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Abstract

Ferroelectric piezoceramics are inherently nonlinear and their behavior change with drive
level. Nonlinear effects are especially prominent around the resonances of the piezoce-
ramics, which is the commonly exploited feature in various applications. For transducers
operating in gas, a significant impedance mismatch between the transmitter and medium
limits the radiation efficiency, and higher drive levels are desirable to increase the signal-
to-noise ratio.

A modified I-V circuit was configured in order to measure the impedance of soft piezo-
electric ceramic discs for higher excitation levels around the two first radial modes and
the thickness mode. The electrical behavior of the discs for different drive levels was
further investigated through measured voltage and current signals. The radiated sound
field of the discs for the various drive levels was then studied to determine the piezodiscs
effect of different excitation amplitudes.

Changes to the discs’ resonance frequencies and bandwidths were observed as the drive
levels were increased. Distortion of the current and voltage signals across the piezoceramic
discs revealed marginal harmonic distortion in the measured signals for the voltage drive
levels utilized. Measurements of the radiated axial sound pressure and the propagated
sound beam in air carried out for the two soft piezodiscs displayed seemingly linear sound
propagation. Finite difference simulations for the acoustic radiation in air conducted for
each disc supported the perception of linear sound propagation, and showed that losses
in the medium due to nonlinear effects were minuscule for the transducer drive levels
utilized. A nonlinear relation between the radiated sound field and the voltage excitation
amplitude was however prominent, which indicates nonlinear behavior and losses in the
piezoceramic discs themselves.
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1.1 Background and motivation

In the development of ultrasonic gas flow meters, a need for accurate measurements of
the composition of the gas is necessary, and precise measurements of the speed of sound
are needed. The potential of high precision sound velocity cells for natural gases under
high pressures has been studied in [1], where the two- and three-way pulse-echo methods
were investigated. These methods require precise measurements of the transit time ∆t
in the gas, which showed limitations due to the transducer drive level. The upper limit
for the linear regime of the transducer investigated was set as low as 1 Vpp [1]. Drive
levels of this amplitude displayed an increased variance in ∆t attributed to flickering in
the air, as a result of the low signal-to-noise ratio (SNR) due to the acoustic impedance
mismatch between the transducer and gas. Higher excitation amplitudes are thus wanted
but resulted in an increased measurement uncertainty, attributed to nonlinear effects [1].

Later work at the Institute of Physics and Technology has reported nonlinear effects
for higher generator voltages, and further suggested that the effects observed are largely
due to the piezoelectric material, and not the medium (air) [2]. The nonlinear behavior
was especially prominent around resonances of the transducers tested, but less notewor-
thy outside this area. The sound pressure was found to increase less and less with higher
amplitudes. Thus, a need for a better understanding of the nonlinear effects, and restric-
tions to transducer drive level so unwanted effects are limited [1, 2].

The use of piezoelectric ceramics under more extreme operating conditions, such as high-
power acoustic transducers and electromechanical actuators [3], has led to the need for
a better understanding of the material’s behaviour [4, 5]. The use of bulk acoustic wave
resonators in smartphones and telecommunications has also raised the need for a better
understanding of the piezoelectric material, as it is found to expel problematic nonlinear
behavior with increasing power levels [6, 7, 8].

Piezoelectric materials are most frequently described through linear relations which holds
for relatively low levels of applied electric fields, but nonlinear behaviour become increas-
ingly noticeable with higher field levels [4]. The performance of systems utilizing trans-
ducers driven at higher field levels becomes increasingly unstable, and thus significantly
limited, as the nonlinear domain for piezoelectric ceramics is reached [9, 3].

Nonlinear behavior can however be desirable and is intentionally incorporated in some
piezoelectric generators used in energy harvesting technologies that utilize the direct
piezoelectric effect to exploit ambient vibration energy [10, 11]. The intention is to
broaden the bandwidth of such harvesters by facilitating nonlinear behavior, thereby al-
lowing for more efficient energy harvesting under random vibrations [10].

A variety of nonlinear phenomena linked to material imperfections in solids have been
used for crack detection for several years, as they have proven more sensitive to crack
identification compared to linear methods [12, 13, 14]. A crack in a material, which can be
modeled as a nonlinear system, exhibits nonlinear symptoms when exposed to harmonic
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input [13, 14]. Different excitation amplitudes are utilized, as the nonlinear response of
the cracks becomes increasingly prominent [13], thus the need for accurate modeling of
the transmitter becomes evident.

An accurate, but general, nonlinear model of piezoelectric elements is desirable to better
understand the impacts of higher levels of applied electric field or stress [3, 5, 9, 7, 8].
Shim & Feld presented a nonlinear Mason model for thin piezoelectric film, where non-
linear terms are added as additional voltage sources to the linear Mason model [6, 7].
Determination of the significant nonlinear coefficients for such a model is a prerequisite
and a difficult task that requires appropriate measurements relevant to the problem [6].

An increased excitation amplitude is desirable for transducers operating in gases, due
to their low efficiency, as a result of the mismatch in acoustic impedance between trans-
ducers and gases. Intricate acoustic impedance matching of piezoelectric ceramics with
backing and matching layers are a prerequisite to achieve desirable efficiency (for short
pulses) [15]. Some applications incorporate impedance-matched acoustic metasurfaces us-
ing slits of gases such as argon and xenon to reduce the mismatched acoustic impedance
and increase the efficiency of transducers operating in gases [16, 17, 18].

For research purposes focusing on transducer characterization, a higher amplitude is
desirable to increase the signal-to-noise ratio with regard to, amongst other, characteri-
zation of the beam pattern [19].

1.2 Objective

The main objective of this thesis is to study the behavior of soft piezoelectric ceramic
discs and their response to higher excitation amplitudes at resonance in air and separate
the main contributor to the reported increased losses. A method of early detection of
significant nonlinear effects would be desirable.

1.3 Thesis outline

The work carried out in this thesis is divided into seven chapters. Chapter 2 attends to
some of the relevant theory to this thesis, including some characteristics of piezoelectric
elements, theoretical expressions of piezoelectric discs as uniform pistons, and an elabo-
ration of the KZK equation used for modeling nonlinear sound propagation. The third
chapter is primarily divided into two parts. The first one covers the experimental setup
and processing of the electrical measurements carried out, while the second part attends
to the setup for acoustical measurements of piezoelectric transducers in air. Finite ele-
ment and finite difference simulation are touched upon in Chapter 4. Chapter 5 presents
the results of the piezodiscs, from electrical measurements and finite element simulation
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of electrical properties, the effects of soldering, and acoustical pressure- and directivity
measurements, accompanied by finite difference simulation results. Chapter 6 takes on a
discussion of the results. Finally, chapter 7 concludes the thesis, and suggestions for fur-
ther work are presented. An appendix containing supplementary figures, and MATLAB
scripts, can be found at the very end of this document, following the bibliography.
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Chapter 2

Theory
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2.1 Modeling of piezoelectric ceramics

2.1.1 Electrical characteristics

Electrical measurements are commonly used to investigate and/or control the character-
istics of a piezoelectric transducer [20, 21]. The electrical admittance is given as

Y (f) = G(f) + iB(f) = |Y |ej(ωt−φY ), (2.1)

where G(f) and B(f) are the conductance and susceptance, respectively, ω is the angular
frequency, and φ a corresponding phase term. The quantities |Y |, G and B are expressed
in Siemens. The characterization can also be expressed as impedance, which is the
reciprocal of the admittance, given as

Z(f) =
1

Y (f)
= R(f) + iX(f) = |Z|ej(ωt−φZ), (2.2)

where R(f) and X(f) are the resistance and reactance, respectively, and the quantities
are expressed in Ohms. Both admittance and impedance serve their own purpose, often
dependent on the equivalent circuit used for the electrical modeling of a transducer, and
conversion from either one to the other is readily available. One can, e.g., find expressions
of resistance and reactance, expressed through admittance, conductance, and susceptance
as

Z = R + iX =
1

Y
=

1

G+ iB
=

G− iB

G2 +B2
=

G

|Y |2
− i

B

|Y |2
, (2.3)

which yields the expressions

R =
G

|Y |2
, X =

−B

|Y |2
, (2.4)

for the resistance and reactance, respectively.

Commonly, the transducer complex admittance as a function of frequency is plotted
in the complex plane, known as a Kennelly diagram [20] or GB-plot [21]. From such
a diagram, a multitude of quantities can be determined and derived, e.g., resonance
frequencies and bandwidth, amongst others.

2.1.2 Piezoelectric constitutive equations

The piezoelectric constitutive equations in the linear approximations can be given in
tensor notation as

T = cES − eE, (2.5)

D = eS + εSE, (2.6)
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where T , S, E, and D, are the stress, strain, electric field, and dielectric displacement,
respectively [6, 22]. All four are tensors of rank two. The variables c, e, and ε are
material-specific coefficient matrices, and the superscript signifies that the values are
given for a constant, e.g., electric field E.

From a linear Mason model, the voltage potential V on the electrical side of a equiv-
alent circuit of a piezoelectric element, in a 1-dimensional case, can be stated as [6, 23]

V = −
w z2

z1
Edz =⇒ V =

1

εS

w z2

z1
(eS −D)dz, (2.7)

where z2 − z1 is the thickness of the element, εS is the dielectric permittivity coefficient
for constant strain, e is the piezoelectric charge coefficient (frequently denoted d in other
literature, e.g., [4]), and the electric field is found by solving Eq. (2.6) above for E.

2.2 Resonance modes of piezoelectric discs

In the IEEE Standard on Piezoelectricity, the resonance frequency f1 and antiresonance
frequency f2 are defined as the frequency of maximum admittance and -impedance,
respectively, for a lossless resonator [24]. These critical frequencies have, for a lossy
piezoelectric resonator, three associated frequencies each, f1 → (fm, fs, fr) and f2 →
(fn, fp, fa). For f1, they correspond to the frequency of maximum absolute admittance,
maximum conductance, and zero susceptance, and for f2, the frequency of maximum ab-
solute impedance, maximum resistance, and zero reactance [24]. The critical frequencies
exist for each of the resonance modes described in the two following sections.

2.2.1 Radial extensional modes

The radial extensional modes (R modes), also called radial dilatational modes [25] or just
radial modes [26], to mention some, are the resonance modes with the lowest frequencies
in piezoelectric discs [27, 28]. The latter is due to the diameter to thickness ratio (D/T)
of such discs usually being large, thus making the R modes resonance frequencies sig-
nificantly lower than that of other modes, e.g., thickness extensional modes (TE modes)
[26]. Meaning that a thicker disc (lower D/T ratio) would make other resonance modes
appear at lower frequencies, and thus shorten the frequency gap between the R modes
and other modes. A feature of the radial modes is the contraction of the disc in the radial
direction and an expansion in the thickness direction, as a result of Poisson’s ratio effects
[26]. Due to the changing thickness for the R modes, it too can be used to transmit and
receive in the thickness direction.

In the case of a circular disc, the pattern of the R modes’ expansion in the thickness
direction follows multiples of λ/2 [29], where λ is the wavelength, and the displacement
approaches zero towards the rim but can have various shapes following the order of the
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mode. For the fundamental radial mode (R1), the displacement in the thickness direction
is described by λ/2, so that there is maximum displacement in the center of the disc.
Whereas the second radial mode (R2) corresponding to 3λ/2, has both a minimum and
maximum in the thickness direction. The minimum falls to the center of the disc, while
the maximum displacement is found at about 3/4’s of the distance from the center to-
wards the rim moving from the center. An illustration of this is presented in Figure 2.1
below, for the three first radial modes.

Figure 2.1: Illustration of the (idealized) displacement in the thickness direction of a
circular disk for the first three radial modes (R1, R2, and R3).

2.2.2 Thickness extensional modes

The fundamental thickness extensional mode (TE mode) is the most commonly used
extensional mode in transducer applications utilizing piezoelectric discs. Higher order
modes of the fundamental TE mode are present in piezoelectric discs and said mode is
therefore often denoted TE1 to distinguish it from those higher order modes [27]. At
the TE1, a disc’s vibration most resembles that of a plane piston, frequently used for
modeling piezoelectric sources, e.g., in theoretical expressions found in [29, 30].

2.2.3 Resonance frequency

As described above, a piezoelectric element has multiple resonance modes originating
from various mechanical properties. The resonance frequency fs of such a mode can
be found from an inspection of the conductance as a function of frequency, or through
a GB-plot [21, 31]. Resonances appear as peaks in conductance, and the resonance
frequency is defined as the frequency of maximum conductance. Thus, the frequency
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interval considered has to be restrained to cover one of these peaks. The resonance
frequency then yields

fs = f |G(f)=max{G(f)} ∀ f ∈ [fl, fu], (2.8)

where fl and fu denote the minimum- (lower) and maximum (upper) frequency on the
limited frequency interval in question. Increasing the frequency interval to cover a broader
range of frequencies could lead to false results for a given mode, as new peaks in conduc-
tance appear, e.g., for higher radial- or thickness modes.

2.2.4 Bandwidth

Given a constant applied voltage amplitude, the electrical dissipated effect is proportional
to conductance [21]. The -3 dB frequencies are then defined as the frequencies nearest fs
on either side of the peak, where the normalized dissipated effect, or conductance, equals
one-half. This can be stated as

G(f−
−3 dB) = G(f+

−3 dB) =
1

2
G(fs), (2.9)

where f−
−3 dB and f+

−3 dB are the frequencies nearest fs on the left- (negative superscript)
and right (positive superscript) side, respectively. Normally, impedance analyzers utilize
the constant voltage method [32] where the condition of the constant applied voltage is
held, and Eq. (2.9) thus holds.

However, the prerequisite that the applied voltage remain constant over the measured
frequency interval, cannot be guaranteed for all the measurements conducted in this the-
sis. Thus, an alternative description has to be used. The method described above can
be used to locate the two frequencies f−

s and f+
s where the conductance has been cut in

half on either side of a resonance peak so that a bandwidth can be expressed as

∆f = f+
s − f−

s . (2.10)

In the following, ∆f is referred to as the bandwidth, which is similar-, but not equivalent,
to the -3 dB bandwidth.

Using the resonance frequency and corresponding bandwidth of a resonance mode, a
mechanical quality factor QM can be stated as [21, 33]

QM =
fs
∆f

, (2.11)

where ∆f usually is the 3 dB bandwidth, but here used with the bandwidth described
previously. The quality factor serves as a measure of the sharpness of a resonance peak.
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2.3 Acoustic source radiation

2.3.1 Radiation from a plane circular piston

A plane circular piston is frequently used as a model of an acoustic sound source and
is particularly well suited to model a piezoelectric disc. The following model considered
assume a piston to be mounted on a flat rigid baffle of infinite extent, and that the sur-
face has uniform motion on its entirety [29]. The latter is, of course, a simplification of
a real-life transducer, but remains useful for modeling purposes.

The derivation is based on the geometry and coordinate system depicted in Figure 2.2
below. A piston with radius a is mounted in the xy-plane, with the face of the piston in
z = 0, so that the z-axis is perpendicular to the surface of the piston, and passes through
its center. In this configuration, the acoustic axis aligns with the z-axis of the coordinate
system. The distance from the center of the piston to any point in space is denoted r, and
θ is the angle between the z-axis and a line drawn from the center of the piston to this
point. The dashed line in the figure illustrates the difference between r and z-coordinates
when θ ̸= 0. However, r = z on the acoustic axis (θ = 0).

Figure 2.2: Illustration of the geometry and coordinate system used in derivation of the
acoustic pressure for a plane circular piston.

The complex pressure is calculated for an arbitrary point in space by dividing the piston’s
surface S into infinitesimal small elements dS, where each element acts as a baffled simple
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source [29], and integrating over the surface of the piston. The contribution of every little
element dS to the total complex pressure can be expressed as [29]

p(r, θ, t) = jρ0c0

(u0

λ

) w
S

(
1

r′

)
ej(ωt−kr′)dS, (2.12)

where ρ0 is the ambient density of the radiation medium, c0 the speed of sound of the
medium, ω the angular frequency, k the wave number, and λ the wavelength. The piston
moves uniformly with the speed u0exp(jωt) normal to the baffle, and r′ is the distance
from a simple source to the point in space shown in Figure 2.2 above.

The problem can be simplified by consideration of the pressure along the acoustic axis.
Here, the pressure is given as [29]

p(r, θ = 0, t) = jρ0c0

(u0

λ

)
ejωt

w a

0

exp(−jk
√
r2 + σ2)√

r2 + σ2
2πσdσ, (2.13)

where σ is the distance from the center of the piston to an infinitesimal element dS
(σ ≤ a), and

√
r2 + σ2 is the distance r′ from each of these elements to the point along

the acoustic axis. Following the integration of Eq. (2.13) above, the pressure amplitude
on the acoustics axis can be further expressed as a function of distance from the source,
and yields [29]

P (r, θ = 0) = 2ρ0c0u0

∣∣∣∣sin(1

2
kr
[√

1 + (a/r)2 − 1
])∣∣∣∣ . (2.14)

Inspection of the argument of the sine expression reveals pressure extremes along the axis
for values of r that satisfy

1

2
kr
[√

1 + (a/r)2 − 1
]
= mπ/2, m = 0, 1, 2, ..., (2.15)

originating from strong interference effects close to the source [29, 30] which is character-
istic of the near field of a radiating source.

2.3.2 Directivity function of a plane circular piston

A common expression of directivity can be derived from the above model depicted in
Figure 2.2, for small-signal radiation of a circular piston. Instead of dividing the piston
into infinitesimal elements, the source is divided into line segments of different lengths
parallel to the y-axis, so that the far-field point is on the acoustic axis of each line
segment. Each line source’s contribution to the field point is then, by imposing the
restriction r ≫ a, the far field axial pressure of the associated line source [29]. The
angular dependency can be sorted into a separate term so that the far-field pressure
amplitude can be given as

|p(r, θ)| = Pax(r)D(θ), (2.16)

11



where Pax(r) is the pressure amplitude on the acoustic axis, corresponding to P (r, θ = 0)
in Eq. (2.14) above, and D(θ) is the directivity function. The latter is defined as [29, 30]

D(θ) =

∣∣∣∣2J1(v)v

∣∣∣∣ , where v = ka sin θ, (2.17)

and J1 is the Bessel function of the first kind.

In general, a range-independent expression for finite amplitude radiation does not ex-
ist but can be postulated for a quasi-linear case as elaborated in [30]. An accurate
expression would, in addition to direction and dimension, be dependent on the excitation
amplitude of the acoustic source.

2.3.3 Source sensitivity

The voltage source sensitivity of a piezoelectric transducer can be defined as the ratio of
the acoustic sound pressure amplitude at the sound axis, taken at a reference distance d0,
and the corresponding exerted voltage amplitude [34]. The reference distance is typically
set to 1 m. Thus, the expression becomes

|SV | =
∣∣∣∣p(r = d0, θ = 0)

V

∣∣∣∣ , (2.18)

where V is the voltage applied to the source, and SV has the unit of Pa/V at 1 m.
The quantities p and V are typically given as effective values. Sensitivity describes the
efficiency of electro-acoustic energy conversion, and is, amongst others, a suited indicator
of transducer performance [35].

2.3.4 Sound pressure level

The sound pressure level (SPL) is defined as

SPL = 20log10

(
peff
pref

)
, (2.19)

where pref is the reference pressure amplitude of 20 µPa, for the current work in air.

2.3.5 Absorption

Waves propagating in a medium experience losses due to scattering and energy conver-
sion, which is known as attenuation. The conversion of acoustic energy to other forms of
energy is referred to as absorption and will be covered in the following.
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A monochromatic, plane wave traveling along the acoustic sound axis in the +r direction,
can be expressed as

p(r, θ = 0, t) = P0e
j(ωt−kr)e−αr, (2.20)

where P0 is the initial amplitude of the wave, and α the absorption coefficient in Neper
per meter (Np/m).

The classical absorption coefficient for a gas under the Stokes assumption, ηB = 0, is
[29]

αc =
ω2η

2ρ0c3

(
4

3
+

(γ − 1)

Pr

)
, (2.21)

where Pr is the Prandtl number which relates the importance of viscosity with respect
to thermal conductivity. The classical absorption coefficient shows good agreement with
absorption in monatomic gases but falls short when it comes to polyatomic gases [29], as
other loss mechanisms such as relaxation become relevant.

The time required to achieve equilibrium in a new thermodynamic state in a medium
is referred to as relaxation time [36, 37]. Relaxation is linked with energy dissipation,
and due to the frequency-dependent relation with the relaxation time of an acoustic dis-
turbance, dispersion is also introduced. In the air, the vibration of oxygen and nitrogen
molecules are the main contributors [30, 29, 38].

When variations in the phase speed as a function of frequency are only a small cor-
rection to a reference value, for example, c0, dispersion is considered to be weak. In the
case of sufficiently weak dispersion, variations in the waveform as a function of distance,
are considered to be slow [30].

The classical absorption coefficient presented above does not account for relaxation mech-
anisms in the medium. Thus, a better description is desirable, and a more rigorous ex-
pression following the ANSI/ASA S1.26-2014 Methods for Calculation of the Absorption
of Sound by the Atmosphere has to be utilized. The absorption coefficient α can be
expressed as a sum of four terms [29, 39]

α = αc + αrot + αvib,O + αvib,N, (2.22)

where αc is the classical absorption coefficient noted above, αrot is an absorption term
due to molecular rotation relaxation, and αvib,O and αvib,N denotes absorption as a result
of molecular vibration relaxation of oxygen and nitrogen, respectively. The classical- and
rotational attenuation term can be stated as [39]

αc + αrot = aTbPf
2, (2.23)
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where aT and bP are pure temperature- and pressure dependent coefficients, respectively.
Whereas the two latter terms of Eq. (2.22) are given as [29, 39]

αvib,O = [(aλ)max,O]

(
f

c

)(
2frOf

f 2
rO + f 2

)
, (2.24)

αvib,N = [(aλ)max,N]

(
f

c

)(
2frNf

f 2
rN + f 2

)
. (2.25)

Here (aλ)max is the maximum absorption per wavelength due to vibrational relaxation,
and fr is the relaxation frequency, for the respective gases. A detailed elaboration on
how to calculate Eqs. (2.23)-(2.25) are given in Appendix A.1 for completeness, but are
not covered here. The main purpose of these three equations is to highlight the shared
squared frequency dependency, which in turn comes to light in Eq. (2.26) below.

The final expression of the absorption coefficient sketched in Eq. (2.22) above, in decibels
per meter (dB/m), are given in [39] as

α = 8.686f 2



[
1.84× 10−11

(
pa
pr

)−1 (
T
Tr

) 1
2

]
+
(

T
Tr

)− 5
2

×
{
0.01275

[
exp

(−2239.1
T

)] [
frO

f2
rO+f2

]
+0.1068

[
exp

(−3352.0
T

)] [
frN

f2
rN+f2

]}

 , (2.26)

where the factor 8.686 yields a conversion from Np/m to dB/m. Thus, removing this
factor in Eq. (2.26 yields the absorption coefficient in Np/m.

2.4 Nonlinear sound propagation

2.4.1 Coefficient of nonlinearity

The ratio B/A originates from the Taylor series expansion of the pressure as a function
of density, for constant specific entropy (s = s0), and has become a common term in the
field of nonlinear acoustics [30]. The Taylor series expansion with the two first terms is
given as

P − P0 =

(
∂P

∂ρ

)
s,0

(ρ− ρ0) +
1

2!

(
∂2P

∂ρ2

)
s,0

(ρ− ρ0)
2 + · · · , (2.27)

where ρ and P are the density and pressure, respectively, and the subscript zero denotes
their unperturbed values. The subscript s, 0 denotes that the partial derivatives are to
be evaluated at the unperturbed state (ρ0, s0). Equation (2.27) can be written as [30]

p = A

(
ρ′

ρ0

)
+

B

2!

(
ρ′

ρ0

)2

+
C

3!

(
ρ′

ρ0

)3

+ · · · , (2.28)
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where p = P − P0 is the sound pressure, and ρ′ = ρ− ρ0 is the excess density, and [30]

A = ρ0

(
∂P

∂ρ

)
s,0

≡ ρ0c
2
0, (2.29)

B = ρ20

(
∂2P

∂ρ2

)
s,0

, (2.30)

C = ρ30

(
∂3P

∂ρ3

)
s,0

, (2.31)

where ρ0 is the ambient value of the density and c0 is the isentropic small-signal sound
speed. The parameters B and A are proportional to the quadratic and linear terms in
the Taylor series, respectively. The following expression of the quantity B/A

B

A
=

ρ0
c20

(
∂2P

∂ρ2

)
s,0

, (2.32)

requisites that the density is adiabatically varied, as noted by the authors in [40].

Using the relation c2 = (∂P/∂ρ)s [30] for the sound speed c, Eq. (2.28) can be rewritten
as

c2

c20
= 1 +

B

A

(
ρ′

ρ0

)
+

C

2A

(
ρ′

ρ0

)2

+ · · · , (2.33)

By taking the square root of Eq. (2.33) and performing a binomial expansion, one
obtains [30]

c

c0
= 1 +

B

2A

(
ρ′

ρ0

)
+

1

4

[
C

A
− 1

2

(
B

A

)2
](

ρ′

ρ0

)2

+ · · · , (2.34)

Discarding higher order terms and substituting the linear relation for a progressive, locally
plane wave ρ′/ρ = u/c0 [29, 30] into the right-hand side of Eq. (2.34) one obtains

c = c0 + (B/2A)u, (2.35)

where u is the particle velocity. The local propagation speed of a point with constant
phase becomes [30]

dx/dt|u = c0 + βu, β = 1 +B/2A, (2.36)

with β referred to as the coefficient of nonlinearity [41, 30]. Visiting the expression of
the shock formation distance due to nonlinearity in the medium, which for a plane wave
that is sinusoidal at the source, is given as x = 1/βεk, it becomes apparent that β is the
significant measure of the acoustic nonlinearity [30, 29]. Here ε = u0/c0 is the acoustic
Mach number, with u0 the peak particle velocity at the source.
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2.4.2 Basic Equations

The four basic equations needed to describe the general motion of a heat-conducting,
viscous fluid are mass conservation, momentum conservation, entropy balance, and ther-
modynamic state [30]. Assumptions of the fluid are that of homogeneous composition,
uniform pressure, and density at an unperturbed state, and neglection of the dependence
of the heat conduction and viscosity coefficients on the disturbance due to the sound
wave [30]. The latter assumption anticipates the ordering scheme introduced in Section
2.4.3 (dissipation terms are retained to lowest order) in order to reach the Khokhlov-
Zabolotskaya-Kuznetsov (KZK) equation.

The equation of mass conservation, or continuity, is

Dρ

Dt
+ ρ∇ · u = 0, (2.37)

where u is the fluid velocity vector, ρ is the mass density, and D/Dt = ∂/∂t + u · ∇ is
the material time derivative [30]. The equation of momentum can be stated as

ρ
Du

Dt
+∇P = µ∇2u+ (µB +

1

3
µ)∇(∇ · u), (2.38)

where µ is the shear viscosity, and µB is the bulk viscosity.

Assuming that all relaxation times are much shorter than the acoustic disturbance, the
entropy equation takes the form of [30]

ρT
Ds

Dt
= κ∇2T + µB(∇ · u)2 + 1

2
µ

(
∂ui

∂xj

+
∂uj

∂xi

− 3

2
δij

∂uk

∂xk

)2

, (2.39)

where κ is the thermal conductivity, and T is the absolute temperature. The last term
in Eq. (2.39) uses Cartesian tensor notation where ui is the component of u in direction
xi, and δij is the Kronecker delta, equal to unity for i = j and zero otherwise [30].

Lastly, the equation of state in terms of (P, ρ, s) variables, which for a perfect gas (both
P/ρT and the specific-heat ratio are constants), can be expressed in explicit form as

P/P0 = (ρ/ρ0)
γexp[(s− s0)/cv], (2.40)

where γ = cp/cv is the ratio of specific heats at constant pressure (cp) and volume (cv) [30].

2.4.3 Approximations for thermoviscous fluids

To reach a model describing three-dimensional finite-amplitude sound fields for dissipa-
tive fluids, an approximation scheme based on Eqs. (2.37)-(2.40) are sought. Such a
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description, to the second order in the acoustic Mach number

ε =
u0

c0
, (2.41)

where u0 denotes the magnitude of a typical acoustic velocity, is desirable. The Mach
number takes the value of ε = 10−2 for 154 dB (re 20 µPa) in air and 264 dB (re 1 µPa)
in water, which serves as an indication of its suitability as a small ordering parameter [30].

However, if all O(ε2) terms are retained the description will remain too complex and
cumbersome to handle. Thus, for situations of practical interest, a second small param-
eter η is desirable to determine what terms can be neglected in order to further reduce
the problem [30]

η =
µω

ρ0c20
. (2.42)

Here η is a measure of the importance of viscous stresses in a plane progressive sound
wave, relative to the fluctuating pressure, and µ is the shear viscosity of the fluid. The
ordering scheme sought makes it possible to discard terms of higher order than O(η), and
O(ε2) that are zero order in η, in Eqs. (2.37)-(2.40) [30].

Small disturbances with respect to a uniform state of rest, are described through the
variables p = P − P0, ρ

′
= ρ − ρ0, T

′
= T − T0, s

′
= s − s0, and u, for a viscous heat-

conducting fluid. Dispersion relations can be found for three ”modes” of small-signal
disturbances in an unbounded fluid, based on linearized versions of Eqs. (2.37) to -(2.40)
[30]. These three modes are called the acoustic, vorticity, and entropy (or thermal) modes,
and are related as follows

u = uac + uvor + uent, (2.43)

where the coupling of the modes occurs by inflicting boundary conditions. For example,
an inbound acoustic disturbance is scattered by the boundary, and reflected fields are
produced in all three modes. The magnitudes of the right-hand side of Eq. (2.43) can be
shown to be related as [30]

|uvor/uac| ≃ e−x/lvor , |uent/uac| ≃ [(γ − 1)/Pr1/2]η1/2e−x/lent (2.44)

close to a boundary with incident acoustic waves. Here, lvor and lent are the boundary-
layer thicknesses, which for small η are only a tiny fraction of an acoustic wavelength,
and x is the distance to the boundary. Pr is the Prandtl number which is O(1) in terms
of ε and η [30].

