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Abstract

This thesis investigates the free vibration characteristics of submerged pipe-like structures

using multiple added mass approaches. Traditional methods rely on constant added mass

factors, which may lack accuracy for complex structures, particularly those with bends and

multi-plane topology. To address this, the coupled acoustic-structural approach (CASA) is em-

ployed to verify the natural frequencies of submerged structures. The simulated CASA results

are compared with experimental data for verification. Four experiments involving different

geometric objects are chosen—a straight pipe, cantilever plates, a stiffened cylindrical shell,

and a disk. CASA accurately predicts the first three eigenvalues compared to experimental

results. It successfully simulates bending, torsional, twisting, ovality, and stretching mode

shapes, with less than ten per cent differences compared to experimental results. Further-

more, various added mass approaches are investigated and compared to the CASA results.

These approaches include the lumped mass, increased density, nonstructural mass, and

ABAQUS/Aqua. ABAQUS and MATLAB are utilized for eigenvalue and mode shape simula-

tions. Shell, beam, and elbow elements are employed to model the structures in the added

mass approaches, while solid elements are used in the CASA models. The investigation covers

a straight pipe, two single-planar jumpers, and two multi-planar jumpers.

The results indicate that adding mass to shell elements leads to inaccurate eigenvalue pre-

dictions compared to CASA. Torsional eigenvalues of the straight pipe and in-plane bending

modes of single-planar jumpers cannot be correctly simulated using shell elements. However,

shell elements perform well for lateral and out-of-plane bending modes. The results improve

for multi-planar jumpers but still exhibit differences exceeding 16 per cent. On the other

hand, adding mass with ABAQUS/Aqua to beam and elbow elements yields the most accurate

results for single-planar jumpers, with differences compared to CASA below one per cent

for all eigenfrequencies. For the straight pipe, it accurately predicts eigenfrequencies for

both lateral bending and torsional modes. However, similar to shell elements, it encounters

challenges in simulating multi-planar jumpers, accurately capturing eigenfrequencies for

only one of the cases. Finally, a cost-effectiveness analysis is performed to assess the efficiency

of different added mass approaches. Beam and elbow elements are thousands of times faster

than CASA and several times faster than shell elements while demonstrating comparable
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memory usage.

Additionally, the effects of added mass on bend ovalities are examined using CASA and the

nonstructural mass approach. The eigenfrequencies exhibit slight increases due to thickness

changes and significant decreases when the cross-section changes.
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Chapter 1

Introduction

1.1 Background

The offshore industry is moving functionality from the platform to the bottom of the sea

to achieve even greater productivity levels on smaller, less accessible oil and gas fields. As

a result, subsea developments are the preferred solution for developing oil and gas fields

in deep waters, marginal fields, and long step-out distances. These production facilities,

located on the seabed, are called subsea factories. These factories use advanced technology

to separate oil, gas, and water from the extracted mixture and then transport the oil and gas

to the surface via pipelines.

A subsea production system has several vital components, as shown in Figure 1.1b. Manifolds

connect multiple pipelines and allow the flow of oil, gas, and other fluids to be directed to

and from different locations. Trees, also known as Christmas trees, are devices used to control

the flow of oil and gas from the wellhead on the seafloor. Export sledges connect the subsea

production system to a pipeline carrying the oil and gas to an onshore processing facility.

These components are critical for offshore oil and gas production, enabling companies to

safely and efficiently extract and transport valuable resources from beneath the ocean floor.

Over the years, different tie-in systems have been used to develop subsea facilities. Nowadays,

subsea jumpers, shown in Figure 1.1a, are commonly used in various subsea oil and gas

production systems, as explained by Kim (2015) [2]. A subsea jumper is a type of short pipe
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(a) Typical M-shaped jumper, Li et al. (2022) [1]

(b) Subsea production system connected with jumpers, by Aker Solutions AS.

Figure 1.1: Subsea jumpers

connector that transfers production fluid between two subsea components, such as a tree

and manifold, manifold and manifold, or manifold and export sledge, as seen in Figure 1.1.

To connect flow lines, umbilicals, and other applications in service, various horizontal and

vertical tie-in systems and their corresponding connection tools are used [3].

The free vibration characteristics of subsea jumpers are essential inputs for the fatigue as-

sessment caused by VIV (vortex-induced vibration), see Liu et al. (2019) [4]. Traditionally,

the subsea jumpers are simulated by beam elements in commercial software like ANSYS,

ABAQUS, or equivalents. However, it is recently found that the beam elements may incorrectly

predict the free vibration modes due to the existence of bends [5]. This is a continuation of
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previous studies focusing on using more advanced elements, e.g., shell and acoustic elements.

Subsea jumpers are designed with bends, to accommodate potential thermal expansion,

making them multi-planar structures. However, calculating their dynamic responses and

free vibration characteristics can be challenging. During the manufacturing process, the

bending of the straight mother pipe causes significant cross-sectional out-of-roundness at

the curve centre (2.5 % ovality or higher) and wall thickness variation along the curve length

(intrados wall thickening and extrados wall thinning) [6]. Ovality refers to the deviation of a

cross-section from circularity, while thinning/thickening refers to the variation in thickness

[7]. These changes may alter the eigenvalues and modes depending on the cross-section

change. In Figure 1.2, the left picture shows an M-shaped jumper with bends (curved pipe

part), and the right picture shows a jumper with mitre welds instead of bends.

Figure 1.2: Rigid jumper configurations, Koto (2017) [8]



4 CHAPTER 1. INTRODUCTION

1.2 Aim and scope of the thesis

This thesis will conduct a comparative study on the free vibration characteristics of sub-

merged pipe structures. The CASA will be used to simulate the added mass effect, which is a

reliable but expensive method. The aim is to compare it with more cost-effective added mass

approaches and develop a method that is as reliable as CASA but much less expensive.

This work uses beam, shell, and solid elements in the commercial software ABAQUS to pro-

duce natural frequencies and mode shapes for submerged pipe-like structures. ABAQUS [9]

is used to do the simulation due to its strong flexibility in handling acoustic and structural

elements. The lumped mass, nonstructural mass, increased density, and ABAQUS/Aqua

approaches are performed to cost-effectively simulate the added mass effects. A solution

for effective modelling will be presented with verification by comparing the results with

CASA for submerged straight pipes and jumpers. Numerical models for submerged deformed

bends will be investigated to understand how the added mass effects of the ovality of bends

may change the eigenvalues and -modes depending on the rate of change of the cross-section.

The thesis is organized as follows: Chapter 2 presents the relevant theory and methodology.

Chapter 3 presents the validation of CASA. Chapter 4 studies the added mass effects on a

submerged straight pipe. Chapter 5 studies the added mass effects of the ovality of bends.

Chapters 6 and 7 present two cases of single-planar and multi-planar jumpers, respectively,

where different added mass approaches are studied and compared to CASA. Chapter 8 is a

discussion, and the conclusions are given in chapter 9.

For each case, the structure modelling is presented first, followed by the results of the same

case immediately afterwards. Mesh convergence studies are conducted on the structures

in a vacuum for every case, using five mesh schemes to determine the optimal number of

elements for accuracy and computational efficiency. The CASA cases involve two studies, one

on the object in a vacuum and one on the acoustic elements representing the water domain.

Results analysis determines the range of elements for a good balance between accuracy and

efficiency. A final mesh scheme is selected based on these considerations.
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1.3 Literature study

Ross (2001) has shown that the resonant frequencies of thin-walled structures decrease sig-

nificantly when the structures are submerged in water, which is due to the existence of

surrounding water [10]. When submerged in water, a structure’s vibration is impacted by

added mass, damping, and stiffness [11, 12]. Added mass refers to the mass of fluid that is

accelerated by the structure’s movement. Added stiffness refers to how the restoring force

changes when the structure deflects. Finally, added damping is the energy that is taken from

the structure by the fluid flow. It is important to note that added stiffness can typically be

disregarded, but added mass and damping should be addressed as they are significant factors

[13].

The idea of added mass is a way to simplify how the surrounding water affects the interaction

between fluids and structures. [14, 15, 16, 17]. Blevins (2001) formulated the added mass term

as a velocity potential function around vibrating structures [18]. Kramer et al. (2013) adopted

Blevins’s added mass term, originally formulated for analyzing the vibration of a submerged

beam, to study the free vibration of submerged composite plates [19]. They used an analytical

model based on composite beam and strip theory, making potential flow assumptions for

the added mass. Their findings revealed that the added mass approach might not accurately

predict eigenvalues for submerged plates with low aspect ratios (length/width). However,

the predictions were in good agreement for plates with larger aspect ratios that resemble a

beam-type geometry.

When analyzing the water effect on submerged disk and plate structures, the Raleigh-Ritz

method is commonly used due to its ability to account for changes in mode shape. Using

an empirical added mass formulation, Liang et al. (2001) presented a simple procedure and

Rayleigh–Ritz method to analyze the vibration frequencies and mode shape of submerged

cantilever plates [20]. The results were compared with Lindholm et al. (1962)’s experimental

results and numerical data from pertinent literature [21]. According to that comparison, the

error percentage remains nearly constant at 5 % in air and 10 % in water. Jeong et al. (2009)

provided a theoretical method for a hydroelastic vibration of a clamped circular plate partially

in contact with a liquid [22]. The Rayleigh-Ritz method is used to find the eigenvalue equation
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of the system, which helps calculate the wet natural frequencies and mode shapes for both

symmetric and asymmetric modes. It was verified that the theoretical approach, based on

an ideal liquid assumption and a half-liquid-contacting clamped plate, could predict the

coupled natural frequencies well.

While the concept of added mass has been used to idealize the fluid-structure interaction (FSI)

in numerical studies, others have adopted a more elaborate approach, namely the “coupled

acoustic-structural approach” (CASA), in their numerical simulations [23]. In this approach,

the coupling is a hybrid type where the oscillations of the structure act as a force on the

acoustic medium, and the acoustic velocity induces oscillations on the structure. These

structural acoustic models have gained significant attention in engineering and mathematical

literature, see [24, 25, 26, 27, 28, 29, 30] and references therein. Analytical solutions for cou-

pling problems are only accessible for models with simple geometries. Therefore, numerical

methods are commonly used to solve practical problems involving complicated geometries

and boundary conditions [31].

Rodriguez et al. (2012) used a numerical CASA model, checked its accuracy, determined its

capability to predict natural frequency reduction due to nearby rigid surfaces, and compared

this model against experimental data of submerged cantilever plates [32]. The researchers

discovered that CASA could predict the natural frequencies of submerged structures near

rigid surfaces with an average absolute error of 2.5 % in a frequency range of 0 Hz to 5000 Hz.

Razi and Taheri (2014) ran numerical CASA simulations, and experimental verifications of

a vibration-based damage detection strategy for health monitoring of submerged pipelines’

girth-welds were presented [33]. This study used Piezoelectric transducers as both actuators

and sensors to cause and measure pipe vibration. The researchers compared the results of

their numerical simulations to experimental results and found that the damage detection

measurements were similar in both cases. Razi and Taheri (2015) used Blevins’ added mass

formulation and the CASA to run numerical vibration analyses on a submerged straight pipe.

The differences were limited to below 2 % in the lateral modes, whereas for the torsional mode,

the differences approached 20 % [34]. The significant difference was due to the restricted

assumption used in the added mass approach. Regarding the torsional mode, the pipe hardly

interacts with the water around it, and its eigenvalues should be the same as if it were in the
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air. Although the CASA was able to replicate this accurately, the added mass approach was

not successful. The Zeinoddini et al. (2012) study focused on the seismic behaviour of a free-

spanning submarine pipeline [35]. They created a numerical finite-element model and tested

the conventional added mass approach and the CASA method. The results showed that the

simplified added mass approach was less accurate in predicting the free-spanning pipeline

response than the CASA method. Zhang and Chen (2022) conducted numerical simulations

using CASA to explore the impact of submerged blade disk structures’ added mass effect

[36]. The study discovered that different parts of the submerged blade disk structure could

experience varying average added mass factors. This caused certain mode shapes, with

significant blade disk interactions, to undergo significant changes when transitioning from

vacuum to water, affecting the ideal design of submerged blade disk structures.
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Chapter 2

Theory and methodology

This chapter provides the fundamental theory of the different methods used to simulate the

free vibration. The models have been developed in ABAQUS [9] and MATLAB [37]. Beam,

shell and solid elements compare the eigenvalues of a submerged straight pipe, bend, and

jumpers. Various added mass approaches and the CASA are being used. The main parameters

used in finite elements (FE) and added mass analysis are discussed here.

2.1 Added Mass

Considering a spring-supported cylinder in a reservoir of otherwise stationary fluid, the

cylinder can vibrate in the reservoir of an otherwise stationary ideal fluid. In this case, the

cylinder is acted on only by the added mass force [18]. The equation of motion of the spring-

supported cylinder responding to the fluid force is as follows

m
(
d 2X (t )

)
d t 2

+k X (t ) =−ρπr 2 dU (t )

d t
(2.1)

where X (t) is the position of the cylinder, m is the mass per unit length, k is the spring

constant per unit depth, r is the cylinder radius, U (t ) is stream flow, and ρ is the fluid density.

Substituting U (t ) = d X /d t , Equation (2.1) can be rearranged to give

(m +ρπr 2)
d 2X (t )

d t 2
+k X (t ) = 0 (2.2)

In essence, the surrounding fluid imposes some extra mass onto the structure, or equivalently,
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the cylinder imparts part of its acceleration to the surrounding medium. The term ρπr 2 is

called the added mass, and, as shown in Blevins (2001), only applies to lateral bending for

cylinders with circular or elliptic cross sections [18]. In general, added mass can be associated

with the translation and rotation of a body. Blevins (1984) shows that for torsional vibration,

the added mass moment of inertia is zero for objects with a circular cross-section [38].

During dynamic analysis, the effective structural mass increases due to the added mass of the

fluid. The magnitude of the effect depends on the density of the fluid relative to the structure’s

mass. Thus, added mass is more significant in dense fluids like water rather than gases. When

a rigid three-dimensional body accelerates from rest in a stationary fluid reservoir, the added

mass force F j is the total of all six rigid body accelerations’ associated added mass forces

F j =−
6∑

i=1
Mi j

dU (t )

d t
(2.3)

where Mi j is the added mass matrix and i and j range over three translational orthogonal

coordinates and three rotations about these coordinates. Theoretical principals show that the

added mass matrix is symmetric, Mi j = M j i [39].
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2.2 Finite element formulation of beam models

The jumpers can vibrate, bend, and rotate in three different dimensions. Consequently, the

formulation of the beam element must also be three-dimensional, as shown in Figure 2.1.

Figure 2.1: Three-dimensional local beam element with coordinate system and nodal degrees
of freedom, Lund Univerity (2022) [40]

The pipes formulated with beam elements are assumed to be straight with a uniform cross-

section capable of resisting axial forces, bending moments, and twisting moments around its

centroidal axis. From Przemieniecki (1985), the stiffness axial, shearing, bending and twisting

coefficients k are [41]

kaxi al =±E Ii

L
(2.4)

kt wi st =±G J

L
(2.5)

kshear1 =± 12E Ii

L3(1+Θ)
(2.6)

kshear2 =± 6E Ii

L2(1+Θ)
(2.7)

kbend1 =± 6E Ii

L2(1+Θ)
(2.8)
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kbend2 =± (4+Θ)E Ii

L(1+Θ)
(2.9)

kbend3 =± (2−Θ)E Ii

L(1+Θ)
(2.10)

where E is the longitudinal elasticity modulus, G is the transversal elasticity modulus, Ii is the

moment of inertia on the i axis, A is the cross section area, L is the beam length, and J is the

torsional inertia of the element. Θ represents the shear parameters as

Θ= 24(1+ v)
A

As
(

rg

L
)2 (2.11)

The effective shear cross-sectional area As = A for a hollow cylinder and rg in is the radius of

gyration which can be calculated as

rg =
√

Ii

A
(2.12)

If the ratio of the radius of gyration to element length rg /L is small compared to unity,Θ can

be assumed to be zero. Combining Equation (2.4) to Equation (2.10), the stiffness element

matrix Ke used to estimate the eigenvalues of the pipe with 3D beam elements is shown as

follows

Ke =
K11 K12

K21 K22

 (2.13)

where

K11 =



E A
L 0 0 0 0 0

0 12E Iz
L3(1+Θ)

0 0 0 6E Iz
L2(2+Θ)

0 0
12E Iy

L3(1+Θ)
0

6E Iy

L2(1+Θ)
0

0 0 0 G J
L 0 0

0 0
−6E Iy

L2(1+Θ)
0

(4+Θ)E Iy

L(1+Θ) 0

0 6E Iz
L2(1+Θ)

0 0 0 (4+Θ)E Iz
L(1+Θ)


(2.14)
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K21 =



−E A
L 0 0 0 0 0

0 −12E Iz
L3(1+Θ)

0 0 0 −6E Iz
L2(1+Θ)

0 0
−12E Iy

L3(1+Θ)
0

6E Iy

L2(1+Θ)
0

0 0 0 −G J
L 0 0

0 0
−6E Iy

L2(1+Θ)
0

(2−Θ)E Iy

L(1+Θ) 0

0 6E Iz
L2(1+Θ)

0 0 0 (2−Θ)E Iz
L(1+Θ)


(2.15)

K22 =



E A
L 0 0 0 0 0

0 12E Iz
L3(1+Θ)

0 0 0 −6E Iz
L2(1+Θ)

0 0
12E Iy

L3(1+Θ)
0

−6E Iy

L2(1+Θ)
0

0 0 0 G J
L 0 0

0 0
6E Iy

L2(1+Θ)
0

(4+Θ)E Iy

L(1+Θ) 0

0 −6E Iz
L2(1+Θ)

0 0 0 (4+Θ)E Iz
L(1+Θ)


(2.16)

K12 = K21
T (2.17)

Following the same methodology and order used in constructing the stiffness matrix, the

mass element matrix Me used to estimate the eigenvalues of the pipe with 3D beam elements

is given as follows, see Przemieniecki (1985) [41]

Me = ρAL

M11 M12

M21 M22

 (2.18)

where

M11 =



1
3 0 0 0 0 0

0 13
35 +

6Iy

5AL2 0 0 0 11L
210 + Iy

10AL

0 0 13
35 +

6Iy

5AL2 0 −11L
210 − Iy

10AL 0

0 0 0 Jx
3A 0 0

0 0 −11L
210 − Iy

10AL 0 L2

105 + 2Iz
15A 0

0 11L
210 + Iy

10AL 0 0 0 L2

105 + 2Iz
15A


(2.19)
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M21 =



1
6 0 0 0 0 0

0 9
70 − 6Iz

5AL2 0 0 0 13L
420 − Iz

10AL

0 0 9
70 − 6Iz

5AL2 0 −13L
420 + Iz

10AL 0

0 0 0 Jx
6A 0 0

0 0 13L
420 − Iz

10AL 0 − L2

140 −
Iy

30A 0

0 −13L
420 + Iz

10AL 0 0 0 − L2

140 −
Iy

30A


(2.20)

M22 =



1
3 0 0 0 0 0

0 13
35 +

6Iy

5AL2 0 0 0 −11L
210 − Iy

10AL

0 0 13
35 +

6Iy

5AL2 0 11L
210 + Iy

10AL 0

0 0 0 Jx
3A 0 0

0 0 11L
210 + Iy

10AL 0 L2

105 + 2Iz
15A 0

0 −11L
210 − Iy

10AL 0 0 0 L2

105 + 2Iz
15A


(2.21)

M12 = MT
21 (2.22)

where ρ is the material density.

Equation (2.13) and Equation (2.18) represent element matrices in Timoshenko beams, which

apply theory for shear-dominated (or short) beams. In contrast, the Euler–Bernoulli beam

theory is used to model the behaviour of flexure-dominated (or long) beams [42]. To trans-

form Equation (2.13) and Equation (2.18) into Euler–Bernoulli element matrices, the shear

parameter Θ, described in Equation (2.11), and the last terms in the mass matrix are set to

zero. Euler–Bernoulli element matrices are formulated by Hidalgo (2014) [43].

In order to obtain the eigenvalues of the beam, Ke and Me must be expressed in global

coordinates. The equation of motion for free vibration becomes

MD̈+KD = 0 (2.23)

where D̈ is the acceleration vector, D is the displacement vector, and K is the total system

stiffness matrix. M is the total system mass matrix given by
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M = Me +MH ydr oD (2.24)

The hydrodynamic mass matrix MH ydr oD is the added mass matrix from the surrounding

water. The density in the hydrodynamic mass matrix can be calculated by

ρH ydr oD = mTot +mAdded M ass

Vp
(2.25)

where mTot is the total mass of the pipe, and Vp is the volume of the pipe. mAdded M ass for a

pipe is given as

mAdded M ass = ρ f π
D2

4
LTot (2.26)

where ρ f is the density of the surrounding fluid, LTot is the total length of the pipe

A lumped mass matrix could be used for the added mass matrix MAdded . It is a diagonal

matrix obtained by summing rows of the matrix in Equation (2.18) [44]. The discrete masses

are chosen in such a way that the total mass of the element is preserved.

