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Abstract

The Greenland Sea is one of few areas where open ocean convection occurs. It is therefore
an important sink of anthropogenic CO2. While the carbon inventory of the region is well
known, the dynamics of the processes governing carbon uptake remain unclear. The difference
between pCO2 in the ocean and the atmosphere determines if there is uptake or outgassing,
and DIC is the main driver of ocean pCO2 variability. It is therefore essential to decompose
the importance of physical versus biological drivers on DIC. Here, a mixed layer budget
was used to carry out this decomposition. Physical fluxes from the mixed layer budget,
i.e. vertical fluxes and air-sea gas exchange, were estimated using a one dimensional mixing
model. Net community production was estimated as a residual between DIC calculated
from measurements from an Argo float and model output. To this end, an existing PWP
model tuned for the Greenland Sea was improved by including biogeochemistry and air-sea
gas exchange. This is the first time these components have been added to a Price Weller
Pinkel (PWP) model tuned to this region. A scheme to reinitialize the model for every Argo
profile was implemented in order to facilitate estimates of net community production. Model
calculations resulted in vertical transport of 15±15% g C m−2 y−1 into the mixed layer and
27±22% g C m−2 y−1 of carbon uptake from the atmosphere. Net community production
in the upper 20 dbar was deterimed as the residual, and was 39 ±27% g C m−2 y−1. Gas
exchange was strongest in the productive season, while winter convection led to outgassing of
CO2 due to the large amounts of DIC mixed up from below. Vertical transport in the model
is likely a little too high, leading to overestimated NCP and stronger outgassing in winter
than reality. Erroneous results in the form of negative vertical surface fluxes means there is
yet more to learn about and improve in the model before it is applied to evaluate carbon
dynamics in this amount of detail. While the Argo data used was calibrated from the data
assembly sensor, some sensor drift was not fully corrected for. This was reported to Argo
Quality Control and is now corrected. The method employed is imperfect, but with further
improvements it may become a valuable tool in carbon dynamics studies in the region. This
requires continued Argo float deployments and ship-board measurements.
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Chapter 1

Introduction

Until the industrial revolution, the global carbon cycle was in a steady state. Through the
burning of fossil fuels such as coal, oil, and natural gas, as well as through land use change,
human emissions have caused an excess of atmospheric CO2 and an imbalance in the carbon
cycle at a rate never before seen (Zeebe, 2012). The increased levels of atmospheric CO2

drive climate change. However, as seen in Figure 1.1, not all emitted CO2 remains in the
atmosphere. In fact, around 26% of the anthropogenic carbon is taken up terrestrially, and
26% by the ocean (Gruber et al., 2019; Friedlingstein et al., 2022). To understand the future
development of climate change, we must comprehend the mechanisms that govern these
carbon sinks and their vulnerability to global warming. As one of two major carbon sinks,
it is essential to know how much carbon the ocean can sequester now and in the future.
This requires detailed knowledge of the drivers of the processes affecting oceanic carbon
sequestration.

Figure 1.1: Carbon budget. Red arrows show anthropogenic emissions, blue arrows show uptake
of anthropogenic emissions. Overarching half-circles indicate sums. Figure: Global Carbon Project.
Data: the Global Carbon Budget 2022 (Friedlingstein et al., 2022).
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CHAPTER 1. INTRODUCTION

Ocean uptake of CO2 is directly proportional to the difference in CO2 content in the at-
mosphere and that of the surface water. These are often expressed in terms of the partial
pressure of CO2 in each phase (pCOatm2 and pCOoc2 respectively). pCOatm2 increases with
increasing anthropogenic emissions. It is somewhat higher near major sources of emissions
such as large cities. However, it is considered a well-mixed gas in the atmosphere, especially
over the ocean, and as such is subject to considerably less variability than in the sea surface.
Elucidating the drivers of pCOoc2 variability is therefore of greater interest.

When pCOatm2 is higher than pCOoc2 , the ocean is undersaturated and uptake occurs. On
a global scale, the ocean is undersaturated with respect to CO2 by approximately 10 µatm.
Hence, it is a net carbon sink (as shown in Figure 1.1). However, the saturation state of
the world ocean is highly variable both in space and time. In fact, the global surface ocean
is in some areas undersaturated with respect to atmospheric CO2 by as much as 40%, and
in other areas supersaturated by the same magnitude. Thus, despite the ocean being a net
sink, there are also areas of outgassing (sources). Examples are the equatorial divergence
zone, and the Baltic Sea. Regions of net uptake include the Southern Ocean and the Arctic
Mediterranean.

pCOoc2 is governed by biological processes, the global ocean circulation, heat fluxes, wind,
and air-sea gas exchange. Biological processes lead to a strong seasonal pattern in carbon up-
take. Areas of intense biological production consume CO2, causing undersaturation in spring
and summer. As biological matter sinks through the water column, it is returned to its inor-
ganic state, leading to high concentrations of carbon at depth. The global ocean circulation
transports this inorganic carbon at depth to upwelling regions such as the aforementioned
equatorial divergence zone. Here, cold, carbon-rich water masses from the deep ocean are
transported to the surface. The water is heated by the strong thermal forcing in the area,
reducing the solubility of CO2 in water, and increasing pCOoc2 . This leads to supersatura-
tion and consequently outgassing. It is also the global circulation that drives the transport
of warm surface water through the Arctic Mediterranean. Heat is lost to the atmosphere
along its path. The consequence of this heat loss is two-fold: the CO2 solubility as well as
the water’s density increase. This not only causes undersaturation, but is also an important
mechanism for the vertical transport of carbon into the ocean interior, which is the overall
bottleneck for ocean anthropogenic carbon uptake. Undersaturation is both the underlying
requirement for carbon uptake, and a driver of its magnitude. Wind further enhances the
air-sea gas exchange. Wind is also a key driver of the aforementioned vertical transport.
Thus, there is an intricate interplay between the three main processes: biological processes,
ocean circulation, and air-sea gas exchange. Ultimately, these drive pCOoc2 variability and
in turn govern oceanic uptake of anthropogenic emissions. To understand the future role
of the ocean as a carbon sink, it is vital to understand the dynamics between these three
components, especially in sink regions.

The Greenland Sea is one of the few locations in which open-ocean convection occurs. In
this region, wintertime mixed layer depths have regularly exceeded 500 m the last 10 years
(Brakstad et al., 2019). The deep mixing does not only transport carbon from the surface
to the ocean interior, but also supplies dense, carbon-rich water to the overflows over the
Greenland-Scotland Ridge. As such, the Greenland Sea represents a window of transport
for carbon from the atmosphere into the lower limb of the thermohaline circulation. While
the general hydrography (Brakstad et al., 2019), carbon inventory (Olsen et al., 2010), and
carbon budget (Jeansson et al., 2011) are well understood, the relative importance of vertical
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CHAPTER 1. INTRODUCTION

transport, gas exchange, and biology in driving carbon uptake remains unclear. A 3-year
study carried out by Miller et al. (1999) decomposed observed changes in dissolved inorganic
carbon (DIC) to the theoretical contribution of air-sea gas exchange, biological processes,
and vertical transport. They found that biology removed 70±10 µmol C kg−1 from the
surface in summer, leading to undersaturation on the order of 109 µatm. In winter, lower
temperatures increased the ocean’s uptake capacity by 50 µmol C kg−1. However, due to
deep winter convection, 80 µmol C kg−1 was mixed back to the surface, strongly inhibiting
air-sea gas transfer. While certainly interesting results, the values obtained did not represent
actual carbon fluxes, but rather a theoretical potential of DIC change. Additionally, the data
consisted of measurements taken roughly every three months. Such sparse observations may
not capture the full temporal variability. Other work in the area also cite a lack of wintertime
data as a limiting factor in fully understanding the dynamics of the Greenland Sea (Fransner
et al., 2022).

New methods for data collection may help increase our knowledge of remote regions with
harsh weather conditions. Autonomous sensors have become increasingly available. Instru-
ments such as gliders and Argo floats take hydrographic measurements at frequent intervals
and are capable of capturing full annual cycles and longer. These may also be equipped with
biogeochemical sensors (e.g., BGC-Argo), facilitating detailed studies of the carbon system.
These have previously been utilised successfully in the investigation of net community pro-
duction (NCP) in the Gulf of Alaska (Plant et al., 2016), oxygenation of deep water in the
Labrador Sea (Wolf et al., 2018), and physical and biological drivers of BGC tracers in the
Southern Ocean (Briggs et al., 2018).

In terms of distinguishing between the physical and biological drivers of ocean carbon dy-
namics, it is necessary to apply more than high-frequency measurements through the annual
cycle. One needs tools to actually quantify the strength of each driver. One approach is
to determine the vertical transport and air-sea gas exchange through box models, as imple-
mented in work such as Anderson et al. (2000). Box models decompose a system into several
compartments (boxes) in which tracer concentrations are assumed homogeneous. For ex-
ample, one might apply a box model separating the atmosphere, surface ocean, mid-depth
ocean, and deep ocean into separate compartments, each with their own bulk tracer concen-
trations. Other processes such as biological activity and carbon system calculations may also
be applied to each box. Transport between boxes is allowed through prescribed mixing rates.
Anderson et al. (2000) applied a two-layered box model to determine carbon fluxes in the
Greenland Sea. They estimated a gas exchange flux into the ocean of 53±4 g C m−2 yr−1,
vertical transport of 11 g C m−2 yr−1, and primary (new) production of 34 g C m−2 yr−1.
Although the resulting annual fluxes were comparable to other work at the time, this type
of model cannot in sufficient detail describe the dynamics of the carbon system. In particu-
lar, their model resulted in very abrupt changes in time in the development of vertical carbon
fluxes which do not reflect reality.

In recent years, biogeochemical dynamics have been explored using more sophisticated mixed
layer models (Plant et al., 2016; Briggs et al., 2018). For this work, I follow Plant et al.
(2016) and Briggs et al. (2018) in combining Argo data with a one-dimensional mixed layer
model dubbed the Price-Weller-Pinkel model (PWP; (Price et al., 1986)). This model is
able to represent the development of the mixed layer, and thus vertical mixing, in much
higher detail than the traditional box models. For cyclonic areas, where the assumption of
horizontal homogeneity is (nearly) valid, it has been found to predict mixed layer depths with
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CHAPTER 1. INTRODUCTION

success. While Plant et al. (2016) and Briggs et al. (2018) focus on the Gulf of Alaska and
the Southern Ocean respectively, I apply the method to the Greenland Sea.

Earlier work on Greenland Sea hydrography has tuned the model to account for lateral ad-
vection of heat and salt (Moore et al., 2015; Brakstad et al., 2019). In this work, I further
improve the model by adding BGC tracers and air-sea gas exchange parameterization with
the aim of determining the drivers of pCO2 variability. The total change in pCO2 (∆pCO2)
for a given period of time can be expressed as

∆pCO2 = ∆pCOGE2 + ∆pCOBIO2 + ∆pCOFZ2 (1.1)

where ∆pCOGE2 represents the change in pCO2 due to air-sea gas exchange, ∆pCOBIO2 the
change due to biological processes, and ∆pCOFZ2 the change caused by vertical transport.
Through the model adjustments mentioned above, air-sea gas exchange and vertical transport
of CO2 are calculated directly by the model by way of DIC and Alkalinity. I reinitialize the
model using every Argo profile, such that the model ”drifts” in periods of approximately 5
days. The biological contribution to DIC variability is then estimated as the residual of model
output and Argo profiles. This separation of biological and physical influences on carbon
dynamics constitutes a valuable addition to our understanding of the carbon system in the
region.

The overall aim of this thesis is to determine the drivers of pCO2 variability. To reach this
goal, I reach the following objectives:

• Add biogeochemical tracers and air-sea gas exchange of CO2 and oxygen to the PWP
model

• Add reinitialization scheme to the model

• Determine vertical transport of DIC and air-sea gas exchange fluxes using the model

• Estimate the contribution of biological processes to changes in DIC using DIC calculated
from measurements from an Argo float and model output

• Evaluate how the carbon fluxes above affect pCO2

4



Chapter 2

Background

2.1 Marine carbon chemistry

The distribution of carbon in the oceans is influenced by three main chemical processes, the
major ocean circulation systems, and air-sea gas exchange. It is the latter that transports
anthropogenic carbon from the atmosphere into the ocean. While nonreactive chemical
components such as oxygen (O2) equilibrate relatively quickly with the atmosphere, CO2

entering the ocean through the atmosphere partakes in a series of chemical reactions. On
average, 19/20 moles of gaseous CO2 (CO2(gas)) are buffered away by carbonate ions (CO2−

3 )
and water (H2O) to form bicarbonate (HCO−

3 ) (Sarmiento and Gruber , 2006). Only the last
1/20 moles remain as CO2 and carbonic acid (H2CO2), and contribute to increase the CO2

partial pressure in the seawater. The equilibrium reactions may be expressed as follows:

CO2(gas) +H2O
K0↼−−⇁ H2CO

∗
3 (2.1)

H2CO
∗
3

K1↼−−⇁ H+ +HCO−
3 (2.2)

HCO−
3

K2↼−−⇁ H+ + CO2−
3 (2.3)

where H2CO∗3 denotes the sum of aqueous CO2 and carbonic acid (H2CO3). K 0, K 1, and
K 2 are the equilibrium constants of each reaction. Due to its complex behaviour, CO2 takes
a long time to equilibrate with the atmosphere.

Carbon does not only react with water in the process of dissolution. It is also one of the
building blocks of life, participating in photosynthesis. In this reaction triggered by sun-
light, CO2, nitrate (NO−

3 ), phosphate (HPO2−
4 ), water and free protons form organic matter

(C106H175O42N16P) and oxygen (Anderson, 1995):

106CO2 + 16NO−
3 +HPO2−

4 + 78H2O+ 18H+ � C106H175O42N16P + 150O2 (2.4)

When working from right to left, organic matter is broken down by microorganisms in
a process called remineralization. This returns the components to their inorganic forms.
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CHAPTER 2. BACKGROUND

C:N:P:O2=106:16:1:-150 is the stoichiometric ratio of nutrient utilization and oxygen con-
sumption in photosynthesis, called the Redfield ratio. This is a representation of the global
mean composition of ocean phytoplankton. The molar ratios of nutrients contained in or-
ganic matter vary spatially and temporally depending on nutrient availability in a given region
and the adaptations species have undergone. The Redfield ratio is a topic of continuous re-
vision as other ratios are revealed on sub-global scales (e.g. Takahashi et al. (1993); Frigstad
et al. (2014)). In fact, the cited ratio is itself a revision; the original Redifeld ratio had lower
oxygen consumption (Redfield et al., 1963). The Redfield ratio allows conversion of calcu-
lated biological production or remineralization based on one element to, e.g., units of C,
which is useful for determining the effects of biology on carbon sequestration.

The last major chemical reaction affecting the marine carbon system is the formation and
dissolution of calcium carbonate (CaCO3). This process occurs when certain types of plankton
form calcite or aragonite shells, and subsequently when these shells break down:

Ca2+ + CO2−
3 � CaCO3 (2.5)

Thus, we have identified the three main chemical reaction systems governing the marine
carbon system: dissolution of CO2(gas), photosynthesis (and respiration), and the formation
(and dissolution) of biogenic calcium carbonate. They are dubbed the solubility pump, soft
tissue pump and carbonate pump respectively.

There are challenges associated with measuring several of the individual components of the
carbon system mentioned above. The easiest measurable properties are pCO2, pH, dissolved
inorganic carbon (DIC), and total alkalinity (Alk). pCO2 is the partial pressure of CO2 in
water. pH = -log([H+]) and as such is the measure of the concentration of free hydrogen
in the water. From Equations (2.1) to (2.3), it is clear that this is closely related to the
system of carbon dissolution reactions. DIC is the total concentration of the carbon atom in
inorganic forms in seawater:

DIC = [H2CO
∗
3] + [HCO−

3 ] + [CO2−
3 ] (2.6)

Finally, Alk is a measure of the balance between bases and acids present. As such, it tells us
about the ocean’s ability to buffer acids like CO2. It is defined as

Alk = [HCO−
3 ] + 2[CO2−

3 ] + [OH−] − [H+] + [B(OH)−4 ] + minor bases (2.7)

Here, [OH−] is the concentration of hydroxide and [B(OH)−4 ] the concentration of borate.
Both DIC and Alk are conservative properties with respect to changes of state (i.e., temper-
ature and pressure), and are therefore more suitable for model applications than pCO2 and
pH.

In total, the carbon system consists of 10 unknowns and 8 equations. Therefore, we can solve
the system by specifying two of these unknowns. The most common variables to specify are
pCO2, pH, DIC and Alk because these are relatively easily measured. Figure 2.1 shows
how the carbon invasion, photosynthesis, and calcifying processes affect Alk, DIC and CO2

concentrations.

CO2 invasion and release change DIC and the concentration of CO2 as carbon atoms are
added or removed from the seawater. Alk on the other hand, remains stable because the
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CHAPTER 2. BACKGROUND

Figure 2.1: The effect of carbon invasion, photosynthesis, and calcifying processes on Alk, DIC
and CO2 concentrations. Alk and DIC are on the y and x axes respectively. CO2 concentrations in
µmol kg−1 are shown as white contour lines. Figure from Zeebe (2012)

pure addition or removal of CO2 does not change the balance of ions. Photosynthesis con-
sumes CO2, reducing its concentration and thus also DIC. The consumption of nitrate during
photosynthesis increases Alk as the total concentration of weak acids is reduced. This increase
is not as big as the reduction in DIC so the net effect is a CO2 reduction. The carbonate
pump consumes carbonate ions during CaCO3 production, causing DIC to decrease. In this
process, DIC is reduced by one unit and Alk by two. This leads to an increase in CO2. Due
to buffering, the release is much lower than a 1:1 mole ratio. We therefore see a small in-
crease in [CO2]. The change in Alk is 2:1 because the carbonate ion contributes 2 moles for
every 1 mole DIC.

Just as the three pumps affect the carbon system differently, they contribute to carbon seques-
tration in different ways. The soft tissue pump binds carbon into an organic form. Biological
matter mainly from the euphotic zone is exported to deeper water through excrement and
dead organisms. Most of this is remineralized within the upper 500 m of the water column
(Martin et al., 1987). Some of the export reaches the ocean floor where part is remineralized
and part is buried in sediments. The process thus draws down carbon. Yet, a nearly equal
amount is returned to the surface via vertical transport of remineralized inorganic carbon.
This occurs via upwelling or via deep mixing. The soft tissue pump is therefore regarded as
a steady-state background process in terms of long-term sequestration of carbon (Sarmiento
and Gruber , 2006). It is, however, a main driver of seasonal pCO2 signals in the surface
ocean.

The carbonate pump also causes export of biological matter to the ocean interior. However,
the weight of the organisms’ aragonite and calcite shells cause a rapid descent, inhibiting

7
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remineralization. This leads to higher sedimentation rates. Since the production of CaCO3

at the surface releases CO2, this process is also called the calcium carbonate counterpump.
On geological timescales, CaCO3 dissolves to release carbonate ions which are essential in
removing the excess CO2 in the ocean.

As mentioned in Chapter 1, the solubility pump causes CO2 invasion if the partial pressure
of CO2 in the ocean is lower than that of the atmosphere, and evasion if pCOoc2 >pCOatm2 .
The atmospheric CO2 is absorbed in the surface and mixed into the surface layer. Since the
biological pump (the sum of the soft tissue and carbonate pumps) is assumed to be a steady
state process and is limited by the availability of nitrate, not CO2, it is largely unaffected by
changes in pCO2. Ocean circulation and biology redistribute carbon within the ocean interior.
Only air-sea gas exchange can change the carbon inventory of the ocean through uptake or
release of CO2. This is why it is essential to understand the mechanisms driving air-sea gas
exchange.

2.1.1 Air-sea gas exchange

As briefly stated in the previous section, CO2 uptake by the surface ocean depends on the
difference in pCO2 between the water and the atmosphere. For a nonreactive, slightly soluble
gas, the flux (F) of gas across a liquid boundary layer is given by the following bulk equation

F = k(Catm − Coc) (2.8)

where k is the gas transfer velocity (length time−1), Coc is the concentration of gas in the bulk
liquid layer, Catm is the concentration of gas at the water surface, i.e., in the atmosphere.
The concentrations are given in mass volume−1 such that F has units in the form mass
area−1 time−1. In this equation, k represents kinetic forcing and the concentration difference
is the thermodynamic forcing. The former is influenced by kinetic factors such as wind speed
and boundary layer dynamics. The latter varies with sea surface temperature, transport and
biology. For CO2, the relation is often written in terms of partial pressure:

F = kK0(pCO
atm
2 − pCOoc2 ) (2.9)

Here, K 0 is the solubility of CO2 (mass volume−1 pressure−1). pCOoc2 and pCOatm2 are the
partial pressure of CO2 in the water and atmospheric phases respectively, with units in pres-
sure. While measurements of pCO2 values are relatively easily obtainable and K 0 is estimated
using polynomials, k must be parameterized. Most of the components influencing the bound-
ary conditions contained in k are strongly influenced by wind. There is thus consensus in the
scientific community that k is wind dependent however the best parameterization is yet to
be concluded on. Suggestions range from linear to cubic dependencies (Liss and Merlivat,
1986; Wanninkhof and McGillis, 1999; Wanninkhof et al., 2009), some with zero-intercepts
and others claiming gas-exchange does not reach zero even for zero winds. Several studies do
recommend a quadratic, zero-intercept relationship (Sweeney et al., 2007; Ho et al., 2006).
A frequently used 14C constrained quadratic parameterization following Ho et al. (2006) and
Sweeney et al. (2007) has been optimized and recommended by Wanninkhof (2014):

k = 0.251U 2

(
Sc

660

)−0.5

(2.10)
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By convention, k is here expressed in cm h−1. This is a simplification of the original units of
cm3cm−2h−1, meaning a unit volume (cm3) of gas is transferred through a unit area (cm2)

per unit time (hour). U 2 is the mean squared neutral wind speed at 10 m height (m2 s−2) and
Sc is the non-dimensional Schmidt number of the gas in question. By normalizing Sc to that
of CO2 at 25◦C (660), the expression is made applicable to other insoluble gases. 0.251 is the
optimization factor calculated by Wanninkhof (2014). It has units of (cm h−1)(m s−1)−2.
14C constrained parameterizations of air-sea gas exchange take advantage of 14C introduced
to the atmosphere through thermonuclear bomb testing in the 1960s. Knowing the amount
released to the atmosphere and the amount taken up by the ocean, global estimates of k are
produced. Because of the wind dependence of k, the estimates vary depending on the global
wind speed product used for calculations as these have different mean global wind speeds.
This is why the correction coefficient is introduced. The above coefficient must be adjusted
according to the applied wind speed product to take differences in global mean wind speed
into account (Naegler et al., 2006).

14C constrained methods of parameterizing k for CO2 have the advantage of including the
effects of wave breaking without parameterizing these separately. At wind speeds higher than
15 m s−1, however, the above relation is only applicable to CO2. For less soluble gases such as
oxygen, the effects of bubble-enhanced exchange must be taken into account (Wanninkhof ,
2014; Koelling et al., 2017). As for the parameterization of k, there are several methods
for parameterizing the effect of bubbles. The effect is commonly treated additively. Early
authors used the effect of partially dissolved bubbles (Woolf , 1997; Woolf and Thorpe, 1991),
while later authors have focused on completely dissolved bubbles (Vagle et al., 2010) or have
applied both (Stanley et al., 2009; Liang et al., 2013).

