
An Optimization Model for Short-Term Routing
and Scheduling of Offshore Wind Maintenance

Master’s Thesis

Aksel H̊aland Laugaland

University of Bergen

Supervised by Dag Haugland

Department of Informatics

&

Geophysical Institute

May 31, 2023

Abstract

Maintenance costs constitute a significant portion of the total costs for offshore wind investments. Con-

sequently, a substantial amount of research aims to mitigate these costs. Studies targeting short-term

decision-making primarily concentrate on finding the most cost-effective routes for the maintenance ves-

sels while scheduling as many maintenance tasks as possible. This thesis suggests an alternative approach

where all maintenance tasks are considered optional. Instead of minimizing costs, the optimization model

we propose maximizes expected profit. The motivation is to establish a more dynamic relationship be-

tween short-term decision-making and long-term strategy. We formulate the problem of selecting routes

for maintenance vessels as an integer linear program. Further, we use a mixed integer linear programming

sub-problem to generate routes via a column generation algorithm. We have developed several instances for

testing the model, which we make available for subsequent research. Our proposed model provides optimal

solutions for some of the problem instances where the sub-problem can be solved with exact methods. We

also present a meta-heuristic for the sub-problem, capable of finding good solutions to problem instances

considering up to 60 maintenance tasks. Lastly, we find that the column generation method outperforms a

more straightforward solution algorithm.

Sammendrag

Vedlikeholdskostnader utgjør en betydelig del av de totale kostnadene forbundet med havvind. Mye forskning

ser derfor p̊a mulighetene for å redusere disse kostnadene. Studiene som er gjort p̊a kortsiktig beslutningsta-

king fokuserer hovedsakelig p̊a å finne kostnadseffektive ruter for vedlikeholdsfartøyene, samtidig som man

vil f̊a utført mest mulig vedlikehold. Denne masteroppgaven angriper problemet fra en annen vinkel, da den

ikke anser noe vedlikehold som obligatorisk. I stedet for å minimere kostnader, maksimerer optimerings-

modellen vi foresl̊ar forventet profitt. Motivasjonen for denne tilnærmingen er å knytte sammen kortsiktig

beslutningstaking og langsiktig strategi. Vi formulerer problemet med å velge ruter som et lineært hel-

tallsprogram. Videre bruker vi et blandet lineært heltallsprogram som delproblem for å generere ruter i en

søylegenereringsalgoritme. Modellen testes p̊a probleminstanser vi har laget selv, som vi tilgjengeliggjør ogs̊a

for videre arbeid. Den foresl̊atte modellen finner optimale løsninger til noen av instansene der delproblemet

kan løses eksakt. Vi presenterer ogs̊a en metaheuristikk for delproblemet som gjør det mulig å finne gode

løsninger p̊a instanser med opptil 60 vedlikeholdsoppgaver. Til slutt finner vi ut at søylegenereringsalgoritmen

utkonkurrerer en enklere løsningsmetode.

ii

Acknowledgments

I am proud to successfully complete my Master’s thesis. It has been a rewarding journey where I have

gained valuable knowledge and a deep sense of accomplishment. Reflecting on this experience, I want to

acknowledge the contributions of several individuals who have greatly influenced the outcome of this thesis.

First and foremost, I would like to thank my supervisor, Dag Haugland, for excellent guidance throughout

the process of composing this thesis. I appreciate your feedback and advice and am grateful for our frequent

meetings and discussions.

I would also like to thank Elin Espeland Halvorsen-Weare from SINTEF Ocean. Your insight from the

offshore industries from an academic perspective has been essential in shaping and validating the model.

Thank you for dedicating time to our regular meetings and always being available to answer my questions.

Finally, thank you to my fellow students in the energy program. You have been an invaluable source of

motivation and joy. Thanks to Gunnar, Runar, Erlend, Fredrik, and Benjamin from the optimization group

for constructive discussions at the study hall.

iii

Contents

1 Introduction 1

1.1 Maintenance strategies . 1

1.2 Maintenance tasks and vessels . 3

1.3 Problem statement . 4

1.4 Short term routing and scheduling models for offshore wind maintenance 5

1.5 Thesis structure . 6

2 Problem definition 7

2.1 An alternative approach . 7

2.2 Inputs and outputs . 7

3 Background 10

3.1 Mathematical programming . 10

3.1.1 Linear programs . 10

3.1.2 Integer linear programs . 11

3.1.3 The vehicle routing problem . 12

3.2 Column generation . 12

3.3 Heuristic methods . 14

3.3.1 Solution neighborhood . 14

3.3.2 Simulated annealing . 16

3.3.3 Adaptive large neighborhood search . 16

4 Mathematical model 19

4.1 Master problem - Route selection . 19

4.2 Sub problem - Route generation . 21

4.2.1 Graph representation . 21

4.2.2 Travel constraints . 22

4.2.3 Time constraints . 23

4.2.4 Technician constraints . 24

4.2.5 Objective . 26

iv

4.3 Column generation . 26

5 Heuristic approach 30

5.1 Route generation with ALNS . 30

5.1.1 Operators . 31

5.2 Heuristic method 1: Sub-problem solver . 33

5.3 Heuristic method 2: Warm start . 33

5.4 Consequences . 34

6 Instance generation 35

6.1 Turbines . 35

6.2 Vessels . 36

6.3 Weather conditions . 37

6.4 Technicians . 37

6.5 Revenues . 38

7 Experiments 40

7.1 Method . 40

7.1.1 Phase 1 . 40

7.1.2 Phase 2 . 41

7.1.3 Implementation choices and hardware specifications 42

7.2 Results . 42

8 Concluding remarks 50

A Symbols from the mathematical model 55

v

List of Figures

1 Fixed-bottom offshore wind farm costs for a reference farm in 2019 (reprinted with permission

from NREL [1]) . 2

2 A crew transfer vessel disembarking technicians at an offshore wind turbine (photo: The

Workboat Association [2]). 4

3 A comprehensive summary of the model inputs, along with their corresponding index sets, i.e,

an input (yellow box) is indexed by all sets (dotted round boxes) that it is drawn inside. . . . 8

4 A graphical example of an LP (a), and how it can be used to solve an ILP (b) with identical

constraints Ax ≤ b . 11

5 An example of what the graph G = (N ,A) can look like for a simple case with three turbines

(n = 3). Turbine 1 and Turbine 2 are closer than S. 23

6 Map illustrating the specific locations of the turbines in Triton Knoll, the RWE maintenance

base in Grimsby, UK, and the weather station supplying the wave data for the problem instances. 36

7 Depiction of the evolution of the objective function value for both the master problem and its

relaxation, as obtained in the runs leading to the best-fund solutions by CGA-H for Instances

5-8 . 45

8 The evolution of the utilization measures in the CGA-H runs that found the best solution for

Instance 5 to Instance 8 . 47

9 A graphical visualization of the best-found solutions to Instance 6 and Instance 7. Cross

symbols indicate the first turbine visited in a route, and the circles signify the last turbine

that is visited before the vessel heads back to the base. 49

List of Tables

1 Overview of the pairs of destroy and repair operators . 32

2 The cardinalities of the input sets in the generated problem instances 35

vi

3 Specifications of the vessels that are used in the instances. The Min cost and the Max cost

entries are the approximated costs when the significant wave height is less than 0.5m and

equal to 1.5, respectively. 37

4 The designated time for the warm-start heuristic in CGA-H and CGA-E 41

5 Comparison of results from five runs of CGA-H and one run of CGA-E across all instances. . 43

6 Best observed solutions to the continuous relaxation of the master problem after meeting the

column generation stopping criteria for both solution algorithms. 44

7 Comparison of five runs of CGA-H and CA across all instances. 46

List of Algorithms

1 ALNS with Simulated annealing . 18

2 Column generation . 29

3 Warm start . 34

4 Challenger algorithm . 41

vii

1 Introduction

The global population increases and the growth is expected to continue. Consequently, the demand for energy

has never been greater. The war in Ukraine and the following energy crisis in Europe have highlighted the

urgent need for diversified energy sources and the importance of more electricity production.

Envisioning a sustainable future, it is essential to take advantage of clean and renewable energy resources.

This is established in the Paris Agreement [3], which aims to combat climate change by promoting a transition

to renewable energy sources. Moreover, according to the United Nations’ Sustainable development goal 7 [4],

this energy must be clean and affordable, ensuring that all people have access to sustainable energy. Offshore

wind energy is expected to play a significant role in reaching this goal, promising to satisfy a significant part

of the growing demand for electricity while keeping the environmental impact at an acceptable level.

The rush to harness wind power has led to an impressive expansion of offshore wind farms (OWFs), especially

in North-western Europe. Many of these projects are heavily supported by government funding or innovation

funds. However, to accelerate the expansion, it is crucial to reduce costs and increase revenues so that offshore

wind becomes more attractive for investors that require profits.

There are many costs associated with an offshore wind investment, and we believe there is room for reduc-

tions in many of them. According to National Renewable Energy Laboratory (NREL) [1], operation and

maintenance (O&M) costs constitute more than a third of the total cost when calculating the levelized cost

of energy for a bottom-fixed OWF in 2019. Figure 1 shows that this makes it the greatest expense in NREL’s

categorization.

This thesis present an optimization model that aims to optimize short-term maintenance scheduling for

offshore wind. The literature already proposes several methods to handle different O&M cost aspects. We

come back to some of these studies shortly, but first we provide some background for the specific part of the

O&M this thesis aim to optimize.

1.1 Maintenance strategies

Maintenance strategies for OWFs are divided into proactive and corrective maintenance. The difference

between the two is that proactive strategies aim to prevent failures from happening, while corrective strategies

are waiting for failures to repair.

1

Figure 1: Fixed-bottom offshore wind farm costs for a reference farm in 2019 (reprinted with permission from NREL [1])

The advantage associated with corrective maintenance strategies is reduced maintenance frequency which

may lead to reduced maintenance costs. Ren et al. [5] say that this type of strategy can be relevant for smaller

wind farms as downtime losses are typically low compared with maintenance costs. However, we know that

the number of large-scale offshore wind farms is rapidly increasing, and Karyotakis and Bucknall [6] state

that corrective maintenance is impractical for these wind farms. They argue that large-scale wind farms

have high failure rates and combined with challenging and unpredictable weather conditions, a corrective

maintenance strategy may result in long downtime periods and thus great loss of revenue.

Proactive maintenance strategies are further divided into preventive, condition-based, and predictive mainte-

nance. Preventive strategies fix the frequency of maintenance operations based on experienced component

lifetimes. On the other hand, condition-based and predictive maintenance strategies rely on sensors that give

information about the current turbine condition [5]. The difference between condition-based and predictive

is how the inputs are processed. Condition-based strategies act directly on this input. For instance, if the

temperature monitored by a sensor reaches a certain threshold, a corresponding maintenance operation is

scheduled immediately. The predictive strategies are more advanced as they are combining multiple sensor

inputs to perform a more complex analysis of the turbine condition and further determine the most appro-

priate time to perform maintenance. The most advanced predictive strategies use digital-twin technology to

2

create detailed condition reports [7].

In addition to corrective and proactive maintenance, opportunistic maintenance is also discussed in the

literature. Opportunistic maintenance is not consensually defined, but it is characterized as a combination

of corrective and proactive maintenance [8]. For instance, if a failure occurs and a technician team has to

visit a turbine to fix it, they may take the opportunity to also perform other maintenance tasks on the

turbine.

1.2 Maintenance tasks and vessels

The turbines in an OWF necessitates various types of maintenance tasks throughout its lifespan. Together

they ensure efficient functioning, maximize energy output, and extend the life of the equipment. Regular

inspections, cleaning, and replacement of worn or damaged parts are essential to prevent system failures and

downtime. Some of these maintenance tasks, such as replacement of a turbine blade or a gearbox, require

specialized vessels and may take several workdays to complete. Due to their complexity, such operations are

typically treated as separate projects, i.e, they are not coordinated with simpler tasks.

On the other hand, a significant part of the maintenance tasks, such as replacement of smaller parts, cleaning

and inspection, require less personnel, less heavy equipment, and no cranes. These kind of light maintenance

tasks can be accomplished through the use of crew transfer vessels (CTVs) or helicopters. There are also

other vessel types that can be used for this purpose, but these are the two most relevant for the problem

considered in this thesis. For simplicity we refer to both of them as vessels. Both of these vessel types’ main

function is to transfer technicians from an O&M base to one or several turbines. A technician in this context,

is a worker who has a specific skill, among a set of skills, that might be required to perform a maintenance

task. An O&M base is a building, typically at a harbour close to a set of OWFs, that houses a set of vessels

and necessary parts and equipment for OWF maintenance.

A CTV (illustrated in Figure 2) is typically 20-30 meters long and able to transfer 12-24 technicians. It has

the ability to disembark crews of technicians at offshore wind turbines over the bow, but it is only allowed

to do so if the wave heights are under a given safety threshold. A CTV’s service speed is typically between

15 and 25 knots, and it can normally travel in up to 12 hours per day if the weather conditions allow it.

