ym) + beta(delta)))
250 operation = 'expand ';
251 xs = lxse;
252 ys = lyse;
253 delta = deltae;
254 von = vone;
255 else
256 operation = 'reflect ';
257 xs = lxsr;
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258 ys = lysr;
259 delta = deltar;
260 von = vonr;
261 end
262 end
263 [ys ,ysI] = sort(ys);
264 xs = xs(:,ysI);
265 k = k + 1;
266 break
267 else
268 if min(ysr) < lys(m+1)
269 operation = 'contract outside ';
270 xsc = xm + gamma*rho*(xm - lxs(:,m+1: end));
271 else
272 operation = 'contract inside ';
273 xsc = xm - gamma*(xm - lxs(:,m+1: end));
274 end
275 ysc = cellfun(@evalcount ,num2cell(xsc.',2));
276
277 lxsc = [lxs(:,1:m) xsc];
278 lysc = [lys (1:m);ysc];
279 [deltac ,vonc] = simplex(lxsc);
280
281 [lysc ,lyscI] = sort(lysc);
282 lxsc = lxsc(:,lyscI);
283
284 assert(isequal(size(lxsc),size(lxs)))
285
286 if vonc >= nu && lysc(m+1) <= ys(m+1) ...
287 && sum(lysc (1:m+1)) <= sum(ys(1:m+1)) ...
288 - alpha(delta)
289 xs = lxsc;
290 ys = lysc;
291 delta = deltac;
292 von = vonc;
293 k = k + 1;
294 break
295 else
296 operation = 'shrink ';
297 xss = lxs(:,1) + sigma*(lxs(:,2:end) - lxs(:,1));
298 yss = cellfun(@evalcount ,num2cell(xss.',2));
299
300 lxss = [lxs(:,1) xss];
301 lyss = [lys (1);yss];
302
303 [lyss ,lyssI] = sort(lyss);
304 lxss = lxss(:,lyssI);
305
306 [deltas ,vons] = simplex(lxss);
307
308 if lyss (1) <= ys(1)-alpha(delta)
309 xs = lxss;
310 ys = lyss;
311 delta = deltas;
312 von = vons;
313 k = k + 1;
314 break
315 else
316 lxs = lxss;
317 lys = lyss;
318 delta = deltas;
319 von = vons;
320 l = l + 1;
321 continue
322 end
323 end
324 end
325 end
326 end
327
328 [ymin ,yminI] = min(lys);
329 xmin = lxs(:,yminI);
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330 x = xmin;
331 fval = ymin;
332
333 if strcmp(Display ,'iter')
334 fprintf(' %5.0f %5.0f %12.6g %s\n', ...
335 iterations ,funcCount ,fval ,operation)
336 end
337
338 if strcmp(Display ,'iter') || strcmp(Display ,'final ')
339 fprintf('\n')
340 fprintf(output.message)
341 fprintf('\n')
342 end
343
344 if n == 2 && showgraph
345 xl = xlim;
346 yl = ylim;
347 [X,Y] = meshgrid(xl(1):((xl(2) - xl(1))/500):xl(2), ...
348 yl(1) :((yl(2) - yl(1))/500):yl(2));
349 C = arrayfun(@(varargin)fun([ varargin {:}]) .^(0.1) ,X,Y);
350 im = imagesc(xl ,yl ,C);
351 uistack(im ,'bottom ');
352
353 % set(gcf ,'Units ','inches ');
354 % screenposition = get(gcf ,'Position ');
355 % set(gcf ,...
356 % 'PaperPosition ',[0 0 screenposition (3:4) ],...
357 % 'PaperSize ',[ screenposition (3:4)]);
358 % print -dpdf -vector filename
359 end
360
361 output.iterations = iterations;
362 output.funcCount = funcCount;
363 output.algorithm = 'Fortified -Descent Simplicial Search Method ';
364 end

Listing A.2: MATLAB R2022b implementation of Algorithm 5.3 (wolfe.m).
1 function [X,error] = wolfe(P,acc)
2 %WOLFE Minimum -norm point finding in convex set.
3 % X = WOLFE(P) searches for the minimum -norm point in the convex set
4 % described by the points in matrix P, for each point being a column
5 % vector.
6 %
7 % [X,error] = wolfe (...) also reports if the search was aborted
8 % because of loss of numerical precision , rather than the optimality
9 % conditions being fulfilled.

