
On the energy stability of high-order finite volume
schemes for initial-boundary value problems

Master thesis in Applied and Computational Mathematics

by

Thomas Bjarne Hestvik

University of Bergen,
Department of Mathematics, June 2023



Abstract

We examine the energy stability of high-order finite volume schemes approximating linear hyperbolic initial-
boundary value problems. In particular, we consider schemes obtained by the k-exact method and the
spectral volume method using the central numerical flux. To determine the stability of the schemes we use
the energy method, and investigate the resulting terms. Finally, we compute numerical results verifying the
accuracy of the schemes.

Acknowledgements

I wish to thank my supervisor, professor Magnus Svärd for his guidance throughout the project and for
helping me find an interesting research topic. I would also like to thank him for being available to discuss
mathematics at any time. Further, I would like to thank all the people at the Department of Mathematics
at University of Bergen for making my time here interesting and enjoyable. Last but not least a special
thanks goes out to my friends and family.

Notation

∂
∂ξu = uξ = ∂ξu.
x = [x1, . . . , xn]

T , dx = dx1dx2 . . . dxn.
Ω ⊂ Rn and ∂Ω denotes the boundary of Ω. Ω = Ω ∪ ∂Ω.
u · v = 〈u, v〉 = uTv =

∑
i uivi.

n̂ = outward pointing unit normal vector on a closed curve. If ∂Ci is a closed (simple) curve and Γij ⊂ ∂Ci

is a simple curve, then n̂ on Γij is outward pointing w.r.t. ∂Ci.
dS = infinitesimal arc length of a curve, i.e.

√
dx2 + dy2.

Γij = ∂Ci ∩ ∂Cj where Ci, Cj are control volumes.
Ni = the set of indices j such that Γij 6= ∅.
wd
ijq = quadrature weights of the d-element flux over Γij .

If u : Ω× [0, T ) → R, then ‖u(·, t)‖2 = ‖u(·, t)‖L2 =
√∫

Ω |u(x, t)|2dx.
If x ∈ R2, then ‖x‖R2 =

√
x21 + x22.

Ck = the linear space of k-times continuously differentiable functions. If k = 0 it is the space of continuous
functions. In this case we drop the superscript and simply write C.
Lp = the linear space of measurable functions bounded in the Lp norm.
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1 Introduction

1.1 Motivation

Recently, great progress has been made in the development of high-order accurate, conservative, and provably
energy stable schemes for linear and linearized problems. For instance, energy stable weigthed essentially
non-oscillatory (WENO) finite difference schemes were developed in [1, 2, 3, 4], energy stable discontinuous
Galerkin (DG) spectral element schemes were developed in [5], and a series of papers [6, 7, 8, 9] prove energy
stability for flux reconstruction (FR), or correction procedure via reconstruction (CPR) schemes. These
papers show that schemes obtained from the different numerical methods can be viewed as summation-by-
parts (SBP) schemes with simultaneous approximation terms (SAT). The summation-by-parts simultaneous
approximation terms (SBP-SAT) framework is highly effective at obtaining provably stable schemes for
initial-boundary value problems (IBVP) [10, 11, 12, 13, 14]. To achieve this, SBP schemes utilize discrete
difference operators which satisfy the summation-by-parts property. In short, this property is the discrete
counterpart to the integration by parts property which the continuous derivative operator satisfies. As
integration by parts is the key to proving stability for the continuous problems, so is summation-by-parts
key to proving stability for schemes.

In [15, 16] it is shown that certain finite volume methods can be formulated in the SBP-SAT framework.
Further research on SBP-SAT FVM is detailed in [17, 18, 19, 20, 21, 22, 23]. In these papers, only methods
giving low-order schemes are studied. Therefore, we would like to find similar results for high-order finite
volume methods and their corresponding schemes. In particular, we consider schemes obtained by the k-exact
method [24, 25, 26, 27, 28] and the spectral volume (SV) method [29, 30, 31, 32, 33, 34, 35].

We aim in this thesis to examine the energy stability of schemes obtained from the k-exact method and
the spectral volume method. In particular we look at schemes approximating 1D and 2D linear hyperbolic
IBVP. We attempt to discover k-exact schemes and spectral volume schemes which satisfy the SBP property.

1.2 Outline

The thesis is organized as follows. Section 2 presents a short introduction to the theory of linear hyperbolic
problems. In section 3 we introduce finite volume methods and define stability. Section 4 presents two
high-order finite volume methods, the k-exact method and the spectral volume method. Section 5 details our
energy stability analysis of k-exact schemes. In section 6 we analyze the energy stability of spectral volume
schemes. Section 7 presents some numerical results verifying that the schemes are high-order accurate.
Finally, in section 8 we give concluding remarks and suggestions for future work.
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2 Linear hyperbolic problems

In this section we recap the elementary theory of linear hyperbolic initial value problems and initial-boundary
value problems.

2.1 Linear hyperbolic equations

Definition 2.1 ([36, 37]). Let A ∈ Rm×m and u(x, t) = [u1(x, t), ..., um(x, t)]T . The system of equations

ut +Aux = 0,

is said to be hyperbolic if A is diagonalizable with real eigenvalues.

Remark. It is common to define several notions of hyperbolicity, e.g. weakly, strongly, strictly, symmetric
hyperbolic. We keep the text simple and use only the notion described above.

Consider the simplest hyperbolic system, consisting of one scalar equation

ut + aux = 0, (a ∈ R). (2.1)

The equation (2.1) is called the advection equation or transport equation. Note that functions of the form
u(x, t) ≡ φ(x− at) satisfy the equation. Observe that for some point (ξ, τ)

u(ξ, τ) = φ(ξ − aτ) = φ(x0) = u(x0, 0),

for x0 = ξ − aτ . Hence the value of u at any point in the xt-plane is determined by φ at some corresponding
point x0 on the x-line. Put in other words, u is constant along the characteristic lines (x(t), t) satisfying
x′(t) = a, x(0) = x0. The initial data u(x, 0) = φ(x) is moved in the positive (a > 0) or negative (a < 0)
x-direction as t increases. Note that (2.1) can be written as

ut + f(u)x = 0,

with f(u) = au, and we say that the equation is in conservation form. Equations in conservation form are
called conservation laws, and f is called the flux function.

Next, consider a hyperbolic system of m equations in one spatial variable:


u1

u2
...
um


t

+


a11 a12 . . . a1m

a21
. . . . . . ...

... . . . . . . ...
am1 . . . . . . amm



u1

u2
...
um


x

= 0. (2.2)

Definition 2.1 tells us that the coefficient matrix is diagonalizable, and that the eigenvalues are real. Therefore,
there exists matrices R, Λ, where Λ is diagonal with real elements such that A = RΛR−1. Hence (2.2) can
be written as

ut +RΛR−1ux = 0.
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Apply R−1 on the left and substitute w = R−1u to find

wt + Λwx = 0, or equivalently


w1

w2

...
wm


t

+


λ1 0 . . . 0

0 λ2 0
...

... . . . . . . ...
0 . . . . . . λm



w1

w2

...
wm


x

= 0. (2.3)

Finding solutions for (2.3) is the same as finding solutions for (2.1); wi(x, t) = φ(x− λit). Thus functions
u(x, t) of the form

u(x, t) = Rw(x, t) =
m∑
i=1

φ(x− λit)ri,

where wi(x, 0) = φ(x) and ri is the eigenvector corresponding to λi, satisfy (2.2). Next we look at the
variable coefficient scalar equation.

ut + a(x, t)ux = 0, (a(x, t) ∈ R). (2.4)

The characteristic curves satisfy x′(t) = a(x, t), x(0) = x0, as shown by

d

dt
u(x(t), t) = ut + x′(t)ux = 0,

(using (2.4)). Note that the variable coefficient equation satisfies definition 2.1, since the eigenvalue a(x, t) ∈ R
for any choice of (x, t). If a(x, t) is bounded and smooth, we can solve the characterisitc ODEs backwards in
time to obtain the relation ψ(x, t) = x0. Then the unique solution of the variable coefficient initial value
problem consisting of (2.4) with the initial value u(x, 0) = u0(x) is given by

u(x, t) = u(x0, 0) = u(ψ(x, t), 0) = u0(ψ(x, t)).

Example 1 ([36, 38]). Let ut + (2x)ux = 0. The characteristic curves are the solutions of

d

dt
x(t) = 2x, x(0) = x0.

In other words, they are given by (x0e
2t, t) ranging x0 over the x-domain. Given a point (ξ, τ) we can find

u(ξ, τ) = u(ψ(ξ, τ), 0) by solving
d

dt
x(t) = −2x, x(0) = ξ,

up to t = τ . It follows that u(ξ, τ) = u0(ξe
−2τ ).

Moving on, consider the variable coefficient system.

Definition 2.2 ([36]). Let A(x, t) : R×[0, T ] → Rm×m and u = [u1(x, t), . . . , um(x, t)]T . The system of
equations

ut +A(x, t)ux = 0,

is said to be hyperbolic if for any pair (x, t) ∈ R×[0, T ] the matrix A is diagonalizable with real eigenvalues.

Recall how we found solutions of the constant coefficient system (2.2). Attempting the same approach,

3
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i.e. A(x, t) = R(x, t)Λ(x, t)R−1(x, t), w = R−1u, we find

Rwt +Rtw +RΛR−1(Rw)x = 0

⇐⇒ wt +R−1Rtw + ΛR−1(Rxw +Rwx) = 0

⇐⇒ wt + Λwx = −R−1(Rt + ΛR−1Rx)w.

If the right hand side reduces to zero we recover a decoupled system w + Λ(x, t)wx = 0 which we can solve
by finding the characteristic curves as described previously.

Note that we can extend definition 2.1 to accomodate for equations where the spatial variable is of higher
dimension.

Definition 2.3 ([39]). Let Ai ∈ Rm×m, u(x, t) = [u1(x, t), . . . , um(x, t)]T and x ∈ Rn. The system of
equations

ut +

n∑
i=1

Aiuxi = 0,

is said to be hyperbolic if all linear combinations of the coefficient matrices Ai is diagonalizable with real
eigenvalues.

Consider the simplest multi-dimensional hyperbolic system, consisting of one scalar equation in two
dimensions

ut + aux + buy = 0, (a, b ∈ R).

Note that functions u(x, y, t) = φ(x− at, y − bt) satisfy the equation, since

φt + aφx + bφy = φx
∂x

∂t
+ φy

∂y

∂t
+ aφx + bφy = −aφx − bφy + aφx + bφy = 0.

Further, given some point (ξ, η, τ) we have

u(ξ, η, τ) = φ(ξ − aτ, η − bτ) = φ(ξ0, η0) = u(ξ0, η0, 0),

for ξ0 = ξ − aτ and η0 = η − bτ . Just like the 1D case, the value of u at any point is determined by the
value of u

∣∣
t=0

at some corresponding point. In other words, u is constant along the characteristic curves
(ξ(t), η(t), t) given by

d

dt
ξ(t) = a, ξ(0) = ξ0,

d

dt
η(t) = b, η(0) = η0.

Now consider a two-dimensional hyperbolic system consisting of m equations


u1

u2
...
um


t

+


a11 a12 . . . a1m

a21
. . . . . . ...

... . . . . . . ...
am1 . . . . . . amm



u1

u2
...
um


x

+


b11 b12 . . . b1m

b21
. . . . . . ...

... . . . . . . ...
bm1 . . . . . . bmm



u1

u2
...
um


y

= 0. (2.5)

Let the coefficient matrices be denoted by A and B. Suppose that the initial data is given by u(x, y, 0) =
f(x, y) = [f1(x, y), . . . , fm(x, y)]T where fi ∈ L2(R2) and f is 2π-periodic. Moreover, suppose for the moment
that the Fourier series of f is given by a single wave

4
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f =
1

2π
ei〈ω,x〉f̂(ω),

where ω = [ω1, ω2]
T . We make the guess that

u(x, t) =
1

2π
ei〈ω,x〉û(ω, t), where û(ω, 0) = f̂(ω).

Substituting this into the PDE we obtain

ut +Aux +Buy =
1

2π
ei〈ω,x〉ût(ω, t) +

1

2π
Aiω1e

i〈ω,x〉û(ω, t) +
1

2π
Biω2e

i〈ω,x〉û(ω, t) = 0.

Define the operator P̂ (iω) by
P̂ (iω) = i(Aω1 +Bω2),

to obtain
ût(ω, t) = P̂ (iω)û(ω, t).

Now using the initial condition û(ω, 0) = f̂(ω) we find the unique solution of the problem (2.5) with periodic
initial data f ,

u(x, t) =
1

2π
ei〈ω,x〉eP̂ (iω)tf̂(ω).

Note that if f is given by
f =

1

2π

∑
ω

ei〈ω,x〉f̂(ω),

then by the above arguments and the superposition principle we obtain the unique solution

u(x, t) =
1

2π

∑
ω

ei〈ω,x〉eP̂ (iω)tf̂(ω).

2.2 Well-posedness and stability

Consider the constant coefficient hyperbolic initial value, or Cauchy problem

ut + P

(
∂

∂x

)
u = 0, (2.6)

u(x, 0) = f(x). (2.7)

Let x = [x1, . . . , xm]T and assume f ∈ L2 is 2π-periodic. Let ω = [ω1, . . . , ωm]T and suppose that

f(x) = (2π)−(m/2)ei〈ω,x〉f̂(ω).

Following the discussion at the end of section 2.1, the unique solution of (2.6-2.7) is given by

û(ω, t) = eP̂ (iω)tf̂(ω), u(x, t) = (2π)−(m/2)ei〈ω,x〉eP̂ (iω)tû(ω, t).

Definition 2.4 ([36, 40]). The problem (2.6-2.7) is said to be stable if there exists positive constants K,α,
which are independent of t, ω such that

|eP̂ (iω)t| ≤ Keαt. (2.8)

5



T. B. Hestvik / On the energy stability of high-order finite volume schemes for initial-boundary value problems

Now we show that the inequality (2.8) is equivalent with the following:

‖u(·, t)‖2 ≤ Keαt ‖f(·)‖2 ,

where u is the solution of the problem and the L2 norm is defined by

‖v‖2 =
(∫ ∞

−∞
|v(s)|2ds

)1/2

.

Assume (2.8) holds, by Parseval’s relation we find

‖u(·, t)‖22 =
∑
ω

|û(ω, t)|2 =
∑
ω

|eP̂ (iω)tf̂(ω)|2 ≤
∑
ω

|eP̂ (iω)t|2|f̂(ω)|2 ≤
∑
ω

|Keαt|2|f̂(ω)|2 = |Keαt|2 ‖f(·)‖22 .

Stability implies the solution is bounded by the initial data together with an exponential factor. Often the
term energy is used to describe the squared L2 norm of a function. We will therefore describe stability in
the L2 norm as energy stability.

Definition 2.5 (Hadamard, [39]). The problem (2.6-2.7) is said to be well-posed if there exists an unique
solution which depends continuously on the initial data f .

By what we have just shown, well-posedness means that there exists an unique solution and that the
problem is stable. Consider the variable coefficient initial value problem

ut + P

(
x, t, ∂

∂x

)
u = 0, (2.9)

u(x, 0) = f(x), (2.10)

with periodic boundary conditions and initial data. We define

(f, g) =

∫ 2π

0
· · ·
∫ 2π

0
〈f(x), g(x)〉dx,

where dx = dx1 . . . dxm.

Definition 2.6 ([36]). The differential operator P (x, t, ∂/∂x) is said to be semibounded if for any interval
tp ≤ t ≤ T , there is a constant α such that for all sufficiently smooth functions w,

−(w,Pw)− (Pw,w) ≤ 2α ‖w‖22

Theorem 2.1 ([36]). If the operator P (x, t, ∂/∂x) is semibounded, then the problem (2.9-2.10) is stable.

Proof. Let P be semibounded and let u be a solution of (2.9-2.10). Then

ut + Pu = 0, and − (u, Pu)− (Pu, u) ≤ 2α ‖u‖22 .

Note that multiplying the PDE by u and integrating over the spatial domain yields

(u, ut) + (u, Pu) = 0.

6
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Adding the transposed equation to the above we obtain

d

dt
‖u(·, t)‖22 = −(u, Pu)− (Pu, u) ≤ 2α ‖u(·, t)‖22 ,

for some α, which implies
‖u(·, t)‖22 ≤ e2αt ‖f(·)‖22 .

Moving on, we give a result concerning the well-posedness of inhomogenous Cauchy problems. Consider

ut + P

(
x, t, ∂

∂x

)
u = F (x, t), (2.11)

u(x, 0) = f(x), (2.12)

where f is 2π periodic in x as before and likewise for F . Assume the problem

ut + P

(
x, t, ∂

∂x

)
u = 0, t ≥ τ, (2.13)

u(x, τ) = F (x, τ), (2.14)

is well posed for all τ and u is the unique solution. Define the solution operator S(t, τ) by

u(x, t) = S(t, τ)u(x, τ), t ≥ τ.

