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Abstract

Purpose: The purpose of this thesis is to find quantitative perfusion parameters from

dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-series data

that might be related to tumor biology in endometrial cancer.

Methods: The pharmacokinetic model extended Tofts’ method (ETM) was used to de-

rive quantitative perfusion parameters. Two different environments were used for mod-

eling. The research information system was utilized to test ETM on data from n=63

patients. A population-based arterial input function (AIF) was used when modeling in

the research environment. Two other methods for estimating the AIF, including man-

ual annotation and a semi-automatic algorithm were implemented in a local modeling

environment and tested on data from n=20 patients. Correlations between the derived

parameters and low-risk and high-risk histologic tumor grades were examined.

Results: Modeling based on the voxelwise signal intensity gave slightly higher Ktrans

values than modeling based on the average signal intensity for all AIF methods. The

semi-automatic AIF method exhibits larger mean model parameters from ETM than the

two other AIF methodologies, even though the median Ktrans values are in line with the

two other AIF methods. Outliers were observed in the derived model parameters from

ETM when the semi-automatic algorithm was used for estimating the AIF. ROC curves

of the model parameters and histologic tumor grade show no correlation between the

parameters derived from ETM and histologic tumor grade in this project.

Conclusion: Modeling based on the average signal intensity inside the tumor exhibits

higher consistency in the derived model parameters than modeling based on the voxel-

wise signal intensity inside the tumor. The AIF affects the derived model parameters a

lot. The population-based AIF method was evaluated as the most robust method for es-

timating the AIF in this project. We found no correlation between the derived perfusion

parameters and histologic tumor grade.
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Chapter 1

Introduction

Endometrial cancer is the most common pelvic gynecological malignancy in Western

countries, and the occurrence is increasing [1]. It is the fifth most common cancer

type among women in Norway. The occurrence of endometrial cancer increases with

increasing age and is most frequently discovered in individuals that are over 60 years

old [2].

The endometrium is the inner layer of the uterus. Endometrial cancer (also called

endometrial carcinoma) starts in the cells of the inner lining of the uterus (the en-

dometrium) and is the most common type of cancer in the uterus [3]. Endometrial

cancer is graded based on how much the cancer cells are organized into glands. Grades

1 and 2 are lower-grade cancer; in these grades, more cancer cells form glands. In grade

3, a higher grade cancer, more cancer cells are disorganized and do not form glands.

Grade 3 endometrial cancer tends to grow and spread faster than cancer of grades 1 and

2. In addition, grade 3 cancers have a poorer outlook than endometrial cancers of lower

grade [4][5].

The histologic types of endometrial carcinomas are defined based on how the cancer

cells look when they are investigated under a microscope. Histologic types of en-

dometrial cancer include adenocarcinoma, uterine carcinosarcoma, squamous cell car-

cinoma, small cell carcinoma, transitional carcinoma and serous carcinoma. The ma-

jority of endometrial cancers are a type of adenocarcinoma called endometrioid cancer

[4].

In addition to grade and histological type, treatment and prognosis are influenced by the

surgical International Federation of Gynecology and Obstetrics (FIGO) staging system
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[1]. The FIGO stage is important when deciding how to treat endometrial cancer. The

FIGO system stages endometrial cancer based on the extent of the tumor, the spread

to nearby lymph nodes, and metastasis [6][7]. Figure 1.1 shows some of the different

FIGO stages of endometrial cancer.

Figure 1.1: The anatomy of the uterus including an explanation of the different FIGO stages (Images
from [8]).

Certain factors increase the risk of developing endometrial cancer. These include,

among other things, heredity, obesity, type 2 diabetes, never having had a child, late

menopause, increasing age and high levels of estrogen [2][6]. Lifestyle can influence

the risk of developing endometrial cancer. The reason behind endometrial cancer is

mostly unknown, even though there are some known risk factors that can influence the

risk of developing endometrial cancer [2].

The five-year overall survival for FIGO stage I and II endometrial cancer is 74%−
91%. FIGO stage III endometrial cancer has a five-year overall survival of 57%−66%,

while the five-year overall survival for FIGO stage IV is 20%− 26%. Patients with

pelvic lymph node metastasis have a five-year disease-free survival of 60% − 70%,
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while patients without lymph node metastasis have a five-year disease-free survival of

about 90%. About 75% of endometrial cancer cases are diagnosed early at FIGO stages

I or II. A considerable portion of endometrial cancer patients dies from other health

conditions and not from endometrial cancer because these patients often have several

comorbidities. In addition to FIGO stage, survival is dependent on other predictive

factors, such as tumor grade, tumor diameter, age, and comorbidities [6].

The standard treatment for apparent FIGO stage I endometrial cancer is hysterectomy

and removal of the ovaries and the uterine tubes. This can be done using techniques

that are minimally invasive. The practice for patients with lymph node metastasis varies

worldwide [6]. In Norway, surgery is the most common way of treating endometrial

cancer. Radiation therapy or chemotherapy is sometimes given to patients in Norway

when surgery is advised against [2].

The symptoms of endometrial cancer include bleeding from the vagina after menopause,

an unusual amount of discharge, and new pelvic pain. If there is suspicion of endome-

trial cancer a gynecological examination will be executed, where a sample will be taken

from the uterus. A CT scan is acquired to find out if the cancer is metastatic. In addi-

tion, an MRI scan is acquired to see if the cancer has spread outside the endometrium

[2]. Dynamic contrast-enhanced MRI (DCE-MRI) has the potential to give us addi-

tional information about the tumor, which might help with diagnosis, and hence, might

result in a better treatment [1].

1.1 Tissue and imaging biomarkers in endometrial cancer

There are certain biomarkers that are relevant for diagnosis, treatment planning and

response to therapy in endometrial cancer. Biomarkers for endometrial cancer include

histologic information, which can be found from gynecological investigations and biop-

sies, in addition to information regarding metastasis, infiltration of the myometrium and

cervix and size of the tumor, which can be found from MRI [9]. Oncogenes, cancer

suppressor genes and several other genes and molecules have been identified as en-

dometrial cancer biomarkers [9].

MRI and especially contrast-enhanced MRI is used for detecting myometrial invasion,

cervical invasion, and lymph node metastasis. Imaging techniques generally have poor

detection of lymph node metastasis, which is the major limitation. For detection of
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myometrial and cervical invasion and lymph node metastasis 18F-fluorodeoxyglucose

PET-CT has shown high accuracy for advanced-stage endometrial cancer [6]. Imaging

biomarkers are important and quantitative DCE-MRI may yield parameters relevant for

treatment planning and response to therapy [1].

1.2 Preoperative imaging with DCE-MRI

Pelvic MRI is established as a valuable imaging method in the preoperative staging of

endometrial cancer. Preoperative staging is important for determining risk groups for

recurrence. This is primarily achieved by examining lymph node metastasis, myome-

trial invasion, and cervical invasion to inform surgical management decisions [6]. In

addition to structural MRI, contrast-enhanced MRI with an intravenously injected con-

trast agent (CA) is commonly acquired due to its diagnostic performance in identifying

deep myometrial invasion compared to non-contrast MRI. For diagnosing deep my-

ometrial invasion the optimal contrast timing is approximately 2 minutes post-injection

of CA. Then, tumor tissue and the outer myometrial muscular layer can be discrimi-

nated. However, even though MRI is considered one of the best imaging modalities for

preoperative staging in endometrial cancer, contrast-enhanced MRI is still somewhat

variable in diagnostic performance [10].

A few earlier studies have suggested a link between derived pharmacokinetic parame-

ters and high-risk endometrial cancer [1][11][12][13]. There might be a potential to use

DCE-MRI as a tool for early diagnosis and prediction of treatment response in endome-

trial cancer. One of the most frequently used pharmacokinetic models is the extended

Tofts’ Method (ETM) [14]. In order to implement this model an arterial input function

(AIF) is required, which is the input concentration of a CA into the tissue of interest

[15].

1.3 Motivation, purpose and objectives

The purpose of this master thesis is to investigate DCE-MRI data from patients diag-

nosed with endometrial cancer and to discover quantitative perfusion parameters that

might be associated with tumor biology. Exploration of the differences between mod-

eling based on the average signal intensity inside the tumor and modeling based on the
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voxelwise signal intensity might give an opportunity to discuss the validity of ETM on

voxels.

An AIF is required in order to extract model parameters from ETM. Different methods

for estimating the AIF will be implemented and tested to see how the AIF affects the

parameters derived from ETM. Furthermore, it does not seem to be an apparent indica-

tion as to which method is the most effective or optimal for estimating the AIF. There

are also practical challenges associated with the task of estimating the AIF, which will

be explored and addressed in this thesis.

In order to compare different methodologies and analyze results it is important to have

access to a larger number of data. This aspect is also important when examining cor-

relations between the resulting model parameters and clinical parameters. A larger

number of data can be found in Sectra research PACS. By utilizing the research infor-

mation system at Mohn Medical Imaging and Visualization (MMIV) Center and the

Radiology Department at Haukeland University Hospital (HUS), perfusion parameters

can be derived from a broader range of data. The main objectives of this thesis are:

(I) Implement ETM in the research information system and optimize perfusion pa-

rameters for a larger number of endometrial cancer patients.

(II) Test ETM for both the average CA concentration inside the tumor and for voxel-

wise CA concentration inside the tumor and compare the results.

(III) Implement different methods for estimating the AIF, including manual annotation

on DCE-MRI images, automatic detection of the AIF using an algorithm and a

population-based AIF.

(IV) Compare the model parameters derived from ETM with values from the literature

and check for correlations with clinical parameters.
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Chapter 2

Theory

This chapter includes theory regarding the principles of DCE-MRI and pharmacoki-

netic modeling, with a special emphasis on the extended Tofts’ method (ETM), which

is the model used in this project. Theory regarding three different methods for estimat-

ing the arterial input function (AIF) is also presented in this chapter, as well as imaging

systems used in medical imaging generally and in this project. At the end of this chap-

ter, theory regarding methods for statistically evaluating modeling results is presented.

2.1 Principles of DCE-MRI

2.1.1 Magnetic resonance imaging

Magnetic resonance imaging (MRI) plays an important role in the detection and disease

evaluation of endometrial cancer. MRI exploits that the body is made up of 60−80%

water. Water contains protons which have a net magnetization. MRI is based on the

fact that particles like protons have spin. The proton acts like a magnet. If we apply

a very strong external magnetic field (1-7 Tesla) the protons in the body of the patient

will align with or against the external magnetic field. The protons can then absorb radio

frequency (RF) waves and reemit this RF energy. The time at which the protons reemit

the RF energy is dependent on the magnetic properties of the tissue. Most diseases lead

to changes in the fluid content of the chemical environment of the tissue, therefore MRI

is very sensitive to pathological changes, such as tumors [16].
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Three parameters for manipulating image contrast from MRI are particularly relevant.

The flip angle (FA) is the angle between the magnetization vector and its equilibrium

position along the main magnetic field (B0) immediately after absorption of an RF

pulse. The echo time (TE) is the time from the excitation of a tissue to the readout of

the signal and the repetition time (TR) is the time between two RF pulses [16].

The quality of an MRI image is influenced by several factors. The signal-to-noise ratio

(SNR) and the contrast between tissues affect the resulting quality of an MRI image.

SNR is determined by dividing the average signal intensity within a specific ROI in

the object being imaged by the standard deviation in an ROI outside the object being

imaged. The temporal and spatial resolution also affect the quality of an MRI image.

The spatial resolution is related to the number of pixels in the MRI image, while the

temporal resolution is related to the time during the acquisition of a single frame in the

dynamic images [16].

There are some tissue specific properties in MRI, including the time constants T1 and

T2. These two constants describe the relaxation process in MRI and they are dependent

on the composition and structure of the tissue being imaged, as well as the surrounding

tissues. T1-weighted (T1W) and T2-weighted (T2W) MRI images are typically acquired

in the clinic. This means that the T1 or T2 relaxation process is weighted, while actually,

all relaxation processes are present at all times while acquiring an MRI image. In T1W

imaging it is the T1-relaxation process that is emphasized and T1 relaxation describes

the time at which the magnetization is regained along the longitudinal direction. T2

relaxation describes the time at which the magnetization is lost in the transversal plane

[16].

2.1.2 Dynamic contrast-enhanced MRI

Dynamic contrast-enhanced (DCE) MRI enables us to characterize the tissue microvas-

culature. By analyzing the leakage of a paramagnetic contrast agent (CA) from the cap-

illaries into the extravascular extracellular space (EES), we can possibly assess quan-

tifiable physiological parameters that might reflect properties of the tissue being imaged

[17]. DCE-MRI has been shown to identify biomarkers relevant for treatment response

and survival in patients with cervical cancer. It also holds potential for identifying sim-

ilar biomarkers in patients with endometrial cancer [1].
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Following the introduction of a CA into the vascular system, DCE-MRI can be used

to analyze the temporal enhancement of the tissue. This is achieved by first acquiring

baseline images without CA and then acquiring a series of images over time, usually

over a few minutes during and after the injection of CA. The acquired MRI signal can

then be used to generate a time-intensity curve for the tissue. This curve shows the tis-

sue’s response to the arrival of CA as the concentration of CA over time. By analyzing

this curve physiological parameters that might be related to the tissue of interest, can

be derived. Such parameters include tissue perfusion, vascular permeability and tissue

volume fractions [17].

In DCE-MRI acquisition, repeated T1W images are acquired for several frames before

the injection of CA. After the injection of CA, T1W measurements are often acquired.

The most widely used CA in MRI, including DCE-MRI, is Gadolinium (Gd). The CA

is injected into the bolus with a saline flush after the injection of Gd. Frequently, there

is a need to compromise between coverage, temporal resolution, and spatial resolution.

Newer scanners have faster gradients, which allows for shorter TR and by using multi-

array receiver coils, a higher SNR can be achieved. The optimal DCE-MRI sequence

will depend on the organ being measured. Frame times of 2-20 s can be achieved by

using spoiled gradient echo methods [18].

To provide an AIF for modeling, the blood signal curve can be measured. To measure

the blood signal curve a low temporal resolution of ∼ 3s or less is desired. When

imaging organs or tumors in the abdomen the aorta is often used as an AIF. For pelvic

regions, the iliac arteries can be used as an AIF. For organs located in areas in the

body where it can be challenging to identify an adequate AIF, other alternatives like a

concentration-time curve in a draining vein or a population AIF can be used [18].

To determine the tissue of interest, it is often necessary to do some kind of segmentation

of the tissue of interest. Tumor segmentations can for instance be performed on a

single slice or on whole-volume data. For DCE-MRI images it might be convenient

to do annotations of the tumor directly on the DCE-MRI images to avoid artefacts

due to co-registration between the dynamic and the structural MRI images [1]. Tumor

segmentations are still mostly carried out by radiologists, but there is an increasing

interest in and development of automatic segmentation methods using deep learning

and convolutional neural networks (CNN). Manual segmentation is labor intensive,

and whole-volume segmentations are especially time-consuming since annotations are
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performed on several slices to cover the whole tumor volume. Automatic methods for

the segmentation of tumors in endometrial cancer would most likely enlighten the work

of radiologists. An automatic method for the detection and delineation of 3D primary

tumors in endometrial cancer was developed by Hodneland et al. using 3D CNNs [19].

2.2 Pharmacokinetic modeling

Parameters reflecting physiology can be derived from pharmacokinetic models, which

are models used for analyzing how a drug distributes in the body [20]. When the CA

Gd is present, T1 is reduced from T10, as shown in equation (2.1). T10 is the value of T1

before injection of Gd and Ct(t) is the concentration-time curve in the tissue of inter-

est. r1 is the relaxivity, which is a constant of proportionality between the Gadolinium

concentration and the increase in relaxation rate [21]. r1 is specific to a contrast agent

and varies with field strength [18]. Relaxation rate can be more convenient to use, as

shown in equation (2.2), where R1 = 1/T1 [18].

1
T1

=
1

T10
+ r1Ct(t) (2.1)

R1 = R10 + r1Ct(t) (2.2)

T1 reduction increases the MRI signal S as shown in equation (2.3). A commonly used

technique for quantifying the signal enhancement resulting from the administration of

a Gd-based CA is a simple spoiled gradient echo sequence. A simple spoiled gradient

echo ("FLASH or "GRE") sequence is chosen due to its combination of good volume

coverage, acceptable precision and accuracy, and acceptable spatial resolution, in ad-

dition to acceptable acquisition speed. S0 is the relaxed signal, which can be found by

measuring the MRI signal intensity before the injection of CA. S0 is equal to S when

T R >> T1 and θ = 90◦, where θ is the FA [18].

S = S0
(1− e−T R/T1)sinθ

1− e−T R/T1cosθ
(2.3)

The CA is only present in the plasma of the blood vessels. The plasma concentration,

Cp, can be found from the blood concentration, Cb, by adjusting for the hematocrit

(Hct), which is the volume percentage of red blood cells in the blood. The blood



2.2 Pharmacokinetic modeling 11

concentration is found from the blood signal. The plasma concentration can then be

calculated as in equation (2.4). Hct is typically 42% [21][14].

Cp(t) =
Cb(t)

1−Hct
(2.4)

The total tissue concentration is defined in equation (2.5). This equation is valid for

a two-compartment model, where the two compartments are plasma and EES, with

fractional volumes vp and ve, respectively [22]. Compartmental models describe the

exchange of CA within a compartment [14]. In equation (2.5) Ce is the concentration

of CA in the EES.

