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Chapter 1

Introduction

Higher Hochschild homology can be defined as the homology of the Loday functor
L, which takes as input a simplicial set X and a commutative algebra A and gives
as output a simplicial commutative algebra L(X,A). It can be thought of as a
generalization of the classical Hochschild homology of a commutative algebra in the
sense that the homology of L(S1, A) coincides with the Hochschild homology of A.
Originally, the term was coined higher order Hochschild homology due to [Pir00]
considering the homology of algebras over Sn.

On the other hand, fixing the algebra gives a resulting homology of spaces that has
been shown to behave nicely in many settings. If a pair of spaces are homotopy
equivalent they will for instance have isomorphic higher Hochschild homology. Fur-
thermore, if the algebra is smooth, then the resulting homology has been shown to
only depend on the stable homotopy type of the spaces. However, the stability of
higher Hochschild homology may not be assumed in general, with a counter example
provided in [Ten16] and [DT18]. Attempts to systematically investigate the stabil-
ity of more cases has been made by [LR22] with both positive and negative results
given.

We approach the subject from the following point of view: We know that the higher
Hochschild homology is a stable invariant for a fixed smooth algebra with a counter
example to this being true in general provided by [Ten16]. However, this may seem
odd, since we can after all make a free simplicial resolution of an algebra, with the
resolution in each degree free and consequently giving a stable homology of spaces.
This is true even if the algebra we started with does not give a stable homology of
spaces. The question then arises how it is possible for a free simplicial resolution of
an algebra to possess the stability observed without extending the property to the
algebra it resolves. The answer to the question turns out to be that the stability of
the resolution is not natural.
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The original counter example featured a comparison of the homology of the dual
rational numbers over the torus and a wedge sum of spheres. We show that this
unstable behaviour can be observed in the attaching map of the torus, which is of
course detected by the fundamental group. Even so, we demonstrate that the un-
stable behaviour still persists in an analogous higher connected case, showing that
the instability of the counter example is not merely an artefact of the low connec-
tedness of the components of the torus. Further we build upon the idea that the
instability is caused by the algebra by relating it to free algebras with known stable
homology of spaces. Through calculations with Greenlees spectral sequence, we in-
vestigate the stability by means of the attaching map, showing that the contrasting
stable and unstable properties is expressible in our case as a particular lift of the
attaching map up to homotopy.



Chapter 2

Simplicial Homotopy Theory

2.1 Simplicial Sets

Definition 2.1.1 (Simplex Category). Let ∆ denote the simplex category con-
sisting of objects the total ordered sets

[n] = (0 → 1 → · · · → n),

where n ≥ 0 along with morphisms the order preserving functions f : [n] → [m]
satisfying the property

i ≤ j =⇒ f(i) ≤ f(j).

Definition 2.1.2 (Simplicial Set). A simplicial set X is a functor

X : ∆op → Sets,

where Sets is the category of sets. We denote the corresponding category of sim-
plicial sets by sSets. More generally a functor

X : ∆op → C

gives a simplicial object in a category C. We denote the corresponding category of
simplicial objects by sC.

Simplicial sets are of course the simplicial objects in Sets, but they admit a lot
more structure than one may assume for a general category of simplicial objects.
Specifically they admit the structure of a simplicial model category, and even more
they also have the property that weak equivalences are preserved by pullbacks over
fibrations and pushouts along cofibrations. In general one cannot assume this to be
true for general categories of simplicial objects. However, one can use the structure of
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the underlying simplicial sets to show that simplicial groups, modules and algebras
actually do have the structure of simplicial model categories [GJ09, lemma 5.1.].
For definitions of closed model categories, simplicial model categories and a proper
treatment of them, we refer to [GJ09, ch. II].

However, there is an easier way to describe simplicial sets using the fact that the set
of cosimplicial face and degeneracy maps generates all the relations of ∆ [Mac98,
p. VII.5.1]. These satisfy a certain set of cosimplicial identities whose dual in sim-
plicial sets is the following:

Definition 2.1.3 (Simplicial Identities). Let X be a simplicial set. The collec-
tion of face maps

di : Xn → Xn−1, 0 ≤ i ≤ n

and degeneracy maps
sj : Xn → Xn+1, 0 ≤ j ≤ n

satisfy a set of identities 

didj = dj−1di, i < j

disj = sj−1di, i < j

djsj = dj+1sj = 1

disj = sjdi−1, i > j + 1

sisj = sj+1si, i ≤ j

that we call the simplicial identities.

Due to these being dual to the cofaces and codegeneracies generating all relations
of ∆, it is sufficient to define a simplicial set by explicitly writing down the sets
Xn = X[n] along with the face and degeneracy maps.

Example 2.1.4 (Standard Simplex, Boundary and Horn). There is a simpli-
cial set

∆n = hom∆ (−, [n])

called the standard n-simplex. Due to the Yoneda Lemma [Lei14] there exists a
natural bijection

homsSets(∆
n, X) ∼= Xn

given by taking the standard simplex 1[n] ∈ ∆n
n and associating each simplicial map

ϕ : ∆n → X to the simplex ϕ(1[n]).

Explicitly we will denote an element (α : [k] → [n]) ∈ ∆n
k by its image. Sup-

pressing the arrows for the objects of the simplex category, we then character-
ize 1[n] by (01 . . . n) with degeneracy and face maps si(1n) = (01 . . . ii . . . n) and

di(1n) = (01 . . . î . . . n), where î means that i is not in the image of α.
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There is a particularly important subcomplex ∂∆n ⊆ ∆n called the boundary. It is
defined as the smallest simplicial set containing all faces di(1[n]), 0 ≤ i ≤ n of the
standard simplex 1[n]. This complex also has a subcomplex called the k-th horn Λn

k ,
which is defined as the smallest subcomplex of ∆n containing all faces save dk(1[n]).

We will use the standard simplex frequently when constructing simplicial sets later
on. We remark that a characteristic property of the standard simplex is that it has
exactly one non-degenerate simplex of degree n, that is

(01 . . . n) = 1[n] ∈ ∆n
n,

Furthermore, any simplicial map ∆n → X is defined by how it acts on this simplex,
due to the simplicial maps commuting with face and degeneracy maps. Therefore
designating a map by its action on 1[n] is well defined, which indeed is part of the
proof of the Yoneda lemma and something we will make use of later on.

Example 2.1.5 (Simplicial Circle). We define the simplicial circle S1 = ∆1/∂∆1

and more generally the simplicial sphere Sn = ∆n/∂∆n. They are characterized by
only having one nondegenerate simplex in the 0-th and in the n-th degree. Following
the latest remark we write explicitly

S1
1 = {[00], 01} ,

where the equivalence class is given by relating 00 ∼ 11. As we go forward we will
not be too careful with denoting the equivalence classes arising from quotients of
simplicial sets, but will instead usually just refer to them by their lowest represent-
ative.

Sometimes we need to distinguish a base point x0 = (∆0 → X), or equivalently
x0 ∈ X0, of a simplicial set X. In this case we say that (X, x0) is pointed.

Definition 2.1.6 (Wedge Sum and Smash Product). Given a pair of pointed
simplicial sets (X, x0), (Y, y0) there is a simplicial set called the wedge sum defined
by

X ∨ Y = X
⊔

Y/ ∼,

where the relation is given by x0 ∼ y0. This construction also gives rise to another
called the smash product defined by

X ∧ Y = X × Y/(X ∨ Y ).

Example 2.1.7 (Suspension). Smashing a pointed simplicial set (X, x0) with the
pointed simplicial circle (S1, s0) gives us the suspension ΣX = S1 ∧X.
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Remark 2.1.8. Note that it is possible to construct the suspension in an equivalent
manner without alluding to base points by taking the double cone CX

⊔
X CX,

where CX = X×∆1/X×{0} and where we have made the identification X ∼= X×
{0} in CX. In topological spaces the reduced suspension and unreduced suspension
of CW-complexes are homotopy equivalent.

For CW-complexes we have the following theorem:

Theorem 2.1.9. If X, Y is a pair of CW-complexes, then

Σ(X × Y ) ≃ ΣX ∨ ΣY ∨ Σ(X ∧ Y ).

Proof. See [Hat01, proposition 4I.1].

Since the realization of a simplicial set is a CW-complex and the realization preserves
finite products and colimits, we have that the theorem is true in the paradigm of
simplicial sets as well.

Example 2.1.10 (Nerve). Given a small category C we have a simplicial set NC
called the nerve of C given by

NCn = homcat(n, C),

where n is the ordinal number [n] viewed as a category. An n-simplex of the nerve
is then a string of composable arrows

c0 c1 . . . cn
f1 f2 fn

in C of length n.

Example 2.1.11. Identifying a group G with the category with one object ∗ and
morphisms g : ∗ → ∗ for each g ∈ G with composition given by multiplication, we
have that the nerve NG is a simplicial set whose realization is K(G, 1).

2.2 Homological Algebra

We begin the section with a note that we will generalize some constructions to
objects in abelian categories. Since we are mainly interested in abelian groups and
sometimes also more generally modules over some commutative ring k, we will for
the sake of not digressing too much avoid making a proper definition. The reader is
welcome to think of abelian groups and k-modules whenever we make reference to
objects in such a category.
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Definition 2.2.1 (Chain Complex). We define a chain complex C of objects in
an abelian category C to be a sequence

. . . Cn Cn−1 . . .
∂n+1 ∂n ∂n−1

of composable arrows such that ∂n ◦ ∂n+1 = 0 for all n.

Remark 2.2.2. For our purposes we will only consider nonnegative chain complexes,
that is, chain complexes with Cn the zero object for n < 0. Note that the condition
∂n ◦ ∂n+1 = 0 only implies that Im ∂n+1 ⊆ Ker ∂n, whereas when the image and
kernel are equal we say that the sequence is exact. Furthermore we may measure
the deviation from said exactness by the homology groups

HnC = Ker ∂n/ Im ∂n+1,

which are of course well defined by the above. We will refer to the category of
nonnegative chain complexes in an abelian category A along with morphisms the
chain maps by Ch+(A).

Definition 2.2.3 (Chain Map and Homotopy). A map of complexes f : C →
C ′, equivalently a chain map, is a collection of maps f = {fn : Cn → C ′

n} so that
the diagram

. . . Cn+1 Cn Cn−1 . . .

. . . C ′
n+1 C ′

n C ′
n−1 . . .

∂n+1 ∂n+1

fn+1

∂n

fn

∂n−1

fn−1

∂n+1 ∂n+1 ∂n ∂n−1

commutes. A chain homotopy h between two chain maps f, g : C → C ′ is a collection
of maps h =

{
hn : Cn → C ′

n+1

}
with the property that

∂n+1hn + hn−1∂n = fn − gn

for all n.

Remark 2.2.4. Given a map α : C0 → C ′
0 we say that the chain map f : C → C ′

extends α if f0 = α. It is a standard fact that chain maps induce well defined maps
on the homology groups and that the induced maps are equal whenever the chain
maps are chain homotopic. If all the maps fn induce isomorphisms on homology,
we say that f is a chain equivalence.
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Definition 2.2.5 (Augmentation and Resolution). A nonnegative chain com-
plex E is augmented by an object M if there exists a map ϵ : C0 → M so that
ϵ ◦ ∂1 = 0. We call it a resolution if the augmented complex

· · · En · · · E1 E0 M 0.
∂n+1 ∂n ∂2 ∂1 ϵ

is exact.

Remark 2.2.6. Note that we distinguish between the augmented chain complex above
and the chain complex E that constitutes the resolution of the augmentation. We
say that the resolution E is free, projective, flat and so on whenever all the Ei are.
Finding resolutions with some of these additional properties can be of interest since
we have Hn(E) = 0 for n ≥ 1 and ϵ∗ : H0(E) → M an isomorphism.

As we will see, we may find free resolutions of many different objects.

Example 2.2.7. We show that every k-moduleM admits a free resolution F . Given
a generating set {xi}i∈I ⊆ M , i.e. the smallest submodule of M containing the set
is M itself, we can define a free module F0 =

⊕
i∈I k {xi} with a k-linear surjection

f0 given by xi 7→ xi. Repeating the construction with ker f0 in the place of M gives
us then a new module F1 along with a k-linear map f1 defined as the composite
F1 → ker f0 ↪→ F0. As such we can inductively construct a free resolution.

We get an even easier example when dealing with modules over a principal ideal
domain:

Example 2.2.8. Every abelian group G has a a free resolution of the form

0 F1 F0 G 0.

To see this, construct F0 in a similar way as above and let F1 be the kernel of the
map F0 → G. Then F1 is free, being a subgroup of a free abelian group, and has a
canonical inclusion F1 ↪→ F0 giving the result.

To add to our intuition that the homology of resolutions characterizes the structure
of the augmented object, we remark that even though a pair of resolutions may at
the outset look vastly different, they are often equivalent in the eyes of homology:

Proposition 2.2.9. If E is a projective resolution of a k-module M and E ′ is
another resolution, then there exists a chain map f : E → E ′ extending idM and
any two such maps are chain homotopic.

In particular, this is true for free resolutions since being free precipitates projective.

Proof. A proof is given for the case of abelian groups in lemma 3.1 of [Hat01].
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There is a standard way of resolving an algebra by the means of the bar complex,
closely related to a particularly important homology theory:

Definition 2.2.10 (Hochschild Homology). Let A be an associative unital al-
gebra over a commutative ring k and M be a bimodule over A. Then define a chain
complex C∗(A,M) by Cn(A,M) = M ⊗ A⊗n with boundary ∂ =

∑n
i=0 di, where

di(m, a1, . . . , an) =


(ma1, . . . , an), i = 0

(m, a1, . . . , aiai+1, an), 0 < i < n

(anm, a1 . . . , an−1), i = n

TheHochschild homology ofA is then the homology of the chain complexHH(A,M) =
HC(A,M). If M = A we denote the Hochschild homology by HH(A) = HC(A).

Remark 2.2.11. That the alleged chain complex defined above actually constitutes
a chain complex, i.e. that ∂2 = 0, is a fact that follows from the di satisfying
the simplicial identities didj = dj−1di for 0 ≤ i < j ≤ n [Lod98, lemma 1.0.7.].
We remark also that the construction is functorial. Further connection between
Hochschild homology and simplicial sets will be made through the Loday functor
later on.

Definition 2.2.12 (Normalized Hochschild Complex). Let Dn be the submod-
ule of Cn(A,M) generated by elements (m, a1, . . . , an) where ai = 1 for at least some
i. The modules form an acyclic subcomplex D∗ that we call the subcomplex of degen-
erate elements. Note that if one constructs Hochschild homology through the means
of a simplicial algebra, these modules are indeed generated by degenerate elements.