A helicopter in this context, is able to carry 6-12 technicians, and it disembarks them at the turbines using

a hoist system. With a service speed of 100-150 knots, it is much faster than a CTV, but it has less work

hours per day due to fuel limitations.

3

Figure 2: A crew transfer vessel disembarking technicians at an offshore wind turbine (photo: The Workboat Association

[2]).

1.3 Problem statement

The wind farm operator follows a maintenance strategy that determines how often maintenance should be

performed and what the thresholds are for a maintenance task to be carried out. This can be seen as

the overall plan, typically with rough time resolution, and it does not specify exactly when and how the

maintenance tasks should be performed. Based on this strategy, we assume that the wind farm operator

at all times can relate to a set of available maintenance tasks. We define available maintenance tasks as

light maintenance tasks that the operator is interested in completing within a planning horizon of up to two

weeks. For a set of available vessels at an O&M base, this thesis addresses the problem of scheduling the

available maintenance tasks. By scheduling we mean:

• Select which tasks, among the available tasks, to perform within the planning horizon.

• Decide what day every selected maintenance task shall be carried out.

• Determine which vessel to use for each task.

• Decide the routes for the vessels, i.e., the order to visit the turbines and whether or not they should

be on standby while technicians perform maintenance.

To optimize the schedule, all these points must be taken into account simultaneously in one optimization

4

problem.

1.4 Short term routing and scheduling models for offshore wind maintenance

Dai, St̊alhane and Utne [9] introduce The routing and scheduling problem of a maintenance fleet for offshore

wind farms (RSPMFOWF). They consider a vessel fleet of CTVs and helicopters, but also larger vessels with

cranes as the RSPMFOWF also accounts for more complex maintenance. The objective of the problem is to

minimize costs, where a penalty cost occurs for maintenance that is not scheduled within the desired time

window.

A similar problem is addressed by Irawan et al. [10]. They focus on maintenance conducted by transferring

technicians by CTVs. They present a more detailed model than [9], where they take available technicians into

account, and whether or not they have the correct skills for completing the considered maintenance tasks.

The model can be used with multiple O&M bases that service multiple OWFs, and considers a planning

horizon of 3 to 7 days.

Stock-Williams and Swamy [11] also propose a detailed model that schedules less complex maintenance, such

as minor failure repairs and inspections. The model provides a very short term schedule and is meant to be

frequently resolved if any input changes. Their motivation is to provide practical solutions to very detailed

situations, for instance if any of the technicians involved gets too sea-seek to work.

Generally in the literature, minimizing costs is a popular option for the objective functions in studies con-

cerning O&M optimization [12, 13, 14, 15]. An obvious reason for this is the economical perspective from

owners and investors, but it is also reasonable to believe that minimizing costs indirectly impacts the climate

footprint. For instance, reduced fuel consumption for maintenance vessels reduces both costs and emis-

sions. An alternative approach is presented by Yildirim et al. [16] and Zhong et al. [17]. They propose

multi-objective optimization models where both costs and reliability are given influence.

Routing and scheduling models often involve mixed integer linear programs (MILPs) that can be too hard

to solve in reasonable time for commercial solvers. Consequently, a crucial aspect of research in this field

involves exploring alternative approaches to find satisfactory solutions. Raknes et al.[12] present a rolling

horizon heuristic to solve their proposed routing problem of a joint vessel fleet for multiple OWFs. They

discover that dividing the scheduling period into smaller segments and optimizing them individually produces

positive outcomes when tested in simulations.

Another possibility to deal with the problem’s complexity is to use meta-heuristics. For instance, [11] shows

5

how genetic algorithms can be applied to select transfer plans for technicians among a very large set of

alternatives. By utilizing these algorithms, they effectively find transfer plans that provide good simulation

results.

1.5 Thesis structure

The rest of the thesis is organized as follows: Chapter 2 gives a detailed definition of the problem we address.

In Chapter 3, we briefly introduce mathematical programming and solution methods, focusing on the theory

behind the techniques we utilize in this thesis. In Chapter 4, we formulate the considered problem and an

exact solution approach mathematically. Further, we propose several heuristic methods that can complement

or replace parts of the exact approach in Chapter 5. In Chapter 6, we explain how we build a set of problem

instances, which we utilize in experiments on the proposed solution methods in Chapter 7. These experiments

aim to verify our solution method’s effectiveness and identify trends in good solutions. Finally, Chapter 8

provides some concluding remarks.

6

2 Problem definition

In this section, we provide the definition of the problem we solve in this thesis, what we consider and not,

the assumptions we make, and how we differ from other works on the field.

2.1 An alternative approach

To force the models reviewed in section 1.4 that minimize costs to complete maintenance tasks, they are

either constrained to complete all considered maintenance tasks, or they have penalty costs for uncompleted

maintenance. We suggest an alternative approach.

Indirectly, an OWF operator profits on maintenance. If a turbine is maintained correctly, it is expected to

last longer and to be less exposed to shut-downs. The underlying motivation for this is to produce more

electricity that in its turn leads to increased revenues. In other words, maintenance is an investment: The

operator pays a price for maintenance and expects that it is profitable, at least if we consider the average of

all maintenance tasks performed throughout the lifetime of an OWF.

We believe that it is possible to estimate the expected revenue for performing an isolated maintenance task.

Exactly how to do this is out of the scope of this thesis, but in the model we propose, we assume that this

revenue is known for every available maintenance task. However, some of the works reported in the literature

which propose penalty costs for uncompleted maintenance (e.g. [10]) make similar assumptions. They set

the penalty cost for a maintenance task based on how important the OWF operator thinks it is to complete

it within the considered planning horizon. So, even if our assumption is wrong, we still think our model is

useful if we replace revenue with a measure similar to the one used in these penalty costs.

Therefore, the model we present in this thesis maximizes profits instead of minimizing costs. We believe

this may contribute to a more dynamic short-term routing and scheduling model that can be more directly

connected to long-term planning.

2.2 Inputs and outputs

We structure the inputs to our model by four sets: Turbines, vessels, periods, and technician types. Figure

3 summarizes the relationships between the model parameters and these sets. It is important to note that

the yellow boxes represent the actual model inputs, whereas the grey boxes suggest how to determine them.

7

We formally introduce all parameters in Chapter 4.

Available time in
period

Revenues for the
corresponding

maintenance task

Required time for
the corresponding
maintenance task

Required
technicians for the

corresponding
maintenance task

Available
technicians

Travel times to port
and other turbines

Set of technician
types

Set of turbines

Tasks that can be
completed in

parallel

Travel costs to port
and other turbines

Set of periods

Set of vessels

Technician capacity

The operators
maintenance

strategy

Electricity price
prognosis

Port and turbine
locations

Regulations and
the operators

standards

Vessel
spesifications

Type of task

Weather
forecasts

Production
prognosis

Vessel
availability

Shift schedule

Figure 3: A comprehensive summary of the model inputs, along with their corresponding index sets, i.e, an input (yellow

box) is indexed by all sets (dotted round boxes) that it is drawn inside.

The model we propose considers exactly one O&M base and a set of offshore wind turbines, where each

turbine corresponds to exactly one maintenance task. The turbines may belong to one or several OWFs.

The set of periods the model relates to partitions the time in the planning horizon. Each partition typically

corresponds to a 12-hour work day.

As all maintenance tasks are considered optional, a possible solution may be not to complete any of them.

The model incorporates the required number of technicians of each type and the duration necessary to fulfill

a maintenance task. As discussed, every maintenance task is associated with a revenue that reflects how

economically favorable it is to complete them in a given period.

The vessel that transfers technicians to a turbine may deliver other technicians at other turbines while the

maintenance are conducted, i.e., multiple maintenance tasks can be completed in parallel. However, for

safety reasons, there is a restriction on how far a vessel can travel away from disembarked technicians. From

8

this limit, we can extract subsets of the maintenance tasks that can be completed in parallel that are given

as input to the model.

The vessel fleet is considered prepaid, which means there are no fixed costs. However, the vessels incur

operating costs depending on factors such as the type of vessel, distance traveled, and the weather conditions

in which the vessel operates. The vessels are also associated with an available time in each period. This

availability can vary between vessels and across periods, influenced by various factors. Furthermore, each

vessel has a fixed number of technicians it can transport at once and a constant service speed.

The vessels’ travel costs are comparable to the expected revenues of completing the maintenance tasks.

Suppose the operating cost of a vessel during a period is lower than the total value of the maintenance tasks

it is used for. In that case, using the vessel to complete those tasks in that period is economically viable.

We also assume that the operator has no incentive to leave available technicians idle.

The goal is to find the most profitable schedule for the planning horizon, i.e., to maximize the total expected

revenue from performed maintenance tasks subtracted by the vessels’ travel costs. The output is a route for

each vessel for each period in the planning horizon.

9

3 Background

This chapter briefly introduces mathematical programming and the solution methods we utilize in Chapter

4 and 5. The notations from this chapter are used for demonstrating purposes and are independent of the

rest of the thesis.

3.1 Mathematical programming

Mathematical programming or mathematical optimization is a framework used to find the best solution to

a problem P among a set of alternatives. Such problems can be generalized as

ZP = max{f(x) : x ∈ X},

where x is the variable vector used to describe a solution, f is the objective function that measures the

quality of a solution, and X is the set of all the solution alternatives. All elements in X are defined as

feasible solutions to P , that is, they satisfy all the constraints defined by the nature of the problem. If an

element x∗ ∈ X satisfies the inequalities f(x∗) ≥ f(x), ∀ x ∈ X, it is defined as an optimal solution to P .

Optimization problems are further divided into problem categories based on the properties of the function f

and the set X. The most important is whether or not the function is linear and whether or not the set X is

convex and/or continuous. The two most relevant categories for this thesis are linear programs and integer

linear programs.

3.1.1 Linear programs

In a linear program (LP), the objective function and the constraints are linear. We can therefore express

the objective function f(x) as the scalar product c′⊤x′, where c′ is the coefficient vector. The constraints

can be expressed as linear inequalities. We combine the left-hand side of all these inequalities to A′x′ and

the right-hand side to b′. The LP can then be fully expressed as

ZLP = max{c′⊤x′ : A′x′ ≤ b′}.

However, it is common practice to modify A′, b′, c′, and x′ so that we get an equivalent problem where all

entries in x only can take non-negative values. This procedure is well described by Vaderbei [18], and the

result is the characteristic formulation of an LP in standard form,

ZLP = max{c⊤x : Ax ≤ b, x ∈ Rn
+}.

10

(a) The feasible set of an LP (b) The feasible set of an ILP. Note that the convex hull

is fully described when x1 ≤ 2 is added.

Figure 4: A graphical example of an LP (a), and how it can be used to solve an ILP (b) with identical constraints Ax ≤ b

In a linear program in standard form, it is easy to see that the solution space is delimited by the coordinate

axis and the linear inequalities Ax ≤ b. This is illustrated in Figure 4a. A result of this is that an optimal

solution, if one exists, can be found in the intersection of n hyperplanes, i.e., in a vertex.

One of the key advantages of LPs is that there exist good algorithms to solve them, e.g., the simplex

method. The simplex method was invented in 1947 by George Dantzig, who is known as the father of linear

programming [18, 19]. The algorithm is theoretically speaking not efficient as it has an exponential worst-

case running time, but in many cases, it works well in practice. However, there also exist algorithms that

guarantee to solve LPs in polynomial time, such as Karmarkar’s algorithm [20].

3.1.2 Integer linear programs

In many optimization problems, we can formulate all the constraints as linear inequalities, but the nature

of the problem only allows the entries in x to be binary or integral. Even though an integer linear program

(ILP) is expressed very similarly to an LP,

ZILP = max{c⊤x : Ax ≤ b, x ∈ Zn
+},

the integer constraints make ILPs much harder to solve. No known algorithm can guarantee to solve a

general ILP in polynomial time, which is classified as NP-hard. However, if such an algorithm exists, which

is considered highly unlikely, it would also be able to solve all problems in NP in polynomial time.

Many of the known algorithms to solve ILPs are based on the linear programming relaxation (LPR) of the

11

problem. The LPR of an ILP, is identical to the ILP, except that x ∈ Zn
+ is substituted by x ∈ Rn

+. Then,

the goal is to add new constraints, that describe the smallest convex set including all x ∈ Zn
+ : Ax ≤ b, i.e.

the convex hull. In most cases, it is neither realistic nor necessary to fully describe the convex hull. It is

enough to describe the convex hull in the neighborhood of an optimal solution. In Figure 4b, we show how

an optimal solution of an ILP can be forced into a vertex by adding an extra constraint.