10
11 % Implementation based on algorithm ('alternative D') inspired by
12 % Philip Wolfe. Finding the nearest point in a polytope. Math.
13 % Program., 11:128 -149 , December 1976. doi :10.1007/ BF01580381.
14 % with modifications as mentioned in master 's thesis of Pim Heeman.
15
16
17 if nargin < 2
18 Z1 = 1e-12;
19 else
20 [maxnorm ,maxnormI] = max(vecnorm(P));
21 if maxnorm < acc
22 X = P(:,maxnormI);
23 error = false;
24 return
25 end
26 Z1 = (acc /(2* max(vecnorm(P))))^2;
27 end
28
29 Z3 = 1e-10;
30 Z2 = 1e-16;
31
32 warnings = warning('error ','MATLAB:illConditionedMatrix ');
33 warning('error ','MATLAB:singularMatrix ');
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34 function finalise
35 warning(warnings)
36 end
37
38 % If there 's only a single element , we immediately return.
39 % This way , we never get into problems of numerical inprecision ,
40 % at least.
41 if size(P,2) == 1
42 X = P(:,1);
43 error = false;
44 return
45 end
46
47 % Initialisation
48 [~,J] = min(vecnorm(P));
49 S = J;
50 w = 1;
51 R = sqrt (1+ norm(P(:,J))^2);
52
53 while 1
54 % Step 1
55 X = P(:,S)*w;
56 [~,J] = min(X.'*P);
57
58 threshold = Z1*max(norm(P(:,J)),max(vecnorm(P(:,S))))^2;
59 if X.'*P(:,J) >= X.'*X - threshold
60 error = false;
61 finalise
62 return
63 end
64
65 if ismember(J,S)
66 error = true;
67 finalise
68 return
69 end
70 assert (~ ismember(J,S))
71
72 r = linsolve(R.',1+P(:,S).'*P(:,J));
73 rho = sqrt (1+P(:,J).'*P(:,J)-r.'*r);
74 R(:,end+1) = r; %#ok <*AGROW >
75 R(end+1,:) = 0;
76 R(end ,end) = rho;
77
78 S(end+1,1) = J;
79 w(end+1,1) = 0;
80
81 while 1
82 % Step 2
83 try
84 ubar = linsolve(R.',ones(size(R,2) ,1));
85 catch ME
86 if strcmp(ME.identifier , ...
87 'MATLAB:illConditionedMatrix ') ...
88 || strcmp(ME.identifier , ...
89 'MATLAB:singularMatrix ')
90 error = true;
91 finalise
92 return
93 end
94 rethrow(ME)
95 end
96
97 u = linsolve(R,ubar);
98 v = u/sum(u);
99

100 if all(v > Z2*ones(size(v)))
101 w = v;
102 break
103 end
104
105 % Step 3
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106 POS = find(w-v > -Z3);
107 theta = max((v(POS))./(v(POS)-w(POS)));
108 % Below is the expression as found in the original
109 % paper for computing theta , which could lead to the wrong
110 % results.
111 %
112 % For instance , with input of
113 % [1 3 -4; 2 0 0]
114 % an infinite loop is entered.
115 % theta = min(1,min((w(POS))./(w(POS)-v(POS))));
116 w = theta*w+(1- theta)*v;
117
118 % This won 't change the point. In other words , taking
119 % another point into account that made the optimality
120 % conditions not being fulfilled didn 't made it any better ,
121 % and the point was optimal , after all , in our working
122 % precision.
123 %
124 % This condition is triggered by
125 % [ -0.024264412760097 0.00818576756098157 ...
126 % 0.00308361747359006 0.00717008694718105 ...
127 % ; 0.0144869387432543 -0.0212952895278437 ...
128 % -0.0039593859212008 -0.00396459323288156]
129 % with the default input parameters.
130 if theta == 1
131 error = true;
132 finalise
133 return
134 end
135
136 w(w <= Z3) = 0;
137 I = find(w == 0,1);
138 w(I) = [];
139 S(I) = [];
140 R(:,I) = [];
141
142 while I <= size(R,2)
143 a=R(I,I);
144 b=R(I+1,I);
145 c=sqrt(a^2+b^2);
146
147 assert(c ~= 0)
148
149 RI = R(I,:);
150 RI1 = R(I+1,:);
151 R(I,:) = (a*RI+b*RI1)/c;
152 R(I+1,:) = (-b*RI+a*RI1)/c;
153 I = I+1;
154 end
155 if ~isempty(I)
156 R(end ,:) = [];
157 end
158 end
159 end
160 end

Listing A.3: MATLAB R2022b implementation of Algorithm 5.1 (dgm.m).
1 function [bestx ,bestfval ,exitflag ,output] = dgm(fun ,x0,options , ...
2 showgraph)
3 % Implementation based on algorithm inspired by
4 % A. M. Bagirov , B. Karasoezen , and M. Sezer. Discrete gradient
5 % method: Derivative -free method for nonsmooth optimization.
6 % J. Optim. Theory. Appl., 137:317 -334 , 2008.
7 % doi :10.1007/ s10957 -007 -9335 -5.
8
9 lambda0 = 1;