Writing A = A/k, we have the normalized Hochschild complex C(A,M) = M⊗A
⊗n

,
which is equivalent to the M ⊗ A⊗n/Dn.

Remark 2.2.13. Due to the acyclicity of D∗, the normalized Hochschild complex is
in fact chain equivalent to the Hochschild complex itself. This is a general fact for
simplicial abelian categories and we suggest comparison with theorem 2.6.5. A more
direct proof can be found in [Lod98, prop. 1.6.5].

Definition 2.2.14 (Tensor Algebra). Let V be a k-module over a ring k and
define the tensor algebra

T (V ) = k ⊕ V ⊕ V ⊗2 ⊕ . . .

with products the canonical isomorphisms V ⊗n × V ⊗m → V ⊗(m+n) given by concat-
enation

(v1 ⊗ · · · ⊗ vn, v
′
1 ⊗ · · · ⊗ v′m) 7→ v1 ⊗ · · · ⊗ vn ⊗ v′1 ⊗ · · · ⊗ v′m.
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Definition 2.2.15 (Symmetric and Exterior Algebra). Let In be the ideal of
Tn(V ) generated by all elements of the form

v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n),

where σ is a permutation. The symmetric algebra on V is then defined to be

S(V ) =
∞⊗
n=0

Tn(V )/In.

Similarly, if we let the ideal Jn of Tn(V ) be generated by elements of the form

v1 ⊗ · · · ⊗ vn − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n),

we get the exterior algebra as

E(V ) =
∞⊗
n=0

Tn(V )/Jn.

Remark 2.2.16. Note the following: If V is finite dimensional and free with basis
x1, . . . , xn, then the symmetric algebra S(V ) is isomorphic to the polynomial algebra
k[x1, . . . , xn]. In particular, if V is free of rank 1 with generator x, then T (V ) =
S(V ) = k[x]. The constructions above are also functorial in the sense that they
define functors from the category of k-modules to that of graded k-algebras. For a
proof we refer to [Lan05, ch. XVI, §8].

Example 2.2.17. To each tensor algebra there corresponds a particularly simple
complex Csmall(T (V )) called the small complex given by

· · · 0 T (V )⊗ V T (V ),

where the non-trivial map is (
⊗

i vi)⊗ v 7→ (
⊗

i vi)v− v(
⊗

i vi) with multiplication
still given by concatenation. What is interesting about the small complex is that
it is chain equivalent to the normalized complex C(T (V )) [Lod98, prop. 3.1.2]. In
particular if V is again free of rank 1 with generator x so that T (V ) = k[x], we have
that this chain equivalence gives an isomorphism

k[x]⊗ k[x] → k[x]⊗ k {x}

Composing this with the identification k[x] ⊗ k {x} ∼= k[x], using that k {x} ∼= k,
the resulting map is in fact p(x) ⊗ q(x) 7→ p(x)q′(x), where the latter factor is the
derivative of q(x).
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The small complex gives us readily the Hochschild homology of commutative poly-
nomial algebras [Lod98, theorem 3.1.4]

HHn(k[x]) =


k[x], n = 0

k[x], n = 1

0, n ≥ 2

Example 2.2.18. Consider now the Hochschild homology of the polynomial algebra
Q[t] whose homology groups we know from example 2.2.17 above. In order to find
the generators of the homology we may look at the boundary ∂ : Q[t]⊗3 → Q[t]⊗2

in the Hochschild complex. It is clear that for p, q, r ∈ Q[t] we have

∂(p⊗ q ⊗ r) = rp⊗ q − p⊗ qr + pq ⊗ r,

but due to commutativity we can factor this as

p · (r ⊗ q − 1⊗ qr + q ⊗ r)

where the multiplication is defined as in definition 2.2.14.

Calculating modulo boundaries for a general cycle in q ⊗ r ∈ HH1(Q[t]) we thus
have that

1⊗ qr ≡ q ⊗ r + r ⊗ q.

This tells us that
1⊗ t2 ≡ 2t · 1⊗ t

and

1⊗ t3 ≡ t⊗ t2 + t2 ⊗ t ≡ t · (1⊗ t2 + t⊗ t) ≡ 3t · t⊗ t = 3t2 · 1⊗ t.

We thus see that 1⊗ tn ≡ ntn−1 · 1⊗ t, which we can prove by induction:

1⊗ tn+1 ≡ t · (1⊗ tn + tn−1 ⊗ t) ≡ t · (ntn−1 · 1⊗ t+ tn−1 ⊗ t) ≡ (n+ 1)tn · 1⊗ t.

As such we can conclude thatH1(Q[t]) = Q[t] {1⊗ t}. Note that this is the generator
as a Q[t]-algebra.

Example 2.2.19. A short exact sequence of A-bimodules

0 → M ′ → M → M ′′ → 0

flat over k induces a long exact sequence of homology

· · · → HHn+1(A,M
′′) → HHn(A,M

′) → HHn(A,M) → HHn(A,M
′′) → . . .
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Hence we can use the short exact sequence

0 → k[t]
·t−→ k[t]

t7→0−−→ k → 0

and the corresponding long exact sequence of homology to find that

HHn(k[t], k) =

{
k, n = 0, 1

0, n ≥ 2

with generators 1 and 1⊗ t over k, respectively.

Example 2.2.20. Let now k be a field. By computing the resolution

. . .
P (y,z)−−−→ Q

·(y−z)−−−→ Q
P (y,z)−−−→ . . .

·(y−z)−−−→ Q → k[t]/(tr)

where Q = k[y, z]/yr = zr and P (y, z) is multiplication with the telescoping sum
such that

P (y, z)(y − z) = yr − zr,

one can show that

HHn(k[t]/(t
r)) ∼=

{
kr, n = 0

kr−1, n ≥ 1

due to k[t]/(tr) ∼= kr and k a field.

2.3 Homotopy Theory

It suffices to say that the closed model structure of the simplicial sets is what allows
us to define a homotopy theory for simplicial sets. A neat feature of this homotopy
theory is that through the adjoint relation with topological spaces, given by the
singular and realization functors, one may show that

πn(X) ∼= πn(|X|)

for a simplicial set X [GJ09, prop. 11.1]. This entails that in particular the notions
of weak equivalences coincide, meaning f : X → Y is a weak equivalence if and
only if |f | : |X| → |Y | is a weak equivalence of topological spaces, in fact of CW-
complexes.

For these objects one may ask how the homotopy behaves with respect to suspen-
sions. For CW-complexes, the realizations of simplicial sets, we have the likes of the
Freudenthal suspension theorem [Hat01, cor. 4.24] showing that πi(X) → πi(ΣX)
is a isomorphism for i < 2n − 1 if X is an (n − 1)-connected CW-complex. This
theorem gives rise to the notion of stable homotopy groups. We are interested in the
stability of the higher Hochschild homology, to be defined later. For this purpose
we define the following notion of stability of functors:
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Definition 2.3.1 (Stable Functor). Let C be a closed model category. A functor
F : sSets → C is stable if for any pair of simplicial sets X, Y we have

ΣX ≃ ΣY =⇒ π∗(FX) ∼= π∗(FY ).

Remark 2.3.2. The homotopy theory can be defined in terms of a homotopy category
Ho(C), constructed by formally inverting weak equivalences. This construction also
makes it so that the converse is true, that the morphisms that induce isomorphisms
in the homotopy category are exactly the weak equivalences [GJ09, prop. 1.14].
As such we could have made the equivalent definition that the stability condition
should be

ΣX ≃ ΣY =⇒ FX ≃ FY.

Example 2.3.3 (Stability of Singular Homology). As we will see in example
2.6.2, one can view the singular homology of a topological space as a functor from
simplicial sets composed with the singular functor on the topological space, with a
small modification giving the reduced homology. In accordance with the definition
of stability that we opted for, we have that the reduced homology is indeed a stable
invariant since due to excision we have H̃n(X) ∼= H̃n+1(ΣX).

Having mentioned the adjoint relationship of the singular and realization functors
numerous times already, we will give an overdue precise definition.

Definition 2.3.4 (Adjoints). A pair of functors F : C → D and G : D → C are
adjoint if there exists a natural isomorphism

homD(F (c), d) ∼= homC(c,G(d))

for all pair of objects c ∈ C and d ∈ D. In this case we say that F is left adjoint to
G and similarly G is called right adjoint to F , which we write as F ⊣ G.

Example 2.3.5 (Singular Functor and Realization). As we have mentioned,
the functors Sing : Top ⇄ sSets : |−| form an adjoint relation that induces functors

Sing∗ : Ho(Top) ⇄ Ho(sSets) : |−|∗

giving an equivalence of the homotopy categories [GJ09, th. 11.4].

The famous slogan of Saunders Mac Lane saying adjoint functors arise everywhere,
keeps being true with certain ones of special interest to us:

Example 2.3.6 (Free Module). In example 2.2.7 we showed that any k-moduleM
admits a free resolution by doing free constructions on generating sets. Implicitly, we
used the forgetful functor U : kMod → Sets taking a k-module M to its underlying
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set and then did a free construction on some generating subset. In the special case
that we use the whole setM as a generating set, we get an example of a free-forgetful
adjoint relation with the free functor F : Sets → kMod taking a set S 7→ kS, where
kS is the module of formal k-linear combinations of elements in S. This free functor
is left adjoint to the forgetful functor U .

Example 2.3.7 (Free Simplicial Resolution of an Algebra). We will now
show that even commutative algebras may be freely resolved. Indeed, in light of the
discussion above, this will prove to extend the construction of the free resolution of
a module in example 2.2.7. Let U : kAlg → Sets be the forgetful functor taking a
commutative k-algebra A to its underlying set. The free functor F : Sets → kAlg
taking S 7→ k[S], where k[S] is the polynomial algebra over S, is left adjoint to the
forgetful functor. Furthermore, F is equivalent to the composition

Sets kMod kAlg,
F1 F2

where F1 is the free functor in example 2.3.6 and F2 is the symmetric algebra of
definition 2.2.15.

Now, there is a trick with iteratively doing free-forgetful constructions to make a
free simplicial algebra resolving A. To do this, let Bn = (FU)n+1 (A). Since F ⊣ U
we have a natural isomorphism

φ : HomSets(X,U(A)) → HomkAlg(F(X), A)

for a set X and k-algebra A. In particular, we have that if X = U(A) then the
identity map 1X gives us a homomorphism

δ = φ1X : FU(A) → A

that we call the counit of the adjunction. Similarly, the identity 1F(X) gives us a
map of sets

φ−11F(X) : U(A) → UFU(A)

that we refer to as the unit of the adjunction. Although the unit is a map of sets,
it defines an algebra homomorphism by σ = Fφ−11FU(A) which is then a map of
algebras σ : FU(A) → FUFU(A).

Now, let di : Bn → Bn−1 and si : Bn → Bn+1 be given by

di = (FU)n−iδ(FU)i(A)

and

si = (FU)n−1−iσ(FU)i(A).
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One can verify that these homomorphisms satisfy the simplicial identities of face and
degeneracy maps making B a free simplicial algebra. Furthermore there is of course
a homomorphism B0 → A given by the counit. Regarding A as a discrete simplicial
algebra with An = A for all n and all face and degeneracy maps isomorphisms, it
is then clear that the counit induces a simplicial map B → A. We remark that
δn = d0 · · · dn gives a map Bn → B0 and that this map is canonical in the sense
that any other composition of face maps di1 · · · din : Bn → B0 gives the same map
due to the simplicial identities, recall that the cosimplicial maps in ∆ have unique
factorizations.

That the map of simplicial algebras B → A is in fact a weak equivalence follows from
applying the forgetful functor once more and see that we get an extra degeneracy
map on the simplicial set U(B). It is then a standard argument that whenever a
simplicial set has such an extra degeneracy map we get a homotopy equivalence
U(B) → K(π0(U(B)), 0) [GJ09, lemma III.5.1.]. Now, π0(U(A)) = U(A) and from
the coequalizer diagram

U (FU)2 (A) ⇒ UFU(A) → U(A)

we get that π0(UFU(A)) ∼= U(A).

As we will see later in the Dold-Kan theorem 2.6.6, the homology groups of the chain
complex we get from taking the alternating sum of the face maps are naturally
isomorphic to the homotopy groups. Thus, if we for a moment consider A,B as
simplicial abelian groups by taking the forgetful functor down to the underlying
additive groups. Then by taking the Moore complex of B, to be defined later in
2.6.1, we do indeed have B as a proper resolution of A. The example above will
therefore be of importance when we consider the stability of the higher Hochschild
homology, which is a stable invariant for free algebras, but fails to be so in general.

2.4 Spectral Sequences

In our study of stability, we will need some knowledge of spectral sequences. In
particular, the Greenlees spectral sequence gives the convergence of a sequence fitting
very well with the problem at hand. Note that in working with spectral sequences
we use Er to denote the r-th page of the sequence.

Definition 2.4.1 (Filtration). A filtration of an object H is a family of subobjects
FH = (FnH)n∈Z, so that FnH ⊆ Fn+1H.

Remark 2.4.2. If the object exists in a category with initial object I and FnH = I
for n ≤ 0, we say that the filtration is bounded below and write the filtration FH =
(FnH)n≥0.
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Filtrations are common sources of spectral sequences. One may think of them as
approximations of the objects they filter.

Example 2.4.3 (Sets as Filtered Colimits). Any set X can of course be written
as the union of its subsets. In particular we can write it as a union of its finite
subsets. Explicitly, any set is bounded below by the empty set and we may form a
filtration of finite sets by appending one element at a time. The resulting filtration
gives us the means of encoding an object X in Sets as the colimit of a sequence of
objects FnX

∅ ⊆ F0X ⊆ F1X ⊆ · · · ⊆ FnX ⊆ . . .

coming from Fin, the category of finite sets. Note that the statementX = colimi FiX
only makes sense after taking the inclusion into Sets.

Example 2.4.4 (Skeleta of Simplicial Sets). Given a simplicial set X define
the n-th skeleta sknX as the subcomplex generated by the simplices of degree ≤ n.
Then it is clear that we have a filtration of X as FnX = sknX for n ≥ 0.

Definition 2.4.5 (Graded Ring). A graded ring is a ring R along with a family
(Rn)n≥0 of subgroups of its underlying additive group such that R =

⊕∞
n=0Rn and

RmRn ⊆ Rm+n for all m,n ≥ 0.

Similarly, we say that a ring R is bigraded if R =
⊕

p,q,∈ZAp,q, where each Ap,q is an
additive subgroup and Ap,qAr,s ⊆ Ap+r,q+s.