3.1.3 The vehicle routing problem

The vehicle routing problem (VRP) is an example of an ILP, or in some variants, a mixed integer linear

program, i.e., an ILP where not all variables are constrained to be integers. The problem was first introduced

by Dantzig and Ramser [21] in 1959. They consider the situation where a set of trucks transports gasoline

from a bulk terminal to a set of service stations. The objective is to determine the shortest combination

of routes for the trucks that meet the gasoline demands from the service stations. They proposes multiple

variations of the problems that take different constraints into consideration.

In general, the vehicles in VRP can represent any modes of transportation that have an insensitive for, or are

constrained to, visit several locations and then return to the starting point. For instance, maintenance vessels

that transfer technicians to offshore wind turbines. Depending on the problem’s nature, several constraints

may apply.

3.2 Column generation

Column generation is a method used to solve large optimization problems. It was first proposed by Ford

and Fulkerson in 1958 [22]. Although they do not use the term column generation, they suggest using it as

a technique for solving the multi-commodity network flow problem. Since then, it is used in a wide specter

of applications within the field of optimization. For instance, Choi and Tsca [23] use it to solve The vehicle

routing problem with a heterogeneous fleet (HVRP), and Dumas et al. [24] use it in their algorithm to solve

The pickup and delivery problem with time window (PDPTW). Both HVRP and PDPTW are special cases

of VRP, and they are relatable to the considered problem in this thesis.

The literature proposes many different ways to explain column generation. For simplicity, we use the same

terms as Wolsey [25], but we avoid the notation caused by the Dantzig-Wolfe reformulation.

12

We define the master problem (M) as the ILP

ZM = max{c⊤x : Ax ≤ b, x ∈ Zn
+},

and the relaxed problem (LM) as the LP

ZLM = max{c⊤x : Ax ≤ b, x ∈ Rn
+}.

Consider the situation where the dimension n is so large that the problem of finding all entries in A and c is

itself unsolvable for available algorithms. The first trick in the column generation algorithm is to define the

restricted relaxation of the master problem (RLM) as

ZRLM = max{g⊤λ : Kλ ≤ b, λ ∈ Rp
+},

where λ and g are the first p entries of x and c, respectively, and K is the sub-matrix of A consisting of all

rows, but only the p first columns. We assume that it is relatively easy to find all entries in the RLM, and

that it is sufficiently fast to solve. We denote a primal optimal solution to the RLM λ∗, and a dual optimal

solution π∗.

In the next step in the column generation algorithm, we search for a column in A that is not in K, and its

corresponding entry in c, which can improve the optimal solution of the RLM if we add it. To do that, we

take advantage of the RLM’s dual problem. The dual RLM is expressed as

WRLM = max{b⊤π : K⊤π ≥ g, π ∈ Rq
+}, (1)

where π is the dual variable vector, and q is the number of rows in the matrix K. Instead of looking for

a column in A directly, we try to construct a new constraint in the dual RLM which, if added, makes the

current dual solution π∗ infeasible. Let A(:,i) denote column i of A, and ci denote the i’th entry in c. We

want to find the i that violates

A⊤
(:,i)π

∗ ≥ ci

the most. Or equivalently, we can reformulate it as the optimization problem

WSP = max{ci −A⊤
(:,i)π

∗ : i ∈ {1, 2, ..., n}}.

We define this as the sub-problem in the column generation algorithm. The constraint is written this way to

maintain generality. However, depending on the problem, this can be derived into multiple, more manageable

constraints. Intuitively, we can think of them as rules that A(:,i) and ci follow, if and only if they are elements

in A and c, respectively.

We solve WSP and denote an optimal solution i∗. If ci∗ − A⊤
(:,i∗)π

∗ ≤ 0, we know that the current optimal

solution to the RLM, λ∗, is also an optimal solution to the LM. This is the stopping condition of the column

13

generation algorithm. On the other hand, if ci∗ − A⊤
(:,i∗)π

∗ > 0, we know that the optimal solution of the

RLM may be improved if we add the column A(:,i∗) and the entry ci∗ to K and g, respectively. We do that

and repeat the steps after solving the RLM until the stop condition is met.

When the stop condition is met, we obtain the optimal solution x∗ of the LM. However, there is no guarantee

that x∗ is feasible for M , e.g. it might have some fractional entries. Therefore, we solve the restricted master

problem (RM),

ZRM = max{ĉ⊤x̂ : Âx ≤ b, x̂ ∈ Zr
+},

where ĉ, x̂, Â and r, represent g, λ, K and p, respectively, from the final RLM, i.e., the version of the RLM

that led to the stop condition. If the optimal objective function value Z∗
RM of the RM is equal to the optimal

value of the final RLM, we know that an optimal solution to the RM is also an optimal solution to M. Then

we are done. However, if this is not the case, an optimal solution to RM might be a good enough solution

to M in practice.

3.3 Heuristic methods

Some optimization problems turn out to be too complex to solve with exact solution algorithms in a rea-

sonable time. The VRP and the routing part of the problem considered in this thesis are examples of such

problems, at least for larger problem instances. A typical way to deal with these kinds of problems is to

apply heuristic methods.

Heuristic methods are algorithms that take advantage of practical rules or shortcuts to find solutions. The

solutions may not be optimal, but in many practical cases, good enough solutions might be satisfactory.

Even if an optimal solution is found using a heuristic method, it is typically not possible to prove that it is

optimal.

A popular choice of heuristic method for solving VRPs is the Adaptive large neighborhood search (ALNS) in

combination with the Simulated annealing (SA) local search algorithm. We believe it is a good idea to take

advantage of this method to solve the problem considered in this thesis as well.

3.3.1 Solution neighborhood

In a heuristic method, a solution neighborhood refers to the set of candidate solutions that can be generated

by applying a certain modification to a given solution [26, 27]. The idea is that it wraps solutions that share

14

some properties, which turn out to be beneficial in iterative heuristic methods.

For instance, for a set of nodes N = {n1, n2, n3, n4}, let the vector x1 = [n1, n2, n3, n4] describe that a

vehicle in an instance of VRP visits the nodes in the order specified by the vector. A possible modification is

to interchange two nodes’ positions in the vector, e.g., n1 and n3 so that we obtain the new solution vector

x2 = [n3, n2, n1, n4]. The vector x2, together with all other combinations that are possible to make by only

interchanging two nodes, constitute a neighborhood of x1.

The interchange method from the example is just one possible way to modify a solution. Multiple terms are

used in the literature for a general solution modification method. From now, we consequently refer to such

methods as operators. A variety of operators are used to access different neighborhoods. These operators can

have different properties that serve different purposes. One of these properties is how much they can modify

a solution. For instance, one operator can interchange two nodes as in the example above, while another

might be able to interchange five. More changes mean that the operator can reach a larger neighborhood of

solutions. However, larger is not always better. This problem is addressed by the ALNS, which we return

to shortly.

Formally, for an operator o and a random component γ, the neighborhood Hox of the solution x is defined

as the set of all possible outputs o(x, γ). The random component enables the operator to return different

output solutions in calls with identical values of x.

In some cases, it is appropriate to split the neighborhood concept into a destroy neighborhood and a repair

neighborhood. In this two-step process, a distinction is made between destroy operators and repair operators.

A destroy operator removes parts of a solution or alternatively, we can imagine that it replaces parts of the

solution with temporary voids. The set H−
dx of all the incomplete solutions that can be accessed by calling

the destroy operator d on the solution x, is a destroy neighborhood of x. On the other side, a repair operator

fills the voids in an incomplete solution x− ∈ H−
dx. All possible completions of an incomplete solution x− that

can be accessed by calling a repair operator r constitute a repair neighborhood H+
rx− . A destroy operator d

and a repair operator r can be combined into an operator

o(x, γ1, γ2) = r(d(x, γ1), γ2),

where the γ1 and γ2 are independent random components. This means that for a set of destroy operators

O− and a set of repair operators O+, it may be possible to build a set O of |O− × O+| unique operators.

However, all pairs (d, r) in O− ×O+ are not necessarily compatible, but the idea is that this split concept

of neighborhood facilitates a more dynamic framework.

15

3.3.2 Simulated annealing

Simulated annealing is an iterative local search algorithm that was first purposed by Kirkpatrick et al. [28]

in 1983. The algorithm starts with a feasible solution that can be manually given as input or generated

by some construction algorithm. This solution is set as the current solution x. Further, the SA-algorithm

explores a new feasible solution x′ in the neighborhood of x. If f is the objective function, the considered

problem is a minimization problem, and f(x′) < f(x), x′ is accepted, i.e., the current solution is set to x′.

Alternatively, if f(x′) ≥ f(x), x′ may still be accepted with a certain probability p. For a temperature T > 0,

this probability typically follows the function

p(x, x′, T) = e− f(x′)−f(x)
T .

Note that high temperature and a small difference f(x′) − f(x) give a probability close to 1, and that the

opposite combination gives a probability close to 0. For each of a given number Idisp of iterations, a new

neighbor is accepted or declined based on these criteria. In the end, the algorithm returns the best solution

observed.

The initial temperature T0, i.e., the temperature at the first SA-iteration, should be tuned so that the

algorithm explores a wide range of solutions in the beginning, but not so wide that it just wastes time and

computations on unpromising parts of the solution space. A common way to tune this parameter is to fix the

acceptance probability to 0.5 for the first Iwarmup < Idisp iterations and track the deviations f(x′)−f(x) for

the accepted solutions during these iterations. When the Iwarmup iterations are completed, the temperature

can be initialized as the mean of these deviations. When the initial temperature is set, the temperature is

reduced in every iteration in a way that it gets close to zero at the last of the available iterations.

3.3.3 Adaptive large neighborhood search

ALNS is a meta-heuristic framework, i.e, a general approximation algorithm that can be applied to a variety

of optimization problems [26]. The ALNS is embedded in a local search framework. In the founding paper

of ALNS, Ropke and Pisinger [29] use Simulated annealing.

The main idea in ALNS is to select operators among a set of predefined operators based on their performance

during the search [30]. This is done by assigning a weight wo to each operator o ∈ O. In every search iteration,

the probability of selecting operator o is set to

po = wo∑
o∈O wo

, ∀ o ∈ O. (2)

16

This weight is updated every Iupdate-th iteration based on how much the operators contribute. The contri-

bution is measured by a scoring system where every operator o is assigned a score so. For a set C of criteria,

this score is increased by a constant Qc if a solution generated by operator o satisfies criterion c ∈ C. These

criteria may be defined in different ways, but [29] proposes a scoring system where the scores are increased

by

Q1 if the operator generates a new best solution,

Q2 if the operator generates a previously unseen solution that improves the current solution,

Q3 if the operator generates a previously unseen solution that is accepted.

Let αo denote the number of times operator o was called during the last Iupdate iterations. Every Iupdate-th

iteration, an updated weight w′
o is calculated by

w′
o = (1− β)wo + β

so

αo
, (3)

where β ∈ [0, 1) is a parameter that determines how much the score influences the weight, i.e., how fast the

weight can change. After the weight update wo ← w′
o, all scores are reset to zero. These score system steps,

together with the Simulated annealing embedding, are summarized in Algorithm 1.

17

Algorithm 1 ALNS with Simulated annealing
x← a constructed feasible solution

xbest ← x

wo ← 1, so ← 0, ∀ o ∈ O

i ← 1

while i ≤ Idisp do

if i is divisible by Iupdate then

update wo based on (3)

so ← 0, ∀ o ∈ O

end if

select an o ∈ O based on probabilities from (2)

x′ ← o(x)

if x′ is accepted according to the Simulated annealing acceptance criteria then

x← x′

if f(x′) < f(xbest) then

xbest ← x′

end if

end if

increment so with respect to the scoring system, ∀ o ∈ O

update the Simulated annealing acceptance criteria

i← i + 1

end while

return xbest

18

4 Mathematical model

In this chapter, we present the mathematical model we use to solve the addressed problem. The section is

structured into three parts. Firstly (4.1), we outline the procedure for selecting routes from a collection of

available options. Secondly (4.2), we describe the process of generating new routes to augment the collection.

Finally (4.3), we demonstrate how we combine and resolve these two issues through the application of a

column generation algorithm.

The notations we introduce in this chapter are used throughout the thesis. A comprehensive summary of all

symbols used in the model can be found in Appendix A.

4.1 Master problem - Route selection

For a given set V of vessels and a set T of time periods, we define a set RALL that contains all feasible

routes. We also define an arbitrarily large subset R ⊆ RALL. Further, we partition R into the sets Rvt of

routes that vessel v ∈ V can travel in period t ∈ T . To clarify,

Rvt ⊆ R ⊆ RALL, ∀ v ∈ V, t ∈ T ,

R =
⋃

v∈V, t∈T
Rvt,

and

Rvt ∩Rv′t′ = ∅, ∀ (v, t), (v′, t′) ∈ V × T , (v, t) ̸= (v′, t′).

Each route r is associated with a profit Pr that is realized if the route is selected. Let us introduce a binary

variable xr, which decides whether route r is selected or not. Our goal is to select the most profitable

combination of routes and this is expressed in the objective function

max
∑
v∈V

∑
t∈T

∑
r∈Rvt

Prxr (4)

of the master problem.