10 beta = 5e-1;
11 c = 2e-01;
12 c2 = 1e-04;
13 alpha = 0.01;
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14 delta0 = 1e-7;
15 betadelta = 0.9;
16 epsilon = lambda0 *1e-4;
17
18 n = length(x0);
19
20 if nargin < 4
21 showgraph = false;
22 end
23 defaultopt = optimset( ...
24 'Display ','notify ', ...
25 'MaxFunEvals ' ,200*n, ...
26 'MaxIter ' ,200*n ...
27 );
28 if nargin < 3
29 options = defaultopt;
30 end
31
32 Display = optimget(options ,'Display ',defaultopt ,'fast');
33 MaxFunEvals = optimget(options ,'MaxFunEvals ',defaultopt ,'fast');
34 MaxIter = optimget(options ,'MaxIter ',defaultopt ,'fast');
35
36 iterations = 0;
37 funcCount = 0;
38 function fval = evalcount(x)
39 funcCount = funcCount +1;
40 fval = fun(x);
41
42 if fval < bestfval
43 bestfval = fval;
44 bestx = x;
45 end
46 end
47
48 function v = gamma(i,d,e,x,lambda ,alpha ,fx)
49 xs = zeros(n,n+1);
50 xs(:,1) = x+lambda*d;
51 if n == 2 && showgraph
52 plot(xs(1,1),xs(2,1),'g*')
53 end
54 for j = 1:n
55 xs(:,j+1) = xs(:,j);
56 xs(j,j+1) = xs(j,j+1)+lambda *(alpha^j)*e(j);
57 end
58 fxs = cellfun(@evalcount ,mat2cell(xs ,n,ones(1,n+1)));
59
60 v = zeros(n,1);
61 for j = 1:n
62 if j == i
63 continue
64 end
65 v(j) = (fxs(j+1)-fxs(j))/( lambda *( alpha^j)*e(j));
66 end
67 v(i) = (fxs(1)-fx -lambda*v.'*d)/( lambda*d(i));
68 end
69
70 x = x0;
71 fval = fun(x);
72 funcCount = funcCount +1;
73 bestx = x;
74 bestfval = fval;
75
76 if strcmp(Display ,'iter')
77 fprintf('\n')
78 fprintf ([' Iteration Func -count min f(x) ' ...
79 'Procedure\n']);
80 fprintf(' %5.0f %5.0f %12.6g %s\n', ...
81 0, 1, bestfval , '')
82 end
83
84 if n == 2 && showgraph
85 figure('Name','DGM Progress ','NumberTitle ','off');
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86 xlabel('x');
87 ylabel('y');
88 hold on
89 axis equal
90 title('Base points over time')
91
92 points = x0;
93 end
94
95 lambdainput = lambda0;
96 delta = delta0;
97
98 operation = 'initial point';
99 unfinished = 1;

100 while unfinished
101 d = rand(n,1) - 0.5;
102 d = d / norm(d);
103 e = 2*( randi(2,n,1) -1.5);
104 [~,i] = max(abs(d));
105 lambdainput = beta*lambdainput;
106 lambda = lambdainput ^1.4;
107 delta = betadelta*delta;
108
109 if lambda < epsilon
110 output.message = ['Optimisation terminated:' ...
111 newline ' the lambda value satisfies the ' ...
112 'termination criterium of ' ...
113 num2str(epsilon ,'%e') ' ' newline ];
114 exitflag = 1;
115 break
116 end
117
118 if ~( funcCount >= MaxFunEvals || (iterations +1) >= MaxIter)
119 v = gamma(i,d,e,x,lambda ,alpha ,fval);
120 vbar = v;
121 end
122
123 while 1
124 iterations = iterations +1;
125
126 if iterations >= MaxIter
127 output.message = ['Exiting: Maximum number ' ...
128 'of iterations has been exceeded ' newline ...
129 ' - increase MaxIter option.' newline ...
130 ' Current function value: ' ...
131 num2str(bestfval ,'%12.6f') ' ' newline ' '];
132 exitflag = 0;
133 unfinished = 0;
134 break
135 end
136
137 if funcCount >= MaxFunEvals
138 output.message = ['Exiting: Maximum number ' ...
139 'of function evaluations has been exceeded ' ...
140 newline ' - increase MaxFunEvals ' ...
141 'option.' newline ' Current function ' ...
142 'value: ' num2str(bestfval ,'%12.6f') ' ' ...
143 newline ' '];
144 exitflag = 0;
145 unfinished = 0;
146 break
147 end
148
149 if strcmp(Display ,'iter')
150 fprintf ([' %5.0f %5.0f %12.6g ' ...
151 '%s\n'],iterations ,funcCount ,bestfval ,operation)
152 end
153
154 if n == 2 && showgraph
155 plot(x(1),x(2),'ro')
156 points(:,end +1) = x; %#ok<AGROW >
157 end
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158
159 [vmin ,~] = wolfe(vbar);
160
161 normvmin = norm(vmin);
162 if normvmin <= delta
163 break
164 end
165
166 d = -vmin/norm(vmin);
167 xlinelambda = x+lambda*d;
168 fvallinelambda = evalcount(x+lambda*d);
169 if fval -fvallinelambda >= c*lambda*normvmin
170 step = normvmin;
171 while 1
172 if step <= lambda
173 x = xlinelambda;
174 fval = fvallinelambda;
175 break
176 end
177 xline = x+step*d;
178 fvalline = evalcount(xline);
179 if fval -fvalline >= c2*step*normvmin
180 x = xline;
181 fval = fvalline;
182 break
183 end
184 step = 0.5* step;
185 end
186
187 vbar = [];
188 d = rand(n,1) - 0.5;
189 operation = 'serious step';
190 else
191 operation = 'null step';
192 end
193
194 [~,i] = max(abs(d));
195 v = gamma(i,d,e,x,lambda ,alpha ,fval);
196 if ~isempty(vbar) && isequal(vbar(:,end),v)
197 break
198 end
199 vbar(:,end +1) = v; %#ok<AGROW >
200 end
201 end
202
203 if n == 2 && showgraph
204 plot(points (1,:),points (2,:),'r--')
205 end
206
207 if strcmp(Display ,'iter') && exitflag ~= 1
208 fprintf(' %5.0f %5.0f %12.6g %s\n', ...
209 iterations ,funcCount ,bestfval ,operation)
210 end
211
212 if strcmp(Display ,'iter') || strcmp(Display ,'final ')
213 fprintf('\n')
214 fprintf(output.message)
215 fprintf('\n')
216 end
217
218 if n == 2 && showgraph
219 xl = xlim;
220 yl = ylim;
221 [X,Y] = meshgrid(xl(1):((xl(2) - xl(1))/500):xl(2), ...
222 yl(1) :((yl(2) - yl(1))/500):yl(2));
223 C = arrayfun(@(varargin)fun([ varargin {:}]) .^(0.1) ,X,Y);
224 im = imagesc(xl,yl,C);
225 uistack(im ,'bottom ');
226
227 % set(gcf ,'Units ','inches ');
228 % screenposition = get(gcf ,'Position ');
229 % set(gcf ,...
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230 % 'PaperPosition ',[0 0 screenposition (3:4) ],...
231 % 'PaperSize ',[ screenposition (3:4)]);
232 % print -dpdf -vector filename
233 end
234
235 output.iterations = iterations;
236 output.funcCount = funcCount;
237 output.algorithm = 'Discrete Gradient Method ';
238 end
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Symbols