Remark 2.4.6. In particular, R0 is a subring of R since it is closed under multiplic-
ation and by the same reasoning every Rn, n > 0 is an R0-module. We say that an
algebra is graded if it is graded as a ring.

Example 2.4.7 (Associated Graded Ring). Let R be a graded ring and FR a
filtration such that F0R = R. We define its associated graded ring (Sn)n≥0 by

Sn = FnR/Fn+1R.

For x ∈ Rn we write the image in Sn as x̄. Then the multiplication is defined as
x̄ȳ = xy for x ∈ Rn, y ∈ Rm.

As we mentioned briefly, the tensor algebra is a graded algebra, and consequently
so are the symmetric and exterior algebras as well.

Definition 2.4.8 (Differential Graded Algebra). A differential graded algebra,
often abbreviated as DG-algebra, is a graded algebra A with a degree −1 linear
mapping d : A → A such that d is a derivation satisfying the Leibniz rule

d(a · a′) = d(a) · a′ + (−1)|a|a · d(a′).



Chapter 2. Simplicial Homotopy Theory 18

A differential bigraded algebra is similarly a bigraded algebra A along with a total
degree −1 map

d :
⊕

p+q=n

Ap,q 7→
⊕

r+s=n−1

Ar,s

satisfying a similar Leibniz rule

d(a · a′) = d(a) · a′ + (−1)p+qa · d(a′).

Example 2.4.9 (Hochschild Homology as DG-Algebra). Equipping the Ho-
hchschild homology with the shuffle product, which we will familiarize ourselves with
later, we get the structure of a graded algebra on H∗(A) for a commutative algebra
A. Furthermore, the Hochschild boundary is a graded derivation with respect to
this product making H∗(A) a differential graded algebra. See [Lod98, cor. 4.2.7]
and the discussion following lemma 2.6.19.

Example 2.4.10. If (A, d), (B, d′) is a pair of differential graded algebras, their
tensor product A⊗B is a differential bigraded algebra with differential

d⊗(a⊗ b) = d(a)⊗ b+ (−1)|a|a⊗ d′(b).

Definition 2.4.11 (Differential Bigraded Module). A differential bigraded mod-
ule E over a ring k, is a collection of k-modules {Ep,q}p,q∈Z along with k-linear maps
d : Ep,q → Ep−r,q−r−1 called differentials of degree r for some r ≥ 0 satisfying
d ◦ d = 0.

Definition 2.4.12 (Spectral Sequence of Modules). A spectral sequence of
modules is then a collection of differential bigraded modules {(En, d)}n>0 where the
differentials of En is of degree n and for all p, q, n we have En+1

p,q
∼= Hp,q(E

n, d).

Remark 2.4.13. By Hp,q(E
n, d) we mean explicitly the module

ker(d : En
p,q → En

p−n,q−n−1)/ Im(d : En
p+n,q+n−1 → En

p,q).

Definition 2.4.14 (Spectral Sequence of Algebras). A spectral sequence of al-
gebras is a collection of differential graded algebras {(En, d)} such that if φn denotes
the product of En, then it induces the product of En+1 through the composition

φn+1 : E
n+1
p,q ⊗ En+1

p,q

∼=−→Hp,q(E
n, d)⊗Hp,q(E

n, d)

p−→ Hp,q(E
n ⊗ En, d⊗)

Hφn−−→ Hp,q(E
n, d)

∼=−→ En+1
p,q ,

where p is given by [u]⊗ [v] 7→ [u⊗ v].



19 2.4. Spectral Sequences

The reason that spectral sequences are interesting is that they can be used to approx-
imate objects. To this end there are many theorems regarding their convergence,
that is if the spectral sequence collapses for some n = N meaning the differentials
are 0 for n ≥ N , then the objects of the sequence stabilize

EN
p,q

∼= EN+1
p,q

∼= . . . E∞
p,q.

There are subtleties to convergence of spectral sequences that we will not mention,
referring instead to [McC01] for a discussion of them.

The theorem of convergence that we are going to be interested in is the following:

Theorem 2.4.15 (Greenlees Spectral Sequence). Let A → B → C be a cofibre
sequence of simplicial commutative algebras augmented over k such that π0(A) = k
and B is of upward finite type as an A-module. Then there is a multiplicative first
quadrant spectral sequence

E2
p,q = πp(C)⊗k πq(A) =⇒ πp+q(B)

with differentials

dr : Er
p,q → Er

p−r,q+r−1.

By augmented over k we mean that there is a map A → k such that k → A → k
is the identity. Note also that B being of upward finite type is implied if πn(B) is
finite dimensional for all n.

Proof. See [Gre16, lemma 3.1].

A cofibre sequence of algebras A → B → C augmented over k means exactly that
we have a pushout diagram

A B

k C

so that we may state Greenlees spectral sequence as

E2
p,q = πp(k ⊗A B)⊗k πq(A) =⇒ πp+q(B).

This will be a very useful when we consider the cofibre sequence

Q[t]
t7→t2−−−→ Q[t] → Q[t]/(t2)

that will be central in our later developments.
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2.5 Higher Hochschild Homology

We will construct the higher Hochschild homology iteratively over several steps,
starting with defining a prototype of the Loday functor for the skeleton of finite
sets that we then extend to be defined for sets and subsequently simplicial sets. A
central part of the construction relies on working over a monoidal category.

Definition 2.5.1 (Monoidal Category). A monoidal category C is a category to
which there exists

i an associative bifunctor
⊗

: C × C → C;

ii an object e ∈ C;

iii a natural isomorphism α : (−⊗ (−⊗−)) → ((−⊗−)⊗−);

iv a natural isomorphism λ : (e⊗−) → (−);

v a natural isomorphism ρ : (−⊗ e) → (−).

such that for a, b, c, d ∈ C

a⊗ (b⊗ (c⊗ d)) (a⊗ b)⊗ (c⊗ d) ((a⊗ b)⊗ c)⊗ d

a⊗ ((b⊗ c)⊗ d) (a⊗ (b⊗ c)⊗ d)

α

1⊗α

α

α⊗1

α

and
a⊗ (e⊗ c) (a⊗ e)⊗ c

a⊗ c

α

1⊗λ

ρ⊗1

commutes.

Remark 2.5.2. Any category with finite products is a monoidal category with the
product as the monoidal product and terminal object as the monoidal unit. The
existence of the latter follows by assumption as the empty product, i.e. it is the limit
of the empty diagram 0 → C. The same is of course true for the dual statement.

Definition 2.5.3 (Category of Finite Sets). Denote the category consisting of
finite sets and functions between them by Fin. Then Fin is a full subcategory of
Sets with skeleton Fin consisting of the ordinal numbers [n] = {1, . . . , n}. Note
that the simplex category ∆ embeds into Fin, but has fewer morphisms since the
morphisms of Fin are not required to be order preserving.
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Suppose we have a category C with finite coproducts and consequently an initial ob-
ject. Examples include of course the categories of sets, abelian groups, commutative
rational algebras and so on. Then there exists a functor

Fin× C → C, (X,A) 7→
⊔
X

A,

where X 7→
⊔

X A is defined uniquely up to isomorphism by preserving coproducts
and by the condition that

⊔
{1}A = A.

The examples listed above are indeed also categories with arbitrary colimits. In
particular we can extend the functor from finite sets to sets by taking a given set
as the filtered colimit of its finite subsets as in example 2.4.3. Explicitly, for a
set X = colimXi, where X is filtered by finite sets Xi ↪→ Xi+1, i ≥ 0, we define
Sets× C → C to be given by

(X,A) 7→
⊔
X

A =
⊔

colimXi

A ∼= colim
⊔
Xi

A.

If we are now given a simplicial set X and an object A ∈ C, we may take the
composition

∆op Sets CX
⊔

• A

to get a simplicial object
⊔

X A in C defined by (
⊔

X A)n =
⊔

Xn
A, again unique up

to isomorphism. Since maps of simplicial sets are defined degreewise, we may view
the above as a functor sSets × C → sC. As an application of this construction we
define:

Definition 2.5.4 (Loday Functor). The Loday functor is given by

L : sSets× kAlg → skAlg

is given by

L(X,A) =
⊗
X

A

where
⊗

X A is the simplicial k-algebra with n-simplices (
⊗

X A)n =
⊗

Xn
A. We

can augment the Loday functor by an A-algebra M

L(X,A,M) = M ⊗A L(X,A).

Remark 2.5.5. Note that we could modify the definition to allow for simplicial k-
algebras as well, with a regular k-algebra viewed as a discrete simplicial k-algebra
with An = A for all n. Then the image would be the diagonal of the bisimplicial
k-algebra

⊗
Xp

Aq. Note also that the construction of the Loday functor is a special
example of a more general construction over symmetric monoidal categories.
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Since the forgetful functor skAlg → sSets factors through the subcategory of sim-
plicial abelian groups, every object of skAlg is fibrant. As such there exists a
simplicial model category structure on skAlg where a map of k-algebras A → B is
a weak equivalence if and only if it is a weak equivalence of the simplicial sets, in
effect after applying the forgetful functor [GJ09, th. 4.1, th. 4.4, lemma 5.1]. This
allows us to consider the homotopy groups of simplicial k-algebras, leading to the
higher Hochschild homology.

Definition 2.5.6 (Higher Hochschild Homology). Let A be a commutative
k-algebra. The higher Hochschild homology of A over a simplicial set X is given by

L∗(X,A) = π∗

(⊗
X

A

)
.

If the Loday functor is augmented by some A-algebra M , we refer to the higher
Hochschild homology

L∗(X,A,B) = π∗

(
B ⊗A

⊗
X

A

)
as homology with coefficients in M .

Remark 2.5.7. Although it might at the moment seem like a misnomer referring
to the homotopy groups of the Loday functor as higher Hochschild homology, we
will see in the next section that the Loday functor defines a chain complex, its
Moore complex, whose homology groups are naturally isomorphic to the higher
Hochschild homology as defined above. In the particular case resulting from taking
X = S1, the Moore complex of the Loday functor yields the Hochschild complex,
hence L∗(S

1, A) ∼= HH∗(A). From this point of view the construction generalizes
the Hochschild homology of commutative algebras, motivating the usage of the term
higher Hochschild homology.

There is also something to be said about taking coefficients in M requiring working
with pointed simplicial sets, the mention of which is absent from the development
above. However, this is a minor issue since an analogous development with pointed
sets above yields the pointed Loday functor. We do remark that the important part
of the pointed theory is that the coefficients should correspond to the base point
through the identification M ⊗A Ax0

∼= M for the the pointed Loday functor on the
pointed simplicial set (X, x0), where of course Ax0 = A.

Noting that the higher Hochschild homology L∗ can be written as π∗L we see that
if we fix a commutative k-algebra A, we may in accordance with definition 2.3.1
consider the stability of the resulting functor

L(−, A) : sSets → skAlg.
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We will try to divulge some properties of the higher Hochschild homology, starting
off with the important fact that L(−, A) is not in general a stable functor.

Example 2.5.8. It was shown by [Ten16] that for the algebra A = Q[t]/(t2) that

L∗(T
2, A,Q) ≇ L∗(S

1 ∨ S1 ∨ S2, A,Q),

even though we know from theorem 2.1.9 that T 2 is weakly equivalent to S1 ∨ S1 ∨
S2 after suspension, giving a counter example to general stability of L(−, A) for
arbitrary A.

On the other hand, there are positive results that lead one to earlier believe that
higher Hochschild homology could be a stable invariant.

Example 2.5.9 (Higher Hochschild Homology of a Smooth Algebra). In
[DT18, example 2.6] it is shown that for a free symmetric algebra, or more generally a
smooth algebra A, the Loday functor L(−, A) is stable. In example 2.3.7 we showed
that it is always possible to find a free simplicial resolution B of an algebra A by
doing the trick with the extra degeneracy map from the free-forgetful adjunction.
This entails that if A is an algebra for which L(−, A) is not stable, such as in the
case of the previous example, there has to arise some issue with respect to stability
when going from L(X,Bn) to L(X,B).

Note that it makes sense to talk about L(X,B), where this becomes a bisimplicial
algebra with simplicial degree both in the simplicial set and in the simplicial algebra.
See the later definition 2.6.9 for reference.

Explicitly, let A = Q[t]/(t2) and let f : B
∼−→ A be a free simplicial resolution of

A, where f is considered a map of simplicial algebras with A the discrete simplicial
algebra An = A. Then for each n ≥ 0 we have a diagram of simplicial algebras

L(T 2, Bn,Q) L(S1 ∨ S1 ∨ S2, Bn,Q)

L(T 2, A,Q) L(S1 ∨ S1 ∨ S2, A,Q)

∼

(fn)∗ (fn)∗

that does not extend to a weak equivalence on the bottom.

Even though the map of algebras fn constitute a weak equivalence f , the resulting
diagram of bisimplicial algebras

L(T 2, B,Q) L(S1 ∨ S1 ∨ S2, B,Q)

L(T 2, A,Q) L(S1 ∨ S1 ∨ S2, A,Q)

∼ ∼
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cannot extend to square of weak equivalences either, since the counter example tells
us that

L∗(T
2, A,Q) ≇ L∗(S

1 ∨ S1 ∨ S2, A,Q).

Another example of stable behaviour arises when the weak equivalence on the sus-
pension is induced by a map of the unsuspended spaces.

Example 2.5.10. Let f : X → Y be a simplicial map inducing a weak equivalence

Σf : ΣX
∼−→ ΣY.

The induced map f∗ : L(X,A) → L(Y,A) is then a weak equivalence [DT18, example
2.7]. Hence we can elaborate further on the previous example by concluding that
the weak equivalences for fixed Bn cannot be induced by a simplicial map f : T 2 →
S1 ∨ S1 ∨ S2. It is also possible to show that no such weak equivalence f of spaces
exists either.

Before moving on we make a remark that some care should be taken when indexing
the Loday functor and higher Hocschild homology, where we denote

L(X,A,M)n = M ⊗A

⊗
Xn

A

while

Ln(X,A,M) = πn

(
M ⊗A

⊗
X

A

)
.

This distinction becomes even more important further on when we consider the
Moore complex of L(X,A,M) whose chain groups are given by L(X,A,M)n while
we will see that the resulting homology of the chain complex is given by Ln(X,A,M).