A vessel can, at most, complete one route per time period. In other words, only one route can be selected

per vessel-period combination. This is taken into account by the inequality∑
r∈Rvt

xr ≤ 1, ∀ v ∈ V, t ∈ T . (5)

Further, we have to make sure that the combination of selected routes does not require more technicians

than what is available at a specific time period. Given a set of technician types B, we define DT
br as the

19

demand of technicians of type b for completing route r, and Gbt as the number of available technicians of

type b ∈ B at time period t. Then, the inequality∑
v∈V

∑
r∈Rvt

DT
brxr ≤ Gbt, ∀ b ∈ B, t ∈ T , (6)

describes the technician limitation.

A maintenance task can, at most, be performed once. We assume that every considered turbine requires

exactly one maintenance operation. For a given set of turbines W, we define the parameter

Iwr =

 1, if the maintenance task at turbine w is completed by route r

0, otherwise,

for all w ∈ W and all r ∈ Rvt. We can then prevent the possibility of selecting a combination of routes that

perform the same maintenance operation more than ones by the inequality∑
v∈V

∑
t∈T

∑
r∈Rvt

Iwrxr ≤ 1, ∀ w ∈W. (7)

We connect the expressions from this section and formulate our master problem as the integer program

max
∑
v∈V

∑
t∈T

∑
r∈Rvt

Prxr

s.t.
∑

r∈Rvt

xr ≤ 1, ∀ v ∈ V, t ∈ T

∑
v∈V

∑
r∈Rvt

DT
brxr ≤ Gbt, ∀ b ∈ B, t ∈ T

∑
v∈V

∑
t∈T

∑
r∈Rvt

Iwrxr ≤ 1, ∀ w ∈ W

xr ∈ {0, 1}, ∀ v ∈ V, t ∈ T , r ∈ Rvt .

(8)

Now, consider the continuous relaxation of the master problem. It is identical to (8), except that we replace

the last group of constraints by

xr ∈ R : xr ≥ 0, ∀ v ∈ V, t ∈ T , r ∈ Rvt. (9)

Note that the variable xr is already bound by one above as a result of (5). Since the available technicians

Gbt are non-negative, the problem has a feasible solution xr = 0, ∀ r ∈ R, with objection function value 0.

An obvious upper bound xr = 1, ∀ r ∈ R exists, and we can therefore conclude that an optimal solution

x∗
r also exists and corresponds to an objective function value less than or equal to

∑
r∈R Pr.

20

The dual of the master problem is expressed as

min
∑
v∈V

∑
t∈T

λvt +
∑
b∈B

∑
t∈T

Gbtµbt +
∑

w∈W
ρw

s.t. λvt +
∑
b∈B

DT
brµbt +

∑
w∈W

Iwrρw ≥ Pr, ∀ v ∈ V, t ∈ T , r ∈ Rvt

λvt ≥ 0, ∀ v ∈ V, t ∈ T

µbt ≥ 0, ∀ b ∈ B, t ∈ T

ρw ≥ 0, ∀ w ∈ W,

(10)

where the variables λvt, µbt, and ρw, correspond to the sets of constraints expressed in (5), (6), and (7),

respectively. Let λ∗
vt, µ∗

bt, and ρ∗
w, be an optimal solution to (10). Since the problem is a linear program,

this solution exists by the strong duality theorem. In section 4.3, we show how we take advantage of the

dual optimal solution to generate helpful feasible routes.

4.2 Sub problem - Route generation

In section 4.1, we defined a set of feasible routes R. Now we define the requirements of being an element in

this set.

4.2.1 Graph representation

Consider the directed graph G = (N ,A), where N is a set of nodes and A is a set of arcs. Earlier, we

introduced a set of turbines W. Every turbine w ∈ W is associated with two nodes in N : One delivery node

and one pick-up node. They correspond to the exact same geographical location (the associated turbine), but

they distinguish between delivery and pick-up of technicians. In addition to the two nodes for each turbine,

N also contains an origin node and a destination node. They also refer to identical locations, namely the

port location. To simplify the notations, we represent nodes by integers. For a number n = |W| of turbines,

W = {w1, w2, ..., wn}

ND = {1, 2 ..., n}

NP = {n + 1, n + 2, ..., 2n}

NOD = {0, 2n + 1},

where ND is the set of delivery nodes, NP is the set of pick-up nodes, and NOD is a set that only contains

the origin and destination node. We can now express N as

N = NOD ∪ND ∪NP .

21

For safety reasons, a vessel must remain within a maximum distance of S from the turbine at which it has

disembarked technicians. Therefore we define the set N S
i ⊆ ND for all i ∈ ND that contains all delivery

nodes closer than S from i, including i itself.

The set of arcs A consists of ordered pairs of nodes. It contains the pairs that represent the following arcs:

• From the origin node to all delivery nodes;

(0, j), ∀ j ∈ ND.

• From delivery nodes to other delivery nodes closer than S;

(i, j), ∀ i ∈ ND, j ∈ NS
i \ {i}.

• From delivery nodes to pick-up nodes closer than S;

(i, j), ∀ i ∈ ND, j ∈ NP : j − n ∈ NS
i

• From pick-up nodes to the destination node

(i, 2n + 1), ∀ i ∈ NP

• From pick-up nodes to all delivery nodes except the corresponding;

(i, j), ∀ i ∈ NP , j ∈ ND \ {i− n}

• From pick-up nodes to all other pick-up nodes closer than S;

(i, j) ∀ i ∈ NP , j ∈ NP : j − n ∈ NS
i−n.

The set A is demonstrated for a small problem instance in Figure 5.

A feasible route r ∈ RALL is always a directed path from the origin node to the destination node in the

digraph G. To describe such a path, we introduce the variables

yij =

 1 if the vessel travels directly from node i to node j

0 otherwise,
, ∀ (i, j) ∈ A.

4.2.2 Travel constraints

The equation ∑
j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji = 0, ∀ i ∈ N \ NOD, (11)

22

0 7

1

4

2 5

3

6

Port

Turbine 1

Turbine 2

Turbine 3

S

Figure 5: An example of what the graph G = (N , A) can look like for a simple case with three turbines (n = 3). Turbine

1 and Turbine 2 are closer than S.

ensure that the vessel can not visit a delivery or pick-up node without leaving it, and vice versa. The vessel

is also forced to leave the origin node exactly once by∑
j∈N D

y0j = 1, (12)

and return to the destination node exactly once by∑
i∈N P

yi(2n+1) = 1. (13)

Another route feasibility criterion is to visit a pick-up node if and only if the corresponding delivery node is

visited. This can be expressed as∑
i:(i,j)∈A

yij −
∑

i:(i,j)∈A

yi(j+n) = 0, ∀ j ∈ ND. (14)

Note that equation (14) does not say anything about the order. It is definitely infeasible to visit a pick-up

node before the corresponding delivery node, but this will be taken care of in the following time constraints.

4.2.3 Time constraints

The total time vessel v is available in time period t is limited to T P
vt. We define a variable qi, which equals

the time the vessel leaves node i. For a route to be feasible, the vessel has to arrive at the port within the

23

available time. Mathematically, we insist that

q2n+1 ≤ T P
vt. (15)

A vessel v has a minimum travel time Tijv from node i to node j. We can use this to limit the time at the

nodes by

qi + Tijv ≤ (T P
vt + Tijv)(1− yij) + qj , ∀ (i, j) ∈ A (16)

Note that T P
vt +Tijv is big enough to make the inequality redundant for routes where a vessel is not traveling

directly from i to j. Another parameter T̃i reflects the time required for the technicians to complete the task

corresponding to node i. Or, more precisely, the minimum time between the visit of a delivery node and its

corresponding pick-up node. It is only defined for the delivery nodes i ∈ ND. The constraint

qi + T̃i ≤ qi+n, ∀ i ∈ ND, (17)

ensures that a pick-up node cannot be visited before the required time after delivery has passed. Note that

it also constrains the order. Now, a pick-up node cannot be visited before its corresponding delivery node.

4.2.4 Technician constraints

Recall the set B of technician types and the number Gbt of available technicians of type b from section 4.1.

We define the non-negative integer variable zbi, which describes the number of technicians of type b onboard

the vessel when it leaves node i. The number of technicians onboard vessel v when it leaves the origin node

cannot exceed the number of available technicians in the period. Therefore, the inequality

zb0 ≤ Gbt, ∀ b ∈ B (18)

must be satisfied. In addition, vessel v is not allowed to have more than Kv technicians onboard. That can

be expressed as ∑
b∈B

zb0 ≤ Kv. (19)

Every node i, except the origin and destination node, is associated with a demand Fbi for technicians of

technician type b. The demand at delivery nodes is positive, and the demand at pick-up nodes is defined as

the negative of the demand at their corresponding delivery nodes. Then,

zbi − Fbj ≤ zbj + Kv(1− yij), ∀ (i, j) ∈ A, b ∈ B (20)

and

zbi − Fbj ≥ zbj −Kv(1− yij), ∀ (i, j) ∈ A, b ∈ B (21)

24

force zbi to be reduced by the technician demand when a node is visited, i.e., zbj = zbi − Fcj if yij = 1.

The final constraint in the sub-problem deals with the safety distance between a vessel and disembarked

technicians. This issue is partially dealt with by not defining arcs between nodes that can never be visited

consecutively. However, we still need to prevent the situation where a vessel travels from delivery node i to

delivery node j, via a pick-up node k, where i and k do not correspond to the same turbine and j /∈ NS
i . To

achieve this, we formulate the two legal ways i and j can be visited by the same vessel in the same period.

Either both i and its corresponding pick-up node i + n are visited before j, or they are both visited after

the pick-up node j + n that corresponds to j. We take advantage of the time variable q and state that

qi+n ≤ qj or qi ≥ qj+n, (22)

if a vessel visits both i and j, and j /∈ N S
i . Further, we make the constraint (22) redundant if a vessel

does not visit both i and j. The total available time in the period, T P
vt, is always a great enough number to

achieve this if we rewrite the constraint as

−T P
vt(1−

∑
k:(i,k)∈A

xik) + qi+n ≤ qj + T P
vt(1−

∑
k∈N D

xjk)

or

T P
vt(1−

∑
k:(i,k)∈A

xik) + qi ≥ qj+n − T P
vt(1−

∑
k∈N D

xjk),

∀ (i, j) ∈ ND ×ND : j /∈ NS
i .

(23)

Finally, to get around the disjunction, we introduce a binary variable mij for every pair (i, j) ∈ ND ×ND :

j /∈ NS
i . Now the expression can be split into

−T P
vt(1−mij)− T P

vt(1−
∑

k:(i,k)∈A

xik) + qi+n ≤ qj + T P
vt(1−

∑
k∈N D

xjk),

∀ (i, j) ∈ ND ×ND : j /∈ NS
i ,

(24)

and

T P
vtmij + T P

vt(1−
∑

k:(i,k)∈A

xik) + qi ≥ qj+n − T P
vt(1−

∑
k∈N D

xjk),

∀ (i, j) ∈ ND ×ND : j /∈ NS
i .

(25)

Note that mij = 0 makes (24) redundant and mij = 1 makes (25) redundant. The result is that at least one

side of disjunction (23) must be true if both (24) and (25) are satisfied.

25

4.2.5 Objective

As mentioned in section 4.1, every route is associated with a profit Pr. This profit can be reformulated as

revenues subtracted by costs. The revenue Rit is defined for all delivery nodes and reflects the expected

revenue associated with completing maintenance at the turbine corresponding to node i at time period t.

The cost CT
ijvt describes the cost of traveling from node i to node j by vessel v in time period t. The profit

of a route can then be expressed as

Pr =
∑

(i,j)∈A:j∈N D

Rjtyij −
∑

(i,j)∈A

CT
ijvtyij . (26)

For every vessel v, we want to find the most profitable route at time period t. The objective is therefore to

maximize Pr.

4.3 Column generation

Consider an instance of the continuous relaxation of the master problem (9) where the set of routes R is a

relatively small subset of all feasible routes RALL, i.e.,

R ⊂ RALL, |R| ≪ |RALL|.

As shown in section 4.1, this instance has an optimal dual solution λ∗
vt, µ∗

bt, and ρ∗
w, which obviously satisfy

the dual constraints,

λ∗
vt +

∑
b∈B

DT
brµ∗

bt +
∑

w∈W

Iwrρ∗
w ≥ Pr, ∀ v ∈ V, t ∈ T , r ∈ Rvt.

We substitute Pr by the right-hand side of equation (26). The technician demand DT
br can be interchanged

with the route variable zb0, i.e., the number of technicians of type b onboard vessel v when it leaves the port.