A⊕B Minkowski sum; element-wise addition of two sets creating a new one (A⊕
B = {a+ b : a ∈ A, b ∈ B})

aff A affine hull of set A

∇f (x) gradient of a function f

∇2f (x) Hessian of a function f

B (x; r) closed ball around x ∈ Rn of radius r > 0: B (x; r) = {y ∈ Rn : ∥x− y∥ ≤ r}
Ck (S, S′) set of k-times continuously differentiable functions f : S → S′ (parameter

sometimes omitted when clear from context)

convA convex hull of set A

∂f (x) subdifferential of function f

∂cf (x) subdifferential of a convex function f

e vector with each element set to 1

ej vector with the jth element set to 1 and the other elements being set to 0

f (x) objective function f : Rn → R
f ′ (x; d) one-sided directional derivative of a function f

L (x0) sublevel set: L (x0) := {x ∈ Rn : f (x) ≤ f (x0)}
n dimension of optimisation problem

Pd
n linear space of all polynomial functions on Rn of a degree up to d

riA relative interior of set A

Sn unit sphere in the Euclidean n + 1-dimensional vector space: Sn ={
e ∈ Rn+1 : ∥e∥ = 1

}
xk iteration point of iteration k of an iterative optimisation method
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function [x,fval,exitflag,output] = fdss(fun,x0,options, ...
    showgraph,fminsearchstyle)
%FDSS Multidimensional unconstrained nonlinear minimisation (Fortified-
%   Descent Simplicial Search)

%   Implementation based on algorithm inspired by
%    Paul Tseng. Fortified-descent simplicial search method: A general
%    approach. SIAM J. Optim., 10(1):269-288, 1999.
%    doi:10.1137/S1052623495282857.

    alpha = @(t)(1e-5)*min(0.5*(t^2),t);
    beta = @(t)(1e6)*(t^2);
    nu = 1e-5;
    rho = 1;
    chi = 2;
    gamma = 1/2;
    sigma = 1/2;
    thetar = 0.01;
    epsilon = 1e-3;

    n = length(x0);

    if nargin < 5
        fminsearchstyle = true;
    end
    if nargin < 4
        showgraph = false;
    end
    defaultopt = optimset( ...
        'Display','notify', ...
        'MaxFunEvals',200*n, ...
        'MaxIter',200*n, ...
        'TolFun', 1e-4, ...
        'TolX', 1e-4 ...
        );
    if nargin < 3
        options = defaultopt;
    end

    Display = optimget(options,'Display',defaultopt,'fast');
    MaxFunEvals = optimget(options,'MaxFunEvals',defaultopt,'fast');
    MaxIter = optimget(options,'MaxIter',defaultopt,'fast');
    TolFun = optimget(options,'TolFun',defaultopt,'fast');
    TolX = optimget(options,'TolX',defaultopt,'fast');

    iterations = 0;
    funcCount = 0;
    function y = evalcount(x)
        funcCount = funcCount+1;
        y = fun(x);
    end

    function delta = diam(xs)
        delta=0;
        for i = 1:n+1
            delta=max(delta,max(sqrt(sum((xs(:,i) - xs).^2,2))));
        end
    end

    function [delta,von] = simplex(xs)
        delta = diam(xs);
        von = abs(det(xs(:,2:end) - xs(:,1)))/delta^n;
    end

    if fminsearchstyle
        xs = x0;
        usual_delta = 0.05;
        zero_term_delta = 0.00025;
        for j = 1:n
            newx = x0;
            if newx(j) ~= 0
                newx(j) = (1 + usual_delta)*newx(j);
            else
                newx(j) = zero_term_delta;
            end
            xs(:,j+1) = newx;
        end
    else
        xs = [x0 x0+eye(n)];
    end

    ys = cellfun(@evalcount,num2cell(xs.',2));

    if strcmp(Display,'iter')
        fprintf('\n')
        fprintf([' Iteration   Func-count     min f(x)         ' ...
            'Procedure\n']);
        fprintf(' %5.0f        %5.0f     %12.6g         %s\n', ...
            0, 1, ys(1), '')
    end