2.6 Classical Results

We will in this section do a short exposition of three classical results: the Dold-Kan
correspondence 2.6.6, the Eilenberg-Zilber theorem 2.6.20 and the Künneth formula
2.6.22. Each of them will be used ubiquitously in our following efforts. Starting
off with the Dold-Kan correspondence, we will see that the structure encoded in a
simplicial abelian group allows us to construct multiple chain complexes in a func-
torial manner, allowing us to form an equivalence of categories sAb and Ch+(Ab).
This equivalence of categories will prove to behave nicely with respect to the usual
topological invariants, homology and homotopy, with the added benefit that we can
then use tools from both theories in subsequent calculations.
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Definition 2.6.1 (Moore Complex). Let A be a simplicial object in an abelian
category A. Define ∂ : An → An−1 by ∂ =

∑n
i=0(−1)idi. As noted earlier in remark

2.2.11, using the simplicial identities didj = dj−1di, i < j one can verify that ∂2 = 0
and consequently that the sequence

· · · An · · · A1 A0 0∂ ∂ ∂ ∂

is a chain complex CA, which we call the Moore complex of A.

Example 2.6.2 (Singular Homology). To put things under a more familiar guise,
we can consider initially a topological space X. We can then recover the singular
homology H∗ of X by composing the functors

Top
Sing−−→ sSets

Z−→ sAb
C−→ Ch+(Ab)

H−→ grAb.

Note that we could analogously describe homology with coefficients in M by the
modification

M ⊗Z Z : sSets → sAb.

As we will see promptly, the Moore complex is closely related to the normalized
complex:

Definition 2.6.3 (Normalized Chain Complex). Let again A be a simplicial
object in an abelian category and define

NAn =
n−1⋂
i=0

ker(di : An → An−1) ⊂ An.

Using the simplicial identities one can again easily verify that

· · · NAn · · · NA1 NA0 0
(−1)ndn d2 −d1 d0

is a chain complex, which we denote NA called the normalized chain complex of A.

Remark 2.6.4. It is readily seen that the constructions above gives us functors C,N :
sA → Ch+(A) for an abelian category A. The only thing to check is functoriality,
but this follows immediately since a map of simplicial sets is a natural transformation
of contravariant set valued functors on ∆, meaning they in particular commute with
the face maps di, and in an abelian category one may use the additional linearity of
the corresponding simplicial maps to see that the boundary commutes with simplicial
maps as well.
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If A is a simplicial abelian group there is a subgroup DAn ⊂ An generated by the
degenerate simplices. The boundary of the Moore complex induces a homomorphism

∂ : An/DAn → An−1/DAn−1

giving us a chain complex that we will denote by CA/DA. It is clear that there are
chain maps

NA
i
↪−→ CA

p−→ CA/DA

induced by inclusion and projection, respectively.

Theorem 2.6.5. The composite

NA
pi−→ CA/DA

is a chain equivalence.

Proof. See [GJ09, theorem III.2.1].

There is a procedure outlined in [GJ09, p.147-149], whose development our exposi-
tion is based upon, that shows how to construct a certain functor Γ : Ch+(Ab) →
sAb. Explicitly, Γ is defined on objects to be

Γ(C)n =
⊕
n↠k

Ck,

where we have written n ↠ k to denote that the sum is taken over the epimorphisms
between the ordinal numbers. To define the functor on morphisms one uses that
that we can epi-mono factorize any ordinal number map, albeit the definition and
proving functoriality is not trivial. Recall that from the discussion preceding defin-
ition 2.1.3, that the cosimplicial face and degeneracies generate all ordinal number
morphisms. We will however, for the sake of keeping the exposition brief, omit fur-
ther details regarding this construction and proof of its properties, referring instead
to the development of the source above.

As a final note before moving on, we do remark the following interesting fact: Given
a chain complex C concentrated at an abelian group G in degree n, the resulting
simplicial abelian group Γ(C) is the Eilenberg-Mac Lane object K(G, n). This fact
can be used in part to show that any simplicial abelian group is homotopy equivalent
to a product of Eilenberg-Mac Lane spaces [GJ09, proposition III.2.20.]. This we can
compare to the extra degeneracy argument of example 2.3.7, where we constructed
a free simplicial resolution B of a discrete simplicial algebra A and found that as
simplicial sets we had U(B) → K(π0(U(A)), 0) a homotopy equivalence.

The first classical theorem is then the following:
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Theorem 2.6.6 (Dold-Kan Correspondence). The functors N,Γ form an equi-
valence of categories

N : sAb ⇄ Ch+ : Γ.

Proof. [GJ09, corollary III.2.3].

This equvialence of categories is particularly interesting due to the following fact:

Theorem 2.6.7. The inclusion i : NA → CA is a chain homotopy equivalence
natural with respect to simplicial abelian groups A.

Proof. [GJ09, Theorem III.2.4.].

The Dold-Kan correspondence tells us that from a categorical point of view, chain
complexes of abelian groups are similar to simplicial abelian groups. Now, we can
define simplicial homology by H∗(CZX) for a simplicial set X, where Z is the free
functor

Z : Sets → Ab, S 7→ Z {S} ,

as we implicitly did in example 2.6.2. Since this coincides with the singular ho-
mology of topological spaces through the singular-realization adjunction of example
2.3.5 and both the homology and homotopy of spaces are topological invariants, one
may ask how and if the equivalence of categories provided by the Dold-Kan corres-
pondence relates to any similarity of the invariants. The answer to this question is
as nice as possible:

Theorem 2.6.8. There are isomorphisms of abelian groups

πn(A, 0) ∼= Hn(NA) ∼= Hn(CA)

natural in simplicial abelian groups A.

Proof. See [GJ09, Corollary III.2.7].

We have now established an equivalence between simplicial abelian groups and non-
negative chain complexes, and an equivalence between the homotopy and associated
homology groups of a simplicial abelian group. The last equivalence we are going
to need is one regarding products, which will be provided by the Eilenberg-Zilber
theorem and the Künneth formula.

Definition 2.6.9 (Bisimplicial Sets). A bisimplicial set A is a simplicial object
in the category of simplicial sets. Equivalently, through the exponential law, it is a
functor A : ∆op × ∆op → Sets. We write A(m,n) = A([m], [n]) and refer to this
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as the simplicial set (of bisimplices) of bidegree (m,n), where m is the horizontal
degree and n the vertical degree. In general we can define a bisimplicial object in C
to be a simplicial object in the category of its simplical objects sC, or equivalently,
using the exponential law as above, a functor ∆op ×∆op → C. As a shorthand we
will write s2C for the category of bisimplical objects in C.

It should come as no surprise that the product of a pair of simplicial objects is
closely related to the notion of a bisimplicial object. We can make this precise for
simplicial sets in the following way:

Definition 2.6.10 (External Product and Diagonal). Given a pair of simplicial
sets K,L, we define their external product K×̃L to be the bisimplicial set

K×̃L(m,n) = Km × Ln.

The diagonal of a bisimplicial set A is the simplicial set diag∗(A), where diag∗(A)n =
A(n, n).

Remark 2.6.11. Note that from this point of view, the regular product of simplicial
sets K,L is just the diagonal of their external product K × L = diag∗(K×̃L), with
diag∗ being the precomposition with the diagonal ∆op → ∆op ×∆op. Of course this
generalizes to simplicial objects in arbitrary cartesian monoidal categories.

Expanding on the previous remark, we can also consider the external tensor product
A ⊗̃B of simplicial abelian groups A,B by taking the pairwise tensor product of
the abelian groups Am ⊗ Bn in bidegree (m,n). Explicitly, A ⊗̃B is given as the
composition

∆op ×∆op Ab×Ab Ab.
A×B ⊗

Definition 2.6.12 (Moore Bicomplex). Similarly to how we can define the Moore
complex of a simplicial abelian group, we can define the Moore bicomplex CA of a
bisimplicial abelian group A to be the bicomplex with (p, q)-chains CAp,q = A(p, q),
and with horizontal boundary

∂h =

p∑
i=0

(−1)idi : A(p, q) → A(p− 1, q),

and vertical boundary

∂v =

q∑
j=0

(−1)p+jdj : A(p, q) → A(p, q − 1).

Remark 2.6.13. We make a careful remark that it is not unusual to take the Moore
complex to be a functor C : s2Ab → Ch+Ch+(Ab), where the latter stands for
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the category of double complexes in abelian groups. This differs from our definition
above in that the squares are then commuting, instead of anti-commuting, but bears
resemblance to how one can view a bisimplicial object as a simplicial object in a
category of simplicial objects. The reason we have opted for the definition above is
more a matter of preference and in part to make it easier to later define the total
complex.

We will at some point start suppressing the notational distinction between A and
CA in the cases that A is either a simplicial or bisimplicial abelian group and CA
the respective associated Moore complex or bicomplex. In the first case, this abuse
of notation is justified by the Dold-Kan correspondence above and the second case
will follow similarly by our pending results.

Definition 2.6.14 (Total Complex). The total complex TotA of a bisimplicial
abelian group A is the total complex of the associated Moore bicomplex TotCA.
Explicitly it has chain groups given by

TotCnA =
⊕

p+q=n

Cp,qA

with boundary
∂ = ∂h + ∂v : TotCnA → TotCn−1A.

Definition 2.6.15 (Tensor Product of Chain Complexes). Given a pair of
chain complexes C,C ′, we define their tensor product C⊗C ′ to be the chain complex
with n-chains

(C ⊗ C ′)n =
⊕

p+q=n

Cp ⊗ C ′
q

and boundary ∂ : (C ⊗ C ′)n → (C ⊗ C ′)n−1 given by

∂(x⊗ y) = ∂x⊗ y + (−1)px⊗ ∂y.

Remark 2.6.16. Following the previous remark, we see that we have to adjust for
the sign in the tensor product of chain complexes while it is taken care of for the
total complex by our definition of the bicomplex.

There is some redundancy in our definitions above, namely one that we can sum-
marize as the existence of the following commutative diagram:

sAb× sAb s2Ab BiCh+(Ab)

Ch+(Ab)×Ch+(Ab) Ch+(Ab)

⊗̃

C×C

C

Tot

⊗

(2.1)
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In effect, this is the observation that TotC(A ⊗̃B) = CA⊗CB, which follows easily
from the definitions. We have opted to present both cases individually to make more
explicit that these are two independent and equivalent points of view.

The diagram (2.1) also describes one of two standard methods for extracting a chain
complex from a simplicial abelian group: Starting with A in s2Ab one can take the
Moore bicomplex and its associated total complex to end up with a chain complex.
The other method is to take the diagonal diag∗ : s2Ab → sAb mentioned earlier
and then take the Moore complex. What we are interested in is the case that the
bisimplicial abelian group is the exterior tensor product of a pair of simplicial abelian
groups A ⊗̃B. We then have

C diag∗(A ⊗̃B) = C(A⊗B)

and

TotC(A ⊗̃B) = CA⊗ CB,

and we may ask whether these chain complexes are equivalent. This will be shown
after stating a pair of definition-lemmas:

Lemma 2.6.17 (Alexander-Whitney Map). Let A,B be simplicial abelian groups
and C : sAb → Ch+ be the Moore functor. There is a natural chain map AW :
C(A⊗B) → CA⊗ CB given by

AW(a⊗ b) =
n∑

i=0

(d̄)n−ia⊗ (d0)
ib

called the Alexander-Whitney map, where a ∈ An, b ∈ Bn. The map d̄ acting on a
k-simplex x is the face map dk, i.e. d̄(x) = d|x|(x).

The Alexander-Whitney map is also associative up to homotopy in the sense that
there exists a natural chain homotopy (1 ⊗ AW)AW ≃ (AW⊗1)AW, hence it can
be iterated respecting the associativity of the tensor product

C(A1 ⊗ A2 ⊗ A3) C(A1)⊗ C(A2 ⊗ A3) C(A1)⊗ C(A2)⊗ C(A3).
AW 1⊗AW

Proof. See [Mac63, theorem VIII.8.8.].

Definition 2.6.18 (Shuffle). For a pair of nonnegative integers p, q we define a
(p, q)-shuffle (µ, γ) to be a partition of the set of integers {0, . . . , p+ q − 1} as a pair
of disjoint subsets with µ1 < · · · < µp and γ1 < · · · < γq so that {µ1, . . . , µp, γ1, . . . , γq}
defines a permutation of the set. We denote this permutation also by (µ, γ).
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Lemma 2.6.19 (The Shuffle Map). In the opposite direction, we define the
Shuffle map sh : CA⊗ CB → C(A⊗B) by

sh(a⊗ b) =
∑
(µ,ν)

sgn(µ, ν)sνq . . . sν1(a)⊗ sµp . . . sµ1(b),

where a ∈ Ap, b ∈ Bq with p + q = n and (µ, ν) running over all (p, q)-shuffles. In
addition to being a natural map of complexes this map is also graded commutative.

Graded commutative means explicitly that with respect to the twisting map T :
A⊗B → B ⊗ A we get

T (sh(a⊗ b)) = (−1)|a|·|b| sh(T (a⊗ b)) = (−1)|a|·|b| sh(b⊗ a)

Proof. See [Mac63, theorem VIII.8.8.].

It is worth mentioning that for an algebra A the shuffle map induces a product on
the Hochschild complex

CpA⊗ CqA → Cp+q(A⊗ A),

where CnA = A⊗n, and that the Hochschild boundary is a graded derivation of this
product [Lod98, proposition 4.2.2.]. If A is commutative then composing with the
map induced by the product map A × A → A gives us a product on CA making
it a differential graded algebra and consequently giving Hochschild homology the
structure of a graded commutative algebra [Lod98, pp. 4.2.6–7]. We will return to
this later in section 3.2.

For now, we arrive at the second classical result:

Theorem 2.6.20 (Eilenberg-Zilber). The shuffle map sh and Alexander-Whitney
map AW are chain equivalences

sh : CA⊗ CB ⇄ C(A⊗B) : AW

inverse to each other on homology.

Proof. A proof can be found in [Mac63, theorem VIII.8.1] or [May92, theorem 29.3].
Both use the method of acyclic models, which are described in the previous sections
of the same sources.

There is a more generalized version of the theorem that we briefly state for the sake
of the exposition:
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Theorem 2.6.21 (Generalized Eilenberg-Zilber). The total complex TotA and
the diagonal diag∗(A) of a bisimplicial abelian group A are chain homotopy equival-
ent, naturally with respect to morphisms of bisimplicial abelian groups A.

Proof. See [GJ09, theorem IV.2.4].

The last classical result is that there is a class of nice cases where the homology of
a product splits as the homology of the factors.

Theorem 2.6.22 (Künneth Formula). If k is a principal ideal domain and C a
chain complex of free k-modules, then there is a short exact sequence

0 →
⊕

p+q=n

Hp(C)⊗k Hq(C
′) → Hn(C ⊗ C ′) →

⊕
p+q=n−1

Tor k(Hp(C), Hq(C
′)) → 0

and this sequence splits.