MAdded = 1

2
ρ f AL

 MD
11 [0]6x6

[0]6x6 MD
22

 (2.27)

where

MD
11 =



MD
1,1 0 0 0 0 0

0 MD
2,2 0 0 0 0

0 0 MD
3,3 0 0 0

0 0 0 MD
4,4 0 0

0 0 0 0 MD
5,5 0

0 0 0 0 0 MD
6,6


(2.28)
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MD
22 =



MD
7,7 0 0 0 0 0

0 MD
8,8 0 0 0 0

0 0 MD
9,9 0 0 0

0 0 0 MD
10,10 0 0

0 0 0 0 MD
11,11 0

0 0 0 0 0 MD
12,12


(2.29)

where MD
ii is the sum of the respected row in the matrix in Equation (2.18). Blevins (2001)

showed that the added mass for lateral acceleration is equal to Equation (2.26) [18], while

Blevins (1984) showed that the torsional added mass moment of inertia coefficient was equal

to zero [38]. The water will have zero torsional added mass contribution on hollow cylinders.

Hence the twisting moments are removed in Equation (2.27) and MD
44 = 0 and MD

1010 = 0.

In order to obtain a valid expression in the form of Equation (2.23), M and K have to be

expressed in global coordinates. No transformation matrix is needed in a straight pipe that is

modelled in only one direction. However, in a jumper, the elements are rotated relative to

each other, and each local element and mass matrix must be transformed to relate to a global

coordinate system. The element and mass relations are transformed into global coordinates

by performing the transformations

Mg c (i ) = TT M(i )T

Kg c (i ) = TT K(i )T
(2.30)

prior to assembly. The subscript g c indicates that the local matrices are expressed in global

coordinates. The transformation matrix is given by

T =


R [0]3x3 [0]3x3 [0]3x3

[0]3x3 R [0]3x3 [0]3x3

[0]3x3 [0]3x3 R [0]3x3

[0]3x3 [0]3x3 [0]3x3 R

 (2.31)

The rotation matrix R contains direction cosines computed as [40]
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R =


nxx̄ ny x̄ nzx̄

nx ȳ ny ȳ nz ȳ

nxz̄ ny z̄ nzz̄

 (2.32)

where

nxx̄ = x2 −x1

Lt
(2.33)

ny x̄ = y2 − y1

Lt
(2.34)

nzx̄ = z2 − z1

Lt
(2.35)

nxz̄ = xz̄

L z̄
(2.36)

ny z̄ = y z̄

L z̄
(2.37)

nzz̄ = zz̄

L z̄
(2.38)

nx ȳ = ny z̄nzx̄ −nzz̄ny x̄ (2.39)

ny ȳ = nzz̄nxx̄ −nxz̄nzx̄ (2.40)

nz ȳ = nxz̄ny x̄ −ny z̄nxx̄ (2.41)

Lt =
√

(x2 −x1)2 + (y2 − y1)2 + (z2 − z1)2 (2.42)

L z̄ =
√

xz̄2 + y z̄2 + zz̄2 (2.43)

The variables xi , yi , and zi are the element nodal coordinates, and (xz̄ , y z̄ , zz̄) is a global

vector parallel with the positive local z-axis, given in Figure 2.1. The global mass and stiffness

matrices, MGl obal and KGl obal , respectively, are then created by summing the local stiffness

and mass matrices with global coordinates, Kgc and Mgc, according to the direct stiffness

method as follows, see Cook et al. (2002) [45]

MGl obal (i ) =∑
Mg c (i )

KGl obal (i ) =∑
Kg c (i )

(2.44)

After the assembly process, boundary conditions can be applied by setting the relevant degrees
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of freedom to zero in the global stiffness matrix.

2.3 Finite element formulation of a shell element

An eight-noded curved isoparametric finite element is used to formulate the free vibration of

shells. The element can be described in a coordinate system, as shown in Figure 2.2, where η

and ξ are curvilinear coordinates in the shell mid-surface and ζ is the linear coordinate in the

thickness direction. The shape functions Ni for the elements are given by [46]

Ni = 1

4
(1+ξξi )(1+ηηi )(ξξi +ηηi −1) (2.45)

at the corner nodes, and

Ni = 1

2
(1−ξ2)+ (1+ηηi ),

Ni = 1

2
(1+ξξi )+ (1−η2)

(2.46)

at the middle nodes. The displacements at each node are three translations u, v, w in the

directions of the local coordinates and two rotations α,β. This makes 40 degrees of freedom

for each element.

Figure 2.2: Schematic of a curved shell element, Zhai et al. (2017) [47]

The element stiffness matrix is calculated in two parts as
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Ke = Ke
1 +Ke

2 (2.47)

This is due to additional matrices obtained from the strain energy similar to those given in

Kumbasar and Aksu (1995) [48]. The matrices Ke
1 and Ke

2 represent the bending and shear

effect element stiffness matrix and additional element stiffness matrix, respectively. The

bending and additional terms are integrated according to the standard rule in selective re-

duced integration. In contrast, the shear term is integrated according to a lower-order rule

[49, 50, 51].

From Zhai et al. (2017), the generalized and nodal velocity vectors are related with the help of

shape functions as [47]

q̇e =Σn
i=1Nq̇i

e (2.48)

where q̇e
i is velocity components listed as:

q̇i = {u̇v̇ ẇα̇β̇}T (2.49)

where u̇, v̇ , and ẇ are the tangential and normal velocity components of the middle surface,

and α̇ and β̇ are the rotational velocities. The kinetic energy is obtained in the matrix form as

follows

T = 1

2
q̇i

eT Me q̇i
e (2.50)

where the mass matrix of the element, Me is given by

Me =
∫

A
NT PNd A (2.51)

where N and P are shape and inertia function matrices, respectively. The inertia matrix is
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P =



ρI1 0 0 ρI2 0

0 ρI1 0 0 ρI2

0 0 ρI1 0 0

ρI2 0 0 ρI3 0

0 ρI2 0 0 ρI3


(2.52)

where ρ is the mass density, I1 is the in-plane inertia effects, and I3 is the rotary inertia effects.

I2 is additional terms related to thickness stored outside the diagonal line. The equation of

motion for one element becomes

Me q̈i
e +Ke qi

e = 0 (2.53)

Where q̈i
e and qi

e are the vectors of unknown accelerations and displacements, respectively.

For the entire domain, the equation of motion is

Mq̈i +Kqi = 0 (2.54)

The general solution of Equation (2.54), assuming harmonic motion, are

q = Asi n(ωt +θ) (2.55)

where ω and A are the natural frequencies and vibration modes, respectively. Substituting

Equation (2.55) into Equation (2.54), the equation of motion for free vibrations can be written

in the following form

(
K−ω2M

)
A = 0 (2.56)
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2.4 Elbow elements in ABAQUS

The design of piping systems heavily relies on elbows for flexibility, especially in response to

thermal strains. Elbows exhibit shell-like behaviour, causing significant ovalization of the pipe

cross-section and enabling elastic flexibility 5-20 times greater than straight pipes in bending

[9]. Despite this understanding, the analysis of piping elbows remains challenging and costly

due to the complex shell structure and severe stress gradients. Efforts to model piping elbows

have included shell elements with various interpolation methods such as piecewise cubic [52]

and Fourier series [53, 54]. Developments, such as implementing the classical von Karmann

approach, using Fourier series for tangential displacements, and piecewise Lagrange cubic

interpolation along the pipe, have shown promise in enabling detailed inelastic analysis of

pipelines while balancing computational efficiency [55].

In ABAQUS, the experiences and insights have informed the development of a capability for

detailed inelastic analysis of pipelines, striving for a reasonable balance between accuracy and

computational cost. By leveraging the shell-like behaviour of pipe bends and considering the

mild strain gradients along the pipe, the geometric modelling of elbow elements in ABAQUS

optimizes the efficiency of nonlinear analysis for piping systems.

To model ovalization, it is assumed that the uniform radial expansion ur is [9]

ur =
M∑

m=1
H m(S)(ur

V )m

+
M∑

m=1

P∑
p=1

H m(S)Qs ym(pφ)(ur
I )m

p

+
M∑

m=1

P∑
p=1

H m(S)Qas ym(pφ)(ur
0)m

p

(2.57)

where φ and S are material coordinates shown in Figure 2.3, H m(S) is a linear polynomial in-

terpolation function, P gives the order of Fourier interpolation, and Qs ym(pφ) and Qas ym(pφ)

are
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Qs ym(pφ) =


cos(pφ) for p even

si n(pφ) for p odd

Qas ym(pφ) =


si n(pφ) for p even

cos(pφ) for p odd

(2.58)

The uniform transverse expanansion ut is

ut =
M∑

m=1

P∑
p=2

H m(S)Qas ym(pφ)(ut
I )m

p

+
M∑

m=1

P∑
p=2

H m(S)Qs ym(pφ)(ut
0)m

p

(2.59)

and expansion for the direction n, γ3 is

γ3 =
M∑

m=1
H m(S)(γ3

V )m

+
M∑

m=1

P∑
p=1

H m(S)Qs ym(pφ)(γ3
I )m

p

+
M∑

m=1

P∑
p=1

H m(S)Qas ym(pφ)(γ3
0)m

p

(2.60)

Linear polynomials are chosen for H m(S) to implement the formulation, referred to as element

ELBOW31, and are the lowest order possible for such interpolation.
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Figure 2.3: Elbow geometry [9]
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2.5 Added mass approaches in ABAQUS

In ABAQUS, four different cost-effective approaches are tested to achieve added mass effects.

It can be achieved with lumped masses (evenly distributed on the outer surface assigned to its

corresponding nodes), nonstructural mass assigned to the model, increased material density,

and the ABAQUS/Aqua command [9].

2.5.1 The lumped mass approach

For the lumped mass approach, point masses are created and evenly distributed on the outer

surface of the model. First, a set containing all the model nodes is created. Then, using

Equation (2.26), the added mass is determined and the magnitude is divided by the number

of nodes and assigned to each point mass. To connect the lumped masses to the model, a tie

constraint, with the nodes as slaves and the model surface as master, must be created. The

point masses are then associated with the node’s three translational degrees of freedom.

2.5.2 The nonstructural mass approach

A nonstructural mass contributes to the model mass from features with negligible structural

stiffness [9]. It brings the net mass of the model to a known value. The nonstructural mass is

spread over elements typically adjacent to the nonstructural feature and can be used on solid,

shell, membrane, surface, beam, or truss elements. The nonstructural contribution affects

the element mass and rotary inertia when a nonstructural mass is added to a shell or beam

element with active rotational degrees of freedom. In ABAQUS, using a nonstructural mass

definition to include the additional mass is generally easier than the lumped mass method. It

is also more beneficial due to a higher time increment. The nonstructural feature is assumed

to have no damping associated with it.

The value of the nonstructural mass is specified by using Equation (2.26). The total nonstruc-

tural mass is then distributed evenly over the region.
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2.5.3 The increased density approach

The structural mass m and volume V are calculated using the model’s mechanical properties

and dimensions. After calculating the added mass mAdded M ass with Equation (2.26), a new

material density can be determined as in

ρNew = m +mAdded M ass

V
(2.61)

Since ABAQUS has no built-in dimensions, ensuring that the density is given in consistent

units is essential. The new structural mass is then the same as the sum of the old and added

mass.

2.5.4 The ABAQUS/Aqua command approach

The ABAQUS/Aqua command is an additional feature in ABAQUS that calculates drag and

buoyancy loads for offshore piping and floating platform structures [9]. It can model the

effects of steady current, wave, and wind and has specific tools to analyze underwater beam-

like structures subjected to water and wave loads [56]. This feature is suitable for structures

that can be represented using line elements such as beam, pipe, and elbow. The added mass

contribution due to distributed fluid inertia loading is

mAdded = ρw
πD2

4
C A (2.62)

per unit length of the member in the directions transverse to the axis of the member-only

where ρw is the mass density of the fluid, D is the effective outer diameter of the member,

and C A is the transverse added-mass coefficient [9].
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2.6 Coupled acoustic-structural approach (CASA)

The problem of structure-fluid interaction is broad and covers many fluid forms. Suppose

there are structural movements that affect and interact with the generation of pressure in a

reservoir or container. In that case, it is possible to create the linearized dynamic equations of

fluid behaviour around the hydrostatic state, as stated in [57].

δ(ρv)

δt
≈ ρ0

δv

δt
=−∇p +b (2.63)

where v is the fluid velocity, ρ is the fluid density, ρ0 is the fluid density in the hydrostatic

state, p is the pressure, b is the body force of gravity.

Numerical methods like the standard Galerkin discretization approach are used to solve the

free vibration of a pipe in an acoustic medium. This involves applying the weak form of the

fluid equation. The dynamics of the acoustic medium can be represented through this weak

form as

δ
∏

f
=

∫
Ω f

δp

[
1

c2
p̈ −∇2p

]
dΩ= 0 (2.64)

where

c =
√

K

ρ0
(2.65)

and K is the bulk modulus of the fluid. By integrating by parts Equation (2.64) can be expanded

to the following equation

∫
Ω f

[
δp

1

c2
p̈ − (∇δp)T (∇p)

]
dΩ+

∫
Γ1

δpρ0nT üdΓ+
∫
Γ3

δp
1

c
p̈Γ+

∫
Γ4

δp
1

c
ṗΓ (2.66)

where Ω f is the fluid domain, Γi is the integral over the boundary part. In order to solve

Equation (2.66) for a discrete domain, the nodal acoustic pressure and the displacement are

approximated by



2.6. COUPLED ACOUSTIC-STRUCTURAL APPROACH (CASA) 27

u ≈ Nuũ

p ≈ Np p̃
(2.67)

Where ũ and p̃ are the nodal parameters of each field. Nu and Np are appropriate shape

functions. The discrete structural problem becomes

M ¨̃u+C ˙̃u+Kũ−Qp̃+ f = 0 (2.68)

where the coupling term arises due to the pressures specified on the boundary as

∫
Γt

δNT
u tdΓ= Qp̃ (2.69)

and

S ¨̃p+ C̃ ˙̃p+Hp̃+ρ f QT ¨̃u = 0 (2.70)

where

Q =
∫
Γt

δNT
u nNp dΓn

S =
∫
Ω f

NT
p

1

C 2
Np dΩ

C̃ =
∫
Γ f

NT
p

1

C
Np dΓ

H =
∫
Ω f

(∇Np
)T ∇Np dΩ

(2.71)

Matrices could then represent the free vibration of the coupled system. If free vibrations are

considered, and all force and damping terms are omitted, the two equations Equation (2.68)

and Equation (2.70) can be set as

 M 0

ρ0QT S

 ¨̃u

¨̃p

+
K −Q

0 H

ũ

p̃

= 0 (2.72)
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The problem above is comparable to the one that arises in the vibration of rotating solids.

Fortunately, there are available solution methods. Ohayon proposed a straightforward method

to achieve the objective of symmetrization by implementing ũ = ŭe−iωt , p̃ = p̆e−iωt and

rewriting Equation (2.72) as [58]

Kŭ−Qp̃−ω2Mŭ = 0

Hp̃−ω2Sp̃−ω2ρ0QTŭ = 0
(2.73)

and an additional variable q̆ such that

p̆ =ωq̆ (2.74)

After some substitution and manipulation, the new system can be written as




K 0 0

0 1
ρ0

S 0

0 0 0

−ω2


M 0 Q

0 0 1
ρ0

S

QT 1
ρ0

ST − 1
ρ0

H





ŭ

p̆

q̆

= 0 (2.75)

Which is a symmetric generalized eigenvalue problem.
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Chapter 3

Validations of CASA

This chapter tries to evaluate the CASA in modal analysis comprehensively. ABAQUS is used to

do the simulation due to its strong flexibility in handling the interface between acoustic and

structural elements [9]. Four experiments have been analyzed, and the results are summarized

and discussed [59].

3.1 Submerged straight pipe

Razi and Taheri (2014) presented numerical simulations and experimental verification of a

vibration-based damage detection technique [33]. Before beginning the damage detection

process, an experimental study was conducted in a laboratory tank to confirm the accuracy of

the numerical model. Soft elastic ropes, mimicking a free-free boundary condition, were used

to suspend an aluminium pipe in the tank. A chirp signal was propagated along the line using

a piezoelectric transducer, and the pipe’s vibration was recorded by another piezoelectric

sensor, producing a voltage signal. The numerical model used was CASA, and the pipe’s forced

vibration signals from both the experiment and model were analyzed using a fast Fourier

transform (FFT) to determine the submerged line’s eigenvalues.

The straight pipe is modelled with 22000 linear hexahedral elements of type C3D8 (An 8-node

linear brick [9]) and 33132 nodes. The translational degrees of freedom of the elements at

both ends of the pipe are restrained to account for a clamped-clamped boundary condition.

Table 3.1 shows the pipe’s mechanical properties and dimensions.
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Figure 3.1: Finite element model of the submerged straight pipe

Table 3.1: Mechanical properties and dimensions for the aluminium pipe

Properties Value Unit

Elastic modulus 68.9 GPa
Density 2700 kg/m3

Poisson’s ratio 0.3 -
Length 1.0 m
Outer diameter 60.0 mm
Wall thickness 5.2 mm

ABAQUS’s acoustic element, AC3D20 (A 20-node quadratic acoustic brick), is used to model

the water. The surrounding medium and internal fluid are modelled with 5544 elements

with 25508 nodes and 3200 elements with 4141 nodes, respectively, as shown in Figure 3.1.

Water’s density and bulk modulus values are 997 kg/m3 and 2.13 GPa, respectively. A radiation

boundary condition is used as an exterior boundary of the water to establish an effective

water level depth (EWD). A radiation boundary condition is chosen instead of a rigid wall

so the acoustic waves will not reflect into the acoustic domain after they hit the rigid-wall

boundary. The EWD (the outer radius of the simulated water) is equal to four times the outer

diameter of the pipe, based on the results from Razi and Taheri (2014) [33].

For the other cases, the density and bulk modulus of the fluid are 1000 kg/m3 and 2.13 GPa,

respectively. A surface-based tie constraint is implemented in the interface region in the

model to simulate the coupling between the object and water. This constraint correlated the
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object’s outer surface nodal displacements with the neighbouring water elements’ pressure

degrees of freedom. In addition, a radiation boundary is employed for the water domain

boundary, with varying EWD values.

The first three eigenvalues of the submerged straight pipe are obtained via the simulated CASA

and experimental approach and compared in Table 3.2. A reasonable agreement between the

experimental and numerical results confirms the integrity of the CASA model when used on a

straight pipe.

Table 3.2: Eigenvalues of the submerged straight pipe.

Mode CASA [Hz] Experimental [Hz] % Difference

1 198.5 200.0 1
2 526.6 542.8 3
3 983.7 1030.6 5

In Table 3.2, all the first three eigenmodes correspond to bending modes. In these modes, the

pipe exchange energy with the surrounding, making the added mass effects obvious. CASA

correctly simulates the mode shape order with reasonably predicted eigenfrequencies.
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3.2 Submerged cantilever plates

Lindholm et al. (1962) examined the vibration of cantilever plates in the air and water [21].

The researchers tested fifteen submerged cantilever plates with varying plate aspect and

thickness ratios. They compared the results with theoretical predictions using simple beam

and thin-plate theories. To account for added mass, an empirical correction factor was in-

cluded in both theories, based on chordwise hydrodynamic strip theory [60]. The natural

frequencies of the first six modes were presented. Liang et al. (2001) used an empirical added

mass formulation and Rayleigh-Ritz method to analyze submerged cantilever plates’ vibration

frequencies and mode shape [20]. Their numerical results were compared with Lindholm’s

experimental results and literature in air and water, revealing an error percentage of around

5 % in air and 10 % in water.

Four of the fifteen submerged cantilever plates, as in Figure 3.2, are chosen to test the CASA

model. The plates are modelled with C3D20 elements (A 20-node quadratic brick with re-

duced integration [9]). The four chosen plates have the same width b = 0.2032 m, with aspect

ratios a/b values of 5, 1, 3, and 2, and thickness ratios h/b values of 0.124, 0.0238, 0.0131,

and 0.009, respectively. The finite model of the first plate can be seen in Figure 3.3, and the

mechanical properties can be seen in Table 3.3.