    [ys,ysI] = sort(ys);
    xs = xs(:,ysI);

    if n == 2 && showgraph
        figure('Name','FDSS Progress','NumberTitle','off');
        xlabel('x');
        ylabel('y');
        hold on
        axis equal
        title('Simplices over time')
    end

    [delta,von] = simplex(xs);
    nu = min(nu,von);

    k = 0;
    operation = 'initial simplex';
    unfinished = 1;
    while unfinished
        l = 0;
        lxs = xs;
        lys = ys;
        while 1
            iterations = iterations + 1;

            if iterations >= MaxIter
                output.message = ['Exiting: Maximum number ' ...
                    'of iterations has been exceeded' newline ...
                    '         - increase MaxIter option.' newline ...
                    '         Current function value: ' ...
                    num2str(lys(1),'%12.6f') ' ' newline ' '];
                exitflag = 0;    
                unfinished = 0;
                break
            end

            if funcCount >= MaxFunEvals
                output.message = ['Exiting: Maximum number ' ...
                    'of function evaluations has been exceeded' ...
                    newline '         - increase MaxFunEvals ' ...
                    'option.' newline '         Current function ' ...
                    'value: ' num2str(lys(1),'%12.6f') ' ' newline ...
                    ' '];
                exitflag = 0;
                unfinished = 0;
                break
            end

            if fminsearchstyle ...
                    && max(max(abs(lxs(:,2:end)-lxs(:,1)))) ...
                    < max(TolX,10*eps(max(lxs(:,1)))) ...
                    && max(abs(lys(2:end)-lys(1))) ...
                    < max(TolFun,10*eps(lys(1)))
                output.message = ['Optimisation terminated:' ...
                    newline ' the current x satisfies the ' ...
                    'termination criteria using OPTIONS.TolX of ' ...
                    num2str(TolX,'%e') ' ' newline ...
                    ' and F(X) satisfies the convergence ' ...
                    'criteria using OPTIONS.TolFun of ' ...
                    num2str(TolFun,'%e') ' ' newline];
                exitflag = 1;
                unfinished = 0;
                break
            end

            % This condition can be made true with default
            % parameters from FDSS paper and initial simplex
            % initialisation and PARKCH problem from the CUTEst
            % dataset.
            if von < nu
                output.message = ['Return from fdss because the ' ...
                    'normalised volume is too small after shrink ' ...
                    'operation.' newline ' '];
                exitflag = 0;
                unfinished = 0;
                break
            end

            if n == 2 && showgraph
                DTo = delaunayTriangulation(lxs(1,:).',lxs(2,:).');
                Co = convexHull(DTo);
                plot(DTo.Points(:,1),DTo.Points(:,2),'.', ...
                    'MarkerSize',10)
                plot(DTo.Points(Co,1),DTo.Points(Co,2),'r')
            end

            if ~fminsearchstyle && delta <= epsilon ...
                && norm((lys(2:end,:)-lys(1,:)) ...
                ./ sqrt(sum((lxs(:,2:end) - lxs(:,1)).^2,2))) ...
                < epsilon
                output.message = ['Optimisation terminated:' ...
                    newline ' the norm current gradient-like ' ...
                    'matrix satisfies the termination criterium ' ...
                    'of ' num2str(epsilon,'%e') ' ' newline];
                exitflag = 1;
                unfinished = 0;
                break
            end

            if strcmp(Display,'iter')
                fprintf([' %5.0f        %5.0f     %12.6g         ' ...
                    '%s\n'],iterations,funcCount,lys(1),operation)
            end

            m = find(lys-ys > 0,1);
            if size(m,1) == 0 || m(1,1) == n+1
                m = n;
            end

            xm = sum(lxs(:,1:m),2)/m;
            ym = sum(lys(1:m))/m;

            xsr = xm + rho*(xm - lxs(:,m+1:end));
            ysr = cellfun(@evalcount,num2cell(xsr.',2));

            lxsr = [lxs(:,1:m) xsr];
            lysr = [lys(1:m);ysr];
            [deltar,vonr] = simplex(lxsr);

            % This condition can be made through with default
            % parameters from FDSS paper, Matlab's fminsearch R2022b
            % initial simplex initialisation and PARKCH problem from
            % the CUTEst dataset.
            if min(ysr) <= lys(m) - alpha(delta) ...
                    && min(ysr) >= lys(m)
                output.message = ['Return from fdss because the ' ...
                    'fortified-descent criterium vanishes in ' ...
                    'the current precision.' newline ' '];
                exitflag = 0;
                unfinished = 0;
                break
            end

            if vonr >= nu && min(ysr) <= lys(m) - alpha(delta) ...
                    && min(ysr) <= lys(m) - thetar*(lys(end)-ym) ...
                    + beta(delta)
                if fminsearchstyle && lys(1) <= min(ysr)
                    operation = 'reflect';
                    xs = lxsr;
                    ys = lysr;
                    delta = deltar;
                    von = vonr;
                else
                    xse = xm + chi*rho*(xm - lxs(:,m+1:end));
                    yse = cellfun(@evalcount,num2cell(xse.',2));
    