Note that the Künneth formula generalizes the universal coefficient theorem in the
sense that it appears as the special case when C ′ is concentrated on the coefficient
group G in dimension 0.

Proof. See [Hat01, theorem 3B.5].

In particular when k is a field, and C,C ′ are chain complexes with coefficients in k,
the Künneth formula simplifies since the Tor terms are zero.

Corollary 2.6.23. If k is a field and C a chain complex of free k-modules, we have
an isomorphism ⊕

p+q=n

Hp(C)⊗k Hq(C
′) → Hn(C ⊗ C ′)

for all n.

In combination with the Eilenberg-Zilber theorem, we can for the simplicial homo-
logy make the following strong assertion:

Corollary 2.6.24. Let X, Y be a pair of simplicial sets and k a field. Then

Hn(X × Y, k) ∼=
⊕

p+q=n

Hp(X, k)⊗Hq(Y, k).

Proof. Note that the chain groups with coefficients in k are given by C(k⊗Z Z(X))
as in example 2.6.2. Let C(X, k) denote these chain groups. Then

Hn(C(X × Y, k)) ∼= Hn(C(X, k)⊗ C(Y, k)) ∼=
⊕

p+q=n

Hp(X, k)⊗Hq(X, k),
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where the first isomorphism follows from the Eilenberg-Zilber theorem and the
second from the Künneth formula.



Chapter 3

Calculations With Higher
Hochschild Homology

3.1 Stability of Functors and Attaching Maps of

Tori

In topological spaces we may of course construct the standard torus T 2 = S1×S1 by
gluing together the opposite sides of a sheet and identifying the corners to a single
point, as indicated by the figure below:

b

a

b

a

Figure 3.1: Identifying the sides a ∼ a and b ∼ b in sequence gives us first a cylinder,
then a torus. The unfilled square is of course homeomorphic to standard circle S1.
Explicitly one may deformation retract each point radially by normalizing over the
unit interval.

34
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Equivalently, we can view the torus as a pushout diagram of topological spaces

S1 D2

S1 ∨ S1 S1 × S1

c (3.1)

where the map c, the commutator map, is given by twisting S1 into the figure-8, or
explicitly as aba−1b−1 if first deformed into the square in figure 3.1. We will also
refer to the commutator as the attaching map of the 2-cell e2 ⊂ D2 of the standard
cellular complex of the torus.

To translate the above from topological spaces to simplicial sets, we need to define
a simplicial model for S1 with sufficient structure to allow us to encode the com-
mutator map. The smallest simplicial set allowing this is the simplicial set given
by

X = ∂∆1 ×∆1
⊔

∂∆1×∂∆1

∆1 × ∂∆1, (3.2)

which has geometric realization equivalent to the unfilled square in figure 3.1. We
define a simplicial map f : X → S1 sending all nondegenerate simplices in X1 but
(01, 00) to the degeneration of the base point in S1. Explicitly f is defined by

(00, 01), (01, 11), (11, 01) 7→ (00) and (01, 00) 7→ (01).

Notation wise we remark that we will from now on use exclusively Sn to mean the
simplicial circle

Sn = ∆n/∂∆n

and rather refer to its realization whenever we want to treat it as a topological space.
We have also used and will continue to use the same notation that we defined in
2.1.4 for the standard simplex and the simplicial sets constructed from it. It is clear
that we may deformation retract the sides and top edges of |X| to a point, giving
a deformation retraction |X| → |S1|, showing that the simplicial map f is indeed a
weak equivalence.

If we use ∆1 ×∆1 as our model for D2, we get a commutative square

X ∆1 ×∆1

S1 D2

∼ ∼
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where the vertical arrows are weak equivalences and by comparing with (3.1), we
then have that the pushout P1 of the diagram

X ∆1 ×∆1

S1 ∨ S1 P1

c (3.3)

is weakly equivalent to the torus T 2 = S1 × S1.

Consider then also the following diagram of simplicial sets

X ∆1 ×∆1

∗ P2

S1 ∨ S1 S1 ∨ S1 ∨ P2

(3.4)

with the top and bottom square a pushout. We have then that the pushout P2 is
weakly equivalent to

∗
⊔
S1

D2 = D2/S1 = S2,

hence the bottom pushout is weakly equivalent to S1 ∨ S1 ∨ S2. We remark that
theorem 2.1.9 asserts that ΣT 2 is weakly equivalent to Σ(S1 ∨ S1 ∨ S2), which is of
course why we are relating these simplicial sets with commutative diagrams in our
interest of studying stability.

We then consider the implications of applying the Loday functor

L(−, A, k) = k ⊗A

⊗
•

A

to the constructions above, for some choice of a commutative k-algebra A.

If the commutator map of (3.3) induces a map

c∗ : k ⊗A

⊗
X

A → k ⊗A

⊗
S1∨S1

A

that factors through k up to homotopy, then it is homotopic to the map induced by
the composition

X → ∗ → S1 ∨ S1

in (3.4) since L(∗, A, k) ∼= k. Of course, factoring through k up to homotopy is
equivalent to inducing the zero map on all nonzero homotopy groups, so we will
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refer to this condition informally as the commutator being zero or inducing the zero
map.

We know in particular that L(−, A, k) preserves pushouts since it preserves colimits,
so applying it to the diagrams (3.3) and (3.4) gives a pair of pushout diagrams in
the the category of commutative rational algebras. Indeed, if c∗ is homotopic to the
composition

k ⊗A

⊗
X

A → k → k ⊗A

⊗
S1∨S1

A

we have by taking the pushout of the composite square (3.4) and the uniqueness of
pushouts that

k ⊗A

⊗
S1×S1

A ∼= k ⊗A

⊗
S1∨S1∨S2

A.

The above verifies that if the commutator factors through the coefficients, up to
homotopy, then we have

L∗(T
2, A, k) ∼= L∗(S

1 ∨ S1 ∨ S2, A, k). (3.5)

However, it was shown by [Ten16] that for A the algebra to be the dual rational
numbers

A = Q[t]/(t2)

the isomorphism of (3.5) does not hold. In fact this was used as a counter example to
the stability of L∗(−, A). Hence we know that the commutator is more complex than
what is allowed for something factoring through the coefficient ring. A calculation
with the Greenlees spectral sequence shows that if the algebra in question is the
dual rational numbers or more generally just the rational polynomials Q[t], then the
converse is also true. The calculation in question, that we will not display here, can
be done by projecting the S1 ∨ S1 to a point in the diagrams above and taking the
pushouts both equivalent to S2, where there is a difference in convergence of the
corresponding Greenlees spectral sequences if and only if the commutator is zero.
Hence we can detect the unstable behaviour in the commutator, with it factoring
through Q up to homotopy if and only if the stability is observed in the case (3.5)
for A = Q[t],Q[t]/(t2).

3.2 The Shuffle Map on Cycles

Before we can direct our full attention to the study of stability through some com-
mutator maps, we will need some knowledge of the chains on which they act. To
this end let for the rest of the section A denote the dual numbers Q[t]/(t2). We
note that L∗(S

1, A,Q) = HH∗(A,Q) and that we have from example 2.2.20 and the
discussion preceding it that HHn(A,Q) = Q. We denote the chain groups of the
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Hochschild complex by C∗(A,Q) and note also that we have chains en = 1⊗t⊗· · ·⊗t
in Cn(A,Q) for all n ≥ 0.

A simple boundary argument shows that the ei are indeed the cycles generating
the corresponding homology groups. Note that the product map A ⊗ A → A is a
homomorphism since A is commutative. Composing the shuffle product map with
the product map gives us an inner shuffle product map

sh : Cp(A,Q)⊗ Cq(A,Q) → Cp+q(A,Q)

defined by

(a0⊗a1⊗· · ·⊗ap)⊗(a′0⊗ap+1⊗· · ·⊗ap+q) 7→
∑
σ

sgn(σ)(a0a
′
0⊗aσ(1)⊗· · ·⊗aσ(p+q)),

where the sum is taken over all (p, q)-shuffles σ. By counting transpositions, we see
that the (1, q)-shuffle

σi(a0 ⊗ · · · ⊗ aq+1) = a0 ⊗ a2 ⊗ · · · ⊗ ai−1 ⊗ a1 ⊗ ai ⊗ · · · ⊗ aq+1

has sign sgn(σi) = (−1)i−1. We remark that the number of (1, q)-shuffles σi is q + 1
so that the sum

∑
σi
sgn(σi) is given by

q+1∑
i=1

(−1)i−1 =

{
1, q even

0, q odd

Since σi(eq+1) = eq+1 we have

sh(e1 ⊗ eq) =
∑
σi

sgn(σi)σi(eq+1) = eq+1

∑
σi

sgn(σi)

so that sh(e1 × eq) is 0 for q odd and eq+1 for q even.

Since we can decompose a (2, q)-shuffle µ as a (1, q)-shuffle σi composed with a
(1, i− 1)-shuffle σj, we see from the argument above that

sgn(µ) = sgn(σj) sgn(σi) = (−1)j+i.

One way we can think about it is that we transpose a2 to the i-th position followed
by transposing a1 to the j-th position with i > j ≥ 1. Following this line of thought
we have that

∑
µ sgn(µ) is given by

q+1∑
i=2

i−1∑
j=1

(−1)j+i =

q+1∑
i=2

(−1)i−1

i−1∑
j=1

(−1)j−1,
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but since we have by the above that

i−1∑
j=1

(−1)j−1 =
1 + (−1)i−1

2
,

we thus have ∑
µ

sgn(µ) =

q+1∑
i=2

(−1)i−11 + (−1)i−1

2
=

q+1∑
i=2

(−1)i−1 + 1

2
.

For the rest of this section we will denote the inner shuffle product map by multi-
plication. The last thing we want to assert is then that e2 · e2q = (q+1)e2(q+1). This
is evident from looking at the expression for

∑
µ sgn(µ) and noting 2q+1 is odd, so

that the sum equates to q + 1. We have then inductively that en2 = n!e2n and that
e1 · en2 = n!e2n+1. Since the natural numbers are surely invertible in Q, we have thus
proven

Proposition 3.2.1. The homology groups L∗(S
1, A,Q) are generated by

L∗(S
1, A,Q) = E(1⊗ t)⊗ P (1⊗ t⊗ t). (3.6)

where the odd generator y1 = 1⊗t is of degree 1 and the even generator y2 = 1⊗t⊗t
is of degree 2.

Now, consider the following pushout diagram:

∗ S1

S1 S1 ∨ S1

(3.7)

Since
⊗

•A preserves colimits, we get from (3.7) that⊗
S1∨S1

A ∼=
⊗
S1

A⊗A

⊗
S1

A. (3.8)

The identity Q⊗Q Q ∼= Q gives us further that

Q⊗A

⊗
S1

A⊗A

⊗
S1

A ∼= (Q⊗A A
⊗
S1

A)⊗Q (Q⊗A A
⊗
S1

A),

hence tensoring (3.8) by Q⊗A (−) gives us

Q⊗A

⊗
S1∨S1

A ∼= (Q⊗A A
⊗
S1

A)⊗Q (Q⊗A A
⊗
S1

A)

Now, since Q is a field, we thus get by the Eilenberg-Zilber theorem followed by the
Künneth formula that L∗(S

1∨S1, A,Q) ∼= L∗(S
1, A,Q)⊗L∗(S

1, A,Q). This readily
gives us the generators of the wedge sum of spheres S1 ∨ S1. As such we have:
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Proposition 3.2.2. The generators of L∗(S
1 ∨ S1, A,Q) are given by

L∗(S
1 ∨ S1, A,Q) ∼= E(yh1 )⊗Q P (yh2 )⊗Q E(yv1)⊗Q P (yv2)

∼= E(yh1 , y
v
1)⊗Q P (yh2 , y

v
2). (3.9)

where use h, v to denote the generators generators of proposition 3.2.1 corresponding
the copies S1 × ∗ and ∗ × S1 in

S1 ∨ S1 = S1 × ∗
⊔
∗×∗

∗ × S1.

To avoid confusion we write explicitly what we mean by vertical and horizontal
factors in the case of y1. The generator y1 = 1 ⊗ t has the nonunital factor t in
position corresponding to the simplex (01). A general chain in L(S1 ∨ S1, A,Q)1
can be written as q ⊗ a(01,00) ⊗ a(00,01) and we have explicitly yh1 = 1 ⊗ t ⊗ 1 and
yv1 = 1⊗ 1⊗ t.

3.3 The Attaching Map of the Torus

We can now start our analysis of the map

c∗ : L∗(X,A,Q) → L∗(S
1 ∨ S1, A,Q)

induced by the commutator map

c : X → S1 ∨ S1,

where X is the simplicial square defined in (3.2). The brunt of the task concerns
itself with tracing the generators y1, y2 backwards along the isomorphism induced
by the weak equivalence f : X

∼−→ S1.

We will denote degeneracies by s0(i, j) = (s0i, s0j) and will for clarity list the sim-
plices X in lower degrees, with simplices appearing in the dictionary order we have
defined as our convention:

X0 = {(0, 0), (0, 1), (1, 0), (1, 1)}

and

X1 = {s0(0, 0), (00, 01), s0(0, 1), (01, 00), (01, 11), s0(1, 0), (11, 01), s0(1, 1)} .

As such a representative for a homotopy class in L1(X,A,Q) is of the form

q ⊗A

⊗
x∈X1

ax
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where the identification Q⊗A A ∼= Q takes q ⊗ p(t) 7→ qp(0).

Inspired by the shape of our simplicial set X, we define the following notation for
portraying the contents of the product

q ⊗A

⊗
x∈X1

ax =
as0(0,1) a(01,11) as0(1,1)
a(00,01) a(11,01)
qas0(0,0) a(01,00) as0(1,0)

where qas(0,0) ∈ Q. This visualization gives us the advantage that we can take aid in
the geometric nature of the boundary maps in the calculations. We advocate that
this will make the picture of what is going on easier to understand and at a later
point reveal some symmetries of chains.

Now, the reader may readily verify that

x1 =
1 1 1
1 1
1 t 1

+
1 1 1
1 t
1 1 1

−
1 t 1
1 1
1 1 1

−
1 1 1
t 1
1 1 1

is an element of L1(X,A,Q) such that f1(x1) = y1. To see that it is a cycle and
demonstrate the usefulness of the visual representation, we do an explicit calculation
of the boundary to verify that x1 is indeed a cycle

∂x1 = d0x1 − d1x1

=

(
1 1
1 t

+
1 t
1 1

− 1 t
1 1

− t 1
1 1

)
−
(
1 1
t 1

+
1 1
1 t

− t 1
1 1

− 1 1
t 1

)
= 0.