Table 3.3: Mechanical properties for the cantilever plates

Mechanical Properties Value Unit

Elastic modulus 207 GPa
Density 7800 kg/m3

Poisson’s ratio 0.3 -

To determine the required level of solid domain mesh refinement, the three mesh parameters,

nx , ny , and nz in Figure 3.3, are systematically varied for a dry case, comparing the results

with the experimental air results obtained by [21]. An approximate global seed size for the

plates of 0.01 m gave accurate dry results in all four cases. A large water domain, according

to Kramer et al. (2013), is chosen to simulate the four cantilever plates in this study [19].

The mesh parameters xB /L, yB /L, and zB /L became 0.5, 0.5 and 1.3, respectively. The water

domain’s approximate global seed size is 0.05 m with quadratic hexahedral elements of type



3.2. SUBMERGED CANTILEVER PLATES 33

Figure 3.2: Geometry configuration of submerged cantilever plate

AC3D20. Table 3.4 shows the number of elements and nodes that simulate the water and

cantilever plates.

Table 3.4: Amount of elements and nodes used to simulate the four cantilever plates and water

Plate Water
No a/b h/b [·102] Elements Nodes Elements Nodes
1 5 12.4 6120 31949 39204 168123
2 1 2.4 400 3003 400 2253
3 3 1.3 1220 8948 8472 38233
4 2 0.9 820 6048 2816 13429

Table 3.5 shows that for cantilevers with high aspect ratios, the CASA model can capture

results with an error percentage that remains nearly constant at 6 % for the first eigenmode

and between 0.5 % and 3 % for eigenmodes two and three in water compared to Lindholm’s

experimental results. For the shorter plates, the error percentages are between 5 % and 7 % for

all modes. According to Liang et al. (2001), the natural frequencies of all modes decrease with

an increasing aspect ratio [20]. The eigenmodes are presented in Figure 3.4. The first three

eigenmodes are bending and twisting modes. Compared to the modes of the straight pipe,

all the first three eigenmodes of the cantilever plates exchange energy with the surrounding

water, showing that CASA can predict the first and most necessary eigenvalues.
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Figure 3.3: Solid domain (grey) plus 1/4 of the fluid domain (white) not to scale, illustration
from Kramer et al. (2012) [19]

Table 3.5: Comparison of CASA results with experimental results from Lindholm et al. (1962)
of the four cantilever plates [21]

Mode 1 [Hz] Mode 2 [Hz] Mode 3 [Hz]
No a/b h/b [·102] CASA Exp CASA Exp CASA Exp
1 5 12.4 15.6 14.6 171.0 166.0 98.3 96.0
2 1 2.4 55.2 51.4 163.0 154.0 373.0 355.0
3 3 1.3 2.1 2.3 19.8 20.6 14.6 15.4
4 2 0.9 3.4 3.1 20.0 18.8 22.7 21.1
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Figure 3.4: First three modes of submerged cantilever plates

3.3 Submerged cylindrical shell

Gao et al. (2022) measured the underwater vibration and sound radiation of a typical stiffened

cylindrical shell structure under broadband excitation [61]. The test results were compared

with those obtained from the numerical finite element/boundary element (FE/BE) coupling

method to ensure accurate results. The established testing procedures and operation steps

effectively controlled an underwater vehicle’s vibration and sound radiation. The results

revealed that the test results curve aligned well with the FE/BE coupling method results, with

only slight differences in acceleration and sound pressure at the resonance peak value in the

500-2500 Hz band between the experimental and numerical results.

The general FE/BE method is adopted in the experiment to determine the stiffened cylindrical

shell’s vibroacoustic characteristics. The FE and BE model are shown in Figure 3.5 [61]. In the

CASA model, the cylindrical shell assembly is identical as in Figure 3.5b. The EWD is set to

four times the outer diameter of the cylindrical shell, with an approximate global mesh size of

0.02. This produced a total number of elements and nodes of 102976 and 147828, respectively.

Water must be simulated at the ends because the cylindrical shell has closed ends and is not

open like a pipe. With the same approximate mesh size, 3440 elements and 5604 nodes are

produced for the sides.
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In Figure 3.5a, the apparatus is placed 50 mm away from the centre line of the cylindrical

shell, and the stiffener sections are (80 x 10) mm with 450 mm spacing. To balance gravity

and buoyancy in the experiment, a 1400 kg iron ballast was connected at the bottom of the

cylindrical shell with rings and wires [61]. This created a simulation quality of 900 kg, which is

reached by setting the steel density to 10100 kg/m3. Table 3.6 shows the material properties

and the dimensions. For the cylindrical shell, a total of 19180 quadratic hexahedral elements

of type C3D20 and 10360 quadratic wedge elements of type C3D15 are used to minimize

errors in the mesh. This produced 154850 nodes. C3D15 is a 15-node quadratic triangular

prism and is often used together with hexahedrons when the geometry is too complicated to

fill with hex elements only [9].

Figure 3.5: The finite and boundary element model of the cylindrical shell, Gao et al. (2022)
[61]

Table 3.6: Mechanical properties and dimensions for the stiffened cylindrical shell

Mechanical Properties Value Unit

Elastic modulus 210.0 GPa
Density 10.1 t/m3

Poisson’s ratio 0.3 -
Length 1.8 m
Radius 0.6 m
Wall thickness 10.0 mm

Figure 3.6 shows six eigenmodes of the submerged stiffened cylindrical shell from Gao et al.

(2022) [61]. The first, third, fourth and fifth modes all concern ovalities in the cylindrical shell.
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The second and sixth are stretching modes. The vibration modes of the stiffened cylindrical

shell determine its vibration form and distribution of radiation sound pressure under the

excitation force of the corresponding frequency [61]. Table 3.7 shows the simulated CASA

results compared to the results from Gao et al. (2022) [61]. Although their results were also

obtained numerically, it was concluded that the test results were in good agreement with those

obtained by FE/BE coupling method. Due to the existence of ring-stiffeners, the stiffness of

the whole structure enhances, which also changes the stiffness of local structures, making

axial modes more likely to appear. Even though none of the modes are bending, twisting or

torsional modes, the CASA model simulated accurate results for all the first six eigenmodes.

Table 3.7: Comparison of CASA results with experimental results from Gao et al. (2022) of the
submerged stiffened cylindrical shell [61]

mode CASA [Hz] FE/BE results from Gao et al. (2022) [Hz] % Difference

1 192 178 8
2 205 210 3
3 251 257 2
4 257 266 3
5 287 282 2
6 395 395 0

Figure 3.6: Six mode shapes of submerged stiffened cylindrical shell, illustration from Gao et al.
(2022) [61]
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3.4 Submerged disk

Valentín et al. (2017) used a test rig to comprise a stainless steel disk coupled to a shaft and

confined with water in an aluminum tank [62]. The tank had a large thickness and mass

to simulate rigid surfaces around the disk. The structures’ response was measured using

submersible accelerometers, with two installed on the disk and another two on the cover.

Additionally, two pressure sensors were installed on the cover to measure pressure variations

due to disk vibration. Signals from a hammer, accelerometers, and pressure sensors were

computed and monitored. The disk’s mode shapes were determined by first testing it in the air

using the roving hammer impact method. The testing procedure in the water was practically

the same as in the air.

The disk used in the test rig was a stainless steel disk coupled to a shaft and confined in water

in an aluminium tank. The disk could be moved up and down along the shaft to evaluate

the influence of the nearby rigid surface of the bottom surface (H2) and top cover (H1). The

dimension and material properties are in Table 3.8.

Table 3.8: Mechanical properties and dimensions of the submerged disk

Properties Value Unit

Radius 125 mm
Thickness 3 mm
Disk density 7800 kg/m3

Elastic modulus 207 GPa
Poisson’s ratio 0.3 -

In the CASA model, the distance from the bottom surface and top cover is four times the

disk diameter, H1 = H2 = 0.5 m. This becomes the EWD of the submerged disk. With an

approximate global mesh size of 0.015, the water mesh produces 19765 quadratic hexahedral

elements of type AC3D20 and 402 quadratic wedge elements of type AC3D15 for geometry

purposes. This produced 86375 nodes. The disk is modelled with an approximate mesh size

of 0.005, which produced 2377 quadratic quadrilateral elements of type S8R and 28 quadratic

triangular elements of type STRI65. This produces 7344 nodes. The mesh for the medium with

the lower wave speed should be the slave surface in a tie constraint. An exception is the case

of fluids coupled to both sides of shell or beam elements. S8R and STRI65 are shell elements,
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and the fluid is coupled to both sides, so the master and slave surfaces are appointed to the

fluid and disk, respectively. The meshed model is in Figure 3.7. The disk is clamped at its

centre, simulating the shaft of the experiment.

(a) The full CASA model (b) The disk with one of the water domains

Figure 3.7: Visual of the meshed CASA model of the submerged disk

The dynamic response of the submerged disk is heavily affected by the added mass and

damping effects, as well as the proximity of solid boundaries. The CASA has proven in pre-

vious cases it is a trustworthy approach for simulating mode shapes where the added mass

influence is large. In Valentín et al. (2017), the natural frequencies and mode shapes found

within the testing frequency band were configurations where the added mass effect had less

influence [62]. The mode shapes of the disk had no nodal circles (m = 0). The only modes

Valentín et al. (2017) studied were the mode shapes with nodal diameters (n) because they

were most prone to excitement [62]. n = 0 and n = 1 greatly influence boundary conditions,

such as confinement and shaft displacement. Therefore modes n = 2 to n = 6 are the only

ones considered. The modes can be seen in Figure 3.8.

Table 3.9: Eigenvalues of the disk in water

n CASA [Hz] Experimental [Hz] % Difference

2 116 145 20
3 304 310 2
4 577 580 1
5 938 900 4
6 1386 1390 0

Table 3.9 shows the CASA and experimental results for the disk in water. The experimental
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results were obtained by force applied by the hammer with H1 = 47 mm and H2 = 60 mm [62].

Figure 3.8: Mode shapes of the submerged disk, defined by its number of nodal diameters (n)

Table 3.9 shows that the CASA model cannot accurately capture the first eigenvalue when the

submerged object is a disk. The first eigenvalue produced by CASA has an error percentage of

19.71 %, while the rest have error percentages between 0.28 % and 4.20 %. In the experimental

article by Valentín et al. (2017), no mechanical properties and no density or bulk modulus

were given for the disk and water [62]. Furthermore, the experiment was conducted with

different cover distances and different thicknesses of the covers. Multiple methods, such as

the hammer signal and pressure sensors, were used to capture the natural frequencies. Both

these methods yielded different results. The factors above contribute to producing different

experimental results, which may be the cause of the low accuracy of the first CASA mode.

However, CASA gives quite good predictions for higher modes.
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Chapter 4

Submerged straight pipe

The same straight pipe used to verify the CASA in Section 3.1 is studied in this chapter. The

pipe’s dimensions and mechanical properties are listed in Table 3.1. It is fully constrained at

both ends for boundary conditions. Different added mass approaches, with beam and shell

elements, are discussed, and solutions for effective modelling are presented with verification

by comparing the results with the CASA and the experimental results presented in Table 3.2.

In this case, it is important to note that there are both surrounding water and internal in the

pipe. This makes the added mass formula described in Section 2.1 not accurate, as it only

accounts for the surrounding fluid. Therefore, the added mass mAdded M ass formulation must

be adjusted to account for both fluids as

mAdded M ass = ρ f π
D2 +d 2

4
LTot (4.1)

where ρ f is the fluid density, D and d are the outer and inner diameter of the pipe, respectively,

and LTot is the total length of the pipe.
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4.1 Modelling the submerged straight pipe in ABAQUS

The pipe’s eigenvalues are computed using ABAQUS with beam elements and compared to

the results obtained from CASA. Commands from ABAQUS/Aqua are added to the input file,

including coefficients for added mass in the eigenvalue analysis as described in Section 2.5.4.

The added mass coefficient is set to 1.68 to take the internal fluid into account. The Lanczos

solver is chosen for eigenvalue analysis as it is particularly effective in solving symmetrized

eigen problems.

The lumped mass, increased density, and nonstructural mass approaches are tested with shell

elements. The pipe is modelled with S4 elements in the shell models. S4 is a fully integrated,

general-purpose, finite-membrane-strain shell element. The element’s membrane response is

treated with an assumed strain formulation that accurately solves in-plane bending problems.

In areas where greater solution accuracy is required or for problems where in-plane bending

is expected, S4 will outperform element type S4R and S8R [9]. Accordingly, 2625 elements

connected by 2646 nodes make up the pipe.

The beam models are designed using 20 PIPE31 elements and 21 nodes. These elements

simulate the hollow, thin-walled, circular shape of the pipe. They also consider the hoop

stress caused by internal or external pressure, which affects the point’s yield and causes an

asymmetry in the section’s response to inelastic bending. The hoop stress is assumed to be

constant across any section and is calculated as the average stress in equilibrium with the

internal and external pressure on the pipe section.
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4.2 Modelling the submerged straight pipe in MATLAB

The added mass approach coded in MATLAB is described in Section 2.2, with the added mass

formulation given in Equation (4.1). Boundary conditions are implemented conventionally

by removing rows and columns of the augmented stiffness matrix related to the relevant

degrees of freedom. In the case studied, both ends are fixed, and the first and last six (three

translational and three rotational degrees of freedom) rows and columns are removed. Twenty

elements are used to mesh the model.

4.3 Modal analysis results of the submerged straight pipe

4.3.1 CASA

A numerical study using CASA on a submerged straight pipe is conducted, and the first five

eigenvalues are extracted. The first five eigenfrequencies are shown in Table 4.1, and the

corresponding mode shapes are displayed in Figure 4.1.

Table 4.1: The first five eigenfrequencies of the submerged straight pipe, simulated with CASA

Mode CASA [Hz]
1 198.5
2 526.6
3 983.7
4 1532.0
5 1544.0

Section 3.1 reported a close agreement between the CASA’s predictions of the eigenvalues of a

submerged straight pipe and its experimental results. Furthermore, Razi and Taheri (2015)

recommended the CASA when considering VB-SHM of offshore pipelines [34]. Therefore, the

simulated results in Table 4.1 will be trusted as good results.
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(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5

Figure 4.1: The first five eigenmodes of the submerged straight pipe

4.3.2 Shell elements

The total added mass is calculated, using Equation (4.1), to be 4.745 kg. As a result, the density

becomes 8000 kg/m3, and the added mass per node is 1.793 ·10−3 kg for the increased density

and lumped mass approach, respectively.

Table 4.2 shows the eigenvalues of the pipe in air, and the submerged pipe obtained via the

three added mass approaches. ABAQUS primarily uses the nonstructural mass approach

to simulate added mass shell structures [9]. The table indicates that the increased density

and lumped mass approaches produce results nearly identical to the nonstructural mass

simulations, making them suitable alternatives for programs lacking this function.

Table 4.2: The first five eigenfrequencies estimated for air and different added mass approaches
with shell elements in ABAQUS

Eigenfreqencies [Hz]
Mode Increased density Lumped mass Nonstructural mass Air

1 192.7 193.0 192.5 331.8
2 504.8 505.4 504.1 868.9
3 932.4 933.4 931.2 1605.0
4 1444.4 1445.3 1442.6 2486.4
5 898.1 896.0 897.0 1546.0
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Table 4.3: Comparison of the eigenfrequencies with shell elements in Table 4.2 and the CASA
results in Table 4.1

% Difference to CASA
Mode Extra density Lumped mass Nonstructural mass

1 3 3 3
2 4 4 4
3 5 5 5
4 6 6 6
5 53 53 53

Table 4.3 shows that none of the three added mass approaches can correctly simulate the

torsional (fifth) eigenvalue and that the difference between the added mass approaches and

the CASA is over 50 %. In the torsional mode, the pipe exchanges almost no energy with the

surrounding water and is expected to yield the same eigenvalues as if the pipe is in the air.

Table 4.2 confirms this, as the difference between the fifth eigenfrequency predicted for the

pipe in air and CASA is under 1 %. The CASA can simulate this condition correctly, while the

added mass approaches cannot. In terms of the lateral bending modes, adding mass to shell

elements predicts frequencies between 3 % and 6 % lower than the CASA.

4.3.3 Beam elements

Table 4.4 shows simulated eigenvalues of the pipe in air and the submerged pipe. The previous

section showed that the added mass moment of inertia contributes to no rotary acceleration

around the circular cross-section centre. Hence, the discrepancy associated with this ap-

proach is minimized only when the bending modes are dominant, and the contribution of the

torsional modes could be ignored. Therefore should the torsional contribution in the added

mass matrices be removed to align the torsional eigenfrequency of a submerged straight pipe

with that of air.

Table 4.4: First five eigenfrequencies estimated for air and the submerged pipe by added mass
approaches with beam elements in MATLAB and ABAQUS

Eigenfrequencies [Hz]
Mode MATLAB ABAQUS/Aqua Air (ABAQUS)

1 216.4 191.7 332.6
2 576.5 502.7 869.0
3 1082.0 929.7 1600.3
4 1603.4 1441.7 2470.8
5 1548.7 1548.4 1548.4
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Table 4.5 compares the results obtained in Table 4.4 and Table 4.1. Nevertheless, Table 4.5

shows that the ABAQUS/Aqua model can simulate accurate results for both lateral bending

and torsional modes compared to CASA. The MATLAB model can also capture accurate re-

sults, with the largest difference of 9.5 % in the third eigenfrequency. The eigenmodes from

MATLAB are in Figure 4.2.

Using beam elements for simulation is more cost-effective than using CASA. ABAQUS/Aqua

produces simulated results with an error margin of around 5 % compared to CASA. Therefore,

it is recommended to use the ABAQUS/Aqua command for the first five eigenvalues on a

submerged straight pipe.

Table 4.5: Comparison of the results obtained in Table 4.4 and Table 4.1

% Difference to CASA
Mode ABAQUS/Aqua MATLAB

1 3 9
2 5 9
3 6 10
4 6 5
5 0 0

Figure 4.2: Mode shapes of a submerged straight pipe, plotted in MATLAB
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Chapter 5

Submerged bends

Bends are used in piping systems because they ovalize more readily than straight pipes. Thus,

they provide flexibility in response to thermal expansion and other loadings that impose

significant displacements on the system. Ovalization is bending the pipe wall into an oval

noncircular configuration. Thus, the bend behaves as a shell rather than as a beam. Straight

pipe runs do not ovalize easily, so they behave like beams. Thus, complex interaction occurs

between a bend and the adjacent straight pipe segments, even under pure bending. The

bend causes some ovalization in the straight pipe runs, which tends to stiffen the bend. This

interaction can create significant axial gradients of bending strain in the bend, especially in

cases where the bend is very flexible.

This chapter provides details of the numerical models developed for investigating the vibration

response of submerged bends. The models are developed in ABAQUS, and beam, shell, and

solid elements are used to compare the eigenvalues of the pipe obtained via the CASA and

nonstructural mass as the added mass approaches. To create the deformed cross-sections,

the mesh of a deformed pipe is imported into the model. Nonstructural mass is then added

to the imported mesh of the deformed bend. It is not possible to use a deformed bend with

CASA. With CASA, the bend is modelled with shell elements and different thickness values are

assigned to create a semi-oval cross-section. Finally, the eigenvalues of the deformed models

are compared to the eigenvalues of non-deformed bends, simulated with beam elements.
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5.1 Theory of a deformed bend with ovalities

By applying moments at each end, the pipe will open or close. As a result, the bend will

experience ovalization and thickness change, and the cross-section will become semi-oval

and elliptic, as shown in Figure 5.1.

Figure 5.1: 90 ◦ pipe bend with attached straight pipe showing elliptical and semi-oval cross-
sections. Illustration is from Sumesh et al. (2017) [7]

The ovality value CO can be defined as the difference between the significant and minor

diameters, DM ax and DMi n respectively, divided by the nominal diameter of the pipe [7].

CO = 2 · DM ax −DMi n

DM ax +DMi n
(5.1)

Thickening appears at the intrados of the pipe bend, shown in Figure 5.2, and the thickening

value CT hi ck is denoted as the ratio of the difference between the nominal thickness t and the

maximum thickness tM ax to the nominal thickness as [6]

CT hi ck = tM ax − t

t
(5.2)

Thinning and appears at the extrados of the pipe bend, shown in Figure 5.2 and the thinning
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value CT hi n is denoted as the ratio of the difference between the nominal thickness t and the

minimum thickness tMi n to the nominal thickness as

CT hi n = t − tMi n

t
(5.3)

The thickness change value Ct then becomes

Ct =CT hi ck +CT hi n (5.4)

Figure 5.2: Cross-Sectional Distortion of a Pipe Bend as viewed at Section A-A. Illustration from
Sorour et al. (2019)[6]
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5.2 Modelling an ovalized pipe bend in ABAQUS

To understand how ovalization may change the results of modal analysis, thin and thick pipes

with different ovality values are tested against a 90 ◦ bend with constant thickness and circular

cross-section. A standard definition is that pipes with D/t = 10 and lower are thick-walled,

while those with a larger ratio are thin-walled [5]. The D/t values are chosen to be 5 and 22,

and the ovality values, given by Equation (5.1), are chosen to be 0 %, 3 % and 5 % to test the

added mass effects on ovalized bends. The cross-section in the middle of thickness, 45 ◦ into

the bend, is measured to acquire ovality values.

