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Abstract

Hydropower is a major energy source in Brazil, and long-term hydropower
production planning is crucial both for maintaining energy and water security
in the country. The amount of water that is available to electricity production
in the reservoirs have changed in the recent years, and there is an urgent
need to understand the cause(s) of these changes, and whether observed
streamflow trends will persist, reverse or amplify in the future.

In this thesis, I therefore separate externally forced precipitation and
evaporation trends and variability from internal variations originating in the
ocean for three hydrographic catchments in Brazil: Óbidos catchment in
Amazon, Propria catchment in São Francisco and Porto Murtinho catch-
ment in Paraguay. I compare an ocean anomaly assimilation experiment of
Norwegian Climate Prediction Model (NorCPM) to an externally forced his-
torical experiment and observed streamflow, precipitation and evaporation
in the catchments.

The results indicate that the multi-decadal increasing streamflow trend
in Amazon is (partly) externally forced, and might therefore persist, but that
the SON streamflow is tightly connected to JJA precipitation variation which
is shown to be driven by ocean variation, and may therefore reverse in the
future. The long-term decrease of precipitation in São francisco is likely to be
caused by internal variability, and is therefore likely to (partly) restore in the
future, but results indicate that decadal streamflow variations in the basin
is substantially impacted by other factors than precipitation as well. São
Francisco catchment is found to be strongly connected to DJF precipitation
variations that the model is unable to replicate. In Paraguay, I find that the
austral summer streamflow is tightly connected to interannual precipitation
variability that originates in the ocean in austral winter and spring. The
steep significant decrease in streamflow over the last decades in Paraguay
catchment is likely to have additional causes than precipitation, according to
the results.

All the results have implications for hydropower and water management
planning in the three catchments in Brazil.
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Chapter 1

Introduction

Hydropower is the largest contributor to renewable energy in the world (Inter-
national Energy Agency, 2022b), and Brazil is the country that produces the
second most hydropower (International Energy Agency, 2012). More than
65 % of the electricity in the country is hydropower, making Brazil one of the
least carbon-intensive energy sectors in the world, and one of the countries
that relies the most on electricity from hydropower (International Energy
Agency, 2022a). Hydropower production planning in the country is crucial,
both for maintaining energy security and for reducing carbon emissions in
the future.

At the same time, water scarcity is projected to increase in South America
(Caretta et al., 2022 and references therein), and most of Brazil is projected
to become drier (Zaninelli et al., 2019; Reboita et al., 2022) and to experience
more rainfall variability in the future (Alves et al., 2020).

Droughts have already started to affect hydropower production and en-
ergy security in recent years. All of the most severe and intense droughts
over the last 60 years have occurred after 2011, and 2012-2014 were the
first years where all regions of Brazil experienced drought at the same time
(Cunha et al., 2019). Sobradinho reservoir in the northeastern part of the
country reached filling degrees of 1 percent in 2015 and 2 precent in 2017,
and Cantareira reservoir in the state of Sao Paulo was down to 5 percent
capacity in 2015 (Abatan et al., 2022).

There is an urgent need to understand the reason(s) for these recent
changes, as this can help to understand if the changes will persist, amplify
or reverse in the future. The knowledge on the reasons for changed pre-
cipitation and inflow into Brazilian hydropower plants is essential to ensure
successful planning, both for energy companies and government. Identifying
climatic factors that influence hydropower production is also valuable in the
development of seasonal prediction models.
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As pointed out in the IPCC 6th Assessment report (2022): ”In the energy
sector, a large number of studies document the impact of extreme climate
events (e.g., droughts or extreme temperature days) on production of hy-
dropower and thermoelectric power, yet there are limited studies that mea-
sure trends in energy production due to long-term climate change. This
remains a knowledge gap.” (Caretta et al., 2022, pp. 586).

Part of this missing knowledge is what I will try to uncover, when I use
the Norwegian Climate prediction model to separate influence from long term
climate change and slow natural variability in the climate system for three
large hydrographic catchments in Brazil. The aim of the thesis is to be able
to identify whether the recent observed changes in streamflow - especially
over the last decades - can be traced back to internal variability or not, and
using this result to make a certified guess to whether the observed trends of
decreasing or increasing water flow over the last decades are likely to reverse,
amplify or persist.
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Chapter 2

Background

In this chapter, I will explain why research on hydropower is important in
Brazil, and why information about precipitation and evaporation variability
and trends in the basins is key to good planning. I will then introduce the
three catchment areas that are analysed in the thesis, and describe their
climates as well as relevant large scale patterns that influence the rainfall
in the chosen regions. Lastly, I will explain modes of variability that are
influencing precipitation in the three catchment areas.

2.1 Hydropower

2.1.1 Basic principles of hydropower

Hydropower is a method of generating electricity by leading water flow to
drive a turbine, utilizing the potential energy in the height difference between
the water surface and the turbine. The potential energy is transformed to
mechanical energy in the turbine, which is transformed to electrical energy
in the generator (Jaffe, 2018, pp. 593). Hydropower is a renewable energy
source: it is the hydrological cycle that is ”recharging” the water, bringing
water back to higher elevations (Locher and Scanlon, 2012).

There exists many different types of hydropower installations, made for
different purposes. Run-of-river systems are the most simple ones. They
produce energy mainly from the natural river flow, and make little changes
to the surroundings. The production varies greatly on daily, weekly and
seasonally time scales (International Energy Agency, 2012).

Reservoirs - made artificially or by damming up existing lakes - is an-
other typical installation. Reservoirs are less variable on shorter time scales,
because producers can control the water outflow based on demand. Large
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reservoirs can save water for months, seasons, and some even years. Most
reservoirs are multi-purpose: providing services like irrigation or flood pro-
tection in addition to electricity production (International Energy Agency,
2012). Hydropower plants come in a wide size range. By the Brazilian
government, plants with a capacity of < 30 MW are considered small-scale
hydropower plants (International Energy Agency, 2012)

Hydropower reservoirs are often installed along a river in a cascade, where
the inflow into a reservoir depends on the outlet from the upstream reser-
voir (among other variables, see equation 2.2). Pumped storage is a type
of reservoir that - in addition to a turbine - has an electric pump that can
pump water back to the upper reservoir at low demand, which can be used
to produce electricity at high demand, thereby ”storing” surplus energy (In-
ternational Energy Agency, 2012).

Even though hydropower installations may harm the local environment
by disturbing ecosystems and local wildlife (Jaffe, 2018) and causing pop-
ulation displacement and disturbance of local communities and ingenious
people (Locher and Scanlon, 2012), the technology holds several advantages
over other sources of energy. Compared to other sources of renewable en-
ergy, hydropower is a mature, flexible and reliable technology (Locher and
Scanlon, 2012).

Furthermore, hydropower offers production control and grid stabilizing
effects (Locher and Scanlon, 2012). As opposed to other renewable energy
sources such as solar power and wind power, where energy production varies
greatly throughout the day, week and month - and electricity is produced
accordingly - hydropower generation is controllable (Wörman, 2012). Oper-
ators control the energy production from a hydropower plant by regulating
the flow from the reservoir. In that way, hydropower can be used to bal-
ance the grid (Wörman, 2012). Hence, hydropower is especially convenient
to ensure a steady electricity flow in the grid with irregular renewable energy
sources taking a growing share of the energy mix. For these reasons, knowl-
edge about the future water available for hydropower production is key to
safe grid planning, and to utilize this powerful renewable energy source in
the most optimal way possible.

Electricity produced by hydropower is proportional to the river flow through
the turbine. It also depends on other factors, which are more or less constant.
The power generated by a hydropower plant is expressed as in equation 2.1
(Wörman, 2012, pp. 43, Jaffe, 2018, pp. 593).

P = η ·Qp · ρ · g · h (2.1)

Where Qp is the river flow used for production (m3/s), h is the hydraulic
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head (the height difference between the reservoir and the outlet, m), ρ is the
density of water (kg/m3), g is the gravitational constant (m/s2), and η is the
efficiency of the plant (depending on type of turbine etc.). Large turbines
in modern hydroelectric plants can operate at an efficiency of 96 % or more
(Jaffe, 2018, pp. 594).

The streamflow - which limits the electricity production - is controlled
by precipitation and runoff patterns (International Energy Agency, 2012).
Precipitation is the main restrictor of water availability, although evaporation
and deep infiltration into the soil also affect the amount of water flowing into
the reservoirs (Wörman, 2012, pp. 42). This is why hydropower production
typically varies on an annual time scale, and annual total river discharge sets
a limit to the amount of energy that can be produced (Wörman, 2012, pp.
41).

The streamflow in a specific river leading to a reservoir depends on the
total drainage area for that river (the catchment area), the total rainfall, the
evaporation and other factors that are expressed in the following equation
(Wörman, 2012, pp. 42).

QR = AW (P − ET −D) + dS/dt (2.2)

Where QR is the total natural river flow (m3/s), AW is the size of the
catchment (m2, the area leading downhill to the river), P is the precipitation
rate (m/s), ET is the evapotranspiration rate (m/s), D is the net groundwa-
ter discharge (m/s) and dS/dt is the change in stored water in the upstream
reservoir (m3/s). Note that QR is only explaining the natural flow. Compet-
ing water use purposes such as irrigation and water consumption along the
river will also change the amount of water available for hydropower produc-
tion (Wörman, 2012).

Climate change studies for hydroelectric management often include the
above mentioned variables in different combinations, where precipitation is
considered the most important variable to study (Dias et al., 2018). Other
meteorological variables such as temperature and evapotranspiration and
non-meteorological variables such as land use changes and water consump-
tion changes, are also often studied in combination with precipitation (Dias
et al., 2018 and references therein).

Due to the limited scope of a master thesis, I will focus on the meteo-
rological variables in this thesis. I will mainly look at precipitation - and
its relationship with streamflow. Additionally, I will include evaporation in
some of the analyses.
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2.1.2 Energy market and hydropower in Brazil

Brazil is one of the countries in the world with the larges share of hydropower
in the energy mix, and the country is the second largest hydroelectricity
producer in the world (International Energy Agency, 2012). More than 65
% of the electricity in Brazil comes from hydropower (International Energy
Agency, 2022a). Fossil fuels and biofuels are the second and third largest
sources for electricity in the country, and over the last ten years, wind power
electricity production has increased rapidly (International Energy Agency,
2022a). Still, Brazil remains heavily reliant on hydropower.

There are 1313 operating hydropower plants in the country, out of which
218 are considered medium- or large-sized with a capacity of > 30 MW (Dias
et al., 2018). These 218 hydroelectric power plants stands for more than 94
% of the total installed hydropower capacity. The hydropower plants are
located in all main regions of the country, with the main concentration in
the southeast part (Dias et al., 2018).

Itaipu is Brazil’s largest - and the world’s second largest - hydroelectric
power plant with an installed installed capacity of 14 000 MW. Itaipu is
located along the Parana River in the southern part of the country. Brazil’s
second largest hydroelectric power plant is Belo Monte in the Amazon region.
This plant has a total installed capacity of 11 233 MW, and is the third largest
in the world. Other important hydroelectric power plants are Sobradinho
(1050 MW) in the Sao Francisco river in the northeast part of the country,
Itumbiara (2280 MW) in the Paranaiba river in the midwest/southeast part,
and Tucurui (8370 MW) in the Tocantins river in the north (Dias et al.,
2018).

The hydroelectric power plants with the highest useful volume are Serra
da Mesa (in the Southeast/Midwest) and Tucurui (in the North), both lo-
cated along the Tocantins river, with 43.25 km3 and 38.98 km3 storage ca-
pacity respectively (Dias et al., 2018).

In Brazil, the prices of hydropower have a strong effect on the prices in
the entire electricity market, and these vary throughout the year depending
on water availability (Julia Ribeiro de Oliveira in Statkraft, personal com-
munication). Therefore, any major changes in the total available water for
electricity production, as well as the timing of the water availability, will
affect the energy market and prices substantially.

Furthermore, the heavy reliance on hydropower in Brazil makes the pop-
ulation vulnerable to abrupt changes in inflow. This vulnerability is a moti-
vation for investigating the reasons for altered inflow rates, and for wanting
to understand the future of Brazilian precipitation that controls it.
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2.2 Catchment regions

Figure 2.1 shows a map of the catchment areas I have chosen to analyse, and
the location of the corresponding streamflow observations. Also, the main
rivers are marked on the map. The catchments that are marked in the map
are areas, in which all flowing water will eventually reach the bottom of the
basin, where there is a streamflow observation.
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20°S

10°S

0°

Óbidos in Amazon
Propria in 
São Francisco
Porto Murtinho 
in Paraguay
stream. obs.
main rivers

Figure 2.1: Catchments analyzed in this thesis. The black triangles are
locations of streamflow observations corresponding to the catchment areas.
The blue lines are main river systems.

Note that the streamflow measurements might not necessarily be located
at hydropower plants, but rather be a streamflow observation that corre-
sponds to a drainage area. The analysis will nevertheless be very relevant
for existing hydropower production in the same or nearby areas, as well as
for new possible projects. Enhanced knowledge on the relation between the
streamflow out of the catchment and the precipitation into the catchment -
as well as the driving mechanisms for the precipitation trends compared to
the flow trends in the area - is applicable to hydropower hydrological flow in
the same areas too.
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2.2.1 Amazon

The first region I have chosen, is the Óbidos catchment in the Amazon region
(the blue region in figure 2.1), because the potential for new hydropower
projects in Brazil is considered to be mainly in the Amazon region, due to
the near exhaustion of the hydroelectric potential in the rest of the country
(Dias et al., 2018). This basin is characterized by a peak in streamflow
around May/June, a rainfall peak in February/March, and relatively even
evapotranspiration all year around (figure 2.2).
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Óbidos catchment in Amazon
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Streamflow
Evapotranspiration

Figure 2.2: Monthly climatological streamflow, evapotranspiration and pre-
cipitation in Óbidos catchment in Amazon. The climatological period is 1981-
2011. Evapotranspiration data is GLEAM and precipitation data is CHIRPS.
The precipitation and evapotranspiraiton is calculated from mm/month to
monthly mean 103m3/s using the catchment size provided in the CAMELS-
BR data. Streamflow data is from the National Water Agency of Brazil
(ANA), obtained through CAMELS-BR.

Amazon basin largely consist of tropical rain forest with dense vegetation.
According to the aridity/Budyko/dryness index, Amazon is characterized as
humid (Zaninelli et al., 2019). The region has a rainy season from October to
May, and a dry period from June to September. The annual rainfall are the
highest in the country - between 2000 and 3500 mm annual rainfall (based
on data from 1975 to 2005) - with higher amounts in the western part and
the northern part (see figure 2.5). The Amazon typically has between 150
and 250 rainy days a year (Luiz-Silva et al., 2021).

The two main sources of moisture in the Amazon are (i) evaporation from
the Tropical Atlantic Ocean that is brought inland with the trade winds (see
figure 2.6) and (ii) moisture originating from the forest itself (Luiz-Silva
et al., 2021). The precipitation in this area is linked to the Intertropical
Convergence Zone, which I will explain in more detail in section 2.3.1. The
year-to-year rainfall variability in the area is linked to different oscillations
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in the climate system and remote teleconnections, which I will both explain
in section 2.4.

2.2.2 São Francisco

The second catchment is the Propria catchment in the São Fransisco basin
(the red region in figure 2.1). São Fransisco is a highly interesting area to an-
alyze in regard to hydropower production because it is the only area in Brazil
with significantly decreasing streamflow over the second half of the twentieth
century, combined with a decrease in precipitation (Luiz-Silva et al., 2021).
Furthermore, São Fansisco basin inhabits the Sobradinho hydropower plant
with a power capacity of 1050 MW (large HHP> 30MW ), which is consid-
ered one of Brazil’s main hydropower plants (Dias et al., 2018).

Propria catchment has high evaporation values compared to streamflow
(figure 2.3). The northeastern inland in Brazil is the only semi-arid area
in the country (Zaninelli et al., 2019) and is commonly referred to as the
”drought polygon” (Luiz-Silva et al., 2021). This dry area makes up parts of
the São Francisco basin. This area has lowest annual accumulated rainfall,
with numbers in the rage of 500-1000 mm, as well as the lowest number of
rainy days in a year, lowest total precipitation on the wettest day, and lowest
wetness during rainy days (Luiz-Silva et al., 2021). This dryness - relative
to other regions in Brazil - is due to subsidence by the meridionally oriented
Walker circulation (illustrated with yellow arrows in figure 2.6), as well as
topographic inversion/blocking of the trade winds. This region has several
plateaus of high elevation.
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Figure 2.3: Like figure 2.2, but for Propria catchment in São Francisco.

2.2.3 Paraguay

The third basin, Porto Murtinho in Paraguay (the orange region in figure
2.1), I have chosen because of its energy storing capacity. Paraguay is located
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in the southwest, the region that holds 70 % of the energy storage capacity
in the country (Dias et al., 2018). Thus, knowledge on expected streamflow
for the Paraguay basin is very valuable, as available surplus water is what
needed to enable planned water storage in the reservoirs. For long-term
energy planning, it is very useful to understand more about the trends, as
the reservoirs need to be larger to utilize the energy storage if the amount of
water increases. Also, for lower streamflow values, it is useful to planners to
know whether there will be enough water to sustain the energy storage.

The catchment consists of Cerrado - a highland savanna - and wetland in
the northern part, called the Pantanal (Marques et al., 2021), and the general
climate in the region is characterized as humid and semi-humid according to
the aridity/Budyko/dryness index (Zaninelli et al., 2019).

Paraguay basin is located in the subtropical climate zone, and is charac-
terized by a well-defined rainy seasons and a monsoon pattern. The wettest
period is during austral summer, and the driest is during austral winter.
Typical annual rainfall values are between 1000 and 2000 mm, reaching a
maximum in the coastal areas. Number of rainy days throughout the year is
around 50-180 in the area (Luiz-Silva et al., 2021). The evapotranspiration
also varies throughout the year, with a maximum around December/January
(figure 2.4).
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Figure 2.4: Like figure 2.2, but for Porto Murtinho catchment in Paraguay.

Substantial amounts of the rainfall in the region originates from moisture
from the Amazon. The moisture is carried southwards by the wind, from
the Amazon along the east side of the Andes mountain range, feeding the
convection in the southeast and interior part of Brazil (Villela, 2017, see
figure 2.6). Therefore, particularly the central region is strongly influenced
by the heat and moisture content in the Amazon forest (Luiz-Silva et al.,
2021). This circulation pattern is a part of the South Atlantic Convergence
Zone, which I will treat in detail in section 2.3.2.
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2.3 Precipitation patterns in Brazil

There are two large-scale rainfall patterns that affect the catchment regions
that I assess in the thesis: The Intertropical Convergence Zone (section 2.3.1)
and the South Atlantic Convergence Zone (section 2.3.2). The patterns are
also illustrated in figure 2.6. Figure 2.5 shows the climatological seasonal
precipitation in the country.
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Figure 2.5: Seasonal total precipitation with CHIRPS data, mean over the
years 1981-2011. The regions indicated on the map are the catchemnts that
are analysed in this thesis (described in section 2.2).