Theorem 2.2 (Duhamel’s Principle, [36]). Let S(t, τ) denote the solution operator of (2.13-2.14). Then the
solution of the problem (2.11-2.12) can be written in the form

u(x, t) = S(t, 0)f(x) +
∫ t

0
S(t, τ)F (x, τ)dτ, (2.15)

and
‖u(·, t)‖2 ≤ K

(
eαt ‖f(·)‖2 + φ∗(α, t) max

0≤τ≤t
‖F (·, τ)‖2

)
,

where

φ∗(α, t) =

 1
α(e

αt − 1), α 6= 0

t, α = 0
.

Next, we briefly discuss the related definitions and results for initial-boundary value problems. Consider
the following problem with f ∈ L2

ut + P

(
x, t,

∂

∂x

)
u = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (2.16)

u(x, 0) = f(x), (2.17)

L0

(
t,
∂

∂x

)
u(0, t) = 0, (2.18)

L1

(
t,
∂

∂x

)
u(1, t) = 0. (2.19)

We define stability as before

7
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Definition 2.7 ([36]). The problem (2.16-2.19) is said to be stable if there exists constants K,α not dependent
on f such that

‖u(·, t)‖2 ≤ Keαt ‖u(·, 0)‖2

Further, we define the problem to be well-posed if it has an unique solution and it is stable. We can once
again use Duhamel’s principle to prove well-posedness of the inhomogenous problem given that the family of
homogenous problems is well-posed. In other words, if (2.16-2.18) is well-posed for f ∈ L2 then so is

ut + P

(
x, t,

∂

∂x

)
u = F (x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T,

u(x, 0) = f(x),

L0

(
t,
∂

∂x

)
u(0, t) = 0,

L1

(
t,
∂

∂x

)
u(1, t) = 0.

for F ∈ L2. Now consider the problem with inhomogenous boundary data,

ut + P

(
x, t,

∂

∂x

)
u = F (x, t) (2.20)

u(x, t0) = f(x) (2.21)

L0

(
t,
∂

∂x

)
u(0, t) = g(t) (2.22)

Suppose L0φ(0, t) = g(t). Let ũ = u− φ such that

ũt + P

(
x, t,

∂

∂x

)
ũ = F (x, t)− φt − P

(
x, t,

∂

∂x

)
φ

ũ(x, t0) = f(x)− φ(x, t0)

L0

(
t,
∂

∂x

)
ũ(0, t) = 0

Given the existence of such a φ(x, t) we see that the inhomogenous IBVP with inhomogenous boundary data
is well-posed if the corresponding homogenous IBVP is well-posed (by Duhamel’s principle). However, as
pointed out in [36], the energy estimate for u will now depend on gt. Hence the boundary data must be
differentiable to obtain an energy estimate. To avoid this we define a notion of strong stability independent
of gt.

Definition 2.8 ([36]). The problem (2.20-2.22) is said to be strongly stable if there exists a bounded functional
K(t, t0) independent of the inital and boundary data such that

‖u(·, t)‖22 ≤ K(t, t0)

(
‖u(·, t0)‖22 +

∫ t

t0

‖F (·, τ)‖22 + |g(τ)|2dτ
)

If the problem is strongly stable and there exists an unique solution, we say that it is strongly well-posed.

8
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2.3 Riemann problems

A Riemann problem is an initial value problem in one spatial dimension where the initial data is given by

f(x) =

fL, x < p0

fR, x > p0
,

where p0 is some point of discontinuity and fL, fR are some constants. Consider the following Riemann
problem

ut + aux = 0, u(x, 0) =

uL, x < 0

uR, x > 0
.

We recall that the advection equation simply moves the initial data with the wave speed a. In other words,
the unique solution is given by u(x, t) = u(x− at, 0). Note that

u(x− at, 0) =

uL, x− at < 0

uR, x− at > 0
.

Hence the solution of the Riemann problem can be visualized by dividing the (x, t)-plane into two parts
seperated by the characteristic line emenating from the point of discontinuity, x(t) = at. This is illustrated
in Fig. 1.

x
0

t
(at, t)

uR

uL

Figure 1: Solution of the simplest Riemann problem.

Consider the Riemann problem for the hyperbolic constant coefficient system,

ut +Aux = 0, u(x, 0) =

uL, x < 0

uR, x > 0
,

where u = [u1(x, t), . . . , um(x, t)]T , A ∈ Rm×m and uL, uR ∈ Rm. Let A = RΛR−1 for some matrices R,Λ,
where Λ is diagonal. Put w = R−1u to find

wt + Λwx = 0, w(x, 0) =

wL, x < 0

wR, x > 0
, (2.23)

9
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where wL, wR are defined by

uL =
m∑
i=1

(wL)iri, and uR =
m∑
i=1

(wR)iri,

and ri is the eigenvector associated with the i-th eigenvalue of A. Since (2.23) is decoupled we have that

wi(x, t) =

(wL)i, x− λit < 0

(wR)i, x− λit > 0
,

where wiri = ui. Organize the eigenvalues of A increasingly, i.e. λ1 ≤ λ2 ≤ · · · ≤ λm to find

u(x, t) =
m∑
i=1

wiri =


∑m

i=1(wL)iri, x ≤ λ1t∑i
j=1(wR)iri +

∑m
j=i+1(wL)jrj , λit ≤ x ≤ λi+1t∑m

i=1(wR)iri, x ≥ λmt

.

For instance, if m = 3 then u(x, t) is given by

u(x, t) =

3∑
i=1

wiri =



∑3
i=1(wL)iri, x ≤ λ1t

(wR)1r1 +
∑3

j=2(wL)jrj , λ1t ≤ x ≤ λ2t∑2
j=1(wR)iri + (wL)3r3, λ2t ≤ x ≤ λ3t∑3
i=1(wR)iri, x ≥ λ3t

.

Once again we can visualize the solution u(x, t) as constant states seperated by characteristic waves, as
shown in Fig. 2. Here we have shown the case for λ1 < 0, λ2, λ3 > 0.

x
0

t
(λ2t, t)

(λ3t, t)

(λ1t, t)

∑3
i=1(wR)iri

∑2
j=1(wR)jrj + (wL)3r3

(wR)1r1 +
∑3

j=2(wL)jrj

∑3
i=1(wL)iri

Figure 2: Solution of the constant coefficient system Riemann problem.

The variable coefficient Riemann problem behaves as expected. Consider

ut + a(x, t)ux = 0, u(x, 0) =

uL, x < 0

uR, x > 0
.

10
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If the problem is well-posed, we know the unique solution can be written u(x, t) = u(ψ(x, t), 0). That is,

u(x, t) =

uL, ψ(x, t) < 0

uR, ψ(x, t) > 0
.

Once again the solution is constant on either side of the characteristic wave emenating from the point of
discontinuity.

Riemann problems for nonlinear hyperbolic equations are considerably more interesting. However, this
topic is outside the scope of our text. We suggest [38, 41, 42, 43] for further reading.

2.4 Test problems

Here we describe the linear hyperbolic problems which we will use to analyze the schemes obtained from the
numerical methods of section 4. In particular, we derive energy estimates and show that the problems are
strongly well-posed by definition 2.8. We remark that these problems are very simple and commonly used to
analyze schemes, see for instance [15, 5, 44].

Problem 1. Let x ∈ Ω = [0, 1] ⊂ R and t ∈ [0, T ] ⊂ R+. Find the function u : Ω× [0, T ) → R satisfying

ut + ux = 0, u(x, 0) = f(x), u(0, t) = g(t).

where f(x) = sin(2πx) and g(t) = sin(−2πt).

We multiply the PDE with u and integrate over Ω:∫
Ω
uut + uuxdx = 0 ⇐⇒

∫ 1

0
uutdx+

∫ 1

0
uuxdx = 0 ⇐⇒

∫ 1

0

1

2

∂

∂t
(u2)dx+

∫ 1

0

1

2

∂

∂x
(u2)dx = 0.

Note that∫ 1

0

1

2

∂

∂t
(u2)dx =

1

2

d

dt

∫ 1

0
u2dx =

1

2

d

dt
‖u(·, t)‖22 , and 1

2

∫ 1

0

∂

∂x
(u2)dx =

1

2
(u2(1, t)− u2(0, t)).

Hence
d

dt
‖u(·, t)‖22 = u2(0, t)− u2(1, t) ≤ u2(0, t) = g2(t).

Integrating in time from 0 to T we obtain∫ T

0

d

dt
‖u(·, t)‖22 dt ≤

∫ T

0
g2(t)dt,

⇐⇒ ‖u(·, T )‖22 ≤ ‖u(·, 0)‖22 +
∫ T

0
g2(t)dt.

By definition 2.8, this shows that the problem is strongly stable. Further, inserting f(x) = sin(2πx) and
g(t) = sin(−2πt) we find that

u(x, t) = sin(2π(x− t)),

is the unique solution of the problem, making the problem is strongly well-posed.

Problem 2. Let x = [x, y]T ∈ Ω = [0, 1]2 and 0 ≤ t ≤ T < ∞. Find the function u : Ω × [0, T ] → R

11
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satisfying

ut + ux + uy = 0, u(x, y, 0) = sin
(
2π
(x
2
+
y

2

))
, u(0, y, t) = g1(y, t), u(x, 0, t) = g2(x, t),

where
g1(y, t) = sin

(
2π
(y
2
− t
))

, and g2(x, t) = sin
(
2π
(x
2
− t
))

.

We multiply the PDE by u and integrate over the spatial domain to find

1

2

d

dt
‖u(·, t)‖22 = −1

2

∫ 1

0

∫ 1

0

∂

∂x
u2dxdy − 1

2

∫ 1

0

∫ 1

0

∂

∂y
u2dydx,

= −1

2

∫ 1

0
u2(1, y, t)− g21(y, t)dy −

1

2

∫ 1

0
u2(x, 1, t)− g22(x, t)dx,

=
1

2

∫ 1

0
g21(y, t)− u2(1, y, t)dy +

1

2

∫ 1

0
g22(x, t)− u2(x, 1, t)dx,

≤ 1

2

∫ 1

0
g21(y, t)dy +

1

2

∫ 1

0
g22(x, t)dx.

Hence
‖u(·, T )‖22 ≤ ‖u(·, 0)‖22 +

∫ T

0

(∫ 1

0
g21(y, t)dy +

∫ 1

0
g22(x, t)dx

)
dt,

so the problem is strongly stable. Moreover, the function

u(x, y, t) = sin
(
2π
(x
2
+
y

2
− t
))

,

is the unique solution. Therefore the problem is strongly well-posed.

12
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3 Finite volume methods

3.1 Introduction

Consider the initial-boundary value problem
ut +∇ · f(u) = 0, x ∈ Ω ⊂ Rn, 0 ≤ t ≤ T <∞,

u(x, 0) = φ(x),

u(∂Ω, t) = g(∂Ω, t).

(3.1)

which we will assume is well-posed. A finite volume method aims to determine u(x, t) numerically. The
general procedure can be broken down as follows:

1. Partition the spatial domain Ω into a set of N control volumes {Ci}Ni=1, and let Vi denote the measure
of Ci. We require that Ci ∩ Cj = ∅, ∀j 6= i and

⋃N
i=1Ci = Ω.

2. Let ui(t) denote an approximation of the volume-averaged value of the conserved quantity u(x, t) in Ci.

ui(t) ≈
1

Vi

∫
Ci

u(x, t)dx.

3. Integrate the PDE over Ci to obtain

d

dt
ui(t) = − 1

Vi

∫
Ci

∇ · f(u(x, t))dx = − 1

Vi

∫
∂Ci

f(u(x, t)) · n̂dS, (3.2)

where dS is the infinitesimal arc length of ∂Ci, n̂ is the outward pointing unit normal vector, and the
second equality follows from Gauss’ theorem. Denote Γij = ∂Ci ∩ ∂Cj and define Ni to be the set of
all indices j such that Γij 6= ∅. Suppose that ∂Ci = ∪j∈NiΓij , then

d

dt
ui(t) = − 1

Vi

∑
j∈Ni

∫
Γij

f(u(x, t)) · n̂dS. (3.3)

We will refer to such a control volume as an interior volume. If ∂Ci ∩ ∂Ω = Γi∂Ω 6= ∅ we write
∂Ci =

⋃
j∈Ni

Γij ∪ Γi∂Ω and obtain

d

dt
ui(t) = − 1

Vi

∑
j∈Ni

∫
Γij

f(u(x, t)) · n̂dS − 1

Vi

∫
Γi∂Ω

f(u(x, t)) · n̂dS. (3.4)

In this case we say that Ci is a boundary volume.

4. Let t = t∗ be fixed and write u(x, t∗) = u(x), ui(t∗) = ui. Denote by Fij an approximation of f(u(x))
restricted to Γij . If Ci is an interior volume we find that

d

dt
ui = − 1

Vi

∑
j∈Ni

∫
Γij

Fij · n̂dS, (3.5)

and we approximate the integral using some quadrature rule. The way we obtain Fij and the quadrature
rule we choose is what seperates one finite volume method from another.

5. Note that (3.5) for i = 1, . . . , N is a system of N ordinary differential equations. Therefore, we can
evolve ui in time by some numerical ODE method.

13
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The procedure outlined above gives us a scheme which approximates the integral form of (3.1). If the
problem is linear and well-posed, and if the method is consistent and stable, the solution of the approximation
will converge to u(x, t) as Vi → 0 (see [45]). We did not give any details on how to implement the boundary
condition, but will do so in section 3.5.

3.2 Different types of grids and volumes

Let Ω ⊂ Rn and consider the problem of partitioning Ω into a collection of subsets Ci satisfying

Ci ∩ Cj = ∅, ∀j 6= i,
N⋃
i=1

Ci = Ω. (3.6)

Consider first the case where Ω = [Ω−,Ω+] ⊂ R. Define a grid, or node set, {xi}N+1
i=1 where xi ∈ Ω for

i = 1, . . . , N+1, and assume that there exists indices L,R ∈ {1, . . . , N+1} such that xL = Ω− and xR = Ω+.

Definition 3.1. Let {xi}N+1
i=1 be some grid contained in Ω. If

xi ∈ ∂Ω,

then xi is said to be a boundary (grid) point, or boundary node.

Clearly in the above case, xL, xR are the boundary nodes.

Definition 3.2. If
xi < xi+1, i = 1, . . . , N,

then the grid is said to be structured.

Definition 3.3. Assume {xi}N+1
i=1 is a structured grid. If

|xi − xi+1| = h, i = 1, . . . , N,

where h ∈ R is some constant, then the grid is said to be regular.

If a grid is not structured, we say that it is unstructured. If a grid is not regular, we say that it is
irregular. Returning to the problem of partitioning Ω = [Ω−,Ω+] into control volumes, assume {xi}Ni=1 is a
structured grid in Ω and ∂Ω ⊂ {xi}Ni=1. Then the control volumes

Ci = (xi, xi+1), i = 1, . . . , N, (3.7)

satisfy (3.6). Given some control volume Ci = (C−
i , C

+
i ) we will use Vi to denote its measure. We give some

elementary definitions:

Definition 3.4. Let {Ci}Ni=1 be a set of control volumes satisfying (3.6). If

C+
i = C−

i+1, i = 1, . . . , N − 1,

then the volumes are said to be structured.

Definition 3.5. Let {Ci}Ni=1 be a set of control volumes satisfying (3.6). If

Vi = h, i = 1, . . . , N,

14
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where h ∈ R is some constant, then the volumes are said to be regular.

Definition 3.6. Let {Ci}Ni=1 be a set of control volumes satisfying (3.6). If

∂Ci ∩ ∂Ω = ∅,

then Ci is an interior volume. If
∂Ci ∩ ∂Ω 6= ∅,

then Ci is a boundary volume.

Further, we will use the notation Γij to denote ∂Ci ∩ ∂Cj , and we generalize the notation such that
Γi∂Ω = ∂Ci ∩ ∂Ω. Moreover, we let Ni denote the set of indices j such that Γij 6= ∅. Thus, if Ci is an interior
volume then ∂Ci = ∪j∈NiΓij , and if Ci is a boundary volume then ∂Ci = ∪j∈NiΓij ∪ Γi∂Ω.

In (3.7) we gave an example of a set of volumes satisfying (3.6). Another common set of volumes
partitioning Ω ⊂ R can be found as follows. Assume {xi}N+1

i=1 is a structured grid. Define the dual grid
{xi+1/2}Ni=1 by xi+1/2 = (xi + xi+1)/2. Then

C1 = (x1, x1+1/2),

Ci = (xi−1/2, xi+1/2), i = 2, . . . , N − 1,

CN = (xN−1/2, xN ),

satisfy (3.6). Moving on, consider Ω ⊂ R2.

Definition 3.7. Let Ω ⊂ R2 and L = [0, 1]2. If there exists a bijective continuous linear transformation
ψ : Ω → L with a continuous inverse ψ−1, then Ω is a logically rectangular domain.

If Ω is logically rectangular then it is sufficient to find control volumes in L, as {ψ−1(Ci)}Ni=1 gives us
the desired partition. Therefore we consider first the case Ω = L = [0, 1]2. Recall that for Ω ⊂ R we found
control volumes induced by structured grids. This approach also works for the 2D case. Let {xi}m+1

i=1 and
{yj}l+1

j=1 be two structured grids contained in [0, 1] and assume x1 = y1 = 0, xm+1 = yl+1 = 1. Define

Ci = (xi, xi+1)× (y1, y2), i = 1, . . . ,m,

Ci = (xi−m, xi−m+1)× (y2, y3), i = m+ 1, . . . , 2m,

...