These modifications result in the inequality,

λ∗
vt +

∑
b∈B

zb0µ∗
bt +

∑
w∈W

Iwrρ∗
w ≥

∑
(i,j)∈A:j∈N D

Rjtyij −
∑

(i,j)∈A

CT
ijvyij , ∀ v ∈ V, t ∈ T , r ∈ Rvt. (27)

Further, we want to express the master parameter Iwr by the route variable yij . To achieve this, we allow

ourselves to abuse the notation a bit by indexing ρ with j ∈ ND, instead of its original w ∈ W. This makes

no practical difference as there is a one-to-one relationship between turbines and delivery nodes. Thus, we

apply the substitution ∑
w∈W

Iwrρ∗
w →

∑
(i,j)∈A:j∈N D

yijρ∗
j , (28)

26

to inequality (27). After some relocation and contraction, we are left with∑
(i,j)∈A:j∈N D

yij(Rjt − ρ∗
j)− λ∗

vt −
∑

(i,j)∈A

CT
ijvyij −

∑
b∈B

zb0µ∗
bt ≤ 0, ∀ v ∈ V, t ∈ T . (29)

Note that we went from representing route r ∈ R by DT
br and Iwr, to representing it by yij and zb0. We know

that an arbitrary route r ∈ R, corresponds to some values y′
ij and z′

b0, and that it satisfies inequality (29)

when v and t equals the route’s corresponding vessel and period. We are interested in finding new routes

r ∈ R∩RALL. If we can find a route r′ that satisfies all the constraints discussed in section 4.2, and at the

same time violates (29), we know that r′ ∈ R ∩ RALL. Now, we connect all constraints presented in this

chapter with an objective function that aims to maximize the violation of (29). For all vessels v ∈ V and all

27

time periods t ∈ T , we solve the mixed integer linear program,

max − λ∗
vt +

∑
(i,j)∈A:j∈N D

yij(Rjt − ρ∗
j)−

∑
(i,j)∈A

CT
ijvtyij −

∑
b∈B

zb0µ∗
bt

s.t.
∑

j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji = 0, ∀ i ∈ N \ NOD

∑
j∈N D

y0j = 1

∑
i∈N P

yi(2n+1) = 1

∑
i:(i,j)∈A

yij −
∑

i:(i,j)∈A

yi(j+n) = 0, ∀ j ∈ ND

q2n+1 ≤ T P
vt

qi + Tijv ≤ (T P
vt + Tijv)(1− yij) + qj , ∀ (i, j) ∈ A

qi + T̃i ≤ q(n+i), ∀ i ∈ ND

− T P
vt(1−mij)− T P

vt(1−
∑

k∈N D

xik) + qi+n

≤ qj + T P
vt(1−

∑
k∈N D

xjk), ∀ (i, j) ∈ ND ×ND : j /∈ NS
i

T P
vt + mijT P

vt(1−
∑

k∈N D

xik) + qi

≥ qj+n − T P
vt(1−

∑
k∈N D

xjk), ∀ (i, j) ∈ ND ×ND : j /∈ NS
i

zb0 ≤ Gbt, ∀ b ∈ B∑
b∈B

zb0 ≤ Kv

zbi − Fbj ≤ zbj + Kv(1− yij), ∀ (i, j) ∈ A, b ∈ B

zbi − Fbj ≥ zbj −Kv(1− yij), ∀ (i, j) ∈ A, b ∈ B

yij ∈ {0, 1}, ∀ (i, j) ∈ A

qi ∈ R+
0 , ∀ i ∈ N

zbi ∈ Z+
0 , ∀ b ∈ B, i ∈ N .

(30)

If the optimal objective function value is positive, the route corresponding to the solution extends the set

R to R′ = R ∪ {r′}. Otherwise, the route is ignored. When the sub-problem (30) is solved for all vessels

and time periods, the relaxed master problem is solved again, but for R′ this time. The new optimal dual

solution is then used to create a new set of sub-problem instances. This process is repeated until none of

the sub-problem instances have positive optimal objective function values. When that happens, we solve the

28

integer master problem for the current set of feasible routes. The whole procedure is expressed in Algorithm

2. Note that even if the last relaxed optimal solution is optimal for all feasible routes RALL, the integral

optimal solution does not have to be. We can only be sure of that if the optimal objective function value is

equal for the relaxed and the integer master problem. However, the gap between the two is an indication of

how good the integer solution is.

Algorithm 2 Column generation
R ← ∅

stopping criterion ← False

while stopping criterion = False do

λ∗, µ∗, ρ∗ ← solve the dual master problem (10) for R

stopping criterion ← True

for (v, t) ∈ V × T do

r ← solve the sub problem (30) with v, t, λ∗, µ∗ and ρ∗ as input

if r violates the dual constraint (29) then

R ← R∪ {r}

stopping criterion ← False

end if

end for

end while

best-found integer solution ← solve the integer master problem (8) for R

29

5 Heuristic approach

We encounter two main challenges when we implement Algorithm 2 and test it on various input data. The

first one is related to the complexity of the sub-problem (30). We use Gurobi 10.0 [31] to solve the master

problem and the sub-problem. While Gurobi efficiently solves the master problem, its performance on the

sub-problem proves to be highly sensitive to the number of turbines n. Already for n = 10, Gurobi may use

an unreasonable amount of time to find an optimal solution to the sub-problem. Considering that we may

need to solve the sub-problem many times to meet the stop condition in Algorithm 2, we should be able to

solve it relatively quickly.

The second challenge is that some input data result in the case where the optimal objective function value

of the final master problem is smaller than the objective function value of the corresponding continuous

relaxation. In some cases, we are even able to manually create feasible routes that can improve the final

integer solution.

In this chapter, we propose two heuristic algorithms that answer these challenges. The chapter is structured

as follows: First, we present the ALNS framework both algorithms utilize. Then, we explain each algorithm’s

properties. Finally, we discuss the consequences of using heuristic methods.

We advise the reader to recall definitions and explanations from Section 3.3.

5.1 Route generation with ALNS

The heuristic algorithms produce routes, meaning they both provide solutions to the sub-problem (30).

However, instead of representing the solution with all variables in the sub-problem, we express it by the two

vectors u and u. The vector u consists of two instances of every turbine visited in the solution, while u

contains one instance of each turbine not visited. For instance, consider the sub-problem instance with four

turbines which, for simplicity, are represented by positive integers. Then,

u = [1, 1, 4, 2, 4, 2] and u = [3], (31)

express the solution where a vessel visits three of the turbines. First, it travels from the port to Turbine

1 and is on standby at the turbine while the transferred technicians conduct maintenance. When they are

done, it embarks them again and travels to Turbine 4. At Turbine 4, the vessel disembarks the required

technicians before it immediately travels to Turbine 2. Further, the vessel travels back to Turbine 4 and

picks up the technicians when they are done, then back to Turbine 2 and picks up the technicians when they

30

are done there. Finally, it travels from Turbine 2 back to the port. Further, u reflects that Turbine 3 is not

visited in the example solution.

It is easy to extract the variable yij from u as the first occurrence of a number in u corresponds to a turbine’s

delivery node, and the second occurrence corresponds to a turbine’s pick-up node. However, in some cases,

the variable we try to extract may not be defined because of the safety distance S. For example, consider

Turbine 2 and Turbine 4 from (31). If they are located at a distance greater than S from each other, the arc

between the delivery nodes of Turbine 4 and Turbine 2 does not exist. Hence, no yij corresponds to that

arc, and the route is infeasible.

On the other hand, if all variables yij extracted from u exist, it is impossible to express a route that violates

the constraints (11) to (14) introduced in Section 4.2.1. Further, by using the travel times Tijv and the

required times T̃i for the technicians to complete the maintenance tasks, we can extract all time variables qi

and check whether the vessel can complete the route within the available time T P
vt. We also determine the

minimal numbers of technicians, zb0, the vessel must bring from the port to complete the route and ensure

that they do not exceed the vessel’s capacity or the number of available technicians of each type. Finally,

we verify that none of the turbines in u that are further than S from each other are maintained in parallel.

We implement an ALNS framework that follows the principals of Algorithm 1 from Section 3.3. However, in

the subsequent discussion, solutions are identified by the vector pair (u, u) as explained above, rather than

the symbol x from Algorithm 1. Further, we initialize the temperature according to the warm-up procedure

described at the end of Section 3.3.2.

5.1.1 Operators

We create two classes of destroy operators: k-remove and p-percent-remove. The k-remove operator class

selects k random turbines from u. By removing a turbine, we mean removing both instances of it in u

and append one instance of it to u. If the current u contains less than k turbines, it removes all visited

turbines from u. We instantiate two destroy operators from this class where k is set to 1 and 2, respectively.

The p-percent-remove class removes p percent of the turbines in u. If p percent of the visited turbines are

non-integer, p is replaced by ⌈p⌉. We instantiate operators for p ∈ {20, 50} and add them to the collection

of destroy operators.

For the repair operators, we create three procedures: k-random-insert, k-greedy-insert, and k-greedy-insert-

regret. The k-random insert class is the simplest one, as it picks k random turbines from u and, in random

31

order, inserts them one by one into the position in u that results in the best objective function value. We test

all position combinations for both instances of each turbine. We instantiate instances of the k-random-insert

for k = 1, k = 2, and k = 3.

The k-greedy-insert selects k turbines from u based on a probability that depends on the turbines’ revenue.

Recall the revenue Rwt earned by maintaining turbine w in period t. We set the probability of selecting

turbine w ∈ u to
Rwt∑

w∈u Rwt
, ∀ w ∈ u.

For k > 1, we repeat this selection process until we have selected k turbines. Afterward, we reinsert them in

the same procedure as in k-random-insert. For k-greedy-insert, we instantiate operators for k ∈ {1, 2}.

The k-greedy-insert-regret class builds upon the k-greedy-insert by considering all possible insertion orders

for the selected turbines. Once all the turbines are selected, it evaluates the objective function value for each

possible insertion order and selects the order that results in the best objective function value. This approach

aims to account for the potential interactions between turbines and find a more efficient arrangement of the

selected turbines within the solution. Finally, we instantiate operators for k = 2 and k = 3 and add them to

the collection of repair operators.

We create eight operator pairs from the introduced destroy- and repair-operators and use them in Algorithm

1. From now on, when we refer to the ALNS, we mean this algorithm with these operators and the other

specifications introduced in this chapter. Table 1 gives an overview of all the operator pairs.

Table 1: Overview of the pairs of destroy and repair operators

Destroy operator Repair operator

Operator 1 1-remove 1-random-insert

Operator 2 1-remove 2-random-insert

Operator 3 1-remove 1-greedy-insert

Operator 4 1-remove 2-greedy-insert-regret

Operator 5 2-remove 2-greedy-insert-regret

Operator 6 3-remove 3-random-insert

Operator 7 20-percent-remove 2-greedy-insert

Operator 8 50-percent-remove 3-greedy-insert-regret

32

5.2 Heuristic method 1: Sub-problem solver

The first heuristic algorithm we introduce is a straightforward solution algorithm for the sub-problem (30).

The motivation for using the ALNS to solve the sup-problems is that an exact solver cannot provide optimal

(or even good) solutions in a reasonable time for more challenging problem instances.

To solve the sub-problem, we set the max iterations Idisp to 5 000 and designate the first 500 iterations to

the warm-up procedure.

5.3 Heuristic method 2: Warm start

Instead of initializing R with the empty set, as we first proposed with Algorithm 1, pre-generating some

routes might be a good idea to kick-start the column generation. The idea is to create as many good routes

as possible in a given number of seconds T S . However, to avoid producing many similar routes, we replace

the set of turbines W by a unique subset W ′ ⊆ W each time.

For each vessel in each period, we generate all the feasible routes where the vessel visits only one turbine.

Further, we produce the best routes for all subsetsW ′ ⊂ W where |W ′| = 2. For the problem sizes we consider

in this thesis, this is possible to achieve with an exhaustive search, i.e., we check all possible solutions.

As there may be an unmanageable number of combinations when considering subsets of cardinality greater

than two, we can only produce and check some possible solutions. In all iterations during the restoring time,

we select a random vessel, a random period, and a random subset of cardinality k and solve it with the

ALNS. The cardinality is given as a function of the current time a. Let a0 be the time we start this last

part of the warm start algorithm, and let a1 be the time we terminate it. Then, the function

k(a) =
⌈

a− a1

a1 − a0
· (|W| − 2)

⌉
+ 2 (32)

determine the cardinality k. That is, |W ′| increases linearly with the elapsed time, and converges to |W|.

In the warm-start method, the number of iterations Idisp for each ALNS run is set to 2000, allowing more

runs to be completed within the designated time. The designated time T S is determined based on the

problem instance size and the chosen algorithm. We save details on this for the experiments chapter, but

Algorithm 3 summarizes a general overview of the procedure.