2.3.1 Intertropical Convergence Zone (ITCZ)

The Intertropical Convergence Zone (ITCZ) is a belt near the equator as-
sociated with heavy precipitation, that dominates the precipitation regime
in the north and northeast of Brazil (Garreaud et al., 2009). The Amazon
basin and the northern part of São Francisco basin is affected by the ITCZ.
In the ITCZ, along the surface, the moisture-heavy trade winds from both
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Figure 2.6: Illustration of important large-scale atmospheric patterns over
Brazil. Blue arrows illustrate the Hadley cell circulation of rising air at the
equator, with associated moisture condensation and cloud formation. The
yellow arrows illustrate meridional oriented Walker circulation under neutral
ENSO conditions. The dark gray arrows are the trade winds, converging
approximately at the equator, creating the Intertropical convergence zone
(ITCZ), and the purple arrows are the low-level southwards flowing winds
that bring moist air from the Amazon to the south and southeastern part
of the country. These wind are steered by the topography of the Andes
mountain chain, and converge with the southeasterly winds at the coast
and make the South Atlantic Convergence Zone (SACZ). The high pressure
system is the South Atlantic Subtropical Anticyclone (SASA).

15



hemispheres converge, which causes the air to rise and form high tropical
clouds and produce thunderstorms, tropical cyclones and other precipitation-
producing weather systems (Hartmann, 2016, pp. 134, as illustrated in figure
2.6). The position of the ITCZ oscillates north- and southwards throughout
a year, depending on the position of maximum incoming solar radiation.
Near the tropopause over the ITCZ, the air diverge polewards, and this dry
air descend gently over the subtropics, forming the Hadley circulation (Gar-
reaud et al., 2009, see figure 2.6), also often referred to as the Hadley cell
(Hartmann, 2016). This descending dry air explains why the climate in the
sub-tropics is drier than in the tropics (Garreaud et al., 2009).

2.3.2 South Atlantic Convergence Zone (SACZ)

Roughly, it can be said that rainfall over Brazil originates from synoptic
systems in the south, ITCZ in the north, and SACZ in the middle of the
country (see figure 2.6). I will give SACZ a more in-depth introduction, as
this particular large-scale system is of greatest relevance for the hydropower
production in Brazil. The reason for the importance of SACZ to hydropower
in the country is that several of the large river systems carrying water north-
ward and southward to hydro-electrical plants are formed in the highlands in
the middle of the country (Dias et al., 2018) where the SACZ regime dom-
inates (Rosa et al., 2020). The southern part of Amazon, and the southern
and most important part of the São Francisco basin is affected by SACZ, and
the entire Paraguay rainfall originates from SACZ.

The SACZ is a band of deep convection and associated precipitation. It
is oriented in the northeast/southwest direction, stretching from the Ama-
zon, over large parts of tropical and subtropical Brazil, to the South Atlantic
Ocean (Villela, 2017, as illustrated in figure 2.6). Precipitation in the system
result from convergence of moist low-level winds and subsequent convection.
The dynamics of the SACZ are similar to convergence zones in the South
Pacific Ocean, the Asiatic East Ocean and the South Indian Ocean. In the
SACZ, the South American low-level jet brings moisture from the Amazon
southwards along the Andes mountain range that converge with winds con-
taining moisture from the tropical Atlantic (Villela, 2017).

The SACZ plays a significant role in the rainfall regime in central Brazil
(Villela, 2017; Luiz Silva et al., 2019). It is responsible for a large part of the
total summer precipitation in the country (Rosa et al., 2020).

The active phase of SACZ is during austral summer, and the most active
period is between December and February. November and March are also
important to include in SACZ event detection because 30 percent of the
active SACZ days occur in these two months (Rosa et al., 2020).
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SACZ variation is linked to severe droughts and floods in southeast Brazil
(Rosa et al., 2020). The intense drought in the state of São Paulo during the
austral summers of 2014 and 2015 was partly caused by SACZ not moving as
far south as usual. This drought had several severe socioeconomic impacts,
including the effect on hydropower production capacity (Abatan et al., 2022).

SACZ is expected to move southwards due to climate change (Luiz Silva
et al., 2019), and there are indications that a poleward shift of the SACZ
already has occurred in recent decades (Zilli et al., 2019). Understanding and
predicting variations in SACZ is crucial to understand rainfall variability over
southeastern Brazil, but the variability of the system is not well understood
(Abatan et al., 2022).

SACZ intensity and position has been related to SSTs in the South At-
lantic. The relationship between the South Atlantic SSTs and the SACZ is
complex. SST variation influences the SACZ position, and the SACZ posi-
tion influences SSTs (Jorgetti et al., 2014). The relationship between SACZ
and SSTs in the Atlantic will be interesting to keep in mind in the analysis
of this thesis.

2.4 Natural variability and teleconnections in-

fluencing climate and precipitation Brazil

The global climate system has natural modes of variability that arises from
the internal dynamics of the system itself without any specific cause or forcing
(Hartmann, 2016). Internal variability occurs on time scales from weeks to
seasons, years, decades, centuries and even thousands of years. The shorter
scales of variability are often connected to variations within the atmosphere,
and the inter-seasonal, interannual and decadal variations are often coupled
dynamics between the atmosphere and the ocean (Hartmann, 2016, pp. 233-
234). These variations can be seen as low frequency oscillations controlling
the timing and magnitude of anomalies. Regional SST anomalies can affect
the regional atmospheric patterns.

The anomalies in one region might also affect atmospheric patterns in
other parts of the world, through teleconnections. A teleconnection is a link
between climate anomalies and atmospheric patterns separated by great dis-
tances (Reboita et al., 2021). Some teleconnections can be explained as en-
ergy redistribution through atmospheric waves propagating from an anoma-
lous heat source - for instance an anomalously warm ocean basin heating
the local atmosphere - to another part of the globe (Reboita et al., 2021,
pp. 1). The planetary atmospheric waves dissipate energy and restore the
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atmosphere back to a stable state, and thereby disrupting the atmospheric
pattern along the anomalous wave train (Reboita et al., 2021).

I will focus this section on the natural variability and the teleconnections
originating in the ocean. There are two reasons for this restriction. Firstly,
I am interested in looking at the slow oscillations in the climate system, as
these are more easily confused with climate change signals. The slow climate
variability - on interannual and decadal scales - mostly originates in the ocean
(Hartmann, 2016, pp. 254; Reboita et al., 2021).

Secondly, teleconnections that originate in the ocean are also especially
pronounced from tropical to subtropical regions (Liu and Alexander, 2007),
which is where Brazil is located. This is because SST anomalies in the tropics
modifies the subtropical and extra-tropical atmosphere by perturbing the
Hadley cell, establishing stationary waves and interacting with mid-latitude
storm tracks (Liu and Alexander, 2007).

I have chosen to explain five natural variability/slow oscillations that (1)
originate in the ocean basins and (2) are important for precipitation varia-
tions in Brazil (Reboita et al., 2021). I divide the following part into modes
of variability in the Pacific ocean (section 2.4.1) and modes of variability in
the Atlantic ocean (section 2.4.2). The focus will be on what parts of the
country the modes of variability affect, the climate mechanisms that cause
it, and the time scale in which they vary.

2.4.1 Pacific Ocean modes of variability

El Niño Southern Oscillation (ENSO) is a coupled ocean-atmosphere mode of
variability, connected to SST variability in the tropical Pacific and associated
surface pressure patterns and atmospheric circulation (Hartmann, 2016, pp.
246), and is considered one of the most important teleconnections for the
Brazilian climate and precipitation patterns (Reboita et al., 2021). The
relationships between ENSO and droughts in Northern Brazil and floods in
Southern Brazil his well known (Cai et al., 2020).

ENSO is an oscillation between the El Niño conditions and La Niña con-
ditions, driven by the ocean-atmosphere coupled dynamics (Hartmann, 2016,
pp. 249). The system is self restoring, and typically oscillates with a period
of 2-7 years, with strongest variability in the periods from 3 to 5 years, and
significant variance in the range between 2 and 20 years (Hartmann, 2016,
pp. 249). During El Niño, the SST in the east and central Pacific is anoma-
lously warm - peaking around Christmas time - and during La Niña, the
SSTs are colder than usual in the east and central Pacific (Hartmann, 2016,
pp. 249).
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The anomalous heat sources in the Pacific during an El Niño event in-
fluence early summer precipitation over Brazil through two mechanisms: (1)
perturbation of the Hadley and Walker circulation and (2) generation of a
Rossby wave train reaching the subtropical part of Brazil (Grimm, 2003).
The perturbation of the Walker circulation during the El Niño event cause
(anomalous) subsidence over the northern part of the country, leading to drier
conditions and weakened moisture transport to central Brazil (Cai et al.,
2020; Grimm, 2003).

Hence, during El Niño events, there is reduction in precipitation over
northeast Brazil and the east of the Amazon (Reboita et al., 2021; Grimm,
2003) in the magnitude of 3 mm/day during DJF (Tedeschi and Collins,
2017). The suppression of precipitation is strongest during DJF, and extends
to Northest Brazil in SON and MAM (Cai et al., 2020). El Niño also leads
to reduced annual rainfall over the Brazilian central Plateau - the Cerrado
(Correia Filho et al., 2022).

The subsidence over Amazon - together with atmospheric Rossby waves
- also cause anticyclonic low-level anomalies over central-east Brazil which
favors moisture inflow from the Atlantic Ocean towards southern Brazil, giv-
ing positive precipitation anomalies there. Therefore, precipitation increase
during El Niño in the very south of the country (Grimm, 2003).

During La Niña conditions, it is opposite: the northern part of the country
- stretching from the Amazon via Northeast and the SACZ region - is wetter
and the southern is drier (Grimm, 2003). The annual rainfall in the Brazilian
Cerrado is also higher during La Nina years (Correia Filho et al., 2022).

The Pacific Decadal Oscillation (PDO) - like the ENSO - originates in
the Pacific ocean. The PDO pattern consists of opposite SST anomalies
between the tropical/northeastern and central/northwestern North Pacific
Ocean (Reboita et al., 2021, pp. 10). In the warm PDO phase, warmer
and drier periods are observed in northern and northeastern Brazil (Reboita
et al., 2021). PDO events typically lasts for 20-30 years (Reboita et al., 2021).
Time series of ENSO and PDO are correlated. Hence, it can be argued that
PDO is the low-frequency component of the ENSO (Hartmann, 2016, pp.
255; Reboita et al., 2021).

The Pacific ocean also has variability on an inter-decadal time scale, with
periods of 60-70 years, in addition to the period of 20-30 years. Inter-decadal
SST anomalies in the Pacific ocean are characterized by warm anomalies in
the tropical central and eastern part of the basin, with an extended ”comma”-
pattern in the northern part of the basin, along the western North American
coast, surrounded by two anomalous cold tongues stretching from eastern
Asian and Oceania (Villamayor et al., 2018). The Pacific inter-decadal vari-
ability affect rainfall in Brazil in the following way: positive anomalies in
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the tropical Pacific ocean lead to less rainfall in the Amazon, less rainfall in
the very northern part of Northeast, more rainfall in the southern part of
the São Francisco basin, and positive rainfall anomalies in Paraguay basin
(Villamayor et al., 2018).

The impact of Pacific ocean variability on Brazilian precipitation is com-
plex. The effects of El Niño and La Niña also depend on factors such as local
land-surface interactions, timing with various conditions of other modes of
interannual climate variability originating in the Atlantic (see section ??)
and Indian Ocean, as well as inter-basin interaction between the Pacific and
Atlantic ocean basins (Cai et al., 2020).

2.4.2 Atlantic Ocean modes of variability

The modes of variability in the Atlantic ocean are important to the precipi-
tation and weather patterns in Brazil. For instance, weather and climate of
Brazil is profoundly impacted by the meridional gradient of SSTs in the At-
lantic basin (Garreaud et al., 2009). Additionally, droughts in Amazon and
Northeast Brazil have been linked to anomalous high SSTs in the tropical
North Atlantic (Garreaud et al., 2009).

Atlantic Multidecadal Oscillation (AMO) is the leading mode of decadal
SST variability in the North Atlantic (north of 20 ◦S), with a typical period
of several decades (Hartmann, 2016, pp. 257). The warm phase of AMO
reduces the MAM, JJA and SON precipitation in central and northeastern
parts of Brazil, and may enhance the rainfall in northeast Brazil during DJF
(Reboita et al., 2021).

Tropical Atlantic Ocean Dipole (TAD) - also known as the decadal trop-
ical Atlantic SST variability - is characterized by a dipole pattern between
SST anomalies in the tropical North and South Atlantic. The positive phase
is defined as when the tropical North Atlantic has warm anomalies and the
tropical South Atlantic has cold anomalies, and the negative phase when the
pattern is opposite (Reboita et al., 2021). During a positive phase of the
TAD, the northeasterly trade winds are weakened and the sea level pres-
sure reach low anomalies. The TAD is strongly influencing the north/south
position of the ITCZ (Reboita et al., 2021 and references therein).

South Atlantic Dipole (SAD) is the dominant mode of ocean-atmosphere
coupled anomalies in the South Atlantic, which is a dipole that is typically
oriented in the northeast-southwest direction with SST anomalies in the trop-
ical and extra-tropical part of the Atlantic basin in each of the phases of
this mode of variability (Reboita et al., 2021). The SAD varies on both
interannual and inter-decadal scales, and has been found to affect sea sur-
face pressure and wind anomalies, which cause precipitation anomalies over
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Brazil (Reboita et al., 2021 and references therein). A positive SAD mode
- with warmer than usual northeast (tropical) region and colder than usual
southwest (extra-tropical) region of the south Atlantic basin - may cause late
onset and dry austral summers in the southeast of Brazil and early onset and
wet summers in the northeast part of Brazil (Reboita et al., 2021).
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Chapter 3

Data and methods

In this chapter, I will describe the observational data (see table 3.1 for an
overview and table 3.2 for the providers) and the model including experiments
I compare. I will also argue why these data sets are well suited for my analysis
of hydropower and climate in Brazil. Then I will describe how I process the
various gridded data to obtain time series that match the catchments that
I analyse (section 3.5). Lastly, I will describe the steps in both of the two
methods I use for time series analysis: (I) statistical significance trend test
(section 3.6) and (II) filtering and correlation analysis (section 3.7).

Table 3.1: Data used in the thesis.
Data Variables Type Spatial res-

olution
Temporal
res.

Years

ERA5 precip.
evap.
SST

renalysis 0.25◦ x 0.25◦ monthly 1950-2022

CHIRPS precip. satellite and
gauge obs.
combined
and gridded

0.05◦ x 0.05◦ monthly 1981-2022

CAMELS-
BR

inflow,
catch-
ments,
evap.

observations 897 catch-
ments

daily 1940-20181

NorCPM precip.
evap.
SST

model, his-
torical and
assimilation

2.5◦ x 2◦ monthly 1850-2014
1950-2018
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Table 3.2: Data providers.

Data Provider

ERA5 European Centre for Medium-Range Weather Forecasts
(ECMWF)

CHIRPS Climate Hazards Group InfraRed Precipitation with
Stations (Funk et al., 2015)

CAMELS-BR Chagas et al. (2020)

3.1 CHIRPS gridded precipitation data

3.1.1 Description of CHIRPS

In situ observations of precipitation in Brazil is scarce. Rain gauge data in
Brazil is often characterized by low spatial coverage, a high-proportion of
missing data, as well as short time series, typically less than 15 years (Jones
et al., 2013). The lack of adequate rainfall data in parts of the country,
makes products like CHIRPS valuable for precipitation analysis in Brazil
(de Oliveira-Júnior et al., 2021; Paredes-Trejo et al., 2017).

The Amazon in particular is an area where rainfall measurement quality
is low, because of low density of stations due to remote and inaccessible
areas, as well as insufficient maintenance and broken records many places.
Furthermore, few stations in the Amazon are automatic, and local technicians
are responsible for noting down the measured values, which might introduce
errors and inconsistent methods (Paca et al., 2020).

Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)
is a product made specifically with the aim of obtaining reliable and use-
ful gridded data in regions of scarce observations, such as Africa and South
America. The CHIRPS data set is created with satellite observations, in com-
bination with available station data. Precipitation estimated from infrared
Cold Cloud Duration observations are interpolated with some available gauge
observations to create a 0.05 ◦ gridded monthly precipitation dataset begin-
ning in 1981 (Funk et al., 2015).

3.1.2 Evaluation of CHIRPS in Brazil

CHIRPS precipitation data is found to compare well with observations across
all regions in Brazil (Costa et al., 2019). Statistical analysis of rain gauge

1Inflow data start and end date varies from station to station. See an overview of the
data time range in table 3.3 about the chosen catchments.
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time series and CHIRPS data for the period 1998-2011 indicate that the
determination between the two are high in all regions of the county in that
period. Northwest of Amazon and the southwest of Para state are the regions
where CHIRPS showed a somewhat lower similarity with the rain gauge data
(Costa et al., 2019).

Paredes-Trejo et al. (2017) concluded that the dataset is well suited for
studying spatial and temporal variability of rainfall in Northeast Brazil,
which is where the São Francisco catchment is located. CHIRPS monthly
precipitation correlates adequately with observations from 21 ground stations
in the period 1981-2013, with a correlation coefficient of 0.94 (Paredes-Trejo
et al., 2017).

Even though the data is evaluated as well suitable for analysis in the
Northeast region, it is worth mentioning that there are spatial and temporal
variations of the quality of the CHIRPS dataset in the area: The worst
estimations are found in high elevation regions with complex terrain and
warm precipitation processes. Furthermore, CHIRPS is less accurate in drier
parts of Northeast Brazil. When it comes to temporal variations, rainfall
events are best detected during the last part of the rainy season in eastern
part of Northeast Brazil, from June to August (Paredes-Trejo et al., 2017).

The CHIRPS dataset is also found to be suitable to assess rainfall trends
in Amazon - across all of Óbidos basin (Paca et al., 2020). Several national
institutes of Brazil and the alike institutions in Peru, Bolivia, Colombia and
Ecuador - countries which also make up parts of the Óbidos basin - have been
recording precipitation on ground in the Amazon region over the last decades.
The CHIRPS gridded data match very well with these gauge measurement,
with a coefficient of determination, R2 = 0.96. CHIRPS were also able to
reproduce the local trends within the basin in accordance with the gauge
measurements (Paca et al., 2020).

In the region of the Paraguay catchment, de Oliveira-Júnior et al. (2021)
concluded that the CHIRPS dataset is satisfactory for spatiotemporal analy-
sis of regional precipitation. Time series from ten gauge rain gauge stations in
the topical/subtropical regions Mato Grosso and Mato Grosso du Sul and the
CHRIPS data in the region for the period 1985-2014/2018, had a correlation
coefficient of 0.86. CHIRPS is able to identify drought and wet periods un-
der any ENSO condition in the Brazilian Midwest (de Oliveira-Júnior et al.,
2021).

CHIRPS also reproduces ENSO variability in the region well. Although
the tendency towards over- and underestimation varies across the region,
CHIRPS leans towards overestimating the rainfall in this tropical part of
South America (López-Bermeo et al., 2022).