Ci = (xi−(l−1)m, xi−(l−1)m+1)× (yl, yl+1), i = (l − 1)m+ 1, . . . , lm,

and put N = lm. Then {Ci}Ni=1 satisfies (3.6). Once again, the volumes are said to be regular if Vi = Vj = h

for all i, j. If we define the volumes using one index for each dimension, we can also talk about structured
volumes in the 2D case. Note that dual grid volumes can also be defined by a similar procedure.

Suppose Ω 6= [0, 1]2, or that the volumes {ψ−1(Ci)}Ni=1 are somehow difficult to work with. There exists
a simple method to partition any path-connected domain Ω ⊂ R2 into control volumes {Ci}Ni=1 satisfying
(3.6). Let {pi}mi=1 be a set of distinct points in Ω, and consider the Deluanay triangulation generated by the
points. Let each triangle generated by the triangulation be a control volume Ci. Under some mild conditions
on the points pi, the control volumes generated by the triangulation will satisfy (3.6). We illustrate some
control volume partitions of Ω = [0, 1]2 in Fig. 3.
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Similarly to how a structured grid induces a dual grid, unstructured triangular grids also induce dual
grids. Further, triangular volumes induce dual volumes. These are defined by connecting each grid edge
midpoint to the center of mass of the volumes whose boundaries they intersect, see Fig 4.

(a) Regular grid and volumes. (b) Irregular grid and volumes.

Figure 3: Illustration of common grids and volumes.

3.3 Consistency, accuracy and stability

Consider some well-posed problem x ∈ Ω ⊂ Rn, 0 ≤ t ≤ T <∞,

ut +∇ · f(u) = 0, u(x, 0) = φ(x), u(∂Ω, t) = g(∂Ω, t), (3.8)

and let {Ci}Ni=1 be a set of control volumes satisfying

Ci ∩ Cj = ∅, (i 6= j), and
N⋃
i=1

Ci = Ω.

Further, define {ui(t)}Ni=1 and F by

ui(t) ≈
1

Vi

∫
Ci

u(x, t)dx, Fi ≈
∫
∂Ci

f(u(x, t)) · n̂dS,

such that
d

dt
u + V −1F = 0, (3.9)

is a finite volume scheme approximating (3.8), where u = [u1, ..., uN ]T and V = diag(V1, ..., VN ).

Definition 3.8. Assume u(x, t) is the unique solution of the problem (3.8). Then the local truncation error
τi of the finite volume scheme (3.9) is given by

d

dt

∫
Ci

u(x, t)dx+ Fi = τi.

Definition 3.9. If the local trunctation error τi satisfies

τi = O(hr), where h = max
Ci

sup
a,b∈Ci

‖a− b‖Rn ,

for i = 1, . . . , N , then the scheme is r-th order accurate.
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An r-th order accurate scheme with r > 0 is said to be consistent. Note that the finite volume scheme
approximates the integrated in space PDE if

Fi =

∫
∂Ci

f(u(x, t)) · n̂dS +O(hr), r > 0, (i = 1, . . . , N),

i.e., if the scheme is consistent. Define any r-th order scheme with r ≥ 3 to be a high-order scheme. Define
any finite volume method generating high-order schemes to be a high-order method. Suppose that we modify
the problem (3.8) such that Ω ⊂ R2 and the flux function f(u) is linear. Then by definition 2.7, the IBVP is
stable if for g ≡ 0 there exists constants K,α independent of φ and t such that

‖u(·, t)‖22 ≤ Keαt ‖φ(·)‖22 .

Further, the problem is strongly stable if there exists a bounded functional K(t) independent of φ and g

such that
‖u(·, t)‖22 ≤ K(t)

(
‖φ(·)‖22 +

∫ t

0

∫
∂Ω
g2(x, τ)dxdτ

)
.

Assuming we have a consistent scheme for the problem, we would like to have similar estimates for the
numerical solution. As the numerical solution is not a function of the spatial domain in the traditional sense,
we must consider a discrete version of the L2 norm. Recall that if the exact solution is continuous over Ci

then there exists some point x∗ ∈ Ci such that

u(x∗, t) =
1

Vi

∫
Ci

u(x, t)dx.

Thus, if the error between ui(t) and the volume-averaged value of the solution u(x, t) over Ci is O(hr) with
r > 0, then

u2i (t) → u2(x∗, t) as h→ 0,

and
Viu

2
i (t) →

∫
Ci

u2(x, t)dx as h→ 0.

To summarize, we have found that

〈u(t), V u(t)〉 =
N∑
i=1

Viu
2
i (t) = ‖u(t)‖2V → ‖u(·, t)‖22 .

This motivates the following definitions.

Definition 3.10 ([10, 36]). A semidiscrete scheme

d

dt
u + V −1Fu = 0,

approximating some well-posed linear problem

ut + P

(
x, t, ∂

∂x

)
u = 0, x ∈ Ω, t ∈ [0, T ],

u(x, 0) = φ(x),

u(∂Ω, t) = g(∂Ω, t),
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is said to be (energy) stable, if for g ≡ 0 we have the estimate

‖u(T )‖V ≤ KeαdT ‖u(0)‖V ,

where ‖u‖V = 〈u, V u〉 and K,αd ∈ R are independent of u(0) and T .

Note that
d

dt
‖u‖2V ≤ 0,

implies stability.

Definition 3.11 ([10, 36]). A semidiscrete scheme

d

dt
u + V −1Fu = 0,

approximating some well-posed problem

ut + P

(
x, t, ∂

∂x

)
u = 0, x ∈ Ω, t ∈ [0, T ],

u(x, 0) = φ(x),

u(∂Ω, t) = g(∂Ω, t),

is said to be strongly stable if we have the estimate

‖u(T )‖2V ≤ K(T )

(
‖u(0)‖2V + max

τ∈[0,T ]
‖g(τ)‖2V

)
,

where K(t) ∈ L∞[0, T ] is independent of u(0) and g.

Note that
d

dt
‖u‖2V ≤ g2(t),

implies strong stability.

Definition 3.12 ([10]). A semidiscrete scheme

d

dt
u + V −1Fu = 0,

approximating some well-posed problem

ut + P

(
x, t, ∂

∂x

)
u = 0, x ∈ Ω, t ∈ [0, T ],

u(x, 0) = φ(x),

u(∂Ω, t) = g(∂Ω, t),

is said to be strictly stable if we have the estimate

‖u(T )‖2V ≤ ‖u(·, T )‖22 .

There are also other notions of stability for schemes. An especially popular ([33, 35, 7]) stability analysis
tool is due to von Neumann. However, this approach is only valid for initial value problems and for schemes
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on structured, regular grids/volumes. We will show how one can prove stability for IBVP schemes in section
3.5.

3.4 Godunov’s method

The quintessential finite volume method is Godunov’s method, introduced in [46]. Following the procedure
described in section 3.1, consider the problem of approximating the flux over the boundaries:

∑
j∈Ni

∫
Γij

f(u(x, t)) · n̂dS.

Recall that u(x, t)
∣∣
Γij

is unknown. Consider creating a piecewise constant reconstruction R(x) of u(x, t) at
the current time step using the ui’s. That is, we define

R(x)
∣∣
x∈Ci

= ui.

At each boundary Γij = ∂Ci ∩ ∂Cj 6= ∅ we have that R(x) = ui on one side and R(x) = uj on the other side.
In other words, R is discontinuous accross the boundary. Godunov’s method proceeds by solving solving the
Riemann problem on pb ∈ Γij given by the PDE and R. Formally, we imagine a local (x, t)-like coordinate
system (ξ, τ) at each point pb ∈ Γij with ξ = 0 = pb. In this plane we have the Riemann problem

uτ + f(u)ξ = 0, u(ξ, 0) =

ui, ξ < 0

uj , ξ > 0
.

Here the ξ coordinate is parallel to and has the same direction as the unit normal vector n̂ of the boundary
Γij at pb. Further, let τ = 0 at the current time step. Using RP (ui, uj) to denote the exact or approximate
solution of the problem at ξ = 0, τ > 0, we obtain

∑
j∈Ni

∫
Γij

f(u(x))·n̂dS ≈
∑
j∈Ni

∫
Γij

f(R(x))·n̂dS =
∑
j∈Ni

∫
Γij

f(RP (ui, uj))·n̂dS =
∑
j∈Ni

f(RP (ui, uj))

∫
Γij

n̂dS,

where we tacitly assumed the Riemann problem was identical at every point pb on Γij .

Remark. Godunov’s method is sometimes described in the fully discrete setting. In this case, the waves
given by the solution of the Riemann problem are used to find the update of the unknown over the time
interval [t, t+∆t].

An alternative derivation is to consider the idea of a numerical flux flunction F . The numerical flux
function is always dependent on the two states at either side of the discontinuity, F ≡ F (uL, uR). To
illustrate, we would have that

∑
j∈Ni

∫
Γij

f(u(x, t)) · n̂dS ≈
∑
j∈Ni

∫
Γij

f(R(x, t)) · n̂dS =
∑
j∈Ni

∫
Γij

F (ui, uj) · n̂dS =
∑
j∈Ni

F (ui, uj)

∫
Γij

n̂dS.

We see that the two approximations are equivalent if F (ui, uj) = f(RP (ui, uj)), i.e. using Godunov’s
numerical flux [47]. Throughout this thesis we will often consider the central numerical flux

F (uL, uR) = f

(
uL + uR

2

)
.
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In general, most numerical fluxes in the scientifc literature are of the form

F (uL, uR) = f

(
uL + uR

2

)
− λ(uR − uL),

where λ ∈ R is sometimes called the upwinding parameter.

3.5 SBP-SAT schemes

In [15, 16] it was shown that certain finite volume schemes satisfy the summation-by-parts (SBP) property.
These schemes could then be modified by adding simultaneous approximation terms (SAT) to make them
strongly stable in a discrete L2 norm. Here we introduce the concept of SBP-SAT schemes and illustrate
how to prove energy stability of schemes. Consider problem 1 from section 2.4:

Let x ∈ Ω = [0, 1] ⊂ R and t ∈ [0, T ] ⊂ R+. Find the function u : Ω× [0, T ] → R satisfying

ut + ux = 0, u(x, 0) = f(x), u(0, t) = g(t).

where f(x) = sin(2πx) and g(t) = sin(−2πt).

Recall that the energy rate was found to be

d

dt
‖u(·, t)‖22 = u2(0, 1)− u2(1, t) ≤ g2(t).

We will demonstrate that SBP-SAT schemes obtain the same energy rate in a discrete L2 norm. Let {Ci}Ni=1

denote a set of structured control volumes satisfying the conditions

Ci ∩ Cj = ∅, (i 6= j), and
N⋃
i=1

Ci = Ω.

Let ui(t) denote an approximation of the volume-averaged value of u(x, t) over Ci, i.e.

ui(t) ≈
1

Vi

∫
Ci

u(x, t)dx, i = 1, . . . , N,

where Vi denotes the measure of Ci. Integrating the PDE over Ci and using integration by parts we obtain
the finite volume approximation

Vi
d

dt
ui = u(C−

i , t)− u(C+
i , t)

where Ci = (C−
i , C

+
i ). As u(C±

i , t) is unknown, we want to approximate these values using the data {ui(t)}Ni=1.
Consider a fixed time t = t∗ and ignore the time dependence of the variables. Following Godunov’s method,
we create the piecewise constant function R(x) given by R(x) = ui for x ∈ Ci. Then we determine u(C+

i ) by
solving the Riemann problems

ut + ux = 0, u(x, 0) =

ui, x < C+
i

ui+1, x > C+
i

either exactly or approximately. Note that we used the structure of the control volumes to know that
C+
i = C−

i+1. Denote by RP (ui, ui+1) either the exact or approximate solution of the Riemann problem
evaluated at x = C+

i , t > 0. Then, approximate u(C+
i ) by RP (ui, ui+1) and u(C−

i ) by RP (ui−1, ui).
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Following the papers [15, 16] we let RP (a, b) = (a+ b)/2. The scheme for interior volumes becomes

Vi
d

dt
ui =

ui−1 + ui
2

− ui + ui+1

2
=
ui−1 − ui+1

2
.

Since u0 and uN+1 are undefined, we will use u(C−
1 ) ≈ u1 and u(C+

N ) ≈ uN . Then

V1
d

dt
u1 = u1 −

u1 + u2
2

=
u1 − u2

2
, and VN

d

dt
uN =

uN−1 + uN
2

− uN =
uN−1 − uN

2
.

Define matrices Q,V by

Q =



−1
2

1
2 0 . . . . . .

−1
2 0 1

2

. . . ...

0
. . . . . . . . . . . .

... . . . −1
2 0 1

2

0 . . . . . . −1
2

1
2


, V = diag(V1, V2, . . . , VN ),

to write the scheme as
V
d

dt
u = −Qu,

where u = [u1, u2, . . . , uN ]T .

Definition 3.13. A discrete differential operator D = V −1Q is said to be a summation-by-parts operator, if
V is symmetric positive definite and Q satisfies Q+QT = diag(−1, 0, . . . , 0, 1).

We see that D = V −1Q for the given matrices Q,V, is a summation-by-parts operator. Suppose that we
modify the scheme by adding the SAT,

V
d

dt
u = −Qu + SAT = −Qu + τ(u1 − g(t))e1, (3.10)

where e1 = [1, 0, . . . , 0]T ∈ RN .

Proposition 3.1. The scheme (3.10) with τ = −1 is strongly stable.

Proof. Multiply by uT on the left and add the transposed equation to obtain

d

dt
‖u‖2V = −uT (Q+QT )u + 2u1τ(u1 − g(t)) = u21 − u2N + 2u1τ(u1 − g(t)) ≤ (1 + 2τ)u21 − 2u1τg(t).

Inserting τ = −1 gives

d

dt
‖u‖2V ≤ −u21 + 2u1g(t) = −(u1 − g(t))2 + g2(t) ≤ g2(t).

Instead of adding a SAT to implement the boundary condition, suppose we implement it directly into
the approximation of u(C−

1 ) in the flux calculation. The scheme for u1 becomes

V1
d

dt
u1 = g(t)− u1 + u2

2
,

21



T. B. Hestvik / On the energy stability of high-order finite volume schemes for initial-boundary value problems

and the matrix Q becomes

Q =



1
2

1
2 0 . . . . . .

−1
2 0 1

2

. . . ...

0
. . . . . . . . . . . .

... . . . −1
2 0 1

2

0 . . . . . . −1
2

1
2


,

giving the scheme
V
d

dt
u = −Qu + g(t)e1.

Further, we have the discrete energy estimate

d

dt
‖u‖2V = −u21 − u2N + 2u1g(t) ≤ −(u1 − g(t))2 + g2(t) ≤ g2(t).

We see that directly implementing the boundary condition in the flux approximation for this problem and
finite volume method also gives a strongly stable scheme. In fact, the scheme modified by the SAT with
τ = −1 and the scheme in which we injected the boundary condition into the flux directly are completely
equivalent. To see this, simply compare the first equation in the two schemes and note that they are the
same:

−u1
2

− u2
2

+ g(t) =
u1
2

− u2
2

− u1 + g(t).

Next, consider problem 2 from section 2.4:

Let x = (x, y) ∈ Ω = [0, 1]2, 0 ≤ t ≤ T <∞ and u = u(x, t) be a real-valued function. Consider

ut + ux + uy = 0, u(x, y, 0) = sin
(
2π
(x
2
+
y

2

))
, u(0, y, t) = g1(y, t), u(x, 0, t) = g2(x, t),

where g1 and g2 are given by

g1(y, t) = sin(2π(y/2− t)), g2(x, t) = sin(2π(x/2− t)).

In section 2.4 we found the energy rate to be

d

dt
‖u‖22 =

∫ 1

0
g21(y, t)− u2(1, y, t)dy +

∫ 1

0
g22(x, t)− u2(x, 1, t)dx ≤

∫ 1

0
g21(y, t)dy +

∫ 1

0
g22(x, t)dx.

Once again we will demonstrate a finite volume scheme which satisfies the same energy rate in a discrete
L2 norm. Let Ω be discretized by an unstructured triangular grid with N nodes {pi}Ni=1, and construct N
node-centered control volumes {Ci}Ni=1 defined by the midpoints of the lines connecting pi with its neighbours
and the triangle centroids as shown in Fig. 4. Let ui(t) denote an approximation of the volume-averaged
value of u(x, t) over Ci, i.e.

ui(t) ≈
1

Vi

∫
Ci

u(x, t)dx.

Integrating the PDE over Ci ⊂ Ω and applying Gauss’ theorem we find∫
Ci

utdxdy = −
∫
Ci

ux + uydxdy = −
∫
Ci

∇ · [u, u]Tdxdy = −
∮
∂Ci

[u, u] · n̂dS = −
∮
∂Ci

udy +

∮
∂Ci

udx,
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Figure 4: Illustration of node-centered control volume on an unstructured irregular triangular grid.

and the finite volume approximation

Vi
d

dt
ui = −

∮
∂Ci

udy +

∮
∂Ci

udx,

where we used the fact that n̂dS = [dy,−dx]T . Suppose that Ci is an interior volume, i.e.