Due to the exponential decay factors in Eq. (2.44), the modes of vorticity and entropy
are effectively absent outside the thermoviscous boundary layer. The latter is used to
reduce the number of terms in the equation of momentum and the entropy equation in
order to reach appropriate model equations.

A generic small parameter ε̃ that characterizes the smallness of both ε and η is intro-
duced to simplify further derivation. Model equations valid at O(ε̃2) outside thermovis-
cous boundary layers are derived using the above approximations and simplifications to

17



reach a wave equation of second order, which is the foundation of the Westervelt equation
introduced in the following section.

2.4.4 KZK Equation

The KZK equation accounts for the combined effects of nonlinearity, absorption, and
diffraction in directional sound beams, and is the most widely used model. To reach the
KZK equation, one has to start with the Westervelt equation, given as [30]

□2p+
δ

c40

∂3p

∂t3
= − β

ρ0c40

∂2p2

∂t2
, (2.45)

where the operator □2 = ∇2 − c−2
0 (∂2/∂t2) is known as the d’Alembertain operator, and

δ is the diffusivity of sound given as

δ =
1

ρ0

(
4

3
µ+ µB

)
+

κ

ρ0

(
1

cv
− 1

cp

)
= ν

(
4

3
+

µB

µ
+

γ − 1

Pr

)
, (2.46)

where ν = µ/ρ0 is the kinematic viscosity. The last term, ν(γ − 1)/Pr, accounts for heat
conduction, and is typically more significant for gases than for liquids [30].

The validity of the Westervelt equation, from which the KZK equation is derived, depends
on the approximation p̃ ≃ p, where the variable p̃ is given as [30]

p̃ = p+
ρ0
4

(
∇2 +

1

c20

∂2

∂t2

)
ϕ2, (2.47)

and ϕ is the velocity potential of the medium. The solution of the Westervelt equation
for p thus differs from the auxiliary solution p̃ by a function only depends on the local
properties of the sound field. In other words, when local nonlinear effects can be neglected
in comparison to cumulative nonlinear effects, the Westervelt equation is an appropriate
approximation of the full second-order wave equation. This neglection of local effects is
reasonable for distances more than a wavelength away from the source, and for directional
sound beams [30].

The geometry of the problem is similar to the illustration in Figure 2.2, but here de-
scribed in Cartesian coordinates (xyz-space). Assumptions regarding the source are that
it is defined in the plane z = 0, that it has characteristic radius a, and that it radiates
at frequencies satisfying ka ≫ 1, i.e., the beam is reasonably directional (narrow main
lobe). The latter condition is fulfilled in the far field [30], where the transition from the
near field to the far field is said to occur for z > 1

2
ka2. The distance 1

2
ka2 is known as

the Rayleigh distance, denoted r0 = 1
2
ka2 in [30], but other (equivalent) descriptions of

the transition to the far field, such as z > πa2

λ
in [29], can be found in the literature.
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To reach the KZK equation, the following slow scale is introduced

p = p(x1, y1, z1, τ), (x1, y1, z1) = (ε̃1/2x, ε̃1/2y, ε̃z), τ = t− z/c0. (2.48)

where τ is the retarded time, and ε̃ is the generic parameter of smallness introduced
previously. The slow scale is then applied to the Westervelt equation, where the Laplacian
operator transforms into

∇2 = ε̃

(
∂2

∂x2
1

+
∂2

∂y21

)
+ ε̃2

∂2

∂z21
− ε̃

2

c0

∂2

∂z1∂τ
+

1

c20

∂2

∂τ 2
, (2.49)

and the Westervelt equation yields, after discarding O(ε̃3) terms,

ε̃

(
∂2

∂x2
1

+
∂2

y21

)
p− ε̃

2

c0

∂2p

∂z1∂τ
+

δ

c40

∂3p

∂τ 3
= − β

ρ0c40

∂2p2

∂τ 2
, (2.50)

expressed on the slow scale. Conversion back to Cartesian coordinates yields the final
expression

∂2p

∂z∂τ
− c0

2
∇2

⊥p−
δ

2c30

∂3p

∂τ 3
=

β

2ρ0c30

∂2p2

∂τ 2
, (2.51)

known as the KZK equation, where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is a Laplacian that operates

in the xy-plane perpendicular to the beam axis.

2.5 Nonlinearity in piezoelectric ceramics

2.5.1 Origin and categorization

Piezoelectric ceramics (piezoceramics) are by construction exposed to a strong electric
field to polarize the material (in a preferred polarization direction) in order to induce a
piezoelectric response to the ceramics. The relation between the polarization and electric
field is nonlinear for high field strengths, and thus it follows that the dielectric prop-
erties of piezoceramics are inherently nonlinear [4, 42]. This nonlinear relationship is
attributed to the reorientation of spontaneous polarization caused by the electric field,
which in turn produces a corresponding change in strain [4]. Thereby, a nonlinear piezo-
electric strain-electric field response is also inherent for piezoelectric ceramics. Applied
mechanical stress can cause reorientation of ferroelectric domains in piezoceramics, and
thus a nonlinear strain-stress relationship too is inherent for piezoceramics [4].

The nonlinear behavior of piezoceramics can be divided into three main categories; di-
electric, piezoelectric, and elastic (mechanical) nonlinearity, with corresponding losses
[4, 3, 43]. The two latter have received relatively little attention, among other things,
due to increased complexity [4]. The authors of [44, 45, 46] looked into the mechanical
nonlinear behavior of piezoelectric ceramics. It was in [45] found a nonlinear charac-
terization with dependence on all three categories mentioned above to the mean stress
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amplitude in the resonant piezoceramic.

The dielectric properties have on the other hand been studied to a greater extent, as
investigations are more easily approachable through electrical measurements. The di-
electric and mechanical losses are considered to be independent of each other, while the
existence of piezoelectric losses is based on the other two [3]. The mechanical losses
are however found to be more prominent than the dielectric losses for devices operation
around resonance, as noted in [43].

A threshold field level Et was identified by [47], where electric field strengths E0 weaker
than this threshold did little to the dielectric properties. Whereas field amplitudes
E0 > Et caused a significant increase in the dielectric permittivity and loss. Values
of the threshold field level are dependent on the type of material, and somewhat arbi-
trary defined [4], but typical values for soft PZT (lead zirconate titanate piezoelectric
ceramics) are 10 V/mm, and 300 V/mm for hard PZT [48].

Further work by the authors [48, 49], specifically on hard PZT elements, showed a clear
distinction between three electric field dependent regions; a ’low field’ region (E0 < Et),
an intermediate region called the Rayleigh region (Et < E0 < Ec), and a ’high field’
region (Ec < E0). Here Ec denotes the coercive field strength, which marks the transi-
tion between the Rayleigh region and the high field region, and for E0 > Ec introduces
irreversible effects causing degradation of the transducer. Values of Ec were found to
range between ±0.9 kV/mm to ±2.3 kV/mm for hard PZT elements tested by [49].

The real part of the dielectric permittivity ε′ was investigated by [48, 49], and found
to remain reasonably constant in the low field region, as noted above. However, for field
strengths greater than Et, the values of ε

′ showed a nearly linear increase with E0. Even-
tually, for E0 > Ec, the permittivity displayed an exponential increase. The preceding
investigation was carried out for hard PZT, but this behavior of dielectric properties
was proposed to apply to all types of ferroelectric ceramics [4]. Due to the incredibly
low threshold field levels found for soft PZT, the low field region becomes close to indis-
tinguishable from the Rayleigh region [48]. Thus, the assumption of constant dielectric
material values falls short, and the need for better modeling becomes apparent.

2.5.2 Harmonic generation

Generation of higher-order electric current or stress signals from a pure sinusoidal time-
dependent electric field E = E0 sin(ωt), are typical characteristics of nonlinearity in the
dielectric and piezoelectric properties in piezoelectric ceramics [4]. This effect is more
significant for devices driven around resonance, as was noted by the authors in [9]. Sig-
nificant harmonic generation and distortion of the current were observed to increase with
the excitation level of the device.

A study carried out by the authors of [50] found that material nonlinearities led to
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the generation of harmonic voltage signals. The piezoelectric transducer was in this
case driven by a pure sinusoidal current density J = J0 sin(ωt). A polynomial relation
explaining the harmonic voltage signals was presented as [50]

E = −hx+ β′′J + γ′J2 + ξ′J3, (2.52)

where h is a piezoelectric voltage coefficient, and β′′, γ′, and ξ′ are constants related to
the linear and nonlinear dielectric coefficients [4].

2.5.3 Nonlinear piezoelectric constitutive equations

When a linear model of a piezoelectric transducer is unsatisfactory, an accurate nonlin-
ear description is needed [9, 3, 6, 7]. One such model is presented in [6] as an expansion
of the linear Mason equivalent circuit and the linear piezoelectric constitutive equations
described in Section 2.1.2. Here, the nonlinear contributions are added in terms of addi-
tional nonlinear voltage sources to both the electrical and acoustic branches of the circuit.

The nonlinear piezoelectric constitutive equations are written in [6] as

T = cES − eE +∆T, (2.53)

D = eS + εSE +∆D, (2.54)

where the arbitrary nonlinear terms are represented by ∆T and ∆D, which both are
a function of E and S. The nonlinear terms have to obey Lippmann’s relation as a
requirement for the conservation of energy, and ignoring body force, the relation yields
[6]

∂T

∂E

∣∣∣∣
S

= −∂D

∂S

∣∣∣∣
E

, (2.55)

meaning that a change in the electric field has an accompanying change in stress, for
constant applied strain. Similarly, for a constant applied electric field, a change in strain
yields a corresponding change in the dielectric displacement.

In general, there are n+2 independent nonlinear coefficients in the nth power nonlinearity,
and including only the 2nd order nonlinearity terms gives [6]

∆T = −δ1eSE + δ2ε
SE2/2 + δ3c

ES2/2, (2.56)

∆D = δ1eS
2/2− δ2ε

SSE + δ4ε
S e

cE
E2

2
, (2.57)

where δ1 to δ4 are dimensionless material-specific constants.

The nominal voltage potential in a Mason equivalent circuit follows Eq. (2.7), but with
the addition of nonlinear voltage sources Vc to the circuit, modeled in [6] as

Vc =
1

εS

w z2

z1
∆Ddz, (2.58)
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where again the integral is taken over the thickness of the piezoelectric element, and ∆D
is given in Eq. (2.57). The nonlinear voltage source Vc was derived based on a thin
piezoelectric film, but the equivalent circuit may be extended by adding a cascade of the
additional voltage sources to the circuit, to model other devices [6].

An alternative expression of the nonlinear contributions to the stress is presented in
[9] as

T = cS + eE + α1S
2 + γSE, (2.59)

where α1 and γ are referred to in [9] as the nonlinear piezoelectric coefficients. The main
differences between Eq. (2.53) and -(2.59) can be seen by comparing the complete ∆T
term in Eq. (2.56) to Eq. (2.59). In the first equation, three contributions are included,
namely SE, S2, and E2. While in the latter, only two terms, S2 and SE are taken into
account, and the purely electric field-dependent term E2 is excluded.

Another approximate model to nonlinear piezoelectric constitutive equations was pre-
sented by [51], where equations of the stress T and electric field E were found in terms
of both higher-order (separate) terms of S and D, as well as cross terms of the two.
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Chapter 3

Experimental setup and
measurement methods
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3.1 Piezoelectric transducers

In this thesis, both electric- and acoustic measurements were carried out using two piezo-
electric discs of different dimensions. The piezoelectric discs are made of soft PZ27
material produced by Ferroperm [52], and have the measured dimensions listed in Table
3.1 below.

The diameter and thickness of each disc were measured at different points, with ten
measurements in total per dimension. The listed quantities are the averaged values. The
measurements were conducted with a micrometer of type Mitutoyo 293-100-10, which
have a systematic uncertainty of 0.0005 mm. Uncertainties in the table were calcu-
lated in accordance with the Type A evaluation of standard uncertainty following JCGM
100:2008 Evaluation of measurement data - Guide to the expression of uncertainty in
measurement [53].

Table 3.1: Dimensions of the piezoelectric discs as measured with a digital micrometer.
Listed values are the average of ten measurements, and the uncertainty computed ac-
cording to Type A evaluation of standard uncertainty.

Piezoelectric disc Diameter [mm] Thickness [mm]

PZ27 20x2 mm 20.131 ± 0.005 1.996 ± 0.001
PZ27 13x2 mm 12.880 ± 0.006 2.0009 ± 0.0008

An impedance analyzer of type HP 4192A was initially used to characterize the piezo-
electric discs in the frequency range of 1 kHz to 1300 kHz. Special attention, in the form
of finer sampling in the frequency domain, was paid to the 1st and 2nd radial modes (R1
and R2), and the thickness mode (TE1) of the discs.

3.2 Impedance measurement circuit

The commercial impedance analyzers available at the acoustic laboratory at the Depart-
ment of Physics and Technology (IFT) have maximum excitation voltages at about one
volt root mean square (RMS). To enable impedance measurements of the piezoelectric
elements with higher excitation amplitudes, a suitable circuit had to be utilized. One
simple way to achieve this was to measure the voltage drop over a known shunt resistor
in series with the device under test (DUT), known as the I-V method for impedance
measurements [54, 55, 56]. The I-V method usually requires a voltage differential probe
to measure the current flow in the circuit, and due to this being available, a modified
circuit involving two voltage measurements is utilized [54, 55].

Measuring the voltage drop ∆V across an accurately known resistor, the current in
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the series circuit can be calculated, and the unknown impedance of the DUT can be
determined. The expression of ZDUT yields

ZDUT =
V2

I
=

V2

V1 − V2

R, I =
∆V

R
=

V1 − V2

R
, (3.1)

where V1 is the measured voltage across the signal generator output terminal, and V2 is
the voltage across the DUT. The current I running through the circuit is mirrored for
both the resistor R and the DUT. A sketch of the measurement circuit is presented in
Figure 3.1 below.

Figure 3.1: Schematic of the I-V measurement circuit used to determine the impedance of
the DUT. The grey, dashed line to the left symbolizes the Agilent 33220A signal generator.
The voltages V1 and V2 are measured with a Tektronix DPO3012 oscilloscope.

When operating the signal generator, the voltage displayed on the front panel assumes
50 Ω termination, which is the default setting. It can however be given an alternative
output termination value as specified by the user. The chosen output termination has to
match the actual load of the circuit to correctly display the voltage amplitude and offset
on the output terminal. In other words, if the load of the circuit does not match the
output termination, the displayed amplitude and offset on the signal generator display
will be incorrect [57]. With the 50 Ω termination setting, the maximum peak-to-peak
amplitude is 10 Vpp. After changing the output termination to high impedance (>10 kΩ)
the same amplitude is displayed as 20 Vpp. In any case, it has to be measured on the
output terminal to know the actual voltage applied to the circuit, which is the voltage
here denoted as V1.

Listed in Table 3.2 are the instruments and other equipment used in the experimental
setup of this impedance measurement circuit.
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Table 3.2: Equipment used in the impedance measurements circuit. An illustration of
the circuit is presented in Figure 3.1.

Model/Brand Equipment

Agilent 33220A Signal generator
Tektronix DPO3012 Oscilloscope
Agilent 34410A Benchtop multimeter
Ferroperm PZ27 Piezoelectric disc

N/A Coaxial cables
N/A Banana connectors
N/A Pinches
N/A Electrical wire
N/A A piece of styrofoam
N/A Breadboard

3.2.1 Determination of resistor R

It is desirable to choose a sufficiently low value of the resistor R to ensure the highest
possible excitation of the DUT. The ideal resistor R in the circuit has a resistance as
close to zero as possible, but large enough to enable measurement of the voltage drop in
order to calculate the current I. The value of R depends both on the applied voltage
from the signal generator as well as the specifications of the oscilloscope.

The oscilloscope has vertical scales from 1 mV per division (mV/div) to 10 V/div, and
stores the waveform as 16-bit signed integers in the case of 2-byte data. In this mode,
there are 6400 digitizing levels per vertical division [58]. However, the analog to digital
converter (ADC) is 8-bit and limits the resolution. Higher resolution (than 8-bit) can
still be achieved by repeated averaging, where the resulting effective bits attainable follow
8 + 1

2
log2(N), where N is the number of averages. However, this number converges and

a roof of about 12 bits with repeated averaging is talked about [19]. It is thus desirable
to find a low value of the resistor while still being able to differentiate the two measured
voltages in the presence of noise.

As mentioned above, the signal generator has an internal, fixed series output impedance
of 50 Ω denoted Ri. The impedance of the DUT are denoted ZDUT. The total voltage in
a series circuit is the sum of the individual voltage drops around the circuit. From Figure
3.1 above, there are three directed potentials in the sketched circuit. Firstly, a voltage
drop across the internal impedance matching resistor in the signal generator. Secondly,
a drop over the known resistor R, and lastly, a voltage drop across the DUT. Following
Kirchhoff’s second law, which can be stated as

n∑
k=1

V k = 0, (3.2)
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for n directed potential differences in a circuit. The I-V circuit in Figure 3.1 then yields

3∑
k=1

V k = 0 =⇒ −V0 + VRi
+∆VR + V2 = 0, (3.3)

where V0 is the internal voltage in the signal generator, VRi
is the voltage across the

internal impedance matching resistor, and ∆VR the voltage drop over the shunt resistor
in the circuit. The voltage drops across the internal impedance matching resistor and the
shunt resistor in the circuit can be found by the following expressions

∆VRi
= V0

(
Ri

Ri +R +ZDUT

)
, ∆VR = V0

(
R

Ri +R +ZDUT

)
, (3.4)

so that the voltage over the DUT, V2, can be stated as

V2 = V0

(
1− Ri +R

Ri +R +ZDUT

)
= V0

(
ZDUT

Ri +R +ZDUT

)
, (3.5)

where again V0 is the applied voltage at the signal generator.

From Eq. (3.5) it is clear that to maximize the excitation amplitude at the DUT, i.e, to
achieve the largest |V2| possible, the resistor R should be as small as possible since Ri is
fixed. In the case where R → 0 the applied voltage |V0| would be split solely between Ri

and the DUT, and |V1| ≈ |V2| if one were to ignore loss in cables, wires, and components.
Noise in the circuit could then be problematic, in the sense that the measurable voltage
drop over R could be dominated by electrical noise.

3.2.2 Impedance calculation based on the measured voltages

Impedance is by definition a complex quantity, and the same applies to both voltage and
current. The latter two can be expressed as

V = |V |ej(wt−φV ), I = |I|ej(wt−φI), (3.6)

where all the expressions have a magnitude and frequency dependence with a correspond-
ing phase. Using the expression of the impedance given in Eq. (3.1), and altering the
expression of ZDUT on the right hand side by reducing the fraction with V1, one ends up
with

ZDUT =
V2

V1 − V2

R =⇒ ZDUT =

(
V2

V1

)
R

1−
(

V2

V1

) . (3.7)

From Eq. (3.7), given equal frequency for both voltages, the fraction V2 over V1 can be
expressed as (

V2

V1

)
=

|V2|e−jφV2

|V1|e−jφV1
=

|V2|
|V1|

e−j(φV2
−φV1

), (3.8)
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where the exponential part is a phase difference between V2 and V1. A phase shift can
be expressed as ∆φ = 2π∆t/T , where ∆t = t2 − t1, in this instance, and T is the period
of the signal, equal for both V1 and V2. The problem of evaluating the impedance based
on the two measured voltages has thereby been reduced to a measure of the amplitudes
of the two signals, and the corresponding phase difference between them. Following in
Section 3.2.3, two different methods to determine the phase shift are discussed.

3.2.3 Determination of phase shift

The DUT have as mentioned an unknown impedance, which for a piezoelectric element is
expected to change with both frequency and amplitude of the excitation signal. Following
the discussion of the previous section, two different methods to calculate the phase shift
between the measured signals V1 and V2 are presented. A third method relying on the
cross-correlation of the two signals was initially tried out but was quickly discarded.

Zero crossing method
One robust and common technique to determine the phase shift between two signals is
known as the zero-crossing method. It is the measure of the time of an even number of
zero crossings N , i.e., when the measured signal crosses the zero axis. A sample period
short enough to capture the sample closest to the zero crossing is favorable, but different
techniques can be utilized to enhance the resolution. The condition that must be fulfilled
for a zero crossing, given a sampled time signal s[n], can be represented as

{s[n] ≤ 0 ∧ s[n+ 1] < 0} or {s[n] ≥ 0 ∧ s[n+ 1] > 0}, (3.9)

which for an even number of zero crossings avoids errors due to voltage bias. A positive
(or negative) voltage bias would move the zero crossings (two per full signal period) in
the direction of the positive (or negative) peak of the waveform. Since the two signals
can have individual voltage biases, moving the zero crossings in one or the other direc-
tion (increasing or decreasing the time of the first crossing), would give erroneous results
between the two.

Increasing the number of signal periods measured, and thus zero crossings, helps re-
duce the errors caused by noise, since the perturbations in zero crossings become small
in comparison to the total period of the measurement [59]. In other words, the computed
time of a zero crossing might be affected by random, local noise in the waveform, and
deviate from the actual zero crossing of the fundamental frequency component. Thus,
one gets deviations in the computed times ti for each crossing, in which the discrepancy
differs between consecutive crosses. When the number of crossings N is increased, the
perturbations in the computed times ti become progressively smaller relative to the total
time of all the zero crossings (

∑N
i ti). Moreover, the discrepancies between the actual

crossings will to some extent cancel each other out, due to the deviations being random
by nature (assuming the fluctuations to be mainly random noise). Thus, increasing the
even number of periods N of the signal evaluated contributes to an increased precision
to determine the phase shift. That said, in the case of a significant voltage bias, the zero
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crossings would be moved in the direction of one of the peaks. In the vicinity of a peak,
the waveform is typically noisier (than around the equilibrium position, i.e., no displace-
ment/oscillation), which could require even more periods to be evaluated but might still
be problematic.

With an even number of N zero crossings determined for both signals, the zero crossings
at times ti are summed up and divided by the total number of crossings,

t =

∑N
i ti
N

. (3.10)

The time shift between two arbitrary signals A and B, given a common time axis, is then
the difference between the two averages

∆t = tA − tB, (3.11)

which in turn can be used to calculate the phase difference between the signals, as out-
lined in Eq. (3.8) and discussed following the equation.

An issue that quickly arises when implementing the zero crossing technique numerically,
is the determination of the actual zero crossing of a sampled signal. Only choosing the
closest sample yield fairly low accuracy, as noted by the authors of [60]. Determination
of the zero crossing point can be done by linear interpolation. For noisy signals, linear
interpolation too gives low accuracy, and polynomial approximation is preferable [60, 61].
However, for the application in the current thesis, the error due to the chosen approx-
imation scheme is likely to be far less than the uncertainty and inaccuracies posed by
the experimental setup itself. That being said, more discussion on this will follow in the
result section.

Frequency domain method
A second method relies on the Fourier transform of the signals in question. The discrete
Fourier transform (DFT) is given as

X[k] =
N−1∑
n=0

x[n]e−j(2π/N)kn, (3.12)

when the transform is discrete in both time and frequency. The DFT transforms N
samples from the time domain into values X[k] in the frequency domain. After the trans-
formation, the values X[k] are complex-valued [62].

Given two signals A and B, and the Fourier transformed values XA[k] and XB[k], one can
simply extract the value of the frequency component of interest from both signals. The
phase difference between the signals is then computed by dividing the complex quantities
and extracting the angle between them,

∆φk = angle

{
XA[k]

XB[k]

}
, (3.13)
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where ∆φk is the phase difference between the two signals. Noise at other frequencies in
the signals is by this method naturally removed.

3.2.4 Noise reduction by digital filtering

The values received from the oscilloscope of the measured voltages are averaged 64 times
but still carry some high-frequency fluctuations in the waveform causing noise in later
calculations. It is desirable to reduce this noise by utilizing digital filters, for some of
the calculations. For the application of the data in this thesis with regard to impedance
calculations, low- and band-pass filters are the most appropriate, as the rapid fluctua-
tions originate from higher frequencies. Commonly used filters to achieve this are the
Butterworth- and Chebyshev type I and -II filters [63, 64]. The Butterworth filter is
often used due to its extremely flat magnitude response with little ripple in the passband
region [63, 65], and is the one chosen in this work.

3.2.5 Waveform characteristics

Measurements of the impedance around the resonance modes of the discs were carried out
using both continuous waveform and burst excitation. Continuous waveform is the most
straightforward method, and perhaps the most robust/simple approach. It is often used
in high-power applications but can result in significant heat generation [3]. Measurement
series using continuous waveform were averaged 64 times before reading the data registers
of the oscilloscope.

Excitation of the piezodisc using bursts of 120 periods was also utilized. Bursts are
used to avoid heating effects, which in some applications are necessary [45], and besides
most resemble the excitation of transducers in practice. Due to increased noise/fluctua-
tion in the measured voltage signals using bursts, the oscilloscope was set to average 256
times, before the registers were read.

For both types of output signals, a simple sine waveform with zero starting phase, and
zero voltage bias was specified, for every nominal applied voltage, and frequency. The
purity of the sine waveform is attended later in Section 5.2.2.

3.2.6 Data acquisition

Electrical measurements in the I-V circuit were controlled through MATLAB with serial
communication to the signal generator and oscilloscope. An illustration of the mea-
surement routine is presented in the flowchart in Figure 3.2, and a walk through the
measurement routine will be presented in the following. The MATLAB scripts described
can be found in Appendix C.1.
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Figure 3.2: Flowchart of the measurement routine for the I-V circuit.

In the MATLAB file MeasureMultiple.m, which encapsulates the whole flowchart in Fig-
ure 3.2, the frequency range covering N frequencies fi and M nominal voltage levels Vj

are defined, as well as the resistance of the resistor R in the circuit. Specifications such as
the type of output measurement signal (continuous or burst), dimensions of the element
measured, and path to save, are also defined here. When the file is run, MATLAB loops
over the frequencies specified, and for every frequency fi, as illustrated in the flowchart
in Figure 3.2, calls on the functions MeasureVpp() or MeasureVppV2(), depending on
the type of output signal.

Firstly, the horizontal scaling of the oscilloscope (scope) is adjusted. The latter also
includes setting a relative delay on the time axis of the oscilloscope (in case of burst
excitation), to center the burst and utilize more of the measurement resolution of the
oscilloscope. The number of samples and repeated measurements (averages) for each
measurement is also set, and the oscilloscope is asked for its sampling frequency due to
the new settings. The sampling frequency is then stored alongside measurements in the
file.

The signal generator is then asked for its output load setting, which is set to INF (high
impedance setting), if the value returned from the generator is less than 10 kΩ, in other
words, if the load setting is something else than INF. The signal generator is then fed
instructions on the type of waveform (either burst excitation (MeasureVppV2() is called),
or continuous waveform (MeasureVpp() is called), waveform characteristics, and nominal
voltage amplitude, before the generator output is enabled.

Following the enabled output, both channels of the oscilloscope are horizontally aligned,
set to zero vertical offsets, and scaled according to the nominal applied voltage (in the
case of burst excitation). For the continuous output signal, a more interactive approach
is used with regard to vertical scaling. Here, the DPOScaleVertical() method is called,
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which reads the oscilloscope registers (one channel at a time), and checks the value of
the returned signed 16-bit data. If less than half the available resolution is utilized, the
vertical scale is increased. The vertical scale adjustment is repeated until a significant
amount of the available resolution is utilized. In the case of overscaling, an equal scaling
loop follows and similarly checks for too large values, and scales back down using the
same predefined vertical scale levels.

To ensure old values in the oscilloscope registers are cleared out, the acquisition set-
ting is set to sample mode, and acquisition started before it is set back to average mode.
This routine is carried out before every reading of the oscilloscope after new generator
settings have been initiated. The final step is to read the oscilloscope channels through
DPORead() and turn off the output of the signal generator, before continuing the looping
over the nominal voltages Vj.

When the final nominal voltage is reached, the M voltage measurements are returned
to MeasureMultiple.m, and saved to a file. This measurement routine continues until all
N frequencies specified have been looped over, and the for-loop end.

The DPOScaleVertical() method was created when the vertical scaling options were iden-
tified manually by adjusting the scaling on the scope, thus the hard-coded values listed
in the MATLAB file. It was later discovered that the vertical scale per division could
be set to a user-defined value. This user-defined vertical scale was then truncated to
three significant digits by the oscilloscope [58], e.g., specifying a vertical scale of 2.34567
V/div (volts per division) would be interpreted by the oscilloscope as 2.34 V/div. The
discovery of this functionality was due to issues with the measurement series utilizing
burst excitation, where the loop consistently would scale down to the minimum vertical
scale defined. To overcome this issue, it was decided to use the less interactive approach,
where the vertical scaling per division was set to 1/6 of the nominal applied voltage Vj.