Table 5.1: Thickness properties of the bend

D/t = 5 D/t = 22
Inner diameter [mm] 36.00 55.00
Wall thickness [mm] 12.00 2.75

The thin pipe is the same as ExxonMobil used to run experimental tests on an M-shaped

jumper [63]. The outer diameter of the pipe is 0.0605 m. The bend is modelled with a bending

radius of five times the pipe’s outer diameter, resulting in a bending radius of 0.302 m and an

arch length of 0.4752 m. The thickness properties are given in Table 5.1, and the mechanical

properties are given in Table 5.2. The structure model of the pipe is visualized in Figure 5.3.

Table 5.2: Mechanical properties of the pipe

Property Value Unit

Elastic modulus 69 GPa
Shear modulus 26 GPa
Density 2700 kg/m3

While the added mass approach can simulate ovalization with both ovality, thinning and

thickening values, the CASA model will only have thinning and thickening values. The CASA

model is therefore modelled with shell elements, while the added mass model used solids.

By bending the pipe, the circular cross-section becomes semi-oval and elliptic, as shown

in Figure 5.1 where the diameter and the thicknesses change. ABAQUS can simulate both

variables with solid and shell elements by selecting the field outputs U (translations and
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rotations) for the elliptic cross-section and ST H (section thickness for shell elements) for the

semi-oval cross-section.

The deformed pipe with an elliptic cross-section from the simulated obd-file can be imported

as a new part of a new ABAQUS model. That way, the new part is a deformed pipe, and added

mass simulations can be run with the nonstructural mass approach to test its effect on an

elliptic cross-section. To model the thickness change in the shell models, a mapped analytical

field can be created to add the different thicknesses, and nodal distribution can be chosen in

the shell thickness section. The correct coordinates and section thickness of each node of

the simulated obd-file has to be imported into the mapped field, defining the thickness of

each node. In modal analysis, the original and deformed parts are tested with varying section

thicknesses to test the effects of semi-oval cross sections.

Figure 5.3: Model of the pipe structure with dimensions in meters

The pipe in the CASA model consists of 9360 linear quadrilateral elements of type S4 and

9400 nodes. The water domain is modelled with a radiation boundary and a radius four times

larger than the outer diameter of the pipe. Forty elements are applied along the outer and

inner diameters of the water domain, and the approximate global mesh size is 0.02 m. This

created 25872 quadratic hexahedral elements of type AC3D20 and 112014 nodes. The mesh of

the water domain is visualized in Figure 5.4.
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Figure 5.4: Visual of the water domain mesh

The added mass model is modelled with 40 elements along the outer and inner diameter

and four elements as thickness. Four elements are chosen as the thickness to accurately

calculate the ovality values by studying the movements of the nodes in the middle, as seen in

Figure 5.5. From the mesh convergence study, the approximate global mesh size is 0.006 m,

creating 30880 linear hexahedral elements of type C3D8 and 38800 nodes. Clamped boundary

conditions are assigned to the shortest end of the pipe, while the longer end is free.

For comparison purposes, beam models are also studied. The beam models are modelled

with 24 PIPE31 elements and 25 nodes. The cross-section and thickness will remain constant

during the dynamic analysis. The nonstructural mass approach is used to add mass.
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Figure 5.5: Set of nodes chosen to study the ovality value.

5.3 Ovality and thickness change results

Five per cent ovality is achieved on the thickest bend by applying a moment of 70 kNm on

each side to close the pipe. The largest diameter DM ax = 0.0619 m and minor diameter

DMi n = 0.0587 m creates a bend with an ovality value of CO = 5 % using Equation (5.1). For

the thinner pipe, a bending moment of 1.3 kNm on each side is required to close the pipe with

an ovality value equal to CO = 5 %. Three per cent ovality values are achieved with 50 kNm

and 0.8 kNm for the thick and thin bend, respectively.

The different thickness values of the thick pipe with an ovality value of 5 % are in Figure 5.6,

which created a thickness change value, using Equation (5.2), equal to Ct = 5 %. Figure 5.6

shows the thickness variation along the curve length and how thickening happens in intrados

and thinning in extrados. The thick pipe’s ovalization and thickness change values are equal

for both 5 % and 3 %. The different thickness values of the thin pipe with 5 % ovality value

are tM ax = 2.76 ·10−3 m and tMi n = 2.74 ·10−3 m, creating a thickness change value equal to

Ct = 0.5 % using Equation (5.2). The thickness change value is ten times less than the ovality

value for the thin pipe. The same applies when the ovality value of the thin pipe is CO = 3 %,

the thickness change value becomes Ct = 0.3 %.
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Figure 5.6: Section thickness of 90 ◦ bend with an ovality value of 5 %

5.4 Added mass effects on the ovalities in bends study with

CASA

This section compares the results of a modal analysis performed on the 90 ◦ bend with and

without ovalities submerged in water using CASA. The ovality values compared are 0 %, 3 %,

and 5 %. The pipe is modelled using shell elements, while the water domain uses solid

acoustic elements. The first six mode shapes are identical for the thick and thin pipe and are

displayed in Figure 5.7. In-plane bending modes are represented by the second, fourth, and

fifth modes, while out-of-plane bending or twisting modes are represented by the first, third,

and sixth modes. Table 5.3 and Table 5.4 display the first six eigenvalues of the thick and thin

pipes, respectively, at different thickness change values.

Table 5.3: Eigenfrequencies obtained by CASA of a thick pipe with a 90 ◦ bend with different
thickness change values

Eigenfrequencies [Hz]
Mode Ct = 0 % Ct = 3 % Ct = 5 %

1 31.81 31.82 31.83
2 35.68 35.69 35.69
3 130.5 130.5 130.5
4 134.4 134.5 134.5
5 399.3 399.5 399.6
6 458.1 458.2 458.2
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Table 5.4: Eigenfrequencies obtained by CASA of a thin pipe with a 90 ◦ bend with different
thickness change values

Eigenfrequencies [Hz]
Mode Ct = 0 % Ct = 0.3 % Ct = 0.5 %

1 21.86 21.86 21.86
2 25.77 25.77 25.77
3 91.81 91.81 91.81
4 109.5 109.5 109.5
5 284.4 284.4 284.4
6 324.3 324.3 324.3

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 5.7: Eigenmodes 1 to 6 of a submerged thin pipe with a 90 ◦ bend without ovalities,
obtained by CASA in ABAQUS

The mode shapes are identical for all simulations. The eigenfrequencies slightly increase

when the bend experience thickening in intrados and thinning in extrados. The difference

between the ovalized pipes compared to the non-ovalized is less than 0.05 % for both the

thick and thin pipes. Based on the analysis, the eigenvalues are unaffected when a pipe
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bend submerged in water experiences 5 % or less thickness change values, with a constant

cross-section.

5.5 Added mass effects on the ovalities in bends study by adding

mass to solid elements

This subsection compares the results of a modal analysis performed on the 90 ◦ bend with

and without ovalities submerged in water using solid elements with the nonstructural mass

approach to achieve the added mass effects. The different ovality values compared are 0 %,

3 % and 5 %. The deformed bends tested have both a semi-oval and elliptic cross-section. The

models studied are described in Section 5.1 and Section 5.3. The first six mode shapes are

the same as in Section 5.4 and are shown in Figure 5.7. Table 5.5 and Table 5.6 show the first

six eigenvalues of the thick and thin pipe, respectively, with different ovality and thickness

change values.

Table 5.5 shows that for the thick pipe, the eigenvalues decrease in the first six modes. The

previous subsection, Table 5.3, showed that the eigenvalues slightly increase when the bends

experience thinning and thickening. This indicates that changes in cross-section have a more

significant impact on eigenvalues than changes in thickness. Figure 5.8 shows the differences

between the ovalized thick pipes and the non-ovalized. The graphs show the peak differences

in the third and fifth eigenmodes, with a 15 % difference for the bend with CO = 3 % and a

17.5 % difference for the bend with CO = 5 %, respectively.

Table 5.5: Eigenfrequencies obtained with solid elements of a thick pipe with a 90 ◦ bend with
different ovality values

Eigenfrequencies [Hz]
Mode CO =Ct = 0 % CO =Ct = 3 % CO =Ct = 5 %

1 28.08 25.61 25.32
2 30.41 27.81 27.45
3 108.8 93.41 94.81
4 114.8 101.9 105.3
5 347.2 301.8 291.4
6 401.2 350.8 342.3
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Figure 5.8: Per cent differences of the eigenfrequencies of a thick pipe bend with different
ovality and thickness change values compared to those of a thick pipe bend with no ovality and
thickness change values

Table 5.6 shows the eigenvalues of the thin pipe with different ovality and thickness values,

and Figure 5.9 shows the differences. When comparing ovalized and non-ovalized pipes, the

differences are more noticeable in thick pipes than in thin pipes. The thin pipe experiences

ovality values ten times greater than the thickness change values. As shown in Table 5.6, the

elliptical cross-section dominates the ovalization effects, resulting in smaller eigenfrequencies

for ovalized pipes compared to non-ovalized pipes. Figure 5.9 demonstrates that the eigenval-

ues decrease significantly in the second and fifth eigenmodes for ovalized pipes compared to

non-ovalized pipes. However, there is little difference between the eigenfrequencies of the

two ovalized pipes.

Table 5.6: Eigenfrequencies obtained with solid elements of a thin pipe with a 90 ◦ bend with
different ovality values

Eigenfrequencies [Hz]
Mode CO =Ct = 0 % CO = 3 % and Ct = 0.3 % CO = 5 % and Ct = 0.5 %

1 20.54 18.42 18.44
2 21.04 18.63 18.50
3 76.37 69.82 69.71
4 85.29 79.32 79.73
5 250.2 220.5 220.0
6 294.9 268.0 268.2
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Figure 5.9: Per cent differences of the eigenfrequencies of a thin pipe bend with different ovality
and thickness change values compared to those of a thin pipe bend with no ovality and thickness
change values

5.5.1 Comparison to beam elements

Table 5.7 shows the eigenfrequencies of the thick and thin pipe simulated with beam elements.

The third and fourth mode shapes are switched in order for both the thin and thick pipe,

compared to those simulated with solid and shell elements, shown in Figure 5.7. The per cent

difference between the eigenfrequencies simulated with beam elements in Table 5.7 and the

ovalized pipes simulated with solid elements in Table 5.5 and Table 5.6 are shown in Table 5.8.

The results indicate that for thin pipes, the difference in eigenfrequencies between ovalized

and non-deformed pipes ranges from 5 % to 24 %, whereas for thick pipes, the differences are

between 0 % and 18 %.

Table 5.7: The first six eigenfrequencies of the thick and thin bend, simulated with beam
elements

Eigenfrequencies [Hz]
Mode Thick Thin

1 27.25 21.80
2 29.59 23.67
3 111.68 88.56
4 105.29 83.49
5 335.03 262.12
6 389.69 305.85



5.5. ADDED MASS EFFECTS ON THE OVALITIES IN BENDS STUDY BY ADDING MASS TO
SOLID ELEMENTS 59

Table 5.8: Comparison of the eigenfrequencies of a deformed pipe with ovalities simulated with
solid elements, and a non-deformed pipe simulated with beam elements

% Difference to beam elements
Thick Thin

Mode CO = 3 % CO = 5 % CO = 3 % CO = 5 %
1 6 7 17 17
2 6 7 24 24
3 18 16 24 24
4 3 0 5 5
5 10 14 17 17
6 10 13 13 13
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Chapter 6

Submerged single-planar jumpers

This chapter examines the eigenvalues of jumpers with a single-planar geometry in two

scenarios. Four cost-effective added mass techniques are examined and compared to CASA. A

method, which is as reliable as CASA but much less expensive, is presented to simulate the

natural frequencies and mode shapes.

6.1 Submerged M-shaped jumper

ExxonMobil performed model tests using an M-shaped jumper model to verify potential VIV

prediction methods [63]. Uniform bottom currents were simulated to reduce velocities that

excite the target vibration modes. The model had an arch length of 13.96 m and a scale ratio of

4.525. The tests included using a one-meter straight cylinder section to measure drag forces

and assess the sensitivity to Reynolds number changes. Static pull tests were conducted to

excite and identify the first modes. The jumper model had 13 tri-axial accelerometers and

three strain gauges installed along its length, and the test setup is shown in Figure 6.1. The

tests were performed at flow angles of ten and 45 ◦, with current velocities ranging from 0.05

to 0.98 m/s. For a flow angle of 90 ◦, data was measured for current rates up to 0.79 m/s. When

the model was towed with a 10 ◦ orientation to the model plane, the following observations

were made: At a towing speed of 0.412 m/s, a typical cross-flow VIV response occurred, with

out-of-plane vibration observed at a frequency close to the model’s out-of-plane natural

frequency (first mode). In-plane vibration (second mode) occurred at a towing speed of

0.206 m/s, close to the model’s in-line natural frequency. Finally, out-of-plane twist vibration
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(third mode) was observed at a towing rate of 0.527 m/s and close to the jumper’s out-of-

plane twist vibration natural frequency. The response amplitudes for all accelerometers were

provided for these three cases.

Figure 6.1: Jumper model with locations of accelerometers, strain gauges and pipe segments
and the current directions, Liu et al. (2019) [4]

Sieber et al. (2021) used the jumper in Figure 6.1 and ran simulations with the ABAQUS beam

element types PIPE31 and ELBOW31B [5]. The segment lengths of the jumper can be seen in

Table 6.1. PIPE31 is an elastic pipe element for which plane stress is assumed. All degrees of

freedom are uncoupled from hoop stresses and hoop strains since they are known from shell

theory. ELBOW31B is a bend element type implemented with reference to Bathe, [64]. It can

account for the deformation of the cross-section and kinematic non-linearity. In contrast to

Bathe’s bend elements, ELBOW31B is only linear-elastic.

In the simulation, Sieber et al. (2021) got that the ELBOW31B results were generally lower

than the ones from the PIPE31 models. Eigenmode two and three were switched in order,

where the ELBOW31B results correlated with the observations from the model test done by

ExxonMobil. This gives a relevant reason to use elbow elements in the analysis of subsea

jumpers. Thus, obtaining the correct order of mode shapes and modal frequencies is essential.

In the experiment done by ExxonMobil, the use of thin-walled aluminium pipe meant that
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Table 6.1: Segment lengths of the jumper model

Segment name Length [m]

Vertical 1 1.495
Horizontal 1 1.000
Vertical 2 2.323
Horizontal 2 4.327
Vertical 3 2.323
Horizontal 3 1.000
Vertical 4 1.495
Total length 13.96

the model jumper was relatively less massive than the thick-walled steel prototype [63]. Low-

density oil and high-density sugar were contained within the prototype, and lead weights

were distributed evenly along the length to add mass. This increased the final mass ratio of

the model to 2.33. Table 6.2 shows the model properties of the simulated jumper model.

Table 6.2: Simulated model properties

Parameter Value Unit

Total length 13.50 m
Unit mass 6.66 kg/m
Outer diameter 60.50 mm
Inner diameter 55.00 mm
Elastic modulus 69.00 GPa
Shear modulus 26.10 GPa

The 90 ◦ corners are modelled as curved fillets for the case scenario. The bending radius is

three times the pipe’s outer diameter, resulting in a bending radius of 0.1815 m and an arch

length of 0.2851 m. This made the model’s total length decrease to 13.50 m.

From Table 6.2, the total mass of the jumper becomes 89.9 kg. The material density is in-

creased to reach this magnitude in the simulation. The volume of the jumper is 6.73 ·10−3 m3,

making the material density 13350 kg/m3.
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6.1.1 Modelling the submerged M-shaped jumper in ABAQUS

The CASA model represents the jumper using 26920 quadratic hexahedral elements labelled

as C3D20 (An 8-node linear brick [9]), along with 53880 nodes. The choice of C3D8 over

C3D8R is due to the latter being less stiff in bending. For both ends, fully restrained boundary

conditions (clamped) are assigned. The water domain is modelled using 244509 quadratic

tetrahedral elements named AC3D10 (acoustic three-dimensional 20-node elements with one

degree of freedom per node), connected by 356869 nodes. The fluid’s density and bulk moduli

are 1000 kg/m3 and 2.13 GPa, respectively.

Three approaches are utilized to add mass to the models with shell elements: lumped mass,

nonstructural mass, and increased density, which are explained in Section 2.5.1, Section 2.5.2

and Section 2.5.3, respectively. The jumper is modelled with 66870 quadratic quadrilateral

elements of type S4 and 66900 nodes.

PIPE31 elements are used to model the beam models. The approximate global mesh size is

0.05 m, creating 272 linear line elements of type PIPE31 and 273 nodes. Because of the bends,

the nonstructural mass and increased density approaches are used.

In their study, Sieber et al. (2021) demonstrated the importance of choosing between tra-

ditional pipe elements and elbow elements when conducting modal analysis for a jumper

model [5]. Elbow elements can account for the cross-section deformation, as described

in Section 2.4, and additional strain terms due to bending, allowing for adding mass using

the ABAQUS/Aqua command. The straight sections of the jumper model are represented

by the PIPE31 element, while the bends are modelled using either ELBOW31, ELBOW31B,

or ELBOW31C elements. For two-node elements, ELBOW31 is the most comprehensive,

as it has continuous warping and ovalization with the deforming cross-section and linear

interpolation along the pipe. ELBOW31B is a simplified version of the pipe in space, with

ovalization only where axial gradients of the ovalization are ignored. ELBOW31C is similar

to ELBOW31B, except that only the first term in the Fourier interpolation around the pipe is

included. According to the ABAQUS manual, it is recommended to specify six Fourier modes

and 18 additional integration points around the circumference for ovalization [9]. The elbow
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models employed ABAQUS/Aqua commands to replicate the surrounding water.

6.1.2 Modelling the M-shaped jumper in MATLAB

The jumper is modelled in MATLAB as described in Section 2.2. The MATLAB function eigs cal-

culates the eigenfrequencies and mode shapes. It is meshed with 20 elements per straight part,

creating 160 elements and 161 nodes. Boundary conditions are implemented conventionally

by removing rows and columns of the augmented stiffness matrix related to the relevant

degrees of freedom. In the case studied, both ends are fixed, and the first and last six rows and

columns are removed.

6.1.3 CASA

Table 6.3 shows the first nine eigenfrequencies simulated by the CASA. The mode shapes

for each eigenvalue are shown in Figure 6.2 to Figure 6.10. It is vital to obtain the correct

order of mode shapes in modal analysis, and the first three eigenmodes correlate with the

experimental results obtained experimentally by ExxonMobil [63]. This confirms the integrity

of the CASA model.

Table 6.3: Eigenfrequencies of the submerged M-shaped jumper simulated with the CASA

Mode CASA [Hz]

1 0.846
2 1.988
3 2.162
4 2.506
5 3.387
6 3.555
7 3.772
8 6.354
9 6.756
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Figure 6.2: Mode one of the submerged M-shaped jumper. out-of-plane bending in the z-
direction with the largest displacement at the top horizontal

Figure 6.3: Mode two of the submerged M-shaped jumper. In-plane bending in the x-direction.

Figure 6.4: Mode three of the submerged M-shaped jumper. Out-of-plane twist.
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Figure 6.5: Mode four of the submerged M-shaped jumper. In-plane bending in the y-direction.

Figure 6.6: Mode five of the submerged M-shaped jumper. Symmetric out-of-plane bending of
the two bottom segments in the z-direction.

Figure 6.7: Mode six of the submerged M-shaped jumper. Diagonal distortion in both x and
y-direction.
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Figure 6.8: Mode seven of the submerged M-shaped jumper. Asymmetric out-of-plane bending
of the two bottom segments in the z-direction.

Figure 6.9: Mode eight of the submerged M-shaped jumper. Out-of-plane bending in the
z-direction. The largest displacement occurs as buckling of the top horizontal.

Figure 6.10: Mode nine of the submerged M-shaped jumper. In-plane bending in the y-direction.
The largest displacement occurs as buckling of the top horizontal.
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6.1.4 Shell elements

Various approaches are being tested for the shell models, including lumped mass, increased

density, and nonstructural mass. Using Equation (2.26), the total added mass is determined

to be 38.80 kg, where the added mass coefficient is one. The model is divided into 49200

nodes, and the lumped mass approach indicates an added mass of 0.001128 kg per node.

Additionally, the increased density is specified to be 19110 kg/m3.

Table 6.4 shows the eigenfrequencies obtained with the different added mass approaches.