∂Ci =
⋃
j∈Ni

Γij .

We can obtain the flux over each Γij independently. As u(x, t)
∣∣
Γij

is unknown we must somehow approximate
these values. Following Godunov’s method, define N polynomials {Ri(x)}Ni=1 by Ri(x) = ui for x ∈ Ci.
Consider the Riemann problem

ut + uξ = 0, u(ξ, 0) =

Ri(ξ) = ui, ξ < 0

Rj(ξ) = uj , ξ > 0
,

where ξ ∈ R2 is parallel to the normal vector on Γij pointing outward w.r.t. ∂Ci, and ξ = 0 on Γij . Let
RP (ui, uj) denote either the exact or approximate solution of the problem, evaluated at ξ = 0 and t > 0.
We will use the approximation u(x, t)

∣∣
Γij

= RP (ui, uj). Further, we will use the central flux approximation

RP (a, b) =
a+ b

2
,

and the midpoint quadrature rule given by∫ b

a
ψ(x)dx = (b− a)ψ((a+ b)/2).
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Thus, the scheme for interior volumes becomes

Vi
d

dt
ui = −

∮
∂Ci

udy +

∮
∂Ci

udx

= −
∑
j∈Ni

∫
Γij

udy +
∑
j∈Ni

∫
Γij

udx

≈ −
∑
j∈Ni

∫
Γij

RP (ui, uj)dy +
∑
j∈Ni

∫
Γij

RP (ui, uj)dx

≈ −
∑
j∈Ni

∫
Γij

ui + uj
2

dy +
∑
j∈Ni

∫
Γij

ui + uj
2

dx

≈ −
∑
j∈Ni

(
ui + uj

2

)
∆yij +

∑
j∈Ni

(
ui + uj

2

)
∆xij

= −
∑
j∈Ni

ui
∆yij
2

−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

ui
∆xij
2

+
∑
j∈Ni

uj
∆xij
2

,

where ∆xij ,∆yij are the changes in x, y over Γij respectively.

Remark. For interior volumes, ∑
j∈Ni

∆xij =
∑
j∈Ni

∆yij = 0.

Next we consider the case where Ci is a boundary volume, i.e.

∂Ci =
⋃
j∈Ni

Γij ∪ Γi∂Ω, where Γi∂Ω = ∂Ci ∩ ∂Ω.

Let ∆yi∂Ω and ∆xi∂Ω denote the y, x lengths respectively along the boundary Γi∂Ω. As there is no
reconstruction on the other side of Γi∂Ω, we will proceed as for the 1D problem and approximate u(x, t)

∣∣
Γi∂Ω

by Ri(x) = ui. The scheme for boundary volumes becomes

Vi
d

dt
ui = −

∮
∂Ci

udy +

∮
∂Ci

udx

= −
∑
j∈Ni

∫
Γij

udy −
∫
Γi∂Ω

udy +
∑
j∈Ni

∫
Γij

udx+

∫
Γi∂Ω

udx

≈ −
∑
j∈Ni

∫
Γij

RP (ui, uj)dy −
∫
Γi∂Ω

uidy +
∑
j∈Ni

∫
Γij

RP (ui, uj)dx+

∫
Γi∂Ω

uidx

≈ −
∑
j∈Ni

∫
Γij

ui + uj
2

dy −
∫
Γi∂Ω

uidy +
∑
j∈Ni

∫
Γij

ui + uj
2

dx+

∫
Γi∂Ω

uidx

≈ −
∑
j∈Ni

(
ui + uj

2

)
∆yij +

∑
j∈Ni

(
ui + uj

2

)
∆xij − ui∆yi∂Ω + ui∆xi∂Ω

= −
∑
j∈Ni

ui
∆yij
2

−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

ui
∆xij
2

+
∑
j∈Ni

uj
∆xij
2

− ui∆yi∂Ω + ui∆xi∂Ω.

Since ∂Ci is a closed simple curve it follows that∑
j∈Ni

∆xij = −∆xi∂Ω,
∑
j∈Ni

∆yij = −∆yi∂Ω,

24



T. B. Hestvik / On the energy stability of high-order finite volume schemes for initial-boundary value problems

and the boundary volume scheme can be written as

Vi
d

dt
ui = −ui

∆yi∂Ω
2

−
∑
j∈Ni

uj
∆yij
2

+ ui
∆xi∂Ω

2
+
∑
j∈Ni

uj
∆xij
2

.

In order to determine the energy stability of the scheme we want to write it in the spatially global form

V
d

dt
u = −K

where V = diag(V1, . . . , VN ), u = [u1, . . . , uN ]T and −K is the vector containing the flux approximations
previously described. Suppose that we define matrices Qx, Qy by

(Qx)ij =
∆yij
2

, (Qx)ii =


∆yi∂Ω

2 , i ∈ N∂Ω

0, otherwise
,

(Qy)ij = −∆xij
2

, (Qy)ii =

−∆xi∂Ω
2 , i ∈ N∂Ω

0, otherwise
,

where N∂Ω is the set of indices i such that ∂Ci ∩ ∂Ω 6= ∅. Then we can write the finite volume scheme as

V
d

dt
u = −Qxu −Qyu. (3.11)

Consider the fact that we are always integrating in a counter-clockwise manner. This implies that ∆yij =

−∆yji and ∆xij = −∆xji. It follows that

1T (Qx + (Qx)
T )1 =

∑
i∈N∂Ω

∆yi∂Ω, and 1T (Qy + (Qy)
T )1 =

∑
i∈N∂Ω

−∆xi∂Ω.

Here we used 1 = [1, 1, . . . , 1]T ∈ RN . Let us examine the energy estimate of the scheme. Multiply (3.11) by
uT and add the transpose to obtain

uTV ut + uT
t V u = −uTQxu − uTQT

x u − uTQyu − uTQT
y u

⇐⇒ d

dt
‖u‖2V = −uT (Qx +QT

x )u − uT (Qy +QT
y )u

= −
∑

i∈N∂Ω

(u2i∆yi∂Ω − u2i∆xi∂Ω).

Due to the counter-clockwise integration orientation, ∆yi∂Ω is positive at x = 1 and negative at x = 0.
Likewise, ∆xi∂Ω is positive at y = 0 and negative at y = 1. Let B1 denote the set {(x, y) ∈ Ω : x = 0} and
B2 denote the set {(x, y) ∈ Ω : y = 0}. Then,

d

dt
‖u‖2V ≤ −

∑
i:Γi∂Ω⊂B1

u2i∆yi∂Ω +
∑

i:Γi∂Ω⊂B2

u2i∆xi∂Ω.

Now we can add SAT to implement the boundary conditions in a stable manner. In particular, let (xi, yi)

denote the midpoint of Γi∂Ω and consider the scheme

V
d

dt
u = −Qxu −Qyu + τ1 (ui − g1(yi, t))∆yi∂ΩeB1 + τ2 (ui − g2(xi, t))∆xi∂ΩeB2 (3.12)

25



T. B. Hestvik / On the energy stability of high-order finite volume schemes for initial-boundary value problems

where eB1 , eB2 ∈ RN are given by

(eB1)i =

1, Γi∂Ω ⊂ B1

0, otherwise
, (eB2)i =

1, Γi∂Ω ⊂ B2

0, otherwise

Proposition 3.2. If g1, g2 are integrated exactly by the midpoint quadrature rule then the scheme (3.12)
with τ1 = 1 and τ2 = −1 is strongly stable

Proof. Note that

d

dt
‖u‖2V ≤ −

∑
i:Γi∂Ω⊂B1

∆yi∂Ω
(
u2i − 2τ1ui(ui − g1(yi, t))

)
+

∑
i:Γi∂Ω⊂B2

∆xi∂Ω
(
u2i + 2τ2ui(ui − g2(xi, t))

)
= −

∑
i:Γi∂Ω⊂B1

∆yi∂Ω
(
(1− 2τ1)u

2
i + 2τ1uig1(yi, t)

)
+

∑
i:Γi∂Ω⊂B2

∆xi∂Ω
(
(1 + 2τ2)u

2
i − 2τ2uig2(xi, t)

)
.

Inserting τ1 = 1 and τ2 = −1 we obtain

d

dt
‖u‖2V ≤ −

∑
i:Γi∂Ω⊂B1

∆yi∂Ω
(
−u2i + 2uig1(yi, t)

)
+

∑
i:Γi∂Ω⊂B2

∆xi∂Ω
(
−u2i + 2uig2(xi, t)

)
= −

∑
i:Γi∂Ω⊂B1

∆yi∂Ω
(
−(ui − g1(yi, t))

2 + g21(yi, t)
)

+
∑

i:Γi∂Ω⊂B2

∆xi∂Ω
(
−(ui − g2(xi, t))

2 + g22(xi, t)
)

≤ −
∑

i:Γi∂Ω⊂B1

∆yi∂Ωg
2
1(yi, t) +

∑
i:Γi∂Ω⊂B2

∆xi∂Ωg
2
2(xi, t).

If g1, g2 are integrated exactly by the midpoint quadrature rule then

∑
i:Γi∂Ω⊂B1

−∆yi∂Ωg
2
1(yi, t) +

∑
i:Γi∂Ω⊂B2

∆xi∂Ωg
2
2(xi, t) =

∫ 1

0
g21(y, t)dy +

∫ 1

0
g22(x, t)dx.

Consider implementing the boundary conditions directly into the flux approximation instead as we did
for problem 1. Let B3 denote the set {(x, y) ∈ Ω : y = 1} and B4 denote the set {(x, y) ∈ Ω : x = 1}. Recall
that

−
∑
j∈Ni

∆yij
2

=
∆yi∂Ω

2
, and

∑
j∈Ni

∆xij
2

= −∆xi∂Ω
2

.

The boundary volume schemes become
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Γi∂Ω ⊂ B1 : ui
∑
j∈Ni

∆xij = 0

=⇒ Vi
d

dt
ui = −

∑
j∈Ni

ui
∆yij
2

−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

uj
∆xij
2

− g1(yi, t)∆yi∂Ω

= ui
∆yi∂Ω

2
−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

uj
∆xij
2

− g1(yi, t)∆yi∂Ω

Γi∂Ω ⊂ B2 : ui
∑
j∈Ni

∆yij = 0

=⇒ Vi
d

dt
ui = −

∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

ui
∆xij
2

+
∑
j∈Ni

uj
∆xij
2

+ g2(xi, t)∆xi∂Ω

= −
∑
j∈Ni

uj
∆yij
2

− ui
∆xi∂Ω

2
+
∑
j∈Ni

uj
∆xij
2

+ g2(xi, t)∆xi∂Ω

Γi∂Ω ⊂ B3 : ui
∑
j∈Ni

∆xij = 0

=⇒ Vi
d

dt
ui = −

∑
j∈Ni

ui
∆yij
2

−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

uj
∆xij
2

− ui∆yi∂Ω

= −ui
∆yi∂Ω

2
−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

uj
∆xij
2

Γi∂Ω ⊂ B4 : ui
∑
j∈Ni

∆yij = 0

=⇒ Vi
d

dt
ui = −

∑
j∈Ni

ui
∆yij
2

−
∑
j∈Ni

uj
∆yij
2

+
∑
j∈Ni

ui
∆xij
2

+
∑
j∈Ni

uj
∆xij
2

+ ui∆xi∂Ω

= −
∑
j∈Ni

uj
∆yij
2

+ ui
∆xi∂Ω

2
+
∑
j∈Ni

uj
∆xij
2

.

Hence Qx, Qy, become

(Qx)ij =
∆yij
2

, (Qx)ii =


∆yi∂Ω

2 , Γi∂Ω ⊂ B3

−∆yi∂Ω
2 , Γi∂Ω ⊂ B1

0, otherwise

,

Qy)ij = −∆xij
2

, (Qy)ii =


−∆xi∂Ω

2 , Γi∂Ω ⊂ B4

∆xi∂Ω
2 , Γi∂Ω ⊂ B2

0, otherwise

,

and the scheme can be written as

V
d

dt
u = −Qxu −Qyu − g1(yi, t)∆yi∂ΩeB1 + g2(xi, t)∆xi∂ΩeB2 . (3.13)
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We find the energy estimate for (3.13) to be

d

dt
‖u‖2V = −

∑
i:Γi∂Ω⊂B3

u2i∆yi∂Ω +
∑

i:Γi∂Ω⊂B4

u2i∆xi∂Ω

−
∑

i:Γi∂Ω⊂B1

(
−u2i + 2uig1(yi, t)

)
∆yi∂Ω +

∑
i:Γi∂Ω⊂B2

(
−u2i + 2uig2(xi, t)

)
∆xi∂Ω

≤ −
∑

i:Γi∂Ω⊂B1

(
−(ui − g1(yi, t))

2 + g21(yi, t)
)
∆yi∂Ω +

∑
i:Γi∂Ω⊂B2

(
−(ui − g2(xi, t)

2 + g22(xi, t)
)
∆xi∂Ω

≤ −
∑

i:Γi∂Ω⊂B1

g21(yi, t)∆yi∂Ω +
∑

i:Γi∂Ω⊂B2

g22(xi, t)∆xi∂Ω.

That is, the energy estimate is the same as for the scheme where we implemented the BC using the SAT.
To summarize, in this subsection we have illustrated that Godunov’s method with the piecewise constant

reconstructions and the central flux is able to produce schemes satisfying the SBP property. Since the
schemes satisfy the SBP property we were able to derive energy estimates for them mimicking the energy
estimates for the continuous problems. We must remark that the examples shown here are not novel, and
refer the reader to [15, 16] for more indepth discussion.
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4 High-order finite volume methods

In the previous section we saw that creating degree 0 reconstructions and applying the central flux together
with the midpoint rule to approximate the fluxes yielded energy stable schemes for the simple linear
hyperbolic problems of section 2.4. A natural idea to increase the accuracy order is to create a higher order
reconstruction of u, and use a higher-order quadrature rule. In fact, this idea is quite old, and seems to
originate in [48, 49]. The high-order Godunov method was further developed in [50] and [51]. It seems
the k-exact method introduced in [24] is one of the earliest extensions to 2D problems. More recently, the
spectral volume method [31] can be seen as an improvement on the k-exact method.

In this section we describe the k-exact finite volume method in the context of 2D problems.

4.1 k-exact method

Here we describe the k-exact method introduced in [24]. Suppose we follow the procedure in section 3.1 and
obtain

d

dt
ui(t) +

1

Vi

∫
∂Ci

f(u(x, t)) · n̂dS = 0, (4.1)

where
ui(t) ≈

1

Vi

∫
Ci

u(x, t)dx, u = [u1, .., uN ]T .

Our goal is to find a high-order accurate approximation of∫
∂Ci

f(u(x, t)) · n̂dS.

Let t = t∗ be fixed and write u(x, t∗) = u(x), ui(t∗) = ui. In the k-exact method we aim to find a degree k
polynomial reconstruction Rk

i (x − pi) of u(x) using the data u. Here pi denotes the center of mass of Ci.
This polynomial must satisfy the k-exactness property

Rk
i (x − pi)− u(x) = O(hk+1), (x ∈ Ci), (4.2)

and the conservation property
1

Vi

∫
Ci

Rk
i (x − pi)dx = ui, (4.3)

where h = maxCi supa,b∈Ci
‖a− b‖R2 as usual. Assuming u(x) is smooth we have

u(x) = u
∣∣
pi
+ ux

∣∣
pi
(x− xi) + uy

∣∣
pi
(y − yi) +

1

2
uxx
∣∣
pi
(x− xi)

2 + uxy
∣∣
pi
(x− xi)(y − yi) + ...

= u
∣∣
pi
+

∑
1≤n+m

1

n!m!

∂n+mu

∂xn∂ym

∣∣∣∣
pi

(x− xi)
n(y − yi)

m.

Consider representing Rk
i by its Taylor series as well:

Rk
i (x − pi) = Rk

i

∣∣
pi
+ (Rk

i )x
∣∣
pi
(x− xi) + (Rk

i )y
∣∣
pi
(y − yi) +

1

2
(Rk

i )xx
∣∣
pi
(x− xi)

2 + (Rk
i )xy

∣∣
pi
(x− xi)(y − yi) + ...

= Rk
i

∣∣
pi
+

∑
1≤n+m≤k

1

n!m!

∂n+mRk
i

∂xn∂ym

∣∣∣∣
pi

(x− xi)
n(y − yi)

m.
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It follows that (4.2) is satisfied if

1

n!m!

∂n+mRk
i

∂xn∂ym

∣∣∣∣
pi

=
1

n!m!

∂n+mu

∂xn∂ym

∣∣∣∣
pi

+O(hk+1−(m+n)), (0 ≤ n+m ≤ k). (4.4)

(Cf. [27]). Note that if ∣∣∣∣ui − 1

Vi

∫
Ci

u(x)dx
∣∣∣∣ = O(hk+1),

then

ui = u
∣∣
pi
+

∑
1≤n+m≤k

1

n!m!