Figure 2.2 shows climatological air-sea flux of CO2, surface temperature, and nitrate concen-
trations. Positive values signify net oceanic uptake and negative values indicate outgassing.
Note that while the climatology used for CO2 flux is more recent than those of temperature
and nitrate, the general patterns are comparable.

Figure 2.2: a) Global mapped climatology of CO2 flux (1982-2021) (Friedlingstein et al., 2022;
Landschützer et al., 2016). b,c) Global climatologies of surface temperature and nitrogen (1972-
2013) (Lauvset et al., 2016).

The dependence of air-sea gas exchange on temperature is apparent when comparing the
pattern in Figure 2.2a to b. At low latitudes warm, DIC rich water surfaces. The high tem-
peratures cause low solubility of CO2 in water, causing outgassing. At high latitudes, water
temperatures are colder and gas solubilities high. High-latitude areas also generally expe-
rience high wind speeds, further enhancing gas exchange. In large parts of the Southern
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Ocean, ice cover blocks air-sea gas exchange in winter. Large amounts of unutilized nutri-
ents (Figure 2.2c) indicate an unexploited potential for biological production which would
reduce f CO2 (and pCO2) and drive air-sea gas transfer. In the Southern Ocean, there is also
upwelling which brings carbon rich water to the surface. This leads to outgassing in some
areas of the Southern Ocean. For optimal carbon uptake conditions, the kinetic and ther-
modynamical forcing must both be strong. These conditions favor areas of strong wind, low
water temperature, and strong biological production.

Although large parts of the surface oceans have a net uptake of CO2, very few regions have
conditions allowing for vertical transport of the absorbed carbon into the interior ocean. For
long-term storage of carbon deriving from gas exchange, deep mixing must occur. This is
a process that requires strong surface heat loss spurring an instability in the water column
which leads to mixing. Strong winds coinciding with such conditions enhance the mixing
process, leading to mixed layers hundreds of meters deep. The conditions that lead to deep
mixing also favour high rates of gas exchange as the cold temperatures of the water increase
gas solubility in the water phase and the strong winds intensify the kinetic forcing. To date
there are identified 4 areas of deep mixing where carbon uptake occurs: the Weddell Sea, the
Labrador and Irminger Seas, and the Greenland Sea.
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2.2 The Greenland Sea

The Greenland Sea (as seen in Figure 2.3) is a cyclonic gyre, its centre situated at approxi-
mately 0◦E, 75◦N. Warm Atlantic Water (AW) flows northward along its Eastern boundary,
losing heat as cold, dry air from Greenland encounters the warm AW. A branch of AW enters
the Arctic Ocean through the Fram Strait while a smaller part turns around to the Western
boundary where it meets the fresh, cold polar water (PW) of the East Greenland Current
(EGC). As AW is cooled through its path around the Norwegian Sea, it mixes with PW in
the surface to produce Arctic Water. When this is cooled further and sinks, it produces very
dense water, supplying the Denmark Strait Overflow Water with 39±2% of its water mass
(Brakstad et al., 2023). The water mass contributing to this overflow is the Greenland Sea
Arctic Intermediate Water. It resides at 500-1000 m depth, but can reach depth of 1600 m
(Jeansson et al., 2017). Dense water from the Greenland Sea also constitutes 46±8% of the
Faroe Bank Channel Overflow Water. Thus, the Greenland Sea is an important link connect-
ing the Arctic Mediterranean to the subpolar North Atlantic and the rest of the meridional
overturning circulation.

Figure 2.3: Map of the Nordic Seas. Red arrows indicate relatively warm, saline currents. Purple
arrows indicate dense water, while light blue arrows are relatively fresh surface Polar Water pertaining
to the East Greenland Current. Figure from Brakstad et al. (2023).

Figure 2.4 shows the vertical structure of hydrographic and biogeochemical variables in the
Greenland Sea, gray-scaled by year of measurement. Surface temperatures in the Greenland
Sea range between approximately -2 and 7◦C. At depth, the temperature of the water masses
is below zero. These cool temperatures contribute to the high density of e.g. the GSAIW.
Since 1982, the water has become warmer at all depths. Surface water in recent years do
not approach seawater freezing temperatures. The warming is evident in Figure 2.4a, and is
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reported in literature (Lauvset et al., 2018; Brakstad et al., 2019).

Figure 2.4: Vertical profiles of temperature (a), practical salinity (SP; b), dissolved oxygen (c),
nitrate (d), pH (e), potential density anomaly (σθ; f), DIC (g), and Alk (h) from 1982 to 2019.
The data points are gray-scaled by year of measurement. The updated GLODAPv2 dataset is used
(Lauvset et al., 2022).

Salinity is remarkably uniform in the Greenland Sea, as apparent from Figure 2.4b. The
near homogeneous vertical salinity structure weakens stratification in the gyre. This is an
important mechanism for preconditioning for winter convection, and is a characteristic of the
region.

Because of the convective conditions in the Greenland Sea, the water masses are well venti-
lated. In recent years, convection has intensified after a period of winter mixed layer depths
reaching maximum 300 m (Lauvset et al., 2018; Brakstad et al., 2019). Figure 2.4c therefore
shows somewhat higher oxygen concentration from the surface to 2000 dbar for later years
compared to the late 90’s. Below 2000 dbar, this signal is reversed: there is a clear decreas-
ing trend in oxygen from 1982 to 2019. This is due to a larger contribution from deep water
in the Arctic Ocean (Jeansson et al., 2023).

Nitrate is the limiting nutrient in the Greenland Sea and is therefore depleted at the surface
in the productive season. Concentrations increase with depth due to remineralization.

Like major regions of the global oceans, the Greenland Sea also shows signs of acidification
caused by the uptake of anthropogenic carbon. This has been documented in literature (e.g.
Fransner et al. (2022)) and is also visible in Figure 2.4e. There is a clear decrease in pH with
time throughout the water column.

Density in the Greenland Sea is governed by salinity, as evident from Figure 2.4f and b. While
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fresh water and heat fluxes contribute to surface variability, density varies little from 500 dbar.
Like the uniform salinity profile, this is testament to the weak stratification in the region. It
is one of the enabling factors of deep convection.

Figure 2.4g shows an increase in DIC with time at all pressure levels, in agreement with the
observed pH decline. The surface concentration is highly variable. This variability is due
to biological production, surface dilution by precipitation, mixing from below, and air-sea
gas exchange. This variability affects pCO2, and ultimately the magnitude of carbon uptake
in the region. It is therefore essential to evaluate the relative importance of each of the
mentioned contributors to the surface DIC variability.

Alk is approximately linear in its relation to salinity. Its vertical structure is therefore very
similar to that of SP. At depth, Alk in the Greenland Sea generally lies around 2300 µmol
kg−1 while surface concentrations are more variable due to freshwater dilution. As Alk, like
SP, consists of ions it is quite susceptible to the influence of freshwater which has a low ion
content. Contrarily, polar water contains relatively high alkalinity because of river runoff rich
in dissolved minerals. The reason DIC, which is also composed of ions, is not linear in its
relation with salinity, is because it is strongly affected by biology and air-sea gas exchange.

Greenland Sea surface hydrographic and biogeochemical seasonal cycles are shown in Fig-
ure 2.5. Note that there are no measurements in the dataset for January, April, or October.
There are also more data points for summer months compared to winter, leading to a sum-
mertime bias.

Temperatures are generally below zero in spring, reaching positive values in June. The range
of values is greatest in summer. This could be due to interannual variations in heat fluxes, and
because GLODAPv2 covers a large area which contains spatial variability. In the Greenland
Sea, the East is influenced by relatiely warm AW, while in the East, the surface water has
cooled and mixed with PW. For years with an anomolously cold spring, restratification would
initiate later than usual. This could result in a shallow, warm, June mixed layer with colder
water below. For such cases, the cold water would be within the pressure range 0-30 dbar
and increase the range seen in Figure 2.5a.

Salinity is far more constant, with median values within the 34-35 span for all months mea-
sured. As for temperature, however, the range in surface values is larger in summer. This
could be due to advected meltwater, interannual variability in precipitation patterns, and spa-
tial variability. 1982-2016 is a period with very little sea ice in the region (Brakstad et al.,
2019). Local sea ice melt is therefore not likely to affect the surface salinity to a great extent,
though advection of meltwater from the North may impact surface salinity.

Figure 2.5c shows that the lowest oxygen values are found in winter and fall, while summer
concentrations are higher. While oxygen is produced by photosynthesis in the surface layer
of spring and summer, the intense biological production also increases remineralization rates
below. Winter mixing brings oxygen-poor water masses to the surface where they are re-
oxygenated. Maximum oxygen medians do not coincide with the peak productive months as
gleaned from nitrate and DIC. This is likely because warmer temperatures decrease solubility,
counteracting the effect of photosynthesis.

Despite a lack of observations from February and December (in addition to the aforementioned
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Figure 2.5: Box plot using data from 1982-2019 over 0-30 dbar of temperature (a), practical
salinity (SP; b), dissolved oxygen (c), nitrate (d), pH (e), potential density anomaly (σθ; f), DIC
(g), and Alk (h). The boxes encompass the interquartile range (IQR) taken as the 1st to 3rd
quantiles. The whiskers are 1.5×IQR. The red line shows the median, and the blue-edged circles
are data points exceeding the whisker range. The updated GLODAPv2 dataset is used (Lauvset
et al., 2022).

data gaps in January, April, and October), the seasonality in nitrate in the Greenland Sea is
evident. Concentrations tend towards zero in the productive season July-August. Some years
feature abnormally low concentrations already in May and June, indicating earlier onset of
phytoplankton blooms.

pH follows an inverse seasonal pattern compared to nitrate and DIC: maximum is reached
in the peak production months of July and August. This is due to the consumption of DIC
in this period, increasing the pH. As DIC is remineralized in autumn and winter, and air-sea
gas exchange replenishes the mixed layer with DIC, pH falls.

As was also evident in Figure 2.4, density closely follows salinity variations. Variability is low,
with mean values around 28 kg m−3 from February to June. Freshening and warming then
result in somewhat lighter water masses and greater variability. In summer, values can reach
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densities lower than 26 kg m−3.

The development of DIC in the upper 30 dbar is similar to that of nitrate, as they are
both consumed through photosynthesis, remineralized, and returned to the surface by winter
mixing. DIC, however, is also affected by air-sea gas exchange which somewhat compensates
the biological consumption.

Alk, like density and salinity, is relatively constant through the year. The range of concen-
trations measured increases in summer, coinciding with the freshening seen in salinity. As
commented regarding Figure 2.4, this is due to the low ion content in freshwater.

As an important sink region with unique hydrogrpaphic and biogeochemical characteristics,
it is important to monitor the development of the Greenland Sea oceanographic features.
There has been a bias towards summer measurements due to challenging winter conditions.
With new technology, this is evolving into a challenge of the past.

2.3 Argo floats as an observational method

The Argo program was launched in an effort to fill the data gap existing in areas where
shipboard observations are scarce. It is also a more cost-effective observation method than
scientific cruises. This allows for more measurements than would otherwise be obtained if
ship-based observations was the only possibility of obtaining data. Since the first Argo float
was put into the ocean in 1999, several thousand more have been deployed, dramatically
increasing both the spatial and temporal resolution of observations in the global ocean.
Today, there are 3857 operational floats in the global ocean (Belbéoch et al.).

Figure 2.6: Illustration of the Argo float measurement cycle. Figure from Thomas Haessig
(https://argo.ucsd.edu/how-do-floats-work/).
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Argo floats are autonomous buoys, drifting with ocean currents. Their typical operational
cycle is shown in Figure 2.6. The floats contain a bladder which enables them to sink to a
”parking” depth, usually of 1000 dbar. They then drift at parking depth for 5-10 days before
descending to a set initial profiling depth. Currently, this initial profiling depth is generally set
to 2000 dbar due to limitiations in the pressure tolerance of the sensors. Floats specialized
for deep profiles may descend to depths up to 6000 dbar. From the initial profiling depth, the
floats ascend to the surface, simultaneously taking measurements. At the surface, the float
transmits data to satellites before returning to parking depth and restarting its cycle. The
data are then transmitted on to data centers where they are converted to human-readable
data and quality checked in real-time. Adjusted data may be obtained as soon as 24 h after
transmission from the float. However, in-depth quality control, so-called DMQC, requires
months to a year to carry out. All data pertaining to the Argo program are freely obtainable
online.

With the success of hydrographic observations from Argo floats, a program to add biogeo-
chemical sensors was launched in 2016. In addition to traditional CTD observations, BGC-
Argo floats measure one or more of the following properties: oxygen, pH, nitrate, irradiance,
chlorophyll-α, and optical backscattering from suspended particles. The opportunity to mea-
sure these properties continuously in near real-time is a new revolution in the global data
coverage. It is especially valuable at high latitudes which have been severely undersampled
in the winter season. The Southern Ocean Carbon and Climate Observations and Modeling
project (SOCCOM; https://soccom.princeton.edu/) has deployed around 264 floats in the
Southern Ocean so far. Each float is able to measure at least two of the following: dissolved
oxygen, nitrate, and pH. The success of the SOCCOM project has worked as a catalyst for
further deployment of autonomous floats with BGC sensors in other regions.

Today, there are 75 active Argo floats at Northern high latitudes, 44 of which belong to
the Norwegian NorArgo project. 7 of these are operative BGC-floats. In the Nordic Seas,
the Norwegian NorArgo and NorArgo2 projects have been, and are, major drivers of Argo
deployment. The projects are infrastructure projects funded by the Norwegian Research
Council. The BGC-Argo infrastructure is a pioneering effort, the scientific results of which
are still in their infancy.

2.4 The near-homogeneous mixed layer

The stratified nature of the world ocean is one of the basic features making it dynamic. In
oceanography one often encounters the term ”the mixed layer”, referring to a surface layer
that is so well-mixed that we can assume its properties to be homogeneous. This is not
entirely true. Within the well-mixed surface layer there may still exist small variations in any
of its properties. There may even be small surface inversions or smaller mixed layers within
the defined mixed layer itself. This is possible because the definition of the mixed layer is
highly subjective and the methods of calculation vary immensely. There appears to be no
universal method to determine the mixed layer depth. Instead, several methods have been
developed that all rely on there being relatively small variations in the properties of a water
mass compared to a sharper gradient below, be it the pycnocline, thermocline or halocline.

Methods for mixed layer calculation range from simple threshold methods, through gradient
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methods, to more complex methods applying line fits, second derivatives, and more. Thresh-
old methods define the mixed layer depth as the point where the difference in temperature,
salinity or density compared to the surface exceeds a given value. The surface reference value
of the threshold methods is taken at depths between 0 and 10 m. Temperature thresholds in
literature range between 0.1 to 1.0◦C, while density thresholds between σθ=0.01 kg m−3 and
σθ=0.125 kg m−3 have been applied (De Boyer Montégut et al., 2004). Dynamic threshold
methods also exist, where the threshold varies with the profile properties, for example:

∆σθ = σθ(T + ∆T ,S) − σθ(T ,S) (2.11)

Gradient methods, as the word implies, take advantage of the often present strong gradient
at the base of the mixed layer. A gradient threshold is then applied such that the point
where, e.g., a density gradient exceeds anything from 0.0005 to 0.05 kg m−4 is considered
the mixed layer depth. For temperature gradients, 0.025◦C m−1 is a commonly used value
(Holte and Talley , 2009).

One of the more complex methods mentioned above, applying the second derivative, is the
curvature method developed by Lorbacher et al. (2006). In this method, one searches for the
first curvature maximum in temperature and density to define the mixed layer depth.

The consideration of mixed layer calculation methods is important because depending on the
goal of a given study, different calculation methods may yield drastically different results.
Determining the best method, however, is outside the scope of this work. In this application
a method suitable for the Nordic Seas is employed.
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Data & Methods

To achieve the goal of elucidating CO2 dynamics and the drivers of pCO2 variability, I use a
one-dimensional mixed layer model to calculate physical fluxes. To do this, I add BGC tracers
and air-sea gas exchange of CO2 and oxygen, and I reinitialize the model with output from
an Argo float. I estimate the path taken by the Argo float between measurement points to
facilitate interpolation of atmospheric forcing from external datasets onto the track, as hourly
atmospheric forcing is required for the model. Fluxes of vertical transport and air-sea gas
exchange are calculated from model output. The amount of drift in the model between each
reinitialization is assumed to capture the major physical processes. Biology is then estimated
by removing the changes caused by physics from the observations made by the Argo float.
Biology is thus the residual of model and Argo output. Applying these methods, I am able to
describe the annual cycle of the main drivers of DIC variability, and hence, pCO2 variability.
As far as the author is aware, this is the first time biogeochemistry is added to the PWP
model tailored to the Greenland Sea.

3.1 Argo Biogeochemical profiling float

Initial profiles are required to run the PWP model, and to calculate biological fluxes. These
were obtained from an autonomous profiling float. A PROVOR CTS4 Argo float with bio-
geochemical (BGC) sensors was deployed in the Greenland Sea by the Norwegian Institute of
Marine Research (IMR) in May 2019. The float was active from May 31st 2019 to January
29th 2021. Its trajectory is shown in Figure 3.1.

Due to significant Southward drift, only the first 75 profiles were retained in this work. The
remaining profiles cover slightly more than a full annual cycle: 31.05.2019-03.06.2020. Only
data with a quality control flag of 1 were used. Corrected profiles labelled ” ADJUSTED”
were used. These were downloaded from the GDAC ‘Coriolis’. The float carried an SBE41CP
Conductivity Temperature Depth (CTD) with accuracies for pressure, temperature and con-
ductivity of 2.4 dbar, 0.002◦C and 0.005 psu respectively. An Aanderaa Optode 4330 was
utilised to measure dissolved oxygen at an accuracy of 30 µmol kg−1, a SEAFET transistor
measured total pH at an accuracy of 0.025, and nitrate was measured by SUNA V2 spec-
trophotometer of 5 µmol kg−1 accuracy. The float also carried sensors to measure particle
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Figure 3.1: Colored circles show the float track from its deployment to end of life. The colorscale
of the circles (vertical colorbar) show the date of measurement of each profile. Only the profiles
within the white box are used. Bathymetry is indicated by shades of blue, with contour lines every
500 m (horizontal colorbar). The inset map shows the location of the mapped area (black box).
The shaded, red box within corresponds to the white box in the main figure. Bathymetric data are
from GEBCO Bathymetric Compilation Group 2022 (2022)

backscattering and chlorophyll-α, but these malfunctioned after around 20 profiles.

Delayed mode quality control (DMQC) is carried out manually by qualified personnel. Prop-
erties are evaluated for trends and offsets. Piece-wise linear regression with change point
alanysis is applied to trends, splitting a timeseries into sections where different corrections
are applied. This ensures that correction is only applied where needed. Segments containing
erroneous behavior could otherwise lead to correction of segments that were actually stable
(Wong et al., 2023). For temperature, no calibration was necessary. Calibration of salinity
and nitrate take advantage of climatologies of deep measurements where variations in these
properties should be small. Measured values are compared to those of the climatologies to
uncover trends, offsets and discontinuities. In salinity, an offset was found an corrected for
using a method by Owens and Wong (2009) which is the recommended technique (Wong
et al., 2023). The SAGE (SOCCOM Assessmentand Graphical Evaluatio) toolbox is used to
calibrate nitrogen and oxygen. The World Ocean Atlas 2018 1800-1900 dbar was used as a
reference dataset for nitrate (Garcia et al., 2019). 5 sets of corrections in offset, and 4 in
drift were applied by Kjell Arne Mork. New temperature corrections with subsequent updated
DMQC for nitrate exist but were not applied due to time limitations (ref. personal correspon-
dence with Kjell Arne Mork). The uncertainty estimate in nitrate was adjusted from 2 to 5
µmol following recommendations by Tanya Maurer as cited by Catherine Schmechtig in per-
sonal correspondence with Kjell Arne Mork. Oxygen calibration was carried out by Siv Kari
Lauvset using atmospheric data as a reference, as recommended in ”Quality Control Proce-
dures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (Bittig et al.,
2014; Thierry and Bittig , 2018). The oxygen sensor tends to drift towards lower values in
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the surface, such that a positive drift correction of a few percent is applied. For this Argo
float, this would have resulted in a strong positive trend in the deep. The trend was there-
fore not corrected, but all profiles were adjusted upwards by 6.4 %. pH reference data is
calculated from a neural networks algorithm called CArbonate system and Nutrient concen-
tration from hYdrological properties and Oxygen using a Neural-network, Bayesian approach
(CANYON-B; (Bittig et al., 2018). CANYON-B is trained using GLODAP data, and takes
temperature, salinity and oxygen from the utilized Argo float as input to calculate the ref-
erence pH. The reference data was in the 1800-1900 dbar interval. A small offset and drift
were corrected for. See Maurer et al. (2021) and the cited manuals for further details on
calibration procedures.

A 2-D linear interpolation scheme applied to depth and time was used to remove data holes
and to transfer the Argo data onto a 1 m vertical grid as required by the PWP model. A
point in a given profile is not only dependent on the values directly above and below it. It
is also the product of the previous profile and the changes it has been subjected to over 5
days. Likewise, the next profile is a result of this hypothetical given profile. Therefore, the
value pertaining to a data gap within a profile is best approximated by interpolating in both
time and space.

The Argo float typically measures the first value at 4-5 meters. Common practice is to
extend this value to the surface (e.g. Wolf et al. (2018); Codispoti et al. (2013)). Profiles
of alkalinity were calculated from salinity following according to Nondal et al. (2009), after
which pCOoc2 and DIC profiles were determined using alkalinity and pH as input in a marine
carbon cycle solver called CO2SYS for Python (Humphreys et al., 2022; Lewis et al., 1998).
See Section 3.3 for more details about the calculation of the marine carbon system.

Argo floats operate in cycles of typically 10 days. The Argo descends to a parking depth of
approximately 1000 dbar where it remains for, in this case, 5 days. The short cycle of the float
used in this work is unique. Before ascending, it dives down to 2000 dbar. Measurements are
taken in ascent (Carval et al., 2019). Hourly Argo float positions were calculated assuming
constant, linear movement between each measured point. The float timestamps were rounded
to the nearest hour. This led to 118-120 points between each known Argo coordinate, except
for one instance of 47 points. The shorter time interval is the interval between the first two
profiles. The first cycle is short because it is used to transmit technical data or configuration
information.

3.2 External datasets

Atmospheric forcing drives the physics of the PWP model. Mean hourly values of surface net
longwave radiation, surface net shortwave radiation, surface sensible heat flux, surface latent
heat flux, total precipitation rate, evaporation rate, surface pressure, eastward wind speed at
10 m and northward wind speed at 10 m from the ECMWF Re-Analysis 5 (ERA5; (Hersbach
et al., 2018)) dataset. Note that ERA5 is known to have an Arctic warm bias (Wang et al.,
2019).