Compared to the CASA model, eigenmode five and six are switched in order so that in-plane

bending occurs at a lower frequency than the symmetric out-of-plane bending. When follow-

ing the DNV GL response model procedure, FEA modal results are utilized for fatigue analysis,

too [5]. Thus, obtaining the correct order of mode shapes and modal frequencies is essential.

Compared to the CASA results, the per cent differences are in Table 6.5.

Table 6.4: The first nine eigenfrequencies of the M-shaped jumper, estimated with different
added mass approaches with shell elements in ABAQUS

Eigenfrequencies [Hz]
Mode Nonstructural mass Increased density Lumped mass

1 0.847 0.843 0.849
2 1.807 1.777 1.807
3 2.151 2.156 2.155
4 2.409 2.357 2.404
5 3.417 3.187 3.423
6 3.256 3.379 3.239
7 3.799 3.762 3.806
8 6.440 6.334 6.451
9 6.474 6.337 6.393

Table 6.5 reveals reasonable estimations for the out-of-plane mode shapes and noticeably

worse estimations for the in-plane bending modes. The shell models give very similar results,

underestimating the CASA estimations between 4 % and 11 % in the in-plane bending modes.
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Table 6.5: Comparison of the results obtained in Table 6.4 and Table 6.3

% Difference to CASA
Mode Nonstructural mass Increased density Lumped mass Type of bend/twist

1 0.2 0.3 0.4 Out of plane
2 9.5 11.2 9.5 In-plane
3 0.5 0.3 0.3 Out of plane
4 4.0 6.1 4.1 In-plane
5 0.9 0.2 1.1 Out of plane
6 8.8 10.9 9.3 In-plane
7 0.7 0.3 0.9 Out of plane
8 1.3 0.3 1.5 Out of plane
9 4.3 6.4 5.5 In-plane

6.1.5 Beam elements

Table 6.6 displays the estimated eigenfrequencies using the nonstructural mass and increased

density approach in ABAQUS, as well as the results obtained from running the MATLAB script.

Table 6.7 compares the results from Table 6.6 to the CASA results in Table 6.3. In the ABAQUS

models, eigenmodes five and six are switched, causing in-plane bending to occur at a lower

frequency than symmetric out-of-plane bending. Nonetheless, the ABAQUS models produce

reasonable results for both the out-of-plane and in-plane bending modes. Table 6.7 shows

none of the estimations have an error percentage over 5 % compared to CASA. MATLAB’s

eigs command can accurately simulate the first, fifth and sixth eigenfrequencies. In the first

eigenmode, the difference between the eigenfrequencies is almost 1 %, while for the second

and third modes, the differences are over 60 %. However, MATLAB can simulate the first seven

mode shapes in the correct order as shown in Figure A.1. It is worth noting that the jumper in

MATLAB is designed with corners instead of bends, which can cause notable variations in

eigenfrequencies.
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Table 6.6: The first nine eigenfrequencies of the M-shaped jumper, estimated with different
added mass approaches with beam elements in ABAQUS and MATLAB

Eigenfrequencies [Hz]
Mode Nonstructural mass Increased density MATLAB

1 0.885 0.884 0.837
2 2.066 2.063 0.993
3 2.260 2.257 1.152
4 2.507 2.504 2.783
5 3.447 3.444 3.336
6 3.397 3.393 3.674
7 3.838 3.834 4.050
8 6.457 6.450 5.419
9 6.810 6.803 4.804

Table 6.7: Comparison of the results obtained in Table 6.6 and Table 6.3

% Difference to CASA
Mode Nonstructural mass Increased density MATLAB Type of bend/twist

1 4.5 4.4 1.0 Out of plane
2 3.8 3.7 66.7 In-plane
3 4.4 4.3 60.9 Out of plane
4 0.0 0.1 10.5 In-plane
5 1.8 1.7 1.5 Out of plane
6 4.6 4.7 3.3 In-plane
7 1.7 1.6 7.1 Out of plane
8 1.6 1.5 15.9 Out of plane
9 0.8 0.7 33.8 In-plane
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6.1.6 Elbow elements

Table 6.8 shows the eigenfrequencies produced with the different elbow models in ABAQUS.

The mode shapes are identical for all the elbow models as to CASA, shown in Figure 6.2 to

Figure 6.10. Table 6.9 shows the maximum relative error of eigenvalue results occurs for mode

two with the ELBOW31 model with 1.19 %, compared to CASA. However, the errors for other

models and modes are below one per cent, which is a good correlation. The CASA model uses

solid elements for both the pipe and water, while the elbow models use beam elements and

shell theory is applied to model the cross-section deformation. By utilizing the ABAQUS/Aqua

command to apply added mass, the simulation of elbow models is significantly less expensive

than the CASA model. This presents a valid reason to use elbow elements in the analysis of

subsea jumpers.

Table 6.8: The first nine eigenfrequencies of the ELBOW31, ELBOW31B, ELBOW31C model

Eigenfrequencies [Hz]
Mode ELBOW31 ELBOW31B ELBOW31C

1 0.843 0.844 0.844
2 1.964 1.970 1.975
3 2.158 2.160 2.162
4 2.500 2.501 2.504
5 3.395 3.397 3.398
6 3.543 3.546 3.551
7 3.783 3.784 3.785
8 6.374 6.376 6.377
9 6.730 6.744 6.753

Table 6.9: Comparison of the three elbow models to the CASA model

% Difference to CASA
Mode ELBOW31 ELBOW31B ELBOW31C

1 0.3 0.2 0.2
2 1.2 0.9 0.6
3 0.2 0.1 0.0
4 0.2 0.2 0.1
5 0.3 0.3 0.3
6 0.3 0.2 0.1
7 0.3 0.3 0.3
8 0.3 0.3 0.4
9 0.4 0.2 0.0
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6.2 Submerged S-shaped jumper

The use of ABAQUS/Aqua to add mass to beam and elbow elements yielded similar results

to the CASA method for the M-shaped jumper. The M-shaped jumper tested was a smaller

model in a lab with a scale ratio of 4.525. A new full-scale jumper with a different geometry is

simulated to validate the added mass with the elbow elements approach. Various approaches

to add mass to shell, beam, and elbow elements, will be compared to the CASA method. An

efficient modelling approach will also be presented that produces almost identical results to

the CASA method.

The Subsea Rigid Jumper (SRJ) plays a crucial role in Ultra Deep Water (UDW) projects,

connecting manifolds, riser bases, and well heads. In a study by Bruschi et al. (2017), they

addressed the VIV phenomenon in complex 3D SRJs to assess fatigue damage caused by po-

tential stress intensification [65]. The study focused on a specific SRJ with 2D shape geometry,

where both ends were fixed. This geometry is shown in Figure 6.11, and its material properties

and dimensions are listed in Table 6.10.

Figure 6.11: S-shaped jumper Geometry

The 90 ◦ bends are modelled as five times the outer diameter, resulting in a bending radius

of 0.5715 m and an arch length of 0.8977 m. With this configuration, the total length of the

jumper is 38.92 m, and its total mass is 1712 kg. The material density is set to 10290 kg/m3 to

achieve these values in the simulation.
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Table 6.10: Mechanical properties and dimensions of the S-shaped jumper

Mechanical properties Value Unit

Elastic modulus 206.0 GPa
Mass per unit length 44.0 kg/m
Poisson’s ratio 0.3 -
Outer diameter 114.3 mm
Wall thickness 13.5 mm
Vertical 1 3.0 m
Horizontal 1 14.5 m
Vertical 2 5.0 m
Horizontal 2 15.4 m
Vertical 3 2.0 m

6.2.1 Modelling the submerged S-shaped jumper in ABAQUS

The jumper in the CASA model is created using 56958 linear hexahedral elements of type

C3D8 and 113960 nodes. The EWD is chosen to be five times the outer diameter of the water

surrounding it. To create the model, an approximate global mesh size of 0.06 m is used, result-

ing in 155496 quadratic hexahedral elements of type AC3D20 for the straight parts and 97817

quadratic tetrahedral elements of type AC3D10 for the bends. The water domain consists of

827135 nodes with a bulk modulus of 2.13 GPa and a density of 1025 kg/m3. The jumper and

water domain are fully restrained with clamped boundary conditions on both ends.

Three added mass approaches are tested to add mass to shell elements: the lumped mass,

nonstructural mass, and increased density approaches. The jumper is modelled with an

approximate mesh size of 0.016 m for the shell element models, creating 49180 linear quadri-

lateral elements of type S4 and 49200 nodes.

The beam models are modelled with 326 linear line elements of type PIPE31. The elbow

models are modelled with elbow elements for the bends, creating 309 linear line elements of

type PIPE31 and 20 linear line elements of type ELBOW31. The elbow model is the only one

that employed ABAQUS/Aqua commands to replicate the surrounding water. In contrast, the

other beam models used increased density and nonstructural mass to add mass since they

contained bends instead of corners.
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6.2.2 CASA

Table 6.11 shows the first six eigenfrequencies simulated by the CASA. The mode shapes for

each eigenvalue are shown in Figure 6.12 to Figure 6.17. Mode two and four, pictured in

Figure 6.13 and Figure 6.15 respectively, show in-plane bending modes, while the rest are

out-of-plane mode shapes.

Table 6.11: The first six eigenfrequencies of the S-haped jumper simulated with the CASA model

Mode CASA
1 0.333
2 0.373
3 0.799
4 1.699
5 1.857
6 1.972

(a) Front view

(b) Top view

Figure 6.12: Mode one of the S-shaped jumper. Out-of-plane bending in z-direction
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(a) Front view

(b) Top view

Figure 6.13: Mode two of the S-shaped jumper. In-plane bending in y-direction

(a) Front view

(b) Top view

Figure 6.14: Mode three of the S-shaped jumper. Out-of-plane twist with the largest displace-
ment at the middle vertical
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(a) Front view

(b) Top view

Figure 6.15: Mode four of the S-shaped jumper. In-plane bending in the y-direction with the
largest displacement at the lower horizontal

(a) Front view

(b) Top view

Figure 6.16: Mode five of the S-shaped jumper. Out-of-plane bending in the z-direction with
the largest displacement at the lower horizontal
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(a) Front view

(b) Top view

Figure 6.17: Mode six of the S-shaped jumper. Out-of-plane bending in the z-direction with the
largest displacement at the top horizontal

6.2.3 Shell elements

Various approaches are being tested for the shell models, including lumped mass, increased

density, and nonstructural mass. Based on Equation (2.26), the total added mass is 409.3 kg,

with added mass coefficients set to one. The model is meshed with 49200 nodes, and the

lumped mass approach shows an added mass of 0.008320 kg per node. The increased density

is set to 12750 kg/m3.

Table 6.12: The first six eigenfrequencies simulated with the lumped mass, increased density
and nonstructural mass approach with shell elements

Eigenfrequencies [Hz]
Mode Lumped mass Increased density Nonstructural mass

1 0.330 0.330 0.330
2 0.358 0.358 0.358
3 0.792 0.792 0.792
4 1.666 1.667 1.666
5 1.839 1.840 1.839
6 1.953 1.954 1.953

Table 6.12 shows the first six eigenfrequencies obtained via the three added mass approaches.

Table 6.13 shows the per cent comparisons to CASA. The mode shapes estimated with the

three added mass approaches are in the exact order as estimated with CASA. Compared to
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Table 6.13: Comparison of the results simulated with the three added mass models with shell
elements in Table 6.12 to the CASA results in Table 6.11

% Difference to CASA
Mode Lumped mass Increased density Nonstructural mass

1 0.9 0.9 0.9
2 4.0 4.0 4.0
3 0.9 0.9 0.9
4 1.9 1.9 1.9
5 0.9 0.9 0.9
6 0.9 0.9 0.9

the added mass results with shell elements for the M-shaped jumper, Table 6.13 shows good

results. The out-of-plane bending modes are estimated with an error percentage under 1 %,

and the in-plane estimations with a maximum error percentage of 4 %.

6.2.4 Beam elements

The different added mass approaches used to simulate the surrounding water with beam

elements are the nonstructural mass and increased density approaches for the PIPE31 modes

and ABAQUS/Aqua for the elbow model.

Table 6.14: The first six eigenfrequencies simulated with the increased density and nonstruc-
tural mass approach for the beam models, and ABAQUS/Aqua approach for the elbow models

Eigenfrequencies [Hz]
Mode Nonstructural mass Increased density Elbow

1 0.333 0.333 0.333
2 0.363 0.363 0.372
3 0.798 0.798 0.798
4 1.684 1.684 1.696
5 1.853 1.854 1.854
6 1.967 1.967 1.969

Table 6.14 shows the first six eigenfrequencies obtained via the three added mass approaches.

Table 6.15 shows the per cent comparisons to CASA. The order of the mode shapes estimated

through three added mass approaches in ABAQUS matches the order estimated through

CASA. Compared to the added mass results with shell elements, Table 6.15 demonstrates

more promising results for the beam and elbow simulations. The maximum error percentage

for the PIPE31 models is observed in the second eigenmode and is 2.65 %. The errors for all
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Table 6.15: Comparison of the results simulated with the three added mass models with beam
elements in Table 6.14 to the CASA results in Table 6.11

% Difference to CASA
Mode Nonstructural mass Increased density Elbow

1 0.0 0.0 0.0
2 2.7 2.6 0.1
3 0.1 0.1 0.1
4 0.8 0.8 0.2
5 0.2 0.2 0.1
6 0.2 0.2 0.1

eigenvalues of the elbow model remain under 0.2 %. For both the submerged single-planar

jumpers, adding mass with ABAQUS/Aqua to beam and elbow elements produces nearly

identical results to CASA.

6.3 Cost-effectiveness analysis

The previous sections provided details on the accuracy of adding mass to different elements

compared to the CASA. Both Section 6.1 and Section 6.2 show that adding mass to a combina-

tion of beam and elbow elements using the ABAQUS/Aqua command is the most accurate

approach on single-planar jumpers. However, despite the focus on accuracy, it is important

to consider the cost-effectiveness of the methods employed. The question arises regarding

efficient resource allocation: What method is the most cost-efficient?

The information presented in Table 6.16 displays the duration of each job and the estimated

memory usage by ABAQUS. The results indicate that for the M-shaped jumper, the elbow

model is significantly faster than the CASA model by a factor of 2157 and 17 times faster than

the shell models. Additionally, the elbow model requires significantly less memory usage

compared to the CASA model by over 700 times and over 40 times less than the shell models.

The same pattern follows for the S-shaped jumper, where the analysis duration with the elbow

model is only one second, which is 4151 and 26 times less than the CASA and the shell models,

respectively. In addition, the memory usage of the elbow model compared to the CASA model

is 880 times less and over 50 times less than the shell models.
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Table 6.16: The time and estimated memory usage of each analysis on adding mass with the
CASA, shell elements, and beam and elbow elements on submerged single-planar jumpers
performed by ABAQUS

M-shaped jumper S-shaped jumper
Wallclock time (s) Memory [MB] Wallclock time (s) Memory [MB]

CASA 2157 36213 4151 47602
Shell 17 2061 26 2887
Elbow 1 50 1 54

When running a modal analysis, adding mass to beam and elbow elements using the ABAQUS/Aqua

command is recommended for submerged single-planar jumpers. With both the M- and the

S-shaped jumper, it is more cost-effective and as reliable as adding mass with the CASA.
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Chapter 7

Submerged multi-planar jumpers

This chapter studies the eigenvalues of jumpers with multi-planar geometry in two cases.

Four cost-effective added mass approaches are compared to the CASA. For jumpers in a

2D plane, the beam and elbow elements produced results closest to the CASA. With elbow

elements, the mode shapes were simulated in the correct order, and the eigenfrequencies

were almost identical to CASA. The in-plane bending modes simulated with shell elements

could not estimate accurate eigenfrequencies. There are no in-plane bending modes with

multi-planar jumpers, and shell elements may produce more accurate results than beam and

elbow elements.

7.1 Submerged multi-planar Z-shaped jumper

Li et al. (2022) presented an experimental investigation and numerical model of flow-induced

vibration in a multi-planar subsea jumper [66]. The researchers examined the flow pattern

of the Z-shaped jumper and installed pressure and displacement sensors near the elbows to

record the jumper’s vibration and pressure response. The jumper parameters and dimensions

are shown in Figure 7.1 and in Table 7.1.

In the simulated scenario, the 90 ◦ corners are represented as curved fillets. The bending

radius is three times the pipe’s outer diameter, which equals a bending radius of 0.1560 m

and an arch length of 0.2450 m. Due to this, the total length of the model has decreased to

4.898 m.
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Figure 7.1: Detailed Z-shaped jumper model

Table 7.1: Parameters of the Z-shaped jumper model

Parameter Value Unit

Outer diameter 52.0 mm
Wall thickness 2.0 mm
S1, S2, S6, S7 0.5 m
S3, S5 0.8 m
S4 2.0 m
Density 7850 kg/m3

Poisson’s ratio 0.3 -
Elastic Modulus 206 GPa
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7.1.1 Modelling of the submerged multi-planar Z-shaped jumper in ABAQUS

The jumper in the CASA model is modelled with 204926 linear hexahedral elements of type

C3D8 (An 8-node linear brick) and 410010 nodes. A dense mesh is achieved with an approxi-

mate size of 0.002 m. The EWD is three times the outer diameter for the surrounding water

domain. The water domain is modelled with an approximate mesh size of 0.015 m, creating

320736 quadratic hexahedral elements of type AC3D20 and 1365104 nodes. Tetrahedron

elements are commonly used to model thick bends. However, this creates too many errors

in the intersection between the water domain and the jumper. To achieve a mesh without

errors, the model must be heavely partitioned, as shown in Figure 7.2. A visual of the mesh

is shown in Figure 7.3. The density and bulk modulus are 1025 kg/m3 and 2.13 GPa. Both

ends are fully restrained with clamped boundary conditions for the jumper and water domain.

Figure 7.2: Partitioned model of the water domain

Three approaches for adding mass to the shell elements are tested: the lumped mass, non-

structural mass, and increased density. The shell models consist of 17503 linear quadrilateral

elements of the type S4 and 17526 nodes.

The beam models are modelled with 256 linear line elements of type PIPE31. The nonstruc-

tural mass and increased density approaches are tested. The elbow model contains 184 linear

line elements of type PIPE31 for the straight sections and 72 linear line elements of type

ELBOW31 for the bends. ABAQUS/Aqua is being utilized to account for the added mass in the
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Figure 7.3: Visual of the water domain mesh

elbow model.

7.1.2 CASA

Table 7.2 shows the first five eigenfrequencies simulated by CASA, where its correspond-

ing mode shapes are shown in Figure 7.4 to Figure 7.8. Notice that the second and third

eigenvalues in Table 7.2 are nearly identical.

Table 7.2: Eigenfrequencies of the multi-planar jumper simulated with the CASA

Mode CASA
1 8.64
2 17.27
3 17.48
4 26.48
5 32.09

Figure 7.4: Mode one of the Z-shaped jumper. Displacement in the x-direction
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Figure 7.5: Mode two of the Z-shaped jumper. Twist about the y-axis

Figure 7.6: Mode three of the Z-shaped jumper. Displacement in the z-direction

Figure 7.7: Mode four of the Z-shaped jumper. Twisting about the y-axis and bending in the
y-direction.
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Figure 7.8: Mode five of the Z-shaped jumper. Bending in the x-direction and twisting about
the x-axis

7.1.3 Shell elements

For the shell models, the added mass coefficients are set equal to one, making the total added

mass, calculated with Equation (2.26), 10.40 kg. The model is meshed with 16790 nodes, mak-

ing the added mass per node, for the lumped mass approach, 61.96 ·10−4 kg. The increased

density is set to 14610 kg/m3.

Table 7.3 shows the first five eigenfrequencies obtained via the three added mass approaches.

All the added mass approaches with shell elements estimate similar results where the second

and third eigenmode are switched compared to CASA. Table 7.4 shows the per cent compar-

isons to CASA. The most significant error margins happen in the third and fifth mode shapes,

shown in Figure 7.6 and Figure 7.8, respectively. In these modes, the error margins differ

between 15 % and 16.4 % for the third mode and 12 % and 13.3 % for the fifth mode.

Table 7.3: The first five egenfrequencies simulated with the lumped mass, increased density
and nonstructural mass approach with shell elements in ABAQUS

Eigenfrequencies [Hz]
Mode Lumped Mass Increased density Nonstructural mass

1 8.70 8.64 8.75
2 16.74 16.66 16.87
3 14.83 14.85 15.04
4 27.02 26.78 27.13
5 28.45 28.09 28.45
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Table 7.4: Comparison of the results simulated with the three added mass models with shell
elements in Table 7.3 to the CASA results in Table 7.2

% Difference to CASA
Mode Lumped Mass Increased density Nonstructural mass

1 1 0 1
2 3 4 2
3 16 16 15
4 2 1 2
5 12 13 12

7.1.4 Beam elements

Table 7.5 shows the eigenfrequencies estimated with beam and elbow elements. Compared

to CASA, eigenmode two and three are switched in order, where the displacement in the z-

direction mode is estimated with a lower frequency than the y-axis twisting mode. A possible

reason for this could be the near-identical values of the second and third eigenvalues as seen

in Table 7.2. The increased density and nonstructural mass approach produced almost iden-

tical results for the first five mode shapes. Table 7.6 shows the per cent differences to CASA.