An important notion about the CHIRPS dataset in Brazil, is that it tends
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to overestimate low rainfall events (< 100 mm/month) and overestimate high
rainfall events in some areas (> 100 mm/month). This is true for both the
Brazilian Northeast (Paredes-Trejo et al., 2017) and Midwest (de Oliveira-
Júnior et al., 2021) where the São Francisco and Paraguay basins are located,
respectively. This error of often estimating rainfall when there is none, or
more when there is little, makes CHIRPS inadequate for identifying drought
events, as its precision in detecting no-rain events is poor (Paredes-Trejo
et al., 2017).

The above described shortcoming is not problematic when analysing rain-
fall trends for hydropower production. The total accumulated rainfall over
periods longer than one month - typically a year - is what controls the pro-
duction from an electrical hydropower plant with a reservoir (Wörman, 2012,
pp. 41). In this thesis, I analyse accumulated precipitation over several sea-
sons or years. Underestimation of low rainfall months would not alter the
accumulated precipitation much, since the low-rainfall months contribute
proportionally less to the accumulated rainfall anyways. The overestima-
tion of high-rainfall months, on the other hand, could influence the analysis
more, because the accumulated precipitation over several months would add
up, and the error would grow when accumulating.

Nevertheless, the CHIRPS rainfall data is a dataset that is recommended
for analyzing precipitation changes in Brazil in all the catchment regions
(Paredes-Trejo et al., 2017; de Oliveira-Júnior et al., 2021; Paca et al., 2020),
and it holds advantages such as high spatial resolution and a consistent
methodology across the country and neighbouring countries. And since the
data is gridded, it is well comparable with other gridded model data.

3.2 ERA5 reanalysis data

Since the CHIRPS data records does not begin until 1981, another precip-
itation dataset is used as an additional comparison dataset: namely the
ECMWF Reanalysis v5 (ERA5). This reanalysis begins in 1950, and there-
fore allows me to look at oscillations in the climate system that exceed those
limited by the 34 years between 1981 and 2018 in the CHIRPS data. The
ERA5 evaporation data is used in the analysis as well, for the same reason,
as an extension to the evapotranspiration data provided for each catchment
in the CAMELS-BR (that will be presented in section 3.4).
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3.2.1 Description of ERA5

ERA5 is a state-of-the-art reanalysis product made by the European Centre
for Medium-Range Weather Forecasts (ECMWF, Hersbach et al., 2020). A
reanalysis is made by optimally combining observations and models. ERA5
builds on an atmospheric weather forecast model, and the reanalysis includes
several components, including a land component, an ocean surface wave com-
ponent, as well as an atmospheric ozone component. The ocean component
and the land component are both coupled with the atmospheric model, and
two-way interactions are included (wind generates waves, and the waves af-
fect the surface winds etc.). The horizontal grid resolution is 31 km, and
the model has 137 vertical levels, reaching up to 1 hPa. ERA5 runs from
1950 to present. A 12-hourly assimilation is done, and the model runs as a
short forecast 9 hours into the next 12-hour assimilation window (starting
at 1800UTC and 0600UTC) where it suggests the next starting point of the
next assimilation (Hersbach et al., 2020).

ERA5 is assimilated with a two-dimensional optimal interpolation scheme
of 2 m temperature and relative humidity, as well as three soil moisture
layers in the top 1 m of soil. ERA5 uses satellite data for assimilation.
Note that precipitation is not assimilated directly. The global correlation
between ERA5 monthly mean precipitation and observations is 77 % globally
(Hersbach et al., 2020).

3.2.2 Evaluation of ERA5 in Brazil

ERA5 precipitation data has been evaluated against river flow observations
and daily precipitation measurements on ground in Brazil. ERA5 has a bias
of between -5 and -10 mm/day in the Amazon - with a an absolute maximum
in the western part of the basin. The absolute value bias in the semi-arid
region of the northeast is smaller. Generally, the ERA5 bias is negative in all
regions of Brazil. The RMSE is largest in the southern part of the country
and in the Amazon. Furthermore, the correlation with gauge observations
are largest on the SACZ region - in the middle-southeast Atlantic region (Al-
magro et al., 2021). Almagro et al., 2021 found that satellite-based products
was better at simulating precipitation over Brazil than ERA5 in five out of
six biomes.

Furthermore, when assessing the suitability of ERA5 precipitation as in-
put in a hydrological model that simulates daily river discharge and horo-
logical signatures in Brazilian catchments, ERA5 was outperformed by the
satellite-based data. Satellite-based products performed better in simulat-
ing the mean discharge in Caatinga (the semi-arid interior region in the
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NE, which make up parts of the São Francisco catchment) and Cerrado (the
grassland in the inland middle country, which make up parts of the Paraguay
catchment and parts of the São Francisco catchment). ERA5 performed sim-
ilarly as the satellite-based data in Atlantic forest (along the eastern coast)
and the Amazon. They also found that satellite-based products were better
predictors than ground-based observations in Cerrado and Caatinga biomes,
and that it was as good as ground-based rainfall observations in the Amazon
(Almagro et al., 2021).

The ERA5 precipitation monthly anomalies show varying closeness to the
satellite observed data across the country: The correlation between ERA5
monthly anomaly precipitation reanalysis and version 7 of NASA’s TRMM
Multi-satellite Precipitation Analysis (TMPA) 3B43 dataset in the time span
1998-2008 are very low (< 30%) in the Amazon region, but the correlations
are higher on the eastern coast of Brazil, with values around 80-90 % (Hers-
bach et al., 2020).

The bias of the monthly ERA5 precipitation (when compared to the
NASA satellite data in the same period) is positive along the coast with
a mean difference of about -(1-2) mm/day on the eastern coast and -(2-3)
mm/day on the northeastern coast. In the Amazon drainage area, the pre-
cipitation biases are around -(2-3) mm/day in the western part, and positive
values of around 2-3 mm/day in the eastern part of the Amazon basin, and
4-6 mm/day in the Andes mountain range (Hersbach et al., 2020).

3.3 Norwegian Climate Prediction Model (Nor-

CPM)

3.3.1 Model components

NorCPM1 is based on an Earth system model that assimilates sea surface
temperature (SST) and temperature/salinity-profile (T/S-profile) anomalies.
The aim of the NorCPM is to enable climate reanalyses and research on
seasonal-to-decadal climate predictions (Bethke et al., 2021).

NorCPM1 uses the medium-resolution coupled earth system model NorESM1-
ME (Bentsen et al., 2013). An earth system model includes components that
simulate chemical and biological factors and their interactions with the other
components, in addition to the simulation of general circulation of the at-
mosphere and ocean (Hartmann, 2016, pp. 325). NorESM1-ME is based on
the Community Earth System Model (CESM1.0.4, Hurrell et al., 2013) com-
bined with CAM4-OSLO and Bergen Layered Ocean Model (BLOM; that
originates from the Miami Isopycnic Coordinate Ocean Model). The Com-
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munity Land Model (CLM4; Lawrence et al., 2011) is the same in NorESM as
in the CESM1.0.4. (Bethke et al., 2021). The resolution of the atmospheric
component of NorCPM1 is 2.5 degrees longitude and about 1.8 degrees lati-
tude.

NorESM is found to overestimate the flux of water vapor from ocean to
land with about 8 % (Bentsen et al., 2013). Also, the intensity of the water
cycle is slightly too high (Bentsen et al., 2013). The cloud cover in the model
is too low globally. This is also true for Brazil, where the cloud fraction in
the historical run has a negative bias of 25-35% in the southwestern part
of Amazon and 5-25% in the rest of the country (Bentsen et al., 2013).
Generally, in the model, although the cloud fraction is too low, the liquid
water content is exaggerated, resulting in precipitation rates with less bias
than the low cloud cover would imply (Bentsen et al., 2013).

3.3.2 Historical experiment

The historical experiment for the NorCPM1 is following the Coupled Model
Intercomparison Project phase 6 (CMIP6) protocol, and runs from 1850 until
2014 (Bethke et al., 2021). Using a spin-up time of 700 years, the historical
NorESM model runs are initialized with the conditions of the model in year
699. The external forcings in the historical simulation are: observation-based
variations in (1) solar irradiance, (2) volcanic activity, (3) concentrations of
greenhouse gases (GHG), (4) aerosols and (5) other particles in the atmo-
sphere (Bentsen et al., 2013, pp. 693). Apart from the restrictions caused
by these external forcing sources, each model run runs freely. The historical
ensemble used in NorCPM1 contains 30 members.

3.3.3 Reanalysis experiment

In a 30-member reanalysis experiment, assim-i1, the model assimilates ob-
served ocean variables: sea surface temperature (SST) and temperature/salinity-
profiles (T/S-profiles). This means that each of the assim-i1 runs will have
a timing of the ocean variation that is close to observed values.

The assimilation data for assim-i1 are: EN4.2.1 hydrographic profile data
(Good et al., 2013), Hadley Centre Sea Ice and Sea Surface Temperature
dataset (HadISST2, reference is cited as personal communication in Bethke
et al., 2021) and National Oceanic and Atmospheric Administration (NOAA)
Optimum Interpolation SST version 2 (OISSTV2, available only from 1982,
Reynolds et al., 2002). The model climatology is taken from the ensemble
mean of the 30-member historical experiment, with the climatological refer-
ence period defined as 1980-2010 (Bethke et al., 2021).
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The ocean variables in the reanalysis experiment are updated using anomaly
assimilation where observed monthly mean anomalies (from the climatology
period 1980-2010) are added to the model climatology (computed from the
historical experiment) and used to update the instantaneous model state.

Updating only the ocean variables during data assimilation in the assim-
i1 reanalysis experiment, makes it a weakly coupled data assimilation system.
This means that the atmospheric part of the model is only affected indirectly
by the data assimilation. Since no atmospheric variables are used in the data
assimilation, atmospheric variables - such as temperature and precipitation
- are only affected by the assimilation through the influence from the ocean
variables that are updated throughout the model integration (Bethke et al.,
2021).

For assim-i1, the anomaly correlation coefficients (ACCs) for surface at-
mosphere temperature (SAT) in both the tropical Atlantic and the tropical
Pacific are high (> 0.9). For the land temperatures in Brazil, the ACCs
vary more, with higher correlations along the coastlines (both northern and
eastern coast) with values around 0.4 – 0.7. The inland temperatures show
lower correlations (figure 10a in Bethke et al., 2021).

For precipitation, the assim-i1 ACC values in north and northeastern
Brazil are in the range of 0.2 – 0.7 (with highest correlation in the NE tip
of the country). The ACC in the southernmost part are positive, and below
approximately 0.5. In the middle of the country, and in the SACZ region,
there is no significant ACC for precipitation (not locally significant, Bethke
et al., 2021, figure 10b).

Precipitation ACCs are higher in the assim-i1 experiment than the his-
torical experiment for all the areas of Brazil along the coast, as well as in the
Amazon region. This means that the reanalysis run does capture the precip-
itation variability better than the historical run in large parts of Brazil. In
other interior parts of the country, the reanalysis run and the historical run
seem to perform similarly when it comes to ACC (Bethke et al., 2021, figure
10f).

3.3.4 Historical vs. reanalysis comparison

The historical NorCPM1 experiment is expected to contain anomalies of
the same magnitude as the observed oscillations in the climate system - for
instance variations connected to ENSO - but the timing in each individual
historical run is arbitrary. That means that, when calculating the ensemble
mean of the 30 runs, the internal variability in the model that is connected to
ocean variability will presumably cancel out (since the probability that the
individual runs have the same timing for the maximum and minimums is very
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low). The trends and variations that are contained in the historical runs - and
therefore in the historical ensemble mean - are those connected to external
forcing (by GHGs, aerosols, solar irradiation and volcanic eruptions).

The assim-i1 reanalysis ensemble mean, on the other hand, will contain
both long term climate change from forcing and in-sync internal variability.
This is because variability originating in the ocean will have the right timing
in all individual runs, following the ocean variable anomaly data assimila-
tion. The assimilation restricts the model, and keeps it close to the anomaly
ocean observations. The ensemble mean of all assim-i1 runs will then repre-
sent the climate that is both consistent with the model set-up, and in-sync
with the SST and T/S-profiles. This means that each assim-i1 run includes
observed internal variability - such as ENSO, AMO and PDO - if the related
mechanisms are properly included in the model.

Assuming that the physical processes causing teleconnections are included
in the coupled model, the assim-i1 runs will also include atmospheric response
to ocean anomalies in other parts of the globe. The assim-i1 ensemble spread
will contain the uncertainty of the model and variations due to internal at-
mospheric variability.

Subtracting the historical ensemble mean from the assim-i1 ensemble
mean will therefore isolate oscillations and trends related to ocean variability
(equation 3.1).

A−H = (Fext + Fint)− Fext = Fint (3.1)

Where A is the mean of the 30 assim-i1 ensemble members, and H is the
mean of the 30 historical ensemble members, Fext is the response to external
forcing, Fint is the response to internal variability forcing (originating in the
ocean).

This also means, that if the assim-i1 ensemble mean is very similar to the
historical ensemble mean in a region, the internal variability originating in the
ocean might not be very important in that region, and the long term external
forcing (by GHGs for instance) is what is mainly driving the changes in that
area. In contrast, if assim-i1 run is much more similar to the observations,
the ocean variability might play an important role to the changes in that
area.

3.4 CAMELS-BR data

Catchment Attributes and MEteorology for Large-sample Studies Brazil (CAMELS-
BR) is a set of hydro-meteorological time series and landscape attributes for
897 catchments in Brazil. Similar datasets are previously made for the United
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States, Chile and Great Britain. The aim of the data is to enable large-scale
hydrological research by providing a consistent dataset across the country.
The dataset is made by combining relevant (gridded) meteorological variables
like precipitation, evapotranspiration and temperature from different sources,
and processing them to match the observed inflow series in specific catch-
ments across the country. Additionally, the dataset includes 65 attributes
covering a range of topographic, climatic, hydrologic, land cover, geologic,
soil, and human intervention variables, as well as data quality indicators
(Chagas et al., 2020).

3.4.1 Streamflow and catchment data

The streamflow data in CAMELS-BR is a subset of raw streamflow data pro-
vided by Brazilian National Water Agency (ANA). ANA originally provided
3679 time series - unevenly distributed across the country, with the highest
density of gauge measurements in the southeastern part of the country and
the lowest in the Amazon. The raw data can be accessed at ANA’s web
portal HidroWeb (ANA - Brazilian National Water Agency, 2023).

ANA has been responsible for planning, inspections, standardization of
procedures and tools, quality check and publication of the hydrometeorolog-
ical data in Brazil since year 2000 (ANA - Brazilian National Water Agency,
2023). Hydro-meteorological variables has been monitored by the state of
Brazil since the beginning of the 1900 - and some places since mid-1800 - but
the time series vary in length from place to place (ANA - Brazilian National
Water Agency, 2023). ANA estimates daily streamflow by taking two daily
stream stage measurements - at 07:00 and 17:00 local time - which are aver-
aged and calculated into discharge, using a stage-discharge relationship. In
situations where no stream stage measurement is available, regionalization
methods are used (Chagas et al., 2020).

Chagas et al. (2020) selected 897 streamflow time series, based on the
following criteria: (i) less than 5% of the data between 1990 and 2009 is
missing, and (ii) the catchment boundaries have been estimated by a second
provider, and these catchment boundaries compare well with the area esti-
mated by ANA (Chagas et al., 2020). The catchment connected to each of
these 897 streamflow time series are the basis of the CAMELS-BR dataset:
The meteorological variables are post-processed to become catchment aver-
ages for the areas.

Out of these datas, I chose a subset of three catchment areas and their
corresponding streamflow time series (as listed in table 3.3 with name, reg-
istered gauge ID, location of streamflow measurement, catchment size and
time span of collected streamflow time series). These chosen catchment areas
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can also be seen on the map in figure 2.1 in the introduction. Due to the
scarce resolution of the NorCPM data, I chose the largest catchments possi-
ble in each of the three regions. This was to be able to generate meaningful
mean time series from the model data.

Table 3.3: Catchment regions used in the thesis.

Region Catchment
name

Gauge ID Gauge lo-
cation

Catchment
size [km2]

Timeseries

Amazon Obidos 17050001 1.919◦S
36.824◦W

4720020.0 1968-2018

São Fran-
cisco

Propria 49705000 10.214◦S
55.513◦W

638461.7 1977-2019

Paraguay Porto
Murtinho

67100000 21.700◦S
57.891◦W

565154.2 1939-2018

3.4.2 Meteorological data

Chagas et al. (2020) used three products to create daily precipitation time
series for each selected catchment: (i) CHIRPS version 2.0 (Funk et al.,
2015) with spatial resolution of 0.05◦and temporal coverage 1981-2018, (ii)
CPC Global Unified (NOAA, 2023) with spatial resolution of 0.5◦and tem-
poral coverage 1980-2018 and (iii) Multi-Source Weighted-Ensemble Precip-
itation version 2.2 (MSWEP v2.2; Beck et al., 2019) with spatial resolution
of 0.1◦and temporal coverage 1980-2016.

For actual evapotranspiration, they used Global Land Evaporation Ams-
terdam Model version 3.3a (GLEAM v3.3a; Martens et al., 2017) with spatial
resolution of 0.25◦and temporal coverage 1980-2018 and Modelo hidrológico
de Grandes Bacias (MGB; Siqueira et al., 2018) of 0.5◦spatial resolution and
1980-2014 temporal coverage. CPC Global Unified (NOAA, 2023) is used for
calculating average temperatures for the catchments.

Of the 13 different climate indices - most of them related to precipitation
- that are calculated for the catchments, I use the catchment averages of
mean daily precipitation, based on CHIRPS v2.0 and the mean daily actual
evpotranspiration based on GLEAM v3.3a, summed into monthly, seasonal
and yearly values.
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3.5 Masking areas and making time series for

each region

To be able to compare the different types of gridded data at hand for each
of the three regions, I generate masks to locate the grid cells that are within
the catchment areas, using the catchemnt boundaries from CAMELS-BR.
For each of the data sets with different resolutions (ERA5, CHIRPS and
NorCPM), I generated one mask for each of the chosen catchments fitting
the grid resolution (see figure 3.1). On the figure, the massive resolution
difference between observational and modelled data is visible.

I use the python package regionmask to create the masks (read more
on https://regionmask.readthedocs.io/en/stable/index.html). These masks
were then used to create time series for each of the above mentioned areas.

The purpose of masking the data sets, is to create time series from the
mean over each of the catchments. These time series, generated from the
different data sets, I will then compare using various time series analyses,
including trend significance analyses (as explained in the following section
3.6) and correlation analyses with data filtered for two different time scales
(as explained later, in section 3.7).

3.6 I: Trend analysis

3.6.1 Mann-Kendall test and the Theil-Sen slope

I use the Mann-Kendall test (MK test) to evaluate the statistical significance
of a trend. The MK test is widely used in the study of hydrometeorological
time series (Yue and Wang, 2002; Luiz Silva et al., 2019; Bari et al., 2016).