Finding the representative x1 combinatorially by permuting the nonunital factor
along the factors of the square is a lot easier than x2. After all, in the case of x2

not only do we have to shuffle two factors around at the same time, we also have to
do it over a larger set. These difficulties will be evident shortly. Notation wise we
remark that for brevity we will write s20(i, j) and for the degenerations of vertices in
X2 and so on. We also denote products of L2(X,A,Q) analogously to what we did
before:

q ⊗A

⊗
x∈X2

ax =

as20(0,1) as0(01,11) as1(01,11) as20(1,1)
as1(00,01) as1(11,01)
as0(00,01) as0(11,01)
qas20(0,0) as0(01,00) as1(01,00) as20(1,0)

Now, the way we found x1 was of course not by just blindly permuting a t along the
factors and guessing the signs of the terms. What we heuristically did and what we
will continue to do for x2 was to start off with the term that we knew had to be in the



Chapter 3. Calculations With Higher Hochschild Homology 42

cycle and then considered what chains we needed to add to make the boundary zero.
In effect this amounts to looking at chains with common faces and add them together
with appropriate signs so they cancel out after taking the boundary. Geometrically
we can think of working with rational coefficients as placing a copy of Q at the base
point, where the multiplication forces any copy of t to be zero. Also since f takes
all but one nondegenerate simplex of X to the base point, where we have placed the
copy of Q, we do not need to worry that adding other chains of this form to make
a cycle changes the image over f∗.

However, as we have hinted at the procedure for finding x2 is vastly more involved
than that of x1 amounting to a sum of 17 chains that are not so intuitively arranged
around the square. As such, to keep things simple, we will opt for not listing the
chains in the order that follows from shared faces, but will organize them according
to symmetry, which the reader may then utilize for an easier time validating the
result. Later on this symmetry will prove to give an idea of another approach to
finding such representatives. Explicitly, we have that x2 is the sum of chains

x2 =

1 1 1 1
1 1
1 1
1 t t 1

+

1 1 1 1
1 t
1 t
1 1 1 1

−

1 t t 1
1 1
1 1
1 1 1 1

−

1 1 1 1
t 1
t 1
1 1 1 1

+

1 t 1 1
t 1
1 1
1 1 1 1

+

1 1 1 1
1 1
t 1
1 t 1 1

−

1 1 1 1
1 1
1 t
1 1 t 1

+

1 t 1 1
1 1
1 1
1 1 t 1

+

1 1 1 1
1 t
t 1
1 1 1 1

−

1 1 t 1
1 1
1 1
1 t 1 1

−

1 1 1 1
t 1
1 t
1 1 1 1

+

1 1 1 1
1 t
1 1
1 t 1 1

−

1 1 t 1
1 1
t 1
1 1 1 1

+

1 t 1 1
1 t
1 1
1 1 1 1

+

1 1 1 1
1 1
t 1
1 1 t 1

−

1 1 1 1
t 1
1 1
1 t 1 1

−

1 1 t 1
1 1
1 t
1 1 1 1
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Note that the the missing square of symmetry

−

1 1 t 1
1 t
1 1
1 1 1 1

from the second line and the sum of the pair

+

1 t 1 1
1 1
1 t
1 1 1 1

−

1 1 1 1
t 1
1 1
1 1 t 1

absent from the fourth line are in fact boundaries, which is why we have opted not
to include them when representing x2.

It is not a hard, but a rather tedious task to verify the two properties needed of x2,
namely that f∗(x2) = y2 and that ∂(x2) = 0. To verify the former note that the
first term hits y2 and that all others are taken to 0 by the argument that we have
multiplied Q at the base point by working with rational coefficients. Although we
have of course verified everything and the reader is welcome to do so for themselves,
we do not find the process of explicitly writing out and cancelling the 51 terms of
the boundary to be very enlightening hence will refrain from doing so here.

Proposition 3.3.1. The chains x1, x2 are cycles generating L∗(X,A,Q) by

L∗(X,A,Q) ∼= E(x1)⊗ P (x2).

Proof. That x1 is a cycle we demonstrated explicitly and we have omitted the explicit
calculation showing that so is x2, but we remark that this is immediately verifiable
from the sum above. Since f∗ is an isomorphism on homotopy groups the result
follows from the above along with proposition 3.2.1.

The next result we want to show is the following:

Proposition 3.3.2. The commutator c : X → S1 ∨ S1 induces a map

c∗ : L∗(X,A,Q) → L∗(S
1 ∨ S1, A,Q)

defined by c∗(x1) = 0 and c∗(x2) = yh1y
v
1 .

Recall from (3.9) that

L∗(S
1 ∨ S1, A,Q) = E(yh1 , y

v
1)⊗ P (yh2 , y

v
2),
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hence the proposition states that c∗(y2) ̸= 0 and that from section 3.1 we have that
this means that

L∗(T
2, A,Q) ≇ L∗(S

1 ∨ S1 ∨ S2, A,Q),

implying the result originally shown by [Ten16] that L∗(−, A) is not a stable invari-
ant. Before proceeding with the proof we underline that although pleasant to arrive
at this result from another end, this is not the purpose of this section. What we
have done so far will serve two uses for us: First, it will serve as a stepping stone
for doing a vastly more involved calculation than what we have seen so far. Second,
it gives us an explicit description of the commutator which is exactly what we need
to further study how the stability breaks.

Proof. The commutator map c : X → S1 ∨ S1 is explicitly defined by

(01, 00), (01, 11) 7→ (01, 00)

and
(00, 01), (11, 01) 7→ (00, 01),

where we identify the figure-8 by

S1 ∨ S1 = S1
⊔
∗

S1 ∼= S1 × ∗
⊔
∗×∗

∗ × S1.

Writing an element of L1(S
1 ∨ S1, A,Q) as

qas0(0,0) ⊗ a(01,00) ⊗ a(00,01),

we then have that

c∗(x1) = 1⊗ t⊗ 1 + 1⊗ 1⊗ t− 1⊗ t⊗ 1− 1⊗ 1⊗ t = 0.

Similarly, we write an element of L2(S
1 ∨ S1, A,Q) as

qas(0,0) ⊗ a(001,000) ⊗⊗a(011,000) ⊗ a(000,001) ⊗ a(000,011)

and one can verify that

c∗(x2) = 2 · (1⊗ t⊗ 1⊗ 1⊗ t− 1⊗ 1⊗ t⊗ t⊗ 1) + 1⊗ t⊗ 1⊗ t⊗ 1.

We remark that the last term is the degeneracy

s0(1⊗ t⊗ t) = 1⊗ t⊗ 1⊗ t⊗ 1

hence is zero upon taking the homology class, since as we have seen the degenerate
elements form an acyclic subcomplex.
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Recall that the commutativity of (3.3) implies that the composition

X S1 ∨ S1 P1
c

is nullhomotopic since ∆1 × ∆1 is contractible, where P1 is weakly equivalent to
T 2. As such the composition L∗(X,A,Q) → L∗(T

2, A,Q) is zero and it follows that
c∗(x2) can not be equal to yh2 , y

v
2 since projecting from T 2 = S1×S1 to the component

spheres S1 turns the vertical and horizontal generators back to y2, which is of course
nonzero in L∗(S

1, A,Q). As we will see, this entails that c∗(x2) = qyh1y
v
1 + b for some

q ∈ Q and some boundary b since c∗(x2) is going to be nonzero.

To show that this is indeed the case, recall from our calculations with the shuffle
map i section 3.2 that

Q⊗A

⊗
S1∨S1

A ∼= Q⊗A

⊗
S1

A⊗Q⊗A

⊗
S1

A,

hence upon taking the homology we have by the Eilenberg-Zilber theorem and the
Künneth formula that the shuffle map gives an isomorphism

sh : L∗(S
1, A,Q)⊗ L∗(S

1, A,Q)
∼=−→ L∗(S

1 ∨ S1, A,Q).

Calculating this isomorphism explicitly

sh(yh1 ⊗ yv1) = s1y
h
1 ⊗ s0y

v
1 − s0y

h
1 ⊗ s1y

v
1

= 1⊗ 1⊗ t⊗ t⊗ 1− 1⊗ t⊗ 1⊗ 1⊗ t

we see that c2(x2) = −2yh1y
v
1 plus some boundary.

We end the section with a final note that the coefficient of the image of x2 along
the commutator indicates that stability may hold if the algebra in question is the
dual numbers over a field of characteristic 2. This is true and mentioned in [LR22],
where it is also shown that

L∗(S
1 × S1,Fp[t]/(t

2),Fp) ≇ L∗(S
1 ∨ S1 ∨ S2,Fp[t]/(t

2),Fp)

for any odd prime p.

3.4 A Higher Dimensional Attaching Map

In the previous section we studied the attaching map of the torus and showed that
we can observe the unstable behaviour in the map induced by the commutator.
However, the commutator itself is only detected by the fundamental group and is
trivial after suspension, raising the question whether the instability of the counter
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example is related to the connectivity of the space and if working over a higher
connected space would resolve the issue.

Of course, from a topological point of view, we have that S1 is equivalent to the
Lie group U(1), that is the unitary group with group operation being multiplication
of complex units. Furthermore, we have that SU(2), the special unitary group, is
equivalent to S3 with multiplication given by the group of unit quaternions. We can
relate the unitary groups by split exact sequences of Lie groups

1 → SU(n) → U(n) → U(1) → 1,

where U(n) → U(1) is given by the determinant. Thus, in particular U(2) is the
semidirect product of S3 and S1.

This makes it natural for us to consider S3 × S1 in our effort to explore the effect
of connectivity. After all, through the Freudenthal suspension theorem [Hat01,
p. 4.24], we have that π1(S

1) ∼= π3(S
3) ∼= Z and as we have outlined above, the

product S3×S1 share similarities with the torus the way the orthogonal group O(2)
does with U(2). Further, the question of stability is, as in the case of the torus of
section 3.1, contingent upon the commutator inducing a trivial map on the higher
Hochschild homology.

We will therefore do an analysis of the commutator map S3 → S3 ∨ S1, paralleling
that of our previous section, at least initially. However, as we will see, the commut-
ator in the case of S3 is much more complex than that of S1, making it so that the
simplicial set needed to encode it becomes quite big. This added complexity will
result in us having to resort to developing other techniques to be able to arrive at
the result, which will show that the unstable behaviour persists even in this higher
connected case.

Let for this section X denote the simplicial set

X = ∆3 × ∂∆1 ⊔∂∆3×∂∆1 ∂∆3 ×∆1

and recall that S3 = ∆3/∂∆3. Let also A = Q[t]/(t2) as before. Define now
a simplicial map f : X → S3 by collapsing every non-degenerate simplex but
(0123, 0000) to the base point.

Since |∆3| deformation retracts to a point, there is a deformation retraction of |X|
to
∣∣∆3 × {0} ⊔∂∆3×{0} C(∂∆3 × {0})

∣∣ given by deforming the top copy |∆3 × {1}| in
|X| to a point. Here we mean by C(∂∆3×{0}) the cone on the boundary ∂∆3×{0}.
Of course, the cone deformation retracts to a point as well. Thus by identifying
∆3×{0} ∼= ∆3, we have a pair of deformation retractions whose composite becomes
a deformation retraction |X| → |S3| upon reparametrization, hence f is a weak
equivalence.
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Figure 3.2: To the left, a partial illustration of the simplicial model X. The bottom
and top tetrahedron are filled while the interior prism is hollow. There are hollow
prisms connecting each pair of faces of the tetrahedrons as demonstrated by the
figure to the right. However, the rightmost figure is only apt to illustrate the 2-
skeleta of X, although with all faces drawn.

There is a pushout diagram of topological spaces

S3 D4

S3 ∨ S1 S3 × S1

where the left vertical map is the higher dimensional analogue of the commutator
map, which we will define later. In simplicial sets, similar to before, we have

X ∆3 ×∆1

S3 ∨ S1 S3 × S1

c

where c : X → S3 ∨ S1 is the simplicial higher commutator map. Recall that
there are weak equivalences X ≃ S3 and similarly ∆3 × ∆1 ≃ ∗, where the latter
equivalence can be found by extending the aforementioned deformation retraction of
the realization. Since, there is a similar argument as before that the stable invariance
is equivalent to the commutator map being zero, we will in what follows study the
map induced by the commutator map c∗ : L∗(X,A,Q) → L∗(S

3 ∨ S1, A,Q), where
the algebra in question is still A = Q[t]/(t2).

We begin by establishing the following proposition:
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Proposition 3.4.1. The homotopy groups L∗(S
3, A,Q) have one exterior generator

of degree 3 and one polynomial generator of degree 4. Explicitly, we have that

L∗(S
3, A,Q) ∼= E(σ2y1)⊗ P (σ2y2),

where

σ2y1 = 1⊗ t⊗ t

σ2y2 = 1⊗ t⊗ t⊗ 1⊗ 1.

where |σiyj| = i+ j.

Proof. Recall from section 3.2 that

L∗(S
1, A,Q) ∼= E(y1)⊗ P (y2),

where y1 = 1⊗ t and y2 = 1⊗ t⊗ t. We have by an application of Greenlees spectral
sequence [DT18, lemma 3.4] that

L∗(S
3, A,Q) ∼= E(σ2y1)⊗ P (σ2y2)

with |σjyi| = i + j. Thus the first non-trivial homology group appears in degree 3,
where the chain group is given by

C3(S
3, A,Q) = Q⊗A

⊗
x∈S3

3

Ax
∼= Q⊗ A0123.

By commutativity, all chains in the chain group are cycles. However, there is but
one non-degenerate cycle, up to some rational coefficient and boundary of course,
namely 1⊗t. Since the normalized chain complex is isomorphic to the chain complex
modulo degeneracies, we have from the development of the Dold-Kan correspondence
that the degenerate elements cannot generate the homology. Because we know the
corresponding homology group to be one dimensional, we may immediately conclude
that the non-degenerate cycle must represent σ2y1.

Similarly, we have the chain group

C4(S
3, A,Q) = Q⊗A

⊗
x∈S3

4

Ax
∼= Q⊗ A00123 ⊗ A01123 ⊗ A01223 ⊗ A01233

with the corresponding homology group generated by some σ2y2. A simple cal-
culation with the boundary homomorphism shows that the chain group has three
non-boundary cycles

a = 1⊗ t⊗ t⊗ 1⊗ 1

b = 1⊗ 1⊗ t⊗ t⊗ 1

c = 1⊗ 1⊗ 1⊗ t⊗ t
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subject to the relations

[a+ b] = [b+ c] = [a− c] = 0

when passing to homology, and as such either represents the generator of the homo-
logy group σ2y2.