Dry mole fractions of CO2 in the atmosphere, xCO2, were obtained from the National Oceanic
& Atmospheric Administration Global Monitoring Laboratory Carbon Cycle Greenhouse Gases
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dataset (NOAA GML CCGG; (Dlugokencky et al., 2021)). The dataset spanned three sine
latitude steps (70.0-80.0◦N) in the date range 01.05.2019-01.07.2020. CO2 is considered
meridionally homogeneous. The mole fractions were converted to pCOatm2 using water vapor
pressure (Weiss and Price, 1980) to account for air moisture as described by Pierrot et al.
(2009). The ERA5 and NOAA data were interpolated in space and time onto the hourly
Argo coordinates (see section above).

Chapter 2 and the comparison of Argo data to historical values in Chapter 4, rely on data
from GLODAPv2 (Key et al., 2015; Lauvset et al., 2016, 2022). When used to describe
the Greenland Sea, profiles within 73.9-75.7◦N and 11-0◦W are applied. The location of
GLODAPv2 measurements are shown together with Argo profiling points in Figure 3.2.

Figure 3.2: Map of the GLODAPv2 (white circles) and Argo stations (red circles) utilized.
Bathymetry is indicated by shades of blue, with contour lines every 500 m (see colorbar). The
opacity of the white circles indicate measurement density at a location (more opaque indicates
more measurements; not quantified). The inset map shows the location of the mapped area (black
box). The shaded, red box within corresponds to the white box in the main figure. GLODAPv2
data are from Lauvset et al. (2022). Bathymetric data are from GEBCO Bathymetric Compilation
Group 2022 (2022)

3.3 Calculation of marine carbonate system

Having obtained Alk from salinity, and pH from the Argo float, the rest of the marine carbon
system is calculated using the marine carbon system solver CO2SYS developed by Lewis et al.
(1998). For the initial profiles, a Python version is used (Humphreys et al., 2022). As the
PWP model is run in Matlab, a Matlab version of CO2SYS is used for calculation of pCOoc2
within the PWP model. CO2SYS uses a pair of carbon properties as well as temperature,
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salinity, and pressure to compute the components of the carbon system not used as input.
There are various expressions for the dissociation constants involved in the carbon system’s
equlibrium reactions in literature. In CO2SYS it is possible to choose between some of these.
Here, I apply the dissociation constants for carbonic acid, K1 and K2, of Sulpis et al. (2020),
the sulfate dissocitation constants of Dickson Dickson (1990), fluoride dissociation constants
of Perez and Fraga (1987), and borate dissociation constants by Lee et al. (2010). K1 and
K2 from Sulpis et al. is appropriate for the cold conditions of the Greenland Sea. The same
constants are used in the Matlab and the Python version. For simplicity, pH was not included
in the model and is only used to calculate the DIC initial profiles. Within the model, pCOoc2
is calculated from DIC and Alk instead of pH and Alk. From CO2SYS it is also possible to
calculate uncertainties of the output properties. This is described in Section 3.7.

C* is a conservative tracer used to exclude the effect of biological processes on DIC. It was
calculated as

C∗ = DIC− 7.2[NO3] − 0.5(DIC− [NO3]) (3.1)

where 7.2 is the C:N Redfield ratio of Körtzinger et al. (2001).

3.4 Mixed layer budget

The methods used to evaluate the influence of dynamics on pCOoc2 are built on a simple
mixed layer budget as adapted from Emerson and Stump (2010):

d(h[DIC])

dt
= FH + FZ + FE + Fmix + FGE + B (3.2)

Here, the change in DIC in a mixed layer depth h with time (t) is the sum of horizontal
advection (FH), vertical transport (FZ), entrainment and mixing from below during said
vertical transport (FE, Fmix), air-sea gas transport (FGE), and biology (B). For the Greenland
Sea gyre one can assume horizontal homogeneity as lateral advection is small compared to the
other processes. We therefore neglect FH. Observations from the Argo float contain all the
processes affecting DIC. Removing the physical processes from the observations, biological
processes remain. By adding BGC tracers and air-sea gas exchange of CO2 and O2, the
physical terms in Equation (3.2) may be predicted using the PWP mixing model. The model
is initialized at every Argo profile. The development in the model between each profile is
then completely abiotic and only represents physical processes. Assuming the model captures
these processes adequately, then the net community production (NCPDIC) is the residual of
modelled DIC and observed DIC as follows:

NCPDIC = DICt=n0
obs −DICt=n1−1

pred (3.3)

DICt=n0
obs is the DIC Argo profile at the time of a given reinitialization, t=n0. DICt=n1−1

pred is
the modelled DIC profile at the timestep immediately before a new profile, n1, is reinitialized.
The idea is that the changes between two Argo profiles in DIC not explained by physics (i.e.
the model) is the biological component.
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3.5 One-dimensional mixed layer model

The physical fluxes in the budget equation detailed above may be estimated by a one-
dimensional mixed layer model. One such model that has proved applicable for gyres such
as the Greenland Sea (Moore et al., 2015; Plant et al., 2016; Brakstad et al., 2019) is
the Price-Weller-Pinkel model (PWP; (Price et al., 1986)). The original model uses initial
profiles of temperature, salinity, and density. Heat and freshwater fluxes as well as wind
forcing are applied at each timestep. Instabilities caused by these perturbations are evaluated
at each timestep, leading to mixing if at least one of three stability criteria are met. The
mixing results in a new, stable vertical structure. Several improvements have been made
to the PWP model, and a Matlab version by Glover et al. (2011) is likely the base of the
version I employ here. Further adjustments have been made to include lateral advection of
heat (Moore et al., 2015) and salt (Brakstad et al., 2019) specifically tuned for the Greenland
Sea. Brakstad et al. (2019) also added ice production following Pickart et al. (2016). For this
work, I employ a Matlab version including the mentioned adjustments. I make the following
further improvements:

• Update the thermodynamic calculation package used from EOS-80 to Gibbs
Seawater package TEOS-10. TEOS-10 utilizes absolute salinity (SA) and conser-
vative temperature (CT) to calculate the properties such as density. EOS-80 used
practical salinity and in situ temperature. As TEOS-10 is the new standard, it is now
implemented.

• Introduce biogeochemistry: Alk, nitrate, DIC, and oxygen. This was necessary
to be able to carry out the analysis.

• Add dilution step for tracers. The added BGC tracers are diluted when freshwater
flux is applied. This must be accounted for. The effect is neglected for nitrate as it is
considered very small.

• Add air-sea gas exchange for CO2 and oxygen. This was necessary to be able to
carry out the analysis.

• Add profile reinitialization algorithm. To be able to adequately capture the devel-
opment of the DIC annual cycle, the model must be reinitialized for every Argo profile.
This is key to calculating biology.

• Change the mixing algorithm. The bulk mixing algorithm did not take into account
that concentrations are not additive. This is now changed.

• Change the threshold for mixing in the first mixed layer deepening step. Chang-
ing the mixing algorithm made the model somewhat more sensitive to atmospheric
forcing. The stability threshold of the first mixing step is increased to compensate for
this effect.

• Parameterize advection of polar water tailored to the Argo float in use. At
the end of the annual cycle the Argo float was influenced by polar water. The model is
not equipped to account for advection. A prescribed freshwater flux was implemented
for the duration of 10 days to represent this advection.
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The model is run with 1 hr timesteps, a vertical resolution of 1 dbar, and hourly atmospheric
forcing. It is reinitialized at every Argo profile, i.e. approximately every 5th day. Table 3.1
shows an overview of the constants used in this model version. To analyse its performance,
the model was also run once with no reinitalizations. This run using only one initial profile is
referred to as the model running ’free’.

Table 3.1: Overview of the constants applied to the PWP model.

Constant Value

Heat advection (yearly mean; Brakstad et al. (2019)) 61.0 W m−2

Salt advection (monthly mean; Brakstad et al. (2019)) -4.5 mm month−1

Latent heat of fusion, Ln 300 000 J kg−1

Specific heat capacity of seawater, cp 4016 J kg−1 K−1

Ice density, ρice 920.0 kg m−3

Reference density, ρ0 1027.6 kg m−3

Depth interval, dz 1 dbar
Size of timestep, dt 3600 s
Bulk Richardson number threshold 0.65
Gradient Richardson number threshold 0.25
Tuning coefficient, Aex (Plant et al. (2016)) 0.77
Tuning coefficient, Ap (Plant et al. (2016)) 1.02
Tuning coefficient, Ac (Plant et al. (2016)) 0.16

Figure 3.3 shows an overview of the main steps within the PWP model used in this work. The
model is forced using atmospheric forcing data. Initial profiles of temperature, salt, oxygen,
DIC, Alk, and pCOoc2 are introduced to start the model. The added reinitialization algorithm
introduces a new initial profile of each property every 5th day, i.e. when tmodel=tobserved.
Once the correct input data has been loaded, the model checks the surface box for freezing
conditions. This leads to two separate paths through the loop: Case 1, where the surface
temperature is higher than the freezing temperature, and Case 2 where the surface temper-
ature is equal to or lower than freezing temperature. In the following I describe how these
two cases progress within the model and which improvements I have made.

3.5.1 Case 1: No ice production

3.5.1.1 Applying heat and freshwater fluxes

If the temperature in the uppermost box is higher than the calculated freezing temperature,
there is no ice production. In this case, the sum of sensible (Qsens), latent (Qlat) and
longwave radiation heat (Qlw) is added to the surface box. Next, freshwater flux, FFW , is
added to the same box as

S ′A = SA(1 − FFW) (3.4)

where FFW = (precipitation - evaporation), SA’ is salinity after dilution, and SA denotes the
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Figure 3.3: Flow chart illustrating the main steps of the PWP model utilized. Atmospheric forcing
and initial profiles are loaded once. A routine checks if it is time to initialize with a new profile. The
main loop starts by checking for freezing temperature. If T>Tfreezing, heat fluxes and freshwater
forcing are applied before mixed layer deepening commences. Wind-induced momentum is added,
followed by air-sea gas exchange, a final mixing process, and final mixed layer calculation. More
momentum is then added. Finally, heat and salt are advected, and the timestep is over. For freezing
conditions, the first step entails ice production and brine rejection. Heat, freshwater fluxes, and
momentum are ignored in this case. The remaining processes proceed in the same order as for
non-freezing conditions.
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original salinity of the surface box. The addition or removal of freshwater causes Alk and DIC
concentrations to change. In reality, the nitrate concentration would also change however
this effect is negligible due to the relatively low concentration of nitrate (<14 µmol kg−1),
and ignored. Here I add dilution of Alk simply by applying its linear relation to practical
salinity, SP (Nondal et al., 2009):

Alk = 49.35SP + 582 (3.5)

This relation assumes little to no influence of polar water (PW) which is rich in minerals from
river runoff and therefore would lead to a higher intercept (Nondal et al., 2009). The use of
this relation is a simplification compared to calculating dilution through a mass balance, but
the results is the same. Assuming DIC accounts for the entire change in Alk, I calculate the
new concentration of DIC (DIC’) as

DIC ′ = DIC+ ∆Alk (3.6)

where ∆Alk is the total change in mass of Alk caused by dilution. The calculation involves
converting the units from concentration to mass and back again. For simplicity, this is not
shown.

The last step before adjusting the stability in the water column, is adding the shortwave
heat flux (Qsw). This is parameterized using the exponential radiation profile of the original
model. In this radiation profile, approximately 50% of the shortwave radiation is absorbed in
the uppermost meter of the water column whilst the rest is absorbed within the top 20 m. The
original model was developed for application in the Pacific at 31◦N where both hydrographic
and biogeochemical conditions are very different to those in this work. However, it has been
used successfully by Brakstad et al. (2019) in the Greenland Sea. I therefore leave it as used
in their version.

3.5.1.2 Static instability: mixing by free convection

Having accounted for thermal and freshwater forcing, the first of three stability criteria is
checked: static instability. The static instability criterion simulates free convection occurring
due to thermal heat loss from the surface. Starting from the surface, each model vertical
layer is evaluated according to

∂σ

∂p
> 0 (3.7)

where σ is potential density and p is pressure. There is net precipitation during most of the
studied annual cycle, which acts to decrease density and increase stratification. For static
instability to occur, the heat loss must be strong enough to break through this stratification
as heat loss densifies the water. In conditions where the effect of heat loss on density is
stronger than that of freshwater, density at the surface will be higher than in some of the
vertical layers below. This is the concept of static instability: due to gravity, a denser water
parcel cannot lie on top of a less dense water parcel. The denser water mass will sink,
mixing with the less dense water mass in the process. The static instability step thus checks
each vertical layer from the top for conditions in which there is a density difference above
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a certain threshold between the layer in question and the one below. This threshold was
changed from 10−6 to 10 10−5 kg m−3 to account for higher sensitivity introduced through
a new mixing scheme (see Section 3.5.1.5 for details). To apply an actual threshold of 0 as
in Equation (3.7) is inexpedient because all models exhibit some non-zero truncation errors
which would lead to constant bottom-reaching convection. The new mixed layer depth is set
as the first statically stable vertical layer. A bulk mixing scheme then mixes all tracers within
the new mixed layer as detailed in Section 3.5.1.5.

3.5.1.3 Rotation and momentum

While the static instability deepening step is only dependent on heat loss, the two remaining
deepening processes are wind driven. Wind forcing causes a transfer of momentum, which is
subjected to the Coriolis force. The first step of calculating momentum in a given timestep
is therefore to apply rotation. The angle αrot of rotation is dependent on Coriolis (f ) at the
latitude of the first initial profile:

αrot = −0.5f dt (3.8)

The factor of 0.5 indicates that only half of the rotation is applied at this time. Rotation is
finalized after the remaining deepening processes are run. A matrix of momentum (UV) in
the water column is multiplied by a rotation matrix based on αrot as follows:

UVrot = UV ×
[
cos(αrot) sin(αrot)
−sin(αrot) cos(αrot)

]
(3.9)

Having completed the first half of the rotation process, X and Y momemtum is applied down
to mixed layer depth. The mixed layer depth is taken as the depth calculated by the Nilsen
method Section 3.5.1.8, not the depth to which mixing has actually occurred during the
static instability deepening process. Ideally, the two depths should not differ greatly. The
threshold for calculating mixed layer depth is more lenient in the Nilsen method than the
static instability criterion, so mixed layer depth will be somewhat deeper using the Nilsen
method. Momentum is added in the X-direction to calculate Ekman transport as

U ′[0:h] = Urot[0:h] +
dt τx[0:h](i)

ρ0h
(3.10)

Here, U’[0:h] denotes the new momentum in the X-direction in the mixed layer ([0:h]).
Urot[0:h] indicates the rotated momentum of the mixed layer in the X-direction as calculated
in the previous step. τx[0:h](i) is the ERA5 wind stress at timestep i where the same value
of τx is used at each depth of the mixed layer. ρ0 is a reference density (see Table 3.1), and
h is mixed layer depth. The same calculation is applied in the Y-direction, substituting τy
for τx.

Finally, linear drag is applied to the whole water column as

UV ′′ = UV ′ − dt 0.05f UV ′ (3.11)

where UV” is the final momentum matrix in this step (but not within the timestep) and
UV’ is the final momentum matrix after applying the previous equation to both X and Y
directions.
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3.5.1.4 Mixed layer instability: wind induced entrainment

The addition of momentum flux and rotation gives rise to differences in horizontal momentum
between the mixed layer and the bulk fluid below, in addition to the preexisting difference
in density between the two layers. These disparities cause instabilities evaluated by the Bulk
Richardson number criterion, Rib:

Rib =
g∆σh

ρ0(∆UV)2
> 0.65 (3.12)

Here, g is the gravitational acceleration, ∆σ is the difference between the density of two
neighbouring depth levels, h is the mixed layer depth, ρ0 is the reference density, and ∆UV
is the sum of the momentum difference between two neighbouring levels in the X and Y
directions. ∆UV is driven purely by wind stress. While the static instability criterion was
evaluated from the surface down, the Rib criterion is assessed from the base of the mixed
layer. For every box in which the criterion unfullfilled, the mixed layer is deepened by one
box, and the mixing algorithm is run. The new Rib value is then calculated and the next
box down evaluated. When Rib >0.65, the entrainment process is ended and mixed layer
stability is reached.

3.5.1.5 New mixing scheme

A mixing algorithm is applied at the end of the static instability deepening step, and at
each deepening step during mixed layer instability deepening. In the model versions used by
Brakstad et al. (2019); Glover et al. (2011), new mixed layer concentrations are simply taken
as the mean of a given tracer over the new mixed layer depth. While computationally efficient,
it does not represent the mixing process correctly. Firstly, a weighted mean should be used
for any component undergoing mixing. Secondly, tracers given in terms of concentrations,
i.e. mass of solute per unit mass of solvent, cannot be treated additively as is done when
taking the mean. The tracers must first be converted to units of mass.

For a deepening of the mixed layer, tracers (c) in units of concentrations are now mixed as
follows:

c ′[0:h1]
=
Σ(c[0:h0]ρ[0:h0]V) + Σ(c[h0:h1]ρ[h0:h1]V)

ρ[0:h1]Ah1
(3.13)

h0 and h1 denote the old and new mixed layer depths respectively. A is the surface area
considered, taken as 1 m2. The mixed concentration c ′ is then the sum of the total mass of
tracer c in the preexisting mixed layer and that in the volume added by deepening, converted
back to units of concentration.

For shoaling of the mixed layer, the new concentration is simply the total mass of a tracer in
the new mixed layer depth, distributed evenly through the mixed layer depth.

3.5.1.6 Air-sea gas exchange

Wind and heat fluxes strongly affect air-sea gas exchange. I therefore follow Glover et al.
(2011) in implementing this process after the effects of wind and heat on the mixed layer

29



CHAPTER 3. DATA & METHODS

have been accounted for. Using a bulk formula the relation is

FCO2 = kCO2KCO2(pCO
atm
2 − pCOoc2 ) (3.14)

where FCO2 is the flux of CO2 (positive when the transport is directed from the atmosphere
into the ocean) in µmol m−2 s−1. kCO2 is the gas transfer velocity calculated for CO2. KCO2

is the solubility of CO2 in seawater calculated using the polynomial and gravimetric constants
proposed by Weiss (1974), and has units of µmol µatm−1 m−3. pCOatm2 and pCOoc2 refer
to the partial pressure of CO2 in the air and water phase respectively. The partial pressures
have units of µatm. pCOatm2 is determined from atmospheric forcing input, while pCOoc2 is
calculated at each timestep from salinity derived alkalinity and DIC through the marine carbon
chemistry solver CO2SYS as described in Section 3.3 (Lewis et al., 1998). Parameterization
of k is a much debated topic in the scientific community. I employ the quadratic dependence
of k on wind speed suggested by Ho et al. (2006), as recommended by Wanninkhof (2014):

kCO2 = 0.271U 2
10n

(
ScCO2

660

)−0.5

(3.15)

0.271 is a coefficient accounting for the global wind speed product used (ERA5). Because of
the quadratic dependence on wind, small differences in wind speed products amount to large
inconsistencies in k. A correction coefficient is therefore required (see Section 2.1.1). Here,
the coefficient is changed from 0.251 (Sweeney et al., 2007) to the aforementioned value
which is taken from Fay et al. (2021). The units of this coefficient are (cm h−1)(m s−1)−2.
U10n is the second moment of the neutral wind speed at 10 m height, given in m s−1. ScCO2

is the dimensionless Schmidt number. The Schmidt number is dependent on temperature,
and is calculated at each timestep using a fourth order polynomial with constants calculated
by Wanninkhof (2014). 660 is the Schmidt number of CO2 at 20◦C.

For 14C constrained estimates of k the effect of bubbles is already included. O2, however, is
less soluble. When applying a parameterization for k developed for CO2 on O2, we must add
terms for partial bubble dissolution (Fp) and complete bubble dissolution (Fc) to the total
flux equation separately:

FO2 = Fex + Fp + Fc (3.16)

Each flux in the equation above has units of µmol m−2 s−1. The diffusive flux, Fex, of O2

is parameterized using the difference between the saturation concentration of O2 ([O2]sat;
µmol kg−1) and the in situ concentration ([O2]oc; µmol kg−1) as the thermodynamic driver,
multiplied by the gas transfer velocity (kO2 ; cm h−1) and a dimensionless tuning parameter
Aex:

Fex = AexkO2([O2]sat − [O2]oc) (3.17)

where

kO2 = kCO2

(
ScO2

660

)−0.5

(3.18)

Thus, the gas transfer velocity for O2 is a product of the gas transfer velocity of CO2 and the
normalized Sc for O2, ScO2 . ScO2 was calculated using constants from Wanninkhof (2014).
[O2]sat in Equation (3.17) is calculated using the TEOS-10 toolbox (IOC et al., 2010) which
applies solubility coefficients from Benson and Krause (1984) fitted by (Garcia and Gordon,
1992, 1993).
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To account for the effect of wave breaking at high wind speeds, I use the bubble dissolution
terms from Stanley et al. (2009) as applied by Plant et al. (2016), yielding

Fp = Ap2.3 × 10−3(U10n − 2.27)3α

(
D

D0

) 2
3 Pb − Poc

RT
(3.19)

Fc = Ac9.1 × 10−11(U10n − 2.27)3
Pa
RT

(3.20)

Aex, Ap, and Ac in Equations (3.17), (3.19) and (3.20) are tuneable parameters set to 0.77,
1.02, and 0.16 respectively, as calculated by Plant et al. (2016). These adjust the relative
importance of Fex, Fp, and Fc. They tend to be optimized using cost functions. The values
used here are optimized for the Ocean Station Papa in the Gulf of Alaska. Tuning these
parameters for the Greenland Sea is outside the scope of this work but should be considered
in future endeavours. Plant et al. (2016) use the optimization results of Stanley et al. (2009)
as a baseline for their tuning. The constants 2.3×10−3 and 9.1×10−11 are the coefficients
determined by Stanley et al. (2009). Aex, Ap, and Ac are then the tuning parameters applied
by Plant et al. (2016) in addition to Stanley’s coefficients. α in Equation (3.19) is the
dimensionless Bunsen coefficient of solubility (Weiss, 1970). D is the diffusion coefficient of
O2 (Hayduk and Laudie, 1974) for which the viscosity of seawater is required and is calculated
according to Qasem et al. (2021), citing Sharqawy et al. (2012b,a). D0 is a normalisation
factor inserted by Plant et al. (2016) to simplify units. Pa and Pb are the partial pressures
of O2 in air bubbles. Poc refers to oxygen’s partial pressure pO2 in seawater. The calculation
of these pressure terms follows Stanley et al. (2009). R is the gas constant (8.31 m3 Pa
mol−1 K−1) and T is the temperature in Kelvin. At wind speeds (U10n) below 2.27 m s−1,
the effect of bubbles is negligible and Fc and Fp are set to zero.

Previous work in the Labrador Sea (Koelling et al., 2017) has shown relatively small uncer-
tainties applying the bubble parameterization of Stanley et al. (2009). As the Labrador and
Greenland Seas have similar weather conditions the parameterization is expected to be ap-
plicable to the latter as well. Determining the best air-sea gas exchange parameterization
method is outside the scope of this thesis but may be worthwhile investigating in future
endeavours.