Interactive vertical scaling through DPOScaleVertical() encountered few problems for
measurements using continuous output signal, but at some point, the oscilloscope would
seem to freeze during measurements series, and had to be rebooted, and so did MATLAB
due to a faulty serial connection. There was however no error message from MATLAB
when the freeze occurred, and the loop in MATLAB would seemingly still be running,
but the signal generator would have entered sleep mode due to lack of interaction. A
suspicion that the vertical scaling loop would enter an unbreakable state, being a while-
loop, a limit to the number of iterations was added. As this showed no effect, and the
loop seemingly did not cause the problem, attention was put to the signal generator,
in order to locate the problem. The signal generator was asked for system errors after
setting waveform characteristics, but it was quickly identified that the generator was not
the root of the problem. Due to the persistent issue of the freezing of the loop, and a
continual, growing suspicion that the oscilloscope did, in fact, cause the problem, it was
replaced with an identical oscilloscope. After replacing the oscilloscope, the freezing issue
vanished, and the root of the problem was assigned to the oscilloscope.
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3.3 Acoustic measurement setup

The electrical measurements conducted serve as a foundation onward for acoustic mea-
surements in a fluid. Available at the acoustic laboratory at IFT is a setup for measure-
ments in air, used by several former master students, such as [66, 67, 2, 68].

In the following, the measurement setup with equipment and instruments used are walked
through in Section 3.3.1 and -3.3.2, respectively. Positioning of the linear stage for the
z-axis, and an alignment of the transmitter and receiver, are then attended in Section
3.3.4 and -3.3.5. A note about the microphone sensitivity in Section 3.3.6 and the pro-
cedure of calculating the pressure in Section 3.3.7. Testing and characterization of the
receiving electronics are elaborated in Section 3.3.8, and finally in Section 3.3.9, some of
the limitations of the measurement setup are addressed.

3.3.1 Equipment

Listed in Table 3.3 is the equipment used in the experimental setup.

Table 3.3: Measurement instruments and motion controllers used in the acoustic mea-
surement setup depicted in Figures 3.4 and -3.5 below.

Model/Brand Equipment Serial number Manual

Agilent 33220A Signal generator MY44023589
Tektronix DPO3012 Oscilloscope C010246
Ferroperm/Meggitt PZ27 Piezoelectric disc N/A
Brüel & Kjær 4138 1/8-inch pressure-field microphone 1832479
Brüel & Kjær UA-160 Adaptor - microphone to preamplifier N/A
Brüel & Kjær 2633 Preamplifier N/A
Brüel & Kjær 2636 Measurement amplifier 1815638
Krohn-Hite 3940 Filter AM2626

Vaisala HMT313 Humidity- and temperature meter F4850018
ASL F250 MKII Thermometer 1365026993
Paroscientific 740 Barometer 67325

KEYENCE LK-G32 Laser sensor 2041141/2041143
KEYENCE LK-G3001PV Controller with display 1741187

PI SMC Hydra TT Motion Controller 1404-0153
PI C-843.41 Motion Controller 0095103296
PI C-852.12 Signal processor/Encoder 1460497
PI M-531.DG Linear stage (X axis)
PI M-535.22 Linear stage (Y axis) 1460497
PI LS270 Linear stage (Z axis) 414000926
PI M-037.PD Rotation stage 109040312
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3.3.2 Measurement setup and signal path

In Figure 3.3 below, a schematic of the signal path is presented. The excitation signal
generated by the Agilent 33220A signal generator is connected in parallel with the piezo-
electric element used as a projector (piezodisc) and the Tektronix DPO3012 oscilloscope.
The piezodisc (Tx) mounted in the setup radiates freely in air, and the Brüel & Kjær
4138 pressure-field microphone (Rx) measures the transmitted signal. A Brüel & Kjær
adaptor and -preamplifier are then used to terminate the microphone in the Brüel &
Kjær 2636 measurement amplifier. The amplified, measured response of the microphone
is further passed through the Krohn-Hite 3940 analog filter before the signal is terminated
and read by the oscilloscope.

Figure 3.3: Schematic of the signal path in the acoustic measurement setup.

The wanted characteristics of the excitation signal are defined in MATLAB, alongside
configurations of the other instruments, besides the Brüel & Kjær measurement ampli-
fier which have to be set manually. Alignment and positioning of the transmitter and
receiver are also carried out through serial communication to the motion controllers via
MATLAB. Environmental parameters, such as temperature, relative humidity, and baro-
metric pressure, are read from the respective instruments before reading the registers of
the oscilloscope. More on these instruments in the following section. An image of the
setup of the instruments is shown in Figure 3.4 below. The measurement area with a
mounted piezodisc and microphone is depicted in Figure 3.5 to the bottom of this section.
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Figure 3.4: Setup of the instruments integrated in the acoustical measurement setup for
air measurements controlled through the computer. (1) Agilent 33220A signal generator,
(2) Tektronix DPO3012 oscilloscope, (3) Brüel & Kjær 2636 measurement amplifier, (4)
Krohn-Hite 3940 filter, (5) Paroscientific 740 barometer, (6) ASL F250 MkII thermometer
and (7) Vaisala HMT313 measuring humidity and temperature.
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(a) (b)

Figure 3.5: Measurement setup. Figure 3.5a: Overview of the measurement area, and
the stages for moving the transmitter and/or receiver. (1) Linear stage (LS) for the x-
position of the receiver, (2) LS for the y-position (vertical position) of the receiver, (3)
LS for the z-position (axial position) of the transmitter, and (4) rotation stage for the
transmitter. All stages controlled through MATLAB. Figure 3.5b: (1) Brüel & Kjær 4138
pressure-field microphone, and (2) Ferroperm PZ27 20x2 mm piezodisc (transmitter).

3.3.3 Environmental parameters

The setup includes three instruments for measurements of environmental parameters.
Temperature, relative humidity, and barometric pressure are measured as a part of the
measurement routine. These serve as an important supplement to calculate accurate
medium properties, such as the density of the medium, the speed of sound, the attenua-
tion of sound, and the specific heat ratio.

The manufacturer of the Vasisala HMT313 humidity and temperature meter lists a fac-
tory calibration uncertainty at 20◦C of ± 0.6 % on the interval 0 % to 40 %, and ± 1.0
% from 40 % to 100 % [69], for the relative humidity. The accuracy of the measurement
is listed as ± 1.0 % for temperatures between 15-25◦C for relative humidity from 0 %
to 90 %. The typical temperature accuracy at 20◦C is listed as ± 0.2◦C [69], which is
fairly high. However, the ASL F250 MKII precision thermometer has an uncertainty of ±
0.01◦C when only the F250 instrument is used, whereas higher accuracy can be achieved
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with the use of various probes [70]. Thus, the latter becomes the preferred alternative
for temperature measurements.

The Paroscientific 740-16B barometer proclaims a typical accuracy of 0.01 % of the
read value both in field- and laboratory applications [71]. It has an operating range of
800-1100 hPa. The uncertainty thus corresponds to about ± 10 Pa at 1 atm.

3.3.4 Definition of the z-axis and measurement of the distance
between transmitter and receiver

The linear stage has predefined limitations in its movement along the z-axis. This re-
stricts the movement, and can, amongst others, be used to ensure that the transmitter
does not collide with the microphone.

On reboot of the SMC Hydra TT motion controller, its position on the axis is lost,
and it will then assume it rests in an absolute position of 0 mm. In addition to the limits,
which can be redefined when the controller is turned on, the controller stops the stage
on either end of its motion path. A ’move home’ command can be initiated, and the
controller will move the stage to the end of the axis, regardless of defined limitations.
The latter is however problematic, as the microphone with its finite length is mounted in
proximity to the ’home’ position of the stage, and collision will occur. However, a similar
command can be used to send the stage to the far end in the opposite direction, until
a switch is encountered, signaling to the controller that the end of the motion path is met.

Initially, the linear stage was sent to the end of its axis, and both the current posi-
tion and the movement limitation registers were verified. The stage with the mounted
piezodisc was then moved closer to the microphone. A second stage located in between
and parallel to the sender and receiver, with a laser measuring device mounted on top,
was hoisted up to accurately measure the distance between the piezodisc’s center and the
tip of the microphone, as shown in Figure 3.6 below.
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Figure 3.6: Keyence LK-G32 laser displacement sensor used to adjust the piezodiscs, and
measure the distance between transmitter and microphone.

The Keyence LK-G32 laser displacement sensor measures the distance to an object rest-
ing (30 ± 5) mm away from the laser on both sides. A measurement uncertainty of ±
0.05 % of 5 mm (± 2.5 µm) [72] when the diffuse reflection setting mode is used. A
temperature dependency of ± 0.01 % of 5 mm per ◦C (± 0.5 µm/◦C) is also noted for
ambient operating temperatures of 0 ◦C to 50 ◦C [72]. Ambient operational light is given
as a maximum of 10000 lux of incandescent- or fluorescent light [72], similar to large
amounts of sunlight through windows [73].

When the laser’s extension is known, the distance between the transmitter and receiver
can be calculated based on the measurements. Thus, the piezodiscs absolute position in
regard to the microphone was made known.

At last, the axis of the linear z-stage was redefined so that an absolute position of z = 0
mm of the stage corresponded to a distance of 0 mm from the center of the disc and the
tip of the microphone. However, movement along the axis was restricted to a minimum
distance of 5 mm between the piezodisc and microphone to prevent a collision, in the
case of erroneous positions fed to the motion controller.

3.3.5 Alignment of the sound beam axis to the microphone

Before initializing the measurement series in the setup described above, an alignment of
the sound beam axis and the microphone was carried out. The piezodisc was initially
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aligned, rotated, and tilted to face the microphone at a close distance, as illustrated in
Figure 3.7. Positive directions for x, y, and z are as depicted in the illustration above.
The discussed rotation θ in this section is relative to the y-axis.

Figure 3.7: Sketch of the transmitter (Tx) and receiver (Rx) in the acoustic measurement
setup, and the corresponding coordinate system.

The piezodisc, suspended from a solid arm mounted on a rotation stage, has a small tilt
relative to the x-axis. The laser described in the last section was hoisted up to measure
the piezodisc’s tilt and rotation. The distances from the laser to the upper- and lower
edge of the disc were measured, and the disc was gently pushed to reduce the differences
measured by the laser. This was repeated until the measured distances eventually were
reasonably equal, but due to the mounting of the disc, some tilt remained. Thus, the tilt
had to be accounted for by elevating the microphone, as described in the last part of this
section.

Following the alignment of the top and bottom of the disc, the right- and left edges of
the disc were measured. The rotation stage was used to adjust the face of the piezodisc
to be perpendicular to the z-axis translation stage, so that the angle θ between the sound
axis of the piezodisc and the z-axis of the microphone aligned. Lastly, the two-sided laser
was centered on the disc, and the tip of the microphone was adjusted in both x- and
y-direction to best align with the laser.

To ensure the best possible alignment of the acoustic sound axis with regard to the
microphone, the piezodisc was moved along the z-axis to z = 600 mm. Here, the align-
ment of the axis was checked again. From this point, only rotation of the piezodisc and
modification of the y-position of the microphone were altered. From the initial measured
response on the oscilloscope, a significant amplitude drop in the response of the signal was
manually marked on the scope with cursors. The measured response of the microphone
was studied as the disc was rotated some degrees relative to its original position to the left
and right. Once the signal aligned with the locked cursor, the absolute rotation angle of
the piezodisc was noted, for both sides of the transmitted main lobe. The mid-point was
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then chosen and was verified as the maximum response when the disc was rotated to its
new position. Secondly, the described technique was applied to adjust the microphone’s
elevation (y-position). Lastly, the rotation of the disc was checked again to verify the
best possible fit. This procedure was carried out again closer to the microphone, at z =
100 mm, then another time at the initial position.

From the above steps, two (θ, y)-pairs were found and a line intersecting both z-positions
of the piezodisc was calculated to best capture the center of the main lobe. The rotation
of the disc in both positions was found to yield an equal angle, thereby reducing the
problem to an adjustment of the y-position of the microphone. The adjustment of the
microphone for a given z-position could thereby be given by calculation of the absolute
position of y needed to yield the best fit, given as

y(z) = (z − 100 mm)

(
9.50 mm

500 mm

)
+ 67.80 mm. (3.14)

Coordinates in the x, y, and z axis are all given in millimeters as input to the motion
controllers, and the rotation in degrees. The constant term in Eq. (3.14) above corre-
sponds to the best alignment at z = 100 mm, and y(z = 600) yields the best measured
fit at z = 600 mm. At the latter position, the y-position was 9.50 mm higher than for
z = 100 mm. It was thereby assumed that y changes linearly along the z-axis for z ∈[0
mm, 870 mm].

3.3.6 Microphone sensitivity

The Brüel & Kjær 1/8-inch pressure-field microphones type 4138 are designed to have a
flat frequency response and yield a 0 dB response for frequencies on the interval 20 Hz
to 50 kHz. The response decreases somewhat on the interval 50 kHz to 100 kHz, before
increasing as the frequency approaches the resonance of the diaphragm at 160 kHz.

The microphone requires an external polarization voltage [74], and a preamplifier and
adaptor are thus needed. In this measurement setup, a Brüel & Kjær 2633 preamplifier,
and Brüel & Kjær UA-0160 adaptor are utilized.

Calibration of the microphone is carried out at 250 Hz with a pistonphone, and the
correction is applied to the frequency response. A free-field correction chart for the
wanted angle of incidence (here 0◦), supplied by the manufacturer, is further added to
the actuator response to yield the microphone sensitivity.

The calibration of the microphone mounted in the setup was carried out by master stu-
dent H̊avard R. Økland. From the resulting microphone sensitivity, a Fourier curve fit
was added in MATLAB to provide a finer resolution of the sensitivity curve. Details
about the curve fit of the microphone sensitivity are provided in Appendix B.8.
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3.3.7 Pressure calculations

From the expression of the free-field open circuit microphone sensitivity given in [34], one
can obtain the effective pressure amplitude peff as

|MV (f)| =
Veff(f)

peff(f)
=⇒ peff(f) =

Veff(f)

|MV (f)|
, (3.15)

when the microphone sensitivity is known. The effective voltage amplitude Veff , calculated
through

Veff(f) =
V5,pp(f)

2
√
2

=
1

2
√
2

V5m,pp(f)

10(GAIN/20)
, (3.16)

is then used in the right of expression in Eq. (3.15). Here, V5,pp is the peak-to-peak
voltage amplitude at the microphone, 10(GAIN/20) an amplitude correction due to the
measurement amplification settings at the Brüel & Kjær 2636 Measuring Amplifier, and
V5m,pp the voltage amplitude measured by the oscilloscope after amplification and filtering
of the voltage response of the microphone. Thus, the wanted effective pressure can be
calculated for a given frequency as

peff(f) =

(
1

2
√
2

)
V5m,pp(f)

10(GAIN/20)

(
1

|MV (f)|

)
. (3.17)

Modifications to the signal amplitude due to cables, and the Krohn-Hite 3940 analog
filter, are thus assumed to be negligible. The analog filter also has gain options for both
channels. These were however set to zero during all measurements. Verification of correct
termination and (expected) zero gain of the filter was carried out before measurements
were carried out.

3.3.8 Receiving electronics

Preparatory measurements in the acoustic setup were carried out with a soft PZ27
piezodisc with dimensions 20x2 mm, already mounted in the setup. The measurements
displayed strange harmonic behavior, especially when the distances between the trans-
mitter and receiver were small, and higher voltages were applied at the signal generator.
Some of these results are presented in Section 5.4.1. Both the number of harmonics and
their respective magnitudes were peculiar. Adding to the fact that the microphone’s sen-
sitivity for higher frequencies is unaccounted for, but falls off as the frequency approaches
200 kHz, led to questions about the origin of these harmonics. Thus, the measurement
amplifier and analog filter were electrically tested. The gain of said instruments was also
verified to yield the expected amplifications.

A measure of the total harmonic distortion (THD) can serve as a useful tool in eval-
uating the measured electrical signals. The IEEE standard 519-2014 defines the THD
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(for both voltage and current) as the ratio of harmonic content relative to the funda-
mental, considering harmonics up to the order of 50, as noted by the authors in [75]. A
voltage THD thus yields [76, 75]

VTHD =

√√√√ H∑
h=2

(
Vh

V1

)2

=

√∑H
h=2 V

2
h

V1

, (3.18)

where VTHD is the total voltage harmonic distortion, V1 is the amplitude of the funda-
mental component, and Vh the amplitude of the hth harmonic component.

The following tests of the receiving electronics were carried out using identical waveform
characteristics, besides applied amplitude which naturally had to be varied. A burst of
60 periods for a frequency corresponding to the first radial mode (R1) of the 20x2 disc
was used, and the input to the tested instrument(s) was measured at the oscilloscope
to retain control of the original signal, denoted V0m in Figure 3.8. The output signal
of the last instrument was then terminated in the oscilloscope, denoted VOUT, and both
channels of the scope averaged 512 times before reading the registers.

Firstly, the Krohn-Hite filter was set up as depicted in Figure 3.8(a), with high-pass
filtering at channel 1 using a cutoff frequency (fcut) equal half the resonance frequency of
R1 (fR1), and the output of channel 1 terminated in the low-pass configured channel 2,
with fcut = 10fR1. The output of channel 2 was then terminated in the oscilloscope and
measured. The filter was further configured to zero gain on both inputs. Measurements
were conducted for a variety of amplitudes before the attenuator was connected in place
of the filter, and measured similarly.
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Figure 3.8: Block diagram of the instrument configurations tested for harmonic distortion.
In figure (a): the Krohn-Hite filter, (b): an attenuator in cascade with the measurement
amplifier, and (c) the attenuator, the measurement amplifier, and the Krohn-Hite filer in
cascade.

Following these measurements, the attenuator was utilized to lower the amplitude of the
generated waveform, so that it could be terminated into the measurement amplifier, de-
noted VIN, and tested with amplitudes similar to those measured in the acoustic setup
with a microphone. The setup illustrated in Figure 3.8(b) was wired up, and measured as
the preceding instruments. The amplification configuration of the measurement amplifier
most frequently used in the acoustic measurement setup, and the configuration used in
the initial testing, has been a 40 dB input gain, and an additional 20 dB amplification of
the output. Thus, those configurations were applied to the amplifier, to begin with.

To reach the complete configuration of the receiving electronics utilized in the mea-
surement setup, the Krohn-Hite filter was connected in cascade with the amplifier and
oscilloscope, as shown in Figure 3.8(c). The filter configuration initially remained the
same as explained above, before altering the output gain setting on the amplifier to 10
dB and 0 dB, respectively.

Results from some of the measurements are presented later in Section 5.4.2, alongside a
brief discussion of the findings.

3.3.9 Limitations of the measurement setup

There are two main limitations of the measurement setup presented above most relevant
to this work. Firstly, the achievable distance between transmitter and receiver, and sec-
ondly the microphone response.
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Nonlinear effects from acoustic radiation in a medium are usually described with re-
gard to the Rayleigh distance r0, and the far-field region of the radiation sound field is
said to be reached beyond r0 [30]. The first- and second radial mode (R1 and R2) and the
thickness mode (TE1) of the 20x2 piezodisc have Rayleigh distances of about 92 mm, 233
mm, and 909 mm, respectively, when the measured physical radius of the disc is used in
the computation of r0. Limitations in the measurement setup concerning the distance be-
tween the transmitter and receiver mean that measurements at higher frequencies barely
reach the far-field region. The transmitter can be moved about 870 mm along the sound
propagation axis with the current setup. Thus, sound pressure measurements of TE1 are
not possible in the far-field of the 20x2 disc. The latter is however possible for R1 and R2.

The same can not be said for the 13x2 disc, as its smaller radius puts the far-field
well within the measuring distance of the three mentioned resonance modes. Even the
thickness mode of the disc puts the transition to the far-field at about 370 mm from the
disc, and thus within the boundaries of the setup. However, the microphone response
constitutes a new obstacle.

The properties of the Brüel & Kjær 4138 pressure-field microphone are accounted for
on the frequency interval 0-200 kHz. This means that pressure measurements of R2 and
TE1 are problematic, as the response of the microphone sensitivity is unaccounted for. It
also puts restraints on the interpretation of measured harmonics. The second harmonic of
R1 of the 20x2 disc can be calculated using the respective microphone sensitivity. Other,
higher harmonics have to be interpreted across measurement series as relative magnitudes
with regard to the fundamental frequency.

In light of this, acoustic sound pressure measurements of the two discs were carried
out only for R1, which are presented in Section 5.4.

3.3.10 Frequency analysis

To access the frequency content of the measured signals, a transform from the time do-
main to the frequency domain was carried out through Fourier transforms. In this work,
the Fast Fourier transform (FFT) available through MATLABs fft() function has been
used. The following describes the procedure of the Fourier transforms carried out.

A portion of the sampled signal in the steady state was extracted for a number of full
periods of the fundamental carrier frequency. The indices of the signal were located in
the time domain through calculations of the travel distance, in the case of acoustical
measurements in air. Similarly, for the electrical measurements, a sampled reference time
axis of the oscilloscope was used in order to get full periods of the fundamental frequency.

A Hanning window, whose coefficients were multiplied with two in order to retain signal
amplitude through the transform, was then applied to the extracted part of the signal.
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The windowed, extracted part of the signal was then (significantly) zero-padded to in-
crease the total length of the signal, in order to get higher frequency resolution in the
frequency domain (increased number of frequency bins). Following the transform to the
frequency domain, the corresponding spectrum S(f) was divided by the length of the
extracted signal prior to the zero padding.
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Chapter 4

Simulations
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4.1 Finite element simulation

A finite element (FE) program was used to simulate the electrical characteristics of the
piezodiscs. The FE program utilized was FEMP version 6.1.2 (Finite Element Modeling
of Piezoelectric structures).

4.1.1 Critical distances and infinite elements

For simulations of a disc in a fluid, a critical distance Rinf designates the boundary where
infinite elements take the place of regular fluid elements, and computations become sparse.
Infinite elements are introduced to reduce the number of computations in the fluid. It is
desirable to choose the smallest Rinf possible while retaining computational accuracy to
reduce computational cost and time.

Defining a normalized variable S as the distance to the last axial pressure maximum
of a plane piston radiator, as described in Section 2.3.1, so that S = z/(a2/λ). Then the
critical distance is given by the relation [27]

Rinf

a2/λ
= S

v=λf−−−→ Rinf =
Sa2f

v
, (4.1)

where a is the radius of the disk, and v is the speed of sound in the fluid. The critical
distance for 10th order infinite elements was found to be sufficient for 0.32S, where further
increasing Rinf does little to the error of the solution [27].

The two elements considered in this thesis are simulated around their 1st and 2nd radial
mode (R1 and R2) and the fundamental thickness mode (TE1). The critical distances
listed in Table 4.1 below are computed using the maximum frequency for each simulation,
the measured radii of the discs, and the speed of sound in air, chosen to be v = 343 m/s
for 1 atm and 20 ◦C following [29]. Due to the severely increased computational cost for
simulations with higher frequencies, simulation of the thickness modes were carried out
in a vacuum, and thus have no critical distances.

Table 4.1: Calculated critical distances for the infinite elements in the FE simulations
for the two piezoelectric elements. The frequencies chosen are the upper limit of the
simulated frequency area around the corresponding resonance modes.

Mode PZ27 20x2 mm PZ27 13x2 mm

fmax [kHz] Rinf [mm] fmax [kHz] Rinf [mm]
R1 110 10.4 165 6.4
R2 260 24.6 395 15.3
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4.1.2 Mesh

Presented in Figure 4.1 below is an illustration of the meshing used in the FE simulations.
The green rectangular box is the piezoelectric disk. Only half the elements are present in
the mesh presented, as the geometry of the FE computations is specified as rotationally
symmetric [27]. The light blue area surrounding the disk is the finite elements of the
fluid medium, whose size is determined by Rinf as discussed above. Lastly, the dark blue
area contains the infinite elements. In the figure beneath, the number of elements per
wavelength was heavily reduced for the purpose of visualization.

Figure 4.1: Simulation setup with Rinf corresponding to 260 kHz. Green area is the
piezodisk, light blue is the fluid, and dark blue the infinite elements. The number of
elements per wavelength were here heavily reduced for the purpose of the visualization.

4.1.3 Material data

Finite element simulations of a piezoelectric element require material data. Listed in
Table 4.2 below are the material parameters in column one, the adjusted parameter
values by Lohne/Knappskog [77] in column two, and the material data provided by the
manufacturer [52] in column three. The latter has turned out to be far less accurate than
what is desirable for precise simulations and characterization. Thus, an alternative data
set has been established by earlier master students at the Department of Physics and
Technology at UiB, amongst others, by the above-mentioned authors.
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Table 4.2: Material coefficients for a PZ27 element used in the FE simulations. Adjusted
parameters as reported in work done by Lohne and Knappskog. To the right, values
listed by manufacturer Ferroperm.

Parameter Adjusted (Lohne/Knappskog) Ferroperm

cE11 [1010 N/m2] 11.875(1 + i/95.75) 14.70
cE12 [1010 N/m2] 7.430(1 + i/71.24) 10.50
cE13 [1010 N/m2] 7.425(1 + i/120.19) 9.37
cE33 [1010 N/m2] 11.205(1 + i/177.99) 11.30
cE44 [1010 N/m2] 2.110(1 + i/75) 2.30

e31 [C/m2] −5.40(1− i/166) -3.09
e33 [C/m2] 16.0389(1− i/323.77) 16.00
e15 [C/m2] 11.20(1− i/200) 11.60

εS11 [10−9 F/m] 8.11043(1 + i/50) 10.0005
εS11 [10−9 F/m] 8.14585(1 + i/86.28) 8.0927

ρ [kg/m3] 7700 7700
QM 0 80
tan δ 0 0.017

4.2 Finite difference simulation

To assist acoustic pressure measurements, finite difference (FD) simulations were carried
out using a Fortran program known as the Bergen Code. It solves the KZK equation (Eq.
(2.51)) for directional sound beams, which takes the effects of nonlinearity, absorption,
and diffraction into account. The Bergen Code was initiated by Jaqueline N. Tjøtta and
Sigve Tjøtta at the University of Bergen in the 1980s [78].

The KZK equation, and thus the simulation, are valid within the parabolic approxi-
mation. ”Sufficiently close to the sound beam axis, and sufficiently far from the source”.
Neglection of local effects is also a prerequisite for the KZK equation. Other assumptions
regarding the source, which is assumed to behave as a uniform piston, is that it is defined
in the plane z = 0, it has characteristic radius a and radiates at frequencies satisfying
ka ≫ 1, as mentioned in Section 2.4.4.

4.2.1 Coordinate system

Utilization of axisymmetry, assuming the piezoelectric element radiates as a uniform
piston, reduces the problem of solving the KZK equation from three to two dimensions.
More specifically, from (x, y, z) to (x, z), where the source is located perpendicular to
the z-axis (in the xy-plane) at z = 0, with the z-axis the direction of propagation. An
illustration of this coordinate system is presented in Figure 4.2 below.

49



Figure 4.2: Coordinate system (x, z) to the left, and transformed (ξ, σ) to the right, of
the finite difference simulation program.

The faded area below the z-axis illustrates the full size of the modeled piston. The
xz-plane is further made dimensionless through the coordinate transformations [79]

x → ξ =
x

a
, z → σ =

z

r0
(4.2)

where a is the radius of the uniform piston, and r0 =
1
2
ka2 is the Rayleigh distance, also

shown in the figure above. The source condition, at σ = 0, is that of a uniform piston
and defined as

p(ξ, 0) =

{
p0, if ξ ≤ 1

0, otherwise
, (4.3)

where the acoustic pressure amplitude follows the plane wave impedance relation p =
ρ0c0uz, where uz is the component of the particle velocity amplitude in the propagation
direction.

4.2.2 Effective source radius

A piezodisc is modeled as a uniform circular piston in the simulation program. However,
the physical behavior of a disc is rather different from that of a piston. It is, therefore,
necessary to obtain the effective source radius of the disc for a given frequency, as input
parameter to the simulation program. In other words, the radius needed to yield a similar
performance between a uniform circular piston, and a piezodisc, under assumed linear
conditions.

The effective source radius was determined through acoustic directivity measurements,
compared to the theoretical expression of Eq. (2.17) given in [29], and solving for a. From
tabulated values available in the appendix of [29], using v = 1.6 when 2J1(v)/v = 0.7124,
Eq. (2.17) can be solved for a so that the effective source radius yields

v = kaeff sin(θ) =⇒ aeff =
v

k sin(θ)
, (4.4)

where θ is determined from directivity measurements of the disc.
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4.2.3 Determination of the input parameter p0

The input parameter p0, which is the pressure amplitude at the face of the piston, i.e.,
p0 = |p(r = 0)|, was determined through measurements of the radiated acoustic pressure.
The measured pressure amplitude along the acoustic sound axis was extracted at a chosen
distance r1 in the far-field. It was then assumed that the radiated sound field at r1 had
undergone losses due only to spherical spreading and absorption. In other words, losses
due to nonlinear effects in the sound propagation were assumed to be sufficiently weak
and thus neglected. Adding an absorption factor on the right-hand side of Eq. (2.14),
and solving for the piston’s particle velocity in the propagation direction uz, then yields

uz =
|pmeas(r = r1, θ = 0)|

2ρ0c0

∣∣∣sin(1
2
kr1

[√
1 + (aeff/r1)2 − 1

])∣∣∣ e−αr1

, (4.5)

where aeff is the effective radius of the source, and α is the absorption coefficient in Np/m
discussed in Section 4.2.4 below. Within the approximation of the KZK equation, the
acoustic sound pressure and the particle velocity in the propagation direction follow the
plane wave impedance relation p = ρ0couz, so that the expression of p0 becomes

p0 =
|pmeas(r = r1, θ = 0)|

2
∣∣∣sin(1

2
kr1

[√
1 + (aeff/r1)2 − 1

])∣∣∣ e−αr1

. (4.6)

The other parameters that go into Eq. (2.14), are direct dependencies to the simulation
program, and have to be given as input. These parameters are attended in Section 4.2.4
below. A comparison of the theoretical expression, and a linear simulation (β = 0), is
given in Section 4.2.6.