The aim of the MK trend test is to distinguish between randomness and
trend in a time series, where the null hypothesis is that the variation in the
time series is random, and do not follow a trend (Mann, 1945). Note that
the MK test only determines whether there exists a trend in the data, as well
as the sign of the trend, but do not estimate the strength of the trend. The
test only determines the sign and the statistical significance.

The strength of the trends are therefore estimated by a Theil-Sen estima-
tor/slope, as defined by Theil (1950) and Sen (1968). The Theil-Sen slope
is the slope of a fitted regression line, found by calculating the median of
the

yj−yi
xj−xi

for all pair of sample points (xi, yi) and (xj, yj) of distinct x-values

(Sen, 1968). Compared to the least-square regression line, the Theil-Sen es-
timator slope is less sensitive to outliers, and do not require the assumptions
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Figure 3.1: Original catchments and masks for the three types of gridded
datasets of different resolution. The overlaying lines on the masks are the
boarders from the original catchment data. The black triangles are locations
of streamflow observations corresponding to the catchment areas.

that the variables are normally distributed and have constant variance, and
hence is applicable to a wider range of data sets (Theil, 1950).

I have used the pymannkendall package on Python to conduct both
the Mann-Kendall significance trend test and calculate the Theil-Sen slope
(https://pypi.org/project/pymannkendall/). Below is the mathematical frame-
work behind the Mann-Kendall significance test, using the equations 3.2, 3.3,
3.4 and 3.5, presented like in (Luiz Silva et al., 2019, pp. 356-357):

A positive (negative) trend is indicated by a positive (negative) value of
Z, expressed like this:
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Z =
(S + u)√
V AR(S)

(3.2)

Where VAR(S) is the variance, u = -1 if S > 0; u = 0 if S = 0; u = +1
if S < 0 thus:

S =
n−1∑
k=1

n∑
j=k+1

signal(xj − xk) (3.3)

Where

signal(xj − xk) = 1 if xj − xk > 0;

signal(xj − xk) = 0 if xj − xk = 0;

signal(xj − xk) = −1 if xj − xk < 0;

(3.4)

and x is the time series from k to n and j = k + 1.

V AS(S) =
1

18
[n · (n− 1) · (2n− 5)− Σg

p=1tp · (tp − 1) · (2tp + 5)] (3.5)

Where g is the number of repeated value groups, p is the number of
groups, t is the number of repeated values values in each group.

If the probability p of the Mann-Kendall test is equal to or less than the
significance level α in a bilateral test, the null hypothesis (that there is just
random change in the time series) is rejected, and a significant trend exists.

The significance levels I use in this analysis is α = 0.1, corresponding to a
confidence level of 90 %. This means that, for the trends I treat in this thesis,
the probability that there is actually no trend in the data when I assume there
is one (type I error), should be below 10 %. The lower the p-value of each
individual test, the lower the probability that the null hypothesis is falsely
rejected and that there in fact is no trend in the data. A type II error, is the
opposite, when the null hypothesis is not rejected, and no trend is assumed
to exist even though there actually is an existing trend.

Wang et al. (2020) argue that type II errors are equally important as type
I errors in some cases, for instance in hydropower station design. A recom-
mended way to increase the power of the MK test for detecting monotonic
trends in hydro-meteorological time series is to increase the α from 0.05 to
0.1 (Wang et al., 2020), and thereby decreasing the significance level. This
is what I do.
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3.6.2 Identifying trends and internal variability with
the MK test

I use the MK test and Theil-Sen slope to identify trends and internal vari-
ability at different time scales and with different timing. Short-term trends
- for instance over just seven or nine years - can be understood as parts of
year-to-year oscillations in the climate systems. Especially when the short-
term trends oscillate between positive and negative values when varying the
center year of the trend period with a couple of years. Differently, where the
trend magnitude and direction is consistent when varying the center years,
this can be interpreted to be detection of a consistent trend that is longer
than the selected trend length.

The MK test and Theil-Sen slope will be used to compare trends and
variability between the different experiments of modelled precipitation and
evaporation data and observational data for each catchment. I have chosen
to present the trends and variations in the units of percentage change per
year. This presentation makes it easier to compare variations in the model
and in the observations in locations where the model mean is different to
the observed mean. Additionally, it makes it easier to compare between
precipitation and evaporation (which originally have units mm/month) and
streamflow (with the unit monthly mean m3/s), without having to account
for the different sizes of the catchment.

3.7 II: Correlation analysis and filtering

The second methodology I use - after the trend slope analysis - is to find cor-
relations between observed precipitation variability, modelled precipitation
variability and variations in observed streamflow. I use the correlations to
detect similarities and relationships between the streamflow and precipita-
tion. Additionally, I have correlated precipitation variability - of key seasons
in each catchment - with global SST for the same season (and with the same
filtering). This is to try to connect the variability in precipitation that is
found to be important for the streamflow with global variability originating
in the ocean.

3.7.1 Butterworth filtering

Because I am interested in separating the streamflow’s dependency on pre-
cipitation variability of different time scales, I have used two different filters
to isolate the variability. Decadal variability is captured with a low-pass fil-
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ter, which has a threshold at > 9 years. Interannual variability is defined
as the variability in the band-pass filter with periods in the range 2-9 years.
The low-pass filter is made to not include the ENSO variability, that has
the strongest variability of the range 2-7 years (see more in section ?? about
ENSO).

Filtering is a method where selected frequencies in the time series are
discarded. For low-pass filters, high frequency data is discarded. For a band-
bass filter, only frequencies within the given band pass range are kept and
both lower and higher frequencies are discarded. Filtering is closely related
to a Fourier transform, followed by an inverse Fourier transform, where the
data is transformed to the frequency domain by approximating a combination
of several sinusoidal functions to fit the original data, and the data which
have frequencies within the given domain (below the frequency limit in the
low-pass filtering, and within the given range for the band-pass filtering) are
kept to construct the filtered time series (Thomson and Emery, 2014).

The maximum frequency that can be detected with a filter is limited by
the Nyquist frequency, which is ωN = π

∆T
where ∆T is the length of the time

step (Thomson and Emery, 2014, pp. 598). The highest frequency detectable
for yearly data will then be π

year
, which equals a period of 2 years.

The minimum frequency that can be detected with a filter is limited by
the fundamental frequency ω1 = 2π

T
where T = N∆T , hence the max-limit

period is T - the length of the record (Thomson and Emery, 2014, pp. 598).
For yearly or seasonal data of 30 years, the longest detectable period will be
that of 30 years, and all oscillations that are longer will be interpreted as
trends with the given 30-year resolution, and not be included in the filtered
series.

An ideal low-pass filter should i) remove all unwanted high frequencies,
ii) keep all wanted low frequencies unchanged, iii) avoid creating spurious
oscillations, iv) have no phase shift and v) have reasonable computational
time (Thomson and Emery, 2014, pp. 594). There exist several types of
filters, each of them with different trade-offs between the listed ideal qual-
ities. The filter I chose to use in my analysis is the Butterworth filter,
originally proposed by Butterworth (1930). The Python package I use is
scipy.signal.butter.

I apply the filters after i) detrending, ii) calculating anomalies (subtract-
ing the climatology reference period mean) of the time series and iii) normal-
izing them (dividing by the standard deviation) - in that order.

I choose 1981-2011 as the reference climatology period. There are two
reasons for this choice. The first reason is that this is the earliest possible
30-year period to exist for all datasets (ERA5, CHIRPS, NorCPM histor-
ical, NorCPM assim-i1 and most inflow data). The second reason is that
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I am especially interested in the changes over the last ten years. That is
approximately from 2012 until 2022. To have a reference period prior to this
decade of interest makes it convenient to look for changes from the 30-year
reference period to (and within the) the ten year period from 2012-2022. I
use the same climatological reference period to compare the model data with
the observational data. I calculate model bias by subtracting CHIRPS data
for precipitation and ERA5 data for evaporation.

3.7.2 Correlation and p-values with reduced degrees of
freedom

After filtering the data, I correlate the time series with each other - the
seasonal streamflow of each region with each of the seasonal precipitation
data for the same region - and the precipitation time series with the global
SSTs. I use a lag between the streamflow and the precipitation for most
catchment, because the time it takes from it rains until the water has flowed
to the bottom of the catchment can exceed one month. The lag varies from
catchment to catchment - according to size and topography among others -
ans is indicated in the figures. I have checked the time series for 1-month, 2-
month, 3-month, 4-month, 5-month and 6-month lags - as well as no lag - and
chosen the lag that gives the highest correlations in the specific catchment.
The lags are indicated in the figures in the result section.

The aim of the correlation analysis is to obtain a correlation coefficient
that contains information on the linear relationship between two variables
- i) streamflow and precipitation and ii) precipitation and SSTs - and the
strength of the relationship. A correlation coefficient is unit-less, and in the
range [-1,1], where -1 is a perfect negative relationship, 0 is no relationship
and +1 is a perfect positive relationship (Snedecor, 1956, pp. 162). I use the
Pearson product-moment correlation coefficient, which is calculated with the
following formula:

RX,Y =
cov(X, Y )

σXσY

(3.6)

Where RX,Y is the correlation coefficient between time series X and Y
when cov(X,Y) is the covariance between time series X and Y, and σX and
σY are the standard deviations of time series X and Y respectively.

After filtering, the time series of inflow and precipitation obtain autocor-
realtion. Hence, when calculating p-values for the correlations between time
series, this must be taken into account (Bretherton et al., 1999). The method
I use, is to compute the autocorrelation for each time series and using the
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autocorrealtion values to reduce the degrees of freedom by a factor given in
equation 3.7 (Bretherton et al., 1999).

Neff = N
1− pXpY
1 + pXpY

(3.7)

In equation 3.7, Neff are the effective degrees of freedom in the correlation
between two time series, when N is the number of observation time steps,
and pX and pY are the one-lagged autocorrelation of time series X and Y
respectively.

Then, the new (effective) degrees of freedom is used to find the t-statistic
value for a two-sided t-test (equation 3.8; Snedecor, 1956).

t = R

√
Neff√

1−R2
(3.8)

Equation 3.8 describes the t-statistic, t, when R is the correlation co-
efficient between two time series, Neff are the effective degrees of freedom
when autocorrelations are taken into account (equation 3.7). Ultimately, I
compute the p-value of the correlation, given the t-score (equation 3.8) and
effective degrees of freedom (equation 3.7).

I will compare the correlation maps between filtered precipitation time
series and global SSTs by assessing the (dis)similarities between the modelled
and the observed correlation patterns in the tropical basins. The spatial
extent of by definitions of the tropical basins is shown on figure 3.2.

Tropical 
Pacific

Tropical 
Atlantic

Indian 
Ocean

180° 120°W 60°W 0° 60°E

60°S

30°S

0°

30°N

60°N

Figure 3.2: Extent of the definitions of the tropical ocean basins that I use in
the pattern correlation analysis, when comparing the modelled and observed
precipitation-SST correlation maps. Tropical Pacific ocean is defined between
120◦E and 80◦W, Tropical Atlantic Ocean between 80◦W and 10◦E, Indian
Ocean between 30◦E and 110◦E. The meridional extent of all three basins is
from 30◦N to 30◦S

.
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Chapter 4

Results

In this chapter, I will present the results of the thesis, which I have divided
into two parts.

In the first part (section 4.1), I will present the streamflow trends during
the 34-year period from 1981 to 2014, and compare these to precipitation
and evaporation trends in the same period both modelled and observed data.
This will lead to a conclusion on whether this specific 34-year trend is likely
linked to modes of variability in the ocean or not (in each of the catchments).

The next part (section 4.2) will consist of the interannual and decadal
variability of the streamflow, precipitation and evaporation in each catch-
ment. I will compare the modelled and observed trends on multiple timescales
and with different lengths. Also, I filter the data with different cut-off peri-
ods, correlate the precipitation variations in each season on each of the time
scales with both the streamflow time series and global SST maps. This part
shows results that indicate the origin of the modes of variability that influ-
ence the streamflow in each of the catchments - and on what time scale and
in which season.

4.1 Trend 1981-2014

Since 1981 to 2014 is the longest common period of the data used in the
thesis, limited by CHIRPS that start in 1981 and the historical simulation
in NorCPM that stops in 2014, I will look at this specific 34-year trend for
each of the basins.

I will show the trends for mean streamflow, precipitation and evaporation
for the respective catchments within this period, and compare the observed
values to the modelled ones.

The trends for the mean in each catchment in then followed by the trend
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maps for the whole country - of each of the gridded data sets (CHIRPS
for precipitation, ERA5 for evaporation and the NorCPM experiments for
both). These trend maps will show trend variations within the catchments,
helping us understand when the model experiment trends come from part of
the catchments that differs from the observations. Also, the trend maps will
provide information on where the trends in the assim-i1 ensemble are different
for those in the NorCPM historical ensemble, and hence more specific regions
where ocean anomalies changed the trend.

4.1.1 Amazon

In the period from 1981 to 2014, the streamflow out of Óbidos catchment
has risen with a statistically significant trend of 513 m3/s per year, which
sums up to a total of 10 % increase in inflow over that 34-years period
(figure 4.1a). During the 1981-2014 period - although there are local trend
differences within the catchment that I will come back to in section 4.1.4
- the mean precipitation in the catchment has increased with 4.5 mm/year
according to the CHIRPS data (figure 4.1b), corresponding to an increase of
7 % over the period.

The NorCPM ensemble means both contain an increase in precipitation
over the same period as well, but of lower magnitude: The historical rain-
fall trend is 0.69 mm/year (statistically significant) compared to the 0.77
mm/year (statistically insignificant) increase for the assim-i1. Although the
trends seem to be of similar magnitudes, the trend is not significant for the
assim-i1 ensemble because this ensemble mean holds more year-to-year vari-
ability. Ocean anomaly assimilation in the assim-i1 experiment is not chang-
ing the 34-year trend in Amazon region substantially. Hence, the 1981-2014
increasing rainfall trend in the Amazon Óbidos region in the model, seems
to be tied to the forcing that the historical and assim-i1 ensemble have in
common (GHGs, aerosols, volcanic eruptions, solar radiance etc.), and not
ocean variability. That is, according to the model result, the multi-decadal
increase in precipitation in Amazon Óbidos is not mainly driven by internal
variation originating in the ocean.

For the evaporation trends (figure 4.1c), GLEAM data show that the
Amazon Óbidos basin had a mean increasing trend from 1981 to 2014, with
a magnitude of 1.4 mm/year (about 3 % total increase). The ERA5 evapora-
tion trend is also positive, but it is not statistically significant. Contrastingly,
the decreasing evaporation trends in both of the model ensembles are sta-
tistically significant. In both of the NorCPM experiments, this seems to be
caused by an abrupt drop in the evaporation around 1990 (figure 4.1c) that
is not contained in the observational data. This drop in the model - and

41



the following evaporation decrease - might have to do with changes in model
boundary forcing conditions, since is it similar for both the historical and the
assim-i1 ensemble means.
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Figure 4.1: Annual a) mean streamflow b) total precipitation and c) total
evapotranspiration in Óbidos catchment in Amazon region (see location in
figure 3.1). The stippled lines are the trends from 1981-2014. The magni-
tude of the trend (Theil-Sen slope), with the corresponding p-value from the
Mann-Kendall trend test is in the legend. NorCPM historical and NorCPM
assim refer to the ensemble means.
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4.1.2 São Francisco

Propria catchment in São Francisco has experienced a strongly decreasing
streamflow over the last decades (figure 4.2a). Over the period from 1981 to
2014, the streamflow has decreased with a rate of 25.7 m3/s per year, corre-
sponding to a total decrease of about 43 % over those years. During the same
period, both observational data sets have measured decreasing precipitation
trends, but not at significant levels. The lack of significance could be due to
the high year-to-year variations.

NorCPM assim-i1 ensemble contains a significantly decreasing rainfall
trend of -2.24 mm/year, which adds up to 22 % over the time period. This
trend is not present in the historical experiment (figure 4.2b), and must there-
fore be added information by the ocean assimilation. This result suggest that
the 34-year precipitation decrease in São Francisco is (partly) caused by vari-
ations in the ocean, because synchronizing ocean anomalies to observations
in the assim-i1 experiment has induced a trend that was not present in the
historical experiment with only external forcing.

The evaporation trends are statistically significant and decreasing in both
of the model experiments (figure 4.2c), but the assim-i1 decrease is stronger.
The assim-i1 ensemble mean evaporation trend measures -2.21 mm/year (to-
tal decrease of about 21 %) and the historical ensemble mean trend measures
-0.32 mm/year (total decrease of about 3 %). The observation products are
not consistent when it comes to the evaporation changes in São Francisco,
but the ERA5 reanalysis measured decreasing evaporation (-2.53 mm/year,
about 10 %, statistically significant).

The evaporation trends seem to be closely linked to the precipitation
trends: Where the precipitation is decreasing, the evaporation is decreasing
too. This makes sense, because São Francisco is partly in a semi-arid area,
where evaporation is expected to be limited by evaporation. Hence, the
assim-i1 results that improve the evaporation trends in the basin can simply
be caused by the improvement of the rainfall trend by assim-i1 in the basin,
and therefore also indirectly by ocean variation assimilation.
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Figure 4.2: Annual a) mean streamflow b) total precipitation and c) total
evapotranspiration in Propria catchment in São Francisco region (see loca-
tion in figure 3.1). The stippled lines are the trends from 1981-2014. The
magnitude of the trend (Theil-Sen slope), with the corresponding p-value
from the Mann-Kendall trend test is in the legend. NorCPM historical and
NorCPM assim refer to the ensemble means.

4.1.3 Paraguay

Porto Murtinho catchment shows a strong decline in streamflow over the
last decades. From 1981 to 2014, the declining trend is in the range of -
42.33 m3/s per year, which corresponds to a total of about 67 % decline of
streamflow (figure 4.3a). The rainfall in the catchment in the same period has
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decreased in a rate of -9.15 mm/year (ERA5, statistically significant, about
24 %) and -2.00 mm/year (CHIRPS, not statistically significant, about 6
%). Surprisingly, the trend of the ensemble mean of the historical NorCPM
experiment is statistically significant and positive (1.09 mm/year) over the
same period. This increase in rainfall modelled by the historical ensemble
adds up to 4 % increase in total over the period. The NorCPM assim-i1 trend
is weakly negative (< 1% over the period) and not statistically significant
(figure 4.3b).

Assim-i1 did remove the wrong positive trend in the NorCPM historical
ensemble. Despite removing the wrong trend, the assim-i1 experiment did
not obtain a 1981-2014 precipitation trend in the Paraguay catchment that
resembles the observed one. This could mean that, neither the external forc-
ing included in the experiments, nor the ocean variations, are the driving
cause of the precipitation changes over the period. Other possible explana-
tions are that the model is not able to reproduce the mechanics in the region
over the period sufficiently to create the trend or that the modelled precipi-
tation in the region is not responding correctly to the external forcing. I will
come back to where in the basin and at what seasons the trends differ in the
next section with the trend maps (section 4.1.4), and how the model biases
might have influenced the analysis in the discussion part (section 5.2).