Once the air-sea fluxes of carbon and oxygen are calculated (FC), they are converted to an
hourly timescale and the mass of gas absorbed into the water phase is evenly distributed
through the current mixed layer as follows

[C]GE[0:h] = [C][0:h] +
FCdt

ρ[0:h]h
(3.21)

The new concentration of gas in the mixed layer, [C]GE[0:h], as well as the concentration before

gas exchange, are in units of µmol kg−1 h−1. dt is the model timestep, in this case set to 1
hr. ρ[0:h] denotes the in situ densities of the mixed layer, and h is mixed layer depth. A water
parcel within the mixed layer is circulated through the mixed layer water column such that a
parcel at the base of the mixed layer will be transported to the surface and vice versa. Using
the above equation I assume that every parcel within the mixed layer is in contact with the
surface and is subjected to the same amount of gas flux, or at the least that the gas injected
at the surface is subjected to so much mixing that its final distribution within the timestep
is homogeneous. This is a normal simplification, made by e.g. Glover et al. (2011).
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3.5.1.7 Shear flow stability: wind induced smoothing

The previous mixing step employing Rib leads to an unnaturally sharp gradient at the base of
the mixed layer. In reality, the transition is much smoother. To account for this, Price et al.
(1986) added the third and last stability criterion: shear flow stability expressed through the
gradient Richardson number, Rig. Shear flow stability is attained when

Rig =

g∂σ
∂p

ρ0

(
∂UV
∂p

)2 > 0.25 (3.22)

As evident from the term ∂UV, this too is a wind-induced mixing process. Unlike the mixed
layer instability step, however, the whole mixed layer is never mixed. Here, the model searches
the stratified depths at the mixed layer base for cells in which Rig 6 0.25. These are then
partially mixed according to

c ′j = cj −

(
1 −

Rig
0.3

)
cj − cj+1

2
(3.23)

c ′j+1 = cj+1 +

(
1 −

Rig
0.3

)
cj − cj+1

2
(3.24)

where c is a given tracer and c ′ is its partially mixed product. j and j+1 are two neighbouring
vertical layers subjected to stirring. 0.3 is a constant set by Price et al. (1986) in their
original paper used to accelerate convergence. Upon completion of the stirring process, Rig
is recalculated and the process is repeated until the stability criterion is reached for the
stratified section of the profile.

3.5.1.8 Calculation of final mixed layer depth

The mixed layer has now been altered due to heat loss, entrainment and shear instability.
The final mixed layer depth is calculated as the depth where (Nilsen and Falck , 2006)

∆σθ = σθ(T0 − ∆T, S0) − σθ(T0, S0) (3.25)

σθ is potential density (kg m−3). T0 (◦C) and S0 are the surface temperature and salinity
respectively. ∆T is an arbitrary value, found to work well at ∆T = 0.2 ◦C in the Iceland and
Greenland Seas (V̊age et al., 2015; Brakstad et al., 2019). Note that this is different from the
original value of ∆T = 0.8 ◦C fit to the more stratified Norwegian Sea (Brakstad et al., 2019).
Both Nilsen and Falck (2006), and Brakstad et al. (2019) use a varying ∆σθ to account for
seasonal changes in stratification. This is not applied here due to time limitations. Further
work may include consideration of a seasonal ∆σθ.

Other methods for mixed layer depth calculation were also tested (e.g.(Lorbacher et al.,
2006)) however the Nilsen method yielded the best match between model and Argo mixed
layer depths when applied to both.
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Note that there is no mixing in this final calculation of mixed layer depth. It only represents
the depth to which the bulk fluid is relatively homogeneous, and is not necessarily the depth
to which an exchange of mass or volume has occurred. The calculated mixed layer depth is
still useful to calculate in this way, as it is an important metric to assess if the model can
accurately predict vertical transport.

After mixed layer calculation, rotation of momentum is completed as per Equation (3.9).

3.5.1.9 Advection

The last steps of the loop are advection of heat and salt. Heat advection in the model
follows the approach as Moore et al. (2015), using the updated constants calculated by
Brakstad et al. (2019). They assume a continuous yearly heat loss (61 W m−2 y−1) from
the surrounding water to the Greenland Sea gyre. This heat is transported into a 1000
m deep water column, which is a typical wintertime mixed layer depth in the region. At
each timestep, a fixed amount of the total yearly advected heat is added to the modelled
temperature profile. The heat is distributed vertically to reflect the temperature difference
between the gyre’s interior and the adjacent water masses. This means most of the heat is
added at depths corresponding to the exterior mixed layer depth (considered to be half the
depth of the mixed layer within the gyre, i.e., 500 m), with an exponential decrease towards
the gyre mixed layer depth of 1000 m. Similarly, a constant freshwater removal from the
gyre is applied. In this case, salt is removed in the upper half of the gyre’s mixed layer to
simulate input of relatively fresh polar surface water. Below, the exterior water masses are
more saline, leading to an injection of salt in the lower part of the gyre’s mixed layer.

The advection in the model refers to transport of water masses from outside the Greenland
Sea gyre required to close climatological heat and salt budgets. Horizontal homogeneity is
assumed within the gyre such that local lateral advection is neglected.

In addition to local lateral advection, diffusion is neglected. In some versions of the PWP
model (e.g.(Glover et al., 2011; Plant et al., 2016; Briggs et al., 2018)), there are three
tuneable parameters: heat offset, freshwater offset and the diffusion coefficient Kz. The two
former are covered by parameterizations of heat and salt advection, which leaves only Kz as a
tuneable parameter for the physics of the model (excluding gas exchange). I follow Brakstad
et al. (2019) in neglecting diffusion.

Preliminary results showed excessively deep mixed layer depths after profiles 57 and 58 com-
pared to observed mixed layer depths. Examination of the profiles showed that the anomalies
could not be attributed to the float’s coordinates at the times in question, nor to ice produc-
tion or ice melt. Inspection of the model forcing revealed reasonable heat loss and precipi-
tation patterns within the timeframe. The observed profiles feature a freshening and cooling
of the surface to approximately 8 m and 108 m for profiles 57 and 58 respectively. Since
the changes cannot be attributed to increased precipitation, the cause must be advection of
polar water.

To account for this, the surface salt difference between profiles 57 and 58 (-0.0239) is added at
each timestep until reinitialization. Diluting the tracers at each timestep results in excessively
low DIC concentrations and a correspondingly strong gas transfer. To avoid this effect, tracers
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are only diluted at the first timestep after initialization of profile 57. I apply the Alk:S relation
for polar water rather than Atlantic water here (Nondal et al., 2009).

The salt difference between the next two profiles is significantly higher: 0.0663. Adding the
full amount of each timestep yields unreasonably fresh water. Applying half the amount is
sufficient. Tracer dilution is parameterized as for profiles 57-58.

Once advection has been applied, the loop restarts.

3.5.2 Case 2: Ice production

In Case 1, wind stress and atmospheric heat fluxes penetrate the surface water. Ice production
on the other hand, shields the surface water. Assuming an ice cover of 100%, these forces
are neglected. If the surface holds freezing temperature, sea ice is produced and brine is
released. The sea ice production rate, P (UNITS), is estimated as (Pickart et al., 2016):

P =
Qnet
ρiceLn

(3.26)

where Qnet is the net surface heat loss, ρice is the density of sea ice (920 kg m−3), and Ln
is the latent heat of fusion (300 kJ kg−1). The effect of thickening ice on ice growth rate is
not accounted for. Instead, polynya-like conditions are assumed which immediately transport
newly formed ice out of the model domain (Brakstad et al., 2019).

The salt flux Fs resulting from brine release is calculated according to

Fs = ρiceP(Ssw − Sice) (3.27)

Sice = 0.31Ssw (3.28)

in which Ssw and Sice are sea surface salinity and sea ice salinity respectively. The relation
of the latter is paramterized following (Martin and Kauffman, 1981). As salt essentially is
a conglomerate of various ions, brine rejection affects the alkalinity and DIC concentrations.
Alkalinity is recalculated in the surface box to account for this (Nondal et al., 2009). As for
the effect of freshwater flux described previously, I treat the change in DIC as ∆DIC = ∆Alk.

At each timestep of ice production, the released salt is added to the upper grid and mixed
down until the static stability and Rib criteria are met. Gas exchange is then estimated.

In terms of heat and freshwater fluxes, we assume an immediate ice cover of 100% as soon
as ice starts forming. This should also lead to a complete block of air-sea gas exchange.
Preliminary results and ERA5 ice concentrations however, showed minimal ice production
for the 2019/2020 season. Such conditions would likely involve large cracks and dynamics
allowing most of the surface water open to air-sea interaction. The brine release from such a
small modelled ice production is not enough to impact the physics of the model. I therefore
assume 100% gas exchange even for timesteps in which ice production occurs. The effect of
this decision is explored in Section 5.1.2.

Following gas exchange, Case 2 proceeds as Case 1, with the exception that there is no
rotation step because it is assumed that wind forcing is blocked by the ice.

34



CHAPTER 3. DATA & METHODS

3.5.3 Sum of changes

In summary, I have added Alk, nitrate, DIC, and oxygen as tracers, and the dilution of these
in response to freshwater fluxes. I have added air-sea gas exchange for CO2 and oxygen, and
code to reinitialize the model with every Argo profile. To account compensate for advection
of polar water that the model is unable to capture as-is, I have added a parameterization
of freshwater flux and subsequent tracer dilution at relevant timesteps. I have also made
amendments to existing content within the model. I updated the thermodynamic calculation
package used from EOS-80 to the state-of-the-art TEOS-10 Gibbs Seawater package. I
change the bulk mixing algorithm to better represent mixing where units of concentration
are involved, i.e. for salt and BGC tracers. Finally, I increase the threshold for the static
instability deepening step. This is to compensate for higher sensitivity in the model following
the change in the mixing algorithm.

3.6 Determination of the main drivers of pCO2

variability

Changes in pCOoc2 may be broken down into four major contributors: sea surface salinity
(SSS), sea surface temperature (SST), DIC, and Alk. Their relative impact on surface
pCOoc2 can be estimated using Taylor expansion, where the change in pCOoc2 due to a given
driver is multiplied by the change in the driver itself:

dpCOoc2
dt

=
∂pCOoc2
∂SST

dSST

dt
+
∂pCOoc2
∂SSS

dSSS

dt
+
∂pCOoc2
∂DIC

dDIC

dt
+
∂pCOoc2
∂Alk

dAlk

dt
(3.29)

The first fraction of each term can be expressed as a sensitivity of pCOoc2 to a given driver
multiplied by the quotient of mean pCOoc2 and the mean of the driver (e.g.(Metzl et al.,
2010):

dpCOoc2
dt

= τpCOoc2
dSST

dt
+ η

pCOoc2
SSS

dSSS

dt
+ γ

pCOoc2
DIC

dDIC

dt
+ Γ

pCOoc2
Alk

dAlk

dt
(3.30)

Overbar denotes the mean of a component. τ is the thermodynamic change in f COoc2 with
temperature and is 0.0423◦C−1 (Takahashi et al., 1993). η is 1.0 for cold water (Takahashi
et al., 1993), which is slightly higher than the value used by Metzl et al. (2010) (0.9). The
marine carbonate program ”CO2SYS” (Lewis et al., 1998; Humphreys et al., 2022) calculates
γ, which is the DIC Revelle factor. A γ of 13.8 is applied here. Γ is the Alk Revelle factor. Γ
was not available as an output in the utilized version of CO2SYS. Instead the Alk buffer factor
was estimated in CO2SYS and the relation γ=DIC/βDIC was assumed applicable also to Alk
such that Γ=Alk/βAlk. The Revelle factor relation for DIC is from Egleston et al. (2010).
In these equations, β denotes DIC and Alk sensitivities. Γ = -13.2 for this application.

Freshwater impacts on DIC are accounted for explicitly as (e.g. Fröb et al. (2019)):

dpCOoc2
dDIC

= γ
pCOoc2
DIC

(
sDIC

SSS0

dSSS

dt
+
SSS

SSS0

dsDIC

dt

)
(3.31)
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dpCO2/dDIC is the sensitivity of pCO2 to DIC. SSS0 is a reference salinity, taken as 35. sDIC
is DIC normalized to this reference salinity, SSS0. The first term in the brackets represents
the influence of freshwater. The second term is salinity normalized and therefore excludes
freshwater. This means the physical and biological influences remain.

3.7 Quantification of uncertainties

The end result in this work, and the result associated with the highest uncertainty, is FBIO. All
uncertainties in the underlying calculations are propagated into its uncertainty. To calculate
the absolute uncertainty in FBIO would require extensive, time consuming methods such as
a Monte Carlo analysis. Due to time limitations, I instead focus on the largest uncertainties
through a simple ”sum of squares” method. This approach takes the uncertainty in a result
as the root of the sums of each underlying uncertainty squared. By squaring each uncertainty,
the larger uncertainties are given more weight. For FBIO, the total uncertainty σNCP can
be estimated as the root of the squared uncertainty of the model profiles plus the squared
uncertainty of a measured Argo profile:

σNCP =
√
σ2model + σ

2
Argo (3.32)

where σmodel is the uncertainty in model profiles and σArgo is the measurement uncertainty
of the property used to calculate NCP (i.e. DIC, nitrate, or oxygen). The major uncertainties
in the model profiles lie in the uncertainties of the modelled air-sea gas exchange (σFGE) and
vertical transport (σFZ), and in the measurement uncertainty:

σmodel =
√
σ2FGE + σ

2
FZ

+ σ2Argo (3.33)

where

σFGE =
√
σ2k + σ

2
pCO2

(3.34)

In Equation (3.34), σk is the uncertainty in the gas transfer velocity k, and σpCO2 the
uncertainty in pCOoc2 . The uncertainty in pCOatm2 is small compared to that of pCOoc2 and
k, and is therefore neglected.

σArgo is the uncertainty in DIC for the main results. DIC is calculated using pH and Alk
as input parameters in CO2SYS. Supplying the uncertainties of the input parameters and
dissociation constants used, CO2SYS calculates the uncertainties into the output parameters
- here, this is both DIC and pCO2. Using the uncertainties listed in Table 3.2, σArgo and
σpCO2 are 10 µmol kg−1 and 12 µatm respectively, corresponding to percentages of 0.5 and
3%. However, pCO2 within the model is calculated from DIC and Alk. The model uncertainty
in pCO2 therefore needs to use σDIC and Alk as input. This results in σpCO2=10%. σFZ is
obtained from a sensitivity analysis detailed in Section 5.1.1 and is 15%. Finally, σk is taken
as 20% following Wanninkhof (2014). With these values, the resulting uncertainties are 22%
for σFGE , 15% for σFZ , and 27% for σNCP.

For NCP estimates derived from nitrate and oxygen, the concept is the same, however σArgo
changes according to their respective measurement uncertainties (5 and 30 µmol kg−1).
Additionally, there is no gas exchange affecting nitrate, while there is added uncertainty
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in oxygen gas exchange due to the introduction of bubbles. Bubble uncertainty is 100%
(Nicholson et al., 2015). This results in σNCPNO3

and σNCPOX of 53% and 104%.

Note that sum of squares method assumes the uncertainties in question are random and
independent. Although this assumption is invalid for our application, it gives an idea of the
magnitude of errors involved.

Table 3.2: Uncertainties associated with dissociation
constants of the marine carbon system.

Constant σ (fraction) Component

pK0 0.002a CO2

pK1 0.011b Carbonic acid K1

pK2 0.011b Carbonic acid K2

pKW 0.01a Water
pKA 0.02a Aragonite
pKC 0.02a Calcite
pKB 0.02a Boric acid
TB/S 0.02a Total Borate/Salinity

a (Orr et al., 2018)
b (Sulpis et al., 2020)
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Chapter 4

Results

This chapter details the thesis results. It is separated in three sections. First, Argo float
measurements are presented and compared to historical data. The second section concerns
model performance. Finally, the derived carbon fluxes and their drivers are presented.

4.1 Hydrography and biogeochemistry as observed by an
Argo float

The high frequency and vertical resolution offered by Argo floats form the basis of this thesis.
To use these as model input, however, we must ensure they are representative of the area and
the time - model output quality reflects model input quality. In this section the observations
are analysed and compared to historical data from the GLODAPv2 project (Lauvset et al.,
2016; Key et al., 2015; Lauvset et al., 2022).

Examination of the retrieved Argo data in potential temperature-salinity (θ-S) space is useful
for determination of the water masses present through the measurement period. Figure 4.1
shows a θ-S diagram with GLODAPv2 data overlaid by Argo measurements colored by pres-
sure level. Values above 100 dbar are excluded to avoid the influence of high variability sur-
face water. This excludes the end-member of Polar Water (PW; θ < 0; S<34.4; σθ <27.7).
There is, however, a mixing line from (-1.7◦C, 34.4) presumed to originate in PW. The water
masses following this mixing line become warmer and more saline, indicating Atlantic Wa-
ter (AW; θ >0; S>34.0) influence. Modified Atlantic Water (MAW; 0< θ <1; S<34.92;
27.97< σθ <28.02) is a product of mixing between PW and cooled AW. MAW resides some
200 dbar deeper than AW. Following the constant salinity mixing line further, Greenland
Sea Arctic Intermediate Water (GSAIW; -1< θ <0; 34.80<S<34.92; 27.97< σθ <28.06) is
found. This is an intermediate water mass known to occupy the 500-1500 m range (Brakstad
et al., 2019). It is the main product of winter convection in the Greenland Sea, produced by
the cooling, and subsequent subduction of MAW in winter. Above GSAIW lies Greenland Sea
Arctic Water, which is the deepest of the water masses considered to reside in the surface.
The middle of the mixing line from GSAIW towards PW is likely this Greenland Sea Arctic
Water mixed with PW. At the end of the same mixing line, we find Arctic Water mixed with
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Figure 4.1: Potential temperature-salinity diagram of GLODAPv2 (small, gray, circles) and Argo
data (larger, colored circles) from 100 to 2000 dbar. See Figure 3.2 for the GLODAPv2 measure-
ment positions used. Dashed lines indicate σθ contours. The approximate position of different water
masses in θ-S space are indicated using the following acronyms: PW: Polar Water; GSAIW: Green-
land Sea Arctic Intermediate Water; MAW: Modified Atlantic Water; MNAW: Modified Norwegian
Atlantic Water; AW: Atlantic Water using definitions from Wang et al. (2021)

PW. Compared to historical data, the Argo data exhibits higher temperatures, in line with
the known development in the gyre (Lauvset et al., 2018). While there appears to have been
some influence of Modified Norwegian Atlantic Water (MNAW; 1< θ <12; 34.80<S<35.15;
27.4< σθ <27.97) in GLODAPv2, this mixing line is not observed in the Argo data.

In addition to hydrographic properties, dissolved oxygen, nitrate, and pH were retrieved for a
full annual cycle from the Argo float. Figure 4.2 shows the development of these variables as
well as calculated Alk (from salinity), DIC (from Alk and pH), and potential density anomaly
(from SA and CT) in time and depth space.

A clear seasonal development is visible for all properties. The surface layer is warmer and
fresher in summer months (June-October; Figure 4.2a). The low surface salinities are also
reflected in lower surface concentrations of Alk (Figure 4.2), indicating dilution caused by
freshwater input. In this period there are also signs of biological activity: depletion of nitrate
and low DIC concentration, as well as increased oxygen and pH (Figure 4.2d, g, c, and e
respectively).

Through winter there is a deepening of the mixed layer (solid line). The effect of heat loss
cooling the surface waters is clear in Figure 4.2a. The cooling results in denser water masses
which sink down, mixing in saltier water from below the thermocline in the process. Thus,
as cooling progresses, the mixed layer becomes saltier and more dense as seen in Figure 4.2b
and Figure 4.2f. Similar to salinity, oxygen, nitrate, DIC, and Alk are transported into the
mixed layer from the bulk fluid below. This is evident from the increased concentrations of
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Figure 4.2: Hovmöller diagrams for the period June 2019-May 2020 displaying temperature (a),
practical salinity (SP; b), dissolved oxygen (c), nitrate (d), pH (e), potential density anomaly (σθ;
f), DIC (g), and Alk (d). Note the different scales of the upper and lower y-axis of each plot. Mixed
layer depth calculated using the Nilsen method is shown as a solid line.
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these tracers through winter. As a result of the increase of DIC in the mixed layer, pH is
reduced.

The increased oxygen and DIC concentrations in wintertime are not only due to mixing.
Air-sea gas exchange also transfers these tracers into the mixed layer. At low temperatures,
gas solubility in water is enhanced. Combined with strong winds in winter, the process may
contribute to the higher concentrations. This is investigated further in Section 4.3.

By December, σθ is remarkably uniform. This is a well-known characteristic of the Greenland
Sea. In January, the mixed layer depth reaches a maximum of approximately 370 dbar before
a freshening event causes a slight shoaling. A second, deeper maximum (823 dbar) is reached
in March as sub-zero temperatures are reached. An abrupt shoaling follows due to freshening
of the upper 100 dbar of the water column. The surface water temperature at this time is
still below zero degree Celcius. Such cold, fresh water could indicate PW influence.

Nitrate and DIC concentrations increase with depth, while oxygen decrease. This is a conse-
quence of remineralization. Note also the oxygen-rich tongue at 500 dbar seen in Figure 4.2c
which could be remnants from the previous winter’s mixed layer.

Gradients below 500 dbar are small for all variables. This is expected because, as opposed to
the surface layer, water masses below mixed layer depth are not affected by the rapid changes
in atmospheric forcing. Additionally, there is little biological activity because photosynthesis
requires light, and most remineralization occurs in the upper 1000 dbar. High variability at
depth could therefore indicate sensor drift.

The large range in the color scale in Figure 4.2 is not suitable to assess sensor stability. To
investigate this, values at 500, 1000, 1500, and 1900 dbar are plotted with time for each
variable in Figure 4.3.

At 500 dbar water masses are affected by remineralization, and to some extent atmospheric
forcing at the surface. The former is seen from increasing DIC and nitrate, and oxygen
decreasing through the winter at this pressure level. When the mixed layer is deep, the
latter becomes apparent in perturbations not observed at the deeper pressure levels. This is
seen e.g. in March. In August there is a warming event which coincides with salinification
(Figure 4.3b), indicating stronger influence of Atlantic Water at this time. This peak is also
seen in Alk, which is natural due to its linear relation with salinity. The AW influence is not
evident from any of the other tracers at 500 dbar.

In the end of February, there is a new warming event at 500 dbar caused by warmer surface
water being mixed down by winter convection. As the mixed layer shoals, temperatures drop
again. Similarly, oxygen in the period rises as waters newly in conctact with the surface
are submerged and mixed with the oxygen-deficient water below. For nitrate, the 500 dbar
pressure level shows clear signs of remineralization, with increasing values from the productive
season through winter. At the time of deepest convection in February/March, nitrate is
diluted as it is mixed with nutrient-depleted water from above. This same dilution is seen in
σθ, DIC, and Alk. The reduction in DIC leads to raised pH values.

From 1000 dbar the seasonal signal and convection influence are no longer evident. Temper-
ature and salinity, and their derivatives σθ and Alk, appear nearly constant. However, not all
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Figure 4.3: Timeseries of temperature (a), practical salinity (b), dissolved oxygen (c), nitrate (d),
pH (e), potential density anomaly (σθ; f), DIC (g), and alkalinity (h) at 500, 1000, 1500, and 1900
dbar. The pressure levels are shown as blue diamonds, light blue circles, purple triangels, and red
squares respectively.