Ct(t) =Cp(t)vp +Ce(t)ve (2.5)

ETM is a simple two-compartment model consisting of one tissue compartment and a

vascular compartment [14]. The injected CA gives a time-varying blood plasma con-

centration Cp, and since these contrast agents usually are very small (< ≈1000 daltons),

the leakage from the capillaries into the EES is accepted to be diffusive and reversible

[18]. The leakage across the endothelium is therefore considered to be proportional to

the difference between the concentration in the plasma and the concentration in the EES

as illustrated in equation (2.6) [18][21]. In equation (2.6) Ktrans is a transfer constant.

ve
dCe(t)

dt
= Ktrans(Cp(t)−Ce(t)). (2.6)

The solution to equation (2.6) gives the concentration-time curve Ct(t) in the tissue of

interest and is known as the extended Tofts’ method (ETM).

2.2.1 Extended Tofts’ method

ETM is a standard method for analyzing DCE-MRI data. The method was proposed

by Paul S. Tofts by pharmacokinetic analysis of the concentration of Gd found from

MRI signals [21]. Figure 2.1 gives an illustration of some of the parameters that are

included in the model. In ETM each voxel of tissue is assumed to contain three compo-

nents: the non-Gd containing intracellular space, the tissue EES, and the blood vessels



12 Theory

which contains Hct and plasma. The CA is assumed to leak across the vascular en-

dothelium and into the EES. This is a passive diffusion and the transfer constant that

characterizes the diffuse transport of low-molecular weight Gd across the capillary en-

dothelium is Ktrans(min−1) [18][22]. Ktrans can be measured with DCE-MRI and is

being used in imaging studies to characterize tumor biology and treatment response.

Ktrans is the constant of proportionality between the concentrations in the blood plasma

and the EES and it is related to the flow of plasma into the capillary bed (Fp) and the

permeability surface area product (PS) of the endothelial wall [22][14]. kep(min−1) is a

model parameter that accounts for the corresponding rate of Gd from the EES and back

to the plasma [14]. The transfer constant kep is defined as kep = Ktrans/ve, where ve is

the volume fraction of the EES [22].

Figure 2.1: An illustration of the parameters in extended Tofts’ method. The light blue area is the
extravascular extracellular space (EES), while the dark blue space is the intracellular space. The
blood vessel contains plasma and red blood cells. The small grey dots in the plasma and in the EES
illustrates Gadolinium (Gd). Ktrans(min−1) and kep(min−1) are transfer constants, characterizing the
transfer of Gd across the endothelium. The relative sizes are not correct in this figure. (illustration
inspired by [23]).

ETM, which is found in formula (2.7) gives the concentration-time curve in the tissue of

interest, Ct(t). Cp(t) is the concentration-time curve in the plasma of the feeding artery,

while Ce(t) is the concentration-time curve in the EES. vp is the fractional volume of

the blood plasma in the tissue of interest [21][22].
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Ct(t) =Cp(t)vp +Ktrans
∫ t

0
Cp(τ)e−kep(t−τ)dτ (2.7)

Tofts’ method (TM) assumes that the fractional volume of the blood plasma, vp in the

tissue is small and makes little contribution to the total concentration of Gd found from

the MRI signal. TM is given in equation (2.8), where the first term accounting for the

plasma concentration is no longer present in the equation due to the assumption of low

concentration of Gd in the plasma [22].

Ct(t) = Ktrans
∫ t

0
Cp(τ)e−kep(t−τ)dτ (2.8)

ETM given in equation (2.7) includes the contribution from plasma, and is accurate

in highly perfused tissues, which means that the blood flow is high [22]. In this case,

perfusion means the supply of blood to the tissue and has the unit ml/min/100ml tissue

[18]. TM given in equation (2.8) is however accurate in weakly vascularized tissues. A

vascularized tissue is a tissue with a capillary network capable of delivering nutrients

to the cellular constituents comprising the tissue [22][24].

2.3 Heuristic methods

Heuristic methods are simpler methods for extracting information from DCE-MRI im-

ages that might be related to the tissue of interest. Heuristic methods are based on com-

paring the calculated parameters with observations from previous experiences. These

methods include the extraction of parameters that can tell us something about the tis-

sue of interest. Examples of such parameters are peak enhancement (PE), time to peak

(TTP), and Area Under Curve (AUC). These derived tissue parameters are independent

of imaging sequence parameters such as FA and T0 if the data acquisition is done cor-

rectly. However, if the data acquisition is not done correctly this can influence these

parameters. The Heuristic methods have increased variability between both scanners

and patients and are dose-dependent. In addition, the calculated parameters may not be

clearly related to the characteristics of the biological tissue [18].
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PE is the maximum signal intensity of a time-varying signal S(t). TTP is the time before

the CA reaches its highest value in the tissue during the first-pass cycle, i.e. before peak

enhancement is reached. The concept of PE and TTP is shown in the concentration-

time curve in Figure 2.2. AUC is the area under the concentration-time curve, i.e. the

area under the curve shown in Figure 2.2. Parameters such as PE, TTP, and AUC might

tell us something about a tumor [25].

Time [s]

Signal intensity [a.u.]

TTP

PE!
Figure 2.2: An illustration of the parameters peak enhancement (PE) and time-to-peak (TTP), which
can be estimated by heuristic methods.

2.4 The Arterial Input function

The AIF is commonly defined as the input concentration of a CA into the tissue of

interest. Many of the pharmacokinetic models proposed to analyze DCE-MRI depend

on an accurate AIF [15]. Determining the AIF can be difficult due to problems like for

instance flow artifacts and partial volume effects [25]. The AIF kinetics is characterized

by a sharp uptake, a short-lived peak value followed by a small peak and subsequently,

a longer wash-out period, as illustrated in Figure 2.3. This makes the AIF kinetics

different from the concentration-time curve in the tissue of interest [25].
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Time [s]

Signal intensity [a.u.]

1.
Figure 2.3: The kinetics of the arterial input function (AIF).

There are several ways to estimate the AIF. Three different ways of estimating the AIF

will be presented in the next sections.

2.4.1 Manual annotation of the AIF

One way of estimating the AIF is by annotating a region of interest (ROI) on a DCE-

MRI image. Ideally, the ROI should be placed in an artery that is feeding the tissue of

interest [25]. However, in the case of endometrial cancer, it is not easy to find an artery

feeding the uterus from the DCE-MRI images. Therefore, the AIF can be estimated

by drawing an ROI in one of the iliac arteries, even though these arteries do not feed

the uterus directly [18]. In some cases, it might also be possible to estimate the AIF

by drawing an ROI in the aorta [18]. The CA arrives in the aorta and the iliac arteries

before it enters the uterus, which can be seen from the DCE-MRI time-series.

2.4.2 Automatic algorithm for detecting the AIF

Another way of estimating the AIF is by implementing an algorithm for segmenting

the AIF automatically. Several authors have presented such algorithms, and one of

them is Tönnes et al. [26]. The algorithm was proposed based on the properties of

the arteries. The concentration of CA in a feeding artery behaves in a specific way

giving the signal intensity curve a high peak and a subsequently slower decrease as

shown in figure 2.3. The algorithm proposed by Tönnes et al. consists of 9 steps [26].
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The algorithm is proposed for DCE-MRI data of colorectal cancer and the principles

might be transferred to endometrial cancer data. In summary, the steps of the automatic

algorithm for finding the AIF presented by Tönnes et al. are as follows:

1. Select the 1% brightest voxels during a chosen number of time steps. One should

choose a number of time steps that cover the arrival time of the CA.

2. Binary opening, which is a morphological operation consisting of an erosion and

a dilation step. The goal of this step is to remove small objects, while still keeping

the original size and shape.

3. Find the time step with the most peak values and select this time step.

4. Blob and tube filters. The objects that are considered roundish are kept while the

rest is discarded.

5. Find the timestep with the most peak values and compare the results to those from

step 3.

6. Fit a gamma variate function to the intensity curves. The mask from step 5 is used

on all timesteps to find intensity values over time for every voxel. To find objects

from the mask, connected component analysis is carried out. The intensity curves

for each object are fitted to a gamma variate function and all objects that do not

fulfill the selection criteria are discarded.

7. Erosion and dilation.

8. Region growing.

9. Select the two largest objects. The two largest objects are selected because the

arteries are present in the left and right half of the volume being imaged.

2.4.3 Population-based AIF

A population-based AIF can be determined by measuring blood samples from a few

patients and using the mean concentration from these blood sample measurements

as the AIF for all participants [25]. There are also other methods for determining a

population-based AIF. For instance, the population-based AIF proposed by Parker et
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al [27]. This AIF is synthetic and experimentally derived by looking at data from sev-

eral patients. The functional form of the Parker AIF was found by fitting a mixture of

2 Gaussians and an exponential modulated with a sigmoid function. The form of the

population-based AIF then has a first-pass peak followed by a smaller peak that ac-

counts for re-circulation and then a longer washout period as the signal intensity curve

shown in figure 2.3. Several scaling constants can be changed for the Parker AIF to fit

the relevant data [27].

2.5 Imaging systems and information flow

The international standard for transmitting, storing, retrieving, printing, processing,

and displaying medical images is DICOM (Digital Imaging and Communications in

Medicine). DICOM is commonly used for transmitting and storing medical images

and can be integrated with devices for medical imaging, such as MRI scanners, work-

stations, and servers. DICOM files do not only contain medical images but also image-

related information. A DICOM object contains many attributes, such as patient ID and

image pixel data. Most imaging devices, such as CT, MRI, and Ultrasound have DI-

COM implemented. DICOM images can be sent to a workstation or a picture archiving

and communication system (PACS) [28].

PACS is a system for digital storage, retrieval, display, and transfer of medical images

and data. The electronic system was first developed as a diagnostic imaging tool to be

used in radiology departments in hospitals. Today, the system can also be used for re-

search purposes through what is called research PACS. In other words, we distinguish

between clinical PACS and research PACS. In research PACS the data is anonymized

to facilitate research purposes. PACS enables us to electronically transfer diagnostic

images like x-rays, CT, MRI, Ultrasound, and PET investigations to other departments

and other hospitals [29]. In addition to medical images, PACS can integrate different

forms of healthcare data, such as video recordings, text, voice, medical records, and

wave images. A PACS consists of different subsystems for image and data acquisi-

tion, storage, and display, which are integrated through application software and digital

networks [30][31].

Sectra is a vendor that delivers IT solutions for medical purposes, including PACS [32].

The PACS used at MMIV and the Radiology Department at HUS is delivered by Sectra
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and is called Sectra clinical PACS and Sectra research PACS. Sectra research PACS is

one of the main constituents of the research information system. The main parts of the

research information system are Sectra research PACS, Fiona, and REDCap.

REDCap (Research Electronic Data Capture) is a platform for building and managing

online databases and surveys in a secure way [33][34]. This web application is espe-

cially suitable for capturing data for research studies and operations, both online and

offline. Fiona is a web application that allows users to assign, attach, review, and ex-

port project data. This is the user interface for uploading new data to the research PACS

and transferring data from the clinical PACS to the research PACS, among other things.

Fiona is the web application that communicates with both research PACS and REDCap.

The tool for integrating workflows into the research information system is called ror.

With ror you can develop and test a workflow in a simulated research PACS. After

testing, a workflow can be built and uploaded to the research PACS. The steps for inte-

grating a workflow into the research information system using ror are to create a project

directory, configure data and test a workflow on the data. Then build a containerized

workflow and test the containerized workflow. The containerized workflow can then be

uploaded to the research information system. A project can be integrated into the re-

search information system in order to run the workflow on data in research PACS. A

project can then react to the arrival of new data as well. Results from a workflow can be

tabulated data or new image data. New image data is added back to the research PACS,

while tabulated data is added to REDCap [35].

2.6 Statistical evaluation

For evaluating modeling results it can be convenient to look at the correlation between

different results, which is a measurement of whether pairs of variables are related, and

how strongly they are related [36]. One way to measure correlation is the Spearman

Correlation Coefficient. A Bland-Altman plot can be used for measuring the agreement

between quantitative measurement results and statistical tests can be used to measure

the statistical significance between results.
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Correlation coefficients

The Pearson correlation coefficient is a measurement of the linearity of two measure-

ment results [37]. The linear correlation of two datasets is measured by calculating the

ratio between the covariance of two measurements and the product of their standard de-

viation. The measurements may not be linearly correlated, but can for instance have a

relationship that can be described by a monotonic function, which can be measured us-

ing Spearman’s rank correlation coefficient [37]. The Spearman correlation coefficient

is similar to the Pearson correlation coefficient, only calculated with the two variables’

ranks instead of their actual values [38]. Ranking the variables makes this test more ro-

bust against outliers. Both correlation coefficients have a numerical value ranging from

−1.0 to +1.0, giving an indication of how strongly the two measurements are related

[37][38].

Bland-Altman plot

A Bland-Altman plot can be used to quantify the agreement between two quantitative

measurement results. A Bland-Altman plot shows the difference between two mea-

surement results plotted against the mean of these two measurements. Statistical limits

are added two the plot based on the mean and the standard deviation of the difference

between the two measurements. A confidence interval (CI) of 95% is often used to

construct these statistical limits. 95% of the differences in the results from the first and

the second method fall within these limits of agreement (LoA). The resulting Bland-

Altman plot is a scatter plot of the two measurements A and B, where the y-axis repre-

sents (A−B) and the x-axis represents ((A+B)/2) [36].

Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a non-parametric test used when comparing two re-

lated or matched samples. The test can also be used for repeated measurements of the

same sample. The Wilcoxon signed-rank test is the non-parametric equivalent to the

parametric paired t-test. While the parametric t-test assumes normally distributed data,

non-parametric tests do normally not assume a specific probability distribution. The

Wilcoxon singed-rank test gives us a p-value which gives an indication of whether to

accept or reject the null hypothesis, which states that the median difference between
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the two samples is zero [39][40].

Chi-square test

The chi-square test is a non-parametric test of independence. The test is used to analyze

differences between groups by hypothesis testing. The null hypothesis is often used for

testing, stating that the categorical data we wish to test has an assumed frequency. The

test is used to check whether there is a significant difference between the observed and

expected frequencies between two data sets [41][42].

The p-value and statistical significance

A p-value is often listed in quantitative analysis, including in the t-test, the Wilcoxon

signed-rank test and the chi-square test. This value gives an indication of whether the

obtained research results are statistically significant. The p-value is based on two hy-

potheses, the null hypothesis and an alternative hypothesis, which often is an assump-

tion of the null hypothesis being not true. The resulting p-value gives us information

regarding the probability of our observations with the assumption that the null hypoth-

esis is correct [43][44][45].

Statistical significance measures whether the probability of the null hypothesis is true

given a level of uncertainty (α or significance level) regarding the true answer [44].

The significance level is the probability we state that we are willing to be incorrect in

our research. If a researcher wants to be correct 95% of the time, then the researcher is

willing to be incorrect 5% of the time, which means that the significance level or α is

0.05. A research outcome is statistically significant if the p-value of the analysis is less

than α , which is a prespecified value [44].

Receiver Operating Characteristics (ROC)

The receiver operating characteristics (ROC) curve is a plot where the y-axis is defined

as the sensitivity or the true positive rate (TPR), while the x-axis is defined as (1 -

specificity) or the false positive rate (FPR) [46]. The sensitivity is defined in equation

(2.9), where TP is true positives and FN is false negatives. The sensitivity tells us the

probability of a test being positive when a disease is present. Equation (2.10) shows



2.6 Statistical evaluation 21

how to calculate the specificity, which tells us whether a test is able to classify if a

person is disease-free [47].

Sensitivity =
T P

T P+FN
(2.9)

Speci f icity =
T N

T N +FP
(2.10)

Different cutoff levels for a positive test result are used to generate each point in the

ROC curve, which is called an operating point. The area under the ROC curve (AUC

ROC) is a popular measure of the overall performance of a diagnostic test. AUC ROC

is defined as the average sensitivity value for all positive specificity values. AUC ROC

can be between 0 and 1. An AUC ROC close to 1 shows a good diagnostic performance

of the test. A test that has an AUC ROC value of 1 is perfectly accurate [46].
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Chapter 3

Materials and methods

This chapter includes patient materials, the imaging protocol used for acquiring the

DCE-MRI images and information on how the tumor masks were segmented. The

chapter also includes the procedure used for estimating the AIF using three different

methods and the procedure for modeling with ETM. Two different environments were

utilized for modeling, a local modeling environment allowed for testing of different

AIFs, in addition to erosion and dilation of tumor masks. The environment of the

research information system allowed for the processing of more patient data. The pro-

cedure for integrating a workflow into the research information system is included in

this chapter, as well as how the model parameters derived from ETM were evaluated.

3.1 Patient data

The patients included in this project underwent preoperative pelvic DCE-MRI from

2009 to 2014 and were randomly selected from a larger patient cohort. In total, 64 pa-

tients were included in the project. Data from 63 of these patients were analyzed in

the research environment. Data from 19 of the patients analyzed in the research envi-

ronment, were also analyzed in a local modeling environment, whereas data from one

patient were only analyzed in the local modeling environment. The patients included

in this project were diagnosed with low-risk or high-risk endometrial cancer, where

low-risk cancers were endometrioid of grade 1 or 2, whereas high-risk cancers were

non-endometrioid or endometrioid of grade 3.
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3.2 Imaging protocol

Imaging was performed on a 1.5-T MRI scanner (Siemens Avanto running Syngo v.