For the evaporation trends (figure 4.3c), the observations are not consis-
tent: GLEAM has a non-significant weak positive trend, while ERA5 has
a statistically significant decrease of 1.77 mm/year (about 4 %). In accor-
dance with the modelled precipitation trends, the NorCPM historical ensem-
ble mean has an increasing evaporation trend (more precipitation leads to
more evaporation) and NorCPM assim-i1 has a non-significant decreasing
evaporation trend (less precipitation leads to less evaporation).
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Figure 4.3: Annual a) mean streamflow b) total precipitation and c) total
evapotranspiration in Porto Murtinho catchment in Paraguay region (see
location in figure 3.1). The stippled lines are the trends from 1981-2014.
The magnitude of the trend (Theil-Sen slope), with the corresponding p-
value from the Mann-Kendall trend test is in the legend. NorCPM historical
and NorCPM assim refer to the ensemble means.

4.1.4 Trend maps

To investigate the seasons and subareas of the catchments where the dis-
cussed trends come from, the spatial distribution of the precipitation trends
from 1981 to 2014 are shown for NorCPM historical ensemble mean, NorCPM
assim-i1 ensemble mean and CHIRPS (figure 4.4). Inspecting the differences
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between the historical ensemble trend (figure 4.4a-d) and the assim-i1 ensem-
ble trend (figure 4.4e-h), there are some notable similarities and differences
for the basins that is sometimes bringing the assim-i1 modelled trends closer
to the observed trends and sometimes not.

For Amazon catchment (the blue region in the figures, where the stream-
flow has increased), the historical ensemble and the assim-i1 ensemble had
similar magnitude mean precipitation trends (as showed in section 4.1), so
the ocean assimilation in assim-i1 seemed to make little difference to the
main trend in the catchment.

When inspecting the trend maps, it is visible that both the historical
ensemble (figure 4.4a-d) and assim-i1 ensemble (figure 4.4e-h) have a strongly
increasing trend over the Andes mountain range throughout the rainy season
(SON, DJF, MAM) in the western and southwestern part of the Amazon
basin. This trend over the Andes in the west and southeast of the basin
is only partly replicated in the CHIRPS observations (figure 4.4i-l). For
the observed trends, there are significant contributions to the positive mean
trend in the northern part of the basin - especially in MAM - and in the
interior of the basin - especially in DJF. The observed precipitation trends
in the interior of the basin are patchy with lots of local variations. The trend
in the interior of the basin in the historical experiment, on the contrary, is
uniformly negative (figure 4.4).

The assim-i1 experiment (figure 4.4i-l) seems to have removed some of the
negative trends from the historical experiment - especially in the northwest-
ern part - and thereby making the trends less different from the observations.
Assim-i1 obtains a weak positive trend in the very north of the basin - in
accordance with observations.

The assim-i1 ensemble also seems to be closer to capture the strengthening
of the ITCZ that seems to have happened during the 34-year period according
to the observations, although the positive trends in the ITCZ band seems to
be displaced in the assim-i1 model so that they are outside the Amazon basin.

Despite these corrections by the assim-i1 experiment, the increase over the
Andes mountain in the model seems to be what is driving the mean catchment
trend for both the historical and assim-i1 ensembles, and therefore providing
a trend that contains only parts of the dynamics causing the observed trend.
The model does not replicate the trend in the northern and interior part of
the Amazon sufficiently, which could be the reason why both experiments
have lower percentage increase than observations. NorCPM only seem to
get part of the trend right - and exaggerate the trend over Andes. Also
important to note is that the trend over the Andes mountain range is not
altered by ocean assimilation in assim-i1, and must therefore be caused by
external forcing that is common for the two model experiments.
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Figure 4.4: 1981-2014 seasonal precipitation trends for NorCPM ensemble
mean (a-d), assim-i1 ensemble mean (e-h) and CHIRPS (i-l). Hatched areas
are significant with α = 0.1, and dotted areas are confident with α = 0.05,
calculated with the MK test. The colored boarders indicated are the catch-
ments treated in this master thesis: Blue is Amazon, red is São Francisco
and orange is Paraguay.

48



For São Francisco (red region in the figures, with a decrease in stream-
flow), the most striking difference between the trend in the two model ex-
periments is the decreasing trend in the entire basin in DJF, which is non-
existing in the historical experiment (figure 4.4a) and added in the assim-i1
experiemnt (figure 4.4e), bringing assim-i1 closer to the observed trends (fig-
ure 4.4j), which also show a statistically significant drying trend in the center
of the basin.

Moreover, the assim-i1 experiment is bringing the modelled JJA trend
somewhat closer to the observations by removing a statistical significant
drying trend in the north of the basin (4.4c), which is of opposite sign in
the observations (4.4k). In JJA, assim-i1 is not able to reproduce the ob-
served drying trend that is measured in the observation, but this does not
contribute much to the yearly mean values, since the JJA is a low-rainfall
season in the region, and measured in % per year, the trends look stronger
than they actually are measured in mm/year.

The assim-i1 corrections of the historical experiment trends show that
when the assim-i1 experiment creates a negative mean yearly trend for the
catchment that is not present in the historical - and thereby getting closer
to the observed decreasing trend - the changed mean yearly trend is due to
some of the right reasons: The yearly trends in the assim-i1 experiment is
driven by the DJF trends, and in northern part of the basin in MAM, and
so is the CHIRPS trend to a large extent. This strengthens the hypothesis
that was raised when inspecting the mean trends in section 4.1.2, that the
decreasing São Francisco rainfall trend from 1981 to 2014 is connected to
ocean variations.

For Paraguay (orange region, with a strong decrease in streamflow), the
historical ensemble has increasing rainfall trends throughout the year, that
are significant in MAM and SON (figure 4.4b and 4.4d). In the assim-i1
ensemble, on the contrary, these increasing trends are not present. Instead,
assim-i1 ensemble has a weak significant drying trend in the northeastern
part of Paraguay basin in JJA (figure 4.4g).

Assim-i1 ensemble seasonal trends are closer to the observations, which
also has a significantly drying trend of the similar magnitude during JJA
(figure 4.4k), and non-significant trends in the other seasons in Paraguay
basin, in accordance with the observations. Hence, the assimilation with
ocean anomalies in assim-i1 is bringing the modelled trends closer to observed
34-year trend. This result indicates that the 1981-2014 precipitation trend
in Paraguay is influenced by ocean variation.

Although the mean trend for the catchment in the assim-i1 experiment
between 1981 and 2014 is not significant in Paraguay - as showed in section
4.1.3 - the dynamics seems to be in line with the observed trends in terms of
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seasonal timing and location of the precipitation trend within the the basin.

4.2 Decadal and interannual variability

4.2.1 Amazon

Figure 4.5 shows the results from the MK test trend analysis on streamflow
observations in the Óbidos catchment in Amazon. Each of the squares in
the diagram visualizes the trend of a part of the time series, each square
with a different combination of interval length (y-axis) and center year of
the interval (x-axis). The color on the square indicates the magnitude of the
trend, calculated with the Theil-Sen slope, and the stippled squares are the
trends that are significant according to the MK test.

Towards the bottom of the diagram, the shorter trends are located. The
pattern of these trends show interannual variability in the time series, and
have the strongest trends measured in % per year. The trends that are farther
to the top of the diagram are weaker in % change per year, which is consistent
with the suppression of the interannual timescales when considering longer
time scale trends. We can recognize parts of the significantly increasing
streamflow trend in the basin in the 1981-2014 period in the weak positive
values in the top right of the diagram.
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Figure 4.5: Observed streamflow trends in Óbidos catchment in Amazon
(ANA data) of several lengths and timescales. The trends are calculated
with the Theil-Sen estimator/slope. Hatched areas are significant within the
90 % interval, and is calculated with the Mann-Kendall test. The change is
given in % change per year, compared to the mean streamflow over the exact
time period for the given trend.
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Figure 4.6 is the similar visualization of the MK trend tests on the catch-
ment precipitation time series. The same trend test procedure has been con-
ducted on both of the modelled ensemble means: historical (a) and assim-i1
(b), and both observational datasets: ERA (c) and CHIPRS (d).
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Figure 4.6: Precipitation trends in Óbidos catchment in Amazon of several
lengths and timescales. The trends are calculated with the Theil-Sen esti-
mator/slope. Hatched areas are significant within the 90 % interval, and
is calculated with the Mann-Kendall test. a) NorCPM historical ensemble
mean, b) NorCPM assim-i1 ensemble mean, c) ERA5 and d) CHIRPS. e) is
observed streamflow (ANA data). The change is given in % change per year,
compared to the mean precipitation over the exact time period for the given
trend and with the given dataset.
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It is visible in figure 4.6 that NorCPM assim-i1 ensemble mean contains
stronger interannual precipitation variability (> 2 %) in the Amazon region
than the historical ensemble (< 0.5 %). The assim-i1 ensemble contains
interannual variability in the same magnitude as the observed precipitation
data sets. This shows that assimilating ocean anomalies does add interannual
precipitation variability in the region, and it seems like the effect from the
anomaly assimilation is consistent among the assim-i1 model runs (since the
variations are not averaged out in the assim-i1 ensemble mean, as they are for
the historical ensemble mean). Hence, the variability of the variation in the
region on time scales of 7- and 9-years period (and to some extent 11-years
periods) is affected by ocean variation in Amazon.

The timing of the positive and negative short (7 years) variation trends of
the assim-i1 mean seems to match up with the observed variations at several
points, but not all (figure 4.6). For instance, center year 2002 has a significant
declining trend, and 2006 has a significant increasing trend in both assim-i1
ensembles and in the observational data. Hence, the NorCPM assim-i1 seems
to add information about the interannual precipitation variations in the area,
compared to historical ensemble, although it does not always match up with
observations. For instance, the last observed trends are positive for both of
the datasets, while the assim-i1 trends are negative.

When it comes to the 13-, 15- and 21- year variations, the magnitudes
of the variations are weaker in the assim-i1 experiment than in the observa-
tions. The observations also contain a higher number of significant trends.
The timing of the trends on this time scales do not match well with the
observations either. This could either mean that the precipitation variation
on these time scales are caused by other factors than ocean variation or the
forcing included in the model. Or it could mean that the model is not able to
reproduce the longer oscillations that are connected to the ocean variability.
I will come back to this when analysing the correlation maps for Amazon
later in this section.

Figure 4.7 shows the test results for evaporation time series. The test
in conducted is the same way as for streamflow and precipitation, varying
the center year and interval length of the time series, before estimating the
trends and their significance.

For the evaporation variations on different time scales, the model exper-
iments (figure 4.7a-b) look more similar to each other than assim-i1 does
to the observations (figure 4.7c-d). This is mainly due to the sudden drop
of evaporation in the catchment that seem to be linked to model boundary
condition, as I have previously discussed (in section 4.1.1).

Apart from that, the NorCPM assim-i1 ensemble mean has some variation
on the 7- and 9-year interval length that is of stronger magnitude than the
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historical ensemble mean. Some of the variation seem to match up quite well,
but not all.
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Figure 4.7: Evaporation trends in Óbidos catchment in Amazon of several
lengths and timescales. The trends are calculated with the Theil-Sen esti-
mator/slope. Hatched areas are significant within the 90 % interval, and
is calculated with the Mann-Kendall test. a) NorCPM historical ensemble
mean, b) NorCPM assim-i1 ensemble mean, c) ERA5 and d) GLEAM. e) is
observed streamflow (ANA data). The change is given in % change per year,
compared to the mean precipitation over the exact time period for the given
trend and with the given dataset.

The visual inspection of the trends and variations of the Amazon time
series shows that - for both precipitation and evaporation - the assim-i1 en-
semble mean adds internal variability. But it is not clear whether the inter-
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nal variability is an improvement that have brought the modelled variability
closer to the observations.

Therefore, in the following part II of the analysis, I split the time series
into seasonal time series (December-January-February: DJF, March-April-
May: MAM, June-July-August: JJA, September-October-November: SON),
filter them on two different time scales, and correlate these seasonal and
filtered time series - both from the model and from observations - with the
streamflow time series that are filtered on the same time scales. With this
analysis, I will be able to identify at what time scales and what seasons the
model is improving the correlation with the streamflow.

Then, to understand more about why the assim-i1 experiment alters the
the variation magnitude and timing for the variation on each of the time
scales and seasons, I want to investigate the relationship between the varia-
tion in the time series and the variation of SST. I do this for observations too,
to compare the model SST-precipitation dynamics with the observations.

If (i) the correlation with the lagged streamflow is improved for a specific
season and a specific time scale of variability, and (ii) the correlation map
of assim-i1 ensemble shows the same pattern as the observations, then it is
confirmed what dynamics or origin of variability in the ocean that is affecting
the streamflow variations.

For the Óbidos catchment, I have used a lag of 3 months when correlating
the time series. This is the lag that gives the highest correlation, when I
tested for flow season that was 1, 2, 3, 4, 5 and 6 months shifted forward as
well as unlagged. Because the catchment is large, it will take several months
from the rain falls into the outskirts of the catchment before it reaches the
outflow point where the streamflow measurements are taken. So this lag is
logical.

The correlation coefficients between precipitation and streamflow in Óbidos
in Amazon, for time scales of > 9 years, are listed in table 4.1. There are
some interesting results here:

Firstly, precipiation variations on time scales longer than 9 years in the
NorCPM assim-i1 experiment seem to improve correlations with observed
streamflow variations on the same time scales (lagged), compared to the
historical experiment. NorCPM assim-i1 has higher correlation coefficient
in all seasons except MAM, reaching values that are comparable to those
of ERA5. This means that the timing of the precipitation variation in the
assim-i1 experiment contain as much long term variability of the right timing
as ERA5 does.

Secondly, NorCPM assim-i1 obtains a statistically significant correlation
between JJA precipitation and SON streamflow out of the Amazon basin of
0.66 (p: 0.064, table 4.1), that is not contained in the historical experiment
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(R: -0.04, p: 1.061, table 4.1). Hence, this could be a time scale and season
where the ocean anomalies are driving decadal precipitation variations, which
again are driving streamflow variation in the Amazon Óbidos catchment.

Table 4.1: Correlation coefficients (with corresponding p-values) between 9
years-lowpass filtered seasonal precipitation and 3 months-lagged streamflow
in Óbidos catchment in Amazon. All data is detrended and normalized prior
to correlation calculation. Significant correlations are marked in bold.

ERA5 CHIRPS NorCPM
hist.

NorCPM
assim-i1

DJF
R 0.61 0.96 -0.26 0.2
p 0.1132 0.0055 0.5931 0.6857
MAM
R 0.69 0.45 -0.02 -0.4
p 0.073 0.2692 0.9553 0.3452
JJA
R 0.34 0.81 -0.0 0.66
p 0.4027 0.0482 0.994 0.0458
SON
R 0.38 0.54 -0.03 0.41
p 0.4571 0.1288 0.9456 0.3578

Figure 4.8 shows the correlation map between the lowpass-filtered SST
and precipitation time series for CHIRPS and assim-i1 - the same that were
correlated with streamflow in in table 4.1. Table 4.2 shows the corresponding
pattern correlations between observed and modelled correlation maps. There
are similar features in the observational correlation maps (figure 4.8a-d) and
the assim-i1 correlation map (figure 4.8e-h) for some seasons.

In JJA, NorCPM assim-i1 ensemble has statistically significant negative
correlations in the eastern tropical south Pacific (0.6-0.8, figure 4.8c), which
is present in the CHIRPS correlation map as well (> 0.8, figure 4.8g). Also,
NorCPM assim-i1 and CHIRPS both have significant positive correlations
in the south Atlantic Ocean: CHIRPS around 30◦S (0.6-0.8) and assim-i1
in the entire south Tropical Atlantic (0.4-0.8). Additionally, they both have
positive statistically significant correlations in the Indian Ocean (0.4-0.8).
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Figure 4.8: Correlation values between seasonal precipitation time series in
Óbidos catchment in Amazon and global seasonal SSTs for NorCPM assim-
i1 ensemble mean (a-d) and CHIRPS correlated with ERA5 SSTs (e-h). All
time series are normalized and filtered for periods > 9 years before the cor-
relations are calculated. The time series run from 1981-2018. Hatched areas
are significant with α = 0.1.

Table 4.2: Pattern correlations between correlation maps for CHIRPS and
NorCPM assim-i1 in figure 4.8. The boundaries of the ocean basins are
shown in figure 3.2 in the method section. The tropical ocean band is defined
between 30◦S and 30◦N.

DJF MAM JJA SON

Tropical Pacific 0.13 -0.1 0.57 0.43
Tropical Atlantic 0.39 0.17 0.4 0.07
Indian Ocean 0.2 0.32 0.78 0.08
Tropical Ocean Band 0.45 0.19 0.69 0.5
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In JJA, the SST patterns for the observations and model seem to be most
similar in Tropical Pacific and Indian ocean, according to the pattern corre-
lation shown in table 4.2. The total JJA pattern correlation in the tropical
ocean band is 0.69 between the model and observations, which shows that
the model to a large extent replicates the tropical SST pattern in JJA. The
similarity of the JJA correlation patterns indicates that the model telecon-
nections that connect SST variations on decadal time scales and JJA precip-
itation variation in Amazon is similar to the observed teleconnections. Both
in the model and in the observations, the JJA precipitation and therefore
SON streamflow - seem to be influenced by variations in the Pacific, Atlantic
and Indian ocean. In the Pacific, the correlation pattern might resemble
some type of negative PDO mode. That is, colder waters in the east Pacific
(negative PDO) lead to more precipitation - and therefore more lagged inflow
in the Óbidos catchment. Note that JJA is the driest season in the region.

For the other seasons, the assim-i1 ensemble tends to overestimate the
impact of the Tropical Atlantic SST variation impact on the Amazon rainfall
variation. CHIRPS has some correlations in the Tropical Atlantic too, but
to a smaller extent. In an important part of the wet season, DJF, CHIRPS
shows a PDO pattern in the Pacific, with negative correlations in a comma-
shape in the tropical and norther pert of the Pacific basin. The assim-i1
model ensemble does replicate this partly, but the model simultaneously have
high correlations with the Tropical Atlantic and North Atlantic basin (>
0.6) which is not similar to observations. The model is syncing the Amazon
DJF precipitation variation up with the Atlantic ocean variations when the
observations indicate that this pattern should not be as important as in the
model.

In MAM, the pattern correlation between the correlation maps of assim-
i1 and CHIRPS is 0.19 (table 4.2), which indicate a idssimilar correlation
pattern between the model and observations in the tropical band. This might
be a reason why the model was not able to reach high correlations between
the precipitation and streamflow variations on decadal time scales.

Table 4.3 contains the correlation coefficients between lagged streamflow
and precipitation filtered for interannual variability. Filtered on the 2-9 year
time scales, the correlations between observed precipitation and streamflow
are strongly positive for all seasons (for both datasets, in the range of 0.56
- 0.84), showing that there is a strong link between year-to-year rainfall
variability and streamflow in Óbidos catchment in Amazon.
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Table 4.3: Correlation coefficients (with corresponding p-values) between 2-9
years-bandpass filtered seasonal precipitation and 3 months-lagged stream-
flow in Óbidos catchment in Amazon. All data is normalized and detrended
prior to correlation calculation. Significant correlations are marked in bold.