∂n+mu

∂xn∂ym

∣∣∣∣
pi

1

Vi

∫
Ci

(x− xi)
n(y − yi)

m +O(hk+1),

= u
∣∣
pi
+

∑
1≤n+m≤k

1

n!m!

∂n+mu

∂xn∂ym

∣∣∣∣
pi

xnymi +O(hk+1),

where
xnymi ≡

1

Vi

∫
Ci

(x− xi)
n(y − yi)

mdxdy,

are the polynomial basis moments over Ci. Further, if (4.3) is to be satisfied we must have that

ui = Rk
i

∣∣
pi
+

∑
1≤n+m≤k

1

n!m!

∂n+mRk
i

∂xn∂ym

∣∣∣∣
pi

1

Vi

∫
Ci

(x− xi)
n(y − yi)

m +O(hk+1),

= Rk
i

∣∣
pi
+

∑
1≤n+m≤k

1

n!m!

∂n+mRk
i

∂xn∂ym

∣∣∣∣
pi

xnymi.

Thus, we have obtained one equation for (k + 2)(k + 1)/2 unknowns. To obtain the remaining equations we
will proceed much in the same way, by requiring that∣∣∣∣∣ 1Vj

∫
Cj

Rk
i (x − pi)dx − uj

∣∣∣∣∣ = 0.

Note that

1

Vj

∫
Cj

Ri(x − pi)dx =Rk
i

∣∣
pi
+ (Rk

i )x
∣∣
pi

1

Vj

∫
Cj

(x− xi)dxdy + (Rk
i )y
∣∣
pi

1

Vj

∫
Cj

(y − yi)dxdy

+ (Rk
i )xx

∣∣
pi

1

2Vj

∫
Cj

(x− xi)
2dxdy + (Rk

i )xy
∣∣
pi

1

Vj

∫
Cj

(x− xi)(y − yi)dxdy

+ (Rk
i )yy

∣∣
pi

1

2Vj

∫
Cj

(y − yi)
2dxdy + ....

To avoid integrating (x−xi)n(y−yi)m over Cj for various j, we may substitute (x−xi) with (x−xj)+(xj−xi)
and likewise for (y − yi). Then as shown in [25, 26] we obtain

1

Vj

∫
Cj

Ri(x − pi)dx = u
∣∣
pi
+ ux

∣∣
pi
x̂ij + uy

∣∣
pi
ŷij + uxx

∣∣
pi

x̂2ij
2

+ uxy
∣∣
pi
x̂yij + uyy

∣∣
pi

ŷ2ij
2

+ ...,
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where

x̂nymij ≡
1

Vj

∫
Cj

((x− xj) + (xj − xi))
n((y − yj) + (yj − yi))

mdxdy

=
m∑
l=0

n∑
k=0

(
m

l

)(
n

k

)
(xj − xi)

k(yj − yi)
lxn−kym−l

j ,

(cf. Binomial Theorem). Now the idea is to determine the coefficients αmn = (∂nx∂
m
y R

k
i

∣∣
pi
)/(n!m!) by solving

the linear system

Miα = [uj ]
jσ−1

j=i ⇐⇒



1 xi yi x2i xyi y2i ...

1 x̂ij1 ŷij1 x̂2ij1 x̂yij1 ŷ2ij1 ...

1 x̂ij2 ŷij2 x̂2ij2 x̂yij2 ŷ2ij2 ...
...

...
...

...
...

... ...
...

...
...

...
...

... ...
...

...
...

...
...

... ...
...

...
...

...
...

... ...

1 x̂ijσ−1 ŷijσ−1 x̂2ijσ−1 x̂yijσ−1
ŷ2ijσ−1

...





Rk
i

∣∣
pi

(Rk
i )x
∣∣
pi

(Rk
i )y
∣∣
pi

1
2(R

k
i )xx

∣∣
pi

(Rk
i )xy

∣∣
pi

1
2(R

k
i )yy

∣∣
pi

...

...


=



ui

uj1

uj2

uj3
...
...
...

ujσ−1


, (4.5)

where the stencil is {Ci} ∪ {Cj}jσ−1

j=j1
and

σ =
(k + 2)(k + 1)

2
.

If Mi is nonsingular, the system (4.5) can be solved and Rk
i (x−pi) is obtained. To be precise, α =M−1

i [uj ]
jσ−1

j=i

leads to
Rk

i (x − pi) =
∑

m+n≤k

(
M−1

i [uj ]
jσ−1

j=i

)
mn

(x− xi)
m(y − yi)

n.

If we define a linear map

Si : RN → Rσ, u 7→ uie1 + uj1e2 + · · ·+ ujσ−1eσ,

then
Rk

i (x − pi) =
∑

m+n≤k

(
M−1

i Siu
)
mn

(x− xi)
m(y − yi)

n.

Further, we factorize Rk
i as an inner product

Rk
i (x − pi) = 〈α, e(x − pi)〉 =

〈
M−1

i Siu, e(x − pi)
〉
, (4.6)

where

e(x − pi) =



1

(x− xi)

(y − yi)

(x− xi)
2

(x− xi)(y − yi)
...


. (4.7)
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The expression (4.6) will be useful in section 5.
After obtaining reconstructions {Rk

i }Ni=1, we follow the idea of Godunov’s method (see section 3.4). That
is, we will assume that

Rk
i (x − pi) 6= Rk

j (x − pj), (x ∈ Γij),

holds for all i, j. Then u(x, t∗) at Γij is approximated by solving the Riemann problems

ut + f(u)ξ = 0, u(ξ, 0) =

Rk
i (x − pi), ξ < 0

Rk
j (x − pj), ξ > 0

(4.8)

either exactly or approximately. Here ξ is parallel to the normal vector on Γij and ξ = 0 lies on Γij . Using
the notation

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
to denote the exact or approximate solution of (4.8) at ξ = 0 and t > 0, the k-exact approximation of (4.1)
is given by

d

dt
ui +

1

Vi

∑
j∈Ni

∫
Γij

f
(
RP

(
Rk

i (x − pi), R
k
j (x − pj)

))
· n̂dS = 0,

where ∂Ci = ∪j∈NiΓij . After applying some quadrature rule, we obtain

d

dt
ui +

1

Vi

∑
j∈Ni

m∑
q=1

wijqf
(
RP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

))
= 0,

where m is the number of quadrature points on Γij , wijq are the quadrature weights, and xijq are the
quadrature points.

Remark. As noted in [26], we can use Gauss’ theorem to write

xnymi ≡
1

Vi

∫
Ci

(x− xi)
n(y − yi)

mdxdy =
1

(n+ 1)Vi

∫
Ci

∇ · [(x− xi)
n+1(y − yi)

m, 0]dxdy

=
1

(n+ 1)Vi

∫
∂Ci

(x− xi)
n+1(y − yi)

m · n̂1dS

where n̂1 is the first component of the outward normal vector. Now we can use Gaussian quadrature to find
the moments with accuracy order k + 1 by m = d(k + 1)/2e quadrature points on each subset Γij of ∂Ci.
Suppose each Γij is a straight line and let (xij,0, yij,0), (xij,1, yij,1) denote their endpoints. Then (A.3) implies

xnymi =
1

(n+ 1)Vi

∑
j∈Ni

∫
Γij

(x− xi)
n+1(y − yi)

mdy

=
1

(n+ 1)Vi

∑
j∈Ni

yij,1 − yij,0
2

∫ 1

−1

(
xij,1 − xij,0

2
ξ +

xij,1 + xij,0
2

− xi

)n+1(yij,1 − yij,0
2

ξ +
yij,1 + yij,0

2
− yi

)m

dξ

=
1

(n+ 1)Vi

∑
j∈Ni

∆yij
2

∫ 1

−1

(
∆xij
2

ξ +
xij,1 + xij,0

2
− xi

)n+1(∆yij
2

ξ +
yij,1 + yij,0

2
− yi

)m

dξ,

where ∆xij = xij,1 − xij,0 and similarly for ∆yij .

Remark. The moments xnym, x̂nym over each control volume need only be calculated in the initialization
of the numerical method. The stored values are then to be used in the reconstructions in each time step.
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It might occur that we choose some stencil {Ci} ∪ {Cj}jσ−1

j=j1
leading to a singular coefficient matrix Mi.

To avoid this problem there are various stencil selection techniques, or reconstruction methods, to choose
from. The different reconstruction methods also attempt to solve some other downsides of the k-exact FVM.
We describe some of these in the following text.

4.1.1 Least-squares reconstruction

Consider determining α using a least-squares approximation, minimizing the difference between uj and the
volume-averaged value of Rk

i over Cj for all Cj in the stencil. The main motivation for using a least-squares
approximation is that the linear system obtained from a stencil of σ = (k + 2)(k + 1)/2 elements might be
singular. Hence we increase the stencil to guarantee existence of (least-squares) solutions. To guarantee
that the reconstructions satisfy the conservation condition, we must set the first equation as a constraint.
Sometimes geometric weights are applied such that the data closer to pi is prioritized in the approximation.
In short, the reconstruction coefficients are found by solving the constrained least-squares problem

1 xi yi x2i xyi y2i ...

γij1 γij1 x̂ij1 γij1 ŷij1 γij1 x̂
2
ij1 γij1 x̂yij1 γij1 ŷ

2
ij1 ...

γij2 γij2 x̂ij2 γij2 ŷij2 γij2 x̂
2
ij2 γij2 x̂yij2 γij2 ŷ

2
ij2 ...

...
...

...
...

...
... ...

...
...

...
...

...
... ...

...
...

...
...

...
... ...

...
...

...
...

...
... ...

γijσi γijσi x̂ijσi γijσi ŷijσi γijσi x̂
2
ijσi

γijσi x̂yijσi
γijσi ŷ

2
ijσi

...





Rk
i

∣∣
pi

(Rk
i )x
∣∣
pi

(Rk
i )y
∣∣
pi

1
2(R

k
i )xx

∣∣
pi

(Rk
i )xy

∣∣
pi

1
2(R

k
i )yy

∣∣
pi

...

...


=



ui

γij1uj1

γij2uj2

γij3uj3
...
...
...

γijσiujσi


,

where the equation above the line is the constraint. Here the stencil consists of {Ci} ∪ {Cj}
jσi
j=j1

for some
σi ≥ σ = (k + 2)(k + 1)/2. The geometric weights γij can for instance be defined by

γij =
1

‖pi − pj‖R2

.

Recall that the least-squares problem can be solved using the QR factorization. To make sure that the
constraint is satisfied exactly, we proceed as in [25]. Begin by eliminating the first column by subtracting
γij · [constraint] to obtain

1 xi yi x2
i xyi . . .

0 γij1(x̂ij1 − xi) γij1(ŷij1 − yi) γij1(x̂
2
ij1 − x2

i) γij1(x̂yij1
− xyi) . . .

0 γij2(x̂ij2 − xi) γij2(ŷij2 − yi) γij2(x̂
2
ij2 − x2

i) γij2(x̂yij2
− xyi) . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

...
...

...
...

... . . .
...

...
...

...
... . . .

0 γijσi
(x̂ijσi

− xi) γijσi
(ŷijσi

− yi) γijσi
(x̂2

ijσi
− x2

i) γijσi
(x̂yijσi

− xyi) . . .





Rk
i

∣∣
pi

(Rk
i )x

∣∣
pi

(Rk
i )y

∣∣
pi

1
2
(Rk

i )xx
∣∣
pi

(Rk
i )xy

∣∣
pi

1
2
(Rk

i )yy
∣∣
pi

...

...


=



ui

γij1(uj1 − ui)

γij2(uj2 − ui)

γij3(uj3 − ui)
...
...
...

γijσi
(ujσi

− ui)



.

Next, use householder reflectors to obtain the QR factorization of the matrix. Since the σ × σ submatrix R̂i

of Ri is upper triangular, we obtain α by back-substitution. Since Rk
i

∣∣
pi

remains a free variable up to the
last equation (the constraint), it is chosen such that the constraint is satisfied exactly. If we define the linear
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map
Si : RN → Rσi+1, u 7→ uie1 + γij1(uj1 − ui)e2 + · · ·+ γijσi (ujσi − ui)eσi+1,

then
α = R̂−1

i QT
i Siu, and Rk

i (x − pi) =
〈
R̂−1

i QT
i Siu, e(x − pi)

〉
,

where e(x − pi) is given by (4.7).

4.1.2 ENO reconstruction

Consider the case where the exact solution u(x, t) contains a discontinuity at the current time step. If
the reconstruction stencil {Ci} ∪ {Cj}

jσi
j=j1

contains the discontinuity we may find that the reconstruction
behaves oscillatory (cf. Gibbs phenomenon). With the goal of producing more ”physically correct” numerical
solutions we would therefore prefer to choose a different stencil which does not contain the discontinuity. This
is the goal of the essentially non-oscillatory (ENO) reconstruction procedure. To define the term essentially
non-oscillatory, suppose R is a k-exact ENO reconstruction of some function u. Then

TV (R) ≤ TV (u) +O(hk),

where TV denotes the total variation. As noted in [28], the reconstruction procedure described in the seminal
paper [51] cannot be directly extended to the multidimensional case. Therefore we will present the two ENO
reconstruction methods given in [27]:

1. Let the reconstruction in cell Ci be given by

Ri(x − pi) = θiui + (1− θi)R
k
i (x − pi).

Here Rk
i (x − pi) is the usual k-exact reconstruction obtained using the possibly ”bad” stencil. The

parameter θi is given by

0 ≤ θi ≤ 1, θi ≈ 1 when the stencil contains the discontinuity,

and θi = O(hk+1) otherwise. We see that this approach reduces the reconstruction to first order
accuracy when the stencil is ”bad”, and retains the k + 1 order accuracy otherwise. It seems possible
that we may quickly lose the overall accuracy of the approximation as more and more reconstructions
reduce to first order accuracy.

2. Instead of reducing the accuracy to first order, we choose to find a new stencil which does not contain
the discontinuity. There might be many such stencilcs, so we must determine which one to use. Suppose
S is the set of stencils available to give a k-exact reconstruction. Compute the reconstruction using
each stencil and define a measure

σr =
∑

m+n≤k

|αr
mn|,

where αr is the coefficient vector for the reconstruction obtained using stencil Sr ∈ S. We recall that
the components in α are approximations of the partial derivatives of u evaluated at pi. Choose the
stencil Sr ∈ S minimizing σr.
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4.1.3 Other reconstruction methods

We have very briefly described two common reconstruction methods. Other notable reconstruction methods
are the compact least squares reconstruction method recently developed in [52, 53, 54] and the various
weighted ENO, or simply WENO, reconstruction methods developed in for instance [55, 56, 57]. Further, we
mention that one can consider the reconstruction problem in some other basis than the standard polynomial
basis.

4.2 Spectral volume method

The spectral volume method aims to simplify the reconstruction problem. Let {pi}Ni=1 be some set of points
in Ω generating some unstructured triangular grid. Following the literature [29, 30, 31, 32] we will consider
each triangle to be a spectral volume SVi.

As before we need (k+2)(k+1)/2 degrees of freedom in order to find a k-exact polynomial reconstruction
of u(x) inside SVi. Unlike the k-exact method we partition SVi into σ = (k + 2)(k + 1)/2 control volumes
Ci,j (j = 1, ..., σ) and define

ui,j(t) ≈
1

Vi,j

∫
Ci,j

u(x, t)dx.

We require that the reconstruction Pi of u in SVi conserves the volume-average value of u in each control
volume contained in SVi. In other words,

1

Vi,j

∫
Ci,j

Pi(x, y)dxdy = ui,j .

Further, we begin by obtaining a reconstruction on some reference element SVr. In particular, suppose the
center of mass for SVr is xr = (0, 0). Then the reconstruction problem reads: Find the coefficient vector α
satisfying

1

Vr,j

σ∑
l=1

αl

∫
Cr,j

el(x, y)dxdy = ur,j

Put ur = [ur,1, ur,2, . . . , ur,σ]
T so that the system of equations can be written as

Mα = ur

where M is the matrix defined by

M =


1

Vr,1

∫
Cr,1

e1(x, y)dxdy . . . 1
Vr,1

∫
Cr,1

eσ(x, y)dxdy
...

...
...