B17, Erlangen, Germany) using a six-channel body coil and a standardized imag-

ing protocol [1][48][11]. 20 mg butyl-scopolamine bromide (Buscopan; Boehringer,

Ingelheim, Germany) was administered intravenously before scanning to reduce mo-

tion artefacts. Structural MRI images include pelvic sagittal and axial oblique (per-

pendicular to the long axis of the uterus) T2W images, together with axial oblique

T1W gradient-echo images before and 2 min after intravenous administration of CA

(Dotarem, Guerbet (Paris, France): 0.1 mmol Gadolinium per kilogram of body weight,

3 mL/s injection speed). Physiological MRI images include Pelvic DCE-MRI obtained

for 12 oblique axial slices applying a 3D spoiled gradient echo (FLASH) sequence

where T E/T R = 1.05/2.64ms, flip angle [FA] = 12◦, matrix = 256x256, field of view

(FOV ) = 300x300mm2, slice thickness = 5mm, number of averages [NA] = 1) with a

temporal resolution of 2.49s. Sequential images were acquired from 30s before intra-

venous administration of CA to 6.3min after CA injection. At 2 min post-CA admin-

istration, a pause of 33s was utilized to acquire the diagnostic T1W contrast-enhanced

series [12]. All images being analyzed in this project were acquired at HUS.

3.3 Tumor segmentations

The primary tumor masks used in this project were segmented by two experienced ra-

diologists at HUS. The manual segmentations were performed on whole-volume data,

more specifically on the VIBE (volumetric interpolated breath-hold examination) im-

ages. A value of 1 was assigned to the primary tumor tissue, while a value of 0 was

assigned to the remaining tissue. The two radiologists were both blinded to the seg-

mentations of each other.

3.4 The arterial input function

Three different methods for estimating the AIF were implemented in Python [49]. Ver-

sion 3.10.9 of Python was used throughout the present project and the scripts are avail-

able in Appendix 6. A visual approach was used to evaluate if an estimated AIF was
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accurate or not. An AIF curve with a high and narrow first peak and a longer washout

period with relatively little noise was assumed to be a good AIF. Such an AIF is illus-

trated in figure 2.3 in section 2.4.

3.4.1 Manual annotation of the AIF

AIFs were manually annotated on DCE-MRI data from 20 patients using the Image-

data library in Python [49][50]. Version 2.0.0 of Imagedata was used in this project.

The annotations were performed by subtracting the baseline signal from the DCE-MRI

images and subsequently drawing an ROI on a slice where the CA was first seen en-

tering the iliac arteries or the aorta. The majority of the AIF masks were annotated in

the iliac arteries (n=18), but for a few patients (n=2), the aorta was available in the im-

age. The baseline signal was approximated by calculating the mean MRI signal from

the first 5 time points. The final AIF was estimated by calculating the mean signal in-

tensity inside the annotated ROI. The manual annotations were only performed on one

slice. The iliac arteries and/or the aorta are oriented differently in the DCE-MRI im-

ages. Therefore, the AIF ROIs were placed in different areas of the DCE-MRI images

depending on where the aorta or the iliac arteries were located. Due to the varying

anatomy between the patients, the coordinate system of the MRI machine is changed

during imaging according to the orientation of the uterus. Certain annotated AIF ROIs

were comprised of a larger number of voxels than others because the desired arteries

were of different sizes in the DCE-MRI images.

3.4.2 Semi-automatic algorithm for detecting the AIF

A semi-automatic algorithm for detecting the AIF was implemented in Python. The

algorithm is based on the one proposed by Tönnes et al., which was briefly explained in

section 2.4.2 [26]. An in-house implementation of the AIF algorithm1 fitted to kidney

data was revised to fit endometrial cancer data. The resulting algorithm was semi-

automatic and not automatic because different percentages of bright voxels were tested

in the first step of the algorithm. 20 time steps seemed sufficient for covering the arrival

time of the CA. This assumption was based on analyzing the DCE-MRI images visually

when the annotations of the AIFs were performed. The arterial size of the desired

1The automatic AIF algorithm was implemented by Erling Andersen
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artery may differ between what organ is investigated, hence different percentages of

bright voxels were tested. A portion of bright voxels of 1%, 2%, and 3% were tested

for DCE-MRI data from 20 patients. The discard criteria was based on a cost value

after optimization of a gamma variate function. Optimization was performed using the

SciPy library of version 1.9.3 in Python and solving a nonlinear least-squares problem

[49][51].

3.4.3 Population-based AIF

A population-based AIF was calculated based on manually annotated AIFs from 20

patients. The population-based AIF was calculated as the mean AIF from the manually

annotated AIFs. It was assumed that the peak of the AIF curve arise at the same time

for all patients. The CA is injected at approximately the same time for all patients,

but due to differences in cardiovascular function between the patients, the CA will not

arrive in the tissue of interest at the exact same time for all patients.

3.5 Extended Tofts’ method

ETM was implemented in Python [49]. Two different environments were used for

modeling. In a local modeling environment, the three different AIFs were tested on data

from 20 patients diagnosed with endometrial cancer. The three different AIFs tested in

the local modeling environment include manual annotation of the AIFs, a population-

based AIF and a semi-automatic algorithm for estimating the AIF. In addition, ETM

was implemented in the research information system where the model was tested on

data from 63 patients diagnosed with endometrial cancer. These two environments

were handled separately from each other, even though data from some patients were

analyzed in both modeling environments.

3.5.1 Analytical solution

ETM was solved analytically. The differential equation shown in equation (2.6) in

section 2.2 was solved using an integrating factor. The resulting equation is ETM given

in equation (2.7) in section 2.2.1. The mathematical derivation of ETM can be found
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in Appendix A.1.

3.5.2 Python implementation

ETM was implemented in Python for numerical modeling [49]. The implemented al-

gorithms used for modeling are available in Appendix 6. All of the images that were

analyzed in this project were DICOM images. Two images were required for modeling,

the whole-volume tumor masks and the DCE-MRI images.

Before further processing, the baseline signal was subtracted from all of the voxels in

the DCE-MRI data. The baseline signal is the MRI signal before the CA is injected

into the patient. The baseline signal was calculated as the mean signal intensity from

the first 5 time points. Enhancement from CA appears around 45-50 seconds into the

DCE-MRI recording, which is approximately time point number 20 since the temporal

resolution of the DCE-MRI images was 2.49 seconds. After subtracting the baseline

signal, the remaining signal intensity was used as the raw tissue concentration in ETM,

as suggested by Hanson et al. [52]. Therefore, the signal intensity will be the employed

expression moving forward, and not the tissue concentration.

The whole-volume tumor mask was aligned with the DCE-MRI image. The tumor

mask was annotated on a structural MRI image and the dimensions of the images dif-

fer. Consequently, a co-registration was performed to change the dimension of the

tumor mask. Co-registration was performed using an in-house function2 revised for the

purpose of the current study. By utilizing this function, the grid of the whole-volume

tumor mask was changed to fit the grid of the dynamic image.

After aligning the structural image and the dynamic image by a co-registration, the av-

erage signal intensity from the voxels inside the tumor was calculated. Subsequently,

ETM was fitted to the average signal intensity inside the tumor mask. Equation (2.7)

in section 2.2.1 was implemented in Python and the parameters Ktrans, ve, and vp were

optimized using non-linear least squares to fit ETM to the signal intensity inside the

tumor. The SciPy Python library was used to derive model parameters from ETM

[49][51]. ETM was first fitted to the average signal intensity inside the tumor mask.

Secondly, the model was fitted to the signal intensity from each voxel inside the tu-

mor. After optimizing perfusion parameters from each voxel Ktrans, ve, and vp were

2Function for image alignment implemented by Erling Andersen and Erlend Hodneland
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established by calculating the mean from the optimized parameters from each voxel.

The transfer constant kep was calculated from Ktrans and ve, by utilizing the coherence

kep = Ktrans/ve [22].

The input plasma concentration Cp was calculated from the AIF by using the formula

given in equation (2.4) in section 2.2. It was assumed that all patients had a Hct of 42%

[21]. The portion of Hct will differ slightly between patients, but the amount of Hct

was not measured for each individual patient.

The tumor volume was also calculated. The tumor volume was calculated by multiply-

ing the size of the voxels with the number of voxels making up the tumor mask. The

tumor volume was then multiplied by 0.001 to convert from mm3 to ml.

Local modeling environment

For modeling locally, ETM was tested on data from 20 patients. The DCE-MRI images

and the whole-volume tumor masks used for modeling locally were downloaded from

Sectra research PACS. This modeling environment utilized testing of different mod-

eling configurations, like the AIF methods and erosion and dilation of tumor masks.

Three different methods for estimating the AIF were tested on all 20 patients.

For modeling locally and using the population-based AIF, erosion and dilation of the

tumor masks were tested. An erosion was performed to make the tumor masks smaller,

while a dilation was performed to make the tumor masks larger. Erosion and dilation

were performed to establish whether the parameters derived from ETM change when

the size of the tumor masks is changed. The co-registration between the tumor masks

and the DCE-MRI images may lead to registration artefacts. By increasing and de-

creasing the size of the tumor masks we might get an indication of whether normal

myometrium is present in the tumor masks or not after image alignment. If normal

myometrium is present in the tumor masks the optimized parameters are expected to

change slightly because of differences in the biology of normal myometrium and en-

dometrial cancer tissue.

Parameter maps were created for all Ktrans, kep, ve, and vp values inside the tumor for

one patient. These maps show the values of the parameters for each voxel of tissue.

This was only conducted for the manual AIF method as an illustration of the calculated

parameters. The parameter maps illustrate that the values of the calculated perfusion
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parameters vary inside the tumor. All of the voxels outside the tumor were assigned to

be zero.

Research modeling environment

The second environment where ETM was implemented is the research information

system at MMIV and the Radiology Department at HUS. Data from 63 patients were

analyzed in the research information system. For this purpose, the population-based

AIF was used. In the following section, it is explained how a workflow for running

ETM was implemented into the research environment.

3.6 Integration into the research information system

A workflow for optimizing perfusion parameters using ETM was integrated into the

research information system at MMIV. The goal with this was to integrate a workflow

in order to run ETM on data from a larger number of patients which is found in Sectra

research PACS. The ror tool was used for this purpose and the results were tabulated and

added to REDCap [35]. In order to integrate the workflow into the research information

system, a docker container was made of the project, which was uploaded to the research

information system. The docker container was uploaded to Fiona, where DCE-MRI

data and tumor masks were extracted from Sectra research PACS. ETM was then used

to derive perfusion parameters from the data. The derived parameters and the tumor

volumes were tabulated and added to REDCap.

A population-based AIF was used for modeling in the research information system. A

lot of testing was done locally before the workflow could be uploaded to Fiona. For

selecting the right patient data, a select statement was formulated with a syntax similar

to SQL. The chosen select statement was ’select participant from study where series

named "MASK" has SeriesDescription regexp "(JAD|KWL)" also where series named

"DCE" has NumImages > 1500 and SeriesDescription regexp "12"’. JAD|KWL means

to select images that contain the regular expression JAD or KWL. This expression was

included to select the tumor masks because only the whole-volume tumor masks have

this expression added to their SeriesDescrition. SeriesDescrition and NumImages are

attributes to the DICOM objects.
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Most DCE-MRI images being analyzed in this project have 1920 images because there

are 12 slices and 160 time points for each slice. Since the DCE-MRI data have a

large number of images, only dynamic sequences with over 1500 images would pass

the select statement. In the SeriesDescription for the DCE-MRI sequence the number

12 is often included because the FA is 12◦. The SeriesDescription is usually formu-

lated as "Dynamic Flip 12" or something similar, but since the SeriesDescription is

written by humans the SeriesDescription will differ between patients. In order to see

if more patient data could be processed, the SeriesDescription for the DCE-MRI im-

ages were removed from the select statement. That means that the select statement

’select participant from study where series named "MASK" has SeriesDescription reg-

exp "(JAD|KWL)" also where series named "DCE" has NumImages > 1500’ was also

tested.

3.7 Evaluation

Different methods were utilized for analyzing the model parameters from ETM. Meth-

ods for quantifying the agreement between the resulting parameters were necessary as

both different methods for modeling and different methods for estimating the AIF were

tested. Methods for establishing whether there is a correlation between the derived

perfusion parameters and histologic tumor grade were also implemented.

3.7.1 Evaluating results from the local environment

Comparing average and voxelwise model parameters

The difference between the model parameters from average and voxelwise modeling

was analyzed for all AIF methods. The mean Ktrans, kep, ve and vp parameters were

tabulated in addition to the standard deviations. The mean absolute differences between

the model parameters derived from the average and voxelwise modeling methods were

also tabulated, in addition to the percent wise differences. The derived Ktrans values

were analyzed in more detail. The absolute differences between the Ktrans values from

average and voxelwise modeling were plotted against the tumor volume. The absolute

differences between the derived kep values were also plotted against the tumor volume.
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Comparing model parameters from ETM using different AIF methods

For comparing the model parameters from ETM when using different methods for es-

timating the AIF, only the parameters obtained from modeling based on the average

signal intensity were analyzed. The mean absolute differences between the derived

Ktrans, kep, ve and vp values were tabulated. The percent wise differences were also

calculated and added to the table. The median model parameters were also tabulated

for all AIF methods, in addition to the range of the parameters. The signal intensity

curves from ETM were plotted together with the AIF curves and the tissue signal in-

tensity curves before modeling. Signal intensity curves were visualized for the three

AIF methods. The curves were based on data from two different patients. The same

patient data was visualized for all AIF methods for comparison.

3.7.2 Evaluating results from the research environment

The parameters derived from the research information system when using a population-

based AIF were also analyzed. The mean model parameters derived from average and

voxelwise modeling were tabulated, in addition to the standard deviations and the abso-

lute difference between the results from average and voxelwise modeling. In addition,

the median of the derived parameters was tabulated together with the range of the pa-

rameters.

The results obtained from the research information system were also analyzed for cor-

relations with histologic tumor grade. The endometrioid histologic type of grade 3 and

the non-endometrioid histologic type constitutes the high-risk histologic tumor grades.

The low-risk tumor grade is comprised of the endometrioid histologic type of grades 1

and 2. Data from 60 out of 63 patients were analyzed for correlations with histologic

grade because the histologic grades were missing for 3 patients (n=60). The median

Ktrans, kep, ve and vp values were calculated for the low-risk histologic grade and the

high-risk histologic grade and tabulated together with the range of the values.
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3.7.3 Statistical considerations

For all statistical analyses, a significance level of 5% was chosen (α = 0.05).

A function for plotting a Bland-Altman plot was implemented in Python. Bland-

Altman plots were used for analyzing the agreement between model parameters derived

from the average and voxelwise modeling methods. The method was also used to quan-

tify the agreement between the model parameters from ETM using different methods

for estimating the AIF.

It was decided to use Spearman’s correlation coefficient because the derived parameters

were not normally distributed. The SciPy library in Python was used for this purpose

[49][51]. Firstly, the method was used to measure the correlation between the model

parameters from ETM when modeling based in the average signal intensity and model-

ing based on the voxelwise signal intensity. Secondly, the method was used to measure

the correlation between the parameters derived from ETM when three different AIF

methodologies were used.

The Wilcoxon signed-rank test was used for comparing the derived Ktrans values from

ETM using the average and the voxelwise modeling methods. In addition, the test

was used for comparing the Ktrans parameters derived from ETM when using different

methods for estimating the AIF. The SciPy library in Python was used for this purpose

[49][51]. The Wilcoxon signed-rank test was chosen over the student’s t-test because

the results were paired, but not normally distributed.

A chi-square test was performed to test whether the observed Ktrans values were as

expected in terms of low-risk and high-risk histologic grade. The Ktrans values were

split on the median value, dividing the Ktrans values into two groups, Ktrans > Ktrans
median

and Ktrans < Ktrans
median. These two groups were then chosen as expected low-risk and

high-risk histologic tumor grades in the chi-square test. The observed frequencies of

low-risk and high-risk histologic tumor grade were then tested using the SciPy library

in Python [49][51].

ROC curves were created in Python using the scikit-learn library [49][53]. The ROC

curves were created to check whether there is a correlation between the derived per-

fusion parameters and histologic tumor grade. ROC AUC values were also calculated

using the same Python library and added to the ROC plots.
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Results

The results are presented in this chapter. Firstly, we present the resulting AIFs

from three different methodologies, including manual annotation of the AIF, a semi-

automatic algorithm for estimating the AIF and a population-based AIF. Secondly, we

present the model parameters from ETM using the three AIF methods. The resulting

model parameters from modeling in the research information system are also included

in this chapter, as well as a correlation analysis between the derived model parameters

and histologic tumor grade. Both the mean and average values presented in this chapter

are arithmetic mean values.