ERA5 CHIRPS NorCPM
hist.

NorCPM
assim-i1

DJF
R 0.56 0.63 0.27 0.28
p 0.0025 0.003 0.1708 0.1313
MAM
R 0.74 0.59 0.33 -0.4
p 0.0 0.0034 0.1179 0.0415
JJA
R 0.84 0.71 0.01 0.72
p 0.0 0.0002 0.9507 0.0004
SON
R 0.8 0.79 -0.23 0.28
p 0.0 0.0 0.2792 0.132

The assim-i1 ensemble improves the correlation with lagged streamflow
compared to the historical correlations in JJA. In JJA, NorCPM assim-i1
has a correlation coefficient, R, of 0.72 (p: 0.0004), which is similar to that
of CHIRPS (R: 0.71) and ERA5 (R: 0.84, table 4.3). Hence, JJA is the
only season where the interannual variation in rainfall over Amazon region
is significantly improved in the NorCPM assim-i1 ensemble compared to the
historical ensemble. According to these model results, interannual anoma-
lies of JJA precipitation over Amazon might be tightly connected to ocean
anomalies, and these anomalies are in turn correlated with SON streamflow
out of the Óbidos catchment.

When looking at the correlation maps between JJA precipitation and
JJA SSTs filtered on the same time scales (2-9 years, figure 4.9c and 4.9g),
assim-i1 ensemble correlation map looks close to resmble the pattern in the
observation dataset. For the observations and in assim-i1, there are signifi-
cant positive correlations in the south Tropical Atlantic ocean, with correla-
tion coefficients in the range 0.4-0.6 for CHIRPS and 0.4-0.8 for the model.
Also, both CHIRPS (figure 4.9c) and assim-i1 (figure 4.9g) have significant
positive correlations in the Atlantic between 30◦N and 60 ◦N. By and large,
the assim-i1 SST correlation pattern is similar to the observed one, and the
patter correlation coefficients between the model and observation are high
in all basins (0.81, 0.6, and 0.82 in Tropical Pacific, Tropical Atlantic and
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Indian Ocean respectively, table 4.4), which strengthens the confidence that
the influence on interannual precipitation is originating in the ocean (in JJA).

Also the DJF correlation maps look similar for the model (figure 4.9a)
and the observations (figure 4.9e). The pattern correlations are also high
in all basins during DJF (0.58 for Tropical Pacific, 0.7 for Tropical Atlantic
and 0.73 for Indian Ocean; table 4.4). This shows that the model establishes
similar teleconnection patterns between the global ocean anomalies and pre-
cipitation in Amazon.
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Figure 4.9: Correlation values between seasonal precipitation time series in
Óbidos catchment in Amazon and global seasonal SSTs for NorCPM assim-
i1 ensemble mean (a-d) and CHIRPS correlated with ERA5 SSTs (e-h). All
time series are normalized and filtered for periods 2-9 years before the cor-
relations are calculated. The time series run from 1981-2018. Hatched areas
are significant with α = 0.1.

Table 4.4: Pattern correlations between correlation maps for CHIRPS and
NorCPM assim-i1 in figure 4.9. The boundaries of catchments are shown in
figure 3.2 in the method section. The tropical ocean band is defined between
30◦S and 30◦N.

DJF MAM JJA SON

Tropical Pacific 0.58 -0.25 0.81 0.41
Tropical Atlantic 0.7 0.14 0.6 0.25
Indian Ocean 0.73 0.03 0.82 0.34
Tropical Ocean Band 0.79 -0.08 0.77 0.48
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4.2.2 São Francisco

Figure 4.10 shows the overview over trends and their significance - with
different timings and lengths - for observed streamflow in Propria catchment
in São Francisco. This is the catchment with the largest magnitude of the
interannual variability. Note that the range of the colorbar is ±20 % per
year, as compared to ±5 % per year in the Amazon plot. There is significant
streamflow variability on all evaluated time scales, and patterns that looks
like oscillations.

The record of the observations at Propria catchment is shorter than those
for Amazon and Paraguay, and does not start until 1977. This limits the
ability to identify oscillating patterns on the longer time scales than that in
the diagram.

There seem to have been a strong decrease in streamflow over the last
decade, where the trends get increasingly stronger when moving from center
year 2005 until center year 2016 (figure 4.10c-d). This means that even after
the decreasing trend between 1981 and 2014 that was discussed earlier (in
section 4.1.2), this catchment has had even steeper decreasing trends in the
recent past. There are declining streamflow rates on all time scales leading
up to 2019.
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Figure 4.10: Same as figure 4.5, but for Propria catchment in São Francisco.

There is a steep recent decline in the precipitation on all time scales as
well (as seen in figure 4.11c-d). This decreasing trend of precipitation in
the late decade in the catchment is not contained in the historical NorPCM
experiment at all (as seen in figure 4.11a). Again, it becomes clear that the
drying of São Francisco basin is not solely due to external forcing: neither
the 1981-2014 longer trend, nor the trends on shorter time scales is present
in the historical NorCPM experiment.
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The assim-i1 experiment contains interannual variations of the same mag-
nitude as the observations, when assessing the results in the units % per year.
Note that São Francisco is located in an area where the model largely under-
estimates the rainfall, so the trend estimates in mm/year are more different
between the model and observations.

7
9

11
13
15
21

In
te

rv
al

 [y
rs

]

a) NorCPM historical ensemble mean

7
9

11
13
15
21

In
te

rv
al

 [y
rs

]

b) NorCPM assim-i1 ensemble mean

7
9

11
13
15
21

In
te

rv
al

 [y
rs

]

c) ERA5

1953
1955
1957
1959
1961
1963
1965
1967
1969
1971
1973
1975
1977
1979
1981
1983
1985
1987
1989
1991
1993
1995
1997
1999
2001
2003
2005
2007
2009
2011
2013
2015

Center year

7
9

11
13
15
21

In
te

rv
al

 [y
rs

]

d) CHIRPS 

4 3 2 1 0 1 2 3 4
[%/year]

Precipitaion trends São Francisco

Figure 4.11: Same as figure 4.6, but for Propria catchment in São Francisco.

The timing of the variability of the assim-i1 experiment does match better
up with the drying trends over the last decade, but not completely (as seen
in figure 4.11b). The trends on shorter time scales than 21 years are weaker
than observations. Several of the recent trends - on all time scales - are not
as strong as in observations either.

The 21-year trends in the assim-i1 experiment are different from the ones
in historical experiment several times. Since the assim-i1 ensemble catch the
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negative decreasing 21-year trend from about 1995 and until 2018 that the
historical ensemble does not (upper right in each panel in figure 4.11), these
trends are induced by ocean variation in the model. Parts of the explanation
for the drying trends in the basin from the 1990s to the 2010s is therefore
likely to be ocean variability. The AMO has for instance changed sign from
negative to positive throughout that time period. A possible explanation
would be that the changes are connected to this variation. I will come back
to this later in this section, when assessing the correlation maps.

The same diagram for evaporation trends and variation in São Francisco
(figure 4.12) has similar looking patterns as the precipitation in the model
experiments. This supports the earlier given argument that evaporation is
limited by precipitation in the semi-arid region, and therefore the evaporation
variation on most time scales seem to follow the precipitation variation.
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Figure 4.12: Same as figure 4.7, but for Propria catchment in São Francisco.

63



For evaporation, like with precipitation, the assim-i1 experiment induce
more variation on shorter time scales that look different from the histori-
cal ensemble variation. And during the recent decade, the evaporation is
decreasing in the the assim-i1 experiment on several time scales, coinciding
with observations.

To investigate the seasons and time scales of variability, and to identify
the origin of the ocean induced variability in the assim-i1 experiment and in
observations, I present correlations between seasonal filtered time series and
correlation maps.

When filtered on longer time scales, > 9 years, the assim-i1 experiment
does not improve correlations in any seasons between the observed inflow and
modelled precipitation variation, as compared to the historical experiment
(table 4.5). For the slow variation in MAM, the correlation between observed
rainfall and lagged inflow are high (ERA5: 0.55, CHIRPS: 0.75), but the
assim-i1 has an negative correlation (statistically insignificant). These low
correlation values indicate that the modelled precipitation variation on these
time scales might not be connected to the right dynamics in the model, as
the variations are so different.

Table 4.5: Correlation coefficients (with corresponding p-values) between 9
year-lowpass filtered seasonal precipitation and 1 month-lagged streamflow
in Propria catchment in the São Francisco region. All data is normalized
and detrended prior to correlation calculation. Significant correlations are
marked in bold.

ERA5 CHIRPS NorCPM
hist.

NorCPM
assim-i1

DJF
R 0.37 0.63 0.42 -0.77
p 0.4163 0.2018 0.3747 0.0789
MAM
R 0.55 0.75 0.6 -0.04
p 0.2127 0.1637 0.1563 0.9317
JJA
R -0.59 -0.12 -0.11 -0.27
p 0.3965 0.8237 0.8452 0.6419
SON
R -0.14 0.16 -0.75 -0.13
p 0.8256 0.7547 0.0578 0.847
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When assessing the correlation map filtered on the same time scales (low-
pass, 9 years, figure 4.13), it can be seen that both assim-i1 and observed
data show a negative PDO-like pattern, with a ”comma”-shape of negative
correlations in the North Pacific basin in MAM, JJA and SON. The corre-
lations between SSTs in the Tropical Pacific and precipitation variation in
São Francisco reach stronger correlations in the model than in the observa-
tions. In the observations, no Tropical Pacific correlations are statistically
significant during MAM and JJA for instance.

For the beginning of the wet season, DJF, the model show few statisti-
cally significant correlations with the SST variations on decadal time scales.
The model does not replicate the correlation pattern of the observations in
the tropical band either (pattern correlation between modelled and observed
correlation maps is 0.04; table 4.6). Hence, even tough the model is assim-
ilated with the observed SSTs, the model dynamics are not replicating the
right dynamical patterns to replicate the precipitation variation in DJF on
decadal time scales. This can be why the assim-i1 experiment does not im-
prove the interannual variations well enough to reach significant correlations
between DJF precipitation and lagged streamflow.
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Figure 4.13: Correlation values between seasonal precipitation time series in
Propria catchment in São Francisco and global seasonal SSTs for NorCPM
assim-i1 ensemble mean (a-d) and CHIRPS correlated with ERA5 SSTs (e-
h). All time series are normalized and lowpass-filtered for periods > 9 years
before the correlations are calculated. The time series run from 1981-2018.
Hatched areas are significant with α = 0.1.

Table 4.6: Pattern correlations between the correlation maps of NorCPM
assim-i1 and CHIRPS in figure 4.13. The spatial extent of the tropical Oceans
basins are defined in figure 3.2. The tropical ocean band is defined as ocean
between 30◦N and 30◦S.

DJF MAM JJA SON

Tropical Pacific Ocean -0.09 0.11 0.73 0.39
Tropical Atlantic Ocean 0.23 0.33 0.64 0.55
Indian Ocean 0.02 0.24 0.5 0.61
Tropical Ocean Band 0.04 0.45 0.78 0.62
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Table 4.7 shows the correlation between the seasonal precipitation and
the streamflow filtered on interannual time scales, between 2-9 years. Both
the decadal and interannual filtered streamflow is lagged with 1 month in the
correlation analyses, since this was the lag that gave the highest correlations
in São Francisco catchment. It makes sense that the lead time is shorter in
São Francisco than Amazon, as the basin is considerably smaller.

Table 4.7: Correlation coefficients (with corresponding p-values) between 2-9
years-bandpass filtered seasonal precipitation and 1 month-lagged streamflow
in Propria catchment in the São Francisco region. All data is normalized and
detrended prior to correlation calculation. Significant correlations are marked
in bold.

ERA5 CHIRPS NorCPM
hist.

NorCPM
assim-i1

DJF
R 0.79 0.53 0.25 -0.24
p 0.0004 0.0451 0.356 0.3348
MAM
R -0.06 -0.19 0.31 -0.48
p 0.8465 0.5142 0.2257 0.086
JJA
R -0.41 -0.46 0.49 -0.17
p 0.0561 0.0422 0.0644 0.4971
SON
R 0.25 0.09 -0.18 -0.34
p 0.3489 0.7433 0.5276 0.135

Apart from the DJF rainfall, it is striking that the correlation between
observed (CHIRPS, ERA5) precipitation and streamflow filtered on this
time scale reach such low correlations. The correlations of streamflow with
CHIRPS and ERA5 in MAM, JJA and SON are either negative (does not
make logically sense; less rain would not lead to higher streamflow) or very
low, and all of them insignificant. Hence, interannual variations in stream-
flow does not seem to be much influenced by the interannual variations in
MAM, JJA and SON rainfall. I will suggest some possible explanations for
this lack of relaitonship between rainfall and streamflow in the region in the
discussion.

The only significant correlation with streamflow in the basin on interan-
nual time scales, is between observed precipitation in DJF and streamflow in
JFM (1-month-lagged season; ERA5: 0.79, CHIRPS: 0.53, table 4.7). DJF
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is part of the wet season in São Francisco. The correlation in DJF is not
replicated in the assim-i1 experiment (R: -0.28, p: 1.73).

When assessing the correlation map between DJF SSTs and precipita-
tion, filtered on the same time scale, it is visible that the NorCPM-assim
has a different correlation distribution in the Pacific than the observations.
The NorCPM assim-i1 experiment (figure 4.14a) has stronger correlations, in
larger and shifted areas compared to the observation correlation map (figure
4.14e). The pattern correlation between the two DJF maps in the Tropi-
cal Pacific region is -0.17, and the pattern correlation for the tropical band
included is 0.25 (table 4.8). Even though NorCPM is assimilated with ob-
served SSTs in the assim-i1 experiment, the precipitation variation in the
São Francisco basin is not affected by the same anomalies in the model as
seen in the observations. This could be an explanation for why the year-to-
year variations in the model DJF precipitation does not correlate well with
variations in the lagged observed streamflow, when the observations do. The
lack of correlations might also be caused by model bias (as I will come back
to in the discussion).
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Figure 4.14: Correlation values between seasonal precipitation time series in
Propria catchment in São Francisco and global seasonal SSTs for NorCPM
assim-i1 ensemble mean (a-d) and CHIRPS correlated with ERA5 SSTs (e-
h). All time series are normalized and filtered for periods 2-9 years before
the correlations are calculated. The data run from 1981-2018. Hatched areas
are significant with α = 0.1.

Table 4.8: Pattern correlations between the correlation maps of NorCPM
assim-i1 and CHIRPS in figure 4.14 for selected areas. The spatial extent of
the tropical Oceans basins are defined in figure 3.2. The tropical ocean band
is defined as ocean between 30◦N and 30◦S.

DJF MAM JJA SON

Tropical Pacific Ocean -0.17 0.15 0.59 0.45
Tropical Atlantic Ocean 0.48 0.01 0.51 0.39
Indian Ocean 0.23 0.16 0.63 0.67
Tropical Ocean Band 0.25 0.14 0.64 0.65
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4.2.3 Paraguay

Figure 4.15 shows a summary of the trends on different time scales and with
different timings for observed streamflow out of Paraguay catchment. From
the figure, it is visible that the catchment has oscillations on all time scales,
that are significant. The streamflow measurements in this basin reach further
back than 1950, but I have included the trends from that period, because
it is easier comparable with the precipitation data (NorCPM assim-i1 and
ERA5 both start in 1950).

The long record allows the slow oscillations in the flow to be visible.
There are several periods of either increasing of decreasing flow that are
significant when varying the center of the period, which show that the trends
are significant on length scale exceeding the 21-year trend.
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Figure 4.15: Same as figure 4.5, but for Porto Murtinho catchment in
Paraguay.

Figure 4.16 shows the trend diagram for the precipitation in the Paraguay
basin. It is visible that the assim-i1 ensemble adds variation and oscilla-
tions on the shorter time scales, in a magnitude somewhere between ERA5
(with higher magnitude variations) and CHIRPS (with lower magnitude vari-
ations). ERA5 and CHIRPS seem to estimate quite different precipitation
variations within this catchment. It is important to keep in mind that ERA5
is a reanalysis product that is not based on direct observations of precipita-
tion like CHIRPS is. This might be the reason for the differences, and hence
CHIRPS should be trusted more in the region. Assim-i1 agrees on some of
the same short scale oscillations as CHIRPS, but not all.

When comparing the significant precipitation trends and their magnitudes
with the streamflow variation in the area (figure 4.15), the oscillations on all
time scales seem to match quite well between the observed flow and the
observed precipitation. The exception is the recent past, where ERA5 has
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measured increasing rainfall on all time scales, and CHIRPS significantly
increasing rainfall on shorter time scales. There are no statistically significant
increasing streamflow trends on shorter time scales in the recent past (figure
4.15).
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Figure 4.16: Same as figure 4.6, but for Porto Murtinho catchment in
Paraguay region.

A reasonable explanation for that the recent increases in rainfall has not
resulted in significant increases on streamflow on the same time scale, could
be the seen in the evaporation trend diagram for Paraguay (figure 4.17):
At the same timing and time scale as the precipitation has increased, the
evaporation has increased too.

Assessing the evaporation diagram further, it can be seen that the assim-
i1 experiment is altering the strength and timing of evaporation variation in
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the Paraguay region: First and foremost by introducing stronger variations
on the shorter time scales, that match up with the timing of the observations
on several occasions, although they are somewhat weak. Assim-i1 experiment
is also changing the long-term oscillations, by removing some long-term in-
creasing evaporation trends that are included in the historical experiment.
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Figure 4.17: Same as figure 4.7, but for Porto Murtinho catchment in
Paraguay region.

For the correlation between the lowpassed filtered precipitation and and
streamflow time series in the Paraguay catchment, there are no statistically
significant correlations (table 4.9). Although not at statistically significant
levels, NorCPM assim-i1 improves the correlation in JJA, which is the dry
season. The correlation maps for low-pass filtered (> 9 years) precipitation
in Paraguay for both assim-i1 and CHIRPS in all seasons are show in figure
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4.18. The correlation pattern do not seem to be so consistent between the
model and the observations. The pattern correlations in table 4.10 further
underlines that the correlations patterns differ. All the pattern correlations
between modelled and observed precipitation patterns have negative corre-
lations in the tropical ocean band.

Table 4.9: Correlation coefficients (with corresponding p-values) between > 9
years-lowpass filtered seasonal precipitation and 6 months-lagged streamflow
in Porto Murtinho catchment in the Paraguay region. All data is normalized
and detrended prior to correlation calculation. Significant correlations are
marked in bold.

ERA5 CHIRPS NorCPM
hist.