In working with the simplicial set X it will make sense to identify

∆3 ×∆1 ∼= N ([3])×N ([1]) ∼= N ([3]× [1]),

where N denotes the nerve of the posets viewed as categories and pivot into thinking
of X as a subset of this nerve. It should then be apparent that an n-simplex of X is,
or can at the very least be identified with, a string of composable arrows of length
n, with composable arrows given by the partial order

(i, j) < (k, l) if i < k or i = k and k < l

through the objects

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 0) (1, 0) (2, 0) (3, 0)

Remark 3.4.2. Note that the following nondegenerate 3-simplices:

(0123, 0001) = (0, 0) → (1, 0) → (2, 0) → (3, 1)

(0123, 0011) = (0, 0) → (1, 0) → (2, 1) → (3, 1)

(0123, 0111) = (0, 0) → (1, 1) → (2, 1) → (3, 1),

and nondegenerate 4-simplices:

(01233, 00001) = (0, 0) → (1, 0) → (2, 0) → (3, 0) → (3, 1)

(01223, 00011) = (0, 0) → (1, 0) → (2, 0) → (2, 1) → (3, 1)

(01123, 00111) = (0, 0) → (1, 0) → (1, 1) → (2, 1) → (3, 1)

(00123, 01111) = (0, 0) → (0, 1) → (1, 1) → (2, 1) → (3, 1).

are not in NX. In fact, looking at the corresponding nondegenerates of ∆3 × ∆1

we see that X is the compliment of the simplices listed above, and of course their
degenerates, in ∆3 ×∆1. Geometrically these constitute the interiors of the hollow
prisms connecting the two copies of ∆3 as shown in figure 3.4. We have listed each
of them because they will, perhaps surprisingly, prove useful later on.
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For the sake of portraying the geometric aspect of the task and writing the abund-
ance of simplices in a compact manner, we propose to write the nerve as a matrix

[a(i,j)] =

[
a(0,1) a(1,1) a(2,1) a(3,1)
a(0,0) a(1,0) a(2,0) a(3,0)

]
,

where the entries a(i,j) are integers indicating the number of times the string takes
the value (i, j). We remark that in keeping with our convention of vertical and
horizontal directions, the integers (i, j) differs from the usual matrix position in
that they would correspond to the position (j, 1− i). As an example we would write

(0123, 0000) =

[
0 0 0 0
1 1 1 1

]
.

It has been an underlying idea so far to work with the dual rational numbers with
rational coefficients to keep the algebra comparatively simple. We take the point
of view that in studying L(X,A,Q) it is the underlying simplicial set that makes
the simplicial rational algebra hard to work with. We formalize this notion in the
following manner: Define a map

τ : X ∧ A → L(X,A,Q) (3.10)

given by

τ(x ∧ a) 7→
⊗
x′∈X

ax′ , ax′ =

{
a, x′ = x

1, x′ ̸= x
.

The smash product

X ∧ A = (X × A)/(X ∨ A)

is to be considered as pointed sets, in effect the wedge sum is

X ∨ A = X ⊔ A/(x0 ∼ 0).

Fixing a nonzero element a ∈ A one can identify and take the inclusion

X ∼= X × {a} ↪→ X ∧ A. (3.11)

Writing τaX for the map X → L(X,A,Q) formed by the composition of (3.10) with
(3.11), we get that varying over the simplicial input gives a natural transformation:

Lemma 3.4.3. For a nonzero a ∈ A, we have that τa• is a natural transformation

τa• : idsSets → L(−, A,Q).
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Proof. A simplicial map f : X → Y has to take base point to base point, hence the
map f ⊔ idA induces a map X ∧A → Y ∧A. We need only show that the following
square commutes

X L(X,A,Q)

Y L(Y,A,Q)

f

τaX

f∗

τaY

To see this, let y = f(x) and f(x′) = y′. One may verify that right hand side of

f∗τ
a
X = f∗τ(x ∧ a) = f∗

(⊗
x′∈X

ax′

)
=
⊗
y′∈Y

ay′

is equal to the right hand side of

τaY f(x) = τ(y ∧ a) =
⊗
y′∈Y

ay′

by tracing the simplex corresponding to a.

Now, since we are interested in the algebra A = Q[t]/(t2) which is isomorphic to
Q {1, t}, we are only going to be interested in τ t• which we will henceforth denote by
simply τ•. We remark that for each simplicial set X, the map τX is in each degree
an injective map of sets in the sense that

x ̸= x′ =⇒ τX(x) ̸= τX(x
′)

and also these are not multiples of each other with respect to the algebra structures.
Since the simplicial Q-algebra maps that we are working with are induced by simpli-
cial set maps, this does mean that we may calculate their effects by dropping down
to simplicial sets, using precisely the relation f∗τX = τY f for f : X → Y established
above. This is helpful since combined with the implication above we get that

f(x) = f(x′) ⇐⇒ f∗tX(x) = f∗tX(x
′)

allowing us in many cases to avoid working with the much bigger chain group and
do as much of our calculations using only the simplicial sets.

We remark that this basic map also helps us in the cases where we have to deal
with more than one nonunital factor, since these are the products of images over
τX . Explicitly, if

⊗
x∈Xn

ax has nonunital factors indexed by y ∈ Yn ⊂ Xn we have⊗
x∈Xn

ax =
∏
y∈Yn

tXn(y),



Chapter 3. Calculations With Higher Hochschild Homology 52

where the product is inherited from the algebra, hence is the usual⊗
x∈Xn

ax ·
⊗
x∈Xn

bx =
⊗
x∈Xn

(axbx).

We will sometimes write τ = τX if there is no room for confusion as to which
simplicial set we are working over. Note also that t2 = 0 in A hence τ(x)2 = 0 as
well.

Having done somewhat extensive preliminary work, we are now in position to move
forward with the task:

Proposition 3.4.4. The chain x1 =
∑13

i=0(−1)iτ(αi) where the simplices αi are
given by

α0 = (0123, 0000), α1 = (0122, 0001), α2 = (0133, 0001), α3 = (0233, 0001),

α4 = (1233, 0001), α5 = (0112, 0011), α6 = (0113, 0011), α7 = (0223, 0011),

α8 = (1223, 0011), α9 = (0012, 0111), α10 = (0013, 0111), α11 = (0023, 0111),

α12 = (1123, 0111), α13 = (0123, 1111),

is a cycle with f∗(x1) = σ2y1.

Proof. As usual, showing that the image is σ2y1 follows immediately. In the language
we have just defined we can write this a little more explicitly than we did earlier as
the observation that

σ2y1 = τS3(0123) = τf(0123, 0000) = f∗τX(α0).

and that by definition of the simplicial map we have

f∗(τ(αi)) = τ(f(αi)) = τ(0000) = 0

for all i > 0.

We postpone the proof that x1 is a cycle to the development below, from which it
will follow for free. It is however prudent to remark that one could readily show
that ∂x1 = 0 by manual and menial computations, which we only omit due to being
made redundant by a nicer development.

As in the previous section the calculation above can be done by some diligent de-
tective work: By looking at the nondegenerate simplices that share face with α0 we
can deduce which are needed to cancel its residual faces after taking the boundary.
This in turn gives us some new terms that we repeat the same procedure for. How-
ever, this approach is only viable as long as the number of simplices that share faces
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remain quite low, and as we are going to want to find x2 we reach the threshold for
where this goes from detective work to more or less guesswork. If in the mood for
analogies one could say that the first case can be solved like a puzzle whereas the
next we have not only a puzzle with many more pieces, but also a great deal of the
new pieces will fit locally while not leading to the correct picture.

The solution we found to this problem is to make use of the interiors of the prisms
connecting the two copies of ∆3, which are the simplices listed explicitly in remark
3.4.2. We propose specifically to consider the inclusion of simplicial sets ι : X ↪→
∆3×∆1. We will in what follows also write C∗(X,A,Q) for the chain complex which
in degree n is given by L(X,A,Q)n in order to hopefully avoid any confusion with
Ln(X,A,Q), denoting the homology.

The induced chain map ι∗ : C∗(X,A,Q) → C∗(∆
3 ×∆1, A,Q) gives a commutative

diagram

Ci+1(X,A,Q) Ci+1(∆
3 ×∆1, A,Q)

Ci(X,A,Q) Ci(∆
3 ×∆1, A,Q)

Ci−1(X,A,Q) Ci−1(∆
3 ×∆1, A,Q)

ι∗

∂ ∂

ι∗

∂ ∂

ι∗

for i > 0.

If we can find a chain β ∈ Ci+1(∆
3 ×∆1, A,Q) so that

∂β ∈ Im ι∗,

say
ι∗(β

′) = ∂β

for some β′ ∈ Ci(X,A,Q), then β′ is a cycle since by commutativity

0 = ∂∂β = ∂ι∗β
′ = ι∗∂β

′

and ι∗ is injective.

Essentially this amounts to verifying that all the simplices constituting the boundary
of β lies in X. In the framework we have established we can make this precise: Since

ι∗tX = tS3ι,

we have that if

∂β =
∑
i

qi
∏
j

τ∆3×∆1
(ι(x)) =

∑
i

qi
∏
j

ι∗τX(xj)
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then β′

β′ =
∑
i

qi
∏
j

τX(xj)

is a cycle.

We now finish the proof that x1 is a cycle by showing that it is, after inclusion, the
boundary of some α ∈ C4(∆

3 ×∆1, A,Q). Specifically, the four 4-simplices

a0 =

[
0 0 0 1
1 1 1 1

]
, a1 =

[
0 0 1 1
1 1 1 0

]
, a2 =

[
0 1 1 1
1 1 0 0

]
, a3 =

[
1 1 1 1
1 0 0 0

]
give a chain

α =
3∑

i=0

(−1)iτ∆3×∆1ai

with ∂(α) = ι∗(x1). The boundary of α with no faces cancelled is listed in the ap-
pendix for reference. We want to underline here that the four terms of α correspond
to a prism operation on the hollow prisms connecting the two copies of ∆3. As these
simplices are stacked on top of each other with alternating signs they cancel the
interior faces, in effect the diagonals of the vertical shifts[

0 0 0 1
1 1 1 0

]
,

[
0 0 1 1
1 1 0 0

]
,

[
0 1 1 1
1 0 0 0

]
.

in such a way that the boundary of α is in X. Note that these are indeed the
simplices mentioned earlier in remark 3.4.2 whose degeneracies we can think of as
generating the compliment of X in ∆3 ×∆1.

Now, the situation is of course more complicated for finding the cycle x2 ∈ L2(X,A,Q)
with f(x2) = σ2y2. However, the method outlined above gives us a tool making the
previously insurmountable task only a difficult one. Particularly, the four vertical
shifts gives us a sense of direction which turns out to be exactly what we need. The
added degeneracies will still make the process comparatively hard, but we will spare
some of these details and rather outline the procedure to attain the result that may
be then verified independently.

Let Bi ⊂ X be generated by the simplex ai for i = 0, 1, 2, 3. Writing NBi for the
nondegenerate simplices of Bi they are explicitly given as

NBi
4 = {ai} , 0 ≤ i ≤ 3.

Note that Bi ∼= ∆4 for each i and that ∆3 ×{0} ⊂ B0 ∩X. We therefore start with
finding a chain β0 in L(B0, A,Q) that is such that the part of the boundary that
lies in X is taken to σ2y2. This is a little finicky and it should be stated that we did
not find a particularly good method for doing this except trial and error. However,
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with this part done we need now only find some β1 so that we cancel all terms in the
boundary that correspond to simplices along the vertical shifts. This is what gives
a sense of direction and we can use a few symmetric properties akin to what was
shown in the previous section, with the caveat that we sometimes needed to add a
few terms to make the faces match up orientation wise.

Doing this iteratively we view the top faces of Bi as the bottom Bi+1 and move the
residual faces after taking the boundary from the bottom of Bi+1 by the means of
adding together some chains to a sum βi+1. In this manner we ultimately end up
with chains along the sides of each of the Bi, along the top of B3 and the bottom of
B0. The verification that the corresponding simplices belong toX is then immediate.
The alternating sum β =

∑3
i=0(−1)iβi resulting from this procedure is really quite

big and is listed explicitly in the appendix.

However we claim:

Proposition 3.4.5. The chain β ∈ C5(∆
3×∆1, A,Q) has a boundary in the image

of ι∗. Hence ∂β can be written as the sum

∂β =
∑
i

qiι∗(τX(xi) · τX(x′
i))

and it follows that

x2 =
∑
i

qiτX(xi) · τX(x′
i)

in C4(X,A,Q) is a cycle with f∗(x2) = σ2y2.

As before we get a statement regarding the explicit generators of the homology
groups.

Corollary 3.4.6. The cycles x1, x2 represents generators of degree 3 and 4 of the
higher Hochschild homology

L∗(X,A,Q) = E(x1)⊗ P (x2).

We finish the section with a calculation of the images of x1, x2 along the commutator
X → S3∨S1. Before we actually define the commutator, recall that we regard S3∨S1

as a subset of S3 × S1 given by

S3 ∨ S1 = S3 × ∗
⊔
∗×∗

∗ × S1.

Let π1, π2 be the vertical and horizontal projections of X, respectively, i.e.

π1(a, b) = (a, 0), π2(a, b) = (0, b)

and let q1 and q2 be the quotient maps ∆3 → S3 and ∆1 → S1.
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Definition 3.4.7. The commutator map c : X → S3 ∨ S1 is the composition

X ∆3 ∨∆1 S3 ∨ S1,
π1⊔π2 q1⊔q2

and we denote the induced image by c∗ : L∗(X,A,Q) → L∗(S
3 ∨ S1, A,Q).

It remains to describe the generators of S3 ∨ S1, which we will now do.

Proposition 3.4.8. The higher Hochschild homology A over S3 ∨ S1 is given by

L∗(S
3 ∨ S1, A,Q) ∼= E(σ2yh1 , y

v
1)⊗ P (σ2yh2 , y

v
2),

with where the odd generators have degree 3 and 1 and the even degree 4 and 2,
respectively.