                    lxse = [lxs(:,1:m) xse];
                    lyse = [lys(1:m);yse];
                    [deltae,vone] = simplex(lxse);
    
                    if vone >= nu ...
                            && ((fminsearchstyle ...
                            && min(yse) <= min(ysr)) ...
                            || (~fminsearchstyle ...
                            && min(yse) <= lys(m) ...
                            - alpha(delta) ...
                            && min(yse) <= lys(m) ...
                            - thetar*(lys(end)-ym) + beta(delta)))
                        operation = 'expand';
                        xs = lxse;
                        ys = lyse;
                        delta = deltae;
                        von = vone;
                    else
                        operation = 'reflect';
                        xs = lxsr;
                        ys = lysr;
                        delta = deltar;
                        von = vonr;
                    end
                end
                [ys,ysI] = sort(ys);
                xs = xs(:,ysI);
                k = k + 1;
                break
            else
                if min(ysr) < lys(m+1)
                    operation = 'contract outside';
                    xsc = xm + gamma*rho*(xm - lxs(:,m+1:end));
                else
                    operation = 'contract inside';
                    xsc = xm - gamma*(xm - lxs(:,m+1:end));
                end
                ysc = cellfun(@evalcount,num2cell(xsc.',2));

                lxsc = [lxs(:,1:m) xsc];
                lysc = [lys(1:m);ysc];
                [deltac,vonc] = simplex(lxsc);

                [lysc,lyscI] = sort(lysc);
                lxsc = lxsc(:,lyscI);

                assert(isequal(size(lxsc),size(lxs)))

                if vonc >= nu && lysc(m+1) <= ys(m+1) ...
                        && sum(lysc(1:m+1)) <= sum(ys(1:m+1)) ...
                        - alpha(delta)
                    xs = lxsc;
                    ys = lysc;
                    delta = deltac;
                    von = vonc;
                    k = k + 1;
                    break
                else
                    operation = 'shrink';
                    xss = lxs(:,1) + sigma*(lxs(:,2:end) - lxs(:,1));
                    yss = cellfun(@evalcount,num2cell(xss.',2));

                    lxss = [lxs(:,1) xss];
                    lyss = [lys(1);yss];

                    [lyss,lyssI] = sort(lyss);
                    lxss = lxss(:,lyssI);

                    [deltas,vons] = simplex(lxss);

                    if lyss(1) <= ys(1)-alpha(delta)
                        xs = lxss;
                        ys = lyss;
                        delta = deltas;
                        von = vons;
                        k = k + 1;
                        break
                    else
                        lxs = lxss;
                        lys = lyss;
                        delta = deltas;
                        von = vons;
                        l = l + 1;
                        continue
                    end
                end
            end
        end
    end

    [ymin,yminI] = min(lys);
    xmin = lxs(:,yminI);
    x = xmin;
    fval = ymin;

    if strcmp(Display,'iter')
        fprintf(' %5.0f        %5.0f     %12.6g         %s\n', ...
            iterations,funcCount,fval,operation)
    end

    if strcmp(Display,'iter') || strcmp(Display,'final')
        fprintf('\n')
        fprintf(output.message)
        fprintf('\n')
    end

    if n == 2 && showgraph
        xl = xlim;
        yl = ylim;
        [X,Y] = meshgrid(xl(1):((xl(2) - xl(1))/500):xl(2), ...
            yl(1):((yl(2) - yl(1))/500):yl(2));
        C = arrayfun(@(varargin)fun([varargin{:}]).^(0.1),X,Y);
        im = imagesc(xl,yl,C);
        uistack(im,'bottom');

%         set(gcf,'Units','inches');
%         screenposition = get(gcf,'Position');
%         set(gcf,...
%             'PaperPosition',[0 0 screenposition(3:4)],...
%             'PaperSize',[screenposition(3:4)]);
%         print -dpdf -vector filename
    end
    
    output.iterations = iterations;
    output.funcCount = funcCount;
    output.algorithm = 'Fortified-Descent Simplicial Search Method';
end



function [X,error] = wolfe(P,acc)
%WOLFE Minimum-norm point finding in convex set.
%   X  = WOLFE(P) searches for the minimum-norm point in the convex set
%   described by the points in matrix P, for each point being a column
%   vector.
%
%   [X,error] = wolfe(...) also reports if the search was aborted
%   because of loss of numerical precision, rather than the optimality
%   conditions being fulfilled.

%   Implementation based on algorithm ('alternative D') inspired by
%    Philip Wolfe. Finding the nearest point in a polytope. Math.
%    Program., 11:128-149, December 1976. doi:10.1007/BF01580381.
%   with modifications as mentioned in master's thesis of Pim Heeman.


    if nargin < 2
        Z1 = 1e-12;
    else
        [maxnorm,maxnormI] = max(vecnorm(P));
        if maxnorm < acc
            X = P(:,maxnormI);
            error = false;
            return
        end
        Z1 = (acc/(2*max(vecnorm(P))))^2;
    end

    Z3 = 1e-10;
    Z2 = 1e-16;

    warnings = warning('error','MATLAB:illConditionedMatrix');
    warning('error','MATLAB:singularMatrix');
    function finalise
        warning(warnings)
    end