4.1 The arterial input function

4.1.1 Manually annotated AIF

Manual AIFs were annotated on DCE-MRI data from 20 patients (n=20). Variations in

the difficulty of manually estimating the AIFs were experienced when the segmenta-

tions were executed. The variations in the difficulty of annotating AIF ROIs are illus-

trated in Figure 4.1, where it is shown that the right AIF curve consists of more noise

and has a lower peak value than the left AIF curve. In addition, the right AIF ROI is

smaller and consists of fewer bright voxels than the left AIF ROI. The dicom attribute

sliceLocations shows that the locations of the slices differ between the DCE-MRI im-

ages from the two patients shown in Figure 4.1. As a consequence, the DCE-MRI

images look different for the two patients. The arteries are sliced and imaged in differ-

ent ways depending on the anatomy of the patient. The peak value of the left AIF curve
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is very high, which might be because the AIF ROI was annotated in the aorta and not in

one of the iliac arteries. Two minutes post CA injection we observed a break in imag-

ing. This is illustrated from the AIF curves in Figure 4.1, between 100 and 200 seconds

into the dynamic imaging sequence. In this imaging break, a different MRI sequence

is acquired.
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Figure 4.1: DCE-MRI images from two different patients showing the placement of regions of interest
of the arterial input function (AIF) and the corresponding AIF curves. The left AIF curve corresponds
to the left image, while the right AIF curve corresponds to the right image. More noise and a lower
peak value are illustrated in the right AIF curve.

4.1.2 Semi-automatic AIF algorithm

The semi-automatic algorithm was able to find an AIF with a shape similar to the one

proposed in Figure 2.3 in section 2.4 for the patients that had an artery where several

voxels were visible in the DCE-MRI images. For instance, the algorithm managed to

find an AIF with the right shape for the patient shown to the left in Figure 4.1. Contrary,

the AIF curve estimated for the patient shown to the right in Figure 4.1 was very noisy
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and did not have a distinct peak value. This is illustrated in Figure 4.2, which shows

AIF curves derived from the same patient data as the curves illustrated in Figure 4.1,

only by the semi-automatic AIF method. From Figure 4.2 it is shown that the left AIF

curve looks similar to the AIF curve in Figure 2.3, where the first peak is high and

narrow with a subsequent longer washout period. In contrast, the right curve in Figure

4.2 does not have a clear peak value and is noisy, here the algorithm seems to have

failed in estimating an AIF.
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Figure 4.2: Arterial input function (AIF) curves estimated from the semi-automatic AIF algorithm. The
left AIF curve is based on the same patient data as the manually segmented AIF curve illustrated to
the left in figure 4.1. The right AIF curve is based on the same patient data as the manually segmented
AIF curve illustrated to the right in figure 4.1. The left curve looks like the desired AIF curve, while the
right curve seems to be noise with no distinct peak value.

Different percentages of bright voxels in the first step of the algorithm resulted in dif-

ferent AIF results. For a portion of bright voxels of 1%, the semi-automatic algorithm

only managed to find an AIF for 3 out of 20 patients. The results from these three pa-

tients were not analyzed due to a poor basis for comparison. For a portion of bright

voxels of 2%, the algorithm managed to find an AIF for 13 out of 20 patients. The al-

gorithm managed to find an AIF with the shape illustrated in Figure 2.3 in section 2.4

for 7 of these patients. This evaluation is based on the visual shape of the resulting

AIFs. In terms of the shape of the resulting AIFs, the algorithm works for approxi-

mately 35% of the cases for 2% bright voxels. For a portion of bright voxels of 3%, the

algorithm found an AIF for 18 out of 20 patients, but only one of the 18 patients had

an AIF curve with a high and narrow first peak and a longer washout period.

The slice locations of the DCE-MRI time-series data differ between the patients making

the arteries differ in size and shape in the DCE-MRI images. It looks like the algorithm

struggled to find AIFs with the shape as illustrated in Figure 2.3 for DCE-MRI data
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where the slices were located in a way that make the iliac arteries small. This evaluation

is based on visual examinations of the DCE-MRI data. The orientation of the DCE-

MRI images seems to affect the performance of the semi-automatic AIF algorithm.

Cost values for 2% and 3% brightest voxels are listed in Appendix B.1. These cost

values substantiate how well a calculated AIF curve fits a Parker population AIF.

4.1.3 Population-based AIF

Figure 4.3 shows a plot of the calculated population-based AIF. The AIF curve has

a high and relatively narrow first peak and a longer washout period. The small peak

accounting for re-circulation is also shown right after the first high peak in the curve.

Little noise is observed in the population-based AIF illustrated in Figure 4.3.
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Figure 4.3: The population-based arterial input function, which was calculated based on manually
annotated AIF data from 20 patients.

4.2 Extended Tofts’ method

Results from ETM were obtained from two different modeling environments. In the

local modeling environment three different methods for estimating the AIF were tested

(n=20). In the research information system, the population-based AIF method was

utilized to estimate perfusion parameters from a larger number of patients (n=63). All

model parameters derived from ETM can be found in Appendix A.2.
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4.2.1 Local modeling environment

Comparing average and voxelwise modeling results

Table 4.1 shows the mean model parameters from ETM when using different method-

ologies for estimating the AIF. The results from all AIF methods were based on the

same patient data. The table summarizes the differences between the parameters de-

rived from modeling based on the average signal intensity inside the tumor and mod-

eling based the voxelwise signal intensity inside the tumor. The biggest absolute mean

Ktrans difference is observed for the population-based AIF method. However, the dif-

ferences in Ktrans and vp are small for all AIF methods. The largest absolute mean

differences between the parameters derived from the average modeling method and the

voxelwise modeling method are observed for kep, and the mean absolute differences

are the largest for the semi-automatic AIF methods.

Table 4.1: Mean model parameters and standard deviations from extended Tofts’ method when using
different methods for estimating the arterial input function (AIF). ve and vp are fractions of the total
tissue volume inside a voxel, Ktrans and kep have the unit min−1. The absolute mean difference is also
included. Higher mean values and absolute mean differences are observed for the semi-automatic AIF
methods. 2% and 3% are the portions of bright voxels for the semi-automatic AIF.

Manual AIF
(n=20) Ktrans kep ve vp

Average 0.16 ±0.09 0.78 ±0.59 0.30 ±0.20 0.18 ±0.07
Voxelwise 0.16 ±0.08 0.76 ±0.44 0.33 ±0.17 0.18 ±0.08
Difference 0.0003 (0.18%) 0.02 (2.9%) 0.03 (9.1%) 0.0004 (0.22%)

Population-based
AIF (n=20) Ktrans kep ve vp

Average 0.12 ±0.05 0.65 ±0.50 0.27 ±0.19 0.19 ±0.08
Voxelwise 0.13 ±0.05 0.84 ±0.50 0.31 ±0.15 0.19 ±0.08
Difference 0.011 (8.7%) 0.19 (25.8%) 0.036 (12.4%) 0.001 (0.53%)

Semi-automatic
AIF (2%, n=13) Ktrans kep ve vp

Average 0.52 ±0.80 1.19 ±1.56 0.35 ±0.34 0.37 ±0.18
Voxelwise 0.53 ±0.78 3.07 ±4.47 0.40 ±0.26 0.37 ±0.18
Difference 0.004 (0.68 %) 1.87 (88.0%) 0.052 (13.9%) 0.002 (0.60 %)

Semi-automatic
AIF (3%, n=13) Ktrans kep ve vp

Average 0.29 ±0.44 0.58 ±0.66 0.51 ±0.39 0.36 ±0.17
Voxelwise 0.29 ±0.42 9.29 ±22.9 0.54 ±0.26 0.37 ±0.14
Difference 0.001 (0.40%) 8.72 (177%) 0.03 (5.4%) 0.016 (4.5%)
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Figure 4.4 shows plots of the absolute differences in Ktrans from modeling based on

the average signal intensity and from modeling based on the voxelwise signal intensity.

The Ktrans differences were plotted against the tumor volumes to see if there is any

coherence between the differences in Ktrans and the tumor volumes. From Figure 4.4

we observe larger differences in the Ktrans values when using the semi-automatic AIFs.

It does not seem to be a clear coherence between the Ktrans differences from average

and voxelwise modeling and the tumor volumes.

Ktrans difference vs. tumor volume

� �� �� �� �� 	� 
� �� ��
�#�� �$��#�������

����

����

����

����

����

���	

���


����

����

�
�!

��
#"

��
K
tr
an

s ��
���

� 
��

��
��m

in
−1

�

��#�������������

� �� �� �� 	� 
� �� �� �
�%� "�& �%�������

����

����

����

���	

���


�
�#
 �
%$
��
K
tr
an

s ��
���
�"
��
��
��m

in
−1

�

� !%��$� ����#�������������

� �� 	� 
� �� �� � �� ��
�)#%&�*%")#���#"�

����

���	

����

���

����

����

�
�'
%"
)(
��
�
(&�

$'
��
!��
�&
�$
��
��m

in
−1

� ��#!��)(%#�(!�������	���&!� (�*%+�"'��$��
�

� �� 	� 
� �� �� � �� ��
�("$%�)$!("���"!�

����

����

����

����

��	�

�
�&

$!
('

��
K
tr
an

s ��
 ��

�%
�#

��
�[m

in
−1
] ��" ��('$"�' �������
���% ��'�)$*�!&��#����

Figure 4.4: The absolute differences in Ktrans derived from extended Tofts’ method when modeling
based on the average signal intensity and from modeling based on the voxelwise signal intensity inside
a tumor. Four different methods were used for estimating the arterial input function (AIF). The y-axis
of the different plots are of different ranges, illustrating differences between the derived Ktrans values
when using different AIF methods.

Figure 4.5 shows Bland-Altman plots of the derived Ktrans values when modeling based

on the average signal intensity and modeling based on the voxelwise signal intensity

inside the tumor. The biases are −0.0003min−1 (0.18%), −0.0111min−1 (8.68%),

−0.0035min−1 (0.68%) and −0.0012min−1 (0.40%) for the manual AIF method, the

population-based AIF method, the semi-automatic AIF method when choosing 2%

bright voxels and the semi-automatic AIF method when choosing 3% bright voxels,
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respectively. This indicates that the voxelwise method on average measures slightly

higher Ktrans values for all AIF methodologies, even though the difference is small.

From Figure 4.5 it is shown that the axes have a higher range and that the LoAs are

higher for the semi-automatic AIF methods. Most of the points in the plots have low

mean Ktrans values and low differences between the derived values. However, the semi-

automatic AIF methods seem to result in more outliers in the Ktrans values derived from

ETM.

Ktrans Bland-Altman plots
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Figure 4.5: Bland-Altman plots of the derived Ktrans values from extended Tofts’ method using four
different methods for finding the arterial input function (AIF). The difference between the derived Ktrans

values from average and voxelwise modeling are here analyzed. +LoA and −LoA show the upper
and lower limits of agreement, respectively. The y-axis range differs between the plots. Small bias is
observed for all AIF methods.

The derived Ktrans parameters from modeling based on the average signal intensity and

from modeling based on the voxelwise signal intensity are positively correlated for all

four AIF methods and the correlation is statistically significant (p-values < 0.05). All of

the calculated Spearman correlation coefficients and p-values can be found in Appendix

A.3.1.

The Wilcoxon signed-rank test gives evidence to accept that the median is different

between the Ktrans values derived from modeling based on the average and the voxel-
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wise signal intensity for the population-based AIF method (p-value < 0.05). Contrary,

the Wilcoxon signed-rank test gives evidence to accept that the median Ktrans derived

from two other AIF methodologies when modeling based on the average and the vox-

elwise signal intensity are similar (p-values > 0.05). The calculated p-values from the

Wilcoxon signed-rank test can be found in Appendix A.3.2.

Figure 4.6 shows the absolute differences between the derived kep values from ETM

when modeling based on the average signal intensity inside the tumor and from model-

ing based on the voxelwise signal intensity inside the tumor and calculating the average

afterward. From Figure 4.6 we observe a few large outliers in the derived kep values

from the semi-automatic AIF methods. The absolute differences are largely due to

large kep values derived from the voxelwise modeling method. The outliers occur at

low tumor volumes.

kep difference vs. tumor volume
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Figure 4.6: The absolute differences between the derived kep values from extended Tofts’ model when
modeling based on the average signal intensity and modeling based on the voxelwise signal intensity
inside the tumor. The values are plotted against the tumor volume. The y-axis range differs in the four
plots.
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Comparing the results from ETM when using different AIF methods

For comparing different AIF methodologies, only the model parameters derived from

the semi-automatic algorithm when 3% bright voxels were chosen in the first step of

the algorithm, was used as a basis for comparison. From now on, the semi-automatic

AIF algorithm means the semi-automatic algorithm with 3% bright voxels. Table 4.2

shows summaries of the absolute mean differences between the parameters derived

from ETM. Table 4.2 shows that the absolute mean differences are larger when com-

paring the parameters derived from the semi-automatic AIF method with the parameters

derived from the two other AIF methodologies.

Table 4.2: A summary of the absolute mean differences in the parameters derived from extended Tofts’
method when different methods for estimating the arterial input function were used. Ktrans and kep have
the unit min−1, while ve and vp are fractions of total tissue volume inside a voxel. The percent wise
differences are included in parentheses.

Population-based vs.
manual AIF (n=20)

Manual vs. semi-
automatic AIF (n=18)

Population-based vs.
semi-automatic AIF (n=18)

Ktrans 0.053 (37.4%) 0.29 (120.1%) 0.27 (130.3%)
kep 0.23 (38.8%) 0.20 (110.1%) 0.73 (128.0%)
ve 0.061 (24.1%) 0.31 (82.9%) 0.33 (89.9%)
vp 0.044 (22.9%) 0.22 (86.2%) 0.21 (83.5%)

Table 4.3 shows median values derived from ETM when different AIF methodologies

were used. The median Ktrans values are more similar between the AIF methods than

the mean Ktrans values. However, the range of the derived model parameters is higher

for the semi-automatic AIF method than what is observed for the two other method-

ologies. This substantiates that the model parameters from ETM are highly affected by

the AIF.

Table 4.3: A summary of the median Ktrans, kep, ve and vp derived from extended Tofts’ method when
using different methods for estimating the arterial input function. The range of the values are included
in parenthesis. Ktrans and kep have the unit min−1, while ve and vp are fractions of total tissue volume
inside a voxel.

Manual AIF
(n=20)

Population-based AIF
(n=20)

Semi-automatic AIF
(n=18)

Ktrans 0.13 (0.047 - 0.41) 0.10 (0.042 - 0.24) 0.11 (-0.035 - 1.59)
kep 0.58 (0.047 - 1.97) 0.43 (0.088 - 1.97) 0.61 (-0.65 - 2.24)
ve 0.26 (0.081 - 0.99 ) 0.25 (0.050 - 0.99) 0.47 (0.00036 - 0.99)
vp 0.21 (0.073 - 0.33) 0.21 (0.064 - 0.37) 0.37 (1.06×10−9 - 0.63)
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Figure 4.7 shows Bland-Altman plots comparing the derived Ktrans values from ETM

when different methods for estimating the AIF were used.

Ktrans Bland-Altman plots
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Figure 4.7: Bland-Altman plots of the derived Ktrans values from extended Tofts’ method, comparing
three different arterial input function (AIF) methods, illustrating that the semi-automatic AIF approach
results in more outliers in the derived Ktrans values. The axes of the plots have different ranges and LoA
represents the upper and lower limits of agreement.
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From Figure 4.7 it is observed from the bias that the manual AIF method on average

measures 0.0375min−1 (21.8%) higher Ktrans values than the population-based AIF

method. The semi-automatic AIF method measures higher Ktrans values than both the

population-based AIF method and the manual AIF method, on average. This is illus-

trated by the biases in Figure 4.7. The semi-automatic AIF method seems to produce

some outliers in the model parameters derived from ETM, which is observed from some

of the points in the plot and the upper and lower LoAs. This illustrates that the model

parameters are affected by the input plasma concentration, which is based on the AIF.

The plots illustrated in Figure 4.8 are all based on the same patient data. The plots

illustrated to the left and right in the figure are based on data from the same patients,

respectively. Three different AIF methodologies were used for generating the plots in

Figure 4.8. These plots show tissue signal intensity curves estimated with ETM. The

ETM curves are plotted together with the signal intensity curves in the tissue of interest

and the plasma signal intensity. The plasma signal intensity curves were derived from

the AIF curves.

Figure 4.8 shows six plots where all of the left plots are based on data from a patient

where the AIF was relatively easy to annotate manually and the annotated AIF ROI was

made up of several voxels (left image and plot in Figure 4.1 in section 4.1.1). The right

plots in Figure 4.8 are based on data from a patient where the AIF was more difficult

to annotate manually and the annotated AIF ROI was only comprised of a few voxels

(right image and plot in Figure 4.1 in section 4.1.1). From Figure 4.8 we can see that

the right AIF curve derived from the semi-automatic AIF methodology is characterized

by a lot of noise and does not have a clear peak value. As a consequence, the estimated

signal intensity from ETM becomes more noisy. Contrarily, the left plot derived from

the semi-automatic AIF method has a clear peak value and less noise. The two minutes

post-CA injection break is observed in the curves around the time between 100 and 200

seconds into the imaging sequence.
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Figure 4.8: The tissue signal intensity estimated by extended Tofts’ method plotted together with the
mean signal intensity inside the tumor and the plasma signal intensity. In the plots, the raw signal
illustrates the signal intensity curves in the tissue of interest before modeling. The plots are based on
data from two different patients. All of the plots to the right are based on the same patient data, while
the plots to the left are based on the same patient data.

The Ktrans values derived from ETM when using the manual AIF method and the

population-based AIF method are positively correlated (p-value < 0.05). Contrarily,

the Ktrans values derived from ETM using the semi-automatic AIF method and the

manual AIF method are slightly negatively correlated and the correlation is not statisti-

cally significant (p-value > 0.05). When the correlation between the Ktrans values from
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ETM using the population-based AIF method and the semi-automatic AIF method was

tested a slightly positive correlation was observed, but it is not statistically significant

(value > 0.05). All of the calculated Spearman correlation coefficients and p-values can

be found in Appendix A.3.1.