Unlike the single-planar jumpers tested in Chapter 6, the added mass approaches with beam

elements produce vastly different results to the CASA. None of the models can accurately

estimate the first eigenvalue, where the error percentage reigns from 21 % to over 28 %. In

the third and fifth eigenmode, the increased density and nonstructural mass approaches

have good results with error percentages less than 3 % compared to CASA. The minor error

percentage estimation happens in eigenmode 3 with 8.74 % for the elbow elements. The

MATLAB script produce eigenvalues closest to CASA for all modes, except for the third, when

compared to the other beam models. The eigenmodes produced by MATLAB are shown in

Figure A.2. They show that the second and thrid modes are swithced, compared to CASA.

Table 7.6 shows that the added mass approaches simulated with beam elements cannot

produce reliable estimations for the first five modes. None of the added mass approaches can

estimate the correct order of mode shapes or good eigenfrequencies for all first mode shapes

compared to CASA. While the added mass models simulated with shell elements estimated

bad results in the third and fifth eigenmodes, the added mass models simulated with beam

elements produced good results in these modes.
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Table 7.5: The first five egenfrequencies simulated with the increased density and nonstructural
mass approach for the beam models, and ABAQUS/Aqua approach for the elbow model

Eigenfrequencies [Hz]
Mode Increased density Nonstructural mass Elbow MATLAB

1 11.35 11.50 10.70 7.25
2 20.37 20.64 20.88 16.61
3 16.96 17.19 17.25 15.01
4 31.73 32.16 30.11 23.91
5 32.59 33.02 32.80 31.34

Table 7.6: Comparison of the results simulated with the three added mass models with beam
elements in Table 7.5 to the CASA results in Table 7.2

% Difference to CASA
Mode Increased density Nonstructural mass Elbow MATLAB

1 27 28 21 18
2 16 18 19 4
3 3 2 1 15
4 18 19 13 10
5 2 3 2 2
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7.2 Submerged non-symmetrical multi-planar jumper

This section simulates a longer jumper with a different geometry to study the added mass

approaches with shell, beam and elbow elements. The jumper being tested is a full-sized

model that measures almost 120 m long and has a unique 3D multi-planar geometry that is

not symmetrical. The different added mass approaches with shell, beam, and elbow elements

will be compared and verified with CASA.

Bruschi et al. (2015) presented a jumper with a 3D non-symmetrical geometry with both ends

clamped [67]. The jumper is in Figure 7.9.

Figure 7.9: Non-symmetrical jumper geometry

The jumper dimensions are in Figure 7.10 and Figure 7.11, while the jumper properties are in

Table 7.7. The bends are modelled as five times the outer diameter, creating a bending radius

equal to 2.286 m. The arch length is 3.591 m, making the total length 118.9 m.



92 CHAPTER 7. SUBMERGED MULTI-PLANAR JUMPERS

Figure 7.10: Non-symmetrical jumper dimensions in the XY-plane

Figure 7.11: Non-symmetrical jumper dimensions in the XZ-plan

Table 7.7: Non-symmetrical jumper properties

Properties Value Unit

Outer diameter 457.2 mm
Thickness 31.8 mm
Elastic Modulus 206.0 GPa
Poisson’s ratio 0.3 -
Mass per unit length 555.0 kg/m
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7.2.1 Modelling the submerged non-symmetrical multi-planar jumper in

ABAQUS

In the CASA model, the jumper is meshed with an approximate mesh size of 0.03 m, creating

184184 linear hexahedral elements of type C3D8 and 368456 nodes. The EWD of the water

domain is four times the outer diameter of the jumper. The model must be heavily partitioned

to accurately mesh the water domain, as shown in Figure 7.12. The water domain is meshed

using an approximate global mesh size of 0.15 m, resulting in 343178 quadratic hexahedral

elements of type AC3D20 and 1467636 nodes. A visualization of the mesh is in Figure 7.13.

The water’s bulk modulus and density values are 2.13 GPa and 1000 kg/m3, respectively. Both

ends of the jumper and water domain are fully restrained with clamped boundary conditions.

Three added mass approaches are tested with shell elements: the lumped mass, nonstructural

mass, and increased density approaches. The shell models are modelled with an approximate

mesh size of 0.05 m, creating 68661 linear quadrilateral elements of type S4 and 68688 nodes.

Figure 7.12: Partitioned model of the water domain

The beam models are modelled with 315 linear line elements of type PIPE31. The nonstruc-

tural mass and increased density approaches are tested. The elbow model contained 234
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linear line elements of type PIPE31 for the straight sections and 81 linear line elements of type

ELBOW31 for the bends. ABAQUS/Aqua simulates the added mass in the elbow model.

Figure 7.13: Visual of the water domain mesh

7.2.2 CASA

Table 7.8 shows the first six eigenfrequencies simulated by CASA, where its corresponding

mode shapes are shown in Figure 7.14 to Figure 7.19.

Table 7.8: Eigenfrequencies of the multi-planar jumper simulated with the CASA model

Mode CASA [Hz]
1 0.158
2 0.260
3 0.327
4 0.393
5 0.437
6 0.620

Figure 7.14: Mode one of the multi-planar jumper. Twisting about the x-axis
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Figure 7.15: Mode two of the multi-planar jumper. Displacement in the x-direction

Figure 7.16: Mode three of the multi-planar jumper. Twisting about the y-axis

Figure 7.17: Mode four of the multi-planar jumper. The bottom horizontal bends in the y-
direction, while the right vertical bends in the x- and z-direction.
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Figure 7.18: Mode five of the multi-planar jumper. The bottom horizontal twists about the
y-axis, while the right vertical bends in the x- and z-direction.

Figure 7.19: Mode six of the multi-planar jumper. Twisting about the z-axis.
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7.2.3 Shell elements

For the shell models, the lumped mass, increased density, and nonstructural mass approaches

are tested. The added mass coefficients are set equal to one, making the total added mass,

calculated with Equation (2.26), 19510 kg. The model is meshed with 68688 nodes, making

the added mass per node for the lumped mass approach 0.2841 kg. The increased density is

set to 16950 kg/m3.

Table 7.9: The first six eigenfrequencies of the lumped mass, increased density and nonstructural
mass approach simulated with shell elements

Eigenfrequencies [Hz]
Mode Lumped mass Increased density Nonstructural mass

1 0.153 0.152 0.153
2 0.248 0.246 0.248
3 0.321 0.319 0.321
4 0.384 0.382 0.384
5 0.432 0.430 0.432
6 0.603 0.599 0.603

Table 7.10: Comparison of the results simulated with the three added mass models with shell
elements in Table 7.9 to the CASA results in Table 7.8

% Difference to CASA
Mode Lumped mass Increased density Nonstructural mass

1 2.7 3.3 2.7
2 4.7 5.3 4.7
3 1.8 2.4 1.8
4 2.3 2.9 2.3
5 1.0 1.6 1.0
6 2.9 3.5 2.9

Table 7.9 shows the first six eigenfrequencies obtained via the three added mass approaches.

Table 7.10 shows the per cent comparisons to CASA. The mode shapes estimated using the

three added mass approaches follow the same order as estimated with CASA. The added

mass approaches using shell elements provide good results compared to CASA. The lumped

and nonstructural mass approaches give almost identical results, while the increased density

approach has slightly different results. The second mode shape, where the jumper vibrates in

the x-direction, as shown in Figure 7.15, has the most significant error margins. The lumped

and nonstructural mass approaches produce results with a 4.67 % and 4.68 % error margin,

respectively, while the increased density approach produces results with a 5.28 % error margin.
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7.2.4 Beam elements

Table 7.11: The first six eigenfrequencies simulated with the increased density and nonstruc-
tural mass approach for the beam models, and ABAQUS/Aqua approach for the elbow models

Eigenfrequencies [Hz]
Mode Nonstructural mass Increased density Elbow

1 0.158 0.157 0.158
2 0.257 0.255 0.262
3 0.329 0.327 0.329
4 0.391 0.388 0.393
5 0.436 0.433 0.437
6 0.636 0.632 0.630

Table 7.11 shows the first six eigenfrequencies obtained via the three added mass approaches.

Table 7.12 shows the per cent comparisons to CASA. The mode shapes estimated with the

three added mass approaches are in the exact order as estimated with CASA. Compared to

the added mass results with shell elements, Table 7.12 shows more promising results. In the

PIPE31 models, the highest error percentage occurred in the sixth eigenvalue, which was

2.35 %. However, in the elbow model, all errors were below 1.5 % for all eigenmodes.

Table 7.12: Comparison of the results simulated with the three added mass models with beam
elements in Table 7.11 to the CASA results in Table 7.8

% Difference to CASA
Mode Nonstructural mass Increased density Elbow

1 0.5 0.1 0.5
2 1.1 1.8 0.9
3 0.6 0.1 0.5
4 0.6 1.2 0.2
5 0.1 0.7 0.2
6 2.4 1.7 1.4
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7.3 Cost-effectiveness analysis

The previous sections provide details on the accuracy of adding mass to different elements

compared to the CASA. Section 7.1 shows that none of the added mass models could accu-

rately capture the first five eigenvalues. In contrast, Section 7.2 shows that adding mass to a

combination of beam and elbow elements using the ABAQUS/Aqua command is the most

accurate approach.

The information presented in Table 7.13 displays the duration of each job and the estimated

memory usage by ABAQUS. The results demonstrate that the elbow model for the Z-shaped

jumper is significantly faster than the CASA model by a factor of over 8500 and five times faster

than the shell models. Additionally, the elbow model requires significantly less memory usage

than the CASA model by almost 850 times and over nine times less than the shell models.

Similar results were found for the non-symmetrical jumper, where the analysis duration

with the elbow model is only one second compared to 9960 and 25 seconds for the CASA

and the shell models, respectively. Furthermore, the memory usage of the elbow model is

over 1000 times less compared to the CASA model and over 40 times less than the shell models.

Table 7.13: The time and estimated memory usage of each analysis on adding mass with the
CASA, shell elements, and beam and elbow elements on submerged multi-planar jumpers
performed by ABAQUS

Z-haped jumper Non-symmetrical jumper
Wallclock time [s] Memory [MB] Wallclock time [s] Memory [MB]

CASA 17072 97435 9960 96467
Shell 10 1041 25 4066
Elbow 2 115 1 93

When conducting a modal analysis on submerged multi-planar jumpers, it is important to

be careful when adding mass to the beam and elbow elements. For the Z-shaped jumper,

the added mass approaches are more cost-effective but less reliable than adding mass with

the CASA. However, for the non-symmetrical jumper, adding mass to the beam and elbow

elements is both cost-effective and equally reliable as adding mass with the CASA method.
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Chapter 8

Discussion

This chapter discusses the results obtained in the previous chapters.

8.1 MATLAB script

The MATLAB script, found in Chapter B, could not accurately simulate the eigenfrequencies

for the jumpers. Despite trying the eig, eigen, and eigs commands, none of them produced

accurate results in comparison to ABAQUS. However, the eigs command produced eigenfre-

quencies close to those simulated by ABAQUS for jumpers with four bends or less, and all

mode shapes were in the correct order. A Lanczos algorithm was used in ABAQUS to solve the

eigenvalues, which MATLAB lacks a built-in command for. One possible solution could be to

implement the same script in Python and use the eigsh command.

8.2 Torsional inertia for a submerged straight pipe

Chapter 4 shows that none of the three added mass approaches can correctly simulate the

torsional eigenvalue with shell elements and that the difference between the added mass

approaches and the CASA is over 50 %. The torsional added mass moment of inertia coefficient

per unit length of a circular section in an infinite liquid, as the circular section in the infinite

liquid medium rotates along its centre, is listed in Blevins (1984) [38]. Blevins (1984) shows an

added mass moment of inertia equal to zero for circular bodies. Therefore, in this mode, the

pipe exchanges almost no energy with the surrounding water and is expected to yield the same

eigenvalues as if the pipe was in the air. The CASA could correctly simulate this condition
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while the added mass approaches failed. It has been shown that the velocity potential φ for a

region around a cylinder vibrating laterally in a reservoir containing stationary fluid can be

expressed by [18]

φ= U (t )r 2[x −X (t )]

[x −X (t )]2 + y2
(8.1)

where r is the cylinder radius, X (t) = ∫
U (t)d t is the position of the cylinder, U (t) is the

velocity of the cylinder moving along the x-axis, and x and y are the coordinates of points

of interest. A careful examination of the derivation of the added mass term, Equation (2.2),

reveals that, in that formulation, the velocity potential has been formulated based on the

assumption that a submerged pipe would only vibrate in the lateral direction.

There is a more efficient and affordable way to obtain the eigenvalues of a submerged straight

pipe rather than using CASA. This involves running two simulations using shell elements. The

first simulation extracts the torsional eigenvalue from a vacuum model, while the second

retrieves the lateral bending and ovality values from an added mass model. This method

provides accurate results compared to using CASA.

8.3 Submerged jumpers with shell elements

Table 6.4 and Table 6.5 show that the three added mass approaches produce almost identical

results when used on shell elements. An investigation was conducted to compare the impacts

of varying added mass coefficients on the M-shaped jumper. However, the analysis did not

reveal any significant dissimilarities or insights. Regardless of the added mass coefficients

utilized, the different added mass approaches with shell elements all end up with the same

conclusions.

In Chapter 6, specifically in Section 6.1.4 and Section 6.2.3, it is clear that the eigenfrequencies

estimated in the in-plane bending modes with shell elements are vastly lower from the CASA

estimations. For the in-plane bending modes, the shell models estimates that the jumpers

exchange more energy with the surrounding water than the CASA model. The eigenfrequency

decrease is likely due to the poor rotary scaling, as the shell models are convergent in terms of
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discretization.

Rotational inertia is a property of a physical object that describes its resistance to rotational

motion. It depends on both the mass of the object and the distribution of that mass relative

to the axis of rotation. Rotary inertia is a type of rotational inertia that refers explicitly to the

rotational inertia of a spinning disk or, in this case, a cylinder around its axis of rotation. For

thin shell elements, the rotary inertia I3, listed in Equation (2.52), is small or negligible relative

to the rotational inertia of the mass at the nodes. Therefore, ABAQUS chose a scaling on the

rotary inertia such that it never becomes smaller than a fixed, tiny percentage of the rotational

inertia of the mass at the nodes rotating about an axis through the centre of the element [9].

When analyzing the transverse shear response, the rotary inertia I3 is crucial as it represents

the system’s mass and is proportional to the cube of the thickness. Other quantities, such as

transverse shear stiffness and membrane stiffness, are proportional to the thickness. As the

element’s thickness approaches zero, transverse shear frequencies increase infinitely since

they are inversely proportional to thickness, while membrane frequencies remain constant.

Without proper scaling, the stable time increment would go to zero as thickness decreases.

In dynamic analyses, the stable time increment is proportional to the inverse of the highest

frequency of the element [9]. The primary consideration in choosing appropriate scalings is

that the transverse shear frequencies remain below the membrane ones in the limit as the

element’s thickness goes towards zero.

To better comprehend how rotary scaling affects eigenvalues, let R be the non-dimensional

rotary inertia scaling, where R ≥ 1. When R = 1, the true rotary inertia is used. One can

imagine the natural frequency ω expressed in relation to mass M and stiffness K as

ω=
√

K

M
(8.2)

When the bends are subjected to in-plane bending modes, they stretch on the outside and

squeeze on the inside, as shown in Chapter 5, resulting in in-plane bending for the shell ele-

ments. For thin shell elements, the rotary inertia is small or negligible relative to the rotational

inertia. When the rotary inertia scaling R becomes greater than one, the inertia effects in the
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mass matrix M increase, and the eigenvalues decrease, as shown in Equation (8.2). Using a

heavy material model, by adding a high-density value or additional mass, the inertia effects in

the mass matrix will increase too much, leading to too low natural frequencies in the in-plane

bending modes.

Shell elements typically have a three-dimensional bending stiffness matrix, which includes

the through-thickness stiffness terms that are negligible for in-plane bending modes. There-

fore, when shell elements are used to calculate the natural frequencies and mode shapes for

in-plane bending modes, the through-thickness stiffness terms may introduce additional

spurious modes that do not represent the actual physical behaviour of the structure. This can

also lead to inaccurate predictions of the in-plane mode shapes.

The jumper is modelled with S4 elements, a fully integrated finite-membrane-strain shell

element [9]. Since the element’s stiffness is fully integrated, no spurious membrane or bending

zero energy modes exist, and no membrane or bending mode hourglass stabilization is used.

It is well known that a standard displacement formulation will exhibit shear locking for

applications dominated by in-plane bending deformation. Shear locking occurs when a

shell element becomes overly stiff and cannot accurately represent deformations in the in-

plane direction. This can happen because shell elements are typically formulated using

a two-dimensional approach that assumes the shell is thin and has a constant thickness.

However, when the thickness of the shell is comparable to the length of the element, the

two-dimensional approach becomes less accurate and shear locking can occur. This can lead

to inaccurate predictions of in-plane mode shapes in modal analysis. However, a standard

displacement formulation for the out-of-plane bending stiffness is not subject to a similar

locking response. Various techniques have been developed to address the shear locking

issue, such as reducing the aspect ratio of the shell element, using higher-order elements, or

employing special stabilization techniques [68, 69].
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8.4 Beam elements in multi-planar jumpers

In Section 7.1, the beam and elbow models estimated eigenvalues vastly differently than CASA.

When working with beam elements, the thickness and cross-section of the structure remain

constant. However, elbow elements can simulate ovalities in the elbows but not in the straight

parts. In the case of the jumpers discussed in Chapter 6 and Section 7.2, the straight pipes

did not experience ovalities. For the jumper in Section 7.1, the top horizontals (S2 and S6 in

Figure 7.1) are 0.5 m long, with bends on each side measuring 0.156 m, making the straight

part 0.344 m long. During bending and twisting modes, the top horizontal straights of the

structure experience ovalities. However, the PIPE31 elements used to model the straight parts

cannot account for changes in cross-sections, leading to inaccurate estimations.

In Section 7.1, the added mass models simulated with shell elements estimate bad results in

the third and fifth eigenmodes, and the added mass models simulated with beam elements

produce good results in these modes. Adding mass with shell elements produces closer results

to CASA for all the other modes. The mode shapes of the third and fifth eigenmodes are shown

from the x-direction in Figure 8.1 and Figure 8.2, respectively. They show rotation in the top

horizontal straight pipes, resulting in in-plane bending modes for the jumper’s middle and

most significant part. Chapter 4 demonstrates that using the lumped mass, nonstructural

mass, and increased density approach with shell elements on a straight pipe leads to incorrect

estimates in the torsional mode. Table 4.5 indicates that ABAQUS/Aqua simulation does not

increase the rotary inertia when adding mass to a straight pipe. This could be why beam

elements performed better than shell elements in the third and fifth eigenmodes.

Figure 8.1: Mode three of the multi-plane jumper from the CASA. Seen in the Y-Z-plane
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Figure 8.2: Mode five of the multi-plane jumper from the CASA. Seen in the Y-Z-plane

The theory behind the added mass models is described in Section 2.1. It is adapted from

Blevins’ added mass term, initially formulated for analyzing the vibration of a submerged

beam [18]. The results shown in Table 7.5 and Table 7.6 indicate that the multi-planar jumper

does not behave like a beam but behaves more like a shell model. When conducting a dynamic

analysis, the model of the jumper varies depending on the approach taken. The jumper is rep-

resented with a consistent cross-section and thickness if beam elements are used. However,

if the CASA approach is used, the model includes solid elements that account for variations

in the cross-section and thickness. For the multi-planar jumper, it is crucial to account for

changes in cross-section and thickness as the structure becomes less rigid and the eigenfre-

quencies decrease. This causes the jumper to behave more like a stiffened shell model and

less like a beam.

A study was conducted to investigate the relationship between the outer diameter to total

length (OD/T L) ratio and the jumper’s behaviour change. However, the analysis did not

uncover any significant findings or new insights into the behaviour of jumpers, despite the

different ratios tested. The study showed that shell elements generally produced better results

than beam and elbow elements, even when the jumper’s behaviour resembled a beam rather

than a shell model. Thus, caution must be exercised when using beam and elbow elements

for multi-planar jumpers.
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Chapter 9

Conclusions

9.1 Concluding remarks

The performance and accuracy of different approaches to adding mass for modelling the

dynamic response of submerged structures in the context of FSI were investigated. The

investigation included the evaluation of the eigenvalues of submerged pipes and jumpers

modelled by different approaches.