NorCPM
assim-i1

DJF (6-month lag)
R 0.42 -0.52 -0.27 0.02
p 0.5334 0.4713 0.5835 0.9692
MAM (6-month lag)
R 0.61 0.52 0.08 -0.08
p 0.4128 0.3748 0.9014 0.8586
JJA (6-month lag)
R 0.75 0.11 -0.1 0.56
p 0.1661 0.8584 0.887 0.3156
SON (2-month lag)
R 0.68 0.57 0.14 0.18
p 0.2419 0.2405 0.7934 0.7082

The correlation maps between SON SSTs and SON rainfall in Paraguay
catchment look especially different: The CHIRPS data show high significant
correlations in the Pacific ocean, with correlation values > 0.6 in large parts
of the basin, and > 0.8 in the tropical Pacific (figure 4.18h). The pattern
resembles a positive mode of the PDO. In the model (figure 4.18d), on the
contrary, the SON correlation pattern has negative values Tropical Pacific.
This can be a reason for why the precipitation variations on decadal time
scales in the assim-i1 ensemble does not correlate with the observed lagged
streamflow in the catchment, even though there is supposed to be a cor-
relation according to observational data (table 4.9). The assim-i1 runs are
assimilated with observed ocean anomalies, but do not contain a pattern that
replicates the influence of SSTs on Paraguay SON precipitation on decadal
time scales, according to observations.
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Figure 4.18: Correlation values between seasonal precipitation time series in
Porto Murtinho catchment in Paraguay and global seasonal SSTs for Nor-
CPM assim-i1 ensemble mean (a-d) and CHIRPS correlated with ERA5 SSTs
(e-h). All time series are normalized and lowpass-filtered for periods > 9
years before the correlations are calculated. Time series are from 1981-2018.
Hatched areas are significant with α = 0.1.

Table 4.10: Pattern correlations between the correlation maps of NorCPM
assim-i1 and CHIRPS in figure 4.13 for selected areas. The spatial extent of
the tropical Oceans basins are defined in figure 3.2. The tropical ocean band
is defined as ocean between 30◦N and 30◦S.

DJF MAM JJA SON

Tropical Pacific Ocean 0.14 -0.13 -0.18 -0.64
Tropical Atlantic Ocean -0.21 -0.18 -0.07 -0.66
Indian Ocean 0.02 -0.11 0.12 -0.57
Tropical Ocean Band -0.21 -0.13 -0.22 -0.75
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In the lagged analysis of streamflow observations and precipitation in
Paraguay basin (table 4.9 and table 4.11), the highest correlations values
were found to be at a 6 month lag, except for in the SON season, where 2
months were found to be the lag that gave the highest correlations. This
different lag throughout the season could be explained by different positions
of the rainfall maxima. If the rainfall events are close to the outlet of the
basin (in the south), the lag will be smaller than when the rainfall happened
far from the bottom of the drainage area. A 6 month lag between streamflow
and rainfall is quite long, but can be reasonable since the water in the rivers
also consists of groundwater flow. If the ground water has a seasonal storage
cycle of around 6 months, it makes sense that the river flow has its maximum
correlation with the rain 6 months earlier.

Table 4.11 shows the seasonal correlation values between precipitation
and lagged streamflow on interannual time scales. While the decadal stream-
flow variability for Paraguay catchment is not statistically significant corre-
lated with precipitation variability, the correlations between streamflow and
precipitation filtered on interannual time scale - 2-9 years - is significant at
some seasons: SON (beginning of rainy season) for both observational data
sets, and MAM and JJA (end of rainy season and dry season) for ERA5 only
and DJF (rainy season, CHIRPS). NorCPM assim-i1 experiment improves
the correlations compared to NorCPM historical - in the dry season JJA
(statistically significant, to R:0.57) and in the beginning of the wet season
SON (statistically significant, to R:0.34).

Therefore, SON season in Paraguay basin might be a season and a time
where the interannual oscillations (2-9 years) in the oceans are influencing
the JJA and SON rainfall, which again are highly correlated with the 6- and
2 month-lagged seasonal streamflow out of the basin (DJF and NDJ; austral
summer season).
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Table 4.11: Correlation coefficients (with corresponding p-values) between 2-
9 years-bandpass filtered seasonal precipitation and 6 months-lagged stream-
flow in Porto Murtinho catchment in Paraguay basin. All data is normalized
and detrended prior to correlation calculation. Significant correlations are
marked in bold.

ERA5 CHIRPS NorCPM
hist.

NorCPM
assim-i1

DJF (6-month lag)
R 0.31 0.57 -0.3 0.05
p 0.1105 0.0142 0.099 0.7794
MAM (6-month lag)
R 0.32 0.27 -0.0 0.05
p 0.0922 0.2835 0.997 0.8242
JJA (6-month lag)
R 0.49 0.15 0.12 0.57
p 0.0036 0.5394 0.4724 0.0001
SON (2-month lag)
R 0.51 0.58 0.13 0.34
p 0.0024 0.0152 0.5195 0.0503

Figure 4.19 shows the correlation maps between Paraguay precipitation
and global SSTs for assim-i1 and CHIRPS. Generally, these maps look more
different to each other. This is also supported by the pattern correlations,
which yield low values for the pattern correlations between modelled and
observed SST correlation patterns (DJF: -0.26, MAM: 0.22 and JJA: -0.25,
table 4.12).

SON was one of the seasons where the filtered correlation with streamflow
was improved in the assim-i1 experiment. When looking at the correlation
map of SON, assim-i1 experiment (figure 4.19d) has a somewhat similar pat-
tern of SST correlations as the observations (figure 4.19h). Apart from the
positive correlation with the Indian ocean in the assim-i1 run that is not in
the observations, and the stronger magnitude of the correlations in the model,
the correlation patterns have similarities. There are positive correlations in
the range of 0.2-0.6 in the Tropical Pacific in both observational and assim-i1
data. For both observations and assim-i1, there is also a southwest/northeast
anomaly gradient in the tropical Atlantic that seem to influence the interan-
nual variability of precipation in Paraguay.
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Figure 4.19: Correlation values between seasonal precipitation time series in
Porto Murtinho catchment in Paraguay and global seasonal SSTs for Nor-
CPM assim-i1 ensemble mean (a-d) and CHIRPS correlated with ERA5 SSTs
(e-h). All time series are normalized and filtered for periods 2-9 years before
the correlations are calculated. Data period is 1981-2018. Hatched areas are
significant with α = 0.1.

Table 4.12: Pattern correlations between the correlation maps of NorCPM
assim-i1 and CHIRPS in figure 4.14 for selected areas. The spatial extent of
the tropical ocean basins are defined in figure 3.2. The tropical ocean band
is defined as ocean between 30◦N and 30◦S.

DJF MAM JJA SON

Tropical Pacific Ocean 0.33 0.09 -0.13 0.24
Tropical Atlantic Ocean -0.44 0.49 -0.14 -0.19
Indian Ocean -0.14 0.28 -0.15 0.49
Tropical Ocean Band -0.26 0.22 -0.25 0.29
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Chapter 5

Discussion

The method I use in the thesis; comparing output from an ocean assimilated
climate model with a non-assimilated climate model to detect influence from
ocean variability, has not been used on the case of hydropower production
in Brazil before. I will therefore compare the conclusions that this method
indicate with results from other studies for the same regions, to see whether
the thesis method yields reasonable results compared with the literature.

Then, I will discuss possible explanations for some of the cases where the
model did not reproduce the observed variability, or the origin of variability,
by assessing the model biases.

Lastly, I will discuss human factors that could have influenced the amount
and timing of the streamflow in the catchments, and thereby disturb the
analysis of water flow and precipitation. These additional factors might also
continue to influence the catchment streamflow in the future, and therefore
be important when seeking to understand future streamflow for hydropower
production planning.

5.1 Modes of variability and trends affecting

streamflow

5.1.1 Amazon

The model results show that the SST variation is a main contributor to the
JJA precipitation variations in Amazon basin - and therefore also to the 3-
month-lagged flow out of the catchment - both on interannual and decadal
time scales. The analysis showed correlations both in the Pacific and Atlantic
ocean.
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Reboita et al. (2021) found that JJA precipitation in the northern part
of the Amazon basin (around 3◦S and northward) shows positive rainfall
anomalies in the range of 55-75 mm/day when analysing the years between
1979-2019 at times when SST anomalies in the tropical south Atlantic were
positive (under neutral ENSO conditions). With different precipitation data
sets and SST datasets and methods, I reach the same conclusion in my result,
strengthening the result by Reboita et al. (2021), as well as the confidence in
the model results in the JJA season in Amazon. Furthermore, since I split
the variation in the time series into periods > 9 years and < 9 years, I am
able to identify that the most important time scale of variation for the SSTs
in the south tropical Atlantic influence on northern Amazon precipitation
is on interannual time scales, not on decadal (where the correlation map
between precipitation and SSTs did not show the same consistent pattern in
the Atlantic ocean as it did in the 2-9 years period filtered correlation map).

The Atlantic ocean SST dipole can modulate the position of the ITCZ,
which is the main weather system causing precipitation in Amazon basin, as
well as intensity of the trade winds that bring moisture to the Amazon region
from the Atlantic (Hastenrath, 1984). This variability has implications for
hydropower planning, since the SON flow in Óbidos is also well correlated
with the JJA precipitation in the region, the decadal variations of the SON
flow can be well detected by predicting the south tropical Atlantic SSTs.

Even though the assim-i1 experiment was able to improve the correla-
tion between the streamflow and the modelled precipitation anomalies in the
Amazon basin for most seasons, there were some seasons where the origin of
the SST variability connected to the changes were different from the observed
one. For decadal variability in DJF for instance, the pattern correlation in
the Tropical Pacific was low between model and observations, and the model
had higher correlations in the Atlantic than the observations.

The CHIRPS data suggested a negative PDO pattern to be influential
for the streamflow variations on longer time scales. It has already been
established that slow oscillations in the Pacific ocean with the same pattern
as in the CHIRPS correlation map leads to positive rainfall anomalies in
Amazon on decadal time scales (Reboita et al., 2021) and inter-decadal time
scales (Villamayor et al., 2018). Hence, the observed CHIRPS pattern in the
thesis analysis is consistent with previous research - despite the short record
of the CHIRPS data. Even though the model resembles part of the pattern,
the tropical part of the signal is not different to the observed one. I can
hence conclude that the model lack some dynamics to include the decadal
and inter-decadal variations originating in the tropical parts of the Pacific
ocean on the Amazon DJF precipitation variations. Hence, there are likely
some long-term variations that are underplayed in the analysis, which must
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be kept in mind in the conclusion.
But the multi-decadal trend from 1981 to 2014 of both of the NorCPM

experiments are nevertheless positive, indicating that at least parts of the
longer term trend in the basin is due to external forcing. It is reasonable
to believe that there is a forced trend that have led to increased rainfall in
the Amazon region: The strength of the ITCZ has increased in response
to climate change (Byrne et al., 2018 and references therein). Since the
rain in Amazon is mostly impacted by this large-scale weather pattern, the
increase that was seen in the historical NorCPM experiment makes sense.
Thermodynamic relations can be an explanation to the changes: warmer
atmosphere can hold more water. Note that global climate models do not
agree on the projected changes of the ITCZ (Byrne et al., 2018), which will
have implications for future streamflow in the Amazon.

5.1.2 São Francisco

The (strong) decline in streamflow from 2010 until today is coinciding with
the phase of AMO, which has gone from a positive to negative phase in the
same time span, shifting around year 2000 (Reboita et al., 2021). Also,
the correlation map show that there are high correlations with the long
oscillations(> 9 years period) between MAM rainfall and SSTs in the tropical
Atlantic ocean.

At the same time, the model is syncing up only partly with the tropical
Atlantic ocean on this time scale variability (only the western part), and show
higher correlations with SSTs in the western part of Pacific, so the model
might be right for the wrong reasons. Precipitation does decrease more in the
time span due to the ocean variability, but the model makes the area drier
because of the wrong physical processes (possibly). This will be discussed
further when assessing the model bias (section 5.2).

Propria catchment in São Francisco basin seem to get a lot of its DJF
precipitation variability from the Pacific ocean on interannual time scales
(2-9 years period) and a lot of the variability on decadal time scales (> 9
years period) seem to originate in the Atlantic ocean, possibly connected to
AMO.

Villamayor et al. (2018) found that multidecadal variability in the At-
lantic ocean is drying the Northeast part of Brazil (but they investigate an
area that is slightly northwards from the São Francisco basin, and therefore is
not completely in line with the São Fransciso basin trends). Luiz-Silva et al.
(2021) have also found that rainfall in Northeast Brazil is strongly modulated
by atmospheric dynamics that are influenced by SSTs in the Pacific Ocean
and in the South Atlantic Ocean.
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5.1.3 Paraguay

The correlation pattern between SON rainfall in Paraguay and SSTs looks
like a typical PDO pattern when assessing the CHIRPS data (figure 4.18 d).
The strong streamflow decrease since 1980 and towards 2010 (figure 4.3) is
matching well with the switch from the warm phase to the cold phase of PDO,
with the switch centered around approximately 1998 (Reboita et al., 2021).
The historical NorCPM ensemble contained positive precipitation trends for
this region over the last decades, and assim-i1 ensemble did not. The assim-i1
ensemble did not, however manage to recreate the observed negative precip-
itation trends, and a plausible explanation for this shortcoming lies in this
poorly correlations with the Pacific basin anomalies. Even though the Nor-
CPM is assimilated with the right SST anomalies in the assim-i1 experiments,
the model mechanics lack teleconnection patterns that is detectable in the
observed precipitation variations for Paraguay - namely the PDO influence
on Paraguay rainfall, which seemed to be differing among the seasons, which
is also found by Reboita et al. (2021).

5.2 How model biases have influenced the anal-

ysis

5.2.1 Precipitation bias

In some areas, the assim-i1 did not replicate the precipitation or evaporation
variations that were observed. This could be due to the bias in the model.
In the following section, I will therefore show how the differences between
the model climatology and the observed climatology might have influenced
the results.

The first step is to look at the large scale weather patterns in the model.
Figure 5.1a-d shows the seasonal precipitation climatology for the NorCPM
assim-i1 ensemble mean for all seasons. The model contains the ITCZ, a band
of maximum precipitation that is oscillating the meridional direction, with
a maximum southward position in DJF and northward position in JJA. The
model also contains the SACZ in DJF and SON and to some extent MAM,
with a diagonal band of precipitation in the northeast/southwest orientation
from the Amazon to the Atlantic ocean. Compared to the observations (figure
5.1e-h), the model ITCZ looks narrower, and the semi-arid area in the interior
of northeast looks bigger and drier. Also, the SACZ seems to not reach as
far south as observed.

Figure 5.1i-l shows the bias for precipitation climatology for assim-i1. The
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brown areas are where the model is drier than observations, and the green
areas are where the model is wetter than the observations. The model precip-
itation bias has a range of ±700 mm seasonal difference, and the model values
are significantly different from the observed values in the whole country.
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Figure 5.1: Mean seasonal total precipitation model bias (i-l), defined as
the CHIRPS mean precipitation (e-h) subtracted from the NorCPM assim-
i1 ensemble mean (a-d) precipitation for the cliamtological period 1981-2011.
Dotted areas are significant at a 95 % confidence level. The area indicated
areas are the three catchments treated in this thesis.

There are two features that stands out. First, the model is generally
too dry, especially in the northeastern region, where the São Francisco basin
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is located (red region on figure 5.1). This is one of the driest areas in the
country, and still the dry biases measured in mm are largest here.

The modelled precipitation cycle in the São Francisco region (figure 5.2b),
is highly affected by the dry bias of the model in the northeast of the country.
The model estimates only about a third of the observed precipitation values
in the basin though large parts of the wet season. The model is closer to
the observed values in the dry season, where both observations and model
approach zero. Although the timing of the rainy season in São Francisco
basin in the model seems to fit quite well, the rainy season is way too dry. It
was also during the rainy season that the model did not correlate well with
the observed lagged streamflow variability on either of the time-scales. The
reason might be the dry bias in the region in the season.
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Figure 5.2: 1981-2011 climatological mean annual precipitation cycle for
Óbidos catchment in Amazon, Propria catchment in São Francisco, and Porto
Murtinho catchment in Paraguay. For the NorCPM data, solid line is the
ensemble mean, and shaded area is the ensemble spread.

The analysis of variability during the rainy season in São Francisco is
also a part of the results where model precipitation did not match with the
streamflow. For instance, DJF modelled precipitation - filtered for interan-
nual time scales - and the MAM modelled precipitation - filtered for decadal
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time scales - did not correlate with the lagged streamflow, even though the
observed precipitation did. The strong dry bias in the São Francisco basin
might have been the reason for this lack of correlations in the analysis.

Second, the model has a strong wet bias in the Andes mountain range,
with values > 750 mm in DJF, 150-300 mm in MAM and 300-600 mm in
SON. These biases are within the Amazon Óbidos catchemnt (blue region on
figure 5.1). In the rest of the Óbidos catchment, the model is too dry in the
northeastern part of the basin during the wet season - DJF and MAM - and
too dry in the northwestern part of the basin in JJA.

When investigating the climatological seasonal cycle Amazon (figure 5.2a),
the catchment has the right magnitude of precipitation throughout the year
in the model experiments, but the onset of the wet season is too early in the
model compared with observations. This could be because the model over-
estimates rainfall in the Andes mountain range and underestimates rainfall
in the northern part of the basin - as discussed above. The positive and neg-
ative biases within the region cancel each other out - hence the magnitude
of the mean catchment rainfall is similar to observations, but the seasonal
rainfall cycle is shifted since a higher proportion of the rainfall in the model
comes from the south of the basin and less from the north - compared to
observations.

This bias seem to have affected the analysis, as the Andes mountain range
was an area where the model overestimated the precipitation trends over the
1981-2014 region. This bias seem to have given this part of the catchment
proportionally more influence on the mean precipitation time series, which
is used when assessing the trends and variations of different time scales and
timings. The results for the analyses in the Amazon basin must therefore be
understood as representing trends and variations in the eastern part of the
basin more than it represents trends and variations over the Amazon forest
and in the northern part of the basin. The latter areas are also important
for the streamflow variations out of the catchment.

The biases in Paraguay catchment (orange region on figure ??) are smaller
than for the other catchments, with the model reaching a 150-300 mm dif-
ference only in the northeastern part of the basin during MAM, and biases
< ±150 mm throughout the rest of the year. For the mean precipitation in
the region, the Paraguay catchment also seem to have the right amount of
rainfall and the right timing of the seasonal cycle (figure 5.2c).

84



5.2.2 Evaporation bias

The model also contains less evaporation than observations in large parts of
the country (figure 5.3). The biases are in the right panel of figure 5.3, and the
brown areas are where the model has less evaporation than the observations,
and the magenta areas are where the model has more evaporation.
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Figure 5.3: Mean seasonal total evaporation model bias (i-l), defined as the
ERA5 mean precipitation (e-h) subtracted from the NorCPM assim-i1 ensem-
ble mean (a-d) precipitation for the cliamtological period 1981-2011. Dotted
areas are significant at a 95 % confidence level. The areas indicated are the
three catchments treated in this master thesis.
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The evaporation climatology bias in the NorCPM is about 150-600 mm
per year in large part of the country. Especially in the SACZ region during
the rainy season (DJF and to some extent MAM and SON; figure 5.3i, 5.3j
and 5.3l respectively), there is a bias of too little evaporation. Since the
model has too little precipitation in the same areas for the same seasons,
this is the likely cause. There is likely too little moisture in the atmosphere
over large parts of Brazil in the model, causing too little evaporation and too
little precipitation. This might have influenced the trends in the 1981-2014
analysis: Especially in the São Francisco, where the model bias is large.