The motivation for the warm start method can be divided into three. Firstly, it can reduce the number of

column generation iterations necessary to meet the stopping criteria in Algorithm 2, reducing the total run

33

Algorithm 3 Warm start
R ← ∅

a← the time we start the algorithm

a1 ← a + T S

create all feasible routes for subsets W ′ : |W| ≤ 2

a←the time at the moment

a0 ← a

while a < a1 do

W ′ ← a random subset of W with cardinality k(a) (32)

v ← a random vessel, t← a random period

r′ ← generate a route for W ′, v, and t using the ALNS

R ← R∪ {r′}

a←the time at the moment

end while

time. Secondly, we believe that routes just servicing a few turbines (typically the ones generated early in

this method) can reduce the potential gap between the optimal objective function value of the final master

problem and the final master problem relaxation. The third reason is more for experimental purposes, as

we use the warm start to solve the problem without column generation. We return to this with more details

in Chapter 7.

5.4 Consequences

We cannot guarantee optimal solutions when we solve the sub-problem with the ALNS. Algorithm 2 may

therefore terminate too early. A consequence is that we cannot be sure that the solution to the final master

problem relaxation is an upper bound for the problem. However, suppose we can solve small instances to

optimality by using the ALNS to solve the sub-problem. In that case, we believe it can also be used to create

close-to-optimal solutions for more complex instances.

34

6 Instance generation

In our work, we have defined the problem differently from other studies in the field. As a result, we find

that none of the benchmark problem instances in the literature are suitable for testing our proposed solution

method. Consequently, one contribution of this thesis is the generation of the new instances we use for

experiments in our study, which can be used in future research in the field. We have published all instances

and a guide on how to read them on GitHub [32].

Despite making multiple attempts to obtain operation and maintenance data from owners and operators of

existing offshore wind farms, we have been unsuccessful. Therefore, we generate test instances using open-

source information. While we cannot guarantee these instances’ accuracy or realism, they provide some

guidelines for the potential problem sizes and implementation performance.

We create eight problem instances that mainly differ in the cardinality of three of the input sets: turbines,

periods, and technician types. Table 2 gives a complete overview of these cardinalities.

Table 2: The cardinalities of the input sets in the generated problem instances

Turbines Vessels Periods Technician Types

Instance 1 4 2 2 1

Instance 2 6 2 2 2

Instance 3 8 2 2 2

Instance 4 10 2 3 2

Instance 5 15 2 5 2

Instance 6 25 2 6 2

Instance 7 45 2 8 3

Instance 8 60 2 14 4

6.1 Turbines

For turbine locations, we use the coordinates of the turbines in the Triton Knoll wind farm [33]. Triton Knoll

consists of 90 bottom fixed turbines located approximately 40 kilometers off the east coast of England [34].

It is co-owned and operated by the German energy company RWE Renewables. They have an operation and

maintenance base at Grimsby Port, one of the closest ports to the wind farm. We have not been in contact

with RWE, but we believe they perform most of the light maintenance on the Triton Knoll turbines by using

35

CTVs that travel from and return to this base within a workday. All instances therefore use the location of

this base and the locations of a subset of the Triton Knoll turbines as positional inputs. Figure 6 shows all

turbine locations and the base location.

Figure 6: Map illustrating the specific locations of the turbines in Triton Knoll, the RWE maintenance base in Grimsby,

UK, and the weather station supplying the wave data for the problem instances.

6.2 Vessels

We have repeatedly observed two vessels, the M/V Maker and the MSC Swath 2, near the Triton Knoll

turbines and in the area between the wind farm and the base. Our observations were facilitated by tracking

the AIS signals of these vessels on MarineTraffic [35]. In all instances, we utilize the speed and technician

capacity of the two vessels to generate realistic input parameters. This information is reported in their

specification sheets [36, 37]. However, these sheets do not provide information about fuel consumption.

Therefore, we rely on the fuel consumption data in another CTV’s specification sheet [38]. This particular

CTV offers both the M/V Marker’s and the MSC Swath 2’s engine systems as options, and its sheet includes

fuel consumption data for both.

36

Table 3: Specifications of the vessels that are used in the instances. The Min cost and the Max cost entries are the

approximated costs when the significant wave height is less than 0.5m and equal to 1.5, respectively.

Name Speed Tech. Cap. Min Cost Max Cost

MV Marker [36] 27kn 24 €21/nm €25/nm

MSC Swath 2 [37] 22kn 24 €39/nm €47/nm

6.3 Weather conditions

To increase the realism of the instances regarding weather conditions, we use historical wave data (2017-01-01

to 2022-12-31) from a weather station close to Triton Knoll [39]. The exact position of the weather station is

shown in Figure 6. We assign a date range to each instance, where the duration of the range is the same as

the number of periods in that particular instance. The wave data in the assigned period affect the instance

data in two ways; Firstly, it restricts the available time in the period. We set the available time for a vessel

in a period to the maximum time interval between 08:00 and 20:00, in which the significant wave height does

not exceed the vessels’ transfer limitation. We use a transfer limitation of 1.5 meters significant wave height

for both vessels.

Secondly, we assume that a vessel’s service speed is constant regardless of weather conditions. However, we

adjust its fuel consumption based on the average significant wave height in the period. For a significant wave

height h and a vessels consumption DF UEL from its specification sheet, we adjust the fuel consumption to

DADJ =

 DF UEL(1 + 0.1h
1.5), if h > 0.5

DF UEL, otherwise.

Further, we use this adjusted fuel consumption and a fuel price of €1.5/L to extract each vessel’s cost per

distance in each period. The min and max costs for each vessel are given in Table 3.

6.4 Technicians

The required time to complete the maintenance task for delivery node i, denoted as T̃i, is assigned a random

duration between 1 and 6 hours, with a precision of half an hour.

For all instances, we set the number of required technicians Fbi of type b to complete the maintenance task

37

corresponding to delivery node i, to a random integer between 0 and 4, where∑
b∈B

Fbi ∈ {3, 4, 6}, ∀ i ∈ ND. (33)

To achieve this, we generate a set of |B| random integers between 0 and 4. We then check if these numbers

satisfy the condition defined in (33). If the condition is not met, we discard the set and repeat the process

until it is. This procedure is used to set the technician demands for all maintenance tasks.

Each vessel’s technician capacity Kv is given from its specification sheet. For both of the vessels we use in

all instances, the corresponding sheet says Kv = 24.

Regarding the number of available technicians Gbt of type b in period p, we want the sum over types to

be close to (within 20%), but never above, the sum of the vessels’ technician capacities. We also want the

available technicians to be distributed almost evenly (max deviation 20%) between the technician types. We

therefore set Gbt to a random integer where,
4
5

∑
v∈V

Kv ≤
∑
b∈B

Gbt ≤
∑
v∈V

Kv, ∀ t ∈ T ,

and
4
5 ·

∑
v∈V Kv

|B|
≤ Gbt ≤

6
5 ·

∑
v∈V Kv

|B|
, ∀ b ∈ B, t ∈ T

in all instances.

We set the safety distance S to 2 nautical miles (nm) in all instances.

6.5 Revenues

Before we get into how we set the revenues for each maintenance task, let us first develop an understanding

of the cost levels involved in traveling from Grimsby Port to the Triton Knoll turbines. These turbines are

located at different distances from the port, with the closest one about 28.5 nm away and the farthest one

around 39.5 nm away.

Under conditions of less than 0.5m significant wave height, traveling to the nearest turbine and back to the

port using the most cost-effective vessel would take approximately 2.1 hours and cost €1200. On the other

hand, for the furthest turbine, using the most expensive vessel for the round trip would take about 3.6 hours

and cost €3713.

Each of the considered turbines has precisely one corresponding available maintenance task. For all instances,

we partition the turbines’ delivery nodes in two; 10% of them (rounding upwards) correspond to failure

38

repairs, while the restoring correspond routine jobs. We denote the set of delivery nodes that corresponds

to failure repairs NDF .

Failure repairs involve restoring a turbine from a non-functioning state to its full energy harvesting potential.

Therefore, the revenue for such tasks should reflect the earnings from the energy markets when a turbine

is operative. We approximate the expected earnings Et to €11400 for all periods t ∈ T , but we also add a

random component ωt ∈ [−5000, 5000] to simulate variations in wind and electricity prices. Let us define

the set T A
t ⊆ T for all t ∈ T , that consists of t itself and all periods in the planning horizon that come after

t. In each instance, we set the revenues for failure repairs to

Rit =
∑

t∈T A

(Et + ωt), i ∈ NDF , t ∈ T .

We set the revenues for the routine checks relatively low compared to the failure repairs. A task corresponding

to delivery node i ∈ ND\NDF is given a random revenue between €500 and €20000 in the first period. Then,

we decrease the revenue by 5% for each day after that. The decreasing revenue is intended to encourage early

completion when costs are similar, as weather forecast uncertainties increase with time. Let each period be

represented by its order in the planning horizon, i.e., T = {1, 2, ..., |T |}. We can then summarize how we set

the revenues for the routine checks as

Ri,1 ∈ [500, 20000], ∀ i ∈ ND \ NDF

and

Rit = 0.95Ri,t−1, ∀ i ∈ ND \ NDF , t ∈ T : t > 1.

39

7 Experiments

The main goal of the experiments we present in this chapter is to test the proposed solution method. To

achieve this, we address the two questions:

• Is the proposed ALNS sup-problem solver good enough?

• Is the column generation working well to solve the considered problem?

We explain our two-phase methodology to answer these questions in Section 7.1. Further, we present and

discuss the results in Section 7.2. A secondary goal of the experiments is to get an intuition of what

characterizes good solutions to the generated problem instances. Consequently, we finish Section 7.2 by

examining the factors that influence the solutions’ quality and see if we can determine any repeating trends

across the instances.

7.1 Method

We define abbreviations for the three solution algorithms that we use in the experiments:

• CGA-H: The column generation algorithm (Algorithm 2) with warm start and heuristically solved

sub-problem,

• CGA-E: The column generation algorithm (Algorithm 2) with warm start and sub-problem solved to

optimality using Gurobi, and

• CA: The challenger algorithm, which is an extended version of the warm start heuristic (we introduce

it in Section 7.1.2).

The designated time for the warm start in CGA-H and CGA-E is summarized in Table 4. Note that the

time is set to 0 in CGA-E for Instances 1-3. This is because CGA-E finds equally good solutions in a shorter

time without warm start for these problem instances.

7.1.1 Phase 1

CGA-H and CGA-E are already well-defined in Chapters 4 and 5. In the first part of the experiment, we

solve the eight instances presented in Chapter 6, using CGA-H. To determine robustness, we solve each

40

Table 4: The designated time for the warm-start heuristic in CGA-H and CGA-E

CGA-H CGA-E

Instance 1 60 0

Instance 2 60 0

Instance 3 60 0

Instance 4 60 60

Instance 5 100 100

Instance 6 100 100

Instance 7 200 200

Instance 8 300 300

instance five times, calculate the average solution, and compare it to the best among the five. Further, we

also try to solve all instances using CGA-E. However, the process is terminated if the stopping criteria are

not met within 15,000 seconds.

The motivation for this phase is to determine if CGA-H consistently finds optimal, or at least as good

solutions as the CGA-E, to the instances CGA-E is able to solve in a reasonable time. Additionally, we aim

to get an indication of the instance sizes that CGA-E can successfully solve and assess the performance of

CGA-H on instances larger than this potential threshold.

7.1.2 Phase 2

The Challenger Algorithm is derived from the warm-start method (Algorithm 3). In CA, we set the time

limit T S equal to the average time CGA-H takes to reach the stopping condition for each problem instance

in Phase 1. When the allocated time is over, CA solves the master problem (8) for the generated routes.

Like with CGA-H, we also run CA five times for each instance to determine the robustness and get a better

basis of comparison with the CGA-H. To be clear, we summarize CA in Algorithm 4.

Algorithm 4 Challenger algorithm
T S ← the average time used by CGA-H to solve the same instance

R ← the output from Algorithm 3 with time limit T S

Solve the master problem 8 for R

The motivation for Phase 2 is to investigate if column generation is a good idea. We want a better un-

41

derstanding of whether or not the dual weights efficiently force CGA-H/CGA-E to generate routes that

contribute in better solutions.

7.1.3 Implementation choices and hardware specifications

We implement all algorithms in Python 3.9. To significantly improve speed, we use Numba [40] to compile

most of the functions called by the heuristic methods. We solve the master problem, including its continuous

relaxation, with Gurobi 10.0 [31]. IN CGA-E, we also solve the sub-problem with Gurobi 10.0.

We conduct all experiment runs on a PC equipped with an 11th Gen Intel Core i7-1165G7 processor with a

base frequency of 2.80 GHz, 16.0 GB of installed RAM (15.7 GB usable), and a 64-bit Windows 10 operating

system.

7.2 Results

Table 5 presents the results from Phase 1 of the experiments. In the table, “Average” refers to the average

solution quality, measured as profit in euros, among the five runs for CGA-H. The “Best” column signifies the

best solution found by both considered solution algorithms for each instance, while the “Run time” columns

display the average running time for CGA-H and the single running time for each instance using CGA-E,

respectively.