For straight pipes, the simulated eigenfrequency corresponding to the torsional mode has a

vastly lower eigenfrequency with the lumped mass, nonstructural mass, and increased density

approaches with shell elements compared to the CASA. In this mode, the pipe exchange

almost no energy with the surrounding water and is expected to yield the same eigenvalue

as in the air. Using ABAQUS/Aqua to simulate added mass on beam elements solves the

problem. By coding, it is possible to set the twisting moments in the added mass matrix equal

to zero. If modelling with shell elements, it is recommended to run two simulations, one with

an added mass approach where the lateral bending and ovality values are extracted, and one

in a vacuum, where the torsional value is extracted.

The eigenfrequencies increase by modelling a bend with thickness variation to simulate the

ovalization, adding mass, and running a modal analysis. The difference between the ovalized

pipes compared to the non-ovalized was less than 0.05 % for both the thick and thin pipes.

By including the cross-sectional out-of-roundness, the eigenfrequencies decrease, and the
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differences increase to more than 17 % at its peak for thick pipes and almost 13 % for thin

pipes. Compared to non-ovalized pipes simulated with beam elements, the differences in-

creased to 24 % for the thin pipe and 18 % for the thick. The study suggests that modelling

the ovalization is essential as it significantly affects the eigenvalues due to the change in

cross-section. Therefore, it is highly recommended to consider this factor.

By modelling the subsea jumpers in a 2D plane with shell elements and simulating the sub-

merged eigenvalues with added mass approaches, the in-plane bending values were vastly

different compared to the CASA results. However, modelling the submerged jumpers with

beam elements produce better results with less than five per cent difference to CASA for any

mode. By including elbow elements in the beam models, the per cent differences become less

than one per cent compared to CASA. When conducting a modal analysis on a submerged

single-planar jumper, adding mass using ABAQUS/Aqua to the beam and elbow elements is

recommended. This method is cost-effective and as reliable as using the CASA.

Adding mass with ABAQUS/Aqua to beam and elbow elements produced good results for

some multi-planar jumpers. However, caution must be put in as some multi-planar jumper

geometries work better with shell elements, even if the jumper behaves more like a beam

than a shell model.
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9.2 Suggestions for Future Work

Some recommendations for future work are as follows:

Include internal and external pressure in the analysis to observe stiffening and softening

effects for the full jumper models. Any change in a pipe’s internal or external pressure would

change its overall stiffness, affecting its vibration response. For example, in the case of an

underwater pipeline, the internal fluid’s pressure or the external hydrostatic pressure would

affect the apparent stiffness of the pipe, thereby changing the pipe’s eigenvalues and dynamic

response.

Run added mass simulations with continuum shell elements. Continuum shells discretize

an entire three-dimensional body, unlike conventional shells, which discretize a reference

surface and are more suitable for simulating the jumper’s in-plane bending mode shapes.

Simulate a multi-planar jumper model when the central part is placed horizontally and touch-

ing the seabed.

Formulate an analytical added mass term for analyzing the vibration of a submerged jumper

with shell elements.



110 CHAPTER 9. CONCLUSIONS

-This page is left initially blank-



111

References

[1] Wenhua Li, Wenrui Song, Guang Yin, Muk Chen Ong, and Fenghui Han. Flow regime iden-

tification in the subsea jumper based on electrical capacitance tomography and convo-

lution neural network. Ocean Engineering, 266:113152, 2022. ISSN 0029-8018. doi: https:

//doi.org/10.1016/j.oceaneng.2022.113152. URL https://www.sciencedirect.com/

science/article/pii/S0029801822024350.

[2] Jung Kim. Design parameter characteristics in a subsea rigid jumper. Journal of Applied

Mechanical Engineering, 04, 01 2015. doi: 10.4172/2168-9873.1000162.

[3] Yong Bai and Qiang Bai. Subsea Engineering Handbook. Oxford: Elsevier, 1 edi-

tion, 2012. ISBN 9780123978059. URL https://www.elsevier.com/books/subsea-

engineering-handbook/bai/978-0-12-397804-2.

[4] Zhenhui Liu, Laila Aarstad Igeh, Jie Wu, and Muk Chen Ong. Fatigue Damage Assessment

to a Rigid Planar Jumper on Model Scale. Journal of Offshore Mechanics and Arctic

Engineering, 142(1), 07 2019. ISSN 0892-7219. doi: 10.1115/1.4044074. URL https:

//doi.org/10.1115/1.4044074. 011602.

[5] Linda Sieber, Zhenhui Liu, Svein Sævik, and Jonas Ringsberg. Assessment of

vortex-induced vibration fatigue of subsea template jumper by using a time do-

main model. Master’s thesis, Norwegian University of Science and Technology,

https://hdl.handle.net/11250/2989641, 7 2021.

[6] Sherif S. Sorour, Mostafa Shazly, and Mohammad M. Megahed. Limit load analysis of

thin-walled as-fabricated pipe bends with low ovality under in-plane moment loading

and internal pressure. Thin-Walled Structures, 144:106336, 2019. ISSN 0263-8231. doi:

https://doi.org/10.1016/j.tws.2019.106336. URL https://www.sciencedirect.com/

science/article/pii/S026382311930309X.

https://www.sciencedirect.com/science/article/pii/S0029801822024350
https://www.sciencedirect.com/science/article/pii/S0029801822024350
https://www.elsevier.com/books/subsea-engineering-handbook/bai/978-0-12-397804-2
https://www.elsevier.com/books/subsea-engineering-handbook/bai/978-0-12-397804-2
https://doi.org/10.1115/1.4044074
https://doi.org/10.1115/1.4044074
https://www.sciencedirect.com/science/article/pii/S026382311930309X
https://www.sciencedirect.com/science/article/pii/S026382311930309X


112 REFERENCES

[7] S. Sumesh, AR. Veerappan, and S. Shanmugam. Evaluation of postulated cross sections

with ovality and thinning for 90¬ pipe bends with circumferential throughwall cracks

subjected to in-plane closing bending. Engineering Failure Analysis, 75:82–91, 2017.

ISSN 1350-6307. doi: https://doi.org/10.1016/j.engfailanal.2016.12.021. URL https:

//www.sciencedirect.com/science/article/pii/S1350630716306148.

[8] Jaswar Koto. Subsea Connection Jumper - Introduction. Ocean Aerospace Research

Institute, Indonesia, 2 edition, 2017.

[9] Simulia. Abaqus/standard user’s manual, version 6.9, 2009.

[10] F. Ross. Pressure vessels: External Pressure Technology. Horwood Publishing, 2001.

[11] J.P. Gauthier, A.M. Giroux, S. Etienne, and F.P. Gosselin. A numerical method for the

determination of flow-induced damping in hydroelectric turbines. Journal of Flu-

ids and Structures, 69:341–354, 2017. ISSN 0889-9746. doi: https://doi.org/10.1016/

j.jfluidstructs.2017.01.004. URL https://www.sciencedirect.com/science/article/

pii/S0889974616301773.

[12] Chirag Trivedi. A review on fluid structure interaction in hydraulic turbines: A fo-

cus on hydrodynamic damping. Engineering Failure Analysis, 77:1–22, 2017. ISSN

1350-6307. doi: https://doi.org/10.1016/j.engfailanal.2017.02.021. URL https://

www.sciencedirect.com/science/article/pii/S1350630717302704.

[13] Li Lu, Yi Ren Yang, Peng Li, and Ming Lu Zhang. Added mass, added stiffness and added

damping coefficients for a parallel plate-type structure. In Mechanical, Materials and

Manufacturing Engineering, volume 66 of Applied Mechanics and Materials, pages 1738–

1742. Trans Tech Publications Ltd, 8 2011. doi: 10.4028/www.scientific.net/AMM.66-

68.1738.

[14] Xue-linp. Peng and Hong. Hao. A numerical study of damage detection of underwater

pipeline using vibration-based method. International Journal of Structural Stability and

Dynamics, 12, 05 2012. doi: 10.1142/S0219455412500216.

[15] Xue-Lin. Peng, Hong. Hao, and Zhong-Xian. Li. Application of wavelet packet transform

in subsea pipeline bedding condition assessment. Engineering Structures, 39:50–65,

https://www.sciencedirect.com/science/article/pii/S1350630716306148
https://www.sciencedirect.com/science/article/pii/S1350630716306148
https://www.sciencedirect.com/science/article/pii/S0889974616301773
https://www.sciencedirect.com/science/article/pii/S0889974616301773
https://www.sciencedirect.com/science/article/pii/S1350630717302704
https://www.sciencedirect.com/science/article/pii/S1350630717302704


REFERENCES 113

2012. ISSN 0141-0296. doi: https://doi.org/10.1016/j.engstruct.2012.01.017. URL https:

//www.sciencedirect.com/science/article/pii/S0141029612000570.

[16] X. Q. Zhu, H. Hao, and X. L. Peng. Dynamic assessment of underwater pipeline

systems using statistical model updating. International Journal of Structural Stabil-

ity and Dynamics, 08(02):271–297, 2008. doi: 10.1142/S021945540800265X. URL

https://doi.org/10.1142/S021945540800265X.

[17] Chunxiao Bao, Hong Hao, and Zhongxian Li. Vibration-based structural health moni-

toring of offshore pipelines: Numerical and experimental study. Structural Control and

Health Monitoring, 20, 05 2013. doi: 10.1002/stc.1494.

[18] R.D. Blevins. Flow-induced Vibration. Krieger Publishing Company, 2001. ISBN

9781575241838. URL https://books.google.no/books?id=Wzo8PgAACAAJ.

[19] Matthew R. Kramer, Zhanke Liu, and Yin L. Young. Free vibration of cantilevered

composite plates in air and in water. Composite Structures, 95:254–263, 2013. ISSN

0263-8223. doi: https://doi.org/10.1016/j.compstruct.2012.07.017. URL https://

www.sciencedirect.com/science/article/pii/S0263822312003455.

[20] Cho-Chung Liang, Ching-Chao Liao, Yuh-Shiou Tai, and Wen-Hao Lai. The free vibration

analysis of submerged cantilever plates. Ocean Engineering, 28(9):1225–1245, 2001.

ISSN 0029-8018. doi: https://doi.org/10.1016/S0029-8018(00)00045-7. URL https:

//www.sciencedirect.com/science/article/pii/S0029801800000457.

[21] Ulric S. Lindholm, Daniel D. Kana, Wen-Hwa Chu, and H. Norman Abramson. Elastic

vibration characteristics of cantilever plates in water. Journal of Ship Research, 9:11–36,

1962.

[22] Kyeong-Hoon Jeong, Gyu-Mahn Lee, and Tae-Wan Kim. Free vibration analysis of a

circular plate partially in contact with a liquid. Journal of Sound and Vibration, 324(1):

194–208, 2009. ISSN 0022-460X. doi: https://doi.org/10.1016/j.jsv.2009.01.061. URL

https://www.sciencedirect.com/science/article/pii/S0022460X0900128X.

[23] Jiangang Chen and Zhongqing Su. Identification of corrosion damage in submerged

structures using fundamental anti-symmetric lamb waves. Smart Materials and Struc-

tures, 19:015004, 11 2009. doi: 10.1088/0964-1726/19/1/015004.

https://www.sciencedirect.com/science/article/pii/S0141029612000570
https://www.sciencedirect.com/science/article/pii/S0141029612000570
https://doi.org/10.1142/S021945540800265X
https://books.google.no/books?id=Wzo8PgAACAAJ
https://www.sciencedirect.com/science/article/pii/S0263822312003455
https://www.sciencedirect.com/science/article/pii/S0263822312003455
https://www.sciencedirect.com/science/article/pii/S0029801800000457
https://www.sciencedirect.com/science/article/pii/S0029801800000457
https://www.sciencedirect.com/science/article/pii/S0022460X0900128X


114 REFERENCES

[24] Irena Lasiecka and José H. Rodrigues. Weak and strong semigroups in structural acous-

tic kirchhoff-boussinesq interactions with boundary feedback. Journal of Differen-

tial Equations, 298:387–429, 2021. ISSN 0022-0396. doi: https://doi.org/10.1016/

j.jde.2021.07.009. URL https://www.sciencedirect.com/science/article/pii/

S0022039621004460.

[25] H.T. Banks, M.A. Demitriou, and R.C. Smith. An h/sup /spl infin///minmax periodic

control in a two-dimensional structural acoustic model with piezoceramic actuators.

IEEE Transactions on Automatic Control, 41(7):943–959, 1996. doi: 10.1109/9.508899.

[26] J. Beale. Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J.,

25:895–917, 1976. ISSN 0022-2518.

[27] H.T. Banks and R.C. Smith. Feedback control of noise in a 2-d nonlinear structural

acoustics model. Discrete and Continuous Dynamical Systems, 1(1):119–149, 1995. doi:

10.3934/dcds.1995.1.119. URL https://doi.org/10.3934/dcds.1995.1.119.

[28] Fariba Fahroo and Chunming Wang. A new model for acoustic-structure interaction and

its exponential stability. Quarterly of Applied Mathematics, 57(1):157–179, 1999. ISSN

0033-569X. doi: 10.1090/qam/1672195. URL https://doi.org/10.1090/qam/1672195.

[29] P. M. Morse, K. U. Ingard, and F. B. Stumpf. Theoretical Acoustics. American Journal

of Physics, 38(5):666–667, 05 1970. ISSN 0002-9505. doi: 10.1119/1.1976432. URL

https://doi.org/10.1119/1.1976432.

[30] I Author Lasiecka and GC Reviewer Gaunaurd. Mathematical Control Theory of Coupled

PDEs. Applied Mechanics Reviews, 56(1):B3–B3, 01 2003. ISSN 0003-6900. doi: 10.1115/

1.1523354. URL https://doi.org/10.1115/1.1523354.

[31] Y.H. Wu, C.Y. Dong, and H.S. Yang. Isogeometric fe-be coupling approach for structural-

acoustic interaction. Journal of Sound and Vibration, 481:115436, 2020. ISSN 0022-460X.

doi: https://doi.org/10.1016/j.jsv.2020.115436. URL https://www.sciencedirect.com/

science/article/pii/S0022460X20302686.

[32] C.G. Rodriguez, P. Flores, F.G. Pierart, L.R. Contzen, and E. Egusquiza. Capability

of structural–acoustical fsi numerical model to predict natural frequencies of sub-

merged structures with nearby rigid surfaces. Computers Fluids, 64:117–126, 2012.

https://www.sciencedirect.com/science/article/pii/S0022039621004460
https://www.sciencedirect.com/science/article/pii/S0022039621004460
https://doi.org/10.3934/dcds.1995.1.119
https://doi.org/10.1090/qam/1672195
https://doi.org/10.1119/1.1976432
https://doi.org/10.1115/1.1523354
https://www.sciencedirect.com/science/article/pii/S0022460X20302686
https://www.sciencedirect.com/science/article/pii/S0022460X20302686


REFERENCES 115

ISSN 0045-7930. doi: https://doi.org/10.1016/j.compfluid.2012.05.011. URL https:

//www.sciencedirect.com/science/article/pii/S0045793012002113.

[33] Pejman Razi and Farid Taheri. A vibration-based strategy for health monitoring of

offshore pipelines’ girth-welds. Sensors, 14(9):17174–17191, 2014. ISSN 1424-8220. doi:

10.3390/s140917174. URL https://www.mdpi.com/1424-8220/14/9/17174.

[34] Pejman Razi and Farid Taheri. On the vibration simulation of submerged pipes: Struc-

tural health monitoring aspects. Journal of Mechanics of Materials and Structures, 10:

105–122, 08 2015. doi: 10.2140/jomms.2015.10.105.

[35] M. Zeinoddini, G.A.R. Parke, and M.Sadrossadat. Free-spanning submarine pipeline

response to severe ground excitations: Water-pipeline interactions. PIPELINE SYSTEMS

ENGINEERING AND PRACTICE, 3, 11 2012. doi: 10.1061/(ASCE)PS.1949-1204.0000098.

[36] Ming Zhang and Qing guang Chen. Numerical investigation of the added mass effect

of submerged blade disk structures: From simplified models to francis turbine runners.

Alexandria Engineering Journal, 61(4):3013–3020, 2022. ISSN 1110-0168. doi: https:

//doi.org/10.1016/j.aej.2021.08.026. URL https://www.sciencedirect.com/science/

article/pii/S111001682100541X.

[37] MathWorks. Matlab version: 9.13.0 (r2022b), 2022. URL https://www.mathworks.com.

[38] R.D. Blevins. Formulas for Natural Frequency and Mode Shape. R.E. Krieger, 1984. ISBN

9780898747911. URL https://books.google.no/books?id=ZexnjgEACAAJ.

[39] J.N. Newman. Marine Hydrodynamics. Mit Press. Wei Cheng Cultural Enteroprise

Company, 1977. ISBN 9780262140263. URL https://books.google.co.uk/books?id=
nj-k_lAmaBYC.

[40] Lund University. CALFEM – A Finite Element Toolbox Version 3.6. 2022. Available at

http://www.byggmek.lth.se/Calfem.

[41] J.S. Przemieniecki. Theory of Matrix Structural Analysis. Dover Civil and Mechani-

cal Engineering. Dover, 1985. ISBN 9780486649481. URL https://books.google.no/

books?id=Jd6i0k4wvtQC.

https://www.sciencedirect.com/science/article/pii/S0045793012002113
https://www.sciencedirect.com/science/article/pii/S0045793012002113
https://www.mdpi.com/1424-8220/14/9/17174
https://www.sciencedirect.com/science/article/pii/S111001682100541X
https://www.sciencedirect.com/science/article/pii/S111001682100541X
https://www.mathworks.com
https://books.google.no/books?id=ZexnjgEACAAJ
https://books.google.co.uk/books?id=nj-k_lAmaBYC
https://books.google.co.uk/books?id=nj-k_lAmaBYC
http://www.byggmek.lth.se/Calfem
https://books.google.no/books?id=Jd6i0k4wvtQC
https://books.google.no/books?id=Jd6i0k4wvtQC


116 REFERENCES

[42] André Teófilo Beck and Cláudio R.A. da Silva. Timoshenko versus euler beam

theory: Pitfalls of a deterministic approach. Structural Safety, 33(1):19–25, 2011.

ISSN 0167-4730. doi: https://doi.org/10.1016/j.strusafe.2010.04.006. URL https:

//www.sciencedirect.com/science/article/pii/S0167473010000597.

[43] Edgar Matas Hidalgo. Study of optimization for vibration absorbing devices applied on

airplane structural elements. PhD thesis, UPC, Escola Tècnica Superior d’Enginyeries

Industrial i Aeronàutica de Terrassa, Departament de Projectes d’Enginyeria, Jun 2014.

URL http://hdl.handle.net/2099.1/26029.

[44] Maurice Petyt. Introduction to Finite Element Vibration Analysis. Cambridge University

Press, 2 edition, 2010. doi: 10.1017/CBO9780511761195.

[45] Robert D. Cook, David S. Malkus, Michael E. Plesha, and Robert J. Witt. Concepts and

Applications of Finite Element Analysis, 4th Edition. Wiley, 4 edition, October 2001. ISBN

0471356050.

[46] T. Aksu. A finite element formulation for free vibration analysis of shells of general

shape. Computers Structures, 65(5):687–694, 1997. ISSN 0045-7949. doi: https:

//doi.org/10.1016/S0045-7949(96)00423-3. URL https://www.sciencedirect.com/

science/article/pii/S0045794996004233.

[47] Jingjuan Zhai, Guozhong Zhao, and Linyuan Shang. Integrated design optimization of

structural size and control system of piezoelectric curved shells with respect to sound

radiation. Structural and Multidisciplinary Optimization, 56:1–18, 12 2017. doi: 10.1007/

s00158-017-1721-5.

[48] N. Kumbasar and T. Aksu. A finite element formulation for moderately thick shells of gen-

eral shape. Computers Structures, 54(1):49–57, 1995. ISSN 0045-7949. doi: https:

//doi.org/10.1016/0045-7949(94)00304-L. URL https://www.sciencedirect.com/

science/article/pii/004579499400304L.

[49] T. Zimmermann. The finite element method. Linear static and dynamic finite element

analysis Thomas J.R. Hughes (Prentice Hall, Englewood Cliffs, NJ, 1987) 803 pp. Computer

Methods in Applied Mechanics and Engineering, 65(2):191, November 1987. doi: 10.1016/

0045-7825(87)90013-2.

https://www.sciencedirect.com/science/article/pii/S0167473010000597
https://www.sciencedirect.com/science/article/pii/S0167473010000597
http://hdl.handle.net/2099.1/26029
https://www.sciencedirect.com/science/article/pii/S0045794996004233
https://www.sciencedirect.com/science/article/pii/S0045794996004233
https://www.sciencedirect.com/science/article/pii/004579499400304L
https://www.sciencedirect.com/science/article/pii/004579499400304L


REFERENCES 117

[50] Demetres Briassoulis. On the basics of the shear locking problem of c0 isoparametric

plate elements. Computers Structures, 33(1):169–185, 1989. ISSN 0045-7949. doi: https:

//doi.org/10.1016/0045-7949(89)90139-9. URL https://www.sciencedirect.com/

science/article/pii/0045794989901399.