The seasonal timings of the evaporation maxima and minima in the three
basins are not too far off, even if the values are low (especially in São Fran-
cisco, and in some parts of the year in Amazon, figure 5.4). Hence, the
evaporation magnitude is likely to have affected the analysis more than the
seasonal timing bias, since the latter seem to be more in line with observa-
tions.
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Figure 5.4: 1981-2011 climatological mean annual evaporation cycle for
Óbidos catchment in Amazon, Propria catchment in São Francisco, and Porto
Murtinho catchment in Paraguay. For the NorCPM data, solid line is the
ensemble mean, and shaded area is the ensemble spread.
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5.3 Other ways the model might have influ-

enced the analysis

5.3.1 Differences in model climatology between the two
experiments

In addition to adding ocean variability of the right timing in the assim-i1
experiment, the assimilated ocean variables also change the climatology of
the model (slightly, figure 5.5).

Therefore, another possible interpretation of when the assim-i1 ensemble
is synchronizing with the observed longer trends could be that the local
dynamics or the placements of the large scale systems are improved in the
assim-i1 model, since the temperatures of the ocean are connected to the
large scale systems as well. The location of the SACZ (oceanic component)
is for instance related to the SSTs in South Atlantic, in a two-way relationship
(Jorgetti et al., 2014).

In figure 5.5, the differences between the two precipitation climatologies
of the experiments are presented. Although the modelled large scale rainfall
patterns are very similar for the historical and the assim-i1 ensemble means,
there are some differences that might have affected the analysis. The brown
areas in the figure are where the assim-i1 mean is drier than the historical
mean, and the green areas are where the assim-i1 mean is wetter than the
historical mean. The magnitude of the difference between these two is within
the range of ±50 mm seasonal difference (figure 5.5).

For the Amazon Óbidos catchment (blue region on figure 5.5), the assim-
i1 is significantly drier in the northern half of the basin during JJA. This
indicates that the ITCZ in the assim-i1 runs is displaced a bit northwards, or
that the ITCZ causes less rainfall in that season in the assim-i1 runs. During
DJF, the SACZ band is drier in the assim-i1 ensemble mean. This affects the
southern half of the Paraguay basin (orange region on figure 5.5). Further-
more, assim-i1 climatology is wetter than the historical model climatology in
the southern part of São Francisco basin (red region on figure 5.5).
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Figure 5.5: 1981-2011 mean seasonal total precipitation difference NorCPM
assim-i1 ensemble mean - NorCPM historical ensemble mean. Dotted areas
are significant at a 95 % confidence level.

5.3.2 Influence of resolution

The scarce resolution of the model - compared to observations - will have
influenced the results. Such scarce resolution cannot resolve the same details
in topography and precipitation systems as the CHIRPS and ERA5 is able
to do, with the higher resolution of 0.05◦and 0.25 ◦respectively.

The resolution of the model limited my choices for catchment areas to
analyse. I had to pick out catchments that were large enough to at least
covering an area that consists of more than one grid cell, and thereby I had to
analyse catchment areas there are not uniform in climate type. Additionally,
larger catchments have longer lags and less correlation between inflow and
precipitation (Luiz-Silva et al., 2021). Both the São Francico catchment and
the Paraguay catchment consist of 10 grid cells, while the Amazon catchment
consists of around 90 grid cells.
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5.4 Human activities that have influenced river

flow in Brazil

In Brazil, basins that have received increasing (decreasing) rainfall amounts
do not always correspond with the basins that have received increasing (de-
creasing) inflow into the dams (Luiz-Silva et al., 2021), indicating that other
variables are also key to understanding the inflow rates in the country.

In coherence with this, what I found, is that there are many regions and
seasons where the correlations between precipitation and streamflow were
not significant for the observational data, even when lags are included. For
instance for interannual variability in the São Francisco reservoir outside
the rainy season, there seem to be other influences affecting the streamflow
magnitudes.

In Paraguay for longer time scale variation, there should also be additional
explanations for the changes in river flow according to the results. Since the
correlation between observed precipitation and streamflow are significant for
the 2-9 year band-pass filtered data (for all seasons except MAM, table 4.11),
but not for the low-pass filtered time series (table 4.9), the year-to-year pre-
cipitation variability might be more influential than decadal variability on the
variability of streamflow in the region. But the decdal and longer variations
might require a different explanation. Especially since the measurements
show that the streamflow decline is very steep over the last decades, and the
precipitation observations are not as steep.

Some possible explanations for these two cases - and their alike - might im-
pacts by human activities, including farming, deforestation and hydropower
production from other dams in upstream reservoirs.

5.4.1 Upstream reservoirs

Many of these streamflow observations have other reservoirs or hydropower
plants upstream from the measurement location. That means that the pro-
duction (and therefore the streamflow out of the dam) from these upstream
reservoirs also influence the streamflow measured at the bottom of the catch-
ment. Since producers might let out water into the river at different timings,
this affect the seasonal cycle of river flow, and thereby introducing large vari-
ations in the seasonal flow from year to year. São Francisco basin has the
Sobradinho dam upstream from the Propria measuring point, which is one
of the largest dams in the country. This might have influenced the measure-
ments and the connection between precipitation and streamflow substantially
in this region.
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Especially, since the lowest precipitation-flow correlations are between
the dry season precipitation and the lagged flow, it seems like the river flow
could depend on for instance how much water that was saved in the reservoirs
during the wet season rather than how much it was raining during the dry
season. This might give a year-to-year variability that does not match up
with the dry season anomalies.

5.4.2 Land use changes and water consumption

Land use changes might impact the river flow directly - through increased
water consumption by agricultural activities - and indirectly through defor-
estation, which changes the soil infiltration and evaporation patterns. Across
the three basins, there have been different influences on the river flow from
different types of human activities, that have changes the river flows in the
period which is analyse in this thesis.

In the Pantanal, in the upper part of the Paraguay basin, there has been
a growth of water-intensive agriculture over the last decade: Between 2000
and 2008, the agricultural land cover increased with 28 % (Marques et al.,
2021), since natural biomes were converted to farm land and pasture. The
water consumption along the river by the farming activities, could be an
explanation to why the precipitation in the region has increased on all time
scales in the recent decade, but the streamflow has not.

In Amazon, there has been extensive deforestation over the last decades
(Chagas et al., 2022). Conversion from rain forest to cropland changes both
the soil - and therefore the timing of the river flow - and the evaporation
pattern. As explained in the background part, the Amazon is a region where
a lot of the precipitation originates in the rain forest itself, and has been
recycled through the transpiration by the forest. Hence, these changes over
the last decades could also have been - and continue to be - an influence on
the river flow out of Óbidos catchment.

Chagas et al. (2022) found that large-scale deforestation is a cause of
decreased river minimum flow in the southern Amazon. In the northern
part of the basin, on the other hand, the minimum flows were found to hav-
ing increased, with the reason being an increase in precipitation-evaporation
(P-E). The streamflow in the northern Amazon was little affected by land
management, probably due to more undisturbed areas (Chagas et al., 2022).

In the Brazilian highlands (southern part of the São Francisco basin, an
area with high concentration of agriculture and the main origin of water in the
São Francisco river), both the meteorological decrease of water availability
and increasing water use have led to decreasing minimum and maximum flow
in the river, but from the year 2000 and onward, a rapid increase in water
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use has been the cause of decreasing amounts of river flow in drought flows
(Chagas et al., 2022). This means, that even though I with this thesis am able
to separate the changes in river flow that is caused by external forcing from
that of internal variability, the anthropological factors could be as important
as the meteorological ones for the recent and future flow.
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Chapter 6

Summary and conclusion

In this thesis, I have aimed to separate internal variability from trends in
three hydrographic catchments in Brazil. I have assessed trends and vari-
ability of precipitation and evaporation in an ocean anomaly assimilated
NorCPM experiment, and compared them to observed precipitation, evapo-
ration and streamflow trends and variability for catchments in Amazon, São
Francisco and Paraguay. Additionally, I have correlated modelled and ob-
served seasonal precipitation time series for each catchment with observed
lagged streamflow and modelled and observed global SSTs for two separated
filtered time-scales.

I have found that the Amazon region is a catchment where the streamflow
has been increasing over the last decades and over the last years at statisti-
cally significant levels on several time scales. The thesis results suggests that
part of the mean inflow increase over the last decades is related to external
forcing that has caused precipitation increase. I have also shown that JJA
precipitation variation - on decadal and interannual time-scales - is tightly
linked to variations originating in the ocean and to observed streamflow out
of the Amazon Óbidos catchment in SON. NorCPM replicates the global
SST variation pattern well on both interannual and decadal time scales for
the JJA precipitation. For hydropower planing in Amazon, the connection
between global JJA SSTs and SON streamflow can be used to improve pre-
dictions of future streamflow. For the future of hydropower in the region,
the thesis results indicate that the long-term trend of increased inflow will
persist, but with substantial decadal and interannual variations.

For the São Francisco basin, the streamflow has been decreasing over
the last decades, and steeply since about year 2000. All recent decrease is
at statistical significant levels. According to the analysis conducted in the
thesis, the inter-decadal decreasing trend might be linked to variability orig-
inating in the ocean. At the same time, low correlations between observed
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streamflow and rainfall in Propria in Saõ Francisco, indicate that decadal
streamflow variability is influenced profoundly by other factors than rain-
fall as well. There is statistically significant variability that originates in the
Atlantic, Pacific and Indian oceans that affect rainfall variations in São Fran-
cisco. Interannual precipitation variability during parts of the wet season,
DJF, is tightly linked to streamflow variability out of São Francisco. The
model is not able to represent the teleconnections that connects SST vari-
ability in the ocean to DJF precipitation variability the catchment, mainly
due to a lack of the right correlation pattern in the tropical Pacific ocean and
the Indian Ocean. For hydropower production planning in São Francisco, the
water levels can be expected to (partly) restore in future, as the results in-
dicate that the inter-decal decreasing trend seem to have been caused by
internal variation. Stakeholders should also monitor other influences in the
region - such as human activities - to predict the water balance of the future.

Streamflow out of Paraguay catchment has decreased strongly at statis-
tical significant levels over the last decades. It is not clear from the results
whether the steep reduction in streamflow over the last decades is caused by
internal variability or external forcing. Decadal streamflow variations seem
to be strongly influenced by other factors than precipitation variation, due
to insignificant correlations between observed streamflow and precipitation
in all seasons. On interannual time scales, the results show that JJA and
SON precipitation variation in Porto Murtinho catchment in Paraguay is
tightly connected to ocean variability and to streamflow variability in the
austral summer. The correlation maps showed that significant variability is
connected to warm anomalies in the tropical Pacific and southwest/northeast
anomaly gradient in the tropical Atlantic. To understand the future long-
term trend and decadal variations of streamflow in Paraguay, other variables
in addition to precipitation should be monitored. Hydropower production
planners can utilize the verified connection between global JJA and SON
SST variations on austral summer streamflow on interannual time scales, to
predict future flow.

The NorCPM wet bias over the Andes mountains in Amazon, and the
dry bias in São Francisco have affected the analysis in the two regions. In
the all basins, the model lack some of the right teleconnection responses to
global SST anomalies, especially in the rainy season MAM in São Francisco
and Amazon, and in all seasons in Paraguay. For all catchments, JJA is the
season where NorCPM ocean anomaly assimilation improves the correlation
with streamflow the most, and MAM is the season where the ocean anomalies
generally improves the precipitaiton the least. These model restrictions have
affected the analysis.
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Chapter 7

Future work

Substantial further knowledge on how trends and variability affect hydropower
production in Brazil is still needed. In this thesis, only three catchments were
assessed, and only one earth system model analysed. As discussed, the results
in this thesis are limited by the performance of this model. In the future,
it would therefore be very interesting to conduct the same analysis with an
ensemble of different earth system models, which were all assimilated with
the same observed ocean variability. This might remove some of the errors
resulting from the systematic biases that comes from using a single model.

Additionally, a more comprehensive understanding of the interaction be-
tween precipitation, evaporation and streamflow could be obtained by looking
into the water fluxes from land to ocean in the model, and compare that with
the observed streamflow data from the large rivers. It would also be inter-
esting to conduct a similar experiment, where ocean variability in only parts
of the global oceans were assimilated, to further distinguish between ocean
variability origins.

More studies of the interaction between climate change, variability and
human influence would be very useful for hydropwer planning in Brazil. Rec-
ommended future work is to design a more comprehensive analysis by using
data on water consumption and streamflow from upstream reservoirs that is
provided in the CAMELS-BR collection.

Using the modelled precipitation and evaporation as input into a hydro-
logical model would also be very interesting. This would reveal more precise
streamflow responses to precipitation and evaporation variations, since hy-
drological models can model the actual flow - including deep infiltration into
the soil - in a much more detailed manner. Using a hydrological model would
also enable experiments that test the sensitivity between land use change ef-
fects and rainfall variability and different combinations of the two.
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S. Löschke, V. Möller, A. Okem, and B. Rama, editors, Climate Change
2022: Impacts, Adaptation and Vulnerability. Contribution of Working
Group II to the Sixth Assessment Report of the Intergovernmental Panel
on Climate Change., chapter Water, pages 551–712. Cambridge University
Press, Cambridge, 2022. doi: 10.1017/9781009325844.006.

V. B. Chagas, P. L. B. Chaffe, N. Addor, F. M. Fan, A. S. Fleischmann,
R. C. D. Paiva, and V. A. Siqueira. CAMELS-BR: Hydrometeorolog-
ical time series and landscape attributes for 897 catchments in Brazil.

96



Earth System Science Data, 12(3):2075–2096, 9 2020. ISSN 18663516. doi:
10.5194/essd-12-2075-2020.

V. B. P. Chagas, P. L. B. Chaffe, and G. Blöschl. Climate and land manage-
ment accelerate the Brazilian water cycle. Nature Communications, 13(1):
5136, 9 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-32580-x.

W. L. F. Correia Filho, J. F. de Oliveira-Júnior, C. A. da Silva Junior, and
D. d. B. Santiago. Influence of the El Niño–Southern Oscillation and the
sypnotic systems on the rainfall variability over the Brazilian Cerrado via
Climate Hazard Group InfraRed Precipitation with Station data. Inter-
national Journal of Climatology, 42(6):3308–3322, 5 2022. ISSN 10970088.
doi: 10.1002/joc.7417.

J. C. Costa, G. Pereira, M. E. Siqueira, F. Da Silva Cardozo, and V. V.
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V. H. d. M. Paca, G. Espinoza-Dávalos, D. Moreira, and G. Comair. Variabil-
ity of Trends in Precipitation across the Amazon River Basin Determined
from the CHIRPS Precipitation Product and from Station Records. Water,
12(5):1244, 4 2020. ISSN 2073-4441. doi: 10.3390/w12051244.

F. J. Paredes-Trejo, H. A. Barbosa, and T. V. Lakshmi Kumar. Validat-
ing CHIRPS-based satellite precipitation estimates in Northeast Brazil.
Journal of Arid Environments, 139:26–40, 4 2017. ISSN 1095922X. doi:
10.1016/j.jaridenv.2016.12.009.

M. S. Reboita, T. Ambrizzi, N. M. Crespo, L. M. M. Dutra, G. W. d. S.
Ferreira, A. Rehbein, A. Drumond, R. P. da Rocha, and C. A. d. Souza.
Impacts of teleconnection patterns on South America climate. Annals of
the New York Academy of Sciences, 1504(1):116–153, 2021. ISSN 17496632.
doi: 10.1111/nyas.14592.

M. S. Reboita, C. A. C. Kuki, V. H. Marrafon, C. A. de Souza, G. W. S.
Ferreira, T. Teodoro, and J. W. M. Lima. South America climate change
revealed through climate indices projected by GCMs and Eta-RCM en-
sembles. Climate Dynamics, 58(1-2):459–485, 1 2022. ISSN 14320894. doi:
10.1007/s00382-021-05918-2.

R. W. Reynolds, N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Wang.
An Improved In Situ and Satellite SST Analysis for Climate. Journal of
Climate, 15(13):1609–1625, 7 2002. ISSN 0894-8755. doi: 10.1175/1520-
0442(2002)015¡1609:AIISAS¿2.0.CO;2.

E. B. Rosa, L. P. Pezzi, M. F. L. d. Quadro, and N. Brunsell. Automated
Detection Algorithm for SACZ, Oceanic SACZ, and Their Climatological
Features. Frontiers in Environmental Science, 8, 2 2020. ISSN 2296665X.
doi: 10.3389/fenvs.2020.00018.

P. K. Sen. Estimates of the Regression Coefficient Based on Kendall’s Tau.
Journal of the American Statistical Association, 63(324):1379–1389, 12
1968. ISSN 0162-1459. doi: 10.1080/01621459.1968.10480934.

100



V. A. Siqueira, R. C. D. Paiva, A. S. Fleischmann, F. M. Fan, A. L. Ruhoff,
P. R. M. Pontes, A. Paris, S. Calmant, and W. Collischonn. Toward con-
tinental hydrologic–hydrodynamic modeling in South America. Hydrology
and Earth System Sciences, 22(9):4815–4842, 9 2018. ISSN 1607-7938. doi:
10.5194/hess-22-4815-2018.

G. W. Snedecor. Statistical Methods. Applied to Experiments in Agriculture
and Biology. The Iowa State University Press, Ames, 5 edition, 1956.

R. G. Tedeschi and M. Collins. The influence of ENSO on South American
precipitation: simulation and projection in CMIP5 models. International
Journal of Climatology, 37(8):3319–3339, 6 2017. ISSN 10970088. doi:
10.1002/joc.4919.

H. Theil. A rank-invariant method of linear and polynominal regression
analysis (parts 1-3). Ned. Akad. Wetensch. Proc. Ser. A, 53:1397–1412,
1950.

R. E. Thomson and W. J. Emery. Data Analysis Methods in Physical
Oceanography. Elsevier, 2014. ISBN 9780123877826. doi: 10.1016/C2010-
0-66362-0.

J. Villamayor, T. Ambrizzi, and E. Mohino. Influence of decadal sea sur-
face temperature variability on northern Brazil rainfall in CMIP5 simula-
tions. Climate Dynamics, 51(1-2):563–579, 7 2018. ISSN 0930-7575. doi:
10.1007/s00382-017-3941-1.

R. J. Villela. The south Atlantic convergence zone: A critical view and
overview, 2017. ISSN 21761892.

F. Wang, W. Shao, H. Yu, G. Kan, X. He, D. Zhang, M. Ren, and G. Wang.
Re-evaluation of the Power of the Mann-Kendall Test for Detecting Mono-
tonic Trends in Hydrometeorological Time Series. Frontiers in Earth Sci-
ence, 8, 2 2020. ISSN 2296-6463. doi: 10.3389/feart.2020.00014.
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