The Wilcoxon signed-rank test gives statistically significant evidence to reject the null

hypothesis for the Ktrans parameters from ETM using the manual AIF method and the

population-based AIF method. This means that we accept that the median Ktrans values

are different (p-value < 0.05). When testing the null hypothesis for the Ktrans values

from ETM when using the semi-automatic AIF method with the parameters from the

two other methodologies, the Wilcoxon signed-rank test gives statistically significant

evidence to accept the null hypothesis (p-value > 0.05). This substantiates that the

median value of the semi-automatic AIF method is similar to the median values of

the two other AIF methods, even though the mean values are different. The median

Ktrans value from the semi-automatic AIF method is 0.1093min−1, which is lower than

the mean Ktrans value of 0.291min−1. This illustrates that the model parameters from

ETM when using the semi-automatic AIF method are affected by outliers. The p-values

calculated from the Wilcoxon signed-rank test can be found in Appendix A.3.2

Erosion and dilation of tumor masks

Table 4.4 shows the median model parameters from ETM when doing an erosion and

a dilation of the tumor masks. From Table 4.4 it is observed that the model parameters

derived from ETM were not affected too much when the whole-volume tumor masks

were made smaller and larger.

Table 4.4: Median of the derived parameters from extended Tofts’ method when using a population-
based arterial input function and doing an erosion and a dilation of the tumor masks (n=20). ve and vp

are fractions of the total tissue volume inside a voxel, while Ktrans and kep are in units of min−1.

Original mask Eroded mask Dilated mask
Ktrans 0.10 (0.042 - 0.24) 0.11 (0.043 - 0.25) 0.11 (0.052 - 0.28)

kep 0.43 (0.088 - 1.97) 0.50 (0.10 - 2.45) 0.50 (0.079 - 2.03)
ve 0.25 (0.050 - 0.99) 0.22 (0.044 - 0.99) 0.26 (0.056 - 0.99)
vp 0.21 (0.064 - 0.37) 0.20 (0.067 - 0.36) 0.21 (0.065 - 0.41)
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Parameter maps

Figure 4.9 illustrates parameter maps of the derived perfusion parameters from a single

slice obtained from the data of one patient. Ktrans, kep, ve and vp are here illustrated for

data inside the tumor, while the rest of the voxels are zero. The parameter maps present

the variations in the derived model parameters visually.

Ktrans

0.00 0.05 0.10 0.15 0.20
min 1

kep

0.0 0.5 1.0 1.5 2.0 2.5 3.0
min 1

ve

0.00 0.05 0.10 0.15 0.20 0.25 0.30

vp

0.000 0.025 0.050 0.075 0.100 0.125 0.150

Figure 4.9: Parameter maps of the parameters Ktrans, kep, ve and vp derived from extended Tofts’
method when using a manually annotated arterial input function. ve and vp are fractions of the total
tissue volume inside a voxel.
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4.2.2 Modeling in the research information system

Table 4.5 shows the mean model parameters from ETM when utilizing the research in-

formation system and using a population-based AIF (n=63). The population-based AIF

method was chosen mainly due to the high time consumption in manually annotating

the AIFs and due to the varying performance of the automatic AIF.

Table 4.5: A summary of the mean parameters from extended Tofts’ method when using a population-
based AIF (n=63). The differences between the results from average and voxelwise modeling are in-
cluded in the bottom row. ve and vp are fractions of the total tissue volume inside a voxel, while Ktrans

and kep are rates in min−1.

Ktrans kep ve vp

Average 0.178 ±0.121 0.669 ±0.521 0.339 ±0.211 0.204 ±0.107
Voxelwise 0.190 ±0.127 0.817 ±0.547 0.379 ±0.179 0.203 ±0.106
Difference 0.0122 (6.67%) 0.147 (19.85%) 0.0399 (11.08%) 0.00120 (0.59%)

Table 4.6 shows the median of the derived model parameters from ETM (n=63) when

modeling based on the average signal intensity inside the tumor. The median of the

derived parameters from modeling based on the average signal intensity are all slightly

lower than the mean of the derived parameters.

Table 4.6: The median model parameters from extended Tofts’ method when using a population-based
AIF (n=63). Only the parameters derived from modeling based on the average signal intensity inside
the tumor are included. Ktrans and kep have the unit min−1, while ve and vp are fractions of total tissue
volume inside a voxel.

Median (range)
Ktrans 0.163 (0.025 - 0.923)

kep 0.531 (0.0258 - 3.173)
ve 0.283 (0.048 - 0.999)
vp 0.195 (∼0 - 0.545)

Figure 4.10 shows the differences in the derived Ktrans values from average and vox-

elwise modeling, plotted against the tumor volume (n=63). From Figure 4.10 it is

observed that most patients had a tumor volume < 30 ml and only 6 out of 63 patients

had a tumor volume > 30 ml. The differences in the derived Ktrans values do not seem

to be correlated with tumor volume from what is observed in Figure 4.10.
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Figure 4.10: Differences in Ktrans(min−1) values from Extended Tofts’ model when modeling based
on the average signal intensity and modeling based on the voxelwise signal intensity inside the tumor
(n=63). No specific coherence seems to be present between the Ktrans differences and tumor volumes.

Figure 4.11 shows a Bland-Altman plot of the derived Ktrans parameters (n=63). This

figure compares the parameters derived when modeling based on the average signal in-

tensity inside the tumor with the parameters derived when modeling based on the vox-

elwise signal intensity. The bias is −0.012min−1 indicating that the voxelwise method

on average measures a 0.012min−1 (7.0%) higher Ktrans than the average method.

��� ��� ��	 ��� ��� ���
������min−1�

�����

����	

�����

����

����

���	

����

�
���

��
��

��
��m

in
−1

�

���
�������

��� 
�������

���
����
��

�������!�������!

Figure 4.11: Bland-Altman plot of the Ktrans parameters from extended Tofts’ method, illustrating the
differences between the derived Ktrans values when modeling based on the average signal intensity and
modeling based on the voxelwise signal intensity inside the tumor (n=63). A population-based arterial
input function was used. +LoA and -LoA represent the upper and lower limits of agreement.
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The Ktrans parameters derived from the average and voxelwise modeling methods are

positively correlated and the correlation is statistically significant (p-value « 0.05). This

is in agreement with what was observed in section 4.2.1 when comparing the results

from average and voxelwise modeling when modeling was done in the local modeling

environment. The Spearman correlation coefficients and the p-values can be found in

Appendix A.3.1.

The Wilcoxon signed-rank test indicates that the median is different between the Ktrans

parameters derived from ETM when modeling based on the average signal intensity

and modeling based on the voxelwise signal intensity (p < 0.05). The null hypothesis

stating that the median difference between the model parameters is zero is rejected by

the Wilcoxon signed-rank test. The calculated median Ktrans values from the average

modeling method and the voxelwise modeling method are 0.163min−1 and 0.171min−1,

respectively. The calculated p-value can be found in Appendix A.3.2.

4.3 Correlation with histologic tumor grade

The obtained model parameters derived from ETM, through the utilization of the re-

search information system, were analyzed for correlations with histologic tumor grade.

Table 4.7 shows a summary of the parameters derived from ETM for low-risk and high-

risk histologic grades (n=60). Only model parameters from 60 patients were analyzed

because the histologic tumor grades were missing for three patients. From Table 4.7,

no prominent differences are observed between the median model parameters for the

low-risk and high-risk tumor grades.

Table 4.7: The median of the derived parameters from extended Tofts’ method summarized for low-risk
and high-risk histologic tumor grade. The range of the values is added in parentheses. ve and vp are
fractions of total tissue volume inside a voxel, while Ktrans and kep are in units of min−1.

Low-risk (n=40) High-risk (n=20)
Ktrans 0.157 (0.026 - 0.923) 0.164 (0.048 - 0.312)

kep 0.494 (0.026 - 3.173) 0.563 (0.153 - 1.417)
ve 0.230 (0.048 - 0.999) 0.276 (0.087 - 0.826)
vp 0.187 (∼0 - 0.545) 0.203 (0.112 - 0.462)

Figure 4.12 shows ROC curves of the derived Ktrans, kep, ve and vp values, respec-

tively. This plot shows whether there is any correlation between the parameters derived
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from ETM and the histologic tumor grade. The histologic grade is defined to be 0 for

low-grade cancers and 1 for high-grade cancers. All of the plots show no correlation

between the derived perfusion parameters and histologic tumor grade.

ROC curves
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Figure 4.12: Receiver operating characteristics (ROC) curves, where it is analyzed whether there is a
correlation between the derived model parameters and histologic tumor grade (n=60). The histologic
tumor grade is divided into low-risk and high-risk tumor grades. No correlation is observed from this
figure.

A chi-square test gave p-values of 0.232 and 0.157 for the low-risk and high-risk his-

tologic subtypes, respectively. This indicates that there is evidence to reject the null

hypothesis, which states that the histologic grades have given frequencies, which was

based on splitting the derived Ktrans values by the median value. This means that no

correlation was observed between the derived perfusion parameters and histologic tu-

mor grade from the chi-square test.



Chapter 5

Discussion

The main purpose of this project was to estimate quantitative perfusion parameters that

might be related to the biology of endometrial carcinomas. DCE-MRI data from pa-

tients diagnosed with endometrial cancer were analyzed for this purpose. Four main

objectives were listed in the introduction of this thesis, including implementing ETM

in Sectra research PACS, testing ETM for both average and voxelwise modeling, and

for different AIF methods, and last but not least comparing the results with values from

the literature and analyzing for correlation with clinical parameters. ETM was imple-

mented in Python and three different methods for estimating the AIF were tested on

data from 20 patients in a local modeling environment. The parameters derived from

ETM when using different AIF methods and from average and voxelwise modeling

were then compared. ETM was also implemented in the research information system

where the model was tested on data from 63 patients using a population-based AIF. The

presence of correlations between the model parameters derived from the research envi-

ronment and the histologic tumor grade was investigated. In this chapter, we compare

the derived model parameters with values from the literature and discuss the findings

and the limitations of the project. Suggestions for future work are presented at the end

of the chapter.

5.1 The Arterial Input function

A precise AIF is important in quantitative models where the plasma concentration is

required as an input. In this project, it was illustrated that the input plasma concen-

tration affects the derived model parameters. Three different methods for estimating
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the AIF were implemented in this project, including manual annotation of the AIF, a

semi-automatic algorithm and a population-based AIF.

Hematocrit of 42% was assumed for all patients when calculating the plasma concentra-

tion, but this number will in fact vary between patients. The input plasma concentration

is in reality supposed to be the concentration of plasma in an artery that is feeding the

tissue of interest, which in this case is the uterus. In this project, the AIF was estimated

by finding the concentration of CA in the iliac arteries or in the aorta. Other errors may

occur in the cases where the AIF was estimated from the aorta. Since the AIF in the-

ory is supposed to be feeding the tissue of interest, the aorta is most likely further away

from the tissue of interest than the iliac arteries and might therefore be a poorer esti-

mate of the AIF. However, when the AIF was estimated from the aorta a larger ROI

was possible to obtain. Less noise and a higher peak value were observed when the

AIF was estimated from the aorta, which may be because a bigger ROI was possible to

obtain in the aorta. It is unclear what aspect affects the resulting model parameters the

most.

Based on the results from the three methods for estimating the AIF it seems like the

population-based AIF is the method that is most robust in this project. The mean and

median model parameters from ETM when using the population-based AIF are closest

to the literature values between the three methods. It was observed that the manual

AIFs consist of more noise, especially when the desired artery consists of few voxels,

which was the case for several patients. The semi-automatic algorithm for estimating

the AIF did not perform well for data from several patients, especially when the desired

artery was comprised of few voxels in the DCE-MRI images. The algorithm failed to

find an AIF for 17, 7 and 2 out of 20 patients when choosing 1%, 2% and 3% brightest

voxels in the first step of the algorithm, respectively. Therefore, the population-based

algorithm seems to be the most robust way of finding the AIF from what was observed

in this project. However, all of the AIF methodologies have some limitations.

5.1.1 The manually annotated AIF

AIFs were annotated manually on data from 20 patients in the local modeling environ-

ment. A variation was observed in the difficulty of manually annotating AIFs from the

DCE-MRI images. Selection bias might be present, because tissue outside the artery
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may be included in the annotated ROIs. All of the selected voxels might not be in-

side the desired artery. For certain patients, the artery consisted of multiple voxels. For

these patients, the AIF curve had a high first peak, a longer washout period and rela-

tively little noise. Other patients had an artery consisting of only a few voxels making it

difficult to annotate the AIF. These assumptions were made by visually examining the

DCE-MRI images and the resulting AIF curves. Figure 4.1 (section 4.1.1) shows im-

ages from two patients illustrating how different the DCE-MRI images look between

patients and how the AIF curves are affected by the annotated AIF ROIs. It is likely

that the discrepancies in the data arise from variations in anatomy between the patients.

The coordinate system of the MRI machine is changed to fit the location of the uterus,

hence the location of the slices differs between the patients. The arteries are sliced in

different ways depending on the anatomy of the patient and the location of the slices.

The AIF annotations were only performed on one slice. The resulting AIFs might have

been more accurate if the annotations were performed on several slices where the CA

was observed in the desired artery. It should also be mentioned that the annotations

were carried out by a person with limited knowledge in female pelvic anatomy. An

experienced radiologist might have been able to make more precise annotations of the

AIF from the DCE-MRI images. Human errors might consequently affect the AIF

annotations.

5.1.2 The semi-automatic AIF

A semi-automatic algorithm for estimating the AIF was implemented in the local mod-

eling environment. The algorithm did not manage to find an AIF for all of the 20 pa-

tients that it was tested on. The DCE-MRI data exhibit great variations, all DCE-MRI

images look different, the FOV varies and the resolution is not too good. The DCE-

MRI images are also sensitive to patient movement. These are all possible contributors

to the diverse results from the semi-automatic AIF algorithm.

The semi-automatic algorithm seems to select the areas of the DCE-MRI image that

are relevant in the first step of the algorithm presented in section 2.4.2. This means

that the algorithm fails in some later step. 20 time steps seem to be sufficient to cover

the arrival time for the CA. This evaluation is based on manually analyzing the DCE-

MRI images when the AIF annotations were carried out. The algorithm seems to fail at
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the sixth step when visually looking through the output from the different steps of the

algorithm. The fourth and fifth steps of the algorithm were not included. These steps

include filtering and were not included as the desired artery might not be tubular due to

the different locations of the slices in the DCE-MRI images. However, the output from

the algorithm might be affected by the decision to not include filters.

If more time had been invested in developing an automatic algorithm for finding the

AIF, it might have been possible to tailor the algorithm better to endometrial cancer

data and develop an algorithm with better performance. It could be relevant to check

the orientation of the data in order to tailor the algorithm to different orientations of

DCE-MRI data.

5.1.3 The population-based AIF

The population-based AIF consists of less noise than the manually annotated AIFs and

the semi-automatic AIFs. This might be due to a smoothing effect from calculating the

mean from annotated AIFs from 20 patients. Even though the contrast was adminis-

tered at the same time for all patients, the contrast will most likely arrive in the artery

at different times. This is due to different cardiovascular functions and the ability to

deliver blood to the microvascular tissues between the patients. Additionally, the mag-

nitude of the peak of the AIF curve differs between patients and was not tailored to

the individual patient data. The population-based AIF was not tailored to the data from

each specific patient, which may affect the resulting model parameters.

5.2 Extended Tofts’ Method

ETM was used for analyzing DCE-MRI time-series data from endometrial cancer pa-

tients. Two MRI images were required for running the model, including the DCE-MRI

image and the whole-volume tumor mask. Using these two MRI images, modeling was

performed on data inside the tumor. The segmentation of tumor masks on one MRI

image and the subsequent modeling on a different MRI image introduces a source of

uncertainty. Artefacts may occur due to the co-registration of the two images. The

dimensions of the tumor masks were changed to fit the dimensions of the dynamic

images, which may lead to registration artefacts. If segmentations were performed



5.2 Extended Tofts’ Method 55

directly on the DCE-MRI images this could have been avoided. However, other limita-

tions might be present when annotating tumor ROIs directly on the DCE-MRI data. For

instance, the resolution of the DCE-MRI images is often poorer than the resolution of

the structural MRI images, which may increase the difficulty in manually segmenting

tumor ROIs on the DCE-MRI images.

DCE-MRI images might be affected by motion artefacts, hence motion correction could

have been implemented for all DCE-MRI images. Motion correction using MCFLIRT

from FSL was tested, but not implemented further [54]. It was decided to not use

motion correction further because no particular changes were observed in the derived

parameters when motion correction was applied to the DCE-MRI time-series data be-

fore modeling. However, motion correction was only tested on data from two patients

and it might have improved the results when analyzing data from other patients. In ad-

dition, the tool tested for motion correction is provided by FSL, which is an analyzing

tool mainly developed for brain imaging data [54]. This might be a reason for the tool

not working as well for endometrial cancer data.

5.2.1 Comparing average and voxelwise modeling results

Two different ways of modeling were tested in the present project. Firstly, model-

ing was performed based on the average signal intensity inside the tumor. Secondly,

modeling was performed based on the voxelwise signal intensity inside the tumor and

calculating the average model parameters afterwards. These two modeling configura-

tions were compared to check whether there are any prominent differences between the

two ways of modeling. Since whole-volume tumor masks were utilized in this project,

selection bias might be present if all of the voxels making up the tumor masks do not

solely consist of tumor tissue. An assumption is made about the tissue compartments

of the voxels in ETM, which might not necessarily be the case for a particular voxel.