[51] D. Briassoulis. Thin element applications of a new formulation for c0 structural el-

ements. Computers Structures, 37(6):1097–1103, 1990. ISSN 0045-7949. doi: https:

//doi.org/10.1016/0045-7949(90)90021-S. URL https://www.sciencedirect.com/

science/article/pii/004579499090021S.

[52] H. D. Hibbit. Special structural elements of piping analysis. In Pressure Vessels and

Piping: Analysis and Computers, New York, 1974. ASME.

[53] H. Ohtsubo and O. Watanabe. Flexibility and stress factors for pipe bends—an analysis

by the finite ring method. In ASME paper 76-PVP-40, 1976.

[54] H. Takeda, S. Asai, and K. Kwata. A new finite element for structural analysis of piping

systems. In Proceedings of the Fifth SMIRT Conference, Berlin, 1979.

[55] K. Bathe and C. Almeida. A simple and effective pipe elbow element—linear analysis.

Journal of Applied Mechanics-transactions of The Asme - J APPL MECH, 47, 03 1980. doi:

10.1115/1.3153645.

[56] Nils Erik Anders Rønnquist, Federico Perotti, and Luca Martinelli. Global analysis of

submerged floating tunnels under hydrodynamic loading. Master’s thesis, Norwegian

University of Science and Technology, 6 2020.

[57] O. C Zienkiewicz. The finite element method : its basis and fundamentals, 2005.

[58] Roger Ohayon. Symmetric variational formulation of harmonic vibrations problems by

coupling primal and dual principles. Application to fluid-structure coupled systems. La

Recherche Aerospatiale, 3:207–2011, 1979. URL https://hal.science/hal-04105338.

[59] Oskar Ullestad and Zhenhui Liu. The application of the coupled acoustic-structural

approach (casa) method on the free vibration of submerged structures. 2023. submitted

for review.

https://www.sciencedirect.com/science/article/pii/0045794989901399
https://www.sciencedirect.com/science/article/pii/0045794989901399
https://www.sciencedirect.com/science/article/pii/004579499090021S
https://www.sciencedirect.com/science/article/pii/004579499090021S
https://hal.science/hal-04105338


118 REFERENCES

[60] Wen Hwa Chu. Vibrations of fully submerged cantilever plates in water. Schiff-

stechnik, 15(78):–, 1968. URL https://repository.tudelft.nl/islandora/object/

uuid%3Abbd2ee9a-e527-4b51-8890-7dd12c7e5244.

[61] Cong Gao, Hang Zhang, Haichao Li, Fuzhen Pang, and Hongfu Wang. Numerical and

experimental investigation of vibro-acoustic characteristics of a submerged stiffened

cylindrical shell excited by a mechanical force. Ocean Engineering, 249:110913, 2022.

ISSN 0029-8018. doi: https://doi.org/10.1016/j.oceaneng.2022.110913. URL https:

//www.sciencedirect.com/science/article/pii/S0029801822003493.

[62] David Valentín, Alexandre Presas, Eduard Egusquiza, Carme Valero, and Mònica

Egusquiza. Experimental Study of a Vibrating Disk Submerged in a Fluid-Filled Tank

and Confined With a Nonrigid Cover. Journal of Vibration and Acoustics, 139(2), 02 2017.

ISSN 1048-9002. doi: 10.1115/1.4035105. URL https://doi.org/10.1115/1.4035105.

021005.

[63] Howard Wang, Jerry Huang, Sungho Lee, Paulo Gioielli, Wan Kan, Don Spencer, and

Mohammed Islam. VIV Response of a Subsea Jumper in Uniform Current. Volume

4B: Pipeline and Riser Technology, 06 2013. doi: 10.1115/OMAE2013-11417. URL

https://doi.org/10.1115/OMAE2013-11417. V04BT04A043.

[64] Klaus-Jurgen Bathe, Carlos A. Almeida, and Lee W. Ho. A simple and effective pipe

elbow element—some nonlinear capabilities. In K.J. BATHE, editor, Nonlinear Fi-

nite Element Analysis and Adina, pages 659–667. Pergamon, 1983. ISBN 978-0-08-

030566-0. doi: https://doi.org/10.1016/B978-0-08-030566-0.50009-6. URL https:

//www.sciencedirect.com/science/article/pii/B9780080305660500096.

[65] R. Bruschi, A. Parrella, G.C. Vignati, and L. Vitali. Crucial issues for deep water rigid

jumper design. Ocean Engineering, 137:193–203, 2017. ISSN 0029-8018. doi: https:

//doi.org/10.1016/j.oceaneng.2017.03.059. URL https://www.sciencedirect.com/

science/article/pii/S0029801817301762.

[66] Wenhua Li, Qing Zhou, Guang Yin, Muk Chen Ong, Gen Li, and Fenghui Han. Exper-

imental investigation and numerical modeling of two-phase flow development and

flow-induced vibration of a multi-plane subsea jumper. Journal of Marine Science

https://repository.tudelft.nl/islandora/object/uuid%3Abbd2ee9a-e527-4b51-8890-7dd12c7e5244
https://repository.tudelft.nl/islandora/object/uuid%3Abbd2ee9a-e527-4b51-8890-7dd12c7e5244
https://www.sciencedirect.com/science/article/pii/S0029801822003493
https://www.sciencedirect.com/science/article/pii/S0029801822003493
https://doi.org/10.1115/1.4035105
https://doi.org/10.1115/OMAE2013-11417
https://www.sciencedirect.com/science/article/pii/B9780080305660500096
https://www.sciencedirect.com/science/article/pii/B9780080305660500096
https://www.sciencedirect.com/science/article/pii/S0029801817301762
https://www.sciencedirect.com/science/article/pii/S0029801817301762


REFERENCES 119

and Engineering, 10(10), 2022. ISSN 2077-1312. doi: 10.3390/jmse10101334. URL

https://www.mdpi.com/2077-1312/10/10/1334.

[67] Roberto Bruschi, Lorenzo Bartolini, Caterina Molinari, Giulio C. Vignati, and Luigino

Vitali. VIV Basics for Subsea Spool/Jumper Design. volume Volume 5A: Pipeline and Riser

Technology of International Conference on Offshore Mechanics and Arctic Engineering,

05 2015. doi: 10.1115/OMAE2015-41094. URL https://doi.org/10.1115/OMAE2015-

41094. V05AT04A006.

[68] Richard H. Macneal. A simple quadrilateral shell element. Computers Structures, 8(2):

175–183, 1978. ISSN 0045-7949. doi: https://doi.org/10.1016/0045-7949(78)90020-2.

URL https://www.sciencedirect.com/science/article/pii/0045794978900202.

[69] Eduardo N. Dvorkin and Klaus-Jürgen Bathe. A continuum mechanics based four-

node shell element for general non-linear analysis. Engineering Computations, 1(1):

77–88, 1984. ISSN 0264-4401. doi: 10.1108/eb023562. URL https://doi.org/10.1108/

eb023562.

https://www.mdpi.com/2077-1312/10/10/1334
https://doi.org/10.1115/OMAE2015-41094
https://doi.org/10.1115/OMAE2015-41094
https://www.sciencedirect.com/science/article/pii/0045794978900202
https://doi.org/10.1108/eb023562
https://doi.org/10.1108/eb023562




121

Appendices



122

Appendix A

MATLAB plots

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

(g) Mode 7 (h) Mode 8 (i) Mode 9

Figure A.1: The first nine mode shapes of the submerged M-shaped single-planar jumper,
simulated with MATLAB
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5

Figure A.2: The first five mode shapes of the submerged Z-shaped multi-planar jumper, simu-
lated with MATLAB
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Appendix B

MATLAB script

Listing B.1: Matlab code for the submerged straight pipe

1 %Two straight pipes connected with a 90 deg bend

2

3 clear all

4

5 %Chose number of elements per local pipe

6 nElm = 20;

7

8 %Chose number of eigenvalues and mode shapes to calculate

9 k = 10;

10

11 %Chose plotted mode shape

12 ModeShapeNr = 1;

13

14 % Scale the displacements

15 scale_factor = 1;

16

17 %Input properties

18 E = 206e9; %Pa

19 rho_p = 7850; %kg/m^3

20 D = 0.052; %m
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21 t = 0.002; %m

22 v = 0.3;

23 %G = 2.61e10; %Pa

24

25 %Lengts of the Z−haped multiplanar jumper

26 Lengths = [0 0.5 0.5 0.8 2 0.8 0.5 0.5]; %[m]

27 %Bends about z axis

28 alpha = [0 90 0 −90 0 90 0 −90]; %[deg]

29 %Bends about y axis

30 beta = [0 0 0 0 90 0 0 0]; %[deg]

31 %Bends about x axis

32 %gamma = [0 0 0 0 0 0 0 0]; %[deg]

33

34 %Lengts of the nonsymmetrical multiplanar jumper

35 %Lengths = [0 20 7 20 31 7 7 13.4 13 7 2.286]; %[m]

36 %Bends about z axis

37 %alpha = [0 90 0 −90 0 0 90 0 90 0 −90]; %[deg]

38 %Bends about y axis

39 %beta = [0 0 0 0 0 90 0 −90 0 45 0]; %[deg]

40 %Bends about x axis

41 %gamma = [0 0 0 0 0 0 0 0 0 0 0]; %[deg]

42

43 %Geometry of the S−shaped jumper

44 %Lengths = [0 3 14.5 5 15.4 2]; %[m]

45 %alpha = [0 90 0 −90 0 −90]; %[deg]

46 %beta = [0 0 0 0 0 0]; %[deg]

47 %gamma = [0 0 0 0 0 0]; %[deg]

48

49 %Geometry of the M−shaped jumper

50 %Lengths = [0 1.495 1 2.323 4.327 2.323 1 1.495]; %[m]

51 %alpha = [0 0 90 180 90 0 90 180]; %[deg]

52 %beta = [0 0 0 0 0 0 0 0]; %[deg]
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53 %gamma = [0 0 0 0 0 0 0 0]; %[deg]

54

55 L_tot = sum(Lengths);

56

57 %Number of element and node calculations

58 nNodes = nElm + 1;

59 nDof = nNodes*6;

60

61 nElm_tot = nElm * (length(Lengths)−1);

62 nNodes_tot = nElm_tot + 1;

63 nDof_tot = nNodes_tot*6;

64

65 %Geometric calculations

66 d = D−2*t;

67 A = pi/4 * (D^2−d^2);

68 Vol = A * L_tot;

69 m_tot = rho_p * Vol;

70 L = L_tot / (nElm_tot);

71 m = m_tot / L_tot;

72 I_y = pi/64*(D^4−d^4);

73 I_z = I_y;

74 J = I_y + I_z;

75 G = E/(2*(1+v));

76 %v = E/(2*G)−1;

77

78 %Added Mass

79 rho_f = 1000; %[kg/m^3]

80 m_added_mass = rho_f*pi*(D^2)/4*L_tot;

81 rho_new = (m_tot + m_added_mass) / Vol;

82

83 % Start and end coordinates of each local pipe

84 xCoord = cumsum(Lengths .* cosd(alpha));
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85 yCoord = cumsum(Lengths .* sind(alpha));

86 zCoord = cumsum(Lengths .* sind(beta));

87

88 % Making a coordiates matrix for the plot

89 Coord = zeros(nElm * (length(Lengths) − 1) + 1, 3);

90 for i = 1:length(Lengths)−1

91 dx = (xCoord(i+1) − xCoord(i)) / nElm;

92 dy = (yCoord(i+1) − yCoord(i)) / nElm;

93 dz = (zCoord(i+1) − zCoord(i)) / nElm;

94

95 startIdx = (i − 1) * nElm + 1;

96 endIdx = i * nElm;

97

98 Coord(startIdx:endIdx, 1) = dx * (0:nElm−1) + xCoord(i);

99 Coord(startIdx:endIdx, 2) = dy * (0:nElm−1) + yCoord(i);

100 Coord(startIdx:endIdx, 3) = dz * (0:nElm−1) + zCoord(i);

101 end

102

103 Coord(end, :) = [xCoord(end), yCoord(end), zCoord(end)];

104

105 %Local Element Mass Matrix

106 M_11 = [1/3 0 0 0 0 0;

107 0 13/35+6*I_y/(5*A*L^2) 0 0 0 11*L/210+I_y/(10*A*L);

108 0 0 13/35+6*I_y/(5*A*L^2) 0 −11*L/210−I_y/(10*A*L) 0;

109 0 0 0 J/(3*A) 0 0;

110 0 0 −11*L/210−I_y/(10*A*L) 0 L^2/105+2*I_y/(15*A) 0;

111 0 11*L/210+I_y/(10*A*L) 0 0 0 L^2/105+2*I_y/(15*A)];

112

113 M_21 = [1/6 0 0 0 0 0;

114 0 9/70−6*I_z/(5*A*L^2) 0 0 0 13*L/420−I_z/(10*A*L);

115 0 0 9/70−6*I_z/(5*A*L^2) 0 −13*L/420+I_z/(10*A*L) 0;

116 0 0 0 J/(6*A) 0 0;



128 APPENDIX B. MATLAB SCRIPT

117 0 0 13*L/420−I_z/(10*A*L) 0 −L^2/140−I_y/(30*A) 0;

118 0 −13*L/420+I_z/(10*A*L) 0 0 0 −L^2/140−I_y/(30*A)];

119

120 M_22 = [1/3 0 0 0 0 0;

121 0 13/35+6*I_y/(5*A*L^2) 0 0 0 −11*L/210−I_y/(10*A*L);

122 0 0 13/35+6*I_y/(5*A*L^2) 0 11*L/210+I_y/(10*A*L) 0;

123 0 0 0 J/(3*A) 0 0;

124 0 0 11*L/210+I_y/(10*A*L) 0 L^2/105+2*I_y/(15*A) 0;

125 0 −11*L/210−I_y/(10*A*L) 0 0 0 L^2/105+2*I_y/(15*A)];

126

127

128 M_12 = transpose(M_21);

129

130 Me_pipe = (rho_p*A*L) * [M_11 M_12; M_21 M_22];

131

132 %Lumped added mass matrix

133 Me_added = rho_new*A*L/2*[M_11 M_12; M_21 M_22];

134 Me_added(4,4) = 0;

135 Me_added(10,4) = 0;

136 Me_added(10,10) = 0;

137 Me_added(4,10) = 0;

138

139 Me = Me_pipe + Me_added;

140

141 r_g = sqrt(I_y/A); %Raduis of gyration

142 Theta = 24*(1+v)*(r_g/L)^2;

143

144 %Local Element Stiffness Matrix

145 K_11 = [E*A/L 0 0 0 0 0;

146 0 12*E*I_z/(L^3*(1+Theta)) 0 0 0 6*E*I_z/(L^2*(1+Theta));

147 0 0 12*E*I_y/(L^3*(1+Theta)) 0 −6*E*I_y/(L^2*(1+Theta)) 0;

148 0 0 0 G*J/L 0 0;
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149 0 0 −6*E*I_y/(L^2*(1+Theta)) 0 (4+Theta)*E*I_y/(L*(1+Theta)) 0;

150 0 6*E*I_z/(L^2*(1+Theta)) 0 0 0 (4+Theta)*E*I_z/(L*(1+Theta))];

151

152 K_22 = [E*A/L 0 0 0 0 0;

153 0 12*E*I_z/(L^3*(1+Theta)) 0 0 0 −6*E*I_z/(L^2*(1+Theta));

154 0 0 12*E*I_y/(L^3*(1+Theta)) 0 6*E*I_y/(L^2*(1+Theta)) 0;

155 0 0 0 G*J/L 0 0;

156 0 0 6*E*I_y/(L^2*(1+Theta)) 0 (4+Theta)*E*I_y/(L*(1+Theta)) 0;

157 0 −6*E*I_z/(L^2*(1+Theta)) 0 0 0 (4+Theta)*E*I_z/(L*(1+Theta))];

158

159 K_21 = [−E*A/L 0 0 0 0 0;

160 0 −12*E*I_z/(L^3*(1+Theta)) 0 0 0 −6*E*I_z/(L^2*(1+Theta));

161 0 0 −12*E*I_y/(L^3*(1+Theta)) 0 6*E*I_y/(L^2*(1+Theta)) 0;

162 0 0 0 −G*J/L 0 0;

163 0 0 −6*E*I_y/(L^2*(1+Theta)) 0 (2−Theta)*E*I_y/(L*(1+Theta)) 0;

164 0 6*E*I_z/(L^2*(1+Theta)) 0 0 0 (2−Theta)*E*I_z/(L*(1+Theta))];

165

166 K_12 = transpose(K_21);

167

168 Ke = [K_11 K_12; K_21 K_22];

169

170 % Transformation Matrix

171 for i = 1:length(Lengths)−1

172 % Rotation about z−axis

173 Te_z = [cosd(alpha(i)) −sind(alpha(i)) 0; sind(alpha(i)) cosd(alpha(i)

) 0; 0 0 1];

174

175 % Rotation about y−axis

176 Te_y = [cosd(beta(i)) 0 sind(beta(i)); 0 1 0; −sind(beta(i)) 0 cosd(

beta(i))];

177

178 % Rotation about x−axis
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179 Te_x = [1 0 0; 0 cosd(gamma(i)) −sind(gamma(i)); 0 sind(gamma(i)) cosd

(gamma(i))];

180

181 % Combined transformation matrix

182 Te = Te_z * Te_y * Te_x;

183

184 T{i} = blkdiag(Te, Te, Te, Te);

185

186 % Rotated Matrices

187 K_t{i} = transpose(T{i}) * Ke * T{i};

188 M_t{i} = transpose(T{i}) * Me * T{i};

189 end

190

191 %Assembly of global matrices

192 K(nDof_tot,nDof_tot)=0.0;

193 M(nDof_tot,nDof_tot)=0.0;

194

195 p=0;

196 q=0;

197 s=1;

198

199 for ne=1:length(Lengths)−1

200 for pe=1:nElm

201 for ii=1:12

202 for jj=1:12

203 K(p+ii,q+jj) = K(p+ii,q+jj) + K_t{1,s}(ii,jj);

204 M(p+ii,q+jj) = M(p+ii,q+jj) + M_t{1,s}(ii,jj);

205 end

206 end

207 p=p+6;

208 q=q+6;

209 end
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210 s=s+1;

211 end

212

213 %Boundary Conditions

214 for i = 1:6

215 K(i,i)=1e30;

216 K(nDof_tot−i+1,nDof_tot−i+1)=1e30;

217 end

218

219 %Calculating eigenvalues

220 [eigenvectors,eigenvalues] = eigs(K,M,k,'smallestabs'); %eigs works

better for sparse matrices

221

222 fprintf('Natural frequencies [Hz]: \n')

223 frequencies = sqrt(diag(eigenvalues)) / (2*pi);

224 disp(frequencies)

225

226 for i=1:nNodes_tot

227

228 % plot the corresponding disp.

229 k1=1+(i−1)*6;

230 k2=2+(i−1)*6;

231 k3=3+(i−1)*6;

232

233 for j=1:k

234 X(i,j)=eigenvectors(k1,j); % extract x−component of nodal

displacements

235 Y(i,j)=eigenvectors(k2,j); % extract y−component of nodal

displacements

236 Z(i,j)=eigenvectors(k3,j); % extract z−component of nodal

displacements

237 end
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238 end

239

240 % Scale the displacements

241 X = X * scale_factor;

242 Y = Y * scale_factor;

243 Z = Z * scale_factor;

244

245 % Modal displacement vector for the desired mode

246 deformed_y = Coord(:,1) + X(:, ModeShapeNr); % calculate x−coordinate of

deformed nodes

247 deformed_x = Coord(:,2) + Y(:, ModeShapeNr); % calculate y−coordinate of

deformed nodes

248 deformed_z = Coord(:,3) + Z(:, ModeShapeNr); % calculate z−coordinate of

deformed nodes

249

250 plot3(deformed_z, deformed_y, deformed_x, 'color', [.5 .5 .5],'LineWidth'

,1.5)

251 hold on

252 plot3(Coord(:,3), Coord(:,1), Coord(:,2), 'k', 'LineWidth', 2)

253 %xlim([−0.5 0.5])

254 %zlim([−20,20])

255 legend({'Deformed', 'Original'},'Location','northeast')

256 xlabel('x−axis [m]')

257 ylabel('z−axis [m]')

258 zlabel('y−axis [m]')

259

260 view([95 −35])
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