1
Vr,σ

∫
Cr,σ

e1(x, y)dxdy . . . 1
Vr,σ

∫
Cr,σ

eσ(x, y)dxdy


Note that the reconstruction stencil is given by the control volumes inside the spectral volume. Since the
control volumes can be defined however we see fit, the idea is that we can guarantee a nonsingular matrix
M . Hence we do not have to increase the stencil above σ elements and use a least-squares approximation,
for instance. Further, since each spectral volume is geometrically similar (here: triangles), we can use
geometrically similar control volumes for each of them, and hence the same reconstruction stencil. Assuming
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M is nonsingular we have α =M−1ur and we obtain the reconstruction inside SVr,

Pr(x, y) =
σ∑

j=1

Lj(x, y)ur,j = Lur,

where L ≡ e(x, y)M−1. After obtaining Pr, we can transform it into Pi for i = 1, . . . , N . Noting that
M might be ill-conditioned, it was recommended in [31] to perform analytical inversion via Mathematica.
Finally, since the reconstruction Pi is continuous inside the spectral volume, we do not obtain Riemann
problems on the boundaries between control volumes lying in the same spectral volume, which simplifes the
flux calculations. Of course, at the boundaries between spectral volumes we still need to apply a numerical
flux or approximate Riemann solver. The scheme updates the control volume averages at each time step

d

dt
ui,j = − 1

Vi,j

∑
k∈Ni,j

∫
Γi,j,k

f(u(x, t)) · n̂dS,

where ui,j denotes the volume averaged value in Ci,j , and ∂Ci,j = ∪k∈Ni,j
Γi,j,k. Assuming the boundary

faces Γi,j,k are contained inside SVi for k ∈ N δ
i,j ⊂ Ni,j we obtain

d

dt
ui,j = − 1

Vi,j

∑
k∈Nδ

i,j

∫
Γi,j,k

f(Pi(x)) · n̂dS − 1

Vi,j

∑
k∈Ni,j\Nδ

i,j

∫
Γi,j,k

f(RP (Pi(x), Pk(x))) · n̂dS.

Applying quadrature changes the scheme in the familiar way.

Remark. The control volumes inside any given spectral volume can be general polygons.
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5 Stability analysis of k-exact schemes

In this section we examine the energy stability of schemes obtained via the k-exact method.

5.1 Problem 1: 1D linear advection

Inspired by [15, 6, 5, 9] we consider problem 1 from section 2.4.

Let x ∈ Ω = [0, 1] ⊂ R and t ∈ [0, T ] ⊂ R+. Find the function u : Ω× [0, T ] → R satisfying

ut + ux = 0, u(x, 0) = f(x), u(0, t) = g(t),

where f(x) = sin(2πx) and g(t) = sin(−2πt).

In section 2.4 we found the energy rate to be

d

dt
‖u(·, t)‖22 = u2(0, t)− u2(1, t) ≤ g2(t). (5.1)

We want to determine if schemes obtained by the k-exact method satisfisy a discrete equivalent energy rate.
In order to do so, we begin by finding the general k-exact scheme approximating the PDE. Recall that
schemes approximating the PDE can be obtained via the k-exact method as follows: We partition Ω into N
control volumes {Ci}Ni=1 satisfying

Ci ∩ Cj = ∅ (i 6= j), and
N⋃
i=1

Ci = Ω.

Let C−
i , C

+
i denote the lower and upper bounds of Ci respectively, and let Vi denote the measure of Ci.

Further, we will use the notation ui(t) to denote an approximation of the volume-averaged value of u(x, t)
over Ci. That is,

ui(t) ≈
1

Vi

∫
Ci

u(x, t)dx, i = 1, . . . , N.

Integrating the PDE over Ci gives us∫
Ci

ut(x, t)dx+

∫
Ci

ux(x, t)dx = 0 ⇐⇒ d

dt

∫
Ci

u(x, t)dx+ u(C+
i , t)− u(C−

i , t) = 0,

and the finite volume approximation

Vi
d

dt
ui(t) = −u(C+

i , t) + u(C−
i , t). (5.2)

Since u(x, t) is the unknown solution of the continuous problem, we must somehow approximate the control
volume boundary evaluations u(C±

i , t). Considering a fixed time t = t∗, we ignore the time dependence
of u(x, t) and ui(t), writing u(x, t∗) = u(x) and ui(t

∗) = ui. The k-exact method proceeds by finding
polynomial functions Rk

i (x− xi) for i = 1, . . . , N satisfying

1.
Rk

i (x− xi)− u(x) = O(hk+1), x ∈ Ci,
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2.
1

Vi

∫
Ci

Rk
i (x− xi)dx = ui.

Here h = maxCi supx,y∈Ci
|x− y| and xi is the center of mass of Ci. We say that Rk

i (x− xi) is a (k-exact)
reconstruction of u(x) in Ci. As shown in section 4, the reconstructions can be written as inner products,

Rk
i (x− xi) = 〈e(x− xi), Liu〉, (5.3)

where e(x− xi), Liu ∈ Rk+1 are given by

(e(x− xi))j = (x− xi)
j−1, (Liu)j =

1

(j − 1)!

dj−1

dxj−1
Rk

i (xi). (5.4)

In general, the reconstructions will not match at the control volume boundaries. Hence, following the idea of
Godunov’s method (cf. section 3.4), we approximate the values u(C+

i ) by solving the Riemann problems

ut + ux = 0, u(x, 0) =

Rk
i (C

+
i − xi), x < C+

i

Rk
j1
(C−

j1
− xj1), x > C+

i

, (5.5)

either exactly or approximately, where Cj1 is the control volume adjacent to Ci such that C−
j1

= C+
i . If we

use the notation
RP

(
Rk

i (C
+
i − xi), R

k
j1(C

−
j1
− xj1)

)
,

to denote the exact or approximate solution of (5.5) at x = C+
i for t > 0, we obtain

u(C+
i ) ≈ RP

(
Rk

i (C
+
i − xi), R

k
j1(C

−
j1
− xj1)

)
.

Likewise, if Cj2 is the control volume satisfying C+
j2

= C−
i , we obtain

u(C−
i ) ≈ RP

(
Rk

j2(C
+
j2
− xj2), R

k
i (C

−
i − xi)

)
.

Note that C+
i − xi = Vi/2 and C−

i − xi = −Vi/2. Combining this with (5.3) we obtain cleaner expressions
for u(C±

i ),

u(C+
i ) ≈ RP (〈e(Vi/2), Liu〉, 〈e(−Vj1/2), Lj1u〉) , u(C−

i ) ≈ RP (〈e(Vj2/2), Lj2u〉, 〈e(−Vi/2), Liu〉) .

Consider the case where Ci is the left boundary volume, meaning that some control volume Cj2 ∈ {Ci}Ni=1

satisfying C+
j2

= C−
i does not exist. In this case we use the approximation

u(C−
i ) ≈ Rk

i (C
−
i − xi) = 〈e(−Vi/2), Liu〉.

Similarly, if Ci is the right boundary volume, meaning that some Cj1 ∈ {Ci}Ni=1 satifying C−
j1

= C+
i does not

exist, we use the approximation

u(C+
i ) ≈ Rk

i (C
+
i − xi) = 〈e(Vi/2), Liu〉.
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By (5.2) and the above it follows that the general k-exact scheme approximating ut + ux = 0 is given by

Vi
d

dt
ui =



−RP (〈e(Vi/2), Liu〉, 〈e(−Vj1/2), Lj1u〉) + 〈e(−Vi/2), Liu〉, Ci is the left boundary volume

−RP (〈e(Vi/2), Liu〉, 〈e(−Vj1/2), Lj1u〉)

+RP (〈e(Vj2/2), Lj2u〉, 〈e(−Vi/2), Liu〉) , Ci is an interior volume

−〈e(Vi/2), Liu〉+RP (〈e(Vj2/2), Lj2u〉, 〈e(−Vi/2), Liu〉) , Ci is the right boundary volume.
(5.6)

Remark. In the above, it is understood that the control volumes Cj1 , Cj2 are adjacent to Ci, i.e. the indices
j1, j2 are dependent on the index i.

In order to analyze the stability of the scheme, we will write it in the (spatially) global form

V
d

dt
u = −K, (5.7)

where V = diag(V1, V2, . . . , VN ), u = [u1, u2, . . . , uN ]T and K is the vector such that −Ki = the right hand
side of (5.6). Recall from section 3.3 that V induces a discrete L2 norm: 〈u, V u〉 = ‖u‖2V . Taking the inner
product of (5.7) with u and adding the transposed equation we obtain

d

dt
‖u‖2V = −〈u,K〉 − 〈K,u〉. (5.8)

Our goal is to determine if, or when, (5.8) mimics (5.1). That is, if or when

−〈u,K〉 − 〈K,u〉 ≤ u2(C−
L )− u2(C+

R ).

where CL is the left boundary volume and CR is the right boundary volume. At this stage it is not possible
to determine the above, as we have not specified the function RP which resides in K. Suppose that we apply
the approximation

RP (a, b) =
a+ b

2
.

Then (5.6) becomes

Vi
d

dt
ui =



−
〈
e(Vi/2)

2 , Liu
〉
−
〈
e(−Vj1

/2)

2 , Lj1u
〉
+ 〈e(−Vi/2), Liu〉, Ci is the left boundary volume

−
〈
e(Vi/2)

2 , Liu
〉
−
〈
e(−Vj1

/2)

2 , Lj1u
〉

+
〈
e(Vj2

/2)

2 , Lj2u
〉
+
〈
e(−Vi/2)

2 , Liu
〉
, Ci is an interior volume

−〈e(Vi/2), Liu〉+
〈
e(Vj2

/2)

2 , Lj2u
〉
+
〈
e(−Vi/2)

2 , Liu
〉
, Ci is the right boundary volume,

(5.9)
where the indices j1, j2 are dependent on i as before. Let Lu = [L1u, L2u, . . . , LNu]T and define a matrix Q
by

Qii =
e(Vi/2)− e(−Vi/2)

2
, Qij =


e(−Vj/2)

2 , C−
j = C+

i

− e(Vj/2)
2 , C+

j = C−
i

0, otherwise,

for all indices i corresponding to interior volumes. If CL denotes the left boundary volume, and CR denotes
the right boundary volume, we define
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QLL = −e(−VL/2) +
e(VL/2)

2
= −e(−VL/2)

2
+
e(VL/2)− e(−VL/2)

2
, QLj =


e(−Vj/2)

2 , C−
j = C+

L

0, otherwise,

QRR = e(VR/2)−
e(−VR/2)

2
=
e(VR/2)

2
+
e(VR/2)− e(−VR/2)

2
, QRj =

− e(Vj/2)
2 , C+

j = C−
R

0, otherwise.

Now the scheme (5.9) can be written as

V
d

dt
u = −QLu, (5.10)

and the energy rate is
d

dt
‖u‖2V = −〈u, QLu〉 − 〈QLu,u〉.

Remark. By (5.4) it is clear that

(
e(Vi/2)− e(−Vi/2)

2

)
j

=
1

2

(
V j−1
i

2j−1
− (−Vi)j−1

2j−1

)
=

1

2j

(
V j−1
i − (−Vi)j−1

)
=

 1
2j−1 (V

j−1
i ), j is even

0, j is odd
,

(5.11)

⇐⇒ e(Vi/2)− e(−Vi/2)
2

=

[
0,
Vi
2
, 0,

V 3
i

8
, 0, . . . ,

V k
i

2k

]T
(5.12)

Remark. If we use the 0-exact reconstruction R0
i = ui we recover the SBP scheme examined in section 3.5.

To simplify the explicit form of −〈u, QLu〉−〈QLu, u〉 we begin by considering the case where the volumes
are structured and regular: Let the control volumes be structured and regular, meaning that

1. C+
i−1 = C−

i ,

2. Vi = Vj = h,

3. C+
i − xi = −(C−

i − xi) = h/2,

for all i, j. Property 1 implies C1 is the left boundary volume and CN is the right boundary volume. In this
case Q becomes

Qii =


− e(−h/2)

2 + e(h/2)−e(−h/2)
2 , i = 1

e(h/2)−e(−h/2)
2 , i = 2, . . . , N − 1

e(h/2)
2 + e(h/2)−e(−h/2)

2 , i = N

, Qij =


e(−h/2)

2 , j = i+ 1

− e(h/2)
2 , j = i− 1

0, otherwise.

Note that the definition of Q implies

〈u, QLu〉 = −u1
〈
e(−h/2)

2
, L1u

〉
+ u1

〈
e(h/2)− e(−h/2)

2
, L1u

〉
+ u1

〈
e(−h/2)

2
, L2u

〉
+

N−1∑
i=2

−ui
〈
e(h/2)

2
, Li−1u

〉
+ ui

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+ ui

〈
e(−h/2)

2
, Li+1u

〉
− uN

〈
e(h/2)

2
, LN−1u

〉
+ uN

〈
e(h/2)− e(−h/2)

2
, LNu

〉
+ uN

〈
e(h/2)

2
, LNu

〉
.

40



T. B. Hestvik / On the energy stability of high-order finite volume schemes for initial-boundary value problems

Next, recall that the inner product is defined as 〈QLu,u〉 = LuTQTu. We determine QT to be

QT
ii =


− e(−h/2)

2 + e(h/2)−e(−h/2)
2 , i = 1

e(h/2)−e(−h/2)
2 , i = 2, . . . , N − 1

e(h/2)
2 + e(h/2)−e(−h/2)

2 , i = N

, QT
ij =


− e(h/2)

2 , j = i+ 1

e(−h/2)
2 , j = i− 1

0, otherwise.

Hence,

〈QLu,u〉 = −u1
〈
−e(−h/2)

2
, L1u

〉
+ u1

〈
e(h/2)− e(−h/2)

2
, L1u

〉
− u1

〈
e(h/2)

2
, L2u

〉
+

N−1∑
i=2

ui

〈
e(−h/2)

2
, Li−1u

〉
+ ui

〈
e(h/2)− e(−h/2)

2
, Liu

〉
− ui

〈
e(h/2)

2
, Li+1u

〉
+ uN

〈
e(−h/2)

2
, LN−1u

〉
+ uN

〈
e(h/2)− e(−h/2)

2
, LNu

〉
+ uN

〈
e(h/2)

2
, LNu

〉
.

Further, we find

〈u, QLu〉+ 〈QLu,u〉 = −u1 〈e(−h/2), L1u〉+ 2u1

〈
e(h/2)− e(−h/2)

2
, L1u

〉
− u1

〈
e(h/2)− e(−h/2)

2
, L2u

〉
+

N−1∑
i=2

−ui
〈
e(h/2)− e(−h/2)

2
, Li−1u

〉
+ 2ui

〈
e(h/2)− e(−h/2)

2
, Liu

〉
− ui

〈
e(h/2)− e(−h/2)

2
, Li+1u

〉
− uN

〈
e(h/2)− e(−h/2)

2
, LN−1u

〉
+ 2uN

〈
e(h/2)− e(−h/2)

2
, LNu

〉
+ uN 〈e(h/2), LNu〉.

Note that

−u1
〈
e(h/2)− e(−h/2)

2
, L2u

〉
+

N−1∑
i=2

−ui
〈
e(h/2)− e(−h/2)

2
, Li+1u

〉
=

N−1∑
i=1

−ui
〈
e(h/2)− e(−h/2)

2
, Li+1u

〉
,

and

−uN
〈
e(h/2)− e(−h/2)

2
, LN−1u

〉
+

N−1∑
i=2

−ui
〈
e(h/2)− e(−h/2)

2
, Li−1u

〉
=

N∑
i=2

−ui
〈
e(h/2)− e(−h/2)

2
, Li−1u

〉
.

Therefore

〈u, QLu〉+ 〈QLu,u〉 = −u1 〈e(−h/2), L1u〉

+

N∑
i=2

−ui
〈
e(h/2)− e(−h/2)

2
, Li−1u

〉
+

N∑
i=1

2ui

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+

N−1∑
i=1

−ui
〈
e(h/2)− e(−h/2)

2
, Li+1u

〉
+ uN 〈e(h/2), LNu〉 .

Observe that swapping the index in the first summation by i+ 1 gives

N∑
i=2

−ui
〈
e(h/2)− e(−h/2)

2
, Li−1u

〉
=

N−1∑
i=1

−ui+1

〈
e(h/2)− e(−h/2)

2
, Liu

〉
.
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Further, swapping the index in the third summation by i− 1 gives

N−1∑
i=1

−ui
〈
e(h/2)− e(−h/2)

2
, Li+1u

〉
=

N∑
i=2

−ui−1

〈
e(h/2)− e(−h/2)

2
, Liu

〉
.

Hence,

〈u, QLu〉+ 〈QLu,u〉 = −u1 〈e(−h/2), L1u〉

+
N−1∑
i=1

−ui+1

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+

N∑
i=1

2ui

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+

N∑
i=2

−ui−1

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+ uN 〈e(h/2), LNu〉 ,

or equivalently,

〈u, QLu〉+ 〈QLu,u〉 = −u1 〈e(−h/2), L1u〉+ uN 〈e(h/2), LNu〉

+

N−1∑
i=2

(−ui+1 + 2ui − ui−1)

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+ (2u1 − u2)

〈
e(h/2)− e(−h/2)

2
, L1u

〉
+ (2uN − uN−1)

〈
e(h/2)− e(−h/2)

2
, LNu

〉
.

Finally, we have shown that

d

dt
‖u‖2H = −〈u, QLu〉 − 〈QLu,u〉 = u1 〈e(−h/2), L1u〉 − uN 〈e(h/2), LNu〉+M, (5.13)

where H = diag(h, h, . . . , h), 〈u,Hu〉 = ‖u‖2H and

M =

N−1∑
i=2

(ui+1 − 2ui + ui−1)

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+ (u2 − 2u1)

〈
e(h/2)− e(−h/2)

2
, L1u

〉
+ (uN−1 − 2uN )

〈
e(h/2)− e(−h/2)

2
, LNu

〉
.

Remark. By (5.12) we know

e(h/2)− e(−h/2)
2

=

[
0,
h

2
, 0,

h3

8
, 0,

h5

25
, . . . ,

hk

2k

]T
.