In addition, the AIF should be the CA concentration from an artery that is feeding the

tissue of interest. For the voxelwise approach, the AIF should ideally be feeding the

particular voxel, which is not the case.

Results from ETM using all AIF methods indicate that the voxelwise modeling method

on average measures a slightly higher Ktrans value than the average method. This is

shown from the bias in the Bland-Altman plots comparing the results from average and
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voxelwise modeling (Figures 4.5 and 4.11 in sections 4.2.1 and 4.2.2, respectively).

The mean differences in Ktrans are however so small that it is unclear if this result is

systematic. The biggest absolute mean difference between the Ktrans values from the

two ways of modeling was observed for the population-based AIF method (Table 4.1

in section 4.2.1). This can come from the population-based AIF being more smooth

than the other AIFs introducing scaling effects. If the population-based AIF is more

accurate than the two other AIF methods, the difference between the average and vox-

elwise modeling results might become more prominent. The mean absolute differences

were calculated here, and the calculated absolute mean differences might be affected

by outliers.

Positive correlations were observed between the Ktrans parameters derived from the av-

erage and voxelwise modeling methods for all AIF methods and the positive correlation

is statistically significant. However, Spearman’s correlation coefficient only measures

if a correlation is present and not if the values are similar between the two groups of

model parameters.

The median is different between the Ktrans parameters derived from the average and

voxelwise modeling methods for the population-based AIF method from the Wilcoxon

signed-rank test. Contrarily, the median is similar between the Ktrans parameters de-

rived from the average and voxelwise modeling methods for the manual AIF method

and the semi-automatic AIF methods. The mean and median Ktrans values from the av-

erage and voxelwise modeling methods were less similar when the population-based

AIF method was used than the mean and median Ktrans values derived from average

and voxelwise modeling when the two other AIF methodologies were used.

The differences in the derived Ktrans values from modeling based on the average sig-

nal intensity and from modeling based on the voxelwise signal intensity indicate that

more outliers are observed for the semi-automatic AIF method (Figure 4.4 in section

4.2.1). The larger differences observed for this AIF method might also be due to gen-

erally larger model parameters derived from this AIF method, as illustrated from the

calculated mean values (Table 4.1 in section 4.2.1).

More variations were observed in the derived kep values from average and voxelwise

modeling (Table 4.1 in section 4.2.1). Therefore, the derived kep values were plotted

against the tumor volume to look for possible relations (Figure 4.6 in section 4.2.1).

There does not seem to be a connection between the tumor volume and the variations in
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the kep values between the two methods. However, for the semi-automatic AIF method,

there are some larger values that seem to be outliers affecting the mean kep values. The

outliers are mostly observed in the kep parameters derived from modeling based on the

voxelwise signal intensity at low tumor volumes. This might indicate that a voxel is

too small introducing errors. When summing up the results from all voxels we might

calculate accumulated errors. It might also indicate that for small tumors, some voxels

outside of the tumor are included making the resulting kep values differ from the rest.

The variations between the vp values derived from average and voxelwise modeling are

small (Table 4.1 in section 4.2.1). A slightly higher deviation was observed between

the derived ve values. ve, Ktrans and kep are dependent, which might be a reason for the

slightly higher mean absolute differences observed in this variable, leading to outliers

in the derived ve values as well.

5.2.2 Modeling results from different AIF methods

The parameters derived from ETM when using different methods for estimating the

AIF were compared. The mean absolute differences between the derived parameters

are quite high (Table 4.2 in section 4.2.1). The large absolute differences in the derived

perfusion parameters substantiate that the AIF affects the parameters derived from ETM

a lot. The largest mean absolute differences in the derived perfusion parameters were

observed when comparing the model parameters from the semi-automatic AIF method

with the model parameters from the two other methodologies. Since the absolute mean

differences were analyzed here, the resulting differences might be affected by outliers.

The resulting parameters derived from ETM were not normally distributed, so the me-

dian of the derived model parameters was tabulated as well (Table 4.3 in section 4.2.1).

It was observed that the median of the derived parameters was more similar between

the different AIF methodologies. However, the ranges in the derived model parameters

were observed to be larger for the semi-automatic AIF method, which also shows that

this AIF method is affected more by outliers than the other AIF methods in the present

project.

Bland-Altman plots were created for comparing the Ktrans values from the different AIF

methods (Figure 4.7 in section 4.2.1). The manual AIF method measures higher Ktrans

values than the population-based AIF method on average (∼ 22%). The deviations
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in the derived model parameters might come from the smoothness of the AIF curves.

The smoothness of the AIF curves affects the smoothness of the signal intensity curve

obtained from ETM (Figure 4.8 in section 4.2.1). The manual AIFs were affected more

by noise, especially when the desired artery was small and difficult to see in the DCE-

MRI images resulting in a small AIF ROI. The population-based AIF was not fitted

to the data from each patient. The arrival time and signal intensity of the CA might

differ between patients. Hence, the parameters might be affected by the location and

the magnitude of the peak in the population-based AIF. These are possible contributors

to the deviations in the results from the population-based and the manual AIF methods.

The semi-automatic AIF method produced more outliers in the derived model parame-

ters, which is illustrated in the Ktrans Bland-Altman plots (Figure 4.7 in section 4.2.1).

It was observed that the semi-automatic AIF method resulted in AIF curves with higher

levels of noise and no distinct peak values when data from several patients were ana-

lyzed (Figure 4.8 in section 4.2.1). This might affect the derived model parameters

and may be a reason for the high deviation in the results from the semi-automatic AIF

method compared to the results from the other methodologies.

A positive correlation was observed between the derived Ktrans values from the manual

AIF method and the population-based AIF method from Spearman’s rank correlation

coefficient. Contrary, no statistically significant correlations were observed between the

derived Ktrans values from the automatic AIF method and the two other methodologies

when Spearman’s rank correlation coefficient was calculated.

The median Ktrans values from the manual AIF method and the population-based AIF

method are statistically significantly different from the Wilcoxon signed-rank test.

However, the Wilcoxon signed-rank test gives evidence to accept that the median Ktrans

from the semi-automatic AIF method is similar to the median Ktrans from the two other

AIF methods. Initially, it may appear weird that the median Ktrans obtained from ETM

when using the automatic AIF exhibits the highest similarity to the median Ktrans de-

rived from the other two methodologies. However, the Wilcoxon signed-rank test is ro-

bust to outliers, which was mostly observed in the results from the semi-automatic AIF

method. This indicates that, excluding the outliers obtained from the semi-automatic

AIF method, the remaining parameters align more with the model parameters obtained

from the other two AIF methodologies.

In this project, the semi-automatic AIF seems like the least robust AIF method, leading
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to outliers in the derived model parameters, even though the median Ktrans value is

similar to that of the two other methods for estimating the AIF. The derived perfusion

parameters seem to be affected when the algorithm fails in estimating an AIF curve

shaped with a high first peak value, a longer washout period and little noise. In this

project, it was observed that the population-based AIF seems to be the most robust

method for estimating the AIF. This evaluation is both based on the resulting parameters

from ETM and the time consumption and difficulty in manually annotating AIFs from

DCE-MRI data.

5.2.3 Erosion and dilation of tumor masks

Erosion and dilation of the whole-volume tumor masks were tested for the population-

based AIF method when modeling in the local environment. This was done as a test

of whether the tumor masks were correctly aligned with the tumor after performing

a co-registration between the tumor masks and the DCE-MRI images. Research have

indicated higher Ktrans values in the myometrium [1][12]. If normal myometrium is

present in the tumor masks we might expect the Ktrans values to be higher. For this

reason, erosions and dilations were tested to get an estimation of whether tissues outside

of the tumor were present in the tumor masks after co-registration. Both erosion and

dilation barely changed the derived Ktrans values (Table 4.4 in section 4.2.1). This

indicates that the tumor masks consist of mostly tumor tissue after co-registration. A

double erosion was also tested, but for small tumor masks, there were zero true voxels

left in the image, and modeling could not be performed.

5.2.4 Parameter maps

Parameter maps were created based on the model parameters derived from ETM when

using a manually annotated AIF (Figure 4.9 in section 4.2.1). The parameter maps

show voxelwise modeling results, where all voxels outside the tumor are zero. There

are also some areas inside the tumor where the values are zero because the maximum

number of function evaluations was reached. For these voxels, the model was not able

to find perfusion parameters before a set number of function evaluations were reached.

The reason for the optimization not working for all of the voxels inside the tumor is

unclear, but might be connected to the tissue compartments of the prospective voxels.
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If the voxels do not consist of the compartments assumed from ETM, errors may occur.

The parameter maps show visually where in the tumor the derived perfusion parameters

are higher and lower, and might serve as a tool for radiologists when they evaluate MRI

images.

5.2.5 Comparison with values from the literature

Three studies were chosen as a basis for comparison. Two of the studies have used al-

most the same model as we have in this project, while one of the studies used a different

two-compartment pharmacokinetic model to derive similar parameters [1][12][13].

Fasmer et al. used ETM to analyze DCE-MRI data from endometrial cancer patients in

nordicICE (Nordic-NeuroLab AS, Bergen, Norway) [12]. The data analyzed by Fasmer

et al. were derived from the same cohort as the data analyzed in the present study. They

found Ktrans, kep and ve values that are lower than the median parameters derived in

this project (median values: Ktrans = 0.034min−1, kep = 0.40min−1, ve = 9%) (n=177).

They found higher Ktrans, kep and ve values in the normal myometrium (median values:

Ktrans = 0.086min−1, kep = 0.42min−1, ve = 21%). Fasmer et al. annotated tumor

ROIs directly on the DCE-MRI images in 2D to avoid registration artefacts and used a

population-based AIF calculated by the nordicICE software [12].

Haldorsen et al. analyzed contrast concentration curves in the myometrium and in

the endometrial cancer regions using the adiabatic approximation model of Johnson

and Wilson (aaJW) [1]. From this model, they derived parameters reflecting the tissue

microvasculature. They derived Ktrans, kep, Ve and Vp among other parameters. Even

though Haldorsen et al. used a different model, there might be a foundation for compar-

ison since they derived the same parameters and analyzed data from the same cohort as

we did in this project. Haldorsen et al. found lower Ktrans and kep values than what was

observed in the present project (mean values: Ktrans = 0.026min−1, kep = 0.30min−1)

(n=55). Haldorsen et al. did not find higher kep values in the normal myometrium like

Fasmer et al. did, but they did find higher Ktrans values in the normal myometrium

(mean value: 0.06min−1) than in the cancer tissue. Haldorsen et al. annotated tumor

ROIs directly on the DCE-MRI images similar to Fasmer et al. [12]. They also an-

notated an ROI in the normal myometrium and in a feeding artery. Due to the poor

quality of the AIF ROI, they decided to use a population-based vessel signal that was
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optimized for the individual patients [1].

In addition to optimizing model parameters in the endometrial cancer tissue and in the

normal myometrium, Haldorsen et al. looked at the differences between the model

parameters in the endometrioid and non-endometrioid cancer types [1]. They found

slightly higher Ktrans and kep values in the endometrioid histologic type (mean values:

Ktrans = 0.027min−1, kep = 0.31min−1), than what they did for the non-endometrioid

histologic type (mean values: Ktrans = 0.022min−1, kep = 0.26min−1). However, Hal-

dorsen et al. found no significant differences in the perfusion parameters among the

tumor grades [1].

Ye et al. analyzed DCE-MRI data from endometrial cancer patients using two different

models, the extended Tofts’ method (ETM) and the distributed parameter (DP) model

[13]. From ETM they found higher Ktrans and kep for low-risk type endometrial cancer

(median values: Ktrans = 0.10min−1, kep = 1.20min−1) than they did for high-risk type

endometrial cancer (median values: Ktrans = 0.05min−1, kep0.57min−1) (n=51). The

median Ktrans values obtained in the present project are higher than the median Ktrans

values derived by Ye et al. in both of the histologic types (Table 4.6 in section 4.2.2).

Contrarily, we found a slightly lower median kep value than what was observed by

Ye et al. in both of the histologic types. Ye et al. used individually annotated AIFs

from the iliac arteries. They used commercially available software (Mltalytics, FITPU

Healthicare, Singapore) to extract DCE-MRI parameters [13].

The three studies chosen as a basis for comparison have all calculated lower Ktrans val-

ues than we have in this project. Fasmer et al. also calculated lower ve values for the

cancer tissue than what was derived in the present project [12]. Ye et al. calculated

higher kep values than we did in the present project, while Fasmer et al. and Haldorsen

et al. derived lower kep values than the derived kep values in this project. The differ-

ences between the parameters derived in this project and the parameters derived in the

three other studies might be influenced by methodological reasons, as different meth-

ods were used to extract parameters from ETM. In addition, Haldorsen et al. used

a different compartmental model [1]. ETM might have been implemented differently

and optimization might have been performed in a different manner by Fasmer et al. and

Ye et al. than in the present study [12][13].

The three studies also used different methods for estimating the AIF [1][12][13]. The

findings in this project illustrate that the model parameters from ETM are highly in-
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fluenced by the estimated AIF. The AIF seems to be the one input parameter that in-

fluences the resulting model parameters from ETM the most. The present study has

shown that the choice of AIF influences the derived model parameters and might be a

reason for the deviations in the derived parameters between the studies.

In all of the three studies used as a basis for comparison, tumor masks were annotated

directly on the DCE-MRI images [1][12][13]. In this project, whole-volume tumor

masks were used and a co-registration was performed between the tumor masks and the

DCE-MRI images. This might lead to differences in the obtained model parameters.

The way in which MRI signal to CA concentration conversion is handled might also

differ and influence the derived perfusion parameters. Differences between the MRI

machines and imaging protocols might also influence the dynamic MRI acquisitions

and hence the derived perfusion parameters.

5.2.6 Correlation with histologic tumor grade

An investigation was carried out to determine if there exists any correlation between the

derived model parameters and the histologic tumor grade. The histologic tumor grades

analyzed in this project were divided into low-risk and high-risk histologic grades.

ROC curves were created of the derived Ktrans, kep, ve and vp parameters to check for

correlations with histologic grade, which was 0 for the low-risk grades and 1 for the

high-risk grades. The curves show no correlation with the histologic grade for all four

model parameters (Figure 4.12 in section 4.3). The frequencies of the low-risk and

high-risk histologic tumor grades were tested with a chi-square test. The test indicates

that there is evidence to reject the null hypothesis which states that the histologic sub-

types have frequencies given by splitting the Ktrans values by the median value. This

means that there is statistical evidence to indicate that there is no correlation between

derived Ktrans values and histological grade based on the results in this project.

Even though no correlation was observed between the derived model parameters and

histologic grade in this project, Ye et al. did find a correlation between parameters de-

rived from ETM and low- and high-risk histologic subtype [13]. Ye et al. found higher

Ktrans, kep, Ve and Vp for the low-risk histologic type than for the high-risk type. Ye et

al. analyzed for correlations with low-and high-risk types, whereas the correlation anal-

ysis carried out in this project looks at histologic grade. In this project, low-risk grade
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includes endometrial carcinomas diagnosed as endometrioid of grades 1 or 2, while

high-risk grades include the non-endometrioid type and the endometrioid type of grade

3. Ye et al. classified patients with grade 1 and 2 endometrioid adenocarcinoma as the

low-risk types, whereas the patients with endometrioid grade 3 and non-endometrioid

were classified as the high-risk disease type [13]. Hence, there might be a basis for

comparison between the findings by Ye et al. and the findings in the present study. Hal-

dorsen et al. calculated perfusion parameters for the endometrioid histologic type and

the non-endometrioid histologic type, and found no significant differences between the

perfusion parameters for the different tumor grades [1]. The differences in the find-

ings between the studies highlight the need for further research in the field to ascertain

whether these observations are coincidental or if a correlation is present between the

derived perfusion parameters and histologic type and grade.

5.3 Future work

The AIF seems to influence the model parameters derived from ETM a lot. Great

differences were observed between the mean parameters from ETM when three differ-

ent methods were used for estimating the AIF. This is one part of the research field

that might benefit from further research. A precise and time-efficient standardized ap-

proach for finding the concentration of CA in a feeding artery is needed. An automatic

algorithm for estimating the AIF is time efficient, but research is necessary in order to

implement an algorithm that also is precise.

Developing a method for automatically finding an AIF for endometrial cancer data

could enlighten the work when implementing quantitative models that require an input

plasma concentration. An automatic algorithm for finding the AIF could be created

by further developing the algorithm presented by Tönnes et al [26]. Machine learning

and deep learning methods might also be relevant for developing a robust algorithm

for estimating the AIF for endometrial cancer data. Automatic algorithms using deep

learning have been developed for brain data like for instance the one proposed by Fan

et al [55].

It would also be interesting to test commercially available software, like for instance the

nordicICE software (Nordic-NeuroLab AS, Bergen, Norway) on the same data as we

have analyzed in this project. Subsequently, a comparison can be carried out between
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the population-based AIF developed within this project and the population-based AIF

suggested by the software. It would also be interesting to see if the results obtained from

ETM using commercial software are in line with the results obtained in this project

when using the same tumor masks and analyzing the same patient data as in the present

project.