    % If there's only a single element, we immediately return.
    % This way, we never get into problems of numerical inprecision,
    % at least.
    if size(P,2) == 1
        X = P(:,1);
        error = false;
        return
    end

    % Initialisation
    [~,J] = min(vecnorm(P));
    S = J;
    w = 1;
    R = sqrt(1+norm(P(:,J))^2);

    while 1
        % Step 1
        X = P(:,S)*w;
        [~,J] = min(X.'*P);

        threshold = Z1*max(norm(P(:,J)),max(vecnorm(P(:,S))))^2;
        if X.'*P(:,J) >= X.'*X - threshold
            error = false;
            finalise
            return
        end
    
        if ismember(J,S)
            error = true;
            finalise
            return
        end
        assert(~ismember(J,S))

        r = linsolve(R.',1+P(:,S).'*P(:,J));
        rho = sqrt(1+P(:,J).'*P(:,J)-r.'*r);
        R(:,end+1) = r; %#ok<*AGROW> 
        R(end+1,:) = 0;
        R(end,end) = rho;

        S(end+1,1) = J;
        w(end+1,1) = 0;

        while 1
            % Step 2
            try
                ubar = linsolve(R.',ones(size(R,2),1));
            catch ME
                if strcmp(ME.identifier, ...
                        'MATLAB:illConditionedMatrix') ...
                    || strcmp(ME.identifier, ...
                    'MATLAB:singularMatrix')
                    error = true;
                    finalise
                    return
                end
                rethrow(ME)
            end
                
            u = linsolve(R,ubar);
            v = u/sum(u);

            if all(v > Z2*ones(size(v)))
                w = v;
                break
            end

            % Step 3
            POS = find(w-v > -Z3);
            theta = max((v(POS))./(v(POS)-w(POS)));
            % Below is the expression as found in the original
            % paper for computing theta, which could lead to the wrong
            % results.
            %
            % For instance, with input of
            %  [1 3 -4; 2 0 0]
            % an infinite loop is entered.
            % theta = min(1,min((w(POS))./(w(POS)-v(POS))));
            w = theta*w+(1-theta)*v;

            % This won't change the point. In other words, taking
            % another point into account that made the optimality
            % conditions not being fulfilled didn't made it any better,
            % and the point was optimal, after all, in our working
            % precision.
            %
            % This condition is triggered by
            %  [-0.024264412760097 0.00818576756098157 ...
            %     0.00308361747359006 0.00717008694718105 ...
            %     ; 0.0144869387432543 -0.0212952895278437 ...
            %     -0.0039593859212008 -0.00396459323288156]
            % with the default input parameters.
            if theta == 1
                error = true;
                finalise
                return
            end

            w(w <= Z3) = 0;
            I = find(w == 0,1);
            w(I) = [];
            S(I) = [];
            R(:,I) = [];

            while I <= size(R,2)
                a=R(I,I);
                b=R(I+1,I);
                c=sqrt(a^2+b^2);

                assert(c ~= 0)

                RI = R(I,:);
                RI1 = R(I+1,:);
                R(I,:) = (a*RI+b*RI1)/c;
                R(I+1,:) = (-b*RI+a*RI1)/c;
                I = I+1;
            end
            if ~isempty(I)
                R(end,:) = [];
            end
        end
    end
end



function [bestx,bestfval,exitflag,output] = dgm(fun,x0,options, ...
    showgraph)
%   Implementation based on algorithm inspired by
%    A. M. Bagirov, B. Karasoezen, and M. Sezer. Discrete gradient
%    method: Derivative-free method for nonsmooth optimization.
%    J. Optim. Theory. Appl., 137:317-334, 2008.
%    doi:10.1007/s10957-007-9335-5.

    lambda0 = 1;
    beta = 5e-1;
    c = 2e-01;
    c2 = 1e-04;
    alpha = 0.01;
    delta0 = 1e-7;
    betadelta = 0.9;
    epsilon = lambda0*1e-4;

    n = length(x0);

    if nargin < 4
        showgraph = false;
    end
    defaultopt = optimset( ...
        'Display','notify', ...
        'MaxFunEvals',200*n, ...
        'MaxIter',200*n ...
        );
    if nargin < 3
        options = defaultopt;
    end

    Display = optimget(options,'Display',defaultopt,'fast');
    MaxFunEvals = optimget(options,'MaxFunEvals',defaultopt,'fast');
    MaxIter = optimget(options,'MaxIter',defaultopt,'fast');

    iterations = 0;
    funcCount = 0;
    function fval = evalcount(x)
        funcCount = funcCount+1;
        fval = fun(x);

        if fval < bestfval
            bestfval = fval;
            bestx = x;
        end
    end

    function v = gamma(i,d,e,x,lambda,alpha,fx)
        xs = zeros(n,n+1);
        xs(:,1) = x+lambda*d;
        if n == 2 && showgraph
            plot(xs(1,1),xs(2,1),'g*')
        end
        for j = 1:n
            xs(:,j+1) = xs(:,j);
            xs(j,j+1) = xs(j,j+1)+lambda*(alpha^j)*e(j);
        end
        fxs = cellfun(@evalcount,mat2cell(xs,n,ones(1,n+1)));