4.2.4 Simulation parameters

Environmental parameters of the medium, such as temperature, pressure, humidity, and
carbon dioxide content, play a decisive role in the accurate determination of medium
properties. Specifically, the speed of sound, density, and absorption varies greatly, and
have to be determined based on the measured environmental parameters taken as the
measurement series of the sound pressure were conducted, in order to produce simula-
tions as close to the reality as possible. In the following, these medium properties and
their calculation are explained.

The speed of sound in air was computed following approximate equations presented by
Cramer [80]. Environmental parameters, such as temperature, pressure, relative humid-
ity, and the molecular fraction of CO2, are needed for the calculations. The three first
parameters are measured in the lab, while the latter was assumed to be a reference value
of 400 ppm typically found in laboratories [81], as it was not measured directly. As noted
by the authors of [81], other experiments have reported values of the molecular fraction
of CO2 as high as 1000 ppm, while averages of the maximum reported values from various
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laboratories were about 600 ppm. Altering the molecular fraction in this area, while leav-
ing the other measured parameters unchanged, does little to the speed of sound, which
was found to be approximately 347.5 m/s.

In addition to the approximate equations of the speed of sound, Cramer presented similar
equations to calculate the ratio of specific heats γ. Using the measured parameters as
above, γ was found to yield about 1.4009, which is in good correspondence with reported
values of 1.4 by [30, 29, 36]. Thus, giving a nonlinear coefficient β equal to 1.2 for the
simulations.

The density of the medium was calculated following a revised formula of the den-
sity of moist air (CIPM-2007) [81], based on the 1981/91 equation by R. Davis [82].
The formula calculates the density based on the above-mentioned parameters so that
ρair = ρ(t, P0, RH, xCO2), where t is the temperature in ◦C, P0 is the ambient absolute
pressure in Pa, RH the relative humidity in %, and xCO2 the molecular fraction of carbon
dioxide. The latter is assumed to be 400 ppm if left unspecified. The script used for the
calculations can be found in Appendix C.2.1.

Absorption is calculated using Eq. (2.26) from the ANSI/ASA S1.26-2014 standard
discussed in Section 2.3.5. The coefficient has dependencies on ambient temperature and
pressure, as well as relative humidity. The MATLAB script used to compute the absorp-
tion coefficient can be found in Appendix C.2.2.

The absorption coefficient computed for a specified frequency is combined with relax-
ation frequencies of oxygen and nitrogen, and in other manners combined in expressions
needed to yield the resulting value, as shown in Eqs. (2.23)-(2.26). Thus, the calculated
coefficient in Np/m gives the most correct value for the specified frequency. However, the
input absorption coefficient α2 to the Bergen Code has the units of Np/m/Hz2, and thus,
the calculated value has to be divided by f 2. As the absorption coefficient is frequency
dependent, the value fed to the Bergen Code becomes incorrect in computing losses for
higher-order harmonics. The latter is illustrated in Figure 4.3 below as α2, where the
absorption coefficient as a function of frequency is presented. To the left in the figure
using measured environmental parameters in the acoustic laboratory for measurements
of the 20x2 disc, and similar for the 13x2 disc to the right. The absorption coefficient
α in the figure was computed for every new frequency following the ANSI standard de-
scribed above, and αc corresponds to the classical absorption coefficient tabulated in [29]
as αc = 1.37 × 10−11 [Np/m/Hz2]. The two vertical dashed lines mark the frequency
corresponding to the first radial mode of the 20x2 disc and 13x2 disc, to the left and
right, respectively.
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Figure 4.3: Calculated absorption coefficient as a function of frequency in Np/m.

The environmental properties have uncertainties to their measured values, as briefly men-
tioned in Section 3.3.3. To test the variation of the calculated medium parameters, tem-
perature, relative humidity, and pressure was altered within the respective instrument
uncertainties. The content of CO2, assumed to be 400 ppm, was varied from 200 ppm to
600 ppm.

The greatest dependency was found in temperature, which altered the outcome of most
parameters calculated. Here, both an uncertainty of 0.01◦C and 0.2◦C was tested, but the
listed values in Table 4.4 were computed using the latter of the two. Relative humidity
also played a sizeable part in the interval tested, especially concerning the absorption of
sound.

Listed in Table 4.3 below are the values of temperature, barometric pressure, relative
humidity, and molecular fraction of carbon dioxide, used to calculate the medium pa-
rameters. The value in the middle of each interval corresponds to the measured value
during axial pressure measurements of the 20x2 disc for R1 (f = 98.370 kHz). About
195,000 (214) computations of each parameter go into Table 4.4, where the minimum-
and maximum value, the mean, and the corresponding standard deviation are presented.

53



Table 4.3: Environmental properties used to compute medium parameters listed in Table
4.4 below. Each interval presented in column three corresponding to 21 values, with the
increments listed in column four.

Parameter Symbol Interval Increments Unit

Temperature T [25.98, 26.38] 0.02 ◦C
Barometric pressure P0 [99683.5, 99703.4] 0.1 Pa
Relative humidity RH [30.6, 32.6] 0.1 %
Molecular fraction of CO2 xCO2 [200, 600] 20 ppm

Table 4.4: Calculated variation in the medium parameters within uncertainties of the
measured environmental properties. In column two and -three, the minimum and maxi-
mum value, respectively. Column four lists the mean of the computed values, and column
five the corresponding standard deviation.

Parameter Min. Max. µ σ Unit

c(f, t, P0, RH, xCO2) 347.38 347.70 347.54 0.08 m/s2

γ(f, t, P0, RH, xCO2) 1.40081 1.40097 1.40089 0.00003 -
ρ(t, P0, RH, xCO2) 1.1547 1.1571 1.1559 0.0005 kg/m3

α(f, P0, RH, t) 0.371 0.390 0.381 0.004 Np/m
α2(f, P0, RH, t) 3.84×10−11 4.03×10−11 3.93×10−11 0.04×10−11 Np/m/Hz2

4.2.5 Correction of the beam pattern

The beam patterns returned from the Bergen Code simulations are computed in a grid
structure marching forward, and the Bergen Code outputs a transversal section of the
propagated sound beam, i.e., the complex sound pressure p(z, θ) along a vertical line
perpendicular to the sound axis. The latter is illustrated in Figure 4.4 below as the red
dashed line. A transversal beam pattern extracted from a simulation consists of sound
pressure values p(z, θ), which for every θ ̸= 0 is located a distance d from the origin
(x, z)=(0,0).
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Figure 4.4: Illustration of the geometry of the transversal pressure values returned by the
Bergen Code. The red dashed line indicates the extracted, transversal beam pattern from
the Bergen Code, while the black dashed line indicates the effect of holding the distance
to the source constant when θ is rotationally incremented.

However, unlike the beam pattern from the Bergen Code, directivity measurements con-
ducted in the acoustic measurement setup are carried out by rotational increments of the
piezodisc from its original position (z = r, θ = 0), and the distance r between transmitter
and microphone remains constant as θ is rotationally incremented. This is illustrated
in Figure 4.5 above as the black dashed arc. As this is not the case for the simulated
beam pattern, every sound pressure amplitude p(z, θ) on the transversal section has to
be corrected for an extra propagation distance ∆r. Assuming spherical spreading, and
absorption, the sound pressure amplitude adjustment from p(z, θ) to p(r, θ) yields

p(r, θ) = p(z, θ)

(
d

r

)
eα2∆r, (4.7)

where d = r/ cos θ, and ∆r = d− r, and α2 is the absorption coefficient.

The effect of correcting the beam pattern due to propagation distance is illustrated in Fig-
ure 4.5 below, where the uncorrected beam pattern is plotted in a red dashed line, and the
adjusted beam pattern in a solid blue line. It can be noted that it has a near-insignificant
impact on the main lobe of the propagated sound beam, but becomes progressively more
significant as θ increases, i.e., moving further away from the sound axis. The term (d/r)
in Eq. (4.7) will, for a constant θ, remain constant for beam patterns further away from
the source (increasing r). However, the latter part of Eq. (4.7), the absorption term,
will have a more significant impact for greater distances, as shown in Figure 4.6. Here,
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the complete adjustment term
(
d
r

)
eα∆r is plotted as a function of distance r from the

source, for four values of θ, and with an absorption coefficient corresponding to measured
laboratory conditions and R1 of the 20x2 disc.

Figure 4.5: The effect of adjusting the Bergen Code beam pattern due to propagation
distance from the source.

Figure 4.6: The adjustment factor
(
d
r

)
eα∆r as a function of distance r from the source

for fixed θ, an absorption coefficient equal α2 = 3.93× 10−11 Np/m/Hz2, and a frequency
corresponding to R1 of the 20x2 disc.
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4.2.6 Comparison of linear simulation to theoretical expression

Bergen Code simulations of linear sound propagation were carried out to compare the
acoustic sound pressure amplitude along the sound axis to the theoretical expression
given in [29] (Eq. (2.14)). Several mutual dependencies can be noted from the theoretical
expression of Eq. (2.14), and the simulation parameters listed in the previous section.
Both require an ambient (or unperturbed) fluid density, the speed of sound of the fluid,
the wave number of the acoustic disturbance, and the radius of the disc. The simulation
has an input source condition p0, which relates to the particle velocity u0 as noted above.
The input p0 was used to determine the particle velocity using the linear plane wave
impedance relation as

uz =
p0
ρ0c0

. (4.8)

In addition, absorption in the fluid has to be added to the theoretical expression in order
to yield comparable results. Absorption is added as an exponential factor, to a general
expression of acoustic pressure, as

p = P0e
j(ωt−kr)e−α2r, (4.9)

where α2 is the absorption coefficient in Np/m/Hz2, in other words, dependent on both
distance and frequency squared. The values used both in the simulation and the compu-
tation of the theoretical expression, are listed in Table 4.5 below.

Table 4.5: Simulation parameters used as input in Bergen Code simulations of linear
sound propagation for R1 of the 20x2 piezodisc.

Parameter f0 p0 a c0 ρ0 β α2

Value 98.640 1 10.0665 345 1.21 0 1.37×10−11

Unit kHz Pa mm m/s kg/m3 - Np/m/Hz2

The resulting axial sound pressure amplitude for R1 are plotted in Figure 4.7 below.
The upper of the two plots shows the logarithmic pressure in dB relative to 1 Pa, while
the bottom plot shows the logarithmic amplitude ratio of the theoretical- and simulated
values.
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Figure 4.7: Upper plot: acoustic pressure amplitude on the sound axis from theoretical
expression alongside values from a linear simulation using the Bergen Code, for the first
radial mode. Lower plot: pressure amplitude ratio between theoretical expression and
linear simulation.
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Chapter 5

Results PZ27 20x2
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5.1 Low voltage impedance measurements

Initially, FE simulations and measurements of the piezodiscs were carried out to establish
the frequencies of interest. The impedance measurements were conducted using the HP
4192A impedance analyzer and were carried out at a modest excitation amplitude of 0.3
Vrms, assuming the behavior of the element to be fairly linear. The choice of amplitude to
characterize the discs follows that of previous work [2, 68, 66], amongst others, in order to
minimize nonlinear effects while still retaining measurement resolution. Plotted in Figure
5.1 below are the simulated- and measured values around frequencies corresponding to
the two first radial modes (R1 and R2) and the thickness mode (TE1), for the 20x2
piezodisc.

Figure 5.1: Measured and simulated values of conductance around R1, R2, and TE1 of
the 20x2 disc.

Listed in Table 5.1 below are simulated- and measured values of the resonance frequencies
of the two discs, extracted from the data depicted in the figure above, and similar for
the 13x2 piezodisc. The resistances in column two were calculated through Eq. (2.4) in
Section 2.1.1 from the admittance measurements of each resonance frequency.
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Table 5.1: Resonances for R1, R2, and TE1, for the piezodiscs. Simulation values from
FEMP, and admittance measurements using the HP 4192A impedance analyzer. Resis-
tances of the discs at each resonance calculated from the measured values.

20x2 disc

Mode Resistance Measured FEMP

R1 25.9 Ω 98.640 kHz 98.700 kHz (air)
R2 81.4 Ω 250.650 kHz 250.780 kHz (air)
TE1 5.6 Ω 979.760 kHz 982.900 kHz (vacuum)

13x2 disc

Mode Resistance Measured FEMP

R1 42.4 Ω 155.650 kHz 153.290 kHz (air)
R2 132.4 Ω 382.970 kHz 377.420 kHz (air)
TE1 31.4 Ω 969.900 kHz 980.600 kHz (vacuum)

In Table 5.2, the -3 dB frequencies and corresponding bandwidths of the piezodiscs are
presented. The values were calculated from the admittance measurements and simulated
values described above, taking advantage of known characteristics of the conductance as
described in Section 2.2.4.

Table 5.2: Calculated -3 dB frequencies and corresponding bandwidths of the piezodiscs
from admittance measurements and simulations.

Measured
20x2 disc 13x2 disc

Mode f−
−3 dB f+

−3 dB ∆f f−
−3 dB f+

−3 dB ∆f Unit

R1 98.140 99.120 0.980 154.810 156.450 1.640 kHz
R2 249.250 252.000 2.750 380.700 385.250 4.550 kHz
TE1 976.640 982.840 6.200 966.010 973.910 7.900 kHz

Simulated
20x2 disc 13x2 disc

Mode f−
−3 dB f+

−3 dB ∆f f−
−3 dB f+

−3 dB ∆f Unit

R1 98.110 99.300 1.190 152.370 154.210 1.840 kHz
R2 249.520 252.040 2.520 375.610 379.230 3.620 kHz
TE1 979.400 986.700 7.300 976.300 984.900 8.600 kHz

Based on the measurements listed in the tables above, the frequency range of interest
concerning impedance measurements with higher excitation amplitude was determined.
Frequency ranges around each resonance mode were chosen to be finely sampled, and
these frequency ranges were defined to be

[fl, fu] =

[
fs − 5

(
∆f

2

)
, fs + 3

(
∆f

2

)]
, (5.1)
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to cover the interval around each resonance in more detail. Here, fs denotes the resonance
frequency of interest, i.e., the first- or second radial mode, or the thickness mode. The
left (lower) boundary fl had to be increased from three- to five times ∆f/2 to better
capture the changes due to an increased excitation amplitude.

Quality factors for each resonance were calculated from the measured and simulated
impedance measurements, using Eq. (2.11), and are presented in Table 5.3 below.

Q-factor

20x2 disc 13x2 disc

Mode Measured Simulated Measured Simulated

R1 101 82 95 83
R2 91 99 84 104
TE1 158 134 123 114

Table 5.3: Quality factors for R1, R2 and TE1 of the two discs from impedance measure-
ments and simulations.

5.2 High voltage measurements

Following these initial measurements, the I-V circuit described in Section 3.2 was config-
ured, and its characteristics were tested before measurements of the two piezodiscs were
initialized. In the following three sections, characteristics of the circuit and instruments
are attended to before moving on to measurements of the piezodisc in Section 5.2.4.
Section 5.2.5 attends measurements of the resonance frequencies and bandwidths of the
discs, before moving onto an inspection of the current in the circuit in Section 5.2.6.

5.2.1 Noise readings of the measurement circuit without output
from the signal generator

Measurements of the circuit with no applied signal were carried out to investigate the
inherent noise in the circuit. Both channels of the oscilloscope were read, as displayed
in the two uppermost plots in Figure 5.2 below. The two plots at the bottom show the
related one-sided frequency spectra of each channel, whose magnitude is expressed in
decibels relative to 1 V.
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Figure 5.2: Noise readings on channels 1 and -2 of the Tektronix DPO3012 oscilloscope
without output from the signal generator. Uppermost plot; raw data readings, middle
plot; windowed readings of the oscilloscope, lowermost plot; Fourier spectra in decibel
relative to 1 V.

5.2.2 Characteristics of the output signal of the signal generator

Following the measurements of the inherent noise in the circuit, the output of the signal
generator was measured to characterize the signal. In general, signal generators exhibit
harmonic features in the output signal, which are usually characterized in the datasheet
[57].

Measurements of the first- and second radial mode, and the thickness mode were car-
ried out for nominal applied voltages V0,pp of 0.3-, 0.6-, 1.2-, 5-, 10- and 20 V. In Figure
5.3 below, two periods of the output signals can be seen in the upper left plot, for a
frequency corresponding to R1. The upper right plot is the reading of the second channel
of the oscilloscope when connected to the measurements circuit which, in turn, was not
connected to the output signal. The two plots at the bottom of the figure show the
one-sided Fourier transform of the six signals at channels 1 and 2 of the oscilloscope, re-
spectively. Amplitudes of the spectrum of channel 1 are divided by their maximum value
to yield 0 dB for what would be the frequency of the applied signal, i.e., the amplitudes
are expressed in decibel relative to carrier (fundamental) level (dBc). The spectrum of
channel 2 is divided by the corresponding maximum value of the spectrum of channel 1,
for equal nominal applied voltage.
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Figure 5.3: Parts of the measured readings of channel 1 and 2 of the oscilloscope (two
upper plots), respectively, and their calculated spectrum below (two lower plots).

To simplify the comparison of the generated harmonics, as a function of applied voltage
and across the different resonance frequencies, the harmonic amplitudes relative to the
fundamental were extracted and plotted in Figure 5.4 below. Overtones of the funda-
mental frequencies corresponding to R1, R2, and TE1, are plotted in each column in the
colors blue, red, and orange, respectively. The first three odd harmonics are displayed
for each fundamental in Figure 5.4, but the three first even harmonics, and harmonics
number seven, nine, and eleven can be found in Appendix B.1
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Figure 5.4: Harmonic amplitudes relative to the fundamental in the measured output of
the signal generator for the fundamental frequencies corresponding to R1, R2, and TE1,
plotted in blue, red, and orange colors, respectively. Here shown for the first three odd
harmonics (n = 3, 5, 7).

5.2.3 Measurements of resistors in place of the piezodisc

A piezoelectric element has its characteristics altered with frequency. Other electrical
components are typically assumed to be unaffected by changes in, e.g., the applied fre-
quency or voltage, and thus have a constant value. This is however a simplification of
reality as all components inherit dependencies to several parameters [54]. Resistors were
placed in place of the piezodisc (one at a time), and measurements were carried out for
frequencies corresponding to R1, R2, and TE1, of the disc, for different nominal applied
voltages. Two resistors were utilized, one with a resistance around 5 Ω to best reflect the
resistance of the disc around TE1, and one at about 55 Ω for the two radial modes.

Displayed in Figure 5.5 below are the results for a resistor of 55 Ω, and frequency corre-
sponding to the first radial mode. Similar measurements were conducted successively for
R2 and TE1, only changing the resistor for the latter. The measurements corresponding
to R2 and TE1 are not shown here but can be found in Appendix B.2.
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Figure 5.5: Windowed readings from the oscilloscope (upper plots) and Fourier transform
(lower plots) for V1 and V2 with a resistor of 55 Ω in place of the piezodisc for R1. Multiple
series with varying nominal applied voltage V0,pp displayed in each plot.

5.2.4 Measurements of the piezodisc

Finally, the piezodisc was mounted in the I-V circuit, and measurements were conducted
around the three resonance modes. An inspection of the harmonics in the measured
voltages V1 and V2 was carried out, for each mode, as can be seen for the frequency
corresponding to R1 in Figure 5.6 below. Similar figures for R2 and TE1 can be found in
Appendix B.3. A closer look at the frequency range 0 kHz to 300 kHz of the spectra of V2

for fundamental frequency corresponding to R1, measured for the resistor and piezodisc
mounted in the I-V circuit, separately, are presented in Figure 5.7.
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Figure 5.6: Windowed readings from the oscilloscope (upper plots) and Fourier transform
(lower plots) for V1 and V2 for various excitation amplitudes V0,pp for R1. V2 is here the
voltage measured across the 20x2 mm piezodisc.

Figure 5.7: Spectra of the measured voltages V2 from Figure 5.5 (resistor in place of
the piezodisc) and Figure 5.6 (measurements of the piezodisc) above, here shown in the
frequency range 0 kHz to 300 kHz.

The current in the circuit, calculated from the voltage measurements in Figure 5.5 and
5.6, for the 55 Ω resistor, and 20x2 piezodisc, respectively, are compared in Figure 5.8
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below. The lower nominal applied voltages are separated into the two upper plots, and
the higher ones to the bottom of the figure. Summarized in Table 5.4 below are the THD
of the currents for frequencies corresponding to R1, R2, and TE1, of the piezodisc, for
the measurements of the resistor, and piezodisc, mounted in the circuit separately.

Figure 5.8: Comparison of the frequency spectra of measured currents with, in the left
column, a 55 Ω resistor in the circuit, and to the right, the 20x2 piezodisc. Fundamental
frequency corresponding to R1 of the piezodisc for all measurements.

Table 5.4: Calculated total harmonic distortion of the computed currents, for both resis-
tors and the 20x2 piezodisc, for frequencies corresponding to the three resonance modes
of the 20x2 disc, for different excitation amplitudes V0,pp, including the first 50 harmonic
components.

Resistor

V0,pp 0.3 V 0.6 V 1.2 V 5 V 10V 20 V Unit

R1 (55 Ω) 3.09 3.64 3.51 4.69 4.54 5.04 [%]
R2 (55 Ω) 2.74 3.22 3.15 4.30 4.01 4.40 [%]
TE1 (5 Ω) 0.55 0.55 0.69 0.71 0.79 0.84 [%]

Piezodisc

V0,pp 0.3 V 0.6 V 1.2 V 5 V 10V 20 V Unit

R1 3.04 1.99 2.14 2.56 4.99 3.72 [%]
R2 12.4 3.37 3.17 4.06 4.06 6.21 [%]
TE1 0.65 0.55 0.64 0.61 0.69 0.83 [%]
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5.2.5 Calculations based on measurements on the I-V circuit

Measurement series conducted over a limited frequency range around each resonance were
used to calculate phase differences between the two measured voltages V1 and V2. The
zero-crossing method was initially the chosen approach of the two discussed in Section
3.2.3. To begin with, the midpoint between the two samples of a zero crossing was used
as the time of the zero crossing. This showed rather large fluctuations in the computed
phase shifts, likely due to higher frequency noise in the measurements. Cubic spline in-
terpolation was tested and reduced some of the noise seen previously. To further reduce
deviations in computed zero crossings, another method was desirable and the cubic spline
approximation was chosen. It is said to produce the smoothest possible approximation to
the third degree, meaning that both the first and second derivative remains continuous
[61]. By the use of cubic spline approximation, the fluctuations in the calculated values
were further reduced.

In addition to the incorporation of a better interpolation method, lowpass filtering of the
signals was applied before the zero-crossing calculation. The data collected from mea-
surements around the resonances were filtered using a sixth-order Butterworth lowpass
filter, whose filter coefficients were created using MATLABs built-in function butter()
[83]. To further reduce noise in the waveforms, a finite impulse response (FIR) moving
average filter of length N = 25 was applied to both waveforms locally in the zero-crossing
method, as can be seen in Appendix C.3.1. Using equal filters in the filtering of both
waveforms, and discarding the N first samples, removes unwanted and wrong values to
be evaluated, and should thus yield a correct phase difference between the waveforms as
it does not matter where in the waveform the search for zero-crossing starts. The latter
is true as long as an even number of zero-crossings are computed, and the signals are
fairly symmetric around zero.

From measurement series around R1, R2, and TE1, the impedance was calculated accord-
ing to Eq. (3.7). The calculated phase shifts, conductance, and GB-plot are displayed
for a frequency range around each of the resonance modes in Figures 5.10 to 5.12 below,
for the 20x2 disc. Various nominal applied voltages were utilized, as highlighted by the
labels in the figures, and the measurement series were processed separately. A contin-
uous waveform was used as output from the signal generator for these measurements.
Displayed in Figure 5.9 are GB-plots of around R1 and TE1 from the measurements.
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Figure 5.9: GB-plot of impedance measurements of the 20x2 disc in the I-V circuit, for a
frequency range corresponding to R1 to the left, and TE1 to the right.

Figure 5.10: Calculations of phase shift between measured voltages V2 and V1, conduc-
tance, and a GB-plot in a frequency range around R1. Each curve corresponding to the
nominal applied voltage V0,pp at the signal generator.
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Figure 5.11: Same as Figure 5.10, but here around R2.

Figure 5.12: Same as Figure 5.10 and -5.11, but here around TE1.

In Table 5.5, computed resonance frequencies and bandwidths to the three different modes
of the 20x2 disc are listed for the nominal excitation levels V0,pp. Similar is presented for
the 13x2 disc in Table 5.6 to the end of this section. Measurements of the thickness mode
for transmitted burst signals showed odd phenomenon, and calculation of the impedance
was unsuccessful.
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Table 5.5: Calculated resonance and bandwidth for each mode for impedance measure-
ments in the I-V circuit for the 20x2 disc. Both continuous waveform and burst excitation
utilized.

Continuous waveform

R1 R2 TE1

V0,pp [V] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz]

0.3 98.680 1.090 251.150 2.730 979.240 8.150
0.6 98.680 1.070 251.130 - 979.140 8.230
1.2 98.610 1.200 251.120 2.810 979.150 8.370
5 98.410 1.460 250.830 3.710 979.100 8.340
10 98.100 1.910 250.370 5.100 979.010 8.760
20 97.500 2.810 249.730 - 978.640 9.540

Burst excitation

R1 R2 TE1

V0,pp [V] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz]

0.3 98.500 1.180 251.310 2.720 - -
0.6 98.430 1.710 251.310 - - -
1.2 98.410 1.790 251.290 - - -
5 98.350 2.390 251.040 - - -
10 97.970 1.430 250.500 2.950 - -
15 97.730 2.130 250.220 3.270 - -
20 97.550 2.530 249.690 3.490 - -

The measured values that go into Table 5.5 and 5.6 were found through the conductance
as discussed in Section 2.2.3 and 2.2.4. Two examples of the calculated conductance
based on the measurements of V2 and V1 in the I-V circuit are presented in Figure
5.13 and 5.14 below, for measurements of R1 of the 20x2 disc. Equal figures for other
measurement series of R1, R2, and TE1, for the two discs, can be found in Figures
B.10-B.66 in Appendix B.4. For these measurements, the frequency domain method
discussed in Section 3.2.3, was utilized as the zero crossing method showed somewhat
worse performance for some of the measurement series. As for the 20x2 disc, impedance
calculations from the measurement series utilizing burst excitation was unsuccessful for
TE1 of the 13x2 disc. Moreover, several of the measurement series, the bandwidths were
not possible to determine accurately.
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Figure 5.13: Example of the relative amplitudes V2/V1 and the phase difference ∆φ, in
the upper left and right part of the figure, respectively, measured in the I-V circuit, and
used for computing the impedance. In the bottom part of the figure, the conductance
measured in the I-V circuit is compared the measurements using the HP 4192A impedance
analyzer. Here shown for the first radial mode of the 20x2 disc, with a nominal applied
voltage V0,pp equal 0.6 V.

Figure 5.14: Same as Figure 5.13, but here for V0,pp = 20 V.
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Table 5.6: Calculated resonance and bandwidth for each mode for impedance measure-
ments in the I-V circuit for the 13x2 disc. Both continuous waveform and burst excitation
utilized.

Continuous waveform

R1 R2 TE1

V0,pp [V] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz]

0.3 154.440 2.380 382.630 3.470 976.180 7.320
0.6 154.410 - 382.640 - 976.080 -
1.2 154.300 - 382.570 - 975.880 -
5 154.130 - 382.170 - 975.710 -
10 153.470 - 381.950 - 975.000 7.980
20 153.200 - 381.870 - 974.380 8.120

Burst excitation

R1 R2 TE1

V0,pp [V] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz] fs [kHz] ∆f [kHz]

0.3 155.020 3.250 382.270 3.350 - -
0.6 155.030 - 382.520 - - -
1.2 154.980 - 382.310 - - -
5 154.720 - 382.520 - - -
10 154.210 3.540 381.820 3.920 - -
15 153.750 3.640 381.490 3.760 - -
20 153.320 4.160 381.090 4.140 - -

5.2.6 Calculated current in the circuit

From the measurements conducted on the I-V circuit previously, calculations of the cur-
rent through the discs were carried out. The current was computed from the voltage
drop over the known resistor R in the circuit using the formula stated in Eq. (3.1) from
Section 3.2. Filtering of any sort was not utilized, and a Fourier transform was computed
for investigation of the frequency content in the current.

This was carried out for both discs, with both continuous waveform and bursts exci-
tation output signals. The measurements with continuous waveform had 14 periods of
the signal extracted. An example of this is shown for the 20x2 disc in Figure 5.15 below,
where the frequency corresponds to the first radial mode. Measurement series utilizing
bursts had 50 periods of the steady state part of the signal extracted before the current
was calculated, and Fourier transformed. This is shown for R1 of the 20x2 disc in Figure
5.16 below. In the upper part of the figures, the windowed, extracted signal is plotted,
while the associated Fourier spectra are displayed in the bottom half.

Similar measurements were carried out for frequencies corresponding to R2 and TE1,
which can be found in Appendix B.5. Figure 5.17 displays the first six overtones of R1
for the current, as a function of nominal applied voltage, presented in a bar plot. Even
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harmonics are presented in blue bars to the left and odd harmonics in red to the right
in the figure. The THD for each measurement series were also calculated, including the
first 50 harmonics, which are summarized in Table 5.7.

Figure 5.15: Calculated current through the 20x2 piezodisc from the voltage drop over
the known resistor R (upper plot), and corresponding frequency spectrum (bottom plot),
for R1.

Figure 5.16: Calculated current through the piezodisc from the voltage drop over the
known resistor R (upper plot), and corresponding frequency spectrum (bottom plot), for
the first radial mode (R1).
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Figure 5.17: Relative harmonics amplitudes to the fundamental frequency corresponding
to R1, for the first six overtones.