In this project, no methods were implemented to facilitate the conversion from MRI

signal to real CA concentration. The MRI signal intensity was solely subtracted by

the baseline signal intensity as suggested by Hanson et al [52]. In the future, it could

be relevant to implement different methods for converting from MRI signal to CA con-

centration in order to see how this affects the derived model parameters for endometrial

cancer data.

Implementing a way of handling motion could also be relevant for endometrial cancer

data. A great deal of research and software evolves around brain imaging data. Other

organs in the body have bigger variations in anatomy between patients and some or-

gans move more than others. In addition, some organs are more sensitive to patient

movement. For this reason, software tailored to brain imaging data might not suit other

organs as well. For endometrial cancer data, we need to handle the fact that the anatomy

of the pelvis varies between patients and that the DCE-MRI images might be affected

by motion. Developing robust ways of handling these issues might be important in

future research.



Chapter 6

Conclusions

In this thesis, we found that modeling based on the average signal intensity inside the

tumor exhibits higher consistency in the derived perfusion parameters than modeling

based on the voxelwise signal intensity. Some of the model parameters derived from

ETM when modeling based on the voxelwise signal intensity exhibit higher levels of

outliers.

Different methods for estimating the arterial input function were successfully imple-

mented in Python and tested on data from 20 patients. It was observed that the AIF

affects the parameters derived from ETM quite a lot and might be a main reason for the

deviations in the model parameters derived from ETM. The findings in this thesis in-

dicate that the population-based AIF method is the most robust method for estimating

the AIF.

The model parameters derived in this project are mostly higher than the parameters de-

rived in three other studies that were chosen as a basis for comparison [1][12][13]. The

Ktrans parameters derived in this project exhibit the highest similarity to the parame-

ters derived by Ye et al. [13]. The kep values derived in this project are slightly more

similar to the kep values derived in the three studies [1][12][13].

In this project, no correlation was observed between the calculated perfusion parame-

ters and low-risk and high-risk histologic tumor grades.
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Source code

The Python code used in this thesis is available in the Github repository" DCE-MRI-

analysis-endometrial-cancer".

Most of the algorithms used for running the extended Tofts’ method (ETM) on DCE-

MRI data from patients with endometrial cancer are included in this repository. Two

DICOM images are required for running ETM, including the whole-volume tumor

mask and the DCE-MRI image. In addition, an arterial input function (AIF) is required.

Scripts illustrating how the AIF was estimated are also included in the repository. Ex-

amples of how the resulting parameters were analyzed and visualized can also be found

in the Github repository.

Link to the Github repository:
https://github.com/ingridaase/DCE-MRI-analysis-endometrial-cancer

Contents of the repository

The GitHub repository is organized into three folders:

The arterial input function: This folder contains three different methods for esti-

mating the AIF, including manual annotation of the AIF, an automatic algorithm for

estimating the AIF and a population-based AIF. The population-based AIF is based

on manually annotated AIFs, whereas the two other methodologies require an input

DCE-MRI image in DICOM format.

Extended Tofts method: Scripts and functions used for running ETM are included

in this folder. An arterial input function is required for ETM. This folder contains

scripts for running ETM inside the research information system, in addition to scripts

for running ETM on a local machine.
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Visualization and statistics: This folder contains examples of how the resulting model

parameters were analyzed and visualized. Additionally, clinical parameters were im-

ported and included in the analysis.

Requirements

The requirements for the algorithms in this project are included in an "environ-

ment.yml" file, which can be found in the repository.



Appendix A

Extended Tofts’ model

This appendix includes model parameters obtained from numerical modeling with ex-

tended Tofts’ method (ETM) in addition to results from statistical analysis and an math-

ematical derivation of extended Tofts’ method.

A.1 Analytical solution to ETM

Equation (A.1) shows the leakage across the endothelium, which is thought to be pro-

portional to the difference between the concentration in the plasma (Ce) and the con-

centration in the EES (Cp.)

ve
dCe(t)

dt
= Ktrans(Cp(t)−Ce(t)) (A.1)

Equation (A.1) is rewritten by dividing both sides of the equation by ve giving the

expression in equation (A.2).

dCe(t)
dt

=
Ktrans

ve
(Cp(t)−Ce(t)) (A.2)

The coherence kep =
Ktrans

ve
is used giving the expression in equation A.3

dCe(t)
dt

= kepCp(t)− kepCe(t) (A.3)

All terms in equation (A.3) are multiplied with the integrating factor (ekept) giving the

expression in equation A.4.

dCe(t)
dt

ekept = kepCp(t)ekept − kepCe(t)ekept (A.4)
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The expression is then rewritten giving equation (A.5).

dCe(t)
dt

ekept + kepCe(t)ekept = kepCp(t)ekept (A.5)

The product rule and chain rule for derivation is used backwards in order to find the

expression in equation (A.6).

[Ce(t)ekept ]′ = kepCp(t)ekept (A.6)

Both sides of the expression in equation (A.6) is integrated as shown in equation (A.7)

and (A.8). The expression is integrated over the total time t and τ is introduced as the

differential of t. ∫
[Ce(t)ekept ]′ =

∫ t

0
kepCp(τ)ekepτdτ (A.7)

Ce(t)ekept = kep

∫ t

0
Cp(τ)ekepτdτ (A.8)

Both sides of the equation are multiplied with ve, as shown in equation (A.9).

Ce(t)ve = kepvee−kept
∫ t

0
Cp(τ)ekepτdτ (A.9)

The fact that the total tissue concentration is the sum of the plasma concentration and

the EES concentration (Ct =Ceve +Cpve) is utilized to find the total tissue concentra-

tion.

Ct(t)−Cp(t)vp = Ktranse−kept
∫ t

0
Cp(τ)ekepτdτ (A.10)

The expression in equation (A.10) is rewritten to get the total tissue concentration alone

on one side of the equation as shown in equation (A.11).

Ct(t) =Cp(t)vp +Ktranse−kept
∫ t

0
Cp(τ)ekepτdτ (A.11)

Extended Tofts’ model is then shown in equation (A.12).

Ct(t) =Cp(t)vp +Ktrans
∫ t

0
Cp(τ)e−kep(t−τ)dτ (A.12)

A.2 Model parameters obtained from ETM
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A.2.1 Manual AIF

Average modeling

Table A.1: Model parameters from extended Tofts’ method when using manually annotated arterial
input functions and modeling based on the average signal intensity inside the tumor (n=20).

Ktrans kep ve vp
0.15423085479536805 0.6567658423065185 0.23483385532615308 0.11095160272871749
0.10372078764608236 0.31900860611546605 0.32513476331901947 0.171742042077636
0.1631953189425114 0.7330931247658379 0.22261198943127272 0.2365301224891942
0.41303666075351897 1.5938313205519217 0.25914703483834794 0.330509445992213
0.22156083752010053 1.9044244332271476 0.11634005196239475 0.20726377113820382
0.2362367126598966 1.9743097415245023 0.11965534469656304 0.21721130753175777
0.11535929235627276 1.4169487081621335 0.0814138801861788 0.08309369565863062
0.1691788343497397 0.8181715835304777 0.20677671744564768 0.2095263596310395

0.046563269439565375 0.04656326943956549 0.9999999999999974 0.24022707528742365
0.29003330346019274 0.6226684073978682 0.4657909410760731 0.2428095759472152
0.2769394273717008 1.6871034652632786 0.16415082600075354 0.2155692459883353
0.1244535745239698 0.46020093592130973 0.2704331191217965 0.08849465141421096
0.17292825812328777 0.3187084848355316 0.5425906944790841 0.12226476037143853
0.1105860685927547 0.3085834932400735 0.3583667662570672 0.10243777567400988
0.10155294642335906 0.537473105445677 0.18894516840828818 0.07399486031467323
0.09525026424624458 0.24096124159901333 0.39529288450775735 0.22831109591866122
0.09485679833227781 0.22834448504598442 0.4154109450603783 0.32595054055352585
0.13899099057432857 0.4755086754932617 0.2922995893400859 0.11423799912688808
0.09087815867251099 0.9447978255426718 0.09618794224077783 0.10943988652185875
0.07989819279110441 0.26196642755851357 0.30499401597274567 0.2041674027506683

Voxelwise modeling

Table A.2: Model parameters from extended Tofts’ method when using manually annotated arterial
input functions and modeling based on the voxelwise signal intensity inside the tumor(n=20).

Ktrans kep ve vp
0.16660405084254393 0.7374365302227506 0.24213088528897966 0.10924924702306471
0.1122813836690585 0.38144260338696595 0.349450256051366 0.1691733032087281
0.16434411394080067 0.6505638736100757 0.34775887113138226 0.24428145618205765
0.4046612639442145 1.522202696178149 0.2740212009977999 0.32958872757419505
0.1432980784521802 1.2754208341374311 0.1935865627700347 0.22864063580570498
0.18667702383335288 1.4797492391096796 0.12325764338402503 0.23163268338258422
0.0966702344505107 1.2559909253350021 0.08994945998762288 0.08902085276786882
0.18242085089598134 0.7332044921932774 0.24482230728730842 0.20779114424647593
0.08693601561839058 0.3196351868101804 0.7334756792823728 0.21994411493416213
0.31476172085956255 0.689874855319853 0.5119157081300165 0.24034967036949903
0.2570529149942951 1.641926686555167 0.16914598771202174 0.21979800427437163
0.1332971154099629 0.4839601599737208 0.2929328503625259 0.08670206580519374
0.18189752419685049 0.3646052224169786 0.5702078567506801 0.12041713276092914
0.1245570905758882 0.3940936035765084 0.4540378800228382 0.10092626419073718
0.10775451856435032 0.7237982846230039 0.23102697918620835 0.07326252406052246
0.09820266563100505 0.2662509047994742 0.43108328443801913 0.22714450740956246
0.11423721662691266 0.33616965779704333 0.5560723275693455 0.3195583259599061
0.14573988887061015 0.5090383644100017 0.3072862536070443 0.11306209307398887
0.09677853697852801 1.0696913298025514 0.10691611585710228 0.10978221880500208
0.08705240236753971 0.27415597148435455 0.4085917294651154 0.20242514182912938
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A.2.2 Population-based AIF

Average modeling

Table A.3: Model parameters derived from extended Tofts’ method when using a population-based
arterial input function and modeling based on the average signal intensity inside the tumor (n=20).

Ktrans kep ve vp
0.15813737505805814 0.4528053998749944 0.34923915461634286 0.19321175534895763
0.09641047902777591 0.31622978429516196 0.30487475821628646 0.22188147550412682
0.08491730739712691 0.3686803730729418 0.23032771364893456 0.22400403582214107
0.2397728271295572 0.8994800441950082 0.2665682564910514 0.2339038153016921
0.0984444971070331 1.9669662234571743 0.0500489006537211 0.23449630490864953
0.1625086435452934 1.5096322719128306 0.10764783356107069 0.17521371308773642

0.09696891778404279 0.9706342815781749 0.09990263029488199 0.08688522331171378
0.09708765922979741 0.443447563938478 0.2189383077618325 0.16698087734275852
0.08812941850037874 0.08812941850045812 0.9999999999990993 0.3747010483156715
0.19431315507294183 0.5526251669425487 0.35161836032187577 0.2753014668636027
0.2287943717987728 1.7213038316136158 0.13291922529696124 0.24833401975150923

0.13034656155049187 0.37368241214626285 0.34881642087953824 0.09068020507052035
0.10571034085503103 0.2717624608964724 0.3889806579846261 0.06449801603630007
0.09513856269598212 0.2473331144357029 0.3846576020078964 0.11106566118993817
0.0797892260085647 0.3529983803701252 0.22603283880482467 0.06887519965182552

0.11495048696864728 0.4271994411896853 0.2690792072398964 0.2693134040407569
0.05898609846566856 0.42963507647749405 0.1372934885793909 0.2629428795651916
0.11595224696663478 0.37497992529580415 0.309222545380704 0.099083575835257
0.042126697789076836 0.42478748617607187 0.09917123069773193 0.18255029770683354
0.16191284968974015 0.7532573109439428 0.21495025317024724 0.26820553851652085

Voxelwise modeling

Table A.4: Table showing all the optimized parameters from extended Tofts’ method when using a
population-based arterial input function and modeling based on the voxelwise signal intensity inside
the tumor (n=20).

Ktrans kep ve vp
0.1774159215827685 0.5591310665706384 0.34370685137535395 0.19162286827137695

0.11160675903704076 0.46668892754611024 0.3094343063461616 0.2210757497367626
0.1109686490706205 0.6696212432988746 0.35421183025959846 0.22317218353713758
0.2739984473891227 1.0558819674281257 0.26972657489651414 0.23353565037214763

0.04675852139093551 2.0650124796711506 0.2770204734603566 0.25112237644220137
0.14573319473766108 1.3739182141916713 0.10901793470656752 0.18437693519368056
0.10118738252753534 1.430759690653251 0.10968807384156531 0.09000382619194326
0.11086012962315736 0.4583361686383868 0.24858642522921248 0.16638715259733078
0.13692916711268313 0.295358063027237 0.8350080233415342 0.36015799634741125
0.218617959669452 0.6590516116803323 0.38927645231152586 0.2753172215598418

0.18178336425896993 1.320742523765689 0.12384721091907197 0.2671456102700211
0.14046508383631764 0.4109558646570405 0.3608813438828635 0.08998424535862498
0.1118769318571233 0.31676398972658604 0.39877444524698674 0.06440097973178953

0.10843260776291581 0.35094982082589016 0.46264178535246525 0.11042138268795013
0.08662442500944419 1.7752100251817515 0.28927102283456796 0.06913009148125461
0.14810525639237954 0.7892243202000859 0.2825282125641038 0.26535136268576903
0.0815600860618996 0.6138506172746724 0.3347538935290195 0.26194445903152386

0.12299172835900994 0.4188678060063562 0.3127905265861073 0.0994889375779011
0.05531552749408951 0.6475600392495335 0.18800008453544567 0.18266358009051387
0.20169537091034964 1.1057701070039054 0.21510449971649823 0.2652860487435429
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Erosion of tumor masks (average modeling)

Table A.5: Model parameters derived from extended Tofts’ method when using a population-based
arterial input function and an eroded tumor mask (n=20). Modeling was performed based on the
average signal intensity inside the tumor.

Ktrans kep ve vp
0.15635105453869336 0.46883053285352627 0.33349162134783816 0.19933761076435777
0.08730204917918324 0.34774009157617103 0.2510554615186213 0.20854019114110442
0.08875906369016982 0.4288737180473158 0.2069585053947685 0.23024141156574524
0.2449265175658345 0.9693691813863602 0.25266588031563847 0.22708643749527693

0.10796088287210705 2.450442946755979 0.044057701084218734 0.2316543193512844
0.16443504323565142 1.8003606985984975 0.09133449944983633 0.1678116957908322
0.10531885729814927 1.399734639128608 0.07524201684664641 0.08315421057577102
0.09323884532136502 0.512062341118515 0.18208494910541612 0.15592520999465762
0.10192865772642562 0.10192865772642572 0.9999999999999991 0.3561541206125725
0.19116405452805402 0.615983197031474 0.31033972265689314 0.25093308643476725
0.22288765745888242 2.04411164560418 0.10903888637305977 0.24285719665511887
0.1575288852503131 0.46439060184076425 0.3392163506881831 0.14845875624401159
0.1136827030633013 0.2844796326464683 0.3996163170126782 0.06725185755490354

0.09493667767232765 0.25941237017916075 0.36596819807305453 0.10951160697204827
0.06588181169697763 0.3509241479537254 0.1877380399187152 0.06833365539235425
0.12098061952599809 0.496356501538908 0.24373735238867372 0.28058156109349686
0.043052412840854835 0.6402957778769548 0.06723832067674228 0.2511374712167736
0.11507200878462011 0.4196345376860078 0.27421958502072324 0.10359625569107725
0.045931728843318725 0.5810266233627639 0.0790527094567253 0.1738708211013675
0.1707749777093008 1.1323708963265602 0.15081187468107768 0.2517586471409868

Dilation of tumor masks (average modeling)

Table A.6: Model parameters derived from extended Tofts’ method when using a population-based
arterial input function and a dilated tumor mask (n=20). Modeling was based on the average signal
intensity inside the tumor.

Ktrans kep ve vp
0.18493149970179715 0.500558502998212 0.36945032117945603 0.20160530948876895
0.1136513165741379 0.34189949150250876 0.332411481733087 0.23270293480284254

0.09241273259178352 0.4259824870023618 0.21694021564616847 0.21997121348563858
0.27510056760129314 0.9810282663013938 0.2804206331775318 0.24656610575787163
0.11425282080999316 2.0333056361223543 0.056190677279526306 0.23771623907458964
0.18113913044350868 1.5319656542949125 0.11823968111535635 0.18580104514537532
0.10673207373755147 0.8490828019120252 0.12570278599119494 0.09507562950120588

0.10769778535324 0.4873637397609781 0.22098029985993442 0.17441613608330606
0.07893152765381199 0.078931527653812 0.9999999999999999 0.40740000577047236
0.21558076886022962 0.6366583796258973 0.33861294496258043 0.28447595092012595
0.26156429292251393 1.6794094901655028 0.15574777590231267 0.263619487512572
0.13529167631737457 0.39829349773730977 0.3396783454562062 0.08486328901878211
0.10299704515284576 0.2849219959711289 0.3614920806720814 0.06519817173746954
0.10094386119669883 0.2687831574302832 0.37555872980203975 0.11263542629647633
0.09695375762701818 0.3847249069542088 0.25200800851336075 0.07392261961581359
0.12537627509974075 0.49128675369597596 0.25519978740832816 0.26773316585908513
0.08847770997765302 0.5526470738065145 0.1600980339373509 0.27101564711773896
0.1266802285121551 0.41029106669652216 0.3087569747304686 0.10297035183185328

0.05166591018756534 0.5338149419640918 0.09678618211297793 0.18987744265957174
0.21052417053539174 0.8040301233867461 0.26183617306354035 0.28452842661821565
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A.2.3 Semi-automatic AIF

2% bright voxels - average modeling

Table A.7: Model parameters derived from extended Tofts’ method when using a semi-automatic ar-
terial input function, choosing 2% bright voxels and modeling based on the average signal intensity
inside the tumor (n=13).