43



CHAPTER 4. RESULTS

values at these pressure levels are as stable as one would expect. There is a clear negative
trend in oxygen of approximately 2%, too strong to be explained by remineralization alone.
Remineralization should show some seasonality (more in the productive months), and most
remineralization occurs within the upper 500 m of the water column (Martin et al., 1987).
The trend could be caused by sensor drift. The drift would propagate to pH and DIC because
oxygen is used to validate the pH measurements, and pH is used to calculate DIC. Thus, if
the trends are indeed caused by sensor instability, then the trends in oxygen, pH and DIC are
all connected. The variability in nitrate, on the other hand, is independent of the oxygen sen-
sor. There is a range of approximately 1.5 µmol kg−1 in the observed values between 1000
and 1900 dbar, and considerable oscillations within each pressure level. Additionally, a weak
positive trend is seen in values at the two deepest pressure levels. The possibility of sensor
drift is explored further in Section 5.2.2.

Thus far, the Argo measurements appear reliable despite some sensor drift. How do they
compare to historical data? This is investigated in Figure 4.4, where vertical Argo profiles
are plotted with GLODAPv2 bottle data (Lauvset et al., 2022). In addition to the tracers
shown in previous figures, apparent oxygen utilization (AOU) is plotted in Figure 4.4i. AOU
is a measure of the oxygen consumed during remineralization (AOU = [O2]sat-[O2]observed;
(Sarmiento and Gruber , 2006)) useful for, among other things, determining ventilation
depths. Additionally, the temperature effects on the solubility of oxygen are removed in
AOU. This makes it especially useful in areas such as the Greenland Sea where temperatures
have increased.

There is good agreement between the Argo and GLODAPv2 data for most variables. The
Argo data appears somewhat warmer than the historical data at all depths. This is consistent
with current literature stating there has been a warming of the Greenland Sea (e.g. Lauvset
et al. (2018)).

Salinity does not reach the lower range of historical values (<33.0), but does otherwise not
deviate substantially from the GLODAPv2 data. Full overlap in the surface is not expected
as there may be large interannual variability in precipitation, evaporation, ice formation, and
ice melting. The Greenland Sea salinity is affected by both the North Atlantic Oscillation
(NAO) climate mode, and variability upstream in the Arctic Ocean.

Argo oxygen values appear relatively consistent with historical data. Most of the GLODAPv2
data agree with the Argo observations. Below 100 dbar there are some discrepancies in which
the GLODAPv2 data are more oxygenated than the Argo values. A possible explanation is
reduced solubility compared to GLODAPV2 data resulting from the observed temperature
increase in Figure 4.4a. At first glimpse, this may seem at odds with the work of Lauvset
et al. (2018) who found that total oxygen inventory in the Greenland Sea has increased since
the turn of the century. However, the reason for this increased oxygen inventory is that the
depth of the well-ventilated water masses has increased. Most likely, the upper range of
oxygen values seen in the GLODAPv2 data is an expression of eddy activity. Eddies can lead
to high oxygen concentrations down to 2200 m in the Greenland Sea (Gascard et al., 2002).

Nitrate concentrations measured by Argo fall into the lower range of GLODAPv2 values,
consistent with the recent GLODAPv2 concentrations seen in Figure 2.4.

Figure 4.4e clearly shows the effect of anthropogenic carbon on pH: the Argo measurements

44



CHAPTER 4. RESULTS

Figure 4.4: Vertical profiles of temperature (a), practical salinity (SP; b), oxygen (c), nitrate (d),
pH (e), potential density anomaly (σθ; f), alkalinity (d), DIC (e), and AOU (f) for Argo (blue
dots) and GLODAPv2 (gray, smaller dots) data from the Greenland Sea. GLODAPv2 measurent
locations are mapped in j and span 1982-2019 (see Chapter 3 for further details; (Lauvset et al.,
2022)).

are significantly lower than those from GLODAPv2, indicating increased ocean acidification.
A corresponding positive deviation is seen in DIC in Figure 4.4h, reflecting the increased
concentration of anthropogenic carbon. As the included historical data spans from 1982 to
2019, there is a slight overlap with the Argo measurements of this work. However, most of
the GLODAPv2 data is from 2000-2010, and even earlier for the Western part of the gyre
studied here, which explains some of the discrepancies. Another likely cause is incoherences
between measured and calculated properties of the carbon system. In the Argo data, the
only directly measured carbon system parameter is pH. Alk and DIC are calculated. For
GLODAPv2, on the other hand, most Alk and DIC values are measured ones while pH is
typically calculated. Discrepancies between calculated and measured carbon system properties
have been declared an important challenge needing resolve within the ocean carbon chemistry
community (Álvarez et al., 2020; Garćıa-Ibáñez et al., 2022).

The comparison is further complicated by the use of different carbonate system dissociation
constants and software. GLODAPv2 applies the K1 and K2 of Lueker et al. (2000), total
boron to chlorinity ratio of Uppström (1974), and the 1990 sulfate constant of Dickson
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Dickson (1990). Here, I use Sulpis et al. (2020) for K1 and K2 to account for the cold
temperatures intrinsic to the Greenland Sea. For boron to chlorinity, I apply constants from
Lee et al. (2010), leaving only the sulfate constants parameterized using the same constants.

Also present in both pH and DIC is the changing slope with depth from aound 1200 dbar in
the Argo data not found in the historical data. In addition to the aforementioned differences
in carbon system properties between Argo and GLODAPv2 data, it is possible that a portion
of the observed differences is connected to sensor instability.

High-latitude density is governed by salinity. This is mirrored in the σθ profiles (Figure 4.4f).
The influence of salinity on other tracers is also evident in Figure 4.4g where Alk profiles are
shown. Although Alk (Figure 4.4d) is linearly related to salinity, it shows a clear increase
compared to historical values. This could be related to increased salinity reported in the
region. This is also seen in Figure 4.5.

AOU reflects the oxygen concentration change relative to 100% saturation. Negative values,
as seen at surface level in Figure 4.4i, thus indicate biological production as observed oxygen
concentrations are greater than saturation concentration. Conversely, positive AOU signifies
undersaturated water masses indicative of remineralization and a lack of contact with surface
water. Argo AOU lies around 20 µmol kg−1 in the 250-1000 dbar range before increasing
towards concentrations exceeding 50 µmol kg−1 at 1900 dbar. The lower values at mid-depth
indicate there could be ventilation down to around 1000 dbar for the 2019/2020 winter season,
in line with the mixed layer depth maximum of around 800 dbar calculated for the Argo data
(Figure 4.2). The values are consistent with values of 19.5±2.2 in GSAIW (500-1000 m) and
54.5±4.2 in GSDW (2000-3000 m) as calculated for the 2010s by Jeansson et al. (2023).
Some instances of lower GLODAPv2 AOU even at 1900 dbar demonstrate events of deep
convection and/or eddy activity in the past.

As signs of possible sensor drift were seen in Figure 4.3, it is instructive to compare Argo
values at depth to GLODAPv2. In Figure 4.5, temperature, salintiy, oxygen, nitrate, pH,
σθ, Alk, DIC, and AOU are therefore plotted from 1000 to 1933 dbar for both Argo and
GLODAPv2 data.

Argo temperatures decrease with depth at a rate unlike the gradient seen in most of the
GLODAPv2 data. For GLODAPv2, there is a moderate gradient for 2018-2019, indicating
that this could be a new development of the temperatures in the gyre rather than measure-
ment errors. Also notable is the elevated Argo temperature compared to GLODAPv2 values
from the 1980s and 1990s. As noted above, this is an expression of the known warming of
the Greenland Sea gyre.

Salinity is uniform through the selected pressure levels for both Argo and GLODAPv2. Argo
values are somewhat greater than the historical data. As for temperature, this is in line with
the aforementioned warming and salinification of the region.

Oxygen Argo concentrations decline with depth. From 1200 dbar, GLODAPv2 values for
more recent years are higher than Argo values. It is possible that this is an artifact related
to sensor instability, whereby sensor drift increases with pressure. Alternatively, it could be
caused by remineralization and lack of ventilation. AOU is helpful for assessing the latter and
is discussed below.

46



CHAPTER 4. RESULTS

Figure 4.5: Vertical profiles of temperature (a), practical salinity (SP; b), potential density anomaly
(σθ; c), alkalinity (d), DIC (e), pH (f), oxygen (g), and nitrate (h) for Argo (blue dots) and
GLODAPv2 (gray, smaller dots) data 1982-2019 from the Greenland Sea (Lauvset et al., 2022).

Figure 4.5d shows increasing nitrate with depth in the Argo data, whereas GLODAPv2 is
relatively constant with depth. Gradients in the 1200-1900 dbar range are expected because
these depths have been more ventilated in recent years. The range represents the divide
between newer GSAIW and old deep-water. As this divide deepends with time, gradients
arise. The gradient is not seen in the GLODAPv2 data because, as mentioned previously,
this dataset is not heavily sampled in the West Greenland Sea, and most of the data is from
the early 2000s.

As was seen in Figure 4.4, pH is lower for Argo data than GLODAPv2 due to anthropogenic
carbon invasion. In Figure 4.5e, the difference in vertical structure at depth is seen more
clearly. While GLODAPv2 features a negative gradient from 1000 to 2000 dbar, Argo pH is
nearly uniform with pressure. As previously hypothesized, this incoherence in vertical structure
could be explained by the method by which the pH data is obtained. Additionally, pH is
expected to decrease more in the upper part of the water column because the anthropogenic
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carbon is injected at the surface. It takes time for the anthopogenic carbon to sink to the
depths shown in Figure 4.5.

σθ at depth appears to be governed by temperature, as is expected due to the uniform salinity
in the selected pressure range. The result is a somewhat stronger vertical gradient than seen
in the historical data.

The linear dependence of Alk on salinity appears robust also at depth: both GLODAPv2 and
Argo concentrations are uniform with depth. Argo Alk is higher than historical data due to
the salinification of the gyre.

The quite a bit higher DIC concentrations calculated from Argo data compared to GLODAPv2
measurements was debated in connection with Figure 4.4. As for pH, the discrepancy becomes
more evident when examined in the 1000-2000 dbar range. Although there is an increase in
GLODAPv2 measured concentrations with time, the values from the most recent years are
not as high as the Argo calculated levels. Nevertheless, the vertical structure seen in Argo
pH is mirrored in DIC. This is expected since pH was used to calculate DIC.

AOU in the 1000-2000 dbar range shows possible signs of convection down to 1000-1200
dbar, where values lie around 30 µmol kg−1. Towards 2000 dbar, increasing values indicate
oxygen consumption in line with the observed gradients in oxygen and nitrate in Figure 4.3c
and d. However, this interpretation must be treated with care in light of the possible sensor
drift seen in oxygen. A drift towards lower concentrations in oxygen would appear as a false
remineralization signal.

AOU is not only useful for evaluating ventilation and oxygen consumption, but also for
evaluating other components pertaining to the biological system. Another valuable property
in this regard is C*. C* is a conservative tracer where the biological effects on carbon are
removed (Gruber and Sarmiento, 2002). Changes in C* with time are thus driven by mixing
and air-sea gas exchange, and therefore more strongly reflect the uptake of anthropogenic
carbon. Figure 4.6 shows how nitrate (Figure 4.6a), DIC (Figure 4.6b), C* (Figure 4.6c) and
DIC-C* (Figure 4.6d) change with increasing AOU for Argo data and historical values below
100 dbar. The exclusion of data above 100 dbar is to avoid the strongest effect of seasonal
variation.

As expected, there is a positive linear relationship between AOU and nitrate as oxygen is
consumed and nitrate produced during remineralization. Both nitrate and AOU are thus
lower closer to the surface, and increase towards 1900 dbar. Since values above 100 dbar
are excluded, nitrate is not depleted. Visually, the slope and intercept of the Argo data
harmonise well with historical values. This is clearly not the case for DIC where both the
slope and intercept differ significantly from the GLODAPv2 values. To explain this deviation,
it is useful to decompose the DIC signal into its physical and biological parts using C*.

The convenience of C* as a proxy for uptake of anthropogenic carbon is clear from Figure 4.6c.
Here, we see an increase in historical C* with time. The increase with time is caused
by absorption of anthropogenic carbon. Without the biological influence, carbon (C*) is
negatively correlated to AOU. Water in recent contact with the atmosphere have higher
values of anthropogenic carbon, increasing total carbon content, i.e. DIC. Newly ventilated
water is near saturation with respect to oxygen, and therefore has lower AOU. As seen
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Figure 4.6: AOU plotted against nitrate (a), DIC (b), C* (c), and DIC-C* (d) for Argo (yellow-
to-purple dots scaled by pressure level) and GLODAPv2 (smaller dots grayscaled by year of mea-
surement; (Lauvset et al., 2022)).

throughout this chapter, Argo DIC is overestimated. There should be an overlap for both C*
and DIC values between the newest GLODAPv2 values from 2019 and those of the Argo float
employed in this work, which were obtained in 2019-2020. However, this is not evident. In
part, this is likely both because of spatial variabiliy, and a lack of winter data in GLODAPv2.
Also notable is the AOU range of 20-30 µmol kg−1 where C* is near constant with increasing
AOU. It is possible that this is an artifact caused by earlier mentioned sensor drift.

Subtracting C* from DIC, we are left with the biological component. This parameter, like
nitrate vs. AOU, is independent of anthropogenic carbon influence and therefore coincides
with the historical values. It mirrors Figure 4.6a because it essentially shows R×[NO3] vs.
AOU.

Figure 4.6b reflects both the effects of both biology and air-sea gas exchange. Biology
dominates at 100-500 dbar, following a positive gradient also seen in Figure 4.6a. In this
range organic matter is remineralized, increasing both DIC and AOU. In the deep, there is
little matter left to remineralize and the water masses are old. The slope therefore changes
direction, matching that of Figure 4.6c. Here, the anthropogenic carbon signal dominates.
From the GLODAPv2 data, one might expect the DIC:AOU relation to follow a more vertical
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pattern. This is not the case for the Argo data. Between 500 and 1000 dbar, values slope
towards a DIC maximum. Remnants of this shape is also seen in the C*:AOU relation. The
region indicates that there is a layer of DIC-rich water far removed from the surface. It is
likely GSAIW as this is the dominating water mass in the pressure range. GSAIW is produced
by convection. It has therefore been in contact with the surface recently compared to the
water masses below. This explains its rich DIC content. This signal of high DIC at 500-1000
dbar is not picked up by GLODAPv2 because nearly all the data is from summer cruises. It
is possible that some of the discrepancy between Argo and GLODAPv2 observed here relates
to the differences between calculated and measured DIC.

Recall, however, the inconsistencies in the DIC vertical profiles at pressures between 500-1500
dbar seen in Figure 4.4e. These do affect the slopes of the discussed figures to some extent,
yet the overall agreement with historical data is considered good.

4.2 Model validation

After adding relevant processes and tracers (see Chapter 3), the PWP model was run with
hourly forcing using gridded vertical profiles from the first Argo station as initialisation con-
ditions. Figure 4.7 shows the development of important tracers in the upper 30 m as well
as the mixed layer depth, when the model was ”run-free” after the first initialisation (i.e.
only profiles from the first Argo station are used and the model is not adjusted by further
reinitializations through the run).

In general, the free-run model performs within the range one could expect from a one-
dimensional model. It resolves temperature quite well, with a clear September peak and
subsequently dropping values not dramatically different to those observed. A later onset of
mixed layer deepening in the model than estimated for the Argo data results in somewhat
colder modelled values in January-February. From March and onwards, the Argo float was
influenced by advection of colder, fresher polar water. Naturally, this development is not
captured by the model, resulting in a warm bias in this period.

Oxygen in an abiotic model is governed by its solubility in periods when there is little vertical
mixing. This is reflected in the development seen in Figure 4.7b, where oxygen concentrations
decrease along with increasing temperatures from June to September. As temperatures
then drop, solubility and air-sea gas exchange of oxygen is strengthened, leading to higher
concentrations. In the modelled cold-spell of January-February, oxygen is overestimated. In
reality, the warmer temperatures mixed up at this time leads to a weak increase towards the
productive season starting in April/May. The elevated Argo concentrations at the end of
the time series are both due to biological production of oxygen, and to increased solubility
caused by lower temperatures as the Argo float encountered cold PW. Neither biology nor
advection of water masses are included in the model, leading to more moderate modelled
concentrations at the end of the run.

Surface salinity is underestimated from September to February. As the Argo mixed layer
deepens from the end of October, salt is mixed up to the surface. In the model, however,
the later onset of mixed layer deepening causes freshwater from precipitation to accumulate,
leading to lower salinities. This freshening further delays mixed layer deepening as it increases
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Figure 4.7: Mean surface values (upper 30 dbar) of temperature (T; a), oxygen (b), practical
salinity (SP; c), DIC (d), and nitrate (e) for Argo (blue dots) and model (black line) data. Blue,
thin lines indicate upper and lower bounds of measurement uncertainty (σE) for each property.
Panel f shows mixed layer depths calculated using the Nilsen method for the same datasets. The
x-axis shows dates in months.

stratification, enabling the cooling mentioned in January-February. The cooling densifies the
water mass sufficiently that the model mixed layer may start deepening from February. In
turn, this increases surface temperatures and salinity as warmer, saltier water masses are
mixed upwards. From March, the aforementioned polar water influence on the Argo data
leads to significantly lower salinity in the Argo data than salinities predicted by the model.

Modelled DIC is greater than Argo DIC from the start of the timeseries until September as the
effect of biological consumption is not accounted for in the model. From November, mixing,
and possibly air-sea gas exchange, increase Argo DIC surface concentrations. Modelled DIC
starts increasing from February due to vertical mixing and air-sea gas exchange. Since there
is no biological consumption, DIC continues to increase in the model. In the Argo data,
however, concentrations drop rapidly from March as the phytoplankton bloom starts.

As the initialisation profile is a summer profile, modelled nitrate values are low until the mixed
layer starts deepening and nitrate is mixed to the surface. The delayed mixed layer deepening
in the model results in a large deviation in nitrate concentrations between Argo and predicted
values from November when mixing in reality starts. As the modelled mixed layer deepens,
nitrate increases. It never reaches the maximum measured value seen in the Argo data. This
is possibly due to some remineralization captured in the Argo data not resolved in the model.
As seen for DIC, Argo nitrate is drastically reduced as the blooms start while the abiotic
model results in continously high values until the end of the run.
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Figure 4.8: The left panels (a-e) show mean surface values (upper 30 dbar) of temperature, SP,
nitrate, DIC, and oxygen respectively. Light green circles are Argo measurements and black dots
show modelled values. Thin, blue lines indicate upper and lower bounds of Argo measurement
uncertainties. The right panels (g-k) show root mean square error (RMSE) between model and
Argo values over the entire measured depth (1933 dbar) for the same tracers as the left panel.
RMSE is evaluated at the time step before (n-1; solid red line) and after (n+1; dashed blue line)
reinitialization of the model. The bottom panels show calculated mixed layer depth (MLD) using
the Nilsen method for observations and model results (f), and the absolute difference in MLD
estimates evaluated at the same timesteps as the other tracers (l).
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Model performance is increased significantly when it is reinitialized at every Argo station.
This is evident from Figure 4.8, where a-f show mean values in the upper 30 dbar, and g-l
show the root mean square error (RMSE) between the model and Argo data for the full water
column at the timesteps before (n-1) and after (n+1) reinitialization. Note that for mixed
layer depth, the absolute difference is used.

Compared to the free run the surface development is reproduced very well by the model,
although it generally produces a deeper mixed layer than observed by Argo in winter (Fig-
ure 4.8f). The model also generates deeper mixing at the end of January compared to the
Argo data. The additional mixing event causes no notable discrepancy in the surface values
visible at the displayed scales.

RMSE(n-1) is a measure of the difference in modelled values at the timestep immediately
before model reinitialization compared to the Argo value of the next reinitialization. This
reflects the maximum error in modelled versus measured values. RMSE(n+1) is the error
calculated by comparing the timestep immediately after reinitialization to the values of the
newly initialized profile. RMSE(n+1) thus represents the minimum error in the model.

RMSE(n+1) shows very little model drift, with values on the order of 10−2 for nitrate, oxygen,
and DIC (Figure 4.8c-e). RMSE(n+1) is even lower for temperature and salinity - on the order
of 10−3 and 10−4 respectively (Figure 4.8a-b). This is expected, as these errors represent the
model drift merely one hour after reinitialization. Conversely, RMSE(n-1) represents errors
after approximately 5 days. Naturally, these values are somewhat higher. Here, we also
see the effect of polar water advection from March in temperature and salinity leading to
significantly higher RMSE at these late stages. For nitrate, oxygen, and DIC RMSE(n-1) is
higher at both ends of the timeseries due to the abscence of biology in the model. This model
drift caused by biological processes being captured in the Argo data but not in the model is
the basis of NCP calculations later in this chapter. It is what enables us to separate physical
and biological influence on DIC. Note that while biology is the main driver of the relatively
high RMSE(n-1) in spring 2020, the polar water advection likely has some influence on these
biogeochemical tracers as well. In oxygen, there is also an event of higher RMSE(n-1) in
November-January. The event coincides with discrepancies in mixed layer depth (panel f)
over time leading to more mixing of oxygen-poor water in the model than in reality between
an initiated profile and the next.

Though several sources cite the PWP model as successful in predicting mixed layer depths
for oceanic gyres (Moore et al. (2015); V̊age et al. (2008)), only a few report concrete
model validation metrics.Briggs et al. (2018) applied the PWP model to Argo data from the
Ross Sea sea ice zone in the Southern Ocean. Although vastly different areas, their RMSE
evaluation is a valid comparison as the magnitude of model-observation deviations should lie
within the same thresholds regardless of location. Table 4.1 shows their validation results
for temperature, practical salinity and mixed layer depth. The same metrics are shown for
this work in addition to RMSE for DIC, nitrate, and oxygen. For their optimal model, Briggs
et al. (2018) obtained RMSE values for the total water column of 0.089◦C, 0.018 and 5.1
m for temperature, practical salinity and mixed layer depth respectively. In this work, the
corresponding RMSE was 0.111◦C, 0.011, and 39.5 m. The discrepancies are thus of similar
magnitude, however RMSE for mixed layer depth is significantly higher for our application.
This is not unexpected as the weak stratification of the Greenland Sea makes it challenging
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to model winter convection depths. For the biogeochemical components, RMSE constitutes
0.1, 1.3, and 0.7% of the respective mean values for DIC, nitrate and oxygen. Due to their
participation in biological processes, a larger RMSE is expected for these than for temperature
and salinity.

Table 4.1: Root mean square errors (RMSE) over the whole water column. The comparison is
executed for model predictions at the timestep before model reinitialisation compared to observations
at the next reinitialised profile. Units are printed below each header.

RMSET RMSESP RMSEDIC RMSENO3 RMSEOX RMSEmld Source
[◦C] [µmol kg−1] [µmol kg−1] [µmol kg−1] [dbar]

0.111 0.011 2.021 0.170 2.193 39.5 This work
0.089 0.018 5.1 Briggs et al. (2018)

RMSE is useful for quantifying errors, but does not show the sign of these errors. Plotting key
variables predicted by the model at the timestep prior to reinitialization (subscripted pred)
against observed values of the same variable (subscripted obs), we can determine if the model
under- or overestimates certain variables. By using model values at the last timestep before
reinitialization, we capture the greatest amount of error. This is shown in Figure 4.9. The
value of the slope is used as a performance metric. A slope of 1.0 signifies perfect prediction
by the model. For slope < 1.0 (slope > 1.0), the model overestimates (underestimates) the
predicted values.