Table 5.7: Calculated total harmonic distortion in the computed currents of the three
resonance modes for different excitation amplitudes V0,pp including the first 50 harmonic
components.

Continuous waveform

V0,pp 0.3 V 0.6 V 1.2 V 5 V 10V 15 V 20 V Unit

R1 3.04 1.99 2.14 2.56 4.99 - 3.72 [%]
R2 12.4 3.37 3.17 4.06 4.14 - 6.21 [%]
TE1 0.69 0.56 0.64 0.61 0.69 - 0.83 [%]

Burst excitation

V0,pp 0.3 V 0.6 V 1.2 V 5 V 10V 15 V 20 V Unit

R1 4.09 3.81 4.09 4.49 5.50 5.09 5.63 [%]
R2 5.64 3.26 3.33 3.36 7.62 10.5 10.4 [%]
TE1 2.45 2.43 2.53 2.59 2.63 2.57 2.47 [%]

As for the 20x2 disc, the current in the I-V circuit was calculated from voltage measure-
ments across the 13x2 disc, for frequencies corresponding to R1, R2, and TE1. This is
shown for R1 in Figure 5.18 and 5.19 below, and similar figures can be found for R2
and TE1 in Appendix B.5. The magnitude of the first six overtones of R1 and R2 can
similarly be seen in Figure 5.20 and 5.21, and the THD for the resonances are presented
in Table 5.8 below.
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Figure 5.18: Calculated current through the 13x2 piezodisc from the voltage drop over
the known resistor R (upper plot), and corresponding frequency spectrum (bottom plot),
for R1.

Figure 5.19: Calculated current through the 13x2 piezodisc from the voltage drop over
the known resistor R (upper plot), and corresponding frequency spectrum (bottom plot),
for the first radial mode (R1).
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Figure 5.20: Relative harmonics amplitudes to the fundamental frequency corresponding
to R1, for the first six overtones.

Figure 5.21: Relative harmonics amplitudes to the fundamental frequency corresponding
to R2, for the first six overtones.
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Table 5.8: Calculated total harmonic distortion in the currents of the three resonance
modes for the 13x2 disc for different excitation amplitudes V0,pp, including the first 50
harmonic components.

Continuous waveform

V0,pp 0.3 V 0.6 V 1.2 V 5 V 10V 15 V 20 V Unit

R1 5.41 4.16 2.76 2.99 6.50 - 8.14 [%]
R2 10.0 4.48 3.40 3.14 8.51 - 24.6 [%]
TE1 2.62 2.62 2.08 2.32 2.75 - 3.03 [%]

Burst excitation

V0,pp 0.3 V 0.6 V 1.2 V 5 V 10V 15 V 20 V Unit

R1 4.70 2.95 3.08 3.17 7.40 6.89 8.99 [%]
R2 6.44 3.03 3.14 3.38 9.85 14.3 20.4 [%]
TE1 3.68 3.40 3.41 3.39 3.79 3.74 3.72 [%]

5.3 Soldering of the piezodisc

After electrical measurements of the piezodiscs in the I-V circuit, the two discs were
soldered to a positive and negative connector, so that they could be integrated into
the acoustical measurement setup discussed previously in Section 3.3. The soldering of
the piezodiscs was carried out by chief engineer Bilal Hasan Qureshi in charge of the
soldering- and assembly lab at the Department of Physics and Technology at the Univer-
sity of Bergen. A soldering temperature of 280 ◦C was used, which lies well beneath the
Curie temperature, stated as > 350 ◦C by the manufacturer [52].

Afterward, new admittance measurements were carried out using the HP 4192A
impedance analyzer. The measurements covered the frequency range 1-1300 kHz with
increments of 1 kHz. Around R1, R2, and TE1, the frequency increments were lowered
to 10 Hz, identical to the earliest admittance measurements presented alongside the new
measurements in Figure 5.22 and 5.23, for the 20x2 disc and 13x2 disc, respectively.
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Figure 5.22: Measured conductance (solid lines) and susceptance (dashed lines) around
R1, R2, and TE1, for the 20x2 disc, prior to (in blue) and after (in red) soldering of the
connectors to the disc. Admittance measurements were conducted using the HP 4192A
impedance analyzer.

Figure 5.23: Measured conductance (solid lines) and susceptance (dashed lines) around
R1, R2, and TE1, for the 13x2 disc, prior to (in blue) and after (in red) soldering of the
connectors to the disc. Admittance measurements were conducted using the HP 4192A
impedance analyzer.
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Resonances and -3 dB bandwidths of the newly soldered piezodiscs were again determined
from the new admittance measurements. The resonance frequencies before and after
soldering are presented in Table 5.9 below. A relative frequency shift of the resonance
∆fs, as a result of the soldering, is shown in column four of the table. The bandwidths
are presented below Table 5.9, in Table 5.10.

Table 5.9: Calculated resonance frequencies for the two discs, from admittance measure-
ments using the HP 4192A impedance analyzer at 0.3 Vrms. Here ∆fs denotes a change
in resonance frequency relative to before soldering of the disc.

20x2 disc

Mode Pre soldering Post soldering ∆fs Unit

R1 98.640 98.370 -0.270 kHz
R2 250.650 250.790 0.140 kHz
TE1 979.760 980.690 0.930 kHz

13x2 disc

Mode Pre soldering Post soldering ∆fs Unit

R1 155.650 154.640 -1.010 kHz
R2 382.970 381.180 -1.790 kHz
TE1 969.900 972.770 2.870 kHz

Table 5.10: Calculated -3 dB frequencies of the piezodisc after soldering, and correspond-
ing -3 dB bandwidths ∆f , from the admittance measurements described in Table 5.9.

20x2 disc

Pre soldering Post soldering

Mode f−
3 dB f+

3 dB ∆f f−
3 dB f+

3 dB ∆f Unit
R1 98.140 99.120 0.980 97.690 99.170 1.480 kHz
R2 249.250 252.000 2.750 249.150 252.230 3.080 kHz
TE1 976.640 982.840 6.200 977.130 984.330 7.200 kHz

13x2 disc

Pre soldering Post soldering

Mode f−
3 dB f+

3 dB ∆f f−
3 dB f+

3 dB ∆f Unit
R1 154.810 156.450 1.640 153.140 156.22 3.080 kHz
R2 380.700 385.250 4.550 378.810 383.700 4.890 kHz
TE1 966.010 973.910 7.900 967.870 977.490 9.620 kHz

The soldered 20x2 disc with connectors is shown in Figure 5.24a, and the same disc
mounted to the rotation stage of the setup in Figure 5.24b. The wires connecting the
disc were stretched out and taped to a thin 200x2 mm circular rod using electrical tape
before the rod was fastened to the rotation arm. Aluminum foil was then wrapped around
the rod and wires.
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A summary of the changes to the resonance frequencies and bandwidths of the two discs
is presented in Table 5.11 at the end of this section.

(a) (b)

Figure 5.24: Image of (a) the soldered 20x2 piezodisc, and (b) the same disc mounted to
the rotation arm of the measurement setup.

20x2 disc

20x2 disc Prior to soldering After soldering

Mode fs ∆f fs ∆f Unit
R1 98.640 0.980 98.370 1.480 [kHz]
R2 250.650 2.750 250.790 3.080 [kHz]
TE1 979.760 6.200 980.690 7.200 [kHz]

13x2 disc

20x2 disc Prior to soldering After soldering

Mode fs ∆f fs ∆f Unit
R1 155.650 1.640 154.640 3.080 [kHz]
R2 382.970 4.550 381.180 4.890 [kHz]
TE1 969.900 7.900 972.770 9.620 [kHz]

Table 5.11: Summary of the changes to resonance frequencies, and corresponding band-
widths, as a result of soldering electrodes to the piezodiscs. Upper part belonging to the
20x2 disc, and the bottom part to the 13x2 disc.
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5.4 Acoustical measurements in air

The preparatory measurements conducted as a test of the measurement setup, which re-
vealed odd results for some of the measurement series, are first presented in Section 5.4.1.
An investigation of the origin of the strange harmonic features was carried out in light
of this and is presented in Section 5.4.2. Following the characterization of the receiving
electronics, the piezodisc was mounted in the measurement setup. Sound pressure and
directivity measurements were then conducted for the first radial mode for a variety of
nominal applied voltage amplitudes V0,pp, and presented in Sections 5.4.3 and 5.4.4, re-
spectively.

The sound pressure amplitude source condition p0, and the effective radius aeff , necessary
for simulations with the Bergen Code, were calculated based on these measurements.
Simulations of the sound pressure for each measurement series were then carried out, and
compared to the measured sound pressure in Section 5.4.5.

5.4.1 Preparatory sound pressure measurements

A piezodisc already mounted in the acoustic setup equal to the 20x2 disc, was configured
as described in Section 3.3.4 and 3.3.5, before measurements were conducted for various
excitation amplitudes along the acoustic sound axis. Both near and far-field measure-
ments were conducted for frequencies corresponding to R1 and R2 for the 20x2 disc, but
only selected results in the far-field are presented in the following.

Fourier transforms of the steady state region of the measured responses for R1 at chosen
distances of the transmitting piezodisc equal to z = r0, 2r0, 4r0, and 8r0, were carried
out to investigate the frequency content of the signals. In Figure 5.25, the calculated
frequency spectra of the measured responses for six nominal applied voltages V0,pp at
z = r0 are displayed. Three equal figures for the distances z = 2r0, 4r0, and 8r0, can
be found in Appendix B.6. The bandwidth of the filter in the measurement setup was
for these series set to [f0/2, 10f0], where f0 corresponds to the carrier frequency of the
transmitted bursts (R1 or R2). Special attention should be paid to the two bottom plots
of Figure 5.25, but similar behavior can also be seen for V0,pp = 20 V at z = 2r0 in the
lower-right plot of Figure B.80 in Appendix B.6. Similar harmonic content was not found
as the piezodisc were moved further away from the microphone (z increased), as can be
seen in Figure B.81 and B.82 in Appendix B.6, for z = 4r0 and z = 8r0, respectively.

The prominent harmonic peaks in the bottom of Figure 5.25 led to the question of the
origin of these harmonic components, as it seemed unlikely to originate from acousti-
cal disturbances in the air. Thus, the need to test the receiving electronics, which was
discussed in Section 3.3.8, and is further attended in Section 5.4.2.
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Figure 5.25: Frequency spectra of the steady state part of the received signal for various
V0,pp measured at z = r0. Transmitted signal with carrier frequency corresponding to R1
of the 20x2 disc.

The data extracted in Figure 5.25 above was extracted for the steady state region of the
received signal, as illustrated in Figure 5.26 below, wherever that was achievable. How-
ever, for greater and greater distances between transmitter and receiver and/or lower
excitation amplitudes, the steady state region becomes progressively less well-defined
and eventually vanishes.

In the latter case, the extracted values are dominated by fluctuations, random or not, as
the propagated pulse no longer has a significant strength with regard to the noise. An
example of this can be seen in Figure 5.27, in the case of lower nominal applied voltage
V0,pp (upper plots in the figure) for a fixed distance z = 8r0. Thus, the selected values
then become the latter part of the measured signal. Here, the first transient period of
the signal is expected to have died out as much as possible, thereby giving the purest
frequency content in the pulse achievable, before reaching the second transient period.
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Figure 5.26: Transmitted and received signal for R1 of the 20x2 disc, and V0,pp = 10 V,
measured at a distance z = r0. Red part of the bottom signal are the steady state region
of the signal extracted for Fourier analysis.

Figure 5.27: Measured response of a transmitted signal for R1 of the 20x2 disc for different
nominal excitation amplitudes V0,pp, at a distance z = 8r0. The red region corresponds
to the extracted parts of the signals, steady state or not, used for further calculations.

Similar to Figure 5.25 above, Fourier transforms of the measured responses of the excited
piezodisc were conducted for the second radial mode (R2). The Rayleigh distance being
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more than doubled for R2, again puts restraints on the possible distances between sender
and receiver. In addition, the microphone sensitivity for R2 is unknown, and thus the
actual magnitude of the transmitted response of the piezodisc around the second radial
mode cannot be interpreted from these results.

In Figure 5.28 below, excitation of the 20x2 disc at a frequency corresponding to R2
is presented. To the left in the figure, the oscilloscope reading V5m, with the extracted
part of the signal marked in red. The red part of the uppermost plot corresponds to
the first 1/3 of the pulse, the middle plot to the second 1/3, and the bottom plot cor-
responds to the last 1/3 of the measured response. The red sections of the measured
response were located through calculations based on the frequency, the speed of sound,
and the distance between the piezodisc and the microphone. Column two in Figure 5.28
depict the spectrum of the corresponding red part of V5m, and column three, the spectra
of the steady state part of the transmitted burst. The measurement was conducted at
a distance z = r0, for a nominal voltage amplitude of 10 V. It can be noted from the
spectra in Figure 5.28, that the first radial mode is excited throughout the burst, even
for a fundamental frequency corresponding to R2.

Similar figures for lower nominal applied voltages can be found in Appendix B.6. For
the lowest nominal voltages depicted in Figures B.83-B.85, the transmitted bursts were
completely buried in noise, and the second radial mode appears as a peak amongst other,
higher peaks of lower frequency. The latter was not unexpected, as the microphone is
designed, and accounted for, frequencies well below 150 kHz [74], as discussed in Section
3.3.9.
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Figure 5.28: Measured response of the 20x2 disc transmitting at a frequency correspond-
ing to R2 for V0,pp = 10 V, measured at z = r0. In the right column, the oscilloscope
reading, and marked in red the extracted signal calculated based of the speed of sound
and travel distance. In column two and three, the spectrum of the extracted measured
response, and the steady state of the transmitted burst, respectively. First row corre-
sponds to the first 1/3 of the burst, and the two next rows, to the next 1/3’s.

5.4.2 Characteristics of the receiving electronics

Measurements of the receiving electronics described in Section 3.3.8 are presented in the
following, alongside a brief discussion of the findings, as the significant distortion of the
measured response discovered through the preparatory measurements presented in Sec-
tion 5.4.1, had to be resolved prior to new sound pressure measurements.

The subsequent figures in this section show, in the left columns, the spectrum S(f) of the
Fourier transforms of the measured input and output pulses to the instrument(s), divided
by the magnitude of the fundamental frequency f0 of the transmitted signal. In the right
columns, two periods of the corresponding waveforms are depicted, each extracted from
the steady state of the signal. In the following figures, the blue curves correspond to the
input signal, while the red curves are the measured output signal, denoted V0m and VOUT

in Figure 3.8 from Section 3.3.8.

Distortion in the analog filter
Measurements of the Krohn-Hite 3940 filter for nominal applied peak-to-peak voltage
amplitudes V0,pp of 10 V, 15 V, and 20 V are presented in Figure 5.29 below. The signal
generator output was here terminated directly into the filter, and the transmitted signals
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measured across the output of the generator, as illustrated in Figure 3.8(a) in Section
3.3.8.

Figure 5.29: Fourier transforms of the measured response of the Krohn-Hite 3940 filter at
R1 for three different amplitudes, and corresponding waveform of the signals extracted
from the middle of the pulses.

As can be seen in Figure 5.29, the isolated Krohn-Hite filter revealed increasing harmonic
distortion for input peak amplitudes greater than 5 V (V0,pp/2). The measured response
carried significantly higher harmonic components than the measured input, suggesting
that the analog filter itself distorts the signal in the passband. From the manufacturer’s
datasheet, the maximum input signal amplitude is stated as ±4.5 Vp for carrier fre-
quencies lower than 1 MHz. The distortion is further said to be <0.2 % when using an
oscillator at 2.9 Vrms [84]. Thus, the measurements presented in Figure 5.29 are carried
out under conditions not accounted for by the manufacturer.

Moreover, the THD calculated for the first row in Figure 5.29, where peak voltage am-
plitude to the input of the filter is about 5 V, yields 0.45 % for the generated signal, and
0.54 % for the filter output. Which remains in line with the manufacturer’s declaration.
The same calculations for an input amplitude of 7.5 V and 10 V gave 3.68 %, and 13.93
%, from the output signal, respectively. Whereas the THD in the input signal to the
filter remained at about 0.22 % and 0.58 %, respectively, confirming that the filter indeed
distorts the signal when the input amplitude exceeds certain levels.

The voltage amplitudes tested were significantly higher than what would be expected
electrical response of a measured acoustic disturbance, but as the filter is connected in
cascade with a measurement amplifier, it might put restraints on the latter.
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Trimming of the waveforms in the measurement amplifier
The measurement amplifier, in cascade with a 40 dB attenuator to reduce the voltage
amplitude of the input signal, was tested with gains of 40 dB and 20 dB on the input and
output, respectively. An illustration of this can be found in Figure 3.8(b) from Section
3.3.8. With a 40 dB input gain, a maximum input voltage of 10 mV is marked on the
instrument. Figure 5.30 shows measurements with input peak voltage, VIN, less than or
equal to this limit. In Figure 5.31 on the other hand, input amplitudes equal to or higher
than the limit are presented. For input signals with amplitudes exceeding this value, the
light indicating selected output gain on the instrument, flashed continuously while the
measurements were conducted. The flashing light indicated an overload of the output
amplifier stage of the instrument, and the resulting waveforms can be seen in the two
lower plots in the right column of Figure 5.31 below.

Figure 5.30: Fourier transforms of the measured response of the Brüel & Kjær 2636
measurement amplifier at R1 for three different input amplitudes lower than or equal the
limit, and corresponding waveform of the signals extracted from the middle of the pulses.
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Figure 5.31: Same as for Figure 5.30, but with higher amplitudes.

A closer view of the wave tops of the measured signals, depicted in the plots to the right
in Figure 5.31, are presented for each input voltage amplitude Vin, in Figure 5.32 below.

Figure 5.32: Closer view of the flat wave tops of the measured signal depicted in Figure
5.31.

In Figure 5.30, there is no noteworthy distortion of the signals. Figure 5.31 however,
shows pruning of the waveform peaks due to an overload of the output channel of the
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amplifier. The trimming of the peaks was further inspected in Figure 5.32, where the
peaks were cut just below 13 V.

Combined effects of the cascaded receiving electronics
Lastly, the instruments on the receiving end of the acoustic measurement setup were
configured as intended for acoustic pressure measurements. The filter with equal configu-
ration as before was connected in cascade with the output of the measurement amplifier,
as shown in Figure 3.8(c) from Section 3.3.8, and measurements similar to those above
carried out. In Figure 5.33, the input signal amplitudes were kept under or at the thresh-
old value, while equal measurements for higher amplitudes are presented in Figure 5.34.

Figure 5.33: Fourier transforms of the measured response of the Brüel & Kjær 2636
measurement amplifier in cascade with the Krohn-Hite 3940 filter at R1 for three different
input amplitudes lower than or equal the threshold value, and corresponding waveform
of the signals extracted from the middle of the pulses.
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Figure 5.34: Same as for Figure 5.33, but here for input signals with higher amplitudes.

To investigate the impact of the output gain of the measurement amplifier, the gain
was reduced to 10 dB, and identical measurements were conducted. Selected results are
shown in Figure 5.35. Finally, the output gain was set to 0 dB, and the measurements
were re-run. The distortion seen in previous measurements was not prominent for similar
input signal amplitudes, and thus the input amplitude was increased further. Figure 5.36
below presents these results.
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Figure 5.35: Same as for Figure 5.34, but reduced output gain configuration (10 dB).
Input signal amplitudes are also somewhat different.

Figure 5.36: Same as for Figure 5.34, but reduced output gain configuration (0 dB). Input
signal amplitudes significantly increased compared to earlier measurements depicted in
above figures.

The measurement amplifier and filter in cascade show somewhat different output signal
characteristics than seen in Figures 5.29-5.31. Distortion of the output signal is already
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present in the bottom of Figure 5.33, where the input amplitude is equal to the measure-
ment amplifier in isolation to the bottom of Figure 5.30. The problem thus seemed to lie
with the Krohn-Hite filter, identified to be due to input peak voltage amplitudes greater
than 4.5 V [84], and thereby subject to distortion locally in the filter. The trimming
of the peaks depicted in Figure 5.31 and 5.32, are further altered and distorted when
terminated into the filter, as depicted in the two bottom plots of Figure 5.34.

Figures 5.35 and 5.36 show the effect of lowering the output gain setting of the measure-
ment amplifier. Here the input amplitudes to the measurement amplifier are significantly
increased to yield similar results to that of Figure 5.34.

The preceding results highlight two major limitations of the receiving electronics. Firstly,
the output channel of the measurement amplifier is susceptible to trimming of the wave-
form when the amplitudes reach a certain limit, and the output (and/or input) gain
setting thus has to be changed accordingly. Secondly, the Krohn-Hite filter’s input must
be restricted so that it does not exceed 4.5 V peak amplitude. Thus, for measurements
where the transmitter and microphone are in close vicinity of each other, and the ex-
citation amplitudes to the transmitter are high, the gain settings of the measurement
amplifier have to be altered accordingly to accompany this.

It is also noted in the manual to the measurement amplifier <0.1 % distortion at 50
kHz on the input section and <0.3 % at 50 kHz at the output section [85]. Adding the
likelihood of some distortion of the signal in the analog filter, the measured response at
the oscilloscope is likely to contain harmonics of the fundamental of some magnitude even
when appropriate gain settings are utilized.

5.4.3 On-axis sound pressure measurements

Axial sound pressure measurements of the disc at R1 were carried out as discussed in
Section 3.3.9. Voltage amplitude settings of V0,pp of multiples of 0.3 V and 5 V, up to
2.4 V and 20 V, were applied at the signal generator. The near field was measured with
range increments of r0/10 out to z = r0 (approximately 0.09 m), and beyond z = r0,
with increments of r0/2 along the axis out to z = 9.5r0. An example of a transmitted
and measured burst, and the corresponding spectra of the signals are presented in Figure
5.37. The SPL were computed for the measurements series, which are shown in the upper
part of Figure 5.38 below.
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Figure 5.37: Example of the transmitted and received (left) and spectra of the signals to
the right, for a axial sound pressure measurement in the vicinity of r0 with V0,pp = 20 V
for the 20x2 disc.

The effective axial sound pressure amplitudes of each series were then extrapolated to 1.1
m from the last known values. Voltage source sensitivities were then calculated using Eq.
(2.3.3), from the extrapolated sound pressure amplitudes at 1 m for each measurement
series, and the corresponding effective voltage amplitudes, calculated from the associated
measured transmitted signals from the signal generator. The voltage source sensitivities
were then plotted as a function of nominal applied voltage amplitudes at the signal gen-
erator, which is shown in the bottom part of Figure 5.38. The circular blue dots in the
figure designate the calculated voltage source sensitivities, whereas the dashed blue line
connecting the dots is a linear interpolation.

The SPL second harmonic component of the fundamental frequency were also computed
for the measurement series. This is presented in Figure 5.39, where the solid lines mark
the fundamental frequency component, and the dashed lines for equal color are the re-
spective second harmonic component of R1. For the second harmonic component, a new
microphone sensitivity had to be utilized, which was computed using a curve fit of the
microphone response explained in Section 3.3.6.
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Figure 5.38: Sound pressure level on the acoustic sound axis for the 20x2 disc as a function
of distance, and nominal applied voltage amplitude V0,pp, extrapolated from z = 9.5r0
out to 1.1 m, in the upper part of the figure. Calculated voltage source sensitivity SV

(bottom plot) of the 20x2 disc as a function of nominal applied voltage V0,pp. Effective
sound pressure taken from the extrapolated value at 1 m.

Figure 5.39: Sound pressure level on the acoustic sound axis for the 20x2 disc as a function
of distance, and nominal applied voltage amplitude V0,pp. Here shown for the fundamental
frequency in solid lines, and the respective second harmonics in dashed lines (colors for
respective series are identical).
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Axial sound pressure measurements, similar to that of the 20x2 disc displayed in Figure
5.38 above, were carried out for the 13x2 piezodisc for a frequency corresponding to R1.
Range increments for the axial measurements were equal to that of the 20x2 disc, but
the Rayleigh distance r0 of the 13x2 disc is shorter, and was approximated to about 0.06
m when the measurements were taken. The sound pressure levels calculated from the
measurements are displayed in the upper part of Figure 5.40 below. Extrapolation of the
last measured axial sound pressure amplitudes out to 1.1 m was again used to calculate
the voltage source sensitivities, shown at the bottom of Figure 5.40.

Figure 5.40: Sound pressure level on the acoustic sound axis for the 13x2 disc as a function
of distance, and nominal applied voltage amplitude V0,pp, extrapolated from z = 15r0
out to 1.1 m, in the upper part of the figure. Calculated voltage source sensitivity SV

(bottom plot) of the 20x2 disc as a function of nominal applied voltage V0,pp. Effective
sound pressure taken from the extrapolated value at 1 m.

5.4.4 Directivity

Measurements of the directivity function of the radiated sound beam for the frequency
corresponding to R1 were conducted at a distance z = 2r0 from the microphone. The
piezodisc was rotated with increments of 0.2◦ relative to its initial position in both direc-
tions, with a total rotation of 10◦ to each side of the sound beam axis. Seven different
voltage amplitudes were applied at the signal generator. The resulting directivity plot
is presented in Figure 5.41, to the left in the figure as effective pressure amplitude, and
to the right normalized to maximum pressure amplitude for the corresponding applied
voltage amplitude. Figure 5.42 shows the directivity measurements of the 20x2 disc,
compared to the Bessel directivity D(θ) (Eq. (2.17) from Section 2.3). The latter was
computed with the effective source radius calculated from the directivity measurements
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and is plotted in a black dashed line. Lower nominal applied voltages are grouped to the
left in the figure and higher voltages to the right.

In Figure 5.43, enlarged plots of the directivity function on the interval [-1.2◦, 1.2◦]
are shown. The measurements to the left in the figure were carried out using positive
rotational increments in θ, i.e., from -1.2◦ to 1.2◦, and to the right in the figure, the other
way around (negative increments).

Figure 5.41: Directivity measurements for R1 of the 20x2 disc for different nominal ap-
plied voltage amplitudes at the signal generator. To the left plotted as effective pressure,
and to the right normalized to maximum measured pressure amplitude as a function of
θ, for each measurement series.
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Figure 5.42: Normalized measured directivity function for R1 of the 20x2 disc compared
to the theoretical expression of the directivity functionD(θ), using the calculated effective
source radius of the disc.

Figure 5.43: Similar directivity measurements as presented in Figure 5.41, but on a
smaller interval around the sound beam axis. Measurement series separated due to more
noisy results for the low amplitude settings, as seen in the upper two plots. Measurement
series to the left carried out with negative rotational increments in θ, i.e., from +1 to -1.
Opposite (positive rotational increments) for the measurements series to the right.
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Measurements of the directivity function/beam pattern of R1 for the 13x2 disc were
carried out on the interval [-10◦, 10◦] relative to its original alignment to the sound axis,
with increments of 0.25◦. The resulting directivity function is presented in Figure 5.44
below. In Figure 5.45, the measured directivity function of the 13x2 disc is compared to
the theoretical Bessel directivity given in Eq. (2.17), using the effective source radius of
the disc. The three lowest V0,pp are shown to the left in the figure, and the four higher
nominal voltages, to the right.

Figure 5.44: Directivity measurements for R1 of the 13x2 disc for different nominal ap-
plied voltage amplitudes at the signal generator. To the left plotted as effective pressure,
and to the right normalized to maximum measured pressure amplitude as a function of
θ, for each measurement series.
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Figure 5.45: Normalized measured directivity function for R1 of the 13x2 disc compared
to the theoretical expression of the directivity functionD(θ), using the calculated effective
source radius of the disc.

5.4.5 Simulations

The effective source radius of the piezodisc for R1 was determined based on the measure-
ments above. Two approaches were attempted. Firstly, the angle θ needed in Eq. (4.4)
was found as the angle of minimum deviation between normalized pressure relative to
maximum pressure as a function of θ, and a tabulated value of Eq. (2.17), as described
in Section 4.2.2. The angle was located on both sides of θ = 0, and the mean was used in
Eq. (4.4). This showed rather poor results, especially for lower nominal applied voltage
amplitudes, and varied greatly when different measurement series were tested.

A second approach, using curve fits on the measured data to calculate θ showed more
repeatable results. Firstly, MATLABs curveFitter application was used to visualize and
test different fit types, and order, to the data. An example of this can be found in Ap-
pendix B.7. The resulting fit type was chosen to be a polynomial fit, where an order of
nine gave the best results.

In the end, polynomial approximations to the measurement series of V0,pp nominally
equal to 5 V, 10 V, 15 V, and 20 V, were used to determine the effective source radius.
A radius was calculated for each measurement series. Deviations between the computed
effective source radii were of arbitrary behavior, and less than ±0.3 % of the following
presented value. Thus, the mean value of the four was utilized, which was found to be
11.9023 mm, which is in agreement with the effective source radius found for an equal
disc by the author of [2] using FEMP. In comparison, the first approach gave an effective
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source radius equal to 11.9857 mm. The effective source radius calculated was then used
as an input parameter to the Bergen Code simulations for the R1 of the 20x2 disc. A
similar procedure was carried out for the 13x2 disc and the directivity measurements
presented in Figure 5.44, which gave an effective source radius of 5.3886 mm and 5.4157
mm, from curve fits, and raw measurements, respectively.

Simulations with effective source radii
Bergen Code simulations were carried out for both piezodiscs for every measurement
series. Effective source radius was determined for both discs as described above and
in Section 4.2.2. The source condition pressure amplitude p0 was calculated for each
measurement series as described in Section 4.2.3, based on the measured sound pressure
amplitude at a distance z = r1 in the far-field. The latter was chosen to be r1 = 5r0
and r1 = 8r0, for the 20x2 and 13x2 disc, respectively, as these distances showed better
overall agreement in the far-field, which are attended to later in this section.