From the results, it is evident that CGA-E successfully solves the first four instances. However, it cannot

reach the stopping criteria within 15,000 seconds for the four most complex instances, indicating that CGA-E

has limitations in solving larger problem instances within a reasonable time. On the other hand, CGA-H

consistently produces solutions for all instances.

Notably, CGA-E outperforms CGA-H in terms of speed for the first three instances, where both algorithms

generate solutions of equal quality. This is because Gurobi can prove optimality and stop the search at some

point. Conversely, the ALNS solver uses its 5000 available iterations even though an optimal solution might

be found early in the search.

Also for Instance 4, the two algorithms find solutions of equal quality. However, going from Instance 3 to

Instance 4, the run time for CGA-E increases with a factor of 100. In contrast, the run time of CGA-H does

not even double. Even though we expected this to happen at some point, it is interesting that the jump

happens going from an instance with eight turbines and two periods to an instance with ten turbines and

42

three periods.

Table 5: Comparison of results from five runs of CGA-H and one run of CGA-E across all instances.

CGA-H (5 runs) CGA-E (1 run)

Average [€] Best [€] Run time [s] Best [€] Run time [s]

Instance 1 36109 36109 53 36109 2

Instance 2 44474 44474 130 44474 12

Instance 3 56829 56829 155 56829 51

Instance 4 79514 79514 229 79514 5156

Instance 5 174075 174245 443 - -

Instance 6 299568 300014 657 - -

Instance 7 612839 612860 2225 - -

Instance 8 1022974 1025825 10661 - -

Another observation from Table 5 is the robustness of CGA-H. For the first four instances, all five runs find

the same solution or at least solutions of equal quality. Further, for Instance 4 to Instance 7, we see that

the differences between the objective function value of the best-found solution and the average objective

function value across the five runs are less than €500. Relative to the objective function values, this is less

than 0.15%.

Using our solution methods, the only way to confirm if a solution from Table 5 is optimal is by comparing it

to an optimal solution of the continuous relaxation of the master problem found by CGA-E. If both solutions

have equal objective function values, we can guarantee optimality (as explained in Section 4.3). Therefore,

we provide the solutions to the relaxed master problem for CGA-H and CGA-E in Table 6. The “Gap”

column in this table presents differences in objective function values between the best-found solutions to

the master problem and the best-found solutions to the relaxed master problem for all instances. For the

best-found objective function value z∗
1 to the master problem and the best-found objective function value z∗

2

to the relaxed master problem, we define the gap as

2(z∗
2 − z∗

1)
z∗

2 + z∗
1
· 100%.

In the first two instances, Table 6 reveals no difference in the solution quality between the master problem

and its continuous relaxation when we use CGA-E. Hence, CGA-E and CGA-H find optimal solutions to

Instance 1 and Instance 2.

43

Table 6: Best observed solutions to the continuous relaxation of the master problem after meeting the column generation

stopping criteria for both solution algorithms.

CGA-H [€] CGA-E [€] Gap [%]

Instance 1 36109 36109 0.00

Instance 2 44474 44474 0.00

Instance 3 57071 57071 0.42

Instance 4 80215 80215 0.88

Instance 5 174245 - 0.00

Instance 6 300017 - 0.00

Instance 7 615526 - 0.43

Instance 8 1034616 - 0.85

For Instance 3 and Instance 4, we are not able to prove optimality. However, since the heuristic methods

make many random decisions and we still get the same solution quality across all runs using both algorithms,

it is likely that the solutions are optimal.

Table 6 indicates a 0% gap for Instance 5 and Instance 6. However, these gaps depend on CGA-H’s master

problem relaxation, which is not proven to be upper bounds as the sub-problem are solved using ALNS.

Consequently, we cannot guarantee that the best-found solutions by CGA-H to Instance 5 and Instance 6 are

optimal. Nevertheless, the robustness of CGA-H across the first six instances gives a reason to believe that

these solutions are at least close to optimal. Moreover, Figure 7a-b supports this belief. It shows minimal

or no increase in objective function value during the last couple of iterations in the runs that led to the

best-found solutions to Instance 5 and Intance 6.

For the final two instances, it is less likely, but not impossible, that CGA-H’s best-found solutions are optimal.

The fact that the instances have 45 and 60 turbines, respectively, mean that there are an enormous number

of feasible routes. There is a substantial chance that certain routes not generated by CGA-H could improve

the solution. However, Figure 7c-d shows a strong indication of convergence in the objective function value

of the relaxed master problem in both Instance 7 and Instance 8. Consequently, we consider the probability

that they represent upper bounds for the master problem to be high. As indicated in Table 6, the gaps

from these potential upper bounds are less than 1% for both instances. Therefore, we consider it likely that

the best-found solutions to Instance 7 and Instance 8 have less than 1% lower objective function value than

optimal solutions.

44

(a) Instance 5 (b) Instance 6

(c) Instance 7 (d) Instance 8

Figure 7: Depiction of the evolution of the objective function value for both the master problem and its relaxation, as

obtained in the runs leading to the best-fund solutions by CGA-H for Instances 5-8

Based on the results from phase 1, we argue that the proposed ALNS manages to find good enough solutions

to the sub-problem. The robustness of CGA-H indicates that the ALNS-framework does not make it termi-

nate prematurely. This is further supported by the converging trends in Figure 7 and the fact that CGA-H

finds equally good solutions as CGA-E to all Instances CGA-E is able to solve.

Table 7 presents the results from phase two of the experiment. CA finds equally good solutions as CGA-H

to the two first instances. For the restoring instances, CGA-H outperforms CA both in terms of solution

quality and robustness. These results tend to confirm that the column generation is operating as expected.

The dual weights from the master problem play an effective role in generating useful routes in CGA-H.

45

Table 7: Comparison of five runs of CGA-H and CA across all instances.

CGA-H (5 runs) CA (5 runs)

Average Best Average Best Run time

Instance 1 36109 36109 36109 36109 53

Instance 2 44474 44474 43946 44474 130

Instance 3 56829 56829 56421 56829 155

Instance 4 79514 79514 78984 79118 229

Instance 5 174075 174245 171397 172132 443

Instance 6 299568 300014 290553 292917 657

Instance 7 612839 612860 591884 595167 2225

Instance 8 1022974 1025825 986233 987793 10661

Figure 8 presents the evolution of four aggregated measures in the CGA-H runs that resulted in the best-

found solutions to the four most complex instances. The measures are defined as follows:

• Vessel utilization evaluates the degree to which the vessels are utilized. In scenarios where all vessels

are in operation during all periods, the vessel utilization would be 100%. Conversely, if none of the

vessels are utilized in any period, the utilization would drop to 0%.

• Capacity utilization quantifies the number of occupied seats in the vessels, summed over all selected

routes, as a percentage of available seats.

• Technician utilization represents the percentage of available technicians that are deployed.

• Lastly, turbines serviced indicates the proportion of available maintenance tasks that are scheduled in

the solution.

A brief examination of Figure 8 suggests that the number of turbines serviced and the capacity utilization

positively correlate with the solution’s quality. On the other hand, vessel utilization appears to decrease

across all instances as the solution quality improves. In other words, effective solutions schedule many tasks

on a minimal number of routes. Intuitively, this makes sense as the distances between the turbines are very

short compared to the distance between the wind farm and the maintenance base.

The technician utilization seems to have little influence on the solution quality. However, the fact that both

the vessel utilization and the technician utilization are low in all solutions suggests an imbalance in the

46

Figure 8: The evolution of the utilization measures in the CGA-H runs that found the best solution for Instance 5 to

Instance 8

problem instances. There are unnecessarily many vessels and technicians available relative to the number of

available maintenance tasks.

Another interesting observation in Figure 8 is that there exist solutions to Instance 7 that schedule more

maintenance tasks than the best-found solution. This implies that the best-found solutions either prioritize

maintenance tasks associated with higher expected revenue or they manage to execute the maintenance with

significantly lower travel costs, making it economically viable to leave some maintenance tasks uncompleted.

Figure 9 offers a graphical representation of the best-found solutions for Instance 6 and Instance 7. It should

be noted that it is impossible to completely deduce the routes from the figure, as some edges are traversed

multiple times. Nonetheless, the figure highlights which turbines are serviced on the same route, and it

47

provides insight into the movement patterns of the vessels.

Comparing the two solutions visualized in Figure 9, we observe that turbines located in close geographical

proximity often appear to be serviced on the same routes. This is particularly evident with turbines grouped

within a relatively small radius, such as the orange and grey routes in (a) and the pink and yellow routes in

(b). Intuitively, this arrangement is logical as it enables parallel completion of more tasks.

48

(a) Instance 6

(b) Instance 7

Figure 9: A graphical visualization of the best-found solutions to Instance 6 and Instance 7. Cross symbols indicate the

first turbine visited in a route, and the circles signify the last turbine that is visited before the vessel heads back to the

base.

49

8 Concluding remarks

The number of operational offshore wind farms is expected to grow significantly in the forthcoming decades.

Therefore, the importance of effective logistics for maintaining the turbines will become increasingly promi-

nent. Improving the strategies and methods for maintenance planning will not only favor owners and investors

economically but also contribute to producing more green electricity and lowering the electricity prices for

consumers.

This thesis has considered the short-term routing and scheduling problem for offshore wind maintenance.

We reviewed existing works addressing similar problems and proposed a new mathematical model that

maximizes expected profit rather than minimizes costs. Furthermore, we have presented two variants of a

solution method based on column generation. One solves the sub-problem using an exact approach, while

the other is based on an adaptive large neighborhood search.

To test the proposed model and solution method, we have developed eight problem instances based on the

Triton Knoll wind farm, which is situated on the east coast of the UK. A significant effort was put into

creating realistic input data by tracking maintenance vessels and using historical wave data. However, due

to little information, numerous assumptions were made to generate input for the maintenance tasks under

consideration. As such, we invite future researchers with access to more comprehensive details about the

maintenance tasks to expand upon these published instances.

In the experiments, we found that the proposed solution method can guarantee optimal solutions to the two

simplest instances, and we have reason to believe that the best-found solutions to the other six instances

are optimal or near-optimal. The experiments also revealed that the proposed ALNS framework efficiently

provides good enough solutions to the sub-problem and that the column generation operates as expected.

For future work, we suggest challenging the column generation approach with an adaptive large neighborhood

search that searches for complete solutions rather than solving the sub-problem. However, such a heuristic

method probably needs more complex operators that take advantage of problem-specific information to

compensate for the dual weights in the column generation.

Another possibility for further research is determining the expected revenues, which we have assumed as

known in this thesis. It could be interesting to systematically combine information about the turbines’

current conditions, the expected electricity production, and price forecasts, to appropriate values for these.

In the developed instances, we approximated revenue inputs with some of these factors in mind. However,

there is unquestionably a need for a more systematic approach for our model to be practically applicable.

50

In other words, there is potential for further improvements and additions to the proposed model and solution

method. With that being said, this thesis has investigated an alternative approach to the existing works on

the field. Exploring a wide range of models for offshore wind maintenance is essential in finding the most

effective logistics procedures. One of the most significant contributions from this thesis is to participate in

this exploration, which hopefully is a step towards more reliable green electricity for the world’s increasing

population.

51

References

[1] W. Musial, P. Beiter, P. Spitsen, J. Nunemaker, and V. Gevorgian, “2020 Offshore Wind Technology

Data Update,” Tech. Rep. NREL/TP-5000-78471, National Renewable Energy Lab (NREL), 2021.

[2] Workboat Association, “The workboat association homepage,” 2023. Accessed: 2023-05-19.

[3] United Nations Framework Convention on Climate Change, “Paris agreement.” https://unfccc.int/

documents/184656, 2015.

[4] United Nations, “Sustainable development goal 7: Affordable and clean energy.” https://sdgs.un.

org/goals/goal7, 2015.

[5] Z. Ren, A. S. Verma, Y. Li, J. J. Teuwen, and Z. Jiang, “Offshore wind turbine operations and main-

tenance: A state-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 144, p. 110886,

2021.

[6] A. Karyotakis and R. Bucknall, “Planned intervention as a maintenance and repair strategy for offshore

wind turbines,” Journal of Marine Engineering & Technology, vol. 9, no. 1, pp. 27–35, 2010.

[7] K. Sivalingam, M. Sepulveda, M. Spring, and P. Davies, “A Review and Methodology Development

for Remaining Useful Life Prediction of Offshore Fixed and Floating Wind turbine Power Converter

with Digital Twin Technology Perspective,” in 2018 2nd International Conference on Green Energy and

Applications (ICGEA), pp. 197–204, 2018.

[8] É. Thomas, É. Levrat, and B. Iung, “Overview on opportunistic maintenance,” IFAC Proceedings Vol-

umes, vol. 41, no. 3, pp. 245–250, 2008. 9th IFAC Workshop on Intelligent Manufacturing Systems.