The slopes of the plotted tracers all lie within the range 0.979-1.006, indicating excellent
prediction skill. However, the model strongly overestimates mixed layer depth (slope=0.767).
The largest spread is seen at pressures lower than 500 dbar, as is expected due to the naturally
high variability in surface waters which is difficult to capture perfectly in a model. The deepest
mixed layers are underestimated by the model.

The model slightly underestimates temperature and salinity values overall, with slopes of
1.005 and 1.006 respectively. At high salinities, the predicted values are overestimated due
to freshwater influence. Part of the overestimation in temperature and salinity is associated
with the polar water advection from March seen in Figure 4.8.

For oxygen, nitrate and DIC, deviations from the observed values are expected due to bio-
logical processes. These are indeed overestimated as the model does not take into account
consumption of nitrate and DIC in the productive season. Note that although nitrate visually
appears to have the greatest spread, this is a visual artifact caused by its small concentra-
tions in seawater. Spread in DIC, which has much higher concentrations in seawater, appears
smaller in comparison yet the values of the slopes show that this is not the case.

As was seen in Figure 4.8, the difficulty in predicting mixed layer depth does not significantly
influence the model’s ability to predict tracer concentrations and to respond to the applied
forcing.
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Figure 4.9: Predicted versus observed values of CT (a), SA (b), oxygen (c), nitrate (d), DIC (e),
and mixed layer depth (MLD; f). The model (predicted) values are taken at the last time step
before reinitialisation and the observed values are taken as the next initialised Argo profile. Linear
regression was performed on each set of values. The resulting slope and its and standard deviation
(σE) is printed at the bottom of each plot. Black diagonal lines indicate the 1:1 slope. Tracers are
colored by pressure level as indicated in the colorbar.

4.3 Carbon fluxes

Influences on surface pCO2 may be broken into four main drivers: changes in temperature,
salinity, DIC and Alk. These were quantified applying a Taylor expansion approach (see
Chapter 3; e.g. Metzl et al. (2010)) where the change in each variable was taken as the
difference of the surface value at a given Argo station and that of the previous station. The
mean monthly changes in pCO2 (dpCO2) and its sensitivity to the 4 drivers are shown in
Figure 4.10. In said figure, dSSTpCO2, dSSSpCO2, dDICpCO2, and dAlkpCO2 represent the
sensitivity of pCO2 to changes in temperature, salinity, DIC, and Alk in the surface ocean.

The variations in pCO2 broadly follow a seasonal pattern, with drawdown of carbon in the
productive season and increased pCO2 in autumn and winter. This development is well
documented (Skjelvan et al., 1999; Nakaoka et al., 2006; Anderson et al., 2000; Takahashi
et al., 1993). It is generally attributed to consumption of carbon through photosynthesis in
summer and spring, and subsequent increase in pCO2 through fall due to mixing with carbon-
rich waters from below. In line with these previous studies, it is clear from Figure 4.10 that
dpCO2 is governed by dDICpCO2. Negative dDICpCO2 in spring and summer is reflected in
decreasing pCO2 Figure 4.10a. The change in pCO2 in these months is somewhat moderated
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Figure 4.10: Observed monthly change in pCO2 (dpCO2) (a) and its main drivers: changes due
to variations in temperature (dSSTpCO2; b), salinity (dSSSpCO2; c), DIC (dDICpCO2; d), and
alkalinity (dAlkpCO2; e).dpCO2 is shown in light gray in b-e for easy comparison.

by positive dSSTpCO2 and dAlkpCO2.

The thermodynamic influence of temperature variations on dpCO2 features a clear seasonal
pattern caused by increasing temperatures in the summertime before surface waters cool from
September to January. From March and onwards one would expect dSSTpCO2 to be positive
and counteract the presumably biologically driven drawdown in DIC. However, due to the
influence of cold, fresh polar water advected in, we instead see a negative effect on dpCO2.

Alk appears to have little influence on dpCO2 during most of the annual cycle. As polar water
rich in dissolved minerals is advected in, and phytoplankton blooms commence, Alk increases.
The consumption of nitrate during photosynthesis increases Alk as the total concentration
of weak acids is reduced. This also increases the water’s capability to hold CO2, leading to
positive values of dAlkpCO2.
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Figure 4.11: Expected change in pCO2 caused by freshwater effects on DIC (a; dDICFWpCO2) and
physical and biological effects on DIC (b; dsDICpCO2). Total expected change in pCO2 caused by
DIC is shown in light gray.

The impact of salinity is negligible compared to the other drivers. The small expected impact
of salinity on surface pCO2 has also been found for other areas such as the East Greenland
Current, Irminger Basin, Iceland Basin, the North Sea (Olsen et al., 2008), and the North
Atlantic Subpolar Gyre (Metzl et al., 2010; Fröb et al., 2019).

Of the four main drivers, Takahashi et al. (1993), like this work, found that temperature
and DIC variability were the main drivers of dpCO2 in the Greenland Sea. The tempera-
ture dependence is well established (Takahashi et al., 1993). Thus, to uncover the full set
of drivers of dpCO2 it is necessary to decompose dDICpCO2 into its underlying forcings:
changes in salinity (∆DICFW), biology (∆DICFBIO), vertical transport (∆DICFz), and air-sea
gas exchange (∆DICFGE).

Freshwater impacts on DIC can be accounted for explicitly using Taylor expansion as above.
This method entails splitting dDICpCO2 into a component reflecting changes in salinity
(dDICFWpCO2) and a salinity normalized component (dsDICpCO2; reference salinity = 35),
as previously done by e.g. Fröb et al. (2019). dDICFWpCO2 contains the effect of dilution by
precipitation and other processes. dsDICpCO2 is the remaining change caused by physics and
biology, i.e. the sum of the effect of ∆DICFBIO , ∆DICFz , and air-sea gas exchange ∆DICFGE
on pCO2. See Chapter 3 for details on the calculation of these.

The monthly contribution of dDICFWpCO2 and dsDICpCO2 is show in Figure 4.11.
dDICFWpCO2 contributes to dpCO2 on a scale comparable to Alk (Figure 4.10e), though
in the opposite direction. It is evident that the physical and biological processes represented
by dsDICpCO2 govern the DIC variability influencing dpCO2. The effect of freshwater is
therefore neglected when considering the drivers of dDICpCO2. The total change in surface
DIC (∆DIC) is then reduced to

∆DIC = ∆DICFz + ∆DICFGE + ∆DICFBIO (4.1)

These components are further explored in the following subsections.
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4.3.1 Vertical transport of carbon: ∆DICFZ

Vertical transport in the PWP model is split into three processes: mixed layer deepening
by static instability (StIn), by bulk Richardson number relaxation (BRi), and by gradient
Richardson number relaxation (GRi). Each process mixes up tracers from the bulk fluid
below. StIn looks for static instability starting at the surface box of the model. For each
statically instable box it encounters, the mixed layer is deepened by one box and density
is mixed. The deepening stops once a statically stable box is reached, at which point all
the other tracers are mixed according to a bulk mixing formula. BRi represents wind driven
deepening of the mixed layer. This mixing step starts at the base of the mixed layer and
uses the velocity differences between the bulk mixed layer and the region below to determine
mixed layer instability. A bulk Richardson number threshold is used to determine if stability
is reached. For each unstable box, the mixed layer is deepened by one box and all tracers
are mixed according to the same method applied to StIn. Finally, GRi smooths the sharp
gradient at the base of the mixed layer produced by BRi. This process starts in the transition
region at the base of the mixed layer. Like BRi, it is a wind driven process whereby shear is
used to determine instability. Here, only partial mixing occurs in the boxes determined to be
unstable. More details on the mixing processes are found in Section 3.5.

The total vertical transport into the mixed layer is governed by StIn (i.e. free convection). In
total, StIn accounts for 12.4 of 15.1 g C m−2 y−1. BRi and GRi contribute 2.1 and 0.6 g C
m−2 y−1 respectively, with uncertainties of 15%. Qualitatively, this agrees well with previous
work on the Greenland Sea (Brakstad et al., 2019). The total vertical flux is somewhat higher
than the 11 g C m−2 y−1 estimated by Anderson et al. (2000) using a box model.

Figure 4.12a-c show the change in mean daily inventory of DIC (∆DIC) associated with each
mixing process, and the sum of these (Figure 4.12d). ∆DIC is shown both for the surface
box (p=0 dbar) and integrated over mldmix (Σmld). The surface box is one meter deep, and
the inventories correspond to concentions (1 mmol m−3==1 µmol kg−1). Figure 4.12e-h
show the mean daily mixed layer (mldmix) in terms of the deepest point of mixing associated
with each mixing process. This is not the same as the mixed layer depth as calculated by
the Nilsen method, which calculates mixed layer depth as the region of relative homogeneity
and does not reflect which depths actually partake in mixing. For each timestep, mldmix is
taken as the deepest point at which a change in mass has occurred due to one of the three
mixing processes. The dotted line in Figure 4.12h is the calculated mixed layer depth of the
model when calculated from the T and S profiles using the Nilsen method.

The total transport of DIC into the mixed layer is almost always positive (Figure 4.12d), but
there is an instant of negative total Σmld in December. The negative flux coincides with
the start of the convective season when the water has cooled sufficiently to mix significantly
deeper than before. It is caused by BRi, indicating the transport occurs at the base of the
mixed layer. The negative value must be caused by lower concentrations of DIC being mixed
up. Vertical transport only leads to a net increase in mixed layer carbon content in the
months December to late February. This is the period of deepest mixing. For periods of
shallow mixing there is no net change in carbon content caused by vertical transport.

StIn draws small amounts of carbon out of the surface box through most of winter. Since
Σmld is positive, however, the fate of this subducted carbon must be within the mixed layer.
The same is true for BRi. BRi has a stronger influence on surface ∆DIC than GRi. This is
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Figure 4.12: Mean daily change in DIC as a result of vertical transport induced by static instability
(StIn; a), bulk Richardson number instability (BRi; b), gradient Richardson number instability (GRi;
c) and the sum of the three (Total; d) are displayed on the left hand side. The values are calculated
for the surface box (light green line) and summed over the mixed layer (black line). The right hand
side (e-h) shows the mean daily mixing depth caused by the same mechanisms. Panel h also shows
the mixed layer depth calculated by the Nilsen method (zmldcalc); dashed red line). Mixing depth
is the depth to which actual mixing occurs, while the mixed layer depth calculated by the Nilsen
method is the depth of the near-homogeneous mixed layer as defined in Section 2.4.
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due to a step in the model algorithm which mixes the entire mixed layer. This step does not
exist for GRi as it merely smooths the base gradient and therefore only affects the surface if
the mixed layer is extremely shallow. One would assume that there is a positive flux into the
surface in winter as DIC-rich water is mixed up from below the pycnocline.

The mixing depths (mldmix) show that StIn causes mixing down to 300-400 dbar. The
BRi deepening process starts at the base of the mixed layer. It appears to work mostly at
shallow depths. The GRi mixing process also starts at the base of the mixed layer. From
Figure 4.12g it is clear that this process is most active when the mixed layer is deeper. As
it works to smooth the gradient at the base of the mixed layer created by the StIn and BRi
mixing processes, it is expected that mixing in this process occurs at the deepest pressure
levels. It is also expected that this process contributes the least to transport of DIC both
into the mixed layer, and into the surface box.

It is important to note the difference between mldmix and zmldcalc. The latter is only used
to calculate the mixed layer depth as defined by the Nilsen method using temperature and
salinity from the model profiles. When calculated within the model it never invokes mixing
- it is always calculated at the end of a timestep. As such, it represents the concept of a
relatively homogeneous layer as discussed in Chapter 2. mldmix reflects the depth to which
mixing actually occurs in the model. It is shallower than zmldcalc because concentrations
below mldmix are homogeneous enough that variations are within the threshold set by the
Nilsen method. Yet, there are variations above zmldcalc that exceed the instability thresholds
of the model’s mixing criteria. It can therefore be argued that while zmldcalc is a good metric
for model validation, it is not necessarily a correct indication of the actual depth to which
mixing takes place.

4.3.2 The effect of air-sea gas exhange on DIC: ∆DICFGE

While the vertical transport of carbon redistributes the element through the water column,
air-sea gas exchange is a source or sink of oceanic carbon. As described in Chapter 2, gas
exchange is strongly dependent on wind speed, ∆pCO2, and solubility (i.e., temperature).
The mean daily flux of CO2 from air-sea gas exchange (FGE) is presented with these drivers
in Figure 4.13.

Air-sea gas exchange is directed into the ocean during most of the annual cycle. Strong
uptake of carbon in summer and fall is explained by the DIC deficit caused by biological
production, leading to a strongly undersaturated water phase. This is clear from the large
∆pCO2 in Figure 4.13b.

Between November and March there is some outgassing, despite low temperatures and strong
winds. This is because pCOoc2 has increased sufficiently that the surface water is supersatu-
rated. Air-sea gas exchange is relatively constant through autumn because the reduction in
undersaturation (Figure 4.13b) is compensated by increasing wind speed (Figure 4.13c).

Carbon outgassing in winter despite strong forcing should indicate a positive vertical transport
increasing surface pCOoc2 and reducing the air-sea pCO2 gradient. However, as seen in the
previous section, this does not appear to be the case. There is a net positive transport of
carbon into the mld in winter, yet a net loss from the surface. From the development of
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Figure 4.13: Mean daily (thin lines) and weekly (thick lines) values of air-sea flux of CO2 (a;
positive gas fluxes are directed into the ocean, indicating CO2 uptake), pCOoc2 and pCOatm2 (b),
second moment of 10 m neutral winds (c), and sea surface temperature (SST) (d).

pCOoc2 in Figure 4.13b it is evident that the negative transport out of the surface must be
so small that the increasing pCOoc2 introduced by each reinitialization in the model is not
counteracted.

The total yearly air-sea gas transfer for the time period was 27±27% g C m−2y−1. It is
displayed in Table 4.2 together with values obtained in other studies, their study period, and
the number of winter observations included in their studies. FGE is within the lower range
of estimates found in literature, comparable to the 27±10 and 25-50 g C m−2y−1 calculated
by Arrigo et al. (2010). Others have obtained fluxes in the range 48-55 g C m−2y−1 (Hood
et al., 1999; Anderson et al., 2000; Nakaoka et al., 2006; Yasunaka et al., 2016), and even
up to 71 g C m−2y−1 (Skjelvan et al., 1999). Manizza et al. (2013) obtained a value of
10 g C m−2y−1. There are several possible reasons for these differences: gas exchange
parameterization, biases towards summer measurements, and definitions of the Greenland
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Sea.

Table 4.2: Yearly CO2 flux into the surface ocean of the Greenland Sea as calculated by previous
authors and this work.

Source
Yearly CO2 flux

[g C m−2y−1]
Study period No. of winter observations Method

Hood et al. (1999) 55 1996-1997 0 (0%) Drifting buoy and
regression analysis

Anderson et al. (2000) 53±4 1993-1997 2 (14%) Cruise data and box model
Nakaoka et al. (2006) 52±20 1992-2001 1 (20%) Unknown number of profiles,

5 cruises in total.
Arrigo et al. (2010) 27±10 1998-2003 - Remote sensing and model
Manizza et al. (2013) 10 1996-2007 Biogeochemical 3-D model
Yasunaka et al. (2016) 48 1997-2013 - Self-organizing map
This work 27±27% 2019-2020 21 (28%) Autonomous profiler

and 1-D model

The choice of gas transfer velocity parameterization and wind speed products can influence
the gas flux estimates. The authors cited from 2006 and earlier employ a parameterization
by Wanninkhof (1992) in which 14C estimates were higher. It assumes k is proportional to
0.31U2. Now, the recommended parameterization is based on lower global 14C inventories
and an optimized coefficient scaled to account for differences in wind speed products. The
calculated fluxes of Hood et al. (1999), Anderson et al. (2000), and Nakaoka et al. (2006)
may therefore be too high. Arrigo et al. (2010) and Yasunaka et al. (2016) both employ the
revised parameterization, as in this work. Because the wind product chosen is accounted for
within the k parameterization, differences between their results and this work should not be
caused by different wind speed products. Manizza et al. (2013) cite a bulk parameterization
by Large and Yeager (2004), the contents of which this author is unaware. It is likely that
this parameterization causes some of the discrepancies between their results and others, as
is is published before the work of Sweeney et al. (2007) and Naegler et al. (2006), and thus
prior to the Wanninkhof (2014) revision.

There is a general lack of wintertime data in the cited works. (Hood et al., 1999) built
a flux map from buoy measurements with no wintertime data. Winter measurements are
also underrepresented in Anderson et al. (2000),Nakaoka et al. (2006),Manizza et al. (2013),
and Yasunaka et al. (2016). Arrigo et al. (2010) used model output and satellite data as a
basis for calculating their pCOoc2 . They do not report temporal bias in this underlying data.
Thus, only this work, and possibly Arrigo et al. (2010), capture the development of pCOoc2
in winter.

If flux maps are created based on summer-biased data, such as in Hood et al. (1999), Nakaoka
et al. (2006), and Yasunaka et al. (2016), it is possible that the increased surfacepCOoc2 due to
wintertime mixing is not captured to a sufficient extent. This could explain the fact that these
authors found the strongest air-sea gas fluxes in winter, and that their estimates are higher
than those obtained in this work. On the other hand, neglecting spatial variability as in this
work, also leads to inconsistencies. This is evident from the end of the time series observed in
e.g. Figure 4.2 where the intrusion of polar water is clear. This advection has ramifications for
the results herein, and shows the fragility of assuming horizontally homogeneous conditions
with no lateral advection.

The low value obtained by Manizza et al. (2013) could be related to their definition of
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the Greenland Sea, as they included the entire Nordic Seas and the Irminger Sea. Spatial
variations within this zone could lead to a falsely low air-sea flux. Arrigo et al. (2010) used
a similar definition. While their estimate is in the lower range of the cited works, it is not as
extreme as that of Manizza et al. (2013). Yasunaka et al. (2016) also expanded the traditional
definition of the Greenland Sea. They included the Norwegian Sea. They found lower pCOoc2
in the Greenland Sea than the Norwegian Sea. Their total flux of 48 g C m−2y−1 for the
combined regions is therefore probably a little lower than it would be for only the Greenland
Sea.

Interannual variability in wind speed, mixed layer depth, and sea ice cover will also vary
between the sources cited. The range of methods used gives emphasis to the challenge
involved with estimating air-sea gas exchange.

4.3.3 Biologically induced changes in DIC: ∆DICFBIO

Argo observations capture both the physical and biological processes affecting DIC variability.
The PWP model isolates the physical processes. Thus, biology may be calculated as the
differencec between the two datasets. As this difference captures all biologically induced
changes in DIC, it is taken as a measure of net community production (NCP). The evolution
of DIC derived NCP is shown in Figure 4.14. Maximum and minimum NCP were 4.6 and
-5.8 mmol C m−3 day−1 respectively, however the figure is adjusted to better illustrate
the variability in the more typical values. Positive values indicate biological production and
negative imply remineralization.

Figure 4.14: Hovmöller diagram of NCP calculated from the DIC model drift compared to Argo
measurements. The dashed black line is the modelled mixed layer depth. The black, numbered tri-
angles indicate every 10th Argo profile. Gray, vertical lines indicate reinitializations. Negative values
(blue scaled) indicate remineralization, positive values (yellow to green scaled) indicate biological
production. Two stars show where freshwater was added to account for polar water advection.
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The seasonal pattern is well resolved, with strong production in the upper 20 dbar from
June to August 2019. From mid-March, production slowly intensifies towards the end of the
timeseries. NCP below the mixed layer is constantly low and positive, around 0.06 mmol C
m−3 day−1 . It is not realistic for production to occur at these depths. Here, one would
instead expect some remineralization, but the values are well within the range of uncertainty.
The constant positive values could be a numerical artifact, or caused by drift in the pH
sensor. At the base of the mixed layer, some instances of negative NCP occur. These may
be caused by internal waves or eddies which vertically displace the density surfaces the Argo
floats through, leading to oscillations in the measured values. Alternatively, they could be
real signs of remineralization. The possible presence of internal waves or eddies is explored
in Section 5.2.4.

Figure 4.15: a) Mean shortwave radiation (Qnet) over a day (thin line) and a week (thick line).
b) Daily NCP in the euphotic zone (0-20 dbar). Positive values (yellow to green) indicate biological
production and negative values (shades of blue) show remineralization. c) NCP depth-integrated
over the euphotic zone (upper 20 dbar). The two stars above b and c show reinitializations after
which additional freshwater has been added to simulate advection of polar water. The shaded region
in c shows the same.

To avoid the influence of overestimated NCP at depth and the possible influence of internal
waves at the base of the mixed layer, a euphotic depth of 20 dbar is assumed. Figure 4.15
shows shortwave radiation, NCP in the said euphotic zone, and total NCP in the euphotic
zone. As shortwave radiation declines towards winter, the biological activity slowly ceases.
From November, there is a small amount of biological production interspersed with events
of weak remineralization. The prescribed freshwater advection in March results in a small,
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erroneous bloom. Integrated NCP shows peak productivity in late June 2019 and in May
2020. At these times, NCP exceeds 40 mmol C m−2 day−1. While productivity appears
to be somewhat overestimated from September through October, the values could reflect
real production. This is not the case for the peak seen in December. The December peak
must derive from internal variability, or by sensor instability. Sensor stability is examined
inSection 5.2.2.

Annual NCP (ANCP) in the euphotic zone is 39 g C m−2 y−1 (3.2 mol C m−2 y−1). The
value is somewhat higher than Anderson et al. (2000)’s box model estimate of 34 g C m−2

y−1.

4.3.4 Determination of dominant drivers of DIC variability

The previous subsections detailed each of the four identified drivers of DIC variability. How-
ever, it is the DIC concentrations in the surface that influence pCO2 and gas exchange.
Parcels within the mixed layer circulate through its entire depth such that a parcel at the
bottom will come in contact with the surface and vice versa. To best interpret the effects
that changing DIC concentrations have on surface pCO2, it is therefore reasonable to evalu-
ate the total change in the upper 20 dbar. This range is well-mixed through nearly the entire
annual cycle, yet shallow enough to exclude depths affected by possible internal waves and
eddies. Figure 4.16 shows the monthly change of DIC in the upper 20 dbar caused by FFZ ,
FGE, and FBIO, as well as the net change.

Figure 4.16: Monthly change in DIC in the upper 20 dbar caused by FFZ (a; ∆DICFZ), FGE (b;
∆DICFGE), and FBIO (c; ∆DICFBIO). Net change is shown in d. Positive values indicate a net loss
of DIC in the upper 20 dbar, positive values indicate a net gain of DIC.