Suppose that we define matrices D and B by

D =
1

h2


−1 1

. . . . . .
. . . . . .

−1

 , B = diag
(
e(h/2)− e(−h/2)

2
,
e(h/2)− e(−h/2)

2
, . . .

)
,

Proposition 5.1. The term M in (5.13) can satisfies

M = 〈(D +DT )u, BLu〉
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Proof. Note that

〈(D +DT )u, BLu〉 = 〈Du, BLu〉+ 〈DTu, BLu〉,

and

〈Du, BLu〉 =
N−1∑
i=1

(−ui + ui+1)

〈
e(h/2)− e(−h/2)

2
, Liu

〉
− uN

〈
e(h/2)− e(−h/2)

2
, LNu

〉

〈DTu, BLu〉 = −u1
〈
e(h/2)− e(−h/2)

2
, L1u

〉
+

N∑
i=2

(−ui + ui−1)

〈
e(h/2)− e(−h/2)

2
, Liu

〉
.

Thus,

〈(D +DT )u, BLu〉 = (−2u1 + u2)

〈
e(h/2)− e(−h/2)

2
, L1u

〉
+

N−1∑
i=2

(ui+1 − 2ui + ui−1)

〈
e(h/2)− e(−h/2)

2
, Liu

〉
+ (−2uN + uN−1)

〈
e(h/2)− e(−h/2)

2
, LNu

〉
=M

Note Du ≈ ux and DTu ≈ −ux ([36]). Thus, we have a rough idea that M is an approximation of αux
integrated over the domain for some α,

M ≈
∫ 1

0
2uxαdx.

However, it seems we cannot determine the sign of M unless the reconstruction method is specified. We
conclude that the k-exact scheme using the central flux is not energy stable in the general case, even on
structured regular grids.
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5.2 Problem 2: 2D linear advection

We consider problem 2 in section 2.4:

Let x = (x, y) ∈ Ω = [0, 1]2, 0 ≤ t ≤ T <∞ and u = u(x, t) be a real-valued function. Consider

ut + ux + uy = 0, u(x, y, 0) = sin
(
2π
(x
2
+
y

2

))
, u(0, y, t) = g1(y, t), u(x, 0, t) = g2(x, t),

where g1 and g2 are given by

g1(y, t) = sin(2π(y/2− t)), g2(x, t) = sin(2π(x/2− t)).

In section 2.4 we found the energy rate to be

d

dt
‖u(·, t)‖22 ≤

∫ 1

0
g21(y, t)dy +

∫ 1

0
g22(x, t)dx. (5.14)

As for the 1D problem, we attempt to determine if schemes obtained by the k-exact method will mimic
this energy rate. Schemes approximating the PDE can be obtained by the k-exact method as follows: We
partition Ω into N control volumes {Ci}Ni=1 satisfying

Ci ∩ Cj = ∅ (i 6= j), and
N⋃
i=1

Ci = Ω.

We let ui(t) denote an approximation of the volume-averaged value of u(x, t) over Ci. Formally,

ui(t) ≈
1

Vi

∫
Ci

u(x, t)dx,

where Vi is the measure of Ci. Integrating the PDE over Ci we obtain

d

dt

1

Vi

∫
Ci

udx = − 1

Vi

∫
Ci

∇ · [u, u]dx = − 1

Vi

∫
∂Ci

[u, u] · ([dy,−dx]/
√
dx2 + dy2) ·

√
dx2 + dy2 (5.15)

= − 1

Vi

∫
∂Ci

udy +
1

Vi

∫
∂Ci

udx. (5.16)

Let pi denote the center of mass of Ci. Considering a fixed time t = t∗, we will write u(x, t∗) = u(x) and
ui(t

∗) = ui. We proceed by finding reconstructions {Rk
i }Ni=1 of u(x) in {Ci}Ni=1, satisfying

Rk
i (x − pi)− u(x)

∣∣
Ci

= O(hk+1),

and
1

Vi

∫
Ci

Rk
i (x − pi)dx = ui,

where h = maxCi supa,b∈Ci
‖a− b‖R2 . Suppose Ci is an interior volume, meaning that ∂Ci ∩ ∂Ω = ∅. If we

let Ni be the set of indices j such that ∂Ci ∩ ∂Cj 6= ∅, then ∂Ci = ∪j∈NiΓij where Γij = ∂Ci ∩ ∂Cj . Using
(5.16) we obtain the finite volume approximation

Vi
d

dt
ui = −

∑
j∈Ni

∫
Γij

u(x)dy +
∑
j∈Ni

∫
Γij

u(x)dx. (5.17)
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Following the idea of Godunov’s method, we approximate u(x) at each point x ∈ Γij by solving the Riemann
problems

ut + uξ = 0, u(ξ, 0) =

Rk
i (x − pi), ξ < 0

Rk
j (x − pj), ξ > 0

, (5.18)

either exactly or approximately. Here ξ is parallel to the normal vector on Γij and (ξ = 0) ∈ Γij . Using the
notation

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
,

to denote the exact or approximate solution of (5.18) at ξ = 0 and t > 0, the finite volume approximation
(5.17) becomes

Vi
d

dt
ui = −

∑
j∈Ni

∫
Γij

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
dy +

∑
j∈Ni

∫
Γij

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
dx.

Recall that m-point Gaussian quadrature has an accuracy order of 2m. To preserve the accuracy order k+ 1

of the reconstructions Rk
i we use m = d(k + 1)/2e quadrature points. Then

Vi
d

dt
ui = −

∑
j∈Ni

m∑
q=1

w2
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
+
∑
j∈Ni

m∑
q=1

w1
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
,

(5.19)
where the quadrature weights wd

ijq are defined by

w2
ijq = y′ij(ξq)

∫ 1

−1
lq(ξ)dξ, w1

ijq = x′ij(ξq)

∫ 1

−1
lq(ξ)dξ, (5.20)

and the quadrature points xijq are given by

xijq = rij(ξq) = (xij(ξq), yij(ξq)) ,

where ξq is the q-th root of the degree m Legendre polynomial and Γij = {rij(ξ) : −1 ≤ ξ ≤ 1}. See Appendix
A for more details.

Now suppose Ci is a boundary volume, meaning that ∂Ci ∩ ∂Ω 6= ∅. In particular, ∂Ci = ∪j∈NiΓij ∪Γi∂Ω

where Γi∂Ω = ∂Ci ∩ ∂Ω. Using (5.16) we obtain the finite volume approximation

Vi
d

dt
ui = −

∑
j∈Ni

∫
Γij

u(x)dy −
∫
Γi∂Ω

u(x)dy +
∑
j∈Ni

∫
Γij

u(x)dx+

∫
Γi∂Ω

u(x)dx.

As in the 1D case, we will approximate u(x) at ∂Ω by the reconstruction corresponding to the boundary
volume. Following the same approach as for the interior volume scheme, the boundary volume scheme
becomes

Vi
d

dt
ui = −

∑
j∈Ni

∫
Γij

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
dy +

∑
j∈Ni

∫
Γij

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
dx

−
∫
Γi∂Ω

Rk
i (x − pi)dy +

∫
Γi∂Ω

Rk
i (x − pi)dx.
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Applying the quadrature rule we obtain

Vi
d

dt
ui = −

∑
j∈Ni

m∑
q=1

w2
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
+
∑
j∈Ni

m∑
q=1

w1
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
(5.21)

−
m∑
q=1

w2
i∂ΩqR

k
i (xi∂Ωq − pi)dy +

m∑
q=1

w1
i∂ΩqR

k
i (xi∂Ωq − pi)dx. (5.22)

Thus, we have found that the general k-exact scheme approximating ut + ux + uy = 0 is given by

Vi
d

dt
ui =



−
∑

j∈Ni

∑m
q=1 w

2
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
+
∑

j∈Ni

∑m
q=1 w

1
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

) , Ci is an interior volume
−
∑

j∈Ni

∑m
q=1 w

2
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
+
∑

j∈Ni

∑m
q=1 w

1
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
−
∑m

q=1 w
2
i∂ΩqR

k
i (xi∂Ωq − pi)dy +

∑m
q=1 w

1
i∂ΩqR

k
i (xi∂Ωq − pi)dx

, Ci is a boundary volume.

(5.23)
To determine the energy stability of the scheme, we want to write it in the spatially global form

V
d

dt
u = −K, (5.24)

where V = diag(V1, V2, . . . , VN ), u = [u1, u2, . . . , uN ]T and K is the vector such that −Ki = the right hand
side of (5.23). Recall from section 3.3 that V induces a discrete L2 norm: 〈u, V u〉 = ‖u‖2V . Taking the
inner-product of (5.24) with u and adding the transposed equation we obtain

d

dt
‖u‖2V = −〈u,K〉 − 〈K,u〉. (5.25)

Our goal is to determine if, or when, (5.25) mimics (5.14). That is, if or when

−〈u,K〉 − 〈K,u〉 ≤
∫ 1

0
g21(y, t)dy +

∫ 1

0
g22(x, t)dx.

In order to do so we must specify the function RP residing in K. Suppose that we use the central flux,

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
=
Rk

i (x − pi) +Rk
j (x − pj)

2
. (5.26)

Applying (5.26) to (5.19) yields

Vi
d

dt
ui = −

∑
j∈Ni

m∑
q=1

w2
ijq

2
Rk

i (xijq − pi)−
∑
j∈Ni

m∑
q=1

w2
ijq

2
Rk

j (xijq − pj) (5.27)

+
∑
j∈Ni

m∑
q=1

w1
ijq

2
Rk

i (xijq − pi) +
∑
j∈Ni

m∑
q=1

w1
ijq

2
Rk

j (xijq − pj). (5.28)

Recall from section 4 that the reconstructions can be factorized as

Rk
i (x − pi) = 〈e(x − pi), Liu〉 ,
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and in the 2D case, e(x − pi), Liu ∈ R(k+2)(k+1)/2 are given by

(e(x − pi))l = (x− xi)
ml(y − yi)

nl , (Liu)l =
1

ml!nl!

∂ml+nl

∂xml∂ynl
Rk

i (pi).

Further, observe that

w2
ijq

2
Rk

i (xijq − pi) =
w2
ijq

2
〈e(xijq − pi), Liu〉 =

〈
w2
ijq

2
e(xijq − pi), Liu

〉
,

and

m∑
q=1

w2
ijq

2
Rk

i (xijq − pi) =

m∑
q=1

〈
w2
ijq

2
e(xijq − pi), Liu

〉
=

〈
m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
.

Therefore, the scheme for interior volumes (5.27-5.28) can be written as

Vi
d

dt
ui = −

〈∑
j∈Ni

m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
−
∑
j∈Ni

〈
m∑
q=1

w2
ijq

2
e(xijq − pj), Lju

〉

+

〈∑
j∈Ni

m∑
q=1

w1
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w1
ijq

2
e(xijq − pj), Lju

〉
.

Similarly, applying (5.26) to the boundary volume scheme (5.21-5.22) we obtain

Vi
d

dt
ui = −

∑
j∈Ni

m∑
q=1

w2
ijq

2
Rk

i (xijq − pi)−
∑
j∈Ni

m∑
q=1

w2
ijq

2
Rk

j (xijq − pj)

+
∑
j∈Ni

m∑
q=1

w1
ijq

2
Rk

i (xijq − pi) +
∑
j∈Ni

m∑
q=1

w1
ijq

2
Rk

j (xijq − pj)

−
m∑
q=1

w2
i∂ΩqR

k
i (xi∂Ωq − pi)dy +

m∑
q=1

w1
i∂ΩqR

k
i (xi∂Ωq − pi)dx.

Once again using the inner product factorization of Rk
i , we obtain the boundary volume scheme

Vi
d

dt
ui = −

〈
m∑
q=1

w2
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
−
∑
j∈Ni

〈
m∑
q=1

w2
ijq

2
e(xijq − pj), Lju

〉

+

〈
m∑
q=1

w1
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

m∑
q=1

w1
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w1
ijq

2
e(xijq − pj), Lju

〉
.
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If we define matrices Qx, Qy by

(Qx)ii =


∑

j∈Ni

∑m
q=1

w2
ijq

2 e(xijq − pi), Ci is an interior volume∑m
q=1w

2
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

∑m
q=1

w2
ijq

2 e(xijq − pi), Ci is a boundary volume,

(Qx)ij =


∑m

q=1

w2
ijq

2 e(xijq − pj), j ∈ Ni

0, otherwise,

(Qy)ii =

−
∑

j∈Ni

∑m
q=1

w1
ijq

2 e(xijq − pi), Ci is an interior volume

−
∑m

q=1w
1
i∂Ωqe(xi∂Ωq − pi)−

∑
j∈Ni

∑m
q=1

w1
ijq

2 e(xijq − pi), Ci is a boundary volume,

(Qy)ij =

−
∑m

q=1

w1
ijq

2 e(xijq − pj), j ∈ Ni

0, otherwise,

then the k-exact scheme approximating ut + ux + uy = 0 with the central numerical flux (5.26) is given by

V
d

dt
u = −QxLu −QyLu (5.29)

where Lu = [L1u, L2u, . . . , LNu]T . The discrete energy rate of the scheme (5.29) is given by

d

dt
‖u‖2V = −〈u, QxLu〉 − 〈u, QyLu〉 − 〈QxLu,u〉 − 〈QyLu,u〉

Remark. If we use the 0-exact reconstructions R0
i = ui, then we recover the SBP scheme examined in

section 3.5. To see this, note that wd
ijq would reduce to ∆yij or ∆xij . Further, we would have that e(x) ≡ 1.

If we let N∂Ω denote the set of indices i satisfying i ∈ N∂Ω =⇒ {Ci is a boundary volume}, then

−〈u, QxLu〉 = −
∑

i/∈N∂Ω

ui

〈∑
j∈Ni

m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w2
ijq

2
e(xijq − pj), Lju

〉
−
∑

i∈N∂Ω

ui

〈 m∑
q=1

w2
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w2
ijq

2
e(xijq − pj), Lju

〉
−〈u, QyLu〉 =

∑
i/∈N∂Ω

ui

〈∑
j∈Ni

m∑
q=1

w1
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w1
ijq

2
e(xijq − pj), Lju

〉
+
∑

i∈N∂Ω

ui

〈 m∑
q=1

w1
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

m∑
q=1

w1
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w1
ijq

2
e(xijq − pj), Lju

〉 .
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Using the defniitions of Qx and Qy we determine the transposed matrices;

(QT
x )ii =


∑

j∈Ni

∑m
q=1

w2
ijq

2 e(xijq − pi), Ci is an interior volume∑m
q=1w

2
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

∑m
q=1

w2
ijq

2 e(xijq − pi), Ci is a boundary volume,

(QT
x )ij =


∑m

q=1

w2
jiq

2 e(xjiq − pi), j ∈ Ni

0, otherwise,

(QT
y )ii =

−
∑

j∈Ni

∑m
q=1

w1
ijq

2 e(xijq − pi), Ci is an interior volume

−
∑m

q=1w
1
i∂Ωqe(xi∂Ωq − pi)−

∑
j∈Ni

∑m
q=1

w1
ijq

2 e(xijq − pi), Ci is a boundary volume,

(QT
y )ij =

−
∑m

q=1

w1
jiq

2 e(xjiq − pi), j ∈ Ni

0, otherwise.

Hence,

−〈QxLu,u〉 = −
∑

i/∈N∂Ω

ui

〈∑
j∈Ni

m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w2
jiq

2
e(xjiq − pi), Lju

〉
−
∑

i∈N∂Ω

ui

〈 m∑
q=1

w2
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

m∑
q=1

w2
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w2
jiq

2
e(xjiq − pi), Lju

〉
−〈QyLu,u〉 =

∑
i/∈N∂Ω

ui

〈∑
j∈Ni

m∑
q=1

w1
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w1
jiq

2
e(xjiq − pi), Lju

〉
+
∑

i∈N∂Ω

ui

〈 m∑
q=1

w1
i∂Ωqe(xi∂Ωq − pi) +

∑
j∈Ni

m∑
q=1

w1
ijq

2
e(xijq − pi), Liu

〉
+
∑
j∈Ni

〈
m∑
q=1

w1
jiq

2
e(xjiq − pi), Lju

〉 .

We see that for k > 0 the operators Dx = V −1Qx, Dy = V −1Qy will not satisfy a generalized SBP
property. Thus, we conclude that the scheme is not stable in the general case.
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6 Stability analysis of spectral volume schemes

In this section we examine the energy stability of schemes obtained via the spectral volume method.

6.1 Problem 1: 1D linear advection

Consider problem 1 from section 2.4.

Let x ∈ Ω = [0, 1] ⊂ R and t ∈ [0, T ) ⊂ R+. Find the function u : Ω× [0, T ) → R satisfying

ut + ux = 0, u(x, 0) = sin(2π(x)), u(0, t) = sin(−2πt).

Recall that the energy rate was found to be

d

dt
‖u(·, t)‖22 = u2(0, t)− u2(1, t) ≤ g2(t) (6.1)

and we wish to determine if spectral volume schemes approximating the PDE will satisfy a discrete equivalent
energy rate. Recall that spectral volume schemes approximating the PDE can be found as follows: We begin
by partitioning the spatial domain Ω into N spectral volumes {SVi}Ni=1 satisfying

SVi ∩ SVj = ∅, (i 6= j), and
N⋃
i=1

SVi = Ω.