The resulting SPL of the simulations are plotted in dashed lines in the upper part of
Figures 5.46 and 5.47 below, for the 20x2 and 13x2 disc, respectively. Measured SPL
for the discs are plotted in solid lines with equal color. The bottom plot in both figures
shows the discrepancy between simulated and measured values, and the dashed vertical
line marks the transition from the near field to the far-field (at the Rayleigh distance
r0). Table 5.12 lists the remaining input parameters used for the two discs. The listed
values are representative for all eight of the measurement series carried out for each disc,
but small deviations between the actual values per measurement series, to the one listed
exist, but are not presented here.

Deviations between linear (β = 0) and nonlinear (β = 1.2) simulated axial sound pressure
amplitudes were also computed for the measurements series of the 20x2 disc and 13x2
disc, and are presented in Figure 5.48.

Table 5.12: Simulation parameters used as input to the Bergen Code for the 20x2 disc
and 13x2 disc. Source condition p0 computed from sound pressure amplitudes at r1 = 5r0
and r1 = 8r0, respectively, but are not shown here.

20x2 disc

Parameter f0 p0 a c0 ρ0 β α2 T

Value 98.370 - 11.9023 347.51 1.156 1.2 3.89×10−11 26.18
Unit kHz Pa mm m/s kg/m3 - Np/m/Hz2 ◦C

13x2 disc

Parameter f0 p0 a c0 ρ0 β α2 T

Value 154.640 - 5.3886 347.23 1.178 1.2 2.67×10−11 25.71
Unit kHz Pa mm m/s kg/m3 - Np/m/Hz2 ◦C
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Figure 5.46: Simulated and measured axial sound pressure levels for the 20x2 disc in the
upper plot. Dashed graphs correspond to the simulated values for each measured pressure
series. In the bottom plot, the relative difference of the simulated and measured pressure
amplitudes. Pressure source condition p0 to the Bergen Code determined from measured
pressure values at z = r1 = 5r0. Effective source radius aeff = 11.90 mm used.

Figure 5.47: Same as Figure 5.46, but here for the 13x2 disc. Pressure source condition p0
to the Bergen Code determined from measured pressure values at z = r1 = 8r0. Effective
source radius aeff = 5.39 mm used.
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Figure 5.48: Discrepancy between the linear (β = 0) and nonlinear (β = 1.2) simulations
of the axial sound pressure amplitudes of the 20x2 disc (upper plot) and 13x2 disc (lower
plot).

Second harmonic component
The second harmonic component of the measured and simulated sound pressure ampli-
tudes for the 20x2 disc was investigated for the data presented in Figure 5.46. Figure
5.49 displays the measured (solid lines), and corresponding simulated (dotted lines) SPL
of the second harmonic component. The lower nominal voltages V0,pp are grouped in the
upper part of the figure, and higher V0,pp in the bottom part.
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Figure 5.49: Comparison of the sound pressure level of the measured (solid lines) and
simulated (dotted lines) second harmonic component, for the 20x2 disc. Simulations
with aeff = 11.90 mm, and r1 = 5r0. The measurement series with lower nominal applied
voltage amplitudes V0,pp in the upper part of the figure, and higher V0,pp in the bottom
part.

Impact of r1 for the simulations
The impact of the chosen distance r1 for the calculation of the source condition p0 was
modeled with the theoretical expression of a plane piston radiator, as in Eq. (4.9) from
Section 4.2.6. Distances z = r1 along the sound axis were tested for r1 = 2r0, where the
directivity measurements were carried out, r1 = 9.5r0 which was the last measured point
along the axis, and r1 = 5r0 which lies in between the two prior, for the 20x2 disc. The
effect is presented in Figure 5.50 below. As can be seen from the figure, adjusting r1
shifts the intersection of the 0 dB line (where the measured and theoretical amplitudes
are equal), and thus induces an increasing deviation in the opposite direction to the ad-
justment of r1. On this basis, the distances r1 = 5r0 and r1 = 8r0 were chosen for the
20x2 disc and 13x2 disc, respectively.

A comparison of simulated and measured sound pressure values can be found for the
three cases of r1 in Figures B.91-B.93 in Appendix B.9.1. An equal approach, to that
shown in Figure 5.50, to the measurement series of the 13x2 disc, can also be found in
Figure B.94 in Appendix B.9.1.
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Figure 5.50: To the left in the figure; measurement series of the sound pressure amplitude
of the 20x2 disc normalized to the pressure amplitudes p(r1 = 2r0), p(r1 = 5r0), and
p(r1 = 9.5r0), for each corresponding series. The theoretical expression of a plane piston
radiator modeled with equal parameters as the simulations for each series, calculated
for the same axial distance, and normalized, before being extrapolated on the interval.
To the right in the figure; relative discrepancy between the normalized measured and
theoretical sound pressure amplitudes, for the three cases of r1.

Reducing the effective source radius of the 20x2 disc
The effect of reducing the effective source radius in the simulations was found to yield an
increased source condition p0, and similarly increased sound pressure amplitudes along
the axis. The 0 dB intersection (equal amplitude) between measured and simulated
values, was still determined by r1. Simulations where the effective source radius was
decreased, were only carried out for a fixed distance of r1 = 9.5r0 for the 20x2 disc. This
is shown for effective source radii aeff = 10.07 mm (the measured radius of the 20x2 disc),
and aeff = 8.42 mm, in Figures B.95-B.97 in Appendix B.9.2. The latter effective source
radius was, somewhat arbitrary, chosen to be the radio of the effective and measured
source radius of the 13x2 disc, multiplied by the measured radius of the 20x2 disc. The
resulting simulated pressure amplitudes along the axis for z < r0 were seen to slightly
increase close to the transmitting source, but had less significant effect in the far-field
(z > r0).

However, for a r1 closer to the transmitting source the effect of reducing the effective
source radius could be less controlled, as the resulting discrepancy discussed above could
induce increased deviations in the other end. In addition, the approach elaborated in
Section 4.2.3 was based on the assumption that nonlinear effects in the sound radiation
can be neglected. Thus, for significant nonlinear sound radiation, the effects of moving
r1 along the axis can be more considerable.
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Chapter 6

Discussion
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6.1 Low voltage impedance measurements

Admittance measurements carried out with the impedance analyzer were in agreement
with the simulated values for the 20x2 disc. The first- and second radial modes were
found to be reasonably equal, but the thickness mode showed a slight downshift of about
2 kHz. Bandwidths found from the simulations were somewhat wider for R1 and TE1,
while R2 had a slightly sharper peak compared to the measurements.

The smaller disc displayed a poorer fit to the simulated values. Both R1 and R2 were
measured some kilo hertz higher, whereas TE1 was found 10 kHz lower than the sim-
ulated mode. The bandwidths displayed similar traits to that of the 20x2 disc, where
both R1 and TE1 were found to be wider in the simulations and R2 was more narrow.
The preceding was summarized in Table 5.3 in Section 5.1, where the Q-factors were
presented.

6.2 High voltage impedance measurements

6.2.1 Noise readings of the measurement circuit without output
from the signal generator

The Fourier transform of the noise readings depicted in Figure 5.2 in section 5.2.1 show
relatively similar noise characteristics. A comparison of the sum of the spectra yields
about a 38 % higher value for channel 2. This could suggest that channel 2 might be more
prone to noise than channel 1, and/or the connected measurement circuit contributes to
a more noisy picture. However, the values are low, and for the most part well below -100
dB relative to 1 V, and thus assumed to be negligible in the measurements that followed.

6.2.2 Inherent characteristics of the output signal of the signal
generator

Harmonic components are always present in electronic instruments and appear at multi-
ples of the fundamental carrier frequency. Signal imperfections seen in the measurements
of the output of the signal generator depicted in Figure 5.3, are claimed by the manufac-
turer to mainly be created in the digital to analog converter (DAC) [57]. Other elements
of the signal path may also contribute to the imperfections. Current leakage from the
cable connected to the generator’s ’Sync’ output connector can contribute to harmonic
distortion at lower frequencies and amplitudes [57]. The waveform DAC is however pro-
claimed the biggest source of non-harmonic spurious components (called spurs), where
harmonics are aliased, or folded back, into the passband of the signal generator, due to
nonlinearity in the DAC [57].
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The manufacturer proclaims harmonic distortion to be -60 dBc for peak-to-peak volt-
ages of less than 3 V, and -55 dBc for V0,pp > 3 V [57], for carrier frequencies less than 1
MHz. From Figure 5.4 it is clear that most of the harmonics lie at amplitudes in good
compliance with the manufacturer’s listed values. However, the 5th harmonic can be seen
to lie somewhere between -50 dBc and -55 dBc for peak-to-peak voltages less than 3 V.
The same can be said for the 3rd harmonic of the signals with higher nominal applied
voltages (more than 3 Vpp), which are close to -50 dBc.

It should also be noted that increasing the nominal applied voltage V0,pp seems to af-
fect the 2nd- and 3rd harmonic component for all three frequencies. The 2nd harmonic
components seem to be less significant as the amplitude of the signal generator is in-
creased, dropping about 10 dBc. The 3rd harmonic, initially around -70 dBc for V0,pp of
0.3 V, 0.6 V, and 1.2 V, jumps to about -50 dBc when the applied voltage is increased
to 5 V, 10 V, and 20 V.

An ideal square wave consists of odd multiples of the carrier frequency. A reduction
of the even harmonics, and a corresponding increase in the odd ones, could indicate that
the above-mentioned effects on the 2nd and 3rd harmonics in the signals are due to the
output signal acquiring square wave characteristics. Harmonic components in the mea-
sured signal can thus be interpreted as impurities and wave tops differing from that of a
pure sine wave [19]. The amplitudes of the harmonics were however very small, and no
distinct distortion in the output signals was observed during measurements.

6.2.3 Measurements of resistors in place of the piezodisc

The measurement conducted on the I-V circuit with a resistor in lieu of the piezodisc
displayed some peculiar features for the first radial mode (R1) of the 20x2 mm disc. The
frequency spectra of V2 in Figure 5.5 shows peaks arising in between the 2nd- and 3rd

harmonics. The even harmonics in general seem to be somewhat reduced for the calcu-
lated spectra based on the measurements for V2, as opposed to the measured output of
the signal generator, V1.

The suppression of even harmonics seems also to be the case for R2, but perhaps to
a lesser degree than for R1. In the case of TE1 in Figure B.6 in Appendix B.2, the
harmonics for the measured signals with lower excitation amplitudes seem to be buried
in noise, and thus less prominent. However, increasing the excitation amplitude seems to
elevate the harmonics from the noise floor and make them stand out, both the even- and
odd harmonics. It was also found, from the measurements of TE1, that the noise floor
seemed to grow as a function of frequency for the lower nominal applied voltages.

6.2.4 Measurements of the piezodisc

In the case of the first radial mode, the characteristics of the measured voltage over the
piezodisc in Figure 5.6 resembles that of the resistor in Figure 5.5. This may suggest
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that the characteristics displayed in the Fourier transform are a result of the measure-
ment circuit, and not that of the piezodisc placed in the circuit. A closer look at the
frequency range 0 kHz to 300 kHz in Figure 5.7 reveals that the somewhat turbulent area
between the 2nd and 3rd harmonic of the fundamental is supposedly suppressed as the
nominal applied voltage amplitude is increased, for both cases (resistor and piezodisc).
This might however be an effect of the relative amplitudes of the fundamental frequency,
and an increase in the corresponding side lobes.

Looking at the Fourier transform of the second radial mode in Figure B.8, there seems
to be less harmonic activity in the spectrum for V2. Both the 2nd and 3rd harmonic are
less prominent than that of the output of the signal generator. The transform of the
measurements of the thickness mode seen in Figure B.9, displays similar traits to that
of the 5 Ω resistor replacement. The harmonics of the output signal are far more visible
(left plot) than that of the piezodisc. However, the 2nd and 3rd remain prominent, while
the 5th and 7th are barely or not at all distinguishable from the noise for lower excitation
levels. In general, most of the harmonic peaks have amplitudes less than -55 dB to -60
dB, which lies around the impurities found in the signal generator output.

In Figure 5.8, the frequency spectra of the currents in the circuit for the 55 Ω resis-
tor were compared to the currents when the 20x2 piezodisc was placed in the circuit.
Harmonic peaks of the fundamental were found to be similarly prominent in both cases,
indicating that the frequency content seen was a result of the circuit itself and not the
behavior of the disc. This was further summarized in Table 5.4, where the THD was
computed for all three resonances. The values presented in the table indicate that the
harmonic distortion seen in Figures 5.5-5.8, mainly varies due to the load impedance
placed in the circuit, and the carrier frequency of the output signal, rather than the
applied voltage amplitude.

6.2.5 Calculations based on measurements on the I-V circuit

From the measurements of the 20x2 disc utilizing continuous waveform in Figures 5.10-
5.12, the relative phase shifts were achievable with the zero crossing method. It was
however noticeable more noise in the measurements corresponding to R2, as shown in
Figure 5.11. One reason for this can be the choice of the shunt resistor R with a resis-
tance as low as 2.175 Ω. These measurement series were carried out before soldering.

Later measurements using bursts, and corresponding measurements for the 13x2 disc
displayed a more noisy picture, and processing the data using the zero-crossing technique
was cumbersome. Thus, the frequency domain method discussed in Section 3.2.3 was
utilized to extract the phase and magnitude of the two voltage signals. However, new
measurements in the I-V circuit showed more pronounced noise and jump phenomenon
sporadically on the frequency intervals measured after testing, as can be seen from some
of the figures attached in Appendix B.4.
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Table 5.5 and 5.6 show the effect of higher applied voltages on the resonances of the
discs. Both elements displayed downshifts of the respective resonances for each of the
three modes and a widening of the bandwidth. A reduction in the conductance level and
a downshift of the resonances for increased excitation amplitudes agree well with other
findings [2].

The applied voltage is usually dependent on frequency, and it tends to decrease around
resonance (fs) [44]. The impedance measurements displayed a relative voltage drop
around resonance, as depicted in the upper left plot as V2/V1 in Figure 5.13 and 5.14, and
similarly in Figures B.10-B.66 in Appendix B.4. The voltage drop can from the figures
be seen to move in line with the corresponding maximum in conductance, which marks
the resonance frequency.

The resonance shifting found in the electrical impedance measurements in the I-V cir-
cuit is said to mainly originate from the SE term in Eq. (2.59), whereas an amplitude
reduction is due to the S2 term [9]. The strain squared, and cross term of the strain
and electric field, are also present in Eq. (2.57), which serves as the base for additional
voltage sources in the nonlinear Mason model presented by [6].

6.2.6 Calculated current in the circuit

The THD presented in Table 5.7 for the 20x2 disc showed little change in distortion of
the currents as the amplitudes were increased. Somewhat higher values were seen for the
first and second radial modes for V0,pp of 10 V, 15 V, and 20 V, for both continuous and
burst excitation. For TE1, no noteworthy increase was found.

For the 13x2 disc, distortion of the current signals was, in general, higher than for the
20x2 disc. A more significant increase in the distortion was also seen for R1 and R2, and
especially the latter, for increased nominal voltage amplitudes, as presented in Table 5.8.
The magnitudes of the first seven harmonics of R1 in Figure 5.20, showed an increase for
the 2nd and 4th harmonics for higher V0,pp, but the magnitudes were low (< -30 dB). The
overtones of R2 were however seen to increase as the applied voltage was increased.

A distinct distortion of the current, as reported for high voltage drive levels (65 V to
150 V peak voltage amplitude) by [9], was not prominent in the measurements conducted
in the I-V circuit. For about all of the resonance modes tested for the discs, the respective
current harmonics were found to be less than -30 dB relative to the fundamentals. An
exception was found for the second radial mode of the 13x2 disc, where current harmonics
displayed amplitudes in the range of -20 dB and -30 dB relative to the fundamental, for
the higher nominal voltages of 10 V, 15 V, and 20 V. The values are however significantly
lower than the reported values in [9]. There is, however, a considerable voltage amplitude
drive level difference between the reported values in [9] and the work carried out in this
thesis.
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Significant distortion of the measured voltage signals, and especially, high 2nd and 3rd

harmonic components as reported in [50], were not observed. Pronounced harmonic am-
plitudes of the first overtones were found in [50] for measured voltages in the range 2 V
to 25 V peak-to-peak voltage amplitude, as a function of current density, when the piezo-
electric sample was driven at its resonance frequency. The effective voltage amplitudes
of the measurements conducted in this work fall in the lower limit of this voltage range,
and less harmonic activity could be a result of insufficient excitation amplitudes of the
piezodiscs.

6.2.7 I-V circuit

The I-V circuit was the chosen approach to measure the impedance of the piezodisc.
More sophisticated circuits include bridge, resonant, RF I-V, network analysis, and auto-
balancing bridge method [54, 55], and could have served as alternative approaches. The
methods mentioned typically have an upper frequency range limit of 70 MHz to 300 MHz
[54], which is well within the frequency range of interest.

The bridge method yields high accuracy but needs to be manually balanced. The res-
onant method gives good results for high Q devices, but has to be tuned to resonance,
and is also said to give low impedance accuracy [54]. The I-V method ideally requires
a differential voltage probe to accurately measure the current in the circuit [54]. Such a
probe could potentially have reduced noise, and given higher measurement resolution in
the circuit, but was unfortunately not available. The RF I-V circuit is suited for mea-
surements of frequencies in the range 1 MHz to 3 GHz, and thus unsuited for this work.
The network analysis method’s main disadvantage is a narrow impedance measurement
range and besides requires recalibration when the measurement frequency is changed.
The auto-balancing bridge method is however promising but typically requires an LCR
meter as a part of the measurement setup [54]. Other methods include the constant volt-
age method, used in impedance analyzers, the constant current method, and the pulse
drive method [32].

6.3 Acoustical measurements in air

6.3.1 Preparatory sound pressure measurements

The spectra of the measured responses of the preparatory sound pressure measurements
in Figure 5.25 in Section 5.4.1, and Figures B.80-B.82 in Appendix B.6, revealed strange
harmonic behavior for shorter distances between the transmitting 20x2 piezodisc and mi-
crophone. Especially for the higher nominal applied voltages V0,pp, both even and odd
harmonics of the fundamental were of substantial magnitudes, beyond what seemed rea-
sonable to origin from acoustic disturbances, i.e., a significant radiated nonlinear sound
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field.

The fact that the salient harmonics could seem to die out as the piezodisc was moved
farther away from the microphone, was in itself not unexpected, as harmonic components
are attenuated more quickly than the fundamental [29], due to increased absorption in
line with the squared frequency dependency. In addition, the majority of the harmonic
generation happens within the near field (z < r0) of the transmitting source [30, 29],
and thus, as the distance z between the transmitter and receiver were increased, the
harmonic components would be expected to progressively die out. However, the odd
harmonics in Figures B.80-B.82 for higher V0,pp remained distinguishable from the noise
floor, but their magnitudes were somewhat arbitrary, thus likely to be of electrical origin
rather than from the radiated sound field.

The inspection of the receiving electronics that followed in Section 5.4.2 did confirm
the suspicion of the harmonics found in the preparatory sound pressure measurements,
especially in Figure 5.25, were in fact due to the receiving electronics, and unfortunate
gain settings of the measurement amplifier, combined with a voltage amplitude limitation
in the analog filter.

Measurements of the 20x2 disc for a transmitted burst with a fundamental frequency
corresponding to R2, presented in Figure 5.28, showed excitation of the discs first radial
mode (R1). The excitation of R1 was prominent throughout the burst. As the transient
periods of a burst contain a range of frequencies besides the (fundamental) carrier fre-
quency, these might excite other (in this case, unwanted) resonance modes of the disc as
well. This is in line with [86], where the authors found that a piezodisc’s surface motion
will tend towards the first radial mode after the initial stage of a transient period, as R1
is the last mode to be damped out. The magnitude of the radiated sound pressure for R1,
however, cannot be compared to the amplitude of R2, due to the insufficient knowledge
of the microphone response for the latter frequency.

In addition to the excitation of R1, multiples of some 30 kHz were also present in the
spectra. The latter was more prominent for the lower nominal voltages applied, as can be
seen from Figures B.83-B.86 in Appendix B.6. These peaks are likely due to resonances
in components of the receiving electronic [87].

6.3.2 Axial sound pressure

The axial sound pressure measurements carried out displayed similar traits across the
nominal applied voltages for the fundamental frequency, as can be seen from Figure 5.38
and 5.40, for the 20x2 disc and 13x2 disc, respectively. Significant nonlinear effects in the
medium would have been expected to cause the generation of higher harmonic compo-
nents, primarily in the near field [30], and thus decrease the amplitude in the fundamental
due to energy conversion [88]. This effect was not prominent for the measurements car-
ried out, and the sound pressure amplitudes seemed to decrease equally for the different

113



measurement series, due to spherical spreading and absorption.

Figure 5.37 showed an example of a transmitted and measured burst, and the corre-
sponding frequency spectra, for an axial sound pressure measurement of the 20x2 disc.
The excitation signal in the upper part shows harmonic multiples characteristic for all
the measurements carried out. Harmonic peaks are salient on the interval 0 kHz to 1000
kHz, with the magnitude of the 3rd harmonic in the vicinity of -40 dB relative to the
fundamental. The harmonic values are higher than what was found in the output of
an equal signal generator in Figure 5.4, but was consistent across the nominal voltages
applied and showed little effect of changes to the drive level.

Discrepancies between the measured and simulated sound pressure amplitudes increased
for both discs for shorter distances to the transmitting source, as seen in Figure 5.46 and
5.47. For both discs and all eight corresponding measurement series, the discrepancy at
z = r0, which marks the transition from the near field (z < r0) to the far-field (z > r0),
was found to be around -1 dB. The deviation remained less than ±0.5 dB in the far
field, and 0 dB for the distance z = r1 used to calculate the source condition p0 for the
series. The minor differences seen in Figures 5.46 and 5.47 between the corresponding
eight measurement series, for the 20x2 disc, and 13x2 disc, respectively, are more likely
to origin from noise and uncertainties in the measurement setup and signal processing,
rather than the acoustic radiation from the transmitting piezodiscs.

Second harmonic components of the sound pressure for the higher nominal applied volt-
ages, V0,pp = 10 V, 15 V, and 20 V, showed a similar decline to their respective simulated
values in the far-field, as can be seen in the lower part of Figure 5.49 for the 20x2 disc.
As the nominal applied voltages were reduced, the respective second harmonic ampli-
tudes showed increased discrepancy to the simulated values, as can be seen in the bottom
part of Figure 5.49. Especially for V0pp = 0.3 V, 0.6 V, and 1.2 V, the sound pressure
amplitude of the second harmonic components had fluctuating amplitude, and were in-
distinguishable from one another, leading to the belief that their magnitude was not of
physical behavior, but rather the result of electrical impurities in the instruments and
insufficient resolution. In general, the measured second harmonics amplitudes displayed
significant noise and fluctuations, which could indicate that for the nominal voltages uti-
lized, the resulting sound pressure amplitude of the second harmonics is small enough to
be dominated by impurities in the receiving electronic.

A linear simulation of the sound pressure, using the same parameters as the ones used in
the nonlinear simulations depicted in Figure 5.46 and 5.47, were carried out to quantify
the nonlinear loss in the medium for the sound propagation. The loss showed at most
-0.0006 dB and -0.0013 dB deviation at z = 1 m for the 20x2 disc and 13x2 disc, re-
spectively, as depicted in Figure 5.48. Thus, the neglection of nonlinear effects due to
the sound propagation in Section 4.2.3 was reasonable, for the nominal applied voltages
utilized and the measuring distance in this work.

The voltage source sensitivities presented at the bottom of Figure 5.38 and 5.40, were
found to be decreasing as the effective voltage amplitude got higher. In the strict linear
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case, the computed voltage source sensitivities should have remained at a constant level,
where an increased excitation voltage amplitude was accompanied by increased pressure
values. This was not the case, as the measured sound pressure amplitude did not increase
similarly to the applied voltage, and the efficiency declined.

Using the analogy of additional voltage sources Vc, from Eq. (2.58) in Section 2.5.3,
in an equivalent circuit, the decreased performance on the mechanical side with regard
to the increase on the electrical side, might be assigned dielectric losses. The dielectric
permittivity coefficient ε, which typically is assigned a constant value, has gotten signif-
icant attention in [4, 48, 49], amongst others. In [48], near linear relations between the
dielectric coefficient and the nominal electric field strength was found in the vicinity of
the threshold field level, which for the soft piezoceramics tested was about 5-10 V/mm.
It is however a complex picture, as can be interpreted from the nonlinear constitutive
equations presented in 2.5.3, and the additions of Eqs. (2.53)-(2.57), which require a
deliberate approach to the problem.

6.3.3 Directivity measurements

Measurements of the directivity were conducted at a distance z = 2r0, which lies beyond
the near field but is still not too far out in the far-field. Different excitation amplitudes
were utilized, but with the low efficiency in air, it is unlikely that nonlinear effects due
to sound propagation in the medium were significant. The directivity function for R1
displays similar traits across the different amplitudes for both discs. Significant nonlinear
effects would be expected to alter the beam pattern, by a flattening of the main lobe of
the fundamental [89, 90, 30], i.e., reduce the peak amplitude, as energy would have been
transferred to higher harmonic components [88, 30]. A resulting broadening of the main
lobe of the fundamental would then have been expected [89, 90]. Such effects would have
altered the calculations of the effective source radius, but were not the case for the mea-
surements conducted, as using either one of the measurement series gave similar results.

The directivity measurements of the 13x2 disc, displayed in Figure 5.44 (and Figure
5.45, but here less prominent due to the normalization), showed indentation for several
of the series. Fluctuations between the rotational increments were also present. This was
likely related to the measurement system itself, specifically the switching of analog gain
settings in the oscilloscope [19], and not the radiated sound field.

6.4 Comparison of the two discs

A difference in the position of the electrodes clamped against the discs during the electri-
cal measurements might have caused unwanted effects. The 20x2 disc had the electrodes
clamped towards the center of the disc, as is the desired form [91]. Whereas the 13x2 disc,
being significantly smaller and put in the same styrofoam slit, had the electrodes clamped
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against the outer rim of the disc, which can cause a downshift of the resonance frequency
and a higher impedance at resonance [91]. This has however remained constant through-
out the work, and should therefore serve as a constant source of error for the smallest disc.

Soldering of electrodes to the discs had distinct effects on the frequency response of
the elements. As summarized in Table 5.11, the resonances experienced relative shifts,
and the corresponding bandwidths were widened, with regard to before the soldering
process. For the 20x2 disc, the first radial mode was moved down, while R2 and TE1
shifted upwards. The soldering processes seemed to have a considerably bigger impact
on the 13x2 disc. Both R1 and R2 were shifted downwards to a greater extent than what
was seen for the 20x2 disc. The movement of R2 for the 13x2 disc was also in the oppo-
site direction to that found for the 20x2 disc. The thickness mode was however moved
upwards, as for the 20x2 disc.

A widening of the bandwidths was also evident, and the most significant increase was
found for the smallest element (13x2). Common for both discs, was the relatively greater
widening of the bandwidth for the first radial mode, which was close to doubled for the
smallest disc. The widening of the bandwidths was more similar for R2 and TE1 between
the two discs.

As shown in [91], increasing the solder mass used to connect the electrodes to the disc
will increase the change in frequency correspondingly. Thus, the larger frequency shifts
found for the smallest element (13x2) might be the result of adding a relatively greater
solder mass, compared to the mass of the disc itself, to the face of the disc. The downshift
of the second radial mode for the 13x2 disc also yields good agreement with [91], which
showed that the effect of increasing the thickness of a 10 mm disc yields a downshift in
resonance for R2.
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Chapter 7

Conclusion and further work

7.1 Conclusion

In this thesis, a measurement circuit was utilized to measure the impedance of piezodiscs
with higher excitation amplitude, and to investigate the frequency content of the current
and voltage signals across the discs. The discs were further used for acoustic measure-
ments in air to examine the nature of the radiated sound field of said discs, and the results
were compared to simulations of nonlinear sound propagation with the Bergen Code.

A modified I-V circuit was configured in order to carry out impedance measurements of
the piezodiscs with higher excitation amplitude. The impedance measurements showed a
clear resonance frequency downshift and a widening of the bandwidth, which is a typical
behavior nonlinearity in piezoceramics. Inspection of the harmonic distortion of the volt-
age and current signals in the circuit revealed little harmonic activity. The discrepancies
found across resonance modes and excitation levels were more likely to differ from one
another due to the load impedance of the two discs placed in the circuit.

Measurements of the axial sound pressure amplitude and the radiated sound beam did
not show prominent nonlinear effects in the radiated sound field. A second harmonic
component was, however, measurable for the measurement series with higher excitation
amplitudes. Nevertheless, the magnitude of the 2nd harmonic components was minuscule.

A nonlinear relation between the applied excitation voltage and the axial far-field pressure
amplitude, expressed through the voltage source sensitivity, indicated losses in either the
piezodisc or the medium, or a combination of the two. The drift from a linear relation
was prominent for nominal applied peak-to-peak voltages above 2.4 V.

The nonlinear loss in the medium was quantified through linear and nonlinear simu-
lations of the sound pressure with the Bergen Code and was found to be insignificant.
Thus, the radiated sound field was established to be primarily of linear behavior across
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the drive levels tested. In light of this, the nonlinear behavior of the two discs for in-
creased drive levels should be attributed primarily to nonlinearity in the piezoelectric
ceramic discs for the nominal voltage levels tested.

7.2 Further work

In light of the work conducted in this thesis, several ideas for further work come to mind.
The measurements, both electrical and acoustic, have utilized the same signal generator
with its inherent voltage limitation. It would be most interesting to conduct similar ex-
periments with a higher applied voltage using an appropriate amplifier. Amplification
of the output of the signal generator should be easily achieved for both the I-V circuit,
or equivalent circuits, and in the acoustic setup for air measurements. Investigation of
the vibration of the transducer surface could further be investigated by the use of precise
displacement measurements as the authors of [3] studied.