        v = zeros(n,1);
        for j = 1:n
            if j == i
                continue
            end
            v(j) = (fxs(j+1)-fxs(j))/(lambda*(alpha^j)*e(j));
        end
        v(i) = (fxs(1)-fx-lambda*v.'*d)/(lambda*d(i));
    end

    x = x0;
    fval = fun(x);
    funcCount = funcCount+1;
    bestx = x;
    bestfval = fval;

    if strcmp(Display,'iter')
        fprintf('\n')
        fprintf([' Iteration   Func-count     min f(x)         ' ...
            'Procedure\n']);
        fprintf(' %5.0f        %5.0f     %12.6g         %s\n', ...
            0, 1, bestfval, '')
    end

    if n == 2 && showgraph
        figure('Name','DGM Progress','NumberTitle','off');
        xlabel('x');
        ylabel('y');
        hold on
        axis equal
        title('Base points over time')

        points = x0;
    end

    lambdainput = lambda0;
    delta = delta0;

    operation = 'initial point';
    unfinished = 1;
    while unfinished
        d = rand(n,1) - 0.5;
        d = d / norm(d);
        e = 2*(randi(2,n,1)-1.5);
        [~,i] = max(abs(d));
        lambdainput = beta*lambdainput;
        lambda = lambdainput^1.4;
        delta = betadelta*delta;

        if lambda < epsilon
            output.message = ['Optimisation terminated:' ...
                newline ' the lambda value satisfies the ' ...
                'termination criterium of ' ...
                num2str(epsilon,'%e') ' ' newline];
            exitflag = 1;
            break
        end

        if ~(funcCount >= MaxFunEvals || (iterations+1) >= MaxIter)
            v = gamma(i,d,e,x,lambda,alpha,fval);
            vbar = v;
        end

        while 1
            iterations = iterations+1;

            if iterations >= MaxIter
                output.message = ['Exiting: Maximum number ' ...
                    'of iterations has been exceeded' newline ...
                    '         - increase MaxIter option.' newline ...
                    '         Current function value: ' ...
                    num2str(bestfval,'%12.6f') ' ' newline ' '];
                exitflag = 0;
                unfinished = 0;
                break
            end

            if funcCount >= MaxFunEvals
                output.message = ['Exiting: Maximum number ' ...
                    'of function evaluations has been exceeded' ...
                    newline '         - increase MaxFunEvals ' ...
                    'option.' newline '         Current function ' ...
                    'value: ' num2str(bestfval,'%12.6f') ' ' ...
                    newline ' '];
                exitflag = 0;
                unfinished = 0;
                break
            end
            
            if strcmp(Display,'iter')
                fprintf([' %5.0f        %5.0f     %12.6g         ' ...
                    '%s\n'],iterations,funcCount,bestfval,operation)
            end

            if n == 2 && showgraph
                plot(x(1),x(2),'ro')
                points(:,end+1) = x; %#ok<AGROW> 
            end

            [vmin,~] = wolfe(vbar);

            normvmin = norm(vmin);
            if normvmin <= delta
                break
            end

            d = -vmin/norm(vmin);
            xlinelambda = x+lambda*d;
            fvallinelambda = evalcount(x+lambda*d);
            if fval-fvallinelambda >= c*lambda*normvmin
                step = normvmin;
                while 1
                    if step <= lambda
                        x = xlinelambda;
                        fval = fvallinelambda;
                        break
                    end
                    xline = x+step*d;
                    fvalline = evalcount(xline);
                    if fval-fvalline >= c2*step*normvmin
                        x = xline;
                        fval = fvalline;
                        break
                    end
                    step = 0.5*step;
                end

                vbar = [];
                d = rand(n,1) - 0.5;
                operation = 'serious step';
            else
                operation = 'null step';
            end

            [~,i] = max(abs(d));
            v = gamma(i,d,e,x,lambda,alpha,fval);
            if ~isempty(vbar) && isequal(vbar(:,end),v)
                break
            end
            vbar(:,end+1) = v; %#ok<AGROW> 
        end
    end

    if n == 2 && showgraph
        plot(points(1,:),points(2,:),'r--')
    end

    if strcmp(Display,'iter') && exitflag ~= 1
        fprintf(' %5.0f        %5.0f     %12.6g         %s\n', ...
            iterations,funcCount,bestfval,operation)
    end

    if strcmp(Display,'iter') || strcmp(Display,'final')
        fprintf('\n')
        fprintf(output.message)
        fprintf('\n')
    end

    if n == 2 && showgraph
        xl = xlim;
        yl = ylim;
        [X,Y] = meshgrid(xl(1):((xl(2) - xl(1))/500):xl(2), ...
            yl(1):((yl(2) - yl(1))/500):yl(2));
        C = arrayfun(@(varargin)fun([varargin{:}]).^(0.1),X,Y);
        im = imagesc(xl,yl,C);
        uistack(im,'bottom');

%         set(gcf,'Units','inches');
%         screenposition = get(gcf,'Position');
%         set(gcf,...
%             'PaperPosition',[0 0 screenposition(3:4)],...
%             'PaperSize',[screenposition(3:4)]);
%         print -dpdf -vector filename
    end

    output.iterations = iterations;
    output.funcCount = funcCount;
    output.algorithm = 'Discrete Gradient Method';
end