Surface ∆DIC is governed by vertical transport in winter, and air-sea gas exchange in summer.
Biology is less important. This could be interpreted as biology enhancing an already exist-
ing undersaturation, increasing air-sea gas exchange. Air-sea gas exchange and biology have
opposing effects on net ∆DIC, resulting in more moderate positive values. Modelled vertical
transport in the upper 20 dbar is negative from November to May. This was seen in Sec-
tion 4.3.1. The finding is not realistic. The negative flux should give rise to higher ∆DICFGE ,
but because of the strong rectifying effect of model reinitalization, ∆DICFGE estimates are
within reason. It is possible that the mixing scheme of the model is not sufficiently refined
for the small-scale analysis carried out in this work. Other applications have not generally
scrutinized the predicted vertical transport at the level of individual stability criteria.
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Discussion

In this section I discuss how different parameterizations affect the model, and look into some
of the unexpected findings from Chapter 4. The first part entails the sensivity of the model
to advection and ice parameterizations. The second part covers other methods of calculating
NCP, the suspected sensor drift, the changed mixing shceme, and the observation of possible
internal waves and eddies.

5.1 Model sensitivities

5.1.1 Advection

There are many sources of uncertainty within the PWP model. In order to obtain an esti-
mate of the uncertainty associated with predicted vertical fluxes, one can look at how they
respond to changes in some of the parameterizations made. Ideally, one would adjust as
many adjustable paramters as possible and evaluate model response, but due to time limita-
tions I focus on what is considered by Brakstad to be the greatest source of uncertainty: the
parameterization of heat and salt.

The parameterized advection of heat and salt is based on means from 1986-2016. The heat
loss in winter through this period is compared to the observed heat content in the region.
Advection is then used to close this budget. As explained in Section 3.5.1.9, the vertical
structure of the advected properties is based on the difference in mean profiles within the
gyre compared to mean profiles of the immediate surrounding water masses (Brakstad et al.,
2019). The result is idealized advection profiles, with constant values. In reality, we do
not know the variability in the amount of heat and salt advected, nor the real advected
vertical structure. As stated above, this is considered a major source of uncertainty (ref.
conversation with Brakstad). A sensitivity analysis was applied to evaluate the impact of the
total magnitude of advection on model results.
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The sensitivity analysis involves 5 cases:

• Base case: advection follows Brakstad et al. (2019) as described in Chapter 3

• Increased heat advection: The annual heat advected is increased by 10%

• Reduced heat advection: The annual heat advected is reduced by 10%

• Increased salt advection: The monthly salt advected is increased by 10%

• Reduced salt advection: The monthly salt advected is reduced by 10%

The main metrics resulting from these cases are tabulated in Table 5.1. In general, the
results are surprisingly robust to adjustments in the magnitude of advected heat and salt.
This is because the model is strongly constrained by the reinitialization to every Argo profile.
Vertical transport is the most sensitive component to alterations in advection. Reduced
vertical transport is the major effect, and this drives the changes seen in biogeochemistry.
Increased heat advection strengthens stratification because more heat loss is required for
convection to occur, which is the reason for reduced FZ in Heat+10%. But why does
intensified salt advection not lead to deeper mixed layers and stronger vertical fluxes of DIC?
To understand this, we must remember the vertical structure of the advection profile. At the
surface, it imitates advection of polar water, which is relatively fresh. Below, saltier water is
advected to mimic Atlantic water. Consequently, reducing advection of salt actually increases
the surface freshening and increases stratification at the surface. Conversely, reducing salt
advection leads to reduced surface stratification, but also lower salinity within 500-100 dbar
compared to the base case. It is curious that the reduction in heat advection does not lead
to increased mixing. This could be caused by non-linearities in the model. Further analysis
is required to understand this effect better.

Table 5.1: Mean mixed layer depth (MLD), net vertical transport of DIC (FZ), net air-sea gas

exchange flux of DIC (FGE), and net biological flux of DIC in the upper 20 m (F
z=[0:20]
bio ) for 5

experiments. ”Base” applies advection as parameterized by (Brakstad et al., 2019). ”Heat+10%”
and ”Heat-10%” are runs where the base advection of heat is increased and decreased by 10%
respectively. ”Salt+10%” and ”Salt-10%” are runs where the base advection of salt is increased
and decreased by 10% respectively.

Mean MLD
[m]

Net Fz
[mol C m−2 y−1]

Net FGE
[mol C m−2 y−1]

Net F
z=[0:20]
bio

[mol C m−2 y−1]

Base 138.0 1.26 2.25 3.23
Heat +10% 131.9 (-4.4%) 1.21 (-4.0%) 2.26 (+0.4%) 3.20 (-0.9%)
Heat -10% 136.9 (-0.8%) 1.21 (-4.0%) 2.25 (-0.0%) 3.21 (-0.6%)
Salt +10% 134.7 (-2.4%) 1.06 (-15.9%) 2.25 (-0.0%) 3.25 (+0.6%)
Salt -10% 134.3 (-2.7%) 1.16 (-7.9%) 2.26 (+0.4%) 3.22 (-0.3%)

Shallower mixed layers for all cases compared to the base case is a manifestation of the
reduced vertical transport. Both FGE and F

z=[0:20]
bio appear relatively insensitive to changes in

vertical transport. The former could be connected to the negative vertical transport of DIC
at the surface seen in Chapter 4 being rectified at each reinitialization. It is likely that the
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negative flux is so small that pCOoc2 is never reduced sufficiently to impact FGE to a great
extent before it is adjusted to the higher pressure estimated from the Argo float observations.
It is therefore not sensitive to small changes in FZ. Both biology and FGE are calculated
based on surface values. Analysis of how the vertical fluxes specifically in the surface change
with the various parameterizations of advection is therefore needed, however due to time
limitations this is left for future work.

To interpret the differences in vertical transport seen between each case, mixed layer depth
is plotted as a proxy for mixing in Figure 5.1. Individual differences in mixing terms are too
small to gain an understanding of this visually.

Figure 5.1: Mixed layer depth (MLD) for the base case (a), ±10% heat advection (b), and ±10%
salt advection (c). Reduced advection cases are shown in thick, solid, light green lines. Increased
advection cases are shown in dashed black lines.

Figure 5.1 shows that the magnitude of advection matters little in the months before deep
mixing sets in. The first peak in mixed layer depth in the base case occurs in the beginning
of December. Adjusting heat advection results in approximately halved mixed layer depth at
this time compared to the base case. It is unclear why this also occurs for Heat-10%. Both
salt cases produce MLD comparable to the base case in December. The mixed layer evolves
equally for all cases from the end of the December peak to the end of January.

January is a period of highly variable mixed layer depth for all cases. At the end of the
month, Heat-10% and Salt+10% both produce deeper mixed layers than the base case. The
reduced heat input here leads to a MLD of approximately 600 dbar, compared to the 250
dbar produced in the base case. Strengthened salt advection results in a MLD of 500 dbar.
The Salt+10% peak implies that surface forcing has cooled the extra fresh surface layer so
much that mixing with the extra salty layer below is enabled. Fresher water in the surface
does not lead to extra cooling in itself, however more heat loss is required for the water to
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reach densities that will break down stratification. At the time of convection, less saline water
will therefore be cooler than more saline water given equal conditions below the mixed layer.

At the beginning of February, there is a short period of shoaling before the main deepening
period initiates. Here, Heat-10% and Salt+10% commence the shoaling process somewhat
earlier than the other cases. Mixed layer deepening occurs similarly for all cases during
the main deepening stage. Shortly after March 1st, advection of polar water is prescribed,
surpressing mixing for the duration of two Argo cycles. Following this, the base case features
one last deep mixing event. This event is amplified in Heat-10%. All other cases produce
significantly shallower MLD. This indicates the water mass at this point in time is stratified in
temperature, such that reducing heat advection results in a slightly cooler water mass which
breaks down the temperature stratification. As spring progresses and the water column
restratifies, all cases behave in a similar manner.

From Figure 5.1 it is clear that the adjustment of advection does not produce unduly different
results overall. There are merely a few convection events in which the mixed layer development
occurs differently between the modelled cases. The results for carbon in terms of vertical
fluxes, air-sea gas exchange, and resulting biology are robust to changes in advection.

5.1.2 Ice

Brine rejection from ice production has historically been regarded as an important pre-
conditioning mechanism for convection in the Greenland Sea (Visbeck et al., 1995). It is
therefore included in this version of the PWP model. Ice cover also affects gas exchange as it
is a barrier between the surface ocean and the atmosphere. There are several ways to param-
eterize this effect. In Section 4.3 I assume that the thin ice cover produced is so fragmented
that gas exchange can proceed as normal, at a 100% rate. The assumption is made because
the model never produces more than 1 cm ice and it is assumed newly produced ice is imme-
diately transported out of the gyre. The magnitude of ice production in the model mirrors
low sea ice concentrations from ERA5 data. With ERA5 ice concentrations well below 1%,
the assumption of a fragmented ice cover is supported. However, the onset of ice production
differs between the model and ERA5. This is shown in Figure 5.2. Note that one can not be
certain that the ice cover in the ERA5 data is produced within the Greenland Sea. It could
also have been advected from the North.

Modelled ice production starts in April. Ice onset in ERA5 coincides with the second modelled
production period. ERA5 sea ice concentrations then peak in the start of June. Note that
the magnitude of the two datasets is not directly comparable. Sea ice production by the
model is given in cm h−1 whilst the sea ice concentration from ERA5 is in %. Both datasets
do show that ice cover in the considered period is very low.

To assess if the assumption of 100% gas exchange rate during periods of ice cover is reason-
able, the model’s response to two other parameterizations is tested. In one case, I assume
there is no gas exchange (0%) when the model produces ice. In the other case, I ignore
the model ice. Instead, I scale gas exchange by the ERA5 sea ice concentration (Fay et al.,
2021):

FCO2 = kCO2KCO2(pCO
atm
2 − pCOoc2 )(1 − SIC) (5.1)
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Figure 5.2: Timeseries from June 2019 to June 2020 showing modelled ice production (left axis,
blue line) and ERA5 sea ice concentrations (right axis, black line). Note the different units of the
two axes.

Here, SIC denotes sea ice concentration. The resulting net yearly CO2 gas exchange flux is
2.22 mol m−2 y−1 (26.7 g C m−2 y−1) and 2.24 mol m−2 y−1 (26.9 g C m−2 y−1) for the
0% and ERA5-scaled cases respectively. This corresponds to reductions in gas exchange of
1.3% and 0.4%, i.e., well within the range of uncertainty for the gas exchange calculation.

While the 2019/2020 season was one of scarce sea ice production in the Greenland Sea, this
is not always the case. In terms of the model’s applicability to other years, it is therefore
interesting to look at the mechanisms causing the small gas exchange differences. Time series
of CO2 fluxes (mmol m−2 h−1) into the mixed layer for each case are displayed in Figure 5.3.

Gas exchange in the 0% case (Figure 5.3b) exhibits stronger fluctuations in periods of ice
production than the other two cases. This is because there are no consecutive timesteps
of modelled ice production. At its most intense, this leads to bi-hourly events of 0% gas
exchange interchanged with fluxes at normal levels. After a longer period of such fluctuations
in May, pCOoc2 drops slightly below the levels of the 100% gas exchange case, leading to
slightly stronger gas flux at the time (see Figure A.1). Visually, there is no notable difference
between the 100% gas exchange case and the ERA5-scaled fluxes. This is because the scaling
imposed by ERA5 sea ice cover on air-sea gas exchange is extremely small.

Based on the above, the effect of gas parameterization under sea ice producing conditions
is very small in this work. The effect on vertical fluxes and biology was negligble and is not
shown here.
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Figure 5.3: Timeseries of hourly gas exchange flux for three modelled cases from March 18th 2020
to June 3rd 2020. a) 100% gas exchange when ice is produced in the model. b) 0% gas exchange
when ice is produced in the model. b.i) modelled ice production. c) gas exchange scaled by ERA5
sea ice concentrations. c.i) ERA5 sea ice concentrations. See Figure 5.2 for b.i and c.i in greater
detail.

5.2 A further look at the results

5.2.1 Other methods of calculating biology

With a BGC-Argo float it is possible to derive the biological fluxes not only from DIC, but
also from oxygen and nitrate. In the following subsections these methods are implemented
and discussed. I also discuss the effect of different integration depths on the annual net
community production estimates.

5.2.1.1 Oxygen derived NCP

Employing the PWP model and Argo profiles, NCP is derived from oxygen with the same
method as NCP from DIC, except the air-sea gas exchange parameterization is somewhat
different (Chapter 3). To convert the oxygen production from oxygen to units of carbon, a
Redfield ratio of -106:150 was used, following Anderson (1995). The resulting daily NCP at
all depths is shown in Figure 5.4.
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Figure 5.4: Hovmöller diagram showing daily NCP derived from oxygen at each depth for June
2019-June 2020. Blue, negative values indicate remineralization. Yellow to green, positive values
indicate biological production. Note the different y-axis scales between the surface box and the
deep box. Numbered triangles show every 10th Argo profile. Two stars prior to the 60th Argo
station show the profiles for which Polar Water advection is prescribed. Dashed, black lines show
modelled mixed layer depth.

There is a seasonal signal showing relatively strong biological production in the surface layer
from June to August 2019. As autumn arrives, NCP is reduced. Negative NCP occurs as early
as September in the mixed layer, after which there is a new period of moderate production
of up to 0.75 mmol C m−3 day−1. An unlikely peak in productivity appears throughout the
mixed layer in December, at profile 41. Here, productivity exceeds 1.0 mmol C m−3 day−1,
which is not reasonable at this time of year due to the lack of sunlight. As winter progresses,
the biological signal tends toward remineralization interspersed with instances of production.
Below the mixed layer, NCP is nearly constant at approximately -0.006 mmol C m−3 day−1.
With a measurement uncertainty in oxygen of 30 µmol kg−1 and further uncertainties in the
calculations of the model, this is well within the range of uncertainty in NCP.

Throughout the time period, there are stronger NCP signals at the base of the mixed layer,
in both positive and negative direction. While it is possible that these reflect real biological
processes, they could also be artifacts of internal waves or eddies. This is explored further in
Section 5.2.4. The prescribed advection should not affect NCP from oxygen significantly as
oxygen is not diluted in this step.

Although one might expect some signal of remineralization between the mixed layer base and
the upper 1000 dbar, it is possible that this is erased through mixing in the model, or is too
small to be resolved given the aforementioned uncertainties.
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As there are several events of unlikely NCP values in Figure 5.4, it is useful to investigate the
surface layer further. Figure 5.5 shows daily NCP in the upper 20 dbar along with integrated
NCP over the same pressure range, and oxygen concentrations in the deep (1700, 1800, and
1900 dbar). If there is variability at depth that matches some of the instances of questionable
NCP values, then the underlying reason could be sensor instability.

Figure 5.5: a) Hovmöller diagram of daily oxygen-derived NCP in the upper 20 dbar. Blue, negative
values indicate remineralization whilst yellow to green positive values indicate biological production.
Numbered triangles show every 10th Argo profile. Smaller, vertical lines indicate the Argo profiles
between. b) Oxygen-derived NCP integrated over the upper 20 dbar. The dashed gray zero-line
marks the divide between remineralization and biological production. c) Oxygen concentrations as
measured by the Argo floats at pressure levels of 1700, 1800, and 1900 dbar (blue circles, green
triangles, and open black squares respectively). Note the different y-axis scales of the surface box
and the deep box.

The surface layer shows the same development as described above, with relatively strong
biological production in June-August 2019, followed by alternating events of production and
remineralization. The spring bloom in 2020 appears to have commenced in May. The
resulting integrated NCP (Figure 5.5b) reveals a seasonal cycle close to what one would
expect. There is stronger spring and summer production, and a period of near zero biological
activity during September to March. There is a small peak in productivity in December,
a consequence of the column of higher NCP at profile 41 also visible in Figure 5.4 and
Figure 5.5a. While there is some variability in the measured oxygen concentrations at depth,
these do not appear to coincide with specific events of inconsistency. There is a negative
trend in all of the displayed pressure levels. This trend could lead to an overall low bias in
our NCP estimate as Argo oxygen data would be erroneously low in oxygen. As oxygen is
consumed during remineralization and produced during photosynthesis, the low values would
lead to either lower production or stronger remineralization in our results. Sensor drift is
discussed separately in Section 5.2.2.
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5.2.1.2 Nitrate derived NCP

NCP is calculated from nitrate as for DIC and oxygen, except for the application of a different
Redfield ratio, and the absence of air-sea gas exchange (Chapter 3). Here, R=6.95 is utilized
(Frigstad et al., 2014). The resulting NCP at each pressure level is displayed in Figure 5.6.

Figure 5.6: Hovmöller diagram showing daily NCP derived from nitrate at each depth for June
2019-June 2020. Blue, negative values indicate remineralization. Yellow to green, positive values
indicate biological production. Note the different y-axis scales of the surface box and the deep box.
Numbered triangles show every 10th Argo profile. Two stars prior to the 60th Argo station show
the profiles for which Polar Water advection is prescribed. Dashed, black lines show modelled mixed
layer depth.

Contrary to NCP calculated from oxygen, there appears to be very little remineralization
in the nitrate derived estimates; the biological production in the surface is (almost) always
positive. Two instances of particularly strong positive NCP stand out: near profiles 30 and
40. These also stood out in NCP calculated from oxygen (Figure 5.4), however there the
possible bloom at profile 30 appeared as remineralization. At profile 40, NCP is positive in
both cases,but the estimate based on nitrate is much stronger. It is possible for a bloom to
occur in October as mixed layer deepening causes nutrients to resurface. At this time there is
still some solar radiation which may trigger photosynthesis if conditions otherwise allow. As
mentioned in the previous section, however, the production signal at profile 40 cannot reflect
reality because it is too deep and too strong. Since it appears in all three estimates of NCP,
it is possible that it is an artifact caused by internal variability that the PWP model is unable
to capture. Below the mixed layer, NCP is near constant with values of approximately 0.025
mmol C m−3 day−1. As for oxygen, thisthis part of the water column should show zero NCP,
or at best show some signs of remineralization. However, these low values are within the
range of uncertainty, when considering model errors in addition to measurement uncertainties
in nitrate of 5 µmol kg−1. Also prominent in Figure 5.6 is the negative NCP at the base of
the mixed layer throughout the period. As mentioned in the previous subsection, this could
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be an artifact caused by internal waves or eddies, which is further explored in Section 5.2.4.
Although it could be signs of remineralization, this is less likely as the signal would then be
expected to follow the seasonal production pattern more closely.

To address some of the discrepancies above, daily NCP in the top 20 dbar is shown together
with NCP integrated over the same pressure range, and deep nitrate concentrations in Fig-
ure 5.7. From the two upper panels (a,b) it is clear that the seasonal pattern in NCP is
incorrect. June-September 2019 shows nearly no biological production. Instead, NCP is the
highest through September-February. The larger peaks derive from possible discrepancies al-
ready seen in oxygen and DIC at profiles 30 and 41. There are no clear events in nitrate
concentrations that suggest these are caused by sensor instabilities. The consistently high
estimated winter production could be caused by excessively strong vertical transport of ni-
trate into the mixed layer. In this case, vertical transport is likely also too strong for DIC and
oxygen.

Figure 5.7: a) Hovmöller diagram of daily nitrogen-derived NCP in the upper 20 dbar. Blue,
negative values indicate remineralization whilst yellow to green positive values indicate biological
production. Numbered triangles show every 10th Argo profile. Smaller, vertical lines indicate the
Argo profiles between. b) Nitrate-derived NCP integrated over the upper 20 dbar. The dashed
gray zero-line marks the divide between remineralization and biological production. c) Nitrate
concentrations as measured by the Argo floats at pressure levels of 1700, 1800, and 1900 dbar (blue
circles, green triangles, and open black squares respectively).

5.2.1.3 Comparison

The previous sections have shown that neither the NCP estimates from DIC, oxygen, nor ni-
trate are perfect. A comparison of the three is instructive. Figure 5.8a-c show integrated NCP
over the upper 20 m of the water column derived from DIC (NCPDIC), nitrate (NCPNO3),
and oxygen (NCPOX) respectively. In Figure 5.8d, the mean annual NCP (ANCP) with depth
is shown for all three variables. The NCP evolution through the year is similar for DIC and
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oxygen. Both show peak productivity around July with decreasing biological activity towards
November. While oxygen derived NCP shows negative values all through winter, NCPDIC
remains positive for large periods of time, only crossing zero for a brief period in late De-
cember and in March. As discussed in the Section 5.2.1.2, the development of NCPNO3 is
not as expected. Since nitrate is treated as a passive tracer in the model, its concentration
only changes due to vertical transport. In summer, initialisation profiles are depleted of ni-
trate and mixed layer changes are minimal. As autumn approaches however, nutrient rich
water from below is mixed up to the surface. It is possible that the model includes more
transport of nitrate to the surface than what occurs naturally, leading to a falsely positive
NCP in winter, and that NCPNO3 estimates are more sensitive to this than NCPDIC and
NCPOX because relative nitrate gradients in the water column are larger. Alternatively, the
very low summertime production and higher levels in winter could indicate a dominance of
heterotrophs and a wintertime bloom of phytoplankton. This does not seem as likely.

Figure 5.8: Net community production (NCP) integrated over the upper 20 dbar derived from
DIC (a; blue line), nitrate (b; black line), and oxygen (c; green line). Panel d shows annual NCP
(ANCP) profiles for the same components with the same color scheme applied.

As evident from Figure 5.8d, ANCP estimates also vary considerably. ANCP from DIC
(ANCPDIC) is too high, indicating grossly underestimated remineralization. There appears
to be a constant offset at depth of approximately 23 mmol C m−3 day−1. Considering the
positive NCPDIC seen at depth in Figure 4.14 this is not surprising, however it does not reflect
reality. At steady state, ANCP integrated through the whole water column depth should result
in zero such that biological production and remineralization are balanced. When ANCPDIC
never crosses 0, this is clearly not fulfilled. The cause must lie in sensor instabilities or within
the model calculations. A small imbalance could be explained by the lag in CO2 equilibration
of the carbonate system, however the offset seen is far too large for this to be the case.
The depth distribution of ANCP from nitrate (ANCPNO3) appears more reasonable, but
features incidents of biological production well below 100 dbar, which is far beyond realistic
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production depth. Oxygen derived ANCP (ANCPOX) follows a similar curve to ANCPNO3,
but with a lower maximum surface production, shallower intercept (approximately 20 dbar)
and more intense remineralization. While possibly showing too much remineralization at
depth, ANCPOX appears the most reasonable of the three estimates. Note that there is a
small negative offset as was seen in Figure 5.4.

In light of the above discrepancies, two questions remain to be solved: 1) If there is too much
vertical transport of nitrate, why is this not also the case for DIC and oxygen? 2) How does
possible sensor drift affect the NCP and ANCP estimates? The first question may be tied
to air-sea gas exchange. While nitrate in the PWP model is completely governed by vertical
mixing, both DIC and oxygen are also subject to equilibration processes with the atmosphere.
An excessively strong vertical transport would for these properties be balanced by lower gas
transfer rates, or even by outgassing. It is also possible that nitrate is more sensitive to small
changes due to its constantly low concentrations compared to oxygen and DIC. Concentration
gradients for nitrate are relatively high so the relative effect of vertical transport is greater
for nitrate than for DIC and oxygen. The second question chiefly concerns DIC and oxygen,
as no clear trend is seen in nitrate concentrations as measured by the SUNA sensor on the
Argo. Though small, an evident negative trend in oxygen was seen in Figure 5.5c. This is
likely due to sensor drift, though consumption caused by remineralization is also a possibility.
This trend would lead to underestimated NCPOX and ANCPOX (including stronger negative
values) because the decreasing values caused by the sensor compensates for some of the
oxygen production through photosynthesis. On the other hand, oxygen is utilized to correct
pH measurements. Hence, oxygen drift propagates to pH. pH is then used together with
Alk to calculate DIC, meaning DIC is also influenced. For DIC, the drift is positive, also
leading to and underestimate of biological production. Sensor drift and how this propagates
is explored further in Section 5.2.2.