Looking at other fluids, measurements with higher amplitudes in water, with a possi-
ble incorporation of an I-V circuit, or similar, would be highly exciting. Combined with
simulations of a disc in water, it could perhaps be possible to further examine the behav-
ior of piezoelectric elements in the influence of higher amplitudes when the impedance
mismatch is less severe.

A nonlinear Mason model was introduced by [6] as an extension of the widely known
linear Mason model, used to characterize the behavior of piezoelectric elements. Meth-
ods and means to develop an appropriate model incorporating the nonlinear behavior
of an element could be an angle of attack. Such a model requires the determination of,
an adequate number of nonlinear coefficients, but could serve useful in the search for
accurate modeling of high-power transducers, as highlighted in [6].
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List of Acronyms and Abbreviations

ADC analog to digital converter.

DAC digital to analog converter.

dBc decibel relative to carrier (fundamental) level.

DFT discrete Fourier transform.

DUT device under test.

FD finite difference.

FE finite element.

FFT Fast Fourier transform.

FIR finite impulse response.

KZK Khokhlov-Zabolotskaya-Kuznetsov.

RMS root mean square.

SNR signal-to-noise ratio.

SPL sound pressure level.

THD total harmonic distortion.
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Appendix A

A.1 Absorption coefficient

The subsequent elaboration (the entirety of Appendix A.1) follows the ANSI/ASA S1.26-
2014 Methods for Calculation of the Absorption of Sound by the Atmosphere, where the
equations, relations and numerical values are given [39].

The absorption coefficient α can be expressed as the sum of four individual absorption
terms

α = αc + αrot + αvib,O + αvib,N, (A.1)

where αc is the classical absorption coefficient, αrot is an absorption term due to molecular
rotation relaxation, and αvib,O and αvib,N denotes absorption as a result of molecular
vibration relaxation of oxygen and nitrogen, respectively. The sum of the classical- and
rotational absorption coefficient can be written as

αc + αrot =

[
1.60× 10−10

(
T

Tr

) 1
2

f 2

](
pa
pr

)−1

, (A.2)

where T is the ambient temperature in kelvins, Tr is a reference temperature at 20 ◦C
of 293.15 K, pa the ambient atmospheric pressure in kPa, pr the reference pressure of 1
atm equal 101.325 kPa, and f the frequency in hertz. The coefficients introduced in Eq.
(2.23) in Section 2.3.5, aT and bT , correspond to the values 1.60 × 10−10(T/Tr)

0.5 and
(pa/pr)

−1 in Eq. (A.2), respectively.

The absorption coefficients due to vibrational relaxation of oxygen and nitrogen, re-
spectively, are given as

αvib,O = [(aλ)max,O]

(
f

c

)(
2frOf

f 2
rO + f 2

)
, (A.3)

αvib,N = [(aλ)max,N]

(
f

c

)(
2frNf

f 2
rN + f 2

)
, (A.4)
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where (aλ)max is the maximum absorption per wavelength due to vibrational relaxation,
and fr is the relaxation frequency, for the respective gases.

The maximum absorption per wavelength are calculated, for oxygen and nitrogen re-
spectively, as

(aλ)max,O =

(
2π

35

)
[10 log10(e

2)]XO

(
ΘO

T

)2

exp

(
−ΘO

T

)
, (A.5)

(aλ)max,N =

(
2π

35

)
[10 log10(e

2)]XN

(
ΘN

T

)2

exp

(
−ΘN

T

)
, (A.6)

where Θ is the characteristic vibrational temperature (K), and X is the fractional molar
concentration in dry air (dimensionless). They have the values Θ = 2239.1 K and X =
0.209 for oxygen, and Θ = 3352.0 K and X = 0.781 for nitrogen.

The relaxation frequencies of oxygen and nitrogen, respectively, are given as

frO =

(
pa
pr

){
24 +

[
(4.04× 104h)(0.02 + h)

0.391 + h

]}
, (A.7)

frN =

(
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pr

)(
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Tr

)− 1
2

×

(
9 + 280h exp

{
−4.170

[(
T

Tr

)− 1
3

− 1

]})
, (A.8)

where h is the molar concentration of water vapor in percent, which have the following
relation to pressure

h = hrel

(
psat
pr

)(
pa
pr

)−1

. (A.9)

Here, hrel is the specified relative humidity in percent, and psat the saturation vapor
pressure. The fraction psat/pr can be determined from the expression(

psat
pr

)
= 10V, (A.10)

where the purely temperature dependent exponent V are determined through

V = 10.79586

[
1−

(
T01

T

)]
− 5.02808 log10

(
T

T01

)
+ 1.50474× 10−4{1−×10−8.29692[(T/T01)−1]}
+ 0.42873× 10−3{−1 +×104.76955[1−(T01/T )]} − 2.2195983,

(A.11)

where T01 is the triple-point isotherm temperature equal to 273.16 K (0.01 ◦C). The
equations (A.9)-(A.11) are calculated with respect to a plane surface of liquid water for
the same temperature and pressure as that of the moist air.
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Appendix B

Supplementary figures

B.1 Characteristics of the output signal of the signal

generator

Figure B.1: Harmonic amplitudes relative to the fundamental in the measured output of
the signal generator for the fundamental frequencies corresponding to R1, R2, and TE1,
plotted in blue, red, and orange colors, respectively. Here shown for the first three odd
harmonics (n = 3, 5, 7).
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Figure B.2: Same as for Figure B.1, but here shown for the first three even harmonics (n
= 2, 4, 6).

Figure B.3: Same as for Figures B.1 and B.2, but here shown for the first three even
harmonics (n = 7, 9, 11).
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B.2 Measurements of resistors in place of the piezodisc

Figure B.4: Windowed readings from the oscilloscope (upper plots) and Fourier transform
(lower plots) for V1 and V2 with a resistor of 55 Ω in place of the piezodisc for R1. Multiple
series with varying applied voltage V0,pp displayed in each plot.

Figure B.5: Same as for Figure B.4, but for R2.
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Figure B.6: Similar to Figures B.4 and B.5, but with a 5 Ω resistor for TE1.

B.3 Measurements of the piezodisc

Figure B.7: Windowed readings from the oscilloscope (upper plots) and Fourier trans-
form (lower plots) for V1 and V2 for various nominal applied voltage amplitudes V0,pp

for a frequency corresponding R1. V2 is here the voltage measured across the 20x2 mm
piezodisc.
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Figure B.8: Same as for Figure B.7, but for R2.

Figure B.9: Same as for Figures B.7 and B.8, but for TE1.
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B.4 Calculations based on measurements on the I-V

ciruit

B.4.1 20x2 disc measured with continuous waveform for R1

Figure B.10: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 20x2 disc, for a frequency corresponding to R1, and with a nominal applied voltage
V0,pp of 0.3 V. Continuous waveform transmitted from the signal generator. Blue dots
corresponds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.11: Same as for Figure B.10, but here with V0,pp = 0.6 V.

Figure B.12: Same as for Figure B.10, but here with V0,pp = 1.2 V.
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Figure B.13: Same as for Figure B.10, but here with V0,pp = 5 V.

Figure B.14: Same as for Figure B.10, but here with V0,pp = 10 V.
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Figure B.15: Same as for Figure B.10, but here with V0,pp = 20 V.
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B.4.2 20x2 disc measured with continuous waveform for R2

Figure B.16: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 20x2 disc, for a frequency corresponding to R2, and with a nominal applied voltage
V0,pp of 0.3 V. Continuous waveform transmitted from the signal generator. Blue dots
corresponds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.17: Same as for Figure B.16, but here with V0,pp = 0.6 V.

Figure B.18: Same as for Figure B.16, but here with V0,pp = 1.2 V.
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Figure B.19: Same as for Figure B.16, but here with V0,pp = 5 V.

Figure B.20: Same as for Figure B.16, but here with V0,pp = 10 V.
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Figure B.21: Same as for Figure B.16, but here with V0,pp = 20 V.
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B.4.3 20x2 disc measured with continuous waveform for TE1

Figure B.22: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 20x2 disc, for a frequency corresponding to R2, and with a nominal applied voltage
V0,pp of 0.3 V. Continuous waveform transmitted from the signal generator. Blue dots
corresponds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.23: Same as for Figure B.22, but here with V0,pp = 0.6 V.

Figure B.24: Same as for Figure B.22, but here with V0,pp = 1.2 V.
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Figure B.25: Same as for Figure B.22, but here with V0,pp = 5 V.

Figure B.26: Same as for Figure B.22, but here with V0,pp = 10 V.
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Figure B.27: Same as for Figure B.22, but here with V0,pp = 20 V.
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B.4.4 20x2 disc measured with burst excitation for R1

Figure B.28: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 20x2 disc, for a frequency corresponding to R1, and with a nominal applied voltage
V0,pp of 0.3 V. Burst excitation transmitted from the signal generator. Blue dots cor-
responds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.29: Same as for Figure B.28, but here with V0,pp = 0.6 V.

Figure B.30: Same as for Figure B.28, but here with V0,pp = 1.2 V.

147



Figure B.31: Same as for Figure B.28, but here with V0,pp = 5 V.

Figure B.32: Same as for Figure B.28, but here with V0,pp = 10 V.
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Figure B.33: Same as for Figure B.28, but here with V0,pp = 15 V.

Figure B.34: Same as for Figure B.28, but here with V0,pp = 20 V.
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B.4.5 20x2 disc measured with burst excitation for R2

Figure B.35: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 20x2 disc, for a frequency corresponding to R2, and with a nominal applied voltage
V0,pp of 0.3 V. Burst excitation transmitted from the signal generator. Blue dots cor-
responds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.36: Same as for Figure B.35, but here with V0,pp = 0.6 V.

Figure B.37: Same as for Figure B.35, but here with V0,pp = 1.2 V.
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Figure B.38: Same as for Figure B.35, but here with V0,pp = 5 V.

Figure B.39: Same as for Figure B.35, but here with V0,pp = 10 V.
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Figure B.40: Same as for Figure B.35, but here with V0,pp = 15 V.

Figure B.41: Same as for Figure B.35, but here with V0,pp = 20 V.
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B.4.6 13x2 disc measured with continuous waveform for R1

Figure B.42: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 13x2 disc, for a frequency corresponding to R1, and with a nominal applied voltage
V0,pp of 0.3 V. Continuous waveform transmitted from the signal generator. Blue dots
corresponds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.43: Same as for Figure B.42, but here with V0,pp = 20 V.
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B.4.7 13x2 disc measured with continuous waveform for R2

Figure B.44: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 13x2 disc, for a frequency corresponding to R2, and with a nominal applied voltage
V0,pp of 0.3 V. Continuous waveform transmitted from the signal generator. Blue dots
corresponds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.45: Same as for Figure B.44, but here with V0,pp = 0.6 V.

Figure B.46: Same as for Figure B.44, but here with V0,pp = 1.2 V.
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B.4.8 13x2 disc measured with continuous waveform for TE1

Figure B.47: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 13x2 disc, for a frequency corresponding to R2, and with a nominal applied voltage
V0,pp of 0.3 V. Continuous waveform transmitted from the signal generator. Blue dots
corresponds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.48: Same as for Figure B.47, but here with V0,pp = 0.6 V.

Figure B.49: Same as for Figure B.47, but here with V0,pp = 1.2 V.
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Figure B.50: Same as for Figure B.47, but here with V0,pp = 5 V.

Figure B.51: Same as for Figure B.47, but here with V0,pp = 10 V.
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Figure B.52: Same as for Figure B.47, but here with V0,pp = 20 V.
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B.4.9 13x2 disc measured with burst excitation for R1

Figure B.53: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 13x2 disc, for a frequency corresponding to R1, and with a nominal applied voltage
V0,pp of 0.3 V. Burst excitation transmitted from the signal generator. Blue dots cor-
responds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.54: Same as for Figure B.53, but here with V0,pp = 0.6 V.

Figure B.55: Same as for Figure B.53, but here with V0,pp = 1.2 V.
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Figure B.56: Same as for Figure B.53, but here with V0,pp = 5 V.

Figure B.57: Same as for Figure B.53, but here with V0,pp = 10 V.
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Figure B.58: Same as for Figure B.53, but here with V0,pp = 15 V.

Figure B.59: Same as for Figure B.53, but here with V0,pp = 20 V.
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B.4.10 13x2 disc measured with burst excitation for R2

Figure B.60: Measured voltages V1 and V2 in the I-V circuit used to compute the
impedance through Eq. (3.7). The relative voltage amplitude V2/V1, and phase shift
∆φ between the two measured voltages, are here shown in the upper two plots, and the
computed conductance (real part of the impedance) in the bottom plot. Here shown for
the 13x2 disc, for a frequency corresponding to R2, and with a nominal applied voltage
V0,pp of 0.3 V. Burst excitation transmitted from the signal generator. Blue dots cor-
responds to measured values, and the red curve and dotted green curve in the bottom
plot corresponds to a smoothing spline of the data points, and conductance measurement
using the HP 4192A impedance analyser.
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Figure B.61: Same as for Figure B.60, but here with V0,pp = 0.6 V.

Figure B.62: Same as for Figure B.60, but here with V0,pp = 1.2 V.
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Figure B.63: Same as for Figure B.60, but here with V0,pp = 5 V.

Figure B.64: Same as for Figure B.60, but here with V0,pp = 10 V.
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Figure B.65: Same as for Figure B.60, but here with V0,pp = 15 V.

Figure B.66: Same as for Figure B.60, but here with V0,pp = 20 V.
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B.5 Calculated current in the circuit

B.5.1 20x2 disc continuous waveform

Figure B.67: Calculated current through the 20x2 piezodisc from the voltage drop over
the known resistor R (upper plot), and corresponding frequency spectrum (bottom plot),
for R1.

Figure B.68: Same as for Figure B.67, but for R2.
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Figure B.69: Same as for Figures B.67 and B.68, but for TE1.

B.5.2 20x2 disc bursts excitation

Figure B.70: Calculated current through the piezodisc from the voltage drop over the
known resistor R (upper plot), and corresponding frequency spectrum (bottom plot), for
the first radial mode (R1).
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Figure B.71: Same as for Figure B.70, but for R2.

Figure B.72: Same as for Figures B.70 and B.71, but for TE1.
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B.5.3 13x2 continuous waveform

Figure B.73: Calculated current through the 13x2 piezodisc from the voltage drop over
the known resistor R (upper plot), and corresponding frequency spectrum (bottom plot),
for R1.

Figure B.74: Same as for Figure B.73, but for R2.

173



Figure B.75: Same as for Figures B.73 and B.74, but for TE1.

B.5.4 13x2 burst excitation

Figure B.76: Calculated current through the piezodisc from the voltage drop over the
known resistor R (upper plot), and corresponding frequency spectrum (bottom plot), for
the first radial mode (R1).
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Figure B.77: Same as for Figure B.76, but for R2.

Figure B.78: Same as for Figures B.76 and B.77, but for TE1.
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B.6 Preparatory sound pressure measurements

Figure B.79: Frequency spectra of the steady state part of the received signal for various
V0,pp measured at z = r0. Transmitted signal with carrier frequency corresponding to R1
of the 20x2 disc.

Figure B.80: Same as for Figure B.79, but here for z = 2r0.

176



Figure B.81: Same as for Figure B.79 and B.80, but here for z = 4r0.

Figure B.82: Same as for Figures B.79-B.81, but here for z = 8r0.
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Figure B.83: Measured response of the 20x2 disc transmitting at a frequency correspond-
ing to R2 for V0,pp = 0.3 V, measured at z = r0. In the right column, the oscilloscope
reading, and marked in red the extracted signal calculated based of the speed of sound
and travel distance. In column two and three, the spectrum of the extracted measured
response, and the steady state of the transmitted burst, respectively. First row corre-
sponds to the first 1/3 of the burst, and the two next rows, to the next 1/3’s.

Figure B.84: Same as for Figure B.83, but here for V0,pp = 0.6 V.
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Figure B.85: Same as for Figure B.83 and B.84, but here for V0,pp = 1.2 V.

Figure B.86: Same as for Figures B.83-B.85, but here for V0,pp = 5 V.
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Figure B.87: Same as for Figures B.83-B.86, but here for V0,pp = 10 V.

Figure B.88: Same as for Figures B.83-B.87, but here for V0,pp = 20 V.
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B.7 Curve fit to directivity measurements in MAT-

LAB

Figure B.89: Screenshot of the MATLAB curveFitter application used to test curve fits
to directivity measurements. Shown in the picture is a 9th order polynomial fit to the
directivity function of the 20x2 piezodisc measured with a V0,pp of 5 V.
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B.8 Curve fit to calibrated microphone sensitivity in

MATLAB

Figure B.90: A 9th order Fourier curve fit to the calibrated Brüel & Kjær 4138 pressure-
field microphone sensitivity data using the MATLAB curveFitter application.
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B.9 Simulations

B.9.1 Impact of r1 for the simulations

Figure B.91: Simulated and measured axial sound pressure levels for the 20x2 disc in
the upper plot. Dashed graphs correspond to the simulated values for each measured
pressure series. In the bottom plot, the relative difference of the simulated and measured
pressure amplitudes. Pressure source condition p0 to the Bergen Code determined from
measured pressure values at z = r1 = 2r0. Effective source radius aeff = 11.90 mm used.
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Figure B.92: Simulated and measured axial sound pressure levels for the 20x2 disc in
the upper plot. Dashed graphs correspond to the simulated values for each measured
pressure series. In the bottom plot, the relative difference of the simulated and measured
pressure amplitudes. Pressure source condition p0 to the Bergen Code determined from
measured pressure values at z = r1 = 5r0. Effective source radius aeff = 11.90 mm used.
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Figure B.93: Simulated and measured axial sound pressure levels for the 20x2 disc in the
upper plot. Dashed graphs correspond to the simulated values for each measured pressure
series. In the bottom plot, the relative difference of the simulated and measured pressure
amplitudes. Pressure source condition p0 to the Bergen Code determined from measured
pressure values at z = r1 = 9.5r0. Effective source radius aeff = 11.90 mm used.
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Figure B.94: To the left in the figure; measurement series of the sound pressure amplitude
of the 13x2 disc normalized to the pressure amplitudes p(r1 = 2r0), p(r1 = 8r0), and
p(r1 = 15r0), for each corresponding series. The theoretical expression of a plane piston
radiator modeled with equal parameters as the simulations for each series, calculated
for the same axial distance, and normalized, before being extrapolated on the interval.
To the right in the figure; relative discrepancy between the normalized measured and
theoretical sound pressure amplitudes, for the three cases of r1.
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B.9.2 Reducing the effective source radius of the disc

Figure B.95: Simulated and measured axial sound pressure levels for the 20x2 disc in
the upper plot. Dashed graphs correspond to the simulated values for each measured
pressure series. In the bottom plot, the relative difference of the simulated and measured
pressure amplitudes. Pressure source condition p0 to the Bergen Code determined from
measured pressure values at z = 9.5r0. Effective source radius aeff = 11.90 mm used.

Figure B.96: Same as Figure B.95, but here for effective source radius aeff = 10.07 mm.
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Figure B.97: Same as for Figure B.95 and B.96, but here for effective source radius
aeff = 8.42 mm.
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Appendix C

MATLAB scripts

C.1 Automated measurements for the I-V circuit

C.1.1 MeasureMultiple.m

1 %% MeasureMultiple.m
2 % Ocean Technology (Acoustics) - Department of Physics and Technology
3 % Univeristy of Bergen
4 % By Aslak J. Thorbjoernsen , 2023
5 %
6 %%
7 % Clear variables , and disconnect/clear existing serial com.
8 clear
9 instrreset
10 pause (.5);
11 % Start serial communication with osc. and gen.
12 InitScopeAndGen
13
14 tic
15
16 % Change elem to alter folder to save
17 elem = [’20x2\TE1 BURST256\’,datestr(datetime(’today’))];’
18 elemDim = ’20x2mm’;
19 folderpath = fullfile(’C:\Users\zez009\OneDrive - University of

↪→ Bergen\MATLAB\Measurements\Data and scripts\’,elem);’
20
21 type = ’burst’;
22
23 % Enter voltage levels to measure
24 Vpp = [0.3 0.6 1.2 5 10 15 20];
25 % Enter frequencies
26 f = (1:1:1500) .* 1e3;
27 % Adjust R if replaced/changed
28 R = 2.175;
29
30 % Average time per frequency
31 if strcmp(type , ’burst’)
32 time_df = 52;
33 end
34 if strcmp(type , ’continuous ’)
35 time_df = 84;
36 end
37 tot_sec = time_df * length(f);
38 dnow = datetime(’now’);
39 et = milliseconds(dnow - datetime (1970 ,1 ,1));
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40 etfinish = et + tot_sec *1000;
41 dfinish =

↪→ datetime(etfinish ,’ConvertFrom ’,’epochtime ’,’TicksPerSecond ’ ,1000);
42
43 % Number of samples
44 numSamples = 100e3;
45 % Number of burst cycles
46 num_cycles = 120;% 1 to 1e6
47
48 disp(’------------------------------------------’)
49 disp([’Initializing measurements over ’,num2str(length(f)),’

↪→ frequenices , ’])
50 disp([’each over ’,num2str(length(Vpp)),’ nominal voltage levels.’])
51 disp([’Should take about ’,num2str(tot_sec /3600) ,’ hours to

↪→ complete.’])
52 disp([’Estimated completion time is ’,datestr(dfinish)])
53 disp([’Start time: ’, datestr(datetime(’now’))])
54 disp(’------------------------------------------’)
55
56 for i = 1: length(f)
57 try
58 % Re -establish connections to instruments periodically
59 if (mod(i,10) == 0)
60 connected = 0;
61 while ~( connected == true)
62 try
63 clear id_scope id_sig
64 instrreset
65 pause (.5);
66 instrreset
67 pause (.5);
68 InitScopeAndGen
69 pause (2);
70 disp([’Re -established connections to sig and

↪→ scope. Current time:
↪→ ’,datestr(datetime(’now’))])

71
72 str = writeread(id_scope ,’BUSY?’);
73 if strcmp(str ,"0")
74 connected = 1;
75 else
76 connected = 0;
77 end
78 catch
79 connected = 0;
80 disp([’Was NOT able to re -establish connections to

↪→ sig and scope. Current time:
↪→ ’,datestr(datetime(’now’))])

81 disp(’Trying to connect every 15 seconds til
↪→ success ...’)

82 pause (15);
83 end
84 end
85 end
86
87 % Display progress in command window
88 if (mod(i,floor(length(f) / 40)) == 0)
89 currTime = datetime(’now’);
90 ett = milliseconds(currTime - datetime (1970 ,1 ,1));
91 estfinish = ett + (( length(f)-i)*time_df)*1000;
92 ddfinish =

↪→ datetime(estfinish ,’ConvertFrom ’,’epochtime ’,’TicksPerSecond ’ ,1000);
93 disp(’----------’)
94 disp([’Progress: ’,num2str(round (((i/length(f)) * 100) /

↪→ 2.5) *2.5) ,’ %’])
95 disp([’Measuring at ’,num2str(f(i) / 1e3),’ kHz; looping

↪→ over ’,num2str(length(Vpp)),’ voltage leves ...’])
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96 disp([’Frequency nr. ’,num2str(i),’ of
↪→ ’,num2str(length(f))])

97 disp([’Current time: ’,datestr(datetime(’now’)),’,
↪→ estimated done: ’,datestr(ddfinish)])

98 end
99
100 saveData = 1;
101 % Loop over voltages
102 if strcmp(type , ’burst’)
103 curr = MeasureVppV2(id_scope , id_sig , Vpp , f(i), numSamples ,

↪→ num_cycles);
104 elseif strcmp(type , ’continuous ’)
105 curr = MeasureVpp(id_scope , id_sig , Vpp , f(i), numSamples ,

↪→ num_cycles);
106 else
107 error(’Unsupported type of waveform.’)
108 end
109 % Add readings to new struct
110 S.x1(1,1) = {curr.x1};
111 S.x2(1,1) = {curr.x2};
112 S.ch1(1,1) = {curr.ch1};
113 S.ch2(1,1) = {curr.ch2};
114 S.ts1(1,1) = {curr.ts1};
115 S.ts2(1,1) = {curr.ts2};
116 S.Fs(1,1) = {curr.Fs};
117 S.err(1,1) = {curr.err};
118 catch
119 disp(’Encountered errror in try -catch statement.’)
120 writeline(id_sig ,’OUTP OFF’);
121 pause (.5);
122 clear id_scope id_sig
123 instrreset
124 pause (.5);
125 instrreset
126 pause (.5);
127 InitScopeAndGen
128 pause (2);
129 disp([’Re -established connections to sig and scope. Current

↪→ time: ’,datestr(datetime(’now’))])
130 saveData = 0;
131 end
132 S.avgs (1,1) = curr.avgs (1,1);
133 S.Vpp(:,1) = transpose(Vpp);
134 S.f = f(i);
135 S.datetime = datetime(’now’);
136 S.num_cycles = num_cycles;
137
138 writeline(id_sig ,’OUTP OFF’);
139 pause (2);
140
141 % Save data to file
142 if saveData
143 try
144 currFile = [elemDim ,num2str(f(i) / 1e3),’kHz.mat’];
145 fullfilename = fullfile(folderpath ,currFile);
146 if ~isfolder(folderpath)
147 mkdir(folderpath)
148 end
149 disp([’Saving: ’, currFile ])
150 save(fullfilename ,’S’,’-v7.3’);
151 catch
152 disp([’Unsuccessful in saving: ’,currFile ])
153 end
154 end
155
156 clear S curr
157 end
158
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159 disp([’Finished at: ’, datestr(datetime(’now’))])
160 disp(’------------------------------------------’)
161
162 toc

C.1.2 MeasureVppV2.m

1 %% measure_VppV2.m
2 % Ocean Technology (Acoustics) - Department of Physics and Technology
3 % Univeristy of Bergen
4 % By Aslak J. Thorbjoernsen , 2023
5 %
6 function res = measure_VppV2(id_scope ,id_sig ,Vpp ,f,samples ,num_cycles)
7 % Function measure () returns a struct "res" with measurements
8 % from both channels of the oscilloscope.
9 % E.g., res.x1(1,:) is the x values to the res.ch1(1,:) values
10 % Rows in the variables in res , corresponds to new measurements at a
11 % different frequency.
12 % Frequency and Vpp information is stored in res.f and res.Vpp ,
13 % respectively. Each row corresponding to a row in res.x1 and res.ch1.
14
15 % Set desired number of samples from oscilloscope
16 writeline(id_scope ,[’HOR:RECO ’ num2str(samples)]); % New record length
17 pause (.1);
18
19 % Set appropriate time scale , s/div
20 %Hscale = [1e-9 2e-9 4e-9 10e-9 20e-9 40e-9 100e-9 200e-9 400e-9

↪→ 800e-9 2e-6 4e-6 10e-6 20e-6 40e-6 100e-6 200e-6 400e-6 1e-3
↪→ 2e-3 4e-3 10e-3 20e-3 40e-3 100e-3 200e-3 400e-3 1 2 4 10 20 40
↪→ 100 200 400]; % [s]

21 T = 1 / f;
22 nT = num_cycles / 4;
23 %indices = find(Hscale < T);
24 %t = Hscale(indices(end));
25 % Set horizontal scale to be about two periods per division , 10 divs

↪→ tot
26 writeline(id_scope , [’HOR:SCA ’, num2str(nT*T)]);
27 pause (.1);
28
29 % Set positive horizontal delay to center burst on oscilloscope
30 writeline(id_scope , [’HOR:DEL:TIM ’,num2str(T*( num_cycles /2))])
31 pause (.1);
32
33 % Set number of averages
34 avgs = pow2 (8); %
35 writeline(id_scope ,[’ACQ:NUMAV ’ num2str(avgs)]);
36 pause (.1);
37 writeline(id_scope , ’ACQ:MOD AVE; ACQ:STOPA SEQ’);
38 pause (.1);
39
40 % Set the appropriate output load to the signal generator
41 % Ask the signal generator for its current load
42 outpload = str2double(writeread(id_sig ,’OUTP:LOAD?’));
43 if outpload < 10e3
44 writeline(id_sig , ’OUTP:LOAD INF’); % High impedance termination
45 end
46
47 try
48 writeline(id_scope ,[ strcat(’CH’,num2str (1)),’:SCA ’,

↪→ num2str (50e-3)]);
49 pause (.1);
50 writeline(id_scope ,[ strcat(’CH’,num2str (2)),’:SCA ’,

↪→ num2str (50e-3)]);
51 pause (.1);
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52 % Set scope into sample mode
53 writeline(id_scope ,’ACQ:MOD SAM’);
54 pause (.1);
55 % Find appropriate vertical scaling for receiver signal
56 writeline(id_scope ,’ACQ:STATE RUN’);
57 pause (.1);
58 % Set mode back to averaging
59 writeline(id_scope ,’ACQ:MOD AVE’);
60 pause (.1);
61 % Get sample rate from oscilloscope
62 Fs = str2double(writeread(id_scope ,’HOR:SAMPLER?’));
63 pause (.1);
64
65 for ii = 1: numel(Vpp)
66
67 % 1. Configure the burst waveform
68 writeline(id_sig ,’FUNC SIN’);
69 writeline(id_sig ,[’FREQ ’,num2str(f)]);
70 writeline(id_sig ,[’VOLT ’,num2str(Vpp(ii))]);
71 writeline(id_sig ,’VOLT:OFFS 0.0’);
72 % 2. Select the triggerd or gated burst mode
73 writeline(id_sig ,[’BURS:MODE ’,’TRIG’]); % TRIG or GAT
74 % 3. Set the burst count (1 to 1e6)
75 writeline(id_sig ,[’BURS:NCYC ’,num2str(num_cycles)]);
76 % 4. Set the burst period
77 writeline(id_sig ,[’BURS:INT:PER ’,num2str (10*( num_cycles/f) +