Ktrans kep ve vp
1.4383972598195145 2.075340042939111 0.6930899178249585 0.0524922444893312
1.0385744470992628 2.0254766642473143 0.5127555727654886 0.24727797965618023
0.16591391246169973 0.771887358254332 0.21494575690023432 0.3426389546691018

-0.00017450522316470293 -0.6955751763398094 0.0002508790265963314 0.37079574917310254
-0.02213909569795426 -0.022139095698057217 0.9999999999953496 0.5111971177923046
0.1417127094589002 0.7873115843471091 0.17999571234102665 0.3938697979367327
0.5350823734235554 5.360982207160625 0.09981051097480788 0.7839881781608253
0.06646240643615803 0.5448173720807084 0.12199024818597817 0.46102259145305974
0.31713280347662787 0.6506577146341268 0.48740343247133516 0.2099799299718968
0.11091097071726841 0.7663681202792066 0.14472283982384448 0.40801362353905757
2.8659399572701507 2.865939957845991 0.9999999997990745 0.406261724097611
0.11606781040825165 1.079342779962389 0.10753563424243795 0.15515398554778043

-0.0008476910728239226 -0.7010788740489958 0.0012091236866519537 0.45258661135013434

2% bright voxels - voxelwise modeling

Table A.8: Model parameters derived from extended Tofts’ method when using a semi-automatic ar-
terial input function, choosing 2% bright voxels and modeling based on the voxelwise signal intensity
inside the tumor (n=13).

Ktrans kep ve vp
1.4396398413382239 2.0651353170224858 0.6943533440530534 0.05659262386998301
0.9291712426127208 1.8923113735345438 0.4975904563115487 0.2925419414313641
0.159097787578042 0.5568274165491081 0.3887290116685824 0.3524458704155444

0.07831693907874226 0.602051149450451 0.220837952801527 0.3269252704203262
-0.016961694596049848 0.0029974257680456663 0.760579635017835 0.5065256703473364
0.16013112055451906 4.338485674143834 0.24203697828509674 0.3884183566536897
0.4518676046897229 4.999155067127976 0.32430286377706075 0.8315671564449407

0.11349258288292172 17.541227962685973 0.24052658169123645 0.42028388315105547
0.32908379183338016 0.6825527253755697 0.5132417540453543 0.21093073565460593
0.1238030786216983 3.476400122709239 0.19831927360657192 0.41102668277445864
2.8491033593447863 2.8996631907830954 0.9801213453374892 0.416333691698925

0.11194011087778732 1.0568372973598728 0.12019711873768392 0.1583933034420035
0.09025126304744029 -0.22215336132024932 0.06434742686314421 0.39445017181320885
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3% bright voxels - average modeling

Table A.9: Model parameters from extended Tofts’ method when using a semi-automatic arterial input
function, choosing 3% bright voxels and modeling based on the average signal intensity inside the
tumor (n=18).

Ktrans kep ve vp
0.7969590622399121 0.7969590622399122 0.9999999999999999 0.207407797580898

0.14302603230328395 0.3749545635392854 0.3814489706518762 0.34459330006089217
-0.004167963146542596 -0.14002441075113303 0.02976597526234454 0.6162817197328934
-0.000236881534262391 -0.6546600941600806 0.0003618389701396212 0.3787659519310713
-0.017960312883476704 -0.017960312883477568 0.9999999999999518 0.5226639150036466
0.03997670792449439 0.8828931526813114 0.04527921391516823 0.40040049466016403

0.060299938747684766 0.06029993874768483 0.9999999999999989 0.6309963887890916
0.6719977875516491 0.8911599692342147 0.7540708859814536 1.0601154047435955×10−9

-0.03545237454697829 -0.035452374546984466 0.9999999999998259 0.5535534048162044
0.0987901571335116 0.6042686797055045 0.16348713817445878 0.432294099594772
0.3455604942891316 0.6155063115556556 0.5614247779454089 0.24274323315243526

0.05614919925710979 0.28219085039328995 0.19897597380940787 0.2819010998214092
0.18157765729235392 0.8039231977070124 0.2258644330829839 0.2466141013079857
0.13329500980041425 1.3489141357715106 0.09881652676445284 0.4282292563338913

-0.011676357355517626 -0.011676357356837195 0.999999999886988 0.5169170691211397
1.0800037597754488 1.2042628230960633 0.8968173218192069 0.368129694489481

0.11997692984897382 1.1083694869339662 0.10824633054529563 0.16533993096934718
1.5915628465275737 2.243808675251222 0.709313081851499 0.06664800343840657

3% bright voxels - voxelwise modeling

Table A.10: Model parameters derived from extended Tofts’ model when using a semi-automatic ar-
terial input function, choosing 3% bright voxels and modeling based on the voxelwise signal intensity
inside the tumor (n=18).

Ktrans kep ve vp
0.7559574439239323 0.7687328037264526 0.9742859608931053 0.23571907255338945

0.16681752191173632 0.5382184082631727 0.4198668481087619 0.3390544929239424
0.06039914558290123 95.44629335820234 0.6128147650294609 0.5573082037041228
0.07593302386030172 0.8773661616189299 0.22847761201869282 0.33689562381061844

-0.009643576832283124 0.046057003668151485 0.7283511294808849 0.5163229812717167
0.055300669364134414 40.176522480887925 0.2122823896342765 0.3802124420906021
0.14189214800486782 0.6505485746261126 0.8000406811948391 0.5931394963240938
0.44406931444435244 0.05393859961501542 0.46270069124975477 0.42992888127393186

-0.033346853786853745 -0.0533889816558951 0.9088914376520847 0.5506952022553319
0.14106596492441648 14.967462514390057 0.24818197256703592 0.40205516182528833
0.3609562806721745 0.662748066315397 0.5892130885554121 0.24345696066408984
0.0626564644459377 5.72981643487707 0.43856168997513983 0.27768123763869257

0.17367788381556654 0.6479485432135654 0.437331320720171 0.2510064675972397
0.09943154478421148 1.556243398423381 0.24726240655013448 0.43868393026347763

0.0027183851437656663 0.20610074423455085 0.68035611028331 0.5052151481285861
1.071046150207796 1.2590044264996463 0.8683714869693313 0.3974744785858602

0.11327637754789825 1.5681105964919344 0.12216690913193413 0.1693557856342006
1.5886534903206053 2.2829634926920885 0.7002458640604474 0.07441297206479068
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Results from the research information system - average modeling

Table A.11: Model parameters derived from extended Tofts’ model when using a population-based
arterial input function (n=60).

Ktrans kep ve vp
0.16542327 0.49676086 0.33300384 0.194340235
0.23256041 0.9904803 0.2347956 0.194580104
0.27037226 0.57345212 0.47148184 0.202776717
0.20624328 0.58602376 0.35193672 0.183879462
0.15178383 0.69775867 0.21753055 0.158912821
0.29308355 0.91866561 0.3190318 0.238503412
0.16303877 0.54018338 0.30182114 0.273227942
0.09986648 0.35269868 0.28314958 0.223914315
0.33128052 0.53127226 0.62356073 0.270940896
0.03342967 0.21493156 0.15553634 0.00892526172
0.09010848 0.42511352 0.21196334 0.225195469
0.17295343 0.73261636 0.2360764 0.118410670e
0.17692048 0.45829554 0.38604015 0.152446344
0.23056603 0.33682006 0.68453771 0.203846522
0.1249623 0.45267244 0.27605457 0.272180669
0.24044423 0.92003105 0.26134361 0.350970003
0.17961642 0.44223934 0.40615207 0.143373767
0.02579387 0.02579387 1. 1.15458493e-13

0.311868 0.66438518 0.46940843 0.351546986
0.92280809 3.17347154 0.29078821 3.27044394e-18
0.08361726 0.37761211 0.22143691 0.114788485
0.29042636 0.73126807 0.39715444 0.321594346
0.19004271 0.54916977 0.34605456 0.251709521
0.28156558 1.0477028 0.26874566 0.248503750
0.21555801 1.41680835 0.15214338 0.461792334
0.1550721 0.29417766 0.52713757 0.0844053852
0.0661958 0.34126671 0.19397086 .0269223504
0.17093493 0.45069361 0.3792708 0.293268464
0.11169726 2.33845405 0.04776543 0.234305393
0.18844094 0.71252316 0.26446992 0.222376194
0.08861045 0.28386144 0.31216093 0.0516803768
0.20561063 0.53505781 0.38427741 0.307067151
0.17248314 1.66050855 0.10387368 0.176295353
0.13833153 0.78103561 0.17711297 0.153348389
0.10490463 1.09407939 0.09588393 0.0875709439
0.17406573 0.76650181 0.22709109 0.235798746
0.12967012 0.47104598 0.27528124 0.109230396
0.15294128 0.48182379 0.3174216 0.169935850
0.14706566 0.71655008 0.20524128 0.140828107
0.10219078 0.49533215 0.20630758 0.168016606
0.08371963 0.08371963 1. 0.383662524
0.37027374 0.41129405 0.90026526 0.322582524
0.19573294 0.93166178 0.21009012 0.440219670
0.15806792 0.97094108 0.16279868 0.182857589
0.14971518 0.33826724 0.44259437 0.166306497
0.23885802 1.86411787 0.12813461 0.250263176
0.12661061 0.15327932 0.82601236 0.137524454
0.24436547 1.48101994 0.1649981 0.240637796
0.10775548 0.28721322 0.37517589 0.0652509920
0.09736602 0.26623017 0.36572121 0.111866275
0.08190963 0.3779122 0.21674248 0.0698179834
0.18590538 0.35065234 0.53017009 0.191066203
0.13662173 0.48200584 0.28344415 0.226748315
0.06408755 0.19904857 0.32196942 0.0557061951
0.12311678 0.49322236 0.2496172 0.270300242
0.07170706 0.55516535 0.12916343 0.118324969
0.06763336 0.56207565 0.12032786 0.263569165
0.26061144 0.47889961 0.54418804 0.544838378
0.04825089 0.55199215 0.08741227 0.182713485
0.18714453 0.92359505 0.20262617 0.266795511
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Results from the research information system - voxelwise modeling

Table A.12: Model parameters derived from extended Tofts’ method when using a population-based
arterial input function (n=60).

Ktrans kep ve vp
0.17741594 0.55913112 0.34370685 0.191622865
0.24247789 1.09811571 0.24616276 0.193407256
0.31913579 0.7347059 0.49583903 0.195380776
0.23181264 0.70117384 0.36431619 0.179030870
0.16811924 0.75711531 0.24977231 0.156259520
0.29281511 0.93319312 0.32362244 0.238830222
0.16914205 0.57402425 0.30491274 0.272073850
0.11160677 0.46668933 0.3094343 0.221075744
0.35278831 0.60390602 0.66766428 0.268874962
0.03384891 0.19129863 0.36452851 0.0111545843
0.11096835 0.66965041 0.3541889 0.223172382
0.18815981 0.87577072 0.246242 0.115745292
0.20579457 0.66014328 0.40973213 0.151821694
0.25128839 0.40822826 0.70459243 0.200411470
0.13757558 0.54714243 0.3765389 0.270261981
0.2553927 1.12118318 0.27109477 0.349383608

0.19620117 0.55535438 0.42860012 0.139395196
0.03001815 0.20100709 0.77922388 0.00575648065
0.33614032 0.82530329 0.49744151 0.348991145
0.97076173 3.3930968 0.29453558 0.000491226485
0.1019642 0.48809066 0.31876801 0.111109243

0.31369414 0.86060419 0.4084257 0.317786030
0.20312886 0.63640156 0.38994914 0.250185887
0.2932383 1.0617965 0.28202689 0.247068225

0.19517219 1.62212433 0.19439257 0.462235263
0.15552707 0.29210254 0.53825213 0.0858375646
0.07967333 1.91931466 0.29022351 0.265833261
0.18440338 0.50157937 0.39386663 0.290319538
0.04674222 1.68280063 0.27701787 0.251129678
0.20744153 0.85356552 0.27285025 0.219525663
0.09003619 0.24194955 0.43949403 0.0548463135
0.24533601 1.9340657 0.41504335 0.300620284
0.14573354 1.37391631 0.10901808 0.184376751
0.17298172 0.85423206 0.29480426 0.149544270
0.10119601 1.67345845 0.10970926 0.0900151761
0.17966728 0.82469447 0.23399428 0.235147042
0.14516403 0.6541712 0.28643951 0.105904291
0.1547536 0.48689754 0.32609132 0.169924696

0.17060925 1.042073 0.2225611 0.137480431
0.11086018 0.45833647 0.24858642 0.166387136
0.13692907 0.29535543 0.83500812 0.360158093
0.39279109 0.50460052 0.85443651 0.338536689
0.23128393 1.1963243 0.25820921 0.434341135
0.15533695 0.96278629 0.22638687 0.186678102
0.16122452 0.35980284 0.48527186 0.164646352
0.18187948 1.32084593 0.12386719 0.267116691
0.14432216 0.20865441 0.82020925 0.128006546
0.24096622 1.54832601 0.17533563 0.241436526
0.11187692 0.31676601 0.39877442 0.0644009856
0.10843262 0.35094856 0.46264178 0.110421291
0.08662398 1.77187296 0.28924703 0.0691303650
0.19603965 0.40043602 0.55469546 0.188795235
0.14927703 0.5145374 0.36374376 0.230271979
0.07608396 0.23292227 0.58678887 0.0502156731
0.1481051 0.79096671 0.28252815 0.265351551

0.08803375 0.76208467 0.16930632 0.115829689
0.08156005 0.61305831 0.33431394 0.261944258
0.31602702 0.84277893 0.57843631 0.536277809
0.05531562 0.64754813 0.18800604 0.182663657
0.20169528 1.10577114 0.21510447 0.265286087
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A.3 Statistical evaluation

A.3.1 Spearman’s rank correlation coefficient

Table A.13: Spearman correlation coefficients and p-values for all of the AIF methodologies when
comparing average and voxelwise modeling results. The bottom row shows the correlation coefficient
obtained from modeling in the research environment, while the rest of the coefficients were obtained
from the local modeling environment.

Correlation coefficient p-value
Manual AIF (n=20) 0.934 1.81×10−9

Population-based AIF (n=20) 0.849 2.13×10−6

Automatic AIF (2% brightest voxels, n=13) 0.973 2.62×10−8

Automatic AIF (3% brightest voxels, n=18) 0.969 3.85×10−11

Population-based AIF (n=63) 0.972 3.60×10−40

Table A.14: Spearman correlation coefficients and p-values for the derived Ktrans values from the three
different methods for estimating the AIF.

Correlation coefficient p-value
Population-based vs. manual AIF (n=20) 0.645 0.002

Automatic vs. manual AIF (n=18) -0.253 0.311
Automatic vs. population-based AIF (n=18) 0.178 0.478

A.3.2 Wilcoxon signed-rank test

Table A.15: p-values for the derived Ktrans values from modeling based on the average signal intensity
and from modeling based in the voxelwise signal intensity. The bottom row shows the p-value for
the model parameters obtained from the research environment, while the rest of the values are based on
results from the local modeling environment. Only the population-based method exhibits similar median
values from modeling based on the average signal intensity and modeling based on the voxelwise signal
intensity.

p-value
Manual AIF (n=20) 0.294

Semi-automatic AIF (2%, n=13) 0.588
Semi-automatic AIF (2%, n=18) 0.304

Population-based AIF (n=20) 0.0327
Population-based AIF (n=63) 1.63×10−7
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Table A.16: p-values for the derived Ktrans values from the three different methods for estimating the
AIF when testing the null hypothesis by the Wilcoxon signed-rank test.

p-value
Population-based vs. manual AIF (n=20) 0.0083

Automatic vs. manual AIF (n=18) 0.6397
Automatic vs. population-based AIF (n=18) 0.4423
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Appendix B

The arterial input function

B.1 Cost values from the semi-automatic AIF

Table B.1: Cost values for different percentages of bright voxels, 2% and 3% bright voxels. The cost
values are based on how well a Parker AIF fits the derived derived AIF from the semi-automatic algo-
rithm. In this table "-" illustrates that the algorithm did not find an AIF for this patient.

Patient 2% 3%
1 2.0067 1.4996
2 0.6190 0.0669
3 0.0724 0.0803
4 - -
5 0.0279 0.0279
6 0.0966 0.0762
7 - -
8 0.1497 0.0231
9 - 0.0845

10 - 0.1132
11 0.4398 0.0622
12 0.0793 0.0562
13 0.8010 0.8102
14 - 0.0398
15 - 0.0921
16 0.2714 0.0963
17 1.5414 0.0441
18 - 1.3340
19 0.0546 0.0551
20 0.3541 0.6410
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