5.2.1.4 Choice of integration depth

The choice of integration depth (euphotic zone) in NCP calculations is not arbitrary. In
this work, an integration depth of 20 dbar was used in order to circumvent the influence
of possible spurious remineralization signals at the base of the mixed layer. However, other
depths would also have been reasonable. One could, for instance, use the depth at which
ANCPDIC, ANCPNO3, or ANCPOX first remain negative across a significant depth interval.
ANCPDIC does not cross zero and as such, this criterion cannot be used. For ANCPOX,
the depth would be at 21 dbar, which is very close to the already applied integration depth.
ANCPNO3 first crosses zero at 38 dbar. While it does not firmly remain in the negative
range until deeper into the water column, it is a reasonable estimate of euphotic depth. This
value is close to what one may find in literature. 35 dbar was obtained by taking the average
of inferred values from Figure A1 in Cherkasheva et al. (2013). This estimate of euphotic
depth incorporates calculations from both chl-α and photosynthetically available radiation
(PAR) depth in the Greenland Sea. Finally, one may estimate euphotic depth as the point
in which 1% of shortwave radiation is absorbed in the water column. In the PWP model,
which assumes type IA waters, this equates to 73 dbar (Plant et al., 2016). To evaluate the
sensitivity of NCP and ANCP estimates to the choice of integration depth, I apply euphotic
depths of 20, 35, and 73 dbar. Figure 5.9 shows the resulting NCP seasonal cycles, and total
ANCP values are displayed in Table 5.2.
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Table 5.2: ANCP derived from DIC, nitrate (NO3), and oxygen (OX) using integration depths of
20, 35 and 73 dbar. Unbracketed values are reported in mol C m−2y−1, round brackets indicate
values in g C m−2y−1.

ANCPDIC ANCPNO3 ANCPOX

[mol C m−2y−1] [mol C m−2y−1] [mol C m−2y−1]
(g C m−2y−1) (g C m−2y−1) (g C m−2y−1)

Zint = 20 dbar 3.2 (38.8) 2.4 (29.0) 1.3 (15.6)
Zint = 35 dbar 4.3 (51.5) 3.2 (38.7) 0.8 (10.3)
Zint=73 dbar 5.7 (67.9) 3.2 (38.2) -0.9 (-10.3)

Figure 5.9: NCP calculated from DIC (a), nitrate (b), and oxygen (c) using integration depths of
20 dbar (Z20; lightest colors), 35 dbar (Z20; dashed lines), and 73 dbar (Z20; darkest colors).

The seasonal pattern of daily NCP is not altered significantly by changing integration depth.
This is in accordance with work in other areas (Plant et al., 2016). The magnitude of NCPDIC
and NCPNO3 , which already suffered a positive bias, is merely increased. This is expected as
positive offsets below integration depth were seen in both. The opposite occurs for NCPOX,
which is more negative with increasing integration depth. Total ANCP values largely mirror
these findings. The exception is ANCPNO3 . Due to its oscillating vertical ANCP profile in
the range 35-200 dbar (Figure 5.8d), ANCPNO3 is nearly equal using integration depths of
35 and 73 dbar. Considering the anomolous NCP and ANCP patterns produced in this work,
it is hard to determine how sensitive this method is to integration depth.
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5.2.2 Sensor drift

Signs of sensor drift have been observed in Figure 4.3, Figure 5.5, and Figure 5.7. It is nec-
essary to determine if this is the case and if so, to what degree. As mentioned in Chapter 3,
the Argo data used is quality flagged 1, meaning it is already corrected for drift and offsets.
However, is appears that the corrections have not removed all drift. One method to detect
drift is to examine the development of measurements at depth, as was done in the aforemen-
tioned figures. It is useful to further consider linear regression slopes at these depths. In light
of this, values at 1700, 1800, and 1900 dbar are plotted for DIC, nitrate, oxygen, and pH in
Figure 5.10, with respective regression lines.

Figure 5.10: DIC (a), nitrate (b), oxygen (c), and pH (d) at pressures of 1700, 1800, and 1900
dbar. The pressure levels are indicated by light-colored circles, dark triangles, and open squares
respectively. Regression lines for each pressure level are shown as solid lines in the same color
scheme.

The regression lines show that there is a small trend in each property. The trend is nearly
equal at each pressure level for all properties. The percentage change is largest in oxygen,
with a reduction in 2.6% year−1. Next is nitrate with an increase of 1.8% year−1. The
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changes in DIC and pH are comparatively small: +0.05% and -0.03% respectively. The
calculated percentage trends support what was inferred visually from Figure 4.3. The trend
in oxygen is likely the ultimate root of the erroneous drift in pH and DIC. As mentioned in
Chapter 3, when pH is calibrated, it uses corrected temperature, salinity and oxygen from
the float as input in CANYON-B (Bittig et al., 2018) to calculate the reference data used
to correct the float pH. CANYON-B is very sensitive to the oxygen input data, and thus any
inconsistencies in these. When this oxygen data set with a 2.6% was used to calculate the
pH reference data, it ultimately left a small trend in the calibrated pH. As pH then is used
to calcualte DIC, the trend propagates. The trend in nitrate, however, is unrelated since
WOA2018 was used as reference data and not CANYON-B.

The small drift seen in DIC, nitrate, oxygen, and pH is well within the range of uncertainty
of each property. However, it is possible that even small drifts accumulate such that other
calculations are affected. If the drift seen in Figure 5.10 strongly affects the NCP estimates,
plotting the change in a property at depth between two consecutive Argo profiles against
the biological production calculated for the same time interval could reveal this. Figure 5.11
shows this for NCP at 10 dbar, and profile differences at 1700, 1800, and 1900 dbar.

Figure 5.11: Change in DIC (a), nitrate (b), and oxygen (c) concentrations between an Argo profile
and the previous (∆DICdeep, ∆NOdeep3 , ∆OXdeep) plotted against NCP at 10 m as calculated
from respective properties. Light-shaded circles indicate delta values from 1700 dbar, dark triangles
1800 dbar, and open squares 1900 dbar.

Profile-to-profile change at the three displayed pressure levels do not appear to correlate
strongly with NCP at 10 m for any of the plotted properties. In fact, linear regression for
panels a-c result in Pearson correlation coefficients (r) with absolute values below 0.25 in all
cases. Moreover, the sign of r for DIC and oxygen is not the same at all pressure levels. This
implies that sensor drift is inconsequential for NCP calculations.

This implies the correlation strengths are inconsequential as a measure of the sensor drift’s
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impact on NCP. If there was indeed a strong significant correlation, then it should be of
roughly the same magnitude and sign at all three pressure levels. While r is negative for all
three pressure levels for nitrate, the values are still too small to carry weight. However, we
cannot with certainty eliminate sensor drift as an influence on NCP calculations from this
test alone. Non-linearities in the model makes it challenging to identify the exact impact of
sensor drift, if any.

The way in which sensor drift corrections are carried out limits the amount of meaningful
interpretation one can do when corrected data still exhibits trends. Time allowing, it would
have been useful to further examine the corrections applied. The corrections may not capture
everything. The underlying assumption when using oxygen to correct pH is that the relation
between the two is constant in the deep water masses. However, the Greenland Sea is a
region with periods of deep convection. Mixing ventilating the deep could alter the ratio. It
is possible that conditions have changed compared to the climatology used as reference data
for corrections. In that case, maybe there should be a gradient, or a trend is overcorrected.
Though the observed trends are small, it would be interesting to understand more of where
they derive from. Due to time limitations, however, I leave this task for others to explore.

5.2.3 Faulty mixing scheme?

As mentioned in Section 4.2, I have changed the mixing scheme in the model to account
for the fact that concentrations are not additive. In the version of Brakstad et al. (2019),
the mixing algorithm invoked during the first two mixing processes uses the mean values
of a property within the new mixed layer as the new value. For temperature and density,
this is okay, because they are not dependent on solvent mass. The same approach is used
by Glover et al. (2011) for hydrographic and biogeochemical parameters. However, salinity
and biogeochemical properties are in units of concentration. While mass is conserved upon
mixing, concentration is not. It is therefore necessary to convert concentrations to mass to
calculate the mass exchange before converting the units back to concentrations to correctly
model these fluxes. Preliminary results showed that changing the mixing scheme from the
means-based mixing to mass-based made the model somewhat more sensitive. Here, I further
investigate the differences in results between the two mixing schemes to determine if the new
mixing scheme is indeed an improvement or if it is the cause of some of the discrepancies
found.

Table 5.3: Net vertical transport (FZ) and net air-sea gas exchange (FGE ) through the water
column, and ANCP over the upper 20 dbar calculated from DIC, nitrate, and oxygen (ANCP20

DIC,
ANCP20

NO3
, and ANCP20

OX respectively) for mixnew and mixold. mixnew is the bulk mixing scheme
implemented in this work, mixold is the mixing scheme used previously.

FZ
[mol C m−2 y−1]

FGE
[mol C m−2 y−1]

ANCP20
DIC

[mol C m−2 y−1]
ANCP20

NO3

[mol C m−2 y−1]
ANCP20

OX

[mol C m−2 y−1]

mixnew 1.26 2.25 3.23 2.4 1.3
mixold 1.21 2.31 2.76 2.26 1.11

Key results from the calculations using the mean-based (mixold) and the mass-based
(mixnew) bulk mixing methods are displayed in Table 5.3. It is clear that the differences
are minor, and within the range of uncertainty for each estimate. FZ in mixold is lower than
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in mixnew. Since less carbon is transported to the surface, air-sea gas exchange of carbon
is stronger, as reflected in the higher value of FGE for mixold. Note that FZ and FGE are
computed totals over the entire water column, while ANCP estimates are for the upper 20
dbar only. This is to ease comparison with results of others’ work. Lower values of ANCP in
mixold compared to mixnew indicates more remineralization and/or less production.

Having seen that there is a difference in vertical transport between the two bulk mixing
schemes, it is interesting to examine vertical transport further. Figure 5.12 shows the total
vertical transport into the mixed layer, and into the surface by each mixing process, as well as
the mixing depths of each process. Figure 5.12h shows that mixing is shallower for mixold,
than was seen in Figure 4.12h for mixnew. While the model calculates a mixed layer depth
maximum of around 800 dbar in March, actual mixing depth is much shallower. This was
also seen for mixnew. There is vertical transport out of the surface (upper 20 dbar) for both
StIn and BRi mixing processes. This means that reverting to the old mixing scheme does not
solve the problem of negative fluxes.

Figure 5.12: Mean daily change in DIC as a result of vertical transport induced by static instability
(StIn; a), bulk Richardson number instability (BRi; b), gradient Richardson number instability (GRi;
c) and the sum of the three (Total; d) are displayed on the left hand side. The values are calculated
for the surface box (light green line) and summed over the mixed layer (black line). The right hand
side (e-h) shows the mean daily change in mixing depth caused by the same mechanisms. Panel h
also shows the mixed layer depth calculated by the Nilsen method (zmldcalc; dashed red line).
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To determine the cause of the reduced ANCP in mixold compared to mixnew, NCPDIC,
NCPNO3 , and NCPOX summed over the upper 20 dbar are plotted with time in Figure 5.13a-
c for each method. Figure 5.13d shows the respective vertical distributions of ANCP. The
spurious December peak seen in mixnew is not present for mixold in any of the NCP estimates.
This peak was attributed to an episode of relatively strong transport out of the mixed layer.
Figure 5.12d shows that this mixing event does not occur for mixold, strengthening the
hypothesis that the peak is caused by excessive mixing. Lower ANCPDIC for mixold appears
to be caused by both a removal of the spurious peak and by a little more remineralization
than for mixnew. For the other two estimates, the largest difference is the removal of the
spurious peak. The ANCP profiles do not show significant differences.

Figure 5.13: Net community production (NCP) integrated over the upper 20 dbar derived from
DIC (a; blue lines), nitrate (b; black lines), and oxygen (c; green lines). Panel d shows annual
NCP (ANCP) profiles for the same components with the same color scheme applied. Solid, light
lines show calculations using a mass-based mixing scheme (mixnew). Dashed, dark lines show
calculations using a means-based mixing scheme (mixold).

The differences in air-sea gas exchange are best viewed by plotting FGE(mixnew)-FGE(mixold).
This is done in Figure 5.14 along with mixed layer depth calculated for mixnew. The figure
shows that FGE is nearly equal for the two cases from June until November. As the mixed
layer starts to deepen, the aforementioned event of strong mixing in December for mixnew
transports DIC towards the surface, reducing air-sea gas transfer compared to mixold where
the onset of deeper mixing is delayed.
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Figure 5.14: a) Mean weekly FGE(mixnew)-FGE(mixold). b) Mixed layer depth as calculated by
the Nilsen method for mixnew.

5.2.4 Internal waves?

In Figure 4.2a there were signs of possible internal waves. Later, in Figure 4.14, possibly
spurious signals of remineralization were observed at the base of the mixed layer. Internal
waves are caused by perturbations at the surface or from tides meeting topography. The per-
turbation in one layer of the water column propagates to the next density surface, leading
to oscillations through the whole stratified water column. As the Argo float travels through
these oscillations, values within a density surface are displaced vertically relative to the pre-
vious profile. Internal waves would therefore appear as structurally similar undulations in all
the conservative tracers measured, and at all density surfaces. If the float encounters an
eddy, the effect is the same. The presence of internal waves in the Argo data could lead
to the mentioned spurious signals of remineralization as the PWP model is not equipped to
account for processes causing internal waves. To determine if there is indeed a presence of
internal waves in the dataset, temperature, σθ, and AOU are plotted from 1500-1900 dbar
for the full annual cycle in Figure 5.15.
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Figure 5.15: Hovmöller diagrams of temperature (a), potential density anomaly (σθ; b), and AOU
(c) from 1500-1934 dbar. The figure covers the period June 2019-May 2020.

There is conspicuous evidence of internal waves and/or eddies in all plotted tracers. Wave
crests and troughs of each tracer coincide in time. Especially clear is the negative displace-
ment in July-August followed by lifting of the water masses in August-September. Several
oscillations of lower amplitude follow in September-December. The internal wave signal in
AOU is somewhat affected by the oxygen sensor drift, leading to a visible positive trend
through the period.

Plant et al. (2016) found similar oscillations attributed to internal waves in several profiling
floats in the Gulf of Alaska. They corrected for the vertical displacement in the Argo floats
by adjusting model density profiles to match those of the Argo values. They then interpolate
the new model profiles back to the model vertical grid before calculating NCP. In this work,
I do not correct for internal waves due to time limitations.
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Conclusions

In this work, a mixed layer budget was used to decompose the drivers of DIC variability, with
the ultimate goal of determining the drivers of pCOoc2 variability. Physical fluxes from the
mixed layer budget, i.e. vertical fluxes and air-sea gas exchange, were estimated using a one
dimensional mixing model. Net community production was estimated as a residual between
DIC calculated from measurements from an Argo float and model output. To this end, an
existing PWP model tuned for the Greenland Sea was improved by including inorganic carbon
chemistry and air-sea gas exchange. A scheme to reinitialize the model for every Argo profile
was implemented in order to facilitate estimation of NCP.

Net fluxes of vertical transport and air-sea gas exchange were estimated to be 15±15% g C
m−2 y−1 and 27±20% g C m−2 y−1 respectively. The residual, i.e. NCP and unexplained
fluxes, was 39±25% g C m−2 y−1. The evolution of net transport into the mixed layer
was as expected, with fluxes near zero in summer, and a net positive transport in winter.
However, surface fluxes were negative. This was surprising, and may indicate the existence of
unresolved deficiencies in the approach. However, considering that the estimated air-sea gas
exchange flux was robust to changes in advection, and the fact that it follows the expected
seasonal pattern, the negative fluxes likely have little effect on the other fluxes. In fact,
vertical transport appears to be too strong, leading to overestimated NCP. Thus, everything
considered, the results agree quite well with the theoretical changes in DIC estimated by
Miller et al. (1999). Like their results, I have found strong biological activity in the summer
months that draws down carbon concentrations. Despite the anomolous surface fluxes, I too
have found that there is a net flux of carbon into the mixed layer in the convective months
which results in drastically reduced air-sea gas exchange. While Miller et al. (1999) found
vertical fluxes of similar magnitude to their estimates of fluxes caused by biology, vertical
transport here is only 38% of NCP. In this work, the vertical fluxes lead to periods of weak
outgassing, in alignment with the supersaturation seen in the Argo float pCO2. The means-
based mixing scheme implemented in previous versions of the model (e.g. Brakstad et al.
(2019); Glover et al. (2011)) was less sensitive to atmospheric forcing, leading to somewhat
smaller vertical fluxes which in turn caused a higher net air-sea gas exchange flux in part
owing to less outgassing in winter. For both the mass-based mixing used in this work, and
the means-based mixing tested in Section 5.2.3, convection does cause a net increase of
carbon in the mixed layer in winter. While this is not reflected in the estimated pCOoc2 by the
model due to the negative surface fluxes, the constraint on pCO2 by reinitializations every
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5th day clearly shows the interplay between vertical transport and air-sea gas exchange in
winter. The results are thus ambiguous: the overall dynamics are consistent with literature,
but work remains to be done to uncover model deficiencies to properly elucidate the influence
of DIC dynamics on pCOoc2 in the Greenland Sea.

It is not possible to fully evaluate the effect of DIC changes on pCOoc2 variability with the
method applied at the current time. However, the method shows potential. Thanks to the
frequent reinitializations it is possible to gain an overview of the seasonal carbon dynamics
by disregarding some of the evidently erroneous results. With further improvements, the
method could constitute a novel technique to decompose carbon fluxes in the Greenland Sea,
giving unique insight on carbon dynamics in the region. The concept works well in terms of
calculating biology as a residual, as has already been demonstrated in the Southern Ocean
and Gulf of Alaska (Briggs et al., 2018; Plant et al., 2016). Yet, the estimate of vertical
transport requires refinement. Further work is needed to understand the negative surface
fluxes and how to correct these, if needed, before the model can be applied to study carbon
dynamics at the detailed scale attempted in this work. Additionally, the influence of internal
waves and eddies is currently not accounted for. This has likely caused spurious signals
of remineralization at the base of the mixed layer. Future work might include filtering out
internal waves or applying σ surfaces as vertical coordinates instead of pressure.

A major assumption is made in assuming that no local advection occurs, and that horizontal
homogeneity is valid. This is the basis that enables us to use a one-dimensional model
to estimate fluxes representative for the whole Greenland Sea gyre. The limitation of this
assumption is clear from the influence that presence of PW has on the results at the end
of the captured annual cycle. The first signs of PW occur within the Greenland Sea, but
the last two Argo profiles are relatively close to the gyre’s Western boundary and may be
affected by the East Greenland Current. The model cannot capture such influences and
ad hoc parameterizations must be added to account for them. On the scale of individual
floats, care must be taken to include the profiles most representative of the gyre. This was
attempted here, but one could argue that the last 3-4 profiles should have been excluded.
Here, the opportunity to include a full annual cycle weighed heavily in the decision to keep
these profiles, but the results need to be taken with care. On the scale of capturing the
general annual cycle of carbon dynamics in the region, more Argo floats are needed. A solid
fleet capturing several years of continuous measurements in the region would lead to much
more robust results. A challenge in this respect is the tendency of the Argo floats to drift out
of the gyre relatively quickly. To circumvent this, it has been suggested to alter the parking
depth in the Greenland Sea to depths greater than 1000 dbar since this pressure level is a
major transport vein out of the region (ref. personal communication with Kjell Arne Mork).

While more Argo floats are certainly required as a cost-efficient way to obtain measurements,
the importance of scientific cruises to the Greenland Sea is not diminished. Until measurement
uncertainty in Argo floats reaches an acceptable level, cruises (especially winter cruises) are
vital to maintain an updated set of reference values for calibration purposes. The Argo data
compared reasonably well to GLODAPv2 data, but discrepancies were found in some of the
carbon system properties. This is likely due to the known incoherence in measured versus
calculated variables. For the Argo float, pH was measured while DIC and Alk were calculated.
For GLODAPv2, pH is usually calculated, while DIC and Alk are measured. The incoherence
between measured and calculated values is especially a challenge for pH. Moreover, the pH
sensors themselves are prone to relatively large uncertainties. An additional challenge for
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this work has been that Argo quality control requirements proved inadequately strict for this
application. Through this work, weaknesses in quality control have been discovered and
corrected. Calibration of pH data in the Nordic Seas is in general a challenge. CANYON-
B works well in the Southern Ocean, but deep convection and mixing of water masses in
addition to the lack of spectrophotometrically measured pH data makes it harder to use in
the Nordic Seas (ref. personal communication with Siv Kari Lauvset). Other methods used to
calibrate Argo pH data are the locally interpolated regression (LIR; (Carter et al., 2018)) and
Empirical Seawater Property Estimation Routines (ESPERs; (Carter et al., 2021)) algorithms.
However, pH vlues calculated using these three methods are slightly different, indicating there
are underlying inconsistencies in the reference data for the Nordic Seas. Clearly, much work
is needed on improving pH measurements, closing the gap between measured and calculated
carbon properties, and in reconciling reference data used for calibration. As a simple, first
step of future work, it would be interesting to rerun the analysis carried out in this work on
the newly recorrected data from the Argo float used in this work.

In addition to the mentioned investigations needed on the mechanisms of vertical transport
in the model, and potentially changing the vertical coordinates, optimizing the air-sea gas
exchange coefficients for oxygen could prove a useful improvement. Currently, these are tuned
for the Gulf of Alaska (Plant et al., 2016). As the Greenland Sea, the Gulf of Alaska is a
high-latitude region in the Northern hemisphere strongly influenced by wind. However, there
could be regional differences that alter the relative contribution of diffusive gas exchange,
the effect of partially dissolved bubbles, and that of completely dissolved bubbles between
the two locations.

The uncertainty analysis carried out in this work is simple by nature and relies on assumptions
of independence in the calculated uncertainties that are not valid. A more rigorous approach,
such as a Monte Carlo analysis would be beneficial to improve the legitimacy of the results.
This should be considered if the method is to be further developed in the future.

Although imperfect, the methods applied in this work constitute a valuable addition to the
toolbox of techniques used to examine carbon dynamics. For the first time, biogeochemistry
and air-sea gas exchange has been added to a PWP-model tuned to the Greenland Sea.
With further improvements, the method could become an important technique for studies
on the biogeochemical dynamics in this region. This requires continued efforts in both Argo
deployment and ship-based measurements, as well as advances in pH sensor reliability and
Argo quality control requirements.
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Appendix

Figure A.1 shows how ice production in the model is extremely intermittent, and how this
affects air-sea gas transfer.

Figure A.1: a) Hourly air-sea gas exchange for model run with 100% gas flux under ice conditions
(blue line), and 0% gas flux under ice conditions (light green line). a.i) Ice produced by the model.
b) pCOoc2 for the same cases as in a.
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