↪→ 200e-9)]);
78 % 5. Set the burst starting phase
79 writeline(id_sig ,’BURS:PHAS 0.0’);
80 % 6. Select the trigger source
81 writeline(id_sig ,’TRIG:SOUR IMM’);
82 % 7. Enable the burst mode
83 writeline(id_sig ,’BURS:STAT ON’);
84 % 8. Enable output
85 writeline(id_sig ,’OUTP ON’);
86
87 % Ask sig gen for error
88 err = writeread(id_sig ,’SYST:ERR?’);
89 res.err(ii ,1) = err;
90 pause (.2);
91
92 % Display error in command window if gen. returns error
93 if ~strcmp(err ,’+0,"No error"’)
94 disp([’Signal generator encountered error : ’,err])
95 end
96
97 res.Fs(ii ,1) = Fs;
98 res.f(ii ,1) = f;
99 res.Vpp(ii ,1) = Vpp(ii);
100 res.avgs(ii ,1) = avgs;
101
102 % Set channel and clear offset
103 for ch = 1:2
104 writeline(id_scope ,[’DAT:SOU CH’ num2str(ch)]);
105 pause (.1);
106 writeline(id_scope , strcat(’CH’,num2str(ch),’:POS 0’));
107 pause (.1);
108 writeline(id_scope , strcat(’CH’,num2str(ch),’:OFFS 0’));
109 pause (.1);
110 writeline(id_scope ,[ strcat(’CH’,num2str(ch)),’:SCA ’,

↪→ num2str(Vpp(ii) / 2 / 3)]);
111 pause (.1);
112 end
113
114 % Set scope into sample mode
115 writeline(id_scope ,’ACQ:MOD SAM’);
116 pause (.1);
117 % Find appropriate vertical scaling for receiver signal
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118 writeline(id_scope ,’ACQ:STATE RUN’);
119 pause (.1);
120 % Set mode back to averaging
121 writeline(id_scope ,’ACQ:MOD AVE’);
122 pause (1);
123
124 % Read both channel 1 and 2 from the scope
125 [res.x1(ii ,:),res.ch1(ii ,:),res.ts1(ii)] =

↪→ DPORead(id_scope ,1,samples);
126 [res.x2(ii ,:),res.ch2(ii ,:),res.ts2(ii)] =

↪→ DPORead(id_scope ,2,samples);
127
128 writeline(id_sig , ’OUTP OFF’);
129 pause (.1);
130 end
131
132 % Turn off output from signal generator
133 writeline(id_sig , ’OUTP OFF’);
134 catch
135 writeline(id_sig , ’OUTP OFF’);
136 end
137 end

C.1.3 MeasureVpp.m

1 %% measure_Vpp.m
2 % Ocean Technology (Acoustics) - Department of Physics and Technology
3 % Univeristy of Bergen
4 % By Aslak J. Thorbjoernsen , 2023
5 %
6 function res = measure_Vpp(id_scope ,id_sig ,Vpp ,f,samples)
7 % Function measure () returns a struct "res" with measurements
8 % from both channels of the oscilloscope.
9 % E.g., res.x1(1,:) is the x values to the res.ch1(1,:) values
10 % Rows in the variables in res , corresponds to new measurements at a
11 % different frequency.
12 % Frequency and Vpp information is stored in res.f and res.Vpp ,
13 % respectively. Each row corresponding to a row in res.x1 and res.ch1.
14
15 % Set desired number of samples from oscilloscope
16 write(id_scope ,[’HOR:RECO ’ num2str(samples)]); % New record length
17 pause (.2);
18
19 % Set appropriate time scale , s/div
20 %Hscale = [1e-9 2e-9 4e-9 10e-9 20e-9 40e-9 100e-9 200e-9 400e-9

↪→ 800e-9 2e-6 4e-6 10e-6 20e-6 40e-6 100e-6 200e-6 400e-6 1e-3
↪→ 2e-3 4e-3 10e-3 20e-3 40e-3 100e-3 200e-3 400e-3 1 2 4 10 20 40
↪→ 100 200 400]; % [S]

21 T = 1 / f;
22 nT = 2;
23 %indices = find(Hscale < T);
24 %t = Hscale(indices(end));
25 % Set horizontal scale to be about two periods per division , 10 divs

↪→ tot
26 write(id_scope , [’HOR:SCA ’, num2str(nT*T)]);
27 pause (.2);
28
29
30 % Set number of averages
31 avgs = pow2 (6); %
32 write(id_scope ,[’ACQ:NUMAV ’ num2str(avgs)]);
33 pause (.2);
34 write(id_scope , ’ACQ:MOD AVE; ACQ:STOPA SEQ’);
35 pause (.2);
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36
37 % Set scope into sample mode
38 %writeline(app.instrument.scope ,’ACQ:MOD SAM’);
39 % Find appropriate vertical scaling for receiver signal
40 %writeline(app.instrument.scope ,’ACQ:STATE RUN’);
41 % Set mode back to averaging
42 %writeline(app.instrument.scope ,’ACQ:MOD AVE’);
43
44 % Set the appropriate output load to the signal generator
45 %writeline(id_sig , ’OUTP:LOAD 50’);
46 % Ask the signal generator for its current load
47 outpload = str2double(writeread(id_sig ,’OUTP:LOAD?’));
48 if outpload < 10e3
49 writeline(id_sig , ’OUTP:LOAD INF’); % High impedance termination
50 end
51
52
53 try
54 writeline(id_sig ,[’APPL:SIN ’, num2str(f), ’ HZ, ’,

↪→ num2str(Vpp (1)),’ VPP , ’, ’0 V’])
55 pause (.2);
56 writeline(id_sig , ’OUTP ON’);
57 pause (2);
58 %DPOScaleVertical(id_scope ,1,samples);
59 %pause (.5);
60 %DPOScaleVertical(id_scope ,2,samples);
61 %pause (.5);
62 write(id_scope ,[ strcat(’CH’,num2str (1)),’:SCA ’, num2str (50e-3)]);
63 pause (.2);
64 write(id_scope ,[ strcat(’CH’,num2str (2)),’:SCA ’, num2str (50e-3)]);
65 pause (.2);
66 % Set scope into sample mode
67 writeline(id_scope ,’ACQ:MOD SAM’);
68 pause (.1);
69 % Find appropriate vertical scaling for receiver signal
70 writeline(id_scope ,’ACQ:STATE RUN’);
71 pause (.1);
72 % Set mode back to averaging
73 writeline(id_scope ,’ACQ:MOD AVE’);
74 pause (.1);
75 % Get sample rate from oscilloscope
76 Fs = str2double(writeread(id_scope ,’HOR:SAMPLER?’));
77
78 for ii = 1: numel(Vpp)
79 % Set new frequency , and amplitude
80 writeline(id_sig ,[’APPL:SIN ’, num2str(f), ’ HZ, ’,

↪→ num2str(Vpp(ii)),’ VPP , ’, ’0 V’])
81 pause (.2);
82 writeline(id_sig , ’OUTP ON’);
83 pause (2);
84
85 % Ask sig gen for error
86 err = writeread(id_sig ,’SYST:ERR?’);
87 res.err(ii ,1) = err;
88 pause (.2);
89 if ~strcmp(err ,’+0,"No error"’)
90 disp([’Signal generator encountered error : ’,err])
91 end
92
93 res.Fs(ii ,1) = Fs;
94 res.f(ii ,1) = f;
95 res.Vpp(ii ,1) = Vpp(ii);
96 res.avgs(ii ,1) = avgs;
97
98 % Set scope into sample mode
99 writeline(id_scope ,’ACQ:MOD SAM’);
100 pause (.2);
101 % Find appropriate vertical scaling for receiver signal
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102 writeline(id_scope ,’ACQ:STATE RUN’);
103 pause (.2);
104 % Set mode back to averaging
105 writeline(id_scope ,’ACQ:MOD AVE’);
106 pause (.2);
107
108 % Scale DPO channels to optimize data sampling
109 DPOScaleVertical(id_scope ,1,samples);
110 pause (.5);
111 DPOScaleVertical(id_scope ,2,samples);
112 pause (.5);
113
114 % Set scope into sample mode
115 writeline(id_scope ,’ACQ:MOD SAM’);
116 pause (.2);
117 % Find appropriate vertical scaling for receiver signal
118 writeline(id_scope ,’ACQ:STATE RUN’);
119 pause (.2);
120 % Set mode back to averaging
121 writeline(id_scope ,’ACQ:MOD AVE’);
122 pause (2);
123
124 % Read both channel 1 and 2 from the scope
125 [res.x1(ii ,:),res.ch1(ii ,:),res.ts1(ii)] =

↪→ DPORead(id_scope ,1,samples);
126 [res.x2(ii ,:),res.ch2(ii ,:),res.ts2(ii)] =

↪→ DPORead(id_scope ,2,samples);
127
128 writeline(id_sig , ’OUTP OFF’);
129 pause (1);
130 end
131
132 % Turn off output from signal generator
133 writeline(id_sig , ’OUTP OFF’);
134 catch
135 writeline(id_sig , ’OUTP OFF’);
136 end
137 end

C.1.4 DPOScaleVertical.m

1 %% DPOScaleVertical.m
2 % Ocean Technology (Acoustics) - Department of Physics and Technology
3 % Univeristy of Bergen
4 % By Aslak J. Thorbjoernsen , 2023
5 %
6 function DPOScaleVertical = DPOScaleVertical(id_scope ,ch,samples)
7
8 % DPO Vertical scale options
9 %Vscale = [1e-3 2e-3 5e-3 10e-3 20e-3 50e-3 100e-3 200e-3 500e-3 1 2 5

↪→ 10]; % [V]
10 Vscale = [20e-3 50e-3 100e-3 200e-3 500e-3 1 2 5 10]; % [V]
11
12 % Set channel and clear offset
13 write(id_scope ,[’DAT:SOU CH’ num2str(ch)]);
14 write(id_scope , strcat(’CH’,num2str(ch),’:POS 0’));
15 write(id_scope , strcat(’CH’,num2str(ch),’:OFFS 0’));
16
17 % Scale down
18 ydata = DPOReadYdata(id_scope ,ch,samples);
19 if abs(max(ydata)) < 15000
20 k = 10;
21 nit = 0;
22 while abs(max(ydata)) < 15000 && k ~= 1
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23 currScale =
↪→ str2double(writeread(id_scope ,strcat(’CH’,num2str(ch),’:SCA?’)));

24 i = find (~(Vscale -currScale));
25 k = max([1,i-1]);
26 write(id_scope ,[ strcat(’CH’,num2str(ch)),’:SCA ’,

↪→ num2str(Vscale(k))]);
27 pause (.5);
28 ydata = DPOReadYdata(id_scope ,ch,samples);
29 nit = nit + 1;
30 if nit == 5
31 disp([’Err: Quit scaling loop after 5 scalings for channel

↪→ ’,num2str(ch)])
32 disp(datestr(datetime(’now’)))
33 break
34 end
35 end
36 end
37
38 % Scale up
39 ydata = DPOReadYdata(id_scope ,ch,samples);
40 if abs(max(ydata)) > 27500
41 k = 10;
42 nit = 0;
43 while abs(max(ydata)) > 27500 && k ~= length(Vscale)
44 currScale =

↪→ str2double(writeread(id_scope ,strcat(’CH’,num2str(ch),’:SCA?’)));
45 i = find (~(Vscale -currScale));
46 k = min([ length(Vscale),i+1]);
47 write(id_scope ,[ strcat(’CH’,num2str(ch)),’:SCA ’,

↪→ num2str(Vscale(k))]);
48 pause (.5);
49 ydata = DPOReadYdata(id_scope ,ch,samples);
50 nit = nit + 1;
51 if nit == 5
52 disp([’Err: Quit scaling loop after 5 scalings for channel

↪→ ’,num2str(ch)])
53 disp(datestr(datetime(’now’)))
54 break
55 end
56 end
57 end
58
59 end

C.1.5 DPOReadYdata.m

1 function ydata = DPOReadYdata(id_scope ,ch,samples)
2
3 noB = 2; % Number of bytes per word (8-bit if 1, 16-bit if 2, ...)
4 write(id_scope ,[’DAT:SOU CH’ num2str(ch)]); % Velge kanal. ch=1 betyr

↪→ CH1
5 % Record length per visible time interval , affecting the sample rate
6 %rec_len = str2double(writeread(id_scope ,’HOR:RECO?’));
7
8 % Set what samples to retrieve
9 write(id_scope ,’DAT:START 1’);
10 write(id_scope ,[’DAT:STOP ’ num2str(samples)]);
11
12 % Read the data
13 writeline(id_scope ,’ACQ:STATE RUN’);
14 while str2double(writeread(id_scope , ’BUSY?’))
15 pause (.5);
16 end
17 write(id_scope ,’CURV?’);
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18
19 if noB == 2
20 ydata = readbinblock(id_scope ,’int16 ’);
21 elseif noB == 1
22 ydata = readbinblock(id_scope ,’int8’);
23 else
24 error(’Unsupported word length ’);
25 end
26 flush(id_scope); % Flush the termination character from the scope
27
28
29 end

C.1.6 DPOread.m

1 %% DPORead.m
2 % Adjusted 2021 -11 -04 by AOP:
3 % - Byte order and word length controlled by InitScope (16-bit)
4 % - Cleaned up old code (still found in GitLab)
5 % - Using visadev in InitScope instead of the deprecated visa

↪→ statement:
6 % => Update from the deprecated binblockread function to readbinblock
7 % => Update from fprintf and freadf to write and read
8 % - Corrected an error in the calculation of wf. Now including YOF.
9
10 % Use the DPO3000 Series Programmer Guide when editing the script.
11
12 function [x,wf,tidsskala] = DPORead(id_scope ,ch,samples)
13
14 noB = 2; % Number of bytes per word (8-bit if 1, 16-bit if 2, ...)
15
16 write(id_scope ,[’DAT:SOU CH’ num2str(ch)]); % Velge kanal. ch=1 betyr

↪→ CH1
17 pause (.1);
18 %{
19 % Record length per visible time interval , affecting the sample rate
20 rec_len = str2double(writeread(id_scope ,’HOR:RECO?’));
21
22 if nargin () == 3
23 if samples > rec_len
24 warning(’The record length is set too low. Adjusting and

↪→ waiting 10 s...’)
25 write(id_scope ,[’HOR:RECO ’ num2str(samples)]); % New record

↪→ length
26 pause (10);
27 elseif samples < rec_len
28 warning(’Retrieving less than the record length (full view).’)
29 end
30 else
31 samples = rec_len;
32 end
33 %}
34
35 % Set what samples to retrieve
36 write(id_scope ,’DAT:START 1’);
37 pause (.1);
38 write(id_scope ,[’DAT:STOP ’ num2str(samples)]);
39 pause (.1);
40
41 % disp([’Samples: ’ num2str(samples)])
42
43 % Read the data
44 writeline(id_scope ,’ACQ:STATE RUN’);
45 while str2double(writeread(id_scope , ’BUSY?’))
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46 pause (.5);
47 end
48 write(id_scope ,’CURV?’);
49 pause (.1);
50
51 if noB == 2
52 ydata = readbinblock(id_scope ,’int16 ’);
53 elseif noB == 1
54 ydata = readbinblock(id_scope ,’int8’);
55 else
56 error(’Unsupported word length ’);
57 end
58 flush(id_scope); % Flush the termination character from the scope
59
60 %% Scaling of the data
61 % Horizontal scaling
62 tidsskala = str2double(writeread(id_scope ,’HOR:SCA?’));
63 pause (.1);
64 % Horizontal offset
65 xze = str2double(writeread(id_scope ,’WFMO:XZE?’));
66 pause (.1);
67 % Horizontal increment
68 xin = str2double(writeread(id_scope ,’WFMO:XIN?’));
69 pause (.1);
70 % Vertical multiplying factor
71 ymu = str2double(writeread(id_scope ,’WFMO:YMU?’));
72 pause (.1);
73 % Vertical offset
74 yze = str2double(writeread(id_scope ,’WFMO:YZE?’));
75 pause (.1);
76 % Digital vertical offset
77 yof = str2double(writeread(id_scope ,’WFMO:YOF?’));
78 pause (.1);
79
80 % Time vector
81 x = (0:( length(ydata) -1))*xin + xze;
82 % Voltage/current vector
83 wf = (ydata -yof)*ymu + yze;

C.1.7 InitScopeAndGen.m

1 instrreset
2 pause (.2);
3
4 %num_cycles = 100; % 1 to 1e6
5
6 % Init signal generator
7 id_sig = visadev(’ASRL5:: INSTR’);
8 id_sig.BaudRate = 57600;
9 id_sig.FlowControl = ’hardware ’;
10 pause (0.2);
11
12 %{
13 % 1. Configure the burst waveform
14 writeline(id_sig ,’FUNC SIN’);
15 writeline(id_sig ,[’FREQ ’,num2str(f)]);
16 writeline(id_sig ,[’VOLT ’,num2str(V)]);
17 writeline(id_sig ,’VOLT:OFFS 0.0’);
18 % 2. Select the triggerd or gated burst mode
19 writeline(id_sig ,[’BURS:MODE ’,’TRIG’]); % TRIG or GAT
20 % 3. Set the burst count (1 to 1e6)
21 writeline(id_sig ,[’BURS:NCYC ’,num2str(num_cycles)]);
22 % 4. Set the burst period
23 writeline(id_sig ,[’BURS:INT:PER ’,num2str (2*( num_cycles/f) + 200e-9)]);
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24 % 5. Set the burst starting phase
25 writeline(id_sig ,’BURS:PHAS 0.0’);
26 % 6. Select the trigger source
27 writeline(id_sig ,’TRIG:SOUR IMM’);
28 % 7. Enable the burst mode
29 writeline(id_sig ,’BURS:STAT ON’);
30 %}
31
32
33 % Init DPO
34 %id_scope = visadev(’USB0 ::0 x0699 ::0 x0410 :: C010246 ::INSTR ’); %

↪→ original one
35 id_scope = visadev(’USB0 ::0 x0699 ::0 x0410 :: C011044 ::INSTR ’);
36 write(id_scope , ’DATA:ENCDG SRIBINARY;WIDTH 2’);
37 pause (0.2);
38 write(id_scope , ’CH1:COUP AC’);
39 pause (0.2);
40 write(id_scope , ’CH2:COUP AC’);
41 pause (0.2);

C.2 Simulation parameters

C.2.1 Density of air

1 % densityAir.m
2 % Ocean Technology (Acoustics) - Institute of Physics and Technology
3 % University of Bergen
4 % By Aslak Jentoft Thorbjoernsen , 2023
5 function rho = densityAir(t,p,hrel ,xco2)
6 % Input parameters
7 % t: temperature in degrees celsius
8 % p: absolute pressure [Pa]
9 % h: relative humidity [%] (e.g. 25 % as 25)
10 % xco2: molecular fraction of CO2 in air
11 % Validity of model
12 % 600 hPa <= p <0 1100 hPa
13 % 15 C <= T <= 30 C
14
15 % Default value of the molecular fraction of CO2 (400 ppm), if not

↪→ specified
16 if ~exist("xco2","var")
17 xco2 = 0.000400;
18 end
19 if p < 50e3
20 error(’Pressure given as hPa or kPa? Must be [Pa].’)
21 end
22 if t > 50
23 error(’Temperature given as Kelvin? Must be [C]’)
24 end
25 if (p < 60e3) || (p > 110e3)
26 warning(’Model only valid for 60 kPa <= p <= 110 kPa.’)
27 end
28 if (t < 15) || (t > 30)
29 warning(’Model only valid for 15 <= t <= 30 [C].’)
30 end
31 if hrel < 1
32 warning(’Is relative humidity given as %, e.g., 25 % as 25?’)
33 end
34
35 % Conversion from % to [0,1]
36 h = hrel / 100;
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37
38 %% Constant for computing compressibility and xv
39 % https :// iopscience.iop.org/article /10.1088/0026 -1394/45/2/004/ met
40 % Picard 2008
41 a0 = 1.58123e-6; % [K/Pa]
42 a1 = -2.9331e-8; % [1/Pa]
43 a2 = 1.11043e-10; % [1/(K Pa)]
44 b0 = 5.707e-6; % [K/Pa]
45 b1 = -2.051e-8; % [1/Pa]
46 c0 = 1.9898e-4; % [K/Pa]
47 c1 = -2.376e-6; % [1/Pa]
48 d = 1.83e-11; % [K^2/Pa^2]
49 e = -0.765e-8; % [K^2/Pa^2]
50
51 % Constant for enhancement factor f used to compute xv
52 alp = 1.00062;
53 be = 3.14e-8; % [1/Pa]
54 gam = 5.6e-7; % [1/K^2]
55
56 % Constants for vapour pressure at saturation , psv
57 A = 1.2378847e-5; % [1/K^2]
58 B = -1.9121316e-2; % [1/K]
59 C = 33.93711047;
60 D = -6.3431645 e3; % [K]
61
62 %% Equation for Z and constants unchanged from CIPM -81/91
63 % Picard 2008
64 % T: temperature in Kelvin
65 % t: temperature in degrees celcius
66 T = 273.15 + t;
67
68 % Enhancement factor f
69 f = alp + be*p + gam*(t^2);
70 % Vapour pressure at saturation
71 psv = 1 * exp(A*(T^2) + B*T + C + D/T);
72 % Molecular fraction of vater vapour
73 xv = h * f * (psv / p);
74 % Compressional constant Z
75 Z = 1 - (p/T) * (a0 + a1*t + a2*(t^2) + (b0 + b1*t)*xv + (c0 +

↪→ c1*t)*(xv^2)) + ((p^2) / (T^2)) * (d + e*(xv^2));
76
77 %% Calculations of density
78 % Picard 2008
79 pa = ((3.483740 + 1.4446*( xco2 - 0.0004))) * (p / (Z*T))*(1 -

↪→ 0.3780* xv) / 1e3;
80
81 rho = pa;
82 end

C.2.2 Absorption coefficient

1 % absorptionInAir.m
2 % Ocean Technology (Acoustics) - Institute of Physics and Technology
3 % University of Bergen
4 % By Aslak Jentoft Thorbjoernsen , 2023
5 function [a,alpha] = absorptionInAir(f,p,hrel ,t)
6 %
7 % Calculations follows the ANSI/ASA S1.26 -2014 American National

↪→ Standard
8 % Methods for Calculation of the Absorption of Sound by the Atmosphere
9 %
10 % Input parameters
11 % f: frequency [Hz]
12 % p: absolute pressure [Pa]
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13 % hrel: relative humidity [%] (e.g. 25 % as 25)
14 % t: temperatures [degrees C]
15 % Returns
16 % a: attenuation coefficient in decibels per meter [dB/m]
17 % alpha: attenuation coefficient in Neper per meter [Np/m]
18
19 if p < 20e3
20 error(’Pressure given as hPa or kPa? Must be [Pa].’)
21 end
22 if t > 50
23 error(’Temperature given as Kelvin? Must be [C]’)
24 end
25 if hrel < 1
26 warning(’Is relative humidity given as %, e.g., 25 % as 25?’)
27 end
28
29 % Conversion to Kelvin
30 T = 273.15 + t;
31 % Conversion to kPa
32 P = p / 1e3;
33
34 % Reference values
35 T0 = 273.16; % [K] - triple -point isothermal temperature (+0.01 C)
36 Pref = 101.325; % [kPa]
37 Tref = 293.15; % [K] - reference room temperature 20 degrees C
38
39 V = 10.79586 * (1-(T0/T)) - 5.02808 * log10(T/T0) + 1.50474e-4 * (1 -

↪→ 10^( -8.29692*(T/T0 - 1))) + 0.42873e-3 * (-1 + (10^(4.76955 * (1
↪→ - (T0/T))))) - 2.2195983;

40 % Molar concentration h of water vapor
41 h = hrel * (10^V) * (P/Pref)^-1;
42
43 % Relaxation frequency for O2
44 fr_O = (P/Pref) * (24 + (((4.04 e4 * h) * (0.02 + h)) / (0.391 + h)));
45 % Relaxation frequency for N
46 fr_N = (P/Pref) * (T/Tref)^( -1/2) * (9 + 280*h*exp ( -4.170*

↪→ ((T/Tref)^( -1/3) - 1)));
47
48 % Long version (ANSI/ASA Annex A)
49 %{
50 XO = 0.209;
51 XN = 0.781;
52 OO = 2239.1; % [K]
53 ON = 3352.0; % [K]
54 % Speed of sound as used in the standard
55 c = 343.2 * ((T/Tref)^(1/2));
56 % Maximum atmospheric absorption in a distance of one wavelength
57 % (vibrational relaxation)
58 alambda_maxO = 1.559 * XO * ((OO / T)^2) * exp(-OO / T);
59 alambda_maxN = 1.559 * XN * ((ON / T)^2) * exp(-ON / T);
60 % Molecular absorption caused by vibrational relaxation of
61 % oxygen and nitrogen , respectively
62 avibO = alambda_maxO * (f / c) * ((2 * fr_O * f) / (fr_O^2 + f^2));
63 avibN = alambda_maxN * (f / c) * ((2 * fr_N * f) / (fr_N^2 + f^2));
64
65 % acr = acl + arot
66 % acl: viscosity , heat conduction , and diffusion processes
67 % arot: molecular absorption caused by rotational relaxation
68 acr = (1.60e-10 * (T/Tref)^(1/2) * f^2) * (P/Pref)^(-1);
69
70 % Attenuation coefficient [dB/m]
71 a = (acr + avibO + avibN);
72 % Attenuation coefficient [Np/m]
73 alpha = (acr + avibO + avibN) / 8.686;
74 %}
75
76 % Preferred calculation of the attenuation coefficient (ANSI/ASA)
77 % Attenuation coefficient [dB/m]
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78 a = 8.686 * f^2 * ((1.84e-11 * (P/Pref)^(-1) * (T/Tref)^(1/2)) +
↪→ (T/Tref)^( -5/2) * (0.01275 * exp ( -2239.1/T) * (fr_O/(fr_O^2 +
↪→ f^2))) + 0.1068 * exp ( -3352/T) * (fr_N / (fr_N^2 + f^2)));

79 % Attenuation coefficient [Np/m]
80 alpha = f^2 * ((1.84e-11 * (P/Pref)^(-1) * (T/Tref)^(1/2)) +

↪→ (T/Tref)^( -5/2) * (0.01275 * exp ( -2239.1/T) * (fr_O/(fr_O^2 +
↪→ f^2))) + 0.1068 * exp ( -3352/T) * (fr_N / (fr_N^2 + f^2)));

81
82 end

C.3 Electric calculations

C.3.1 Zero-crossing method

1 function times = zero_crossings(s,x,M)
2 % Finds the M first zero crossings from input s, and returns the
3 % corresponding values in x.
4 % The algorithm uses a 25-point average to smoothen the signal to

↪→ remove
5 % noise/fluctuation at the zero crossings.
6 % Cublic spline interpolation is further used to get an appropriate
7 % value of the zero crossing.
8
9 if ~( length(s) == length(x))
10 error(’Error: Input vectors s and x are of different length.’)
11 end
12
13 % FIR filter
14 N = 25;
15 b = (1/N) * ones(1,N);
16 a = 1;
17 y = filter(b,a,s);
18
19 % Locate positive values
20 n = y(N:end) > 0;
21 y = y(N:end);
22 x = x(N:end);
23
24 % Counters
25 j = 1;
26 k = 0;
27 for i = 1: length(n)-1
28 % End interation if M number of zero -crossings are found
29 if k == M
30 break
31 end
32 L = 100;
33 if n(i) == 0 && n(i+1) == 1
34 % Time step
35 dt = x(i+1) - x(i);
36 % Cubic spline interpolation
37 yq = interp1(x,y,x(i):dt/L:x(i+1),’spline ’);
38 % Extracting the index of the value closest to zero
39 [~,ind] = min(abs(yq));
40 times(j) = x(i) + dt * ((ind -1)/(L-1));
41 j = j + 1;
42 k = k + 1;
43 elseif n(i) == 1 && n(i+1) == 0
44 dt = x(i+1) - x(i);
45 yq = interp1(x,y,x(i):dt/L:x(i+1),’spline ’);
46 [~,ind] = min(abs(yq));
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47 times(j) = x(i) + dt * ((ind -1)/(L-1));
48 j = j + 1;
49 k = k + 1;
50 end
51 end
52 end

C.3.2 Sliding average filter omitting NaN values

1 function [Yout ,Xout] = FIRavg(N,Yin ,Xin)
2 % Sliding average window
3 % The function will return the filtered signal , omitting NaN values in

↪→ the
4 % Yin vector and scaling remaining coefficients in the sliding average
5 % window , such that length(windowcoefficients) <= N.
6 % In other words , if 4 of 20 (N) values in the current window is NaN ,
7 % then the coefficients will be (1/16) and not (1/20).
8 %
9 if ~exist(’Xin’,’var’)
10 Xin = zeros(1,length(Yin));
11 end
12
13 for n = N:length(Yin)
14 if sum(isnan(Yin(n-(N-1):n))) == N
15 y(n-(N-1)) = NaN;
16 else
17 y(n-(N-1)) = sum(Yin(n-(N-1):n) .* (~isnan(Yin(n-(N-1):n)) *

↪→ (1 / sum(~ isnan(Yin(n-(N-1):n)))) ) ,’omitnan ’);
18 end
19 end
20
21 % Return corresponding x vector to filtered y values
22 Xout = Xin(N:end);
23 Yout = y;
24 end
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