[9] L. Dai, M. St̊alhane, and I. B. Utne, “Routing and scheduling of maintenance fleet for offshore wind

farms,” Wind Engineering, vol. 39, no. 1, pp. 15–30, 2015.

[10] C. A. Irawan, D. Ouelhadj, D. Jones, M. St̊alhane, and I. B. Sperstad, “Optimisation of maintenance

routing and scheduling for offshore wind farms,” European Journal of Operational Research, vol. 256,

no. 1, pp. 76–89, 2017.

[11] C. Stock-Williams and S. K. Swamy, “Automated daily maintenance planning for offshore wind farms,”

Renewable Energy, vol. 133, pp. 1393–1403, 2019.

[12] N. T. Raknes, K. Ødeskaug, M. St̊alhane, and L. M. Hvattum, “Scheduling of Maintenance Tasks and

Routing of a Joint Vessel Fleet for Multiple Offshore Wind Farms,” Journal of Marine Science and

Engineering, vol. 5, no. 1, 2017.

52

https://www.nrel.gov/docs/fy21osti/78471.pdf
https://www.nrel.gov/docs/fy21osti/78471.pdf
https://unfccc.int/documents/184656
https://unfccc.int/documents/184656
https://sdgs.un.org/goals/goal7
https://sdgs.un.org/goals/goal7
https://www.sciencedirect.com/science/article/pii/S1364032121001805
https://www.sciencedirect.com/science/article/pii/S1364032121001805
https://doi.org/10.1080/20464177.2010.11020229
https://doi.org/10.1080/20464177.2010.11020229
https://doi.org/10.1109/ICGEA.2018.8356292
https://doi.org/10.1109/ICGEA.2018.8356292
https://doi.org/10.1109/ICGEA.2018.8356292
https://doi.org/10.3182/20081205-2-CL-4009.00044
https://www.sciencedirect.com/science/article/pii/S0377221716303964
https://www.sciencedirect.com/science/article/pii/S0377221716303964
https://www.sciencedirect.com/science/article/pii/S0960148118310620
https://www.mdpi.com/2077-1312/5/1/11
https://www.mdpi.com/2077-1312/5/1/11

[13] T. A. T. Nguyen and S.-Y. Chou, “Maintenance strategy selection for improving cost-effectiveness of

offshore wind systems,” Energy Conversion and Management, vol. 157, pp. 86–95, 2018.

[14] C. Stock-Williams and S. K. Swamy, “Automated daily maintenance planning for offshore wind farms,”

Renewable Energy, vol. 133, pp. 1393–1403, 2019.

[15] A. Gutierrez-Alcoba, E. Hendrix, G. Ortega, E. Halvorsen-Weare, and D. Haugland, “On offshore wind

farm maintenance scheduling for decision support on vessel fleet composition,” European Journal of

Operational Research, vol. 279, no. 1, pp. 124–131, 2019.

[16] M. Yildirim, N. Z. Gebraeel, and X. A. Sun, “Integrated Predictive Analytics and Optimization for

Opportunistic Maintenance and Operations in Wind Farms,” IEEE Transactions on Power Systems,

vol. 32, no. 6, pp. 4319–4328, 2017.

[17] S. Zhong, A. A. Pantelous, M. Beer, and J. Zhou, “Constrained non-linear multi-objective optimisation of

preventive maintenance scheduling for offshore wind farms,” Mechanical Systems and Signal Processing,

vol. 104, pp. 347–369, 2018.

[18] R. J. Vanderbei et al., Linear programming. Springer, 2020.

[19] G. B. Dantzig, “Application of the simplex method to a transportation problem,” Activity analysis and

production and allocation, 1951.

[20] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in Proceedings of the six-

teenth annual ACM symposium on Theory of computing, pp. 302–311, 1984.

[21] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,” Management Science, vol. 6, no. 1,

pp. 80–91, 1959.

[22] L. R. Ford Jr and D. R. Fulkerson, “A suggested computation for maximal multi-commodity network

flows,” Management Science, vol. 5, no. 1, pp. 97–101, 1958.

[23] E. Choi and D.-W. Tcha, “A column generation approach to the heterogeneous fleet vehicle routing

problem,” Computers & Operations Research, vol. 34, no. 7, pp. 2080–2095, 2007.

[24] Y. Dumas, J. Desrosiers, and F. Soumis, “The pickup and delivery problem with time windows,” Euro-

pean journal of operational research, vol. 54, no. 1, pp. 7–22, 1991.

[25] L. A. Wolsey, Integer Programming. John Wiley & Sons, 2 ed., 2021.

[26] E.-G. Talbi, Metaheuristics: from design to implementation. John Wiley & Sons, 2009.

53

https://doi.org/10.1016/j.enconman.2017.11.090
https://doi.org/10.1016/j.enconman.2017.11.090
https://doi.org/10.1016/j.renene.2018.08.112
https://www.sciencedirect.com/science/article/pii/S0377221719303406
https://www.sciencedirect.com/science/article/pii/S0377221719303406
https://doi.org/10.1109/TPWRS.2017.2666722
https://doi.org/10.1109/TPWRS.2017.2666722
https://doi.org/10.1016/j.ymssp.2017.10.035
https://doi.org/10.1016/j.ymssp.2017.10.035
https://link.springer.com/content/pdf/10.1007/978-3-030-39415-8.pdf
https://web.eecs.umich.edu/~pettie/matching/Dantzig-using-simplex-for-transportation-Cowles-Monograph.pdf
http://www.jstor.org/stable/2627477
https://apps.dtic.mil/sti/pdfs/AD0606440.pdf
https://apps.dtic.mil/sti/pdfs/AD0606440.pdf
https://www.sciencedirect.com/science/article/pii/S0305054805002650
https://www.sciencedirect.com/science/article/pii/S0305054805002650
https://www.sciencedirect.com/science/article/pii/037722179190319Q
https://books.google.no/books?hl=no&lr=&id=SIsa6zi5XV8C&oi=fnd&pg=PR7&dq=metaheuristics&ots=-bWOvSfrBp&sig=raA8cFRYDMMaOm2EFQ6WWpSm_mo&redir_esc=y#v=onepage&q=metaheuristics&f=false

[27] J.-L. Ambite, “Local search,” 2001. https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume15/

ambite01a-html/node9.html Accessed: 2023-02-19.

[28] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,” Science,

vol. 220, no. 4598, pp. 671–680, 1983.

[29] S. Ropke and D. Pisinger, “An Adaptive Large Neighborhood Search Heuristic for the Pickup and

Delivery Problem with Time Windows,” Transportation Science, vol. 40, pp. 455–472, 11 2006.

[30] S. Ropke and D. Pisinger, “A unified heuristic for a large class of Vehicle Routing Problems with

Backhauls,” European Journal of Operational Research, vol. 171, no. 3, pp. 750–775, 2006.

[31] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. https://www.gurobi.com

Accessed: 2023-04-19.

[32] A. Laugaland, “Problem instances for an optimization model for short-term routing and scheduling of off-

shore wind maintenance.” https://github.com/aksellaug/OWF-maintenance-problem-instances,

2023.

[33] C-MAP, “C-map: Nautical charts,” 2023. https://appchart.c-map.com/redirect-route.html?id=

spbsDV5Bl&key=8D4RQyEuJlmSUSmT4eLVEhQdPRvm13c3 Accessed: 2023-03-29.

[34] RWE Renewables, “About triton knoll,” 2023. https://www.tritonknoll.co.uk/about-triton-

knoll Accessed: 2023-03-13.

[35] Northern Offshore Services, “Live map,” 2023. https://www.marinetraffic.com/en/ais/home/

centerx:1.5/centery:53.4/zoom:9 Accessed: 2023-03-20 to 2023-03-28.

[36] Northern Offshore Services, “M/v marker,” 2023. https://n-o-s.eu/the-fleet/m-v-maker/ Ac-

cessed: 2023-03-16.

[37] Maritime Craft Services, “Mcs swat 2,” 2023. https://www.maritimecraft.co.uk/files/MCS-SWATH-

2.pdf Accessed: 2023-03-16.

[38] Strategic Marine, “Stratcat27,” 2023. https://www.strategicmarine.com/vessel/stratcat-27-

crew-transfer-vessel/ Accessed: 2023-03-16.

[39] CEFAS, “Cefas wavenet,” 2023. https://wavenet.cefas.co.uk/Map Accessed: 2023-01-29.

[40] Numba Development Team, “Numba: A high performance python compiler,” 2021. https://numba.

pydata.org/ Accessed: 2023-04-19.

54

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume15/ambite01a-html/node9.html
https://www.cs.cmu.edu/afs/cs/project/jair/pub/volume15/ambite01a-html/node9.html
https://www.researchgate.net/publication/220413334_An_Adaptive_Large_Neighborhood_Search_Heuristic_for_the_Pickup_and_Delivery_Problem_with_Time_Windows
https://www.researchgate.net/publication/220413334_An_Adaptive_Large_Neighborhood_Search_Heuristic_for_the_Pickup_and_Delivery_Problem_with_Time_Windows
https://www.sciencedirect.com/science/article/pii/S0377221704005831
https://www.sciencedirect.com/science/article/pii/S0377221704005831
https://www.gurobi.com
https://github.com/aksellaug/OWF-maintenance-problem-instances
https://appchart.c-map.com/redirect-route.html?id=spbsDV5Bl&key=8D4RQyEuJlmSUSmT4eLVEhQdPRvm13c3
https://appchart.c-map.com/redirect-route.html?id=spbsDV5Bl&key=8D4RQyEuJlmSUSmT4eLVEhQdPRvm13c3
https://www.tritonknoll.co.uk/about-triton-knoll
https://www.tritonknoll.co.uk/about-triton-knoll
https://www.marinetraffic.com/en/ais/home/centerx:1.5/centery:53.4/zoom:9
https://www.marinetraffic.com/en/ais/home/centerx:1.5/centery:53.4/zoom:9
https://n-o-s.eu/the-fleet/m-v-maker/
https://www.maritimecraft.co.uk/files/MCS-SWATH-2.pdf
https://www.maritimecraft.co.uk/files/MCS-SWATH-2.pdf
https://www.strategicmarine.com/vessel/stratcat-27-crew-transfer-vessel/
https://www.strategicmarine.com/vessel/stratcat-27-crew-transfer-vessel/
https://wavenet.cefas.co.uk/Map
https://numba.pydata.org/
https://numba.pydata.org/

Appendix A Symbols from the mathematical model

Sets

V Set of vessels

T Set of time periods

W Set of turbines

R Set of feasible routes

RALL Set of all feasible routes

Rvt Set of a feasible routes for vessel v at time period t

N Set of all nodes

ND Set of delivery nodes

NP Set of pickup nodes

NOD Set containing the pick-up node and the delivery node

A Set of arcs

B Set of technician types

Parameters

T̃i Time required for completing the task corresponding to delivery node i

CT
ijv Cost of traveling from node i to node j by vessel v

DT
br The required number of technicians of type b for completing route r

Fbi Demand for technicians of type b at node i

Gbt Available technicians of type b in time period t

Iwr If turbine w is maintained in route r or not

Kv Maximal number of technicians that can be onboard vessel v

Pr Profit for completing route r

55

Rit Revenue for completing maintenance at the turbine corresponding to delivery node i in time period

t

S Safety distance, i.e., how far a vessel is allowed to travel away from technicians that are left on a

turbine

T P
vt Total time available for vessel v in time period t

Tijv Minimum travel time from node i to node j using vessel v

Variables

xr Decision variable for selecting route r or not

λvt Dual variable corresponding to the primal constraint (5)

µbt Dual variable corresponding to primal constraints (6)

ρw Dual variable corresponding to primal constraint (7)

yij Decision variable for traveling directly from node i to node j or not

zbi Integer variable describing the the number of technicians of type b onboard when leaving node i

qi Continuous variable describing the time when leaving node i

mij Binary variable for pairs of tasks that cannot be completed in parallel

56

	Introduction
	Maintenance strategies
	Maintenance tasks and vessels
	Problem statement
	Short term routing and scheduling models for offshore wind maintenance
	Thesis structure

	Problem definition
	An alternative approach
	Inputs and outputs

	Background
	Mathematical programming
	Linear programs
	Integer linear programs
	The vehicle routing problem

	Column generation
	Heuristic methods
	Solution neighborhood
	Simulated annealing
	Adaptive large neighborhood search

	Mathematical model
	Master problem - Route selection
	Sub problem - Route generation
	Graph representation
	Travel constraints
	Time constraints
	Technician constraints
	Objective

	Column generation

	Heuristic approach
	Route generation with ALNS
	Operators

	Heuristic method 1: Sub-problem solver
	Heuristic method 2: Warm start
	Consequences

	Instance generation
	Turbines
	Vessels
	Weather conditions
	Technicians
	Revenues

	Experiments
	Method
	Phase 1
	Phase 2
	Implementation choices and hardware specifications

	Results

	Concluding remarks
	Symbols from the mathematical model