Next, each spectral volume SVi is partitioned into (k+1) control volumes {Ci,j}k+1
j=1 , and we let ui,j(t) denote

an approximation of the volume-averaged value of u(x, t) over Ci,j . That is,

ui,j(t) ≈
1

Vi,j

∫
Ci,j

u(x, t)dx,

where Vi,j is the measure of Ci,j . Let t∗ denote a fixed time, and write u(x, t∗) = u(x), ui,j(t∗) = ui,j . We
proceed by finding reconstructions {Pi}Ni=1 satisfying

Pi(x)− u(x)
∣∣
SVi

= O(hk+1), and 1

Vi,j

∫
Ci,j

Pi(x)dx = ui,j ,

where h = maxCi,j∈SVi supx,y∈Ci,j
|x− y|. Recall from section 4 that if we define ui = [ui,1, ui,2, . . . , ui,k+1]

T

then Pi can factorized as
Pi(x) = 〈Li(x), ui〉, (6.2)

where Li(x) is a linear transformation of the polynomial basis function, dependent on the transformation
between SVi and the reference spectral volume SVr. Integrating the PDE over Ci,j we obtain

d

dt

∫
Ci,j

u(x, t∗)dx = −u(C+
i,j , t

∗) + u(C−
i,j , t

∗),

and the finite volume approximation

Vi,j
d

dt
ui,j = −u(C+

i,j) + u(C−
i,j). (6.3)

Without loss of generality, we may assume that the control volumes inside each spectral volume are structured.
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In other words, we will assume that C+
i,j = C−

i,j+1. It follows that the lower bound SV −
i and upper bound

SV +
i of SVi satisfy SV −

i = C−
i,1 and SV +

i = C+
i,k+1. Since the reconstruction Pi is continuous inside SVi, we

use the approximations

u(C+
i,j) = Pi(C

+
i,j) = 〈Li(C

+
i,j), ui〉, (j = 1, . . . , k),

u(C−
i,j) = Pi(C

−
i,j) = 〈Li(C

−
i,j), ui〉, (j = 2, . . . , k + 1),

where we applied (6.2). At the spectral volume boundaries we will follow the approach of Godunov’s method
and consider the Riemann problems

ut + ux = 0, u(x, 0) =

Pi(SV
+
i ), x < SV +

i

Pj1(SV
−
j1
), x > SV +

i

, (6.4)

where SVj1 is the spectral volume adjacent to SVi satisfying SV −
j1

= SV +
i . If we use the notation

RP
(
Pi(SV

+
i ), Pj1(SV

−
j1
)
)

to denote an exact or approximate solution of (6.4) at x = SV +
i for t > 0, then our approximation of u(SV +

i )

is given by
u(SV +

i ) = RP
(
Pi(SV

+
i ), Pj1(SV

−
j1
)
)
.

Likewise, if SVj2 is the spectral volume adjacent to SVi satisfying SV +
j2

= SV −
i , then we will approximate

u(SV −
i ) by

u(SV −
i ) = RP

(
Pj2(SV

+
j2
), Pi(SV

−
i )
)
.

Note that by (6.2), we may write

u(SV +
i ) = RP

(
〈Li(SV

+
i ), ui〉, 〈Lj1(SV

−
j1
), uj1〉

)
, u(SV −

i ) = RP
(
〈Lj2(SV

+
j2
), uj2〉, 〈Li(SV

−
i ), ui〉

)
.

If SVi is the left boundary spectral volume, meaning that some SVj ∈ {SVi}Ni=1 satisfying SV +
j = SV −

i does
not exist, then we will use the approximation

u(SV −
i ) = Pi(SV

−
i ) = 〈Li(SV

−
i ), ui〉.

Similarly, if SVi is the right boundary spectral volume, meaning that some SVj ∈ {SVi}Ni=1 satisfying
SV −

j = SV +
i does not exist, then we will use the approximation

u(SV +
i ) = Pi(SV

+
i ) = 〈Li(SV

+
i ), ui〉.

If we let SVL and SVR denote the left and right boundary spectral volumes respectively, we obtain the
general spectral volume scheme approximating ut + ux = 0:

Vi,j
d

dt
ui,j =



−〈Li(C
+
i,j), ui〉+ 〈Li(C

−
i,j), ui〉, j = 2, . . . k−〈Li(C

+
i,j), ui〉+ 〈Li(C

−
i,j), ui〉, i = R

−RP
(
〈Li(SV

+
i ), ui〉, 〈Lj1(SV

−
j1
), uj1〉

)
+ 〈Li(C

−
i,j), ui〉, otherwise

, j = k + 1−〈Li(C
+
i,j), ui〉+ 〈Li(C

−
i,j), ui〉, i = L

−〈Li(C
+
i,j), ui〉+RP

(
〈Lj2(SV

+
j2
), uj2〉, 〈Li(SV

−
i ), ui〉

)
, otherwise

, j = 1.

(6.5)
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Remark. In the above it is understood that the spectral volumes SVj1 , SVj2 are adjacent to SVi.

By the linearity of the inner product, we may write (6.5) as

Vi,j
d

dt
ui,j =



−〈Li(C
+
i,j)− Li(C

−
i,j), ui〉, j = 2, . . . k−〈Li(C

+
i,j)− Li(C

−
i,j), ui〉, i = R

−RP
(
〈Li(SV

+
i ), ui〉, 〈Lj1(SV

−
j1
), uj1〉

)
+ 〈Li(C

−
i,j), ui〉, otherwise

, j = k + 1−〈Li(C
+
i,j)− Li(C

−
i,j), ui〉, i = L

−〈Li(C
+
i,j), ui〉+RP

(
〈Lj2(SV

+
j2
), uj2〉, 〈Li(SV

−
i ), ui〉

)
, otherwise

, j = 1.

(6.6)

To analyze the discrete energy stability of the scheme we will write it in the spatially global form

V
d

dt
u = −K. (6.7)

Here K is the vector such that −Ki = the right hand side of (6.6), and V , u are defined as

V = diag(V1,1, . . . , V1,k+1, . . . , VN,1, . . . , VN,k+1), and u = [u1,1, . . . , u1,k+1, . . . , uN,1, . . . , uN,k+1]
T .

As for the k-exact method, the matrix V induces a discrete L2 norm. Taking the inner-product of (6.7) with
u we obtain

d

dt
‖u‖2V = −〈u,K〉 − 〈K,u〉. (6.8)

We are interested in determining if, or when, (6.8) mimics (6.1). That is, we want to determine if or when

−〈u,K〉 − 〈K, u〉 ≤ u2(SV −
L )− u2(SV +

R ) ≈ P 2
L(SV

−
L )− P 2

R(SV
+
R ) = 〈LL(SV

−
L ), uL〉2 − 〈LR(SV

+
R ), uR〉2,

where SVL denotes the left boundary volume and SVR denotes the right boundary volume. To proceed we
specify the function RP which resides in K.

RP (a, b) =
a+ b

2
.

Now (6.6) becomes

Vi,j
d

dt
ui,j =



−〈Li(C
+
i,j)− Li(C

−
i,j), ui〉, j = 2, . . . k−〈Li(C

+
i,j)− Li(C

−
i,j), ui〉, i = R

−〈Li(SV +
i )

2 , ui〉 − 〈
Lj1 (SV −

j1
)

2 , uj1〉+ 〈Li(C
−
i,j), ui〉, otherwise

, j = k + 1−〈Li(C
+
i,j)− Li(C

−
i,j), ui〉, i = L

−〈Li(C
+
i,j), ui〉+ 〈

Lj2 (SV +
j2

)

2 , uj2〉+ 〈Li(SV −
i )

2 , ui〉, otherwise
, j = 1.

(6.9)

Due to time constraints we did not have the opportunity to continue the analysis any further.
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7 Numerical results

In this section we present numerical results for k-exact schemes approximating problem 1 in section 2.4. The
results are obtained by implementing the method in Fortran. The code is made by the author, and it is
freely available to download at [58].

Consider problem 1 in section 2.4

Let x ∈ Ω = [0, 1] ⊂ R and t ∈ [0, T ] ⊂ R+. Find the function u : Ω× [0, T ] → R satisfying

ut + ux = 0, u(x, 0) = sin(2π(x)), u(0, t) = sin(−2πt).

We consider k-exact schemes with polynomial reconstructions of degree k = 0, 1, 2, 3 obtained by the
least-squares reconstruction method. For the temporal discretization we use the standard 4th-order Runge-
Kutta method and the time step ∆t satisfying CFL = ∆t/h = 1/2 where h = maxCi Vi. We obtain
results using the central flux. The spatial domain is discretized by control volumes Ci = (xi, xi+1) where
{xi}N+1

i=1 is a structured grid such that C−
1 = 0. The boundary condition is implemented by substituting

Rk
1(0− x1) = sin(−2πt) in the flux evaluation. The initial data u(t = 0) is obtained by 5th-order Gaussian

quadrature of the initial function u(x, 0) over the control volumes. The L2 error is measured at t = 1 using

E = L2 error = (〈u(0)− u(1), V u(0)− u(1)〉)1/2 = ‖u(0)− u(1)‖V ,

(recall that the analytical solution is periodic in time with a period of 1). The convergence rate µ is calculated
using

µj =
ln(Ej/Ej−1)

ln(hj/hj−1)
,

where the index j corresponds to the partition Pj obtained using Nj control volumes. Consider first the case
where the grid is regular, giving regular control volumes. For the regular volume partitions we have that
ln(hj/hj−1) = ln(1/2). Results for the structured and regular volumes are shown in table 1.

N L2 error µ

50 4.45E-02 -
100 2.22E-02 1.01
200 1.11E-02 0.99
400 5.55E-03 1.00

(a) k = 0.

N L2 error µ

50 3.50E-03 -
100 1.05E-03 1.78
200 2.72E-04 1.90
400 6.94E-05 2.00

(b) k = 1.

N L2 error µ

50 1.12E-03 -
100 1.36E-04 3.04
200 1.68E-05 3.02
400 2.08E-06 3.01

(c) k = 2.

N L2 error µ

50 1.49E-04 -
100 6.32E-06 4.56
200 2.93E-07 4.70
400 2.34E-08 4.35

(d) k = 3.

Table 1: L2 error at t = 1 using N structured regular volumes and reconstruction polynomials of degree k.

Next, we define a structured irregular grid {xi}N+1
i=1 by

xi =
exp(ξi)− 1

exp(1)− 1
, ξi = (i− 1)

1

N
,

and the control volumes Ci = (xi, xi+1) for i = 1, . . . , N . We perform the same convergence analysis as for
the structured regular volumes. Results for these structured irregular volumes are shown in table 2.

We see that the k-exact method with the central flux produces numerical results with a high convergence
order. However, we stress that the stability of the schemes cannot be determined by numerical results, as
they correspond to specific problem data, specific reconstruction methods, and specific control volumes.
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N h L2 error µ

50 3.13E-02 6.98E-02 -
100 1.57E-02 3.49E-02 1.00
200 7.89E-03 1.75E-02 1.00
400 3.95E-03 8.77E-03 1.00

(a) k = 0.

N h L2 error µ

50 3.13E-02 4.29E-03 -
100 1.57E-02 8.77E-04 2.30
200 7.89E-03 2.09E-04 2.08
400 3.95E-03 5.24E-05 2.00

(b) k = 1.

N h L2 error µ

50 3.13E-02 2.87E-03 -
100 1.57E-02 3.70E-04 2.97
200 7.89E-03 4.67E-05 3.01
400 3.95E-03 5.86E-06 3.00

(c) k = 2.

N h L2 error µ

50 3.13E-02 1.23E-04 -
100 1.57E-02 4.46E-06 4.81
200 7.89E-03 2.01E-07 4.50
400 3.95E-03 1.17E-08 4.11

(d) k = 3.

Table 2: L2 error at t = 1 using N structured irregular volumes and reconstruction polynomials of degree k.
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8 Conclusion

We have studied the energy stability of high-order finite volume schemes obtained by the k-exact method and
the spectral volume method. In particular, we have looked at schemes using the central numerical flux. We
found that schemes are not stable in the general case, and that they do not satisfy the summation-by-parts
property.

8.1 Suggestions for future work

As we have only considered schemes employing the central numerical flux, we believe a study considering a
more general numerical flux would be interesting. Further, we believe the approach to stability analysis done
in [6, 59] could produce interesting the results for the schemes we have discussed here as well.
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A Gauss-Legendre quadrature over Γij

Let Γij be a smooth curve in R2 parametrized by the variable ξ ∈ [−1, 1]. Let f = [f1, f2] be our flux
function and consider ∫

Γij

f(u(x, y)) · n̂dS

Suppose
Γij = {rij(ξ) : −1 ≤ ξ ≤ 1}, rij(ξ) = xij(ξ)e1 + yij(ξ)e2

Then ∫
Γij

f(u(x, y)) · n̂dS =

∫ 1

−1
f(u(rij(ξ))) · n̂ij(ξ)dξ =

∫ 1

−1
f(u(rij(ξ))) ·

[
dyij(ξ)/dξ

−dxij(ξ)/dξ

]
dξ

=

∫ 1

−1
f1(u(rij(ξ)))y′ij(ξ)dξ −

∫ 1

−1
f2(u(rij(ξ)))x′ij(ξ)dξ

=

∫
Γij

f1(u(x, y))dy −
∫
Γij

f2(u(x, y))dx

Now we are ready to apply the quadrature rule. Let ξq denote the q-th root of the degree m Legendre
polynomial defined by

pm(x) =
1

2mm!

dm

dxm
[(x2 − 1)m]

Then ∫ 1

−1
f1(u(rij(ξ)))y′ij(ξ)dξ ≈

∫ 1

−1
f1(u(rij(ξq)))y′ij(ξq)lq(ξ)dξ

=

m∑
q=1

w2
ijqf1(u(rij(ξq)))

where the weights w2
ijq are given by

w2
ijq = y′ij(ξq)

∫ 1

−1
lq(ξ)dξ, lq(ξ) =

m∏
j=1,j 6=q

ξ − ξj
ξq − ξj

Note that
cq =

∫ 1

−1
lq(ξ)dξ

corresponding to the q-th root of the degree m Legendre polynomial is a very common parameter in numerical
analysis, and the values are usually stored preemptively. We give the values for m = 2, 3, 4 in table 3.

Remark. If the roots ξq are ordered monotonically, then ξq = −ξq∗ for q∗ = m − q + 1. Moreover, the
coefficients satisfy cq = cq∗ .

Similarly, ∫ 1

−1
f2(u(rij(ξ)))x′ij(ξ)dξ ≈

∫ 1

−1
f2(u(rij(ξq)))x′ij(ξq)lq(ξ)dξ

=
m∑
q=1

w1
ijqf2(u(rij(ξq)))
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m roots ξq coefficients cq
2 −

√
1/3 1√
1/3 1

3 −
√
3/5 5/9

0 8/9√
3/5 5/9

4 −
√

15+2
√
30

35
90−5

√
30

180

−
√

15−2
√
30

35
90+5

√
30

180√
15−2

√
30

35
90+5

√
30

180√
15+2

√
30

35
90−5

√
30

180

Table 3: Legendre roots and integral of the basis functions.

where
w1
ijq = x′ij(ξq)

∫ 1

−1
lq(ξ)dξ

If we use the shorthand rij(ξq) = xijq then we have obtained

∫
Γij

f(u(x, y)) · n̂dS ≈
m∑
q=1

w2
ijqf1(u(xijq))−

m∑
q=1

w1
ijqf2(u(xijq))

Remark. Often in our topic of interest, the curves Γij will be piecewise line segments. Then in each segment,
the coordinate function derivatives will be constant, which simplifies the calculations. In particular, if Γij is
a straight line in R2, then

Γij = {rij(ξ) : −1 ≤ ξ ≤ 1} = {xij(ξ)e1 + yij(ξ)e2 : −1 ≤ ξ ≤ 1} (A.1)

=

{
(x1, y1)− (x0, y0)

2
ξ +

(x1, y1) + (x0, y0)

2
: −1 ≤ ξ ≤ 1

}
(A.2)

=

{(
x1 − x0

2
ξ +

x1 + x0
2

)
e1 +

(
y1 − y0

2
ξ +

y1 + y0
2

)
e2 : −1 ≤ ξ ≤ 1

}
(A.3)

where x0, y0 are the lower coordinates and x1, y1 are the upper coordinates w.r.t. to some direction choice.
Clearly in this case, x′ij = (x1 − x0)/2 = ∆xij/2 and y′ij = (y1 − y0)/2 = ∆yij/2.

Now consider∫
Γij

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
dy −

∫
Γij

RP
(
Rk

i (x − pi), R
k
j (x − pj)

)
dx (A.4)

By our previous discussion,

m∑
q=1

w2
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
−

m∑
q=1

w1
ijqRP

(
Rk

i (xijq − pi), R
k
j (xijq − pj)

)
is the m-point Gauss-Legendre quadrature approximation of (A.4).
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