Proof. From applying the functor L(−, A,Q) to the pushout diagram defining the
wedge sum

∗ S1

S3 S3 ∨ S1

we get upon identification

Q⊗A

⊗
S3∨S1

A ∼=

(
Q⊗A

⊗
S3

A

)
⊗Q

(
Q⊗A

⊗
S1

A

)
. (3.12)

From the Eilenberg-Zilber theorem we know that the the shuffle map

sh : C
(
L(S3, A,Q)

)
⊗Q C

(
L(S1, A,Q)

)
→ C

(
L(S3, A,Q)⊗Q L(S1, A,Q)

)
(3.13)

is a chain equivalence. Note that from (3.12) we may identify the right hand side of
(3.13) with C(L(S3 ∨ S1, A,Q)). Now, since Q is evidently a field, we get from the
above and the Künneth formula that

L∗(S
3, A,Q)⊗Q L∗(S

1, A,Q) ∼= L∗(S
3 ∨ S1, A,Q).

Of course, we have explicitly found the generators over the components spheres in
proposition 3.2.1 and 3.4.1 so we know

L∗(S
3 ∨ S1, A,Q) ∼= E(σ2yh1 , y

v
1)⊗ P (σ2yh2 , y

v
2)

where we use h, v to distinguish the horizontal and vertical generators corresponding
to our earlier choice of directions for the components of the product to span.
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We can now easily find explicit descriptions of the generators of L∗(S
3 ∨ S1, A,Q).

In particular we are interested at generators of L4(S
3 ∨ S1, A,Q). This group is

generated by
{
σ2yh1y

v
1 , σ

2yh2
}
. Observe that we can denote the representatives of

y1, y2 by
τS1(01), τS1(s0(01)) · τS1(s1(01)),

respectively, and that the representatives of σ2y1, σ
2y2 are likewise in order given by

τS3(0123), τS3(s0(0123)) · τS3(s1(0123)).

Note that the vertical and horizontal factors behave exactly as one would expect
from their names: Explicitly yv1 = τS3∨S1(00, 01) with the defining simplex (00, 01)
in the subset ∗×S1, which is of course equivalent to S1 by projecting on the second
factor turning yv1 into y1. Of course (si)∗tX(x) = tX(six) for any x ∈ X, hence
calculating the images of the representatives over the inner shuffle product map is
easy:

sh(σ2yh1 ⊗ yv1) =
∑
(µ,γ)

sγ1(σ
2yh1 ) · sµ2sµ1sµ0(y

v
1)

= τ(01233, 00000) · τ(00000, 00001)
− τ(01223, 00000) · τ(00000, 00011)
+ τ(01123, 00000) · τ(00000, 00111)
− τ(00123, 00000) · τ(00000, 01111)

Writing the horizontal and vertical factors pairwise in ascending orders, with the
horizontal before the vertical ones we can write this shuffle product as

sh(σ2yh1 ⊗ yv1) = 1111tt111− 111t11t11 + 11t11111t1− 1t111111t

with the two middle terms being boundaries.

Writing the factors of c∗(x2) in a similar manner we can by a relatively straight
forward computation show that

c∗(∂β) = −2 · 1111tt111 + 2 · 1t111111t+ b,

where b are some boundary terms of the image that we have omitted listing. Taking
the homology we are again in the situation that

c∗(∂β) = −2 · sh(σ2yh1 ⊗ yv1),

hence we conclude that the commutator map is nonzero and it follows by a similar
argument as before that

L∗(S
3 × S1, A,Q) ≇ L∗(S

3 ∨ S1 ∨ S4, A,Q),

giving another example of instability of L∗(−, A,Q) and by extension L∗(−, A) for
the rational algebra A = Q[t]/(t2).
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3.5 A Spectral Sequence of the Attaching Map

Having shown that the instability persists even after raising the connectivity of the
simplicial set we are working over, we return to the simpler case of X

∼−→ S1, where

X = ∂∆1 ×∆1
⊔

∂∆1×∂∆1

∆1 × ∂∆1.

Since we are still in need of explicit calculations to describe what is going on, we
will continue working with the comparatively simple algebra A = Q[t]/(t2).

We make a quick synopsis before proceeding: In the previous sections we showed
explicitly that the attaching map

X → S1 ∨ S1

induces a nonzero map on the homotopy groups

L∗(X,A,Q) → L∗(S
1 ∨ S1, A,Q),

that we can describe in full detail. As stated in example 2.5.9, we know that
L∗(−, B,Q) is a stable invariant whenever B is a smooth commutative algebra, in
particular this is true for the rational polynomial algebra Q[t]. In section 3.1 we re-
lated this to the condition that the induced morphism L(X,B,Q) → L(S1∨S1, B,Q)
must be homotopic to the map factoring through Q.

With this in mind we note that A is isomorphic to the pushout

Q[t] Q[s]

Q Q⊗Q[t] Q[s]

t7→s2

(3.14)

where the left vertical map is the homomorphism evaluating t at 0. We remark
that the diagram describes A, which is of course not smooth, as the pushout of
smooth algebras. We therefore consider the implications of applying the diagram{⊗

X(−)
c∗−→
⊗

S1∨S1(−)
}
and the properties of the resulting cube⊗

S1∨S1 Q[t]
⊗

S1∨S1 Q[s]

⊗
X Q[t]

⊗
X Q[s]

⊗
S1∨S1 Q

⊗
S1∨S1 A

⊗
X Q

⊗
X A

(3.15)
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First of all, we know that each diagonal map induced by the commutator, save the
aforementioned map

⊗
X A →

⊗
S1∨S1 A, are homotopic to the zero map. Secondly,

we know that L(−,−) preserves colimits in both arguments, so that in particular
the front and bottom face resulting from applying L(X,−) and L(S1∨S1,−) to the
pushout (3.14) are pushout squares as well.

In what follows we aim to study the commutator using the the Greenlees spectral
sequence on the pair of pushouts in the cube. To do this we need to modify the
algebras to have rational coefficients so that π0(

⊗
X Q[t]) and π0(

⊗
S1∨S1 Q[t]) are

isomorphic to Q.

Proposition 3.5.1. Given a simplicial set X, the square

Q⊗Q[t]

⊗
X Q[t] Q⊗Q[s]

⊗
X Q[s]

Q Q⊗A

⊗
X A

is a pushout of rational algebras.

Proof. Explicitly Q viewed as a Q[t]-module has multiplication defined by (t, q) 7→ 0
for q ∈ Q. We can for a set Y therefore construct the prepushout diagram

Q⊗Q[t]

⊗
Y Q[t] Q⊗Q[s]

⊗
Y Q[s]

Q

(3.16)

where the horizontal map is the identity onQ and defined by t 7→ s2 on the remaining
factors. The vertical map is similarly the identity on Q and the evaluation t 7→ 0
on all the other factors.

That the top map is well defined follows from the verification that the following
diagram commutes:

Q⊗Q[t]

⊗
X Q[t] Q⊗Q[s]

⊗
X Q[s]

Q[t] Q[s]

Q Q

t7→s2

idQ
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We do an induction over finite subsets of Xn to show that the pushout of (3.16) is
Q⊗A

⊗
Xn

A in each degree, proving the result. We remark that for any Q-algebra
B and set Y we have that

Q⊗B

⊗
Y

⊔
{y}

B ∼= Q⊗B B ⊗Q
⊗
Y

B ∼= Q⊗Q
⊗
Y

B ∼=
⊗
Y

B. (3.17)

Now, the pushout of the diagram (3.16) where we let Y be a set consisting of two
points is thus equivalent to

Q[t] Q[s]

Q A

More generally, for any finite set Yi ⊂ Xn consisting of i elements let Y = Yi ∪ {y}
where y ∈ Xn − Yi. We have then by (3.17) that the diagram (3.16) is equivalent to⊗

Yi
Q[t]

⊗
Yi
Q[s]

Q

whose pushout is
⊗

Yi
A by the induction hypothesis (also easily seen directly). As

such we have again by (3.17) that

Q⊗Q[t]

⊗
Yi+1

Q[t] Q⊗Q[s]

⊗
Yi+1

Q[s]

Q Q⊗A

⊗
Yi+1

A

is a pushout for Yi+1 = Y . Since we can write Xn as the filtered colimit Xn =
colimi Yi of such finite subsets Yi and the Loday functor preserves colimits in its first
argument, we can extend the pushout to Xn and consequently to X since a pushout
of simplicial sets is degreewise a pushout of sets.

Now, Greenlees spectral sequence 2.4.15 gives us that

E2
p,q = Lp (X,A,Q)⊗ Lq (X,Q[t],Q) =⇒ Lp+q (X,Q[s],Q) (3.18)

and similarly that

E ′2
p,q = Lp

(
S1 ∨ S1, A,Q

)
⊗ Lq

(
S1 ∨ S1,Q[t],Q

)
=⇒ Lp+q

(
S1 ∨ S1,Q[s],Q

)
. (3.19)
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Where the attaching map X → S1 ∨ S1 induces maps E2
p,q → E ′2

p,q as indicated by
the cube (3.15). Further we have explicit descriptors of the induced map on the first
factor and know the induced map on the second to be zero.

We are therefore in a good position to do some low dimensional calculations on these
spectral sequences and the induced maps between them. We begin by considering
(3.18). We note that we can for many purposes consider S1 instead of X to simplify
some calculations of the spectral sequence. Although there is a priori no simplicial
attaching map for S1, we have already solved this issue earlier and have total control
over the isomorphism L∗(X,A,Q) ∼= L∗(S

1, A,Q) induced by X
∼−→ S1, having an

explicit description of the generators.

When working over the simplicial circle, higher Hochschild homology coincides with
the regular Hochschild homology of commutative algebras, hence

L∗(S
1, B,Q) = H∗(B,Q)

for a Q-algebra B. We know from example 2.2.18 that

Hn(Q[t],Q) =


Q {1} , n = 0

Q {1⊗ t} , n = 1

0, n ≥ 2

and from proposition 3.2.1 that

Hn(A,Q) = E(1⊗ t)⊗ P (1⊗ t⊗ t).

Denoting the generators by a = 1⊗ t and b = 1⊗ t⊗ t for the generators of H∗(A,Q)
and a′ = 1⊗ t for the generator of H1(Q[t],Q), the E2-page takes the form

3
...

...
...

...
...

2 0 0 0 0 0

1 a′ aa′ a′b aa′b a′b2

0 1 a b ab b2

0 1 2 3 4



Chapter 3. Calculations With Higher Hochschild Homology 62

where everything but the two lower copies 1, a must die. As such, the differentials
drawn above have to be isomorphisms with db

.
= a′, where we use

.
= to denote

equality up to some rational coefficient. Of course, da and da′ are zero due to
the spectral sequence being concentrated in the first quadrant. Using that the
differentials of spectral sequences of algebras are graded derivations with respect to
the product, we see that

d(ab) = (da)b− a(db)
.
= −aa′

and

db2
.
= 2a′b

and so on. In general the differential d : E2
2n,0 → E2

2(n−1),1 is given by

d(bn)
.
= a′bn−1

and d : E2
2n+1,0 → E2

2n−1,1 is given by

d(abn)
.
= aa′bn−1.

We now do a similar calculation of the spectral sequence (3.19). Recall from the
argument preceding proposition 3.2.2 that

L∗(S
1 ∨ S1, B,Q) ∼= L∗(S

1, B,Q)⊗2

for a Q-algebra B. Thus akin to our established convention of referring to the first
factor as horizontal and the second as vertical, we name a′h = 1⊗ t⊗1 and a′v = 1⊗
1⊗t where the product is of the form a(00,00)⊗a(01,00)⊗a(00,01) ∈ L∗(S

1∨S1,Q[t],Q).
We thus have that

L∗(S
1 ∨ S1,Q[t],Q) ∼= E(a′h, a′v).

Similarly we have from the aforementioned proposition itself that

L∗(S
1 ∨ S1, A,Q) ∼= E(ah, av)⊗ P (bh, bv)

and consequently the E2 page of the Greenlees spectral sequence (3.19) takes the
form
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4
...

...
...

...
...

...

3 0 0 0 0 0 0

2 a′ha′v E2
1,2 E2

2,2 E2
3,2 E2

4,2 E2
5,2

1 a′h

a′v

a′hah

a′hav

a′vah

a′vav

E2
2,1 E2

3,1 E2
4,1 E2

5,1

0 1 ah

av

bh

bv

ahav

ahbh

avbh

ahbv

avbv

ahavbh

ahavbv

bhbv
E2

5,0

0 1 2 3 4 5

where we know from projecting to the horizontal and vertical factors that dbh
.
= a′h

and dbv
.
= a′v and of course dah = dav = 0. Since d is a graded derivation this gives

us all the other differentials, though not in quite as tidy a manner as before.

Now, our previous calculations with the weak equivalence X
∼−→ S1 enables us to

describe the induced map of a, b by making appropriate substitutions over the equi-
valence L∗(S

1, A,Q) ∼= L∗(X,A,Q) and for the latter we have explicit descriptions
of the generators over the map induced by the commutator. We will as an abuse of
notation for the time being name the generators over X by a, b too. As such we may
use the calculated differentials of the spectral sequences to study the commutator
map. In particular we can consider the square

L2(X,A,Q) L1(X,Q[t],Q)

L2(S
1 ∨ S1, A,Q) L1(S

1 ∨ S1,Q[t],Q)

d

c∗ c∗

d

and use proposition 3.3.2 showing that c∗(b) = ahav so dc∗ = 0, but since Q[t]
is smooth we know that the right vertical commutator to be zero, hence c∗d = 0
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and the square commutes. The calculation of the same proposition also shows that
c∗ : L1(X,A,Q) → L1(X,A,Q) is 0.

Due to the shape of the first spectral sequence, we may use the Gysin sequence that
we get from splicing the short exact sequences

Ln+1 0

0 E∞
n+1,0 E2

n+1,0 E2
n−1,1 E∞

n−1,1 0

0 Ln

0 E∞
n,0 E2

n,0

0

d

into a long exact sequence

· · · L2 E2
2,0 E2

0,1 L1 E2
1,0 0,d

where we have above used Ln as the shorthand for Ln(S
1,Q[s],Q).

Although we can not construct a similar long exact sequence from the second spectral
sequence, due to its shape, the same reasoning is valid in low dimensions, i.e. up
to L2 → E2

2,0, hence if we take in account the maps induced by the commutator we
have a diagram

L2(Q[s]) L2(A) L1(Q[t]) L1(Q[s]) L1(A) 0

L2(Q[s]) L2(A) L1(Q[t]) L1(Q[s]) L1(A) 0

d

c∗

d

where we have the top and bottom rows are exact and the vertical maps are induced
by the commutator. Note that we have suppressed a lot of redundant notation for
the sake of space in the diagram above: The top row are all Li taken over X and
the bottom row are Li taken over S1 ∨ S1 for i = 1, 2. In both rows Li is also with
coefficients in Q.
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Observe that all commutator maps save

c∗ : L2(X,A,Q) → L2(S
1 ∨ S1, A,Q)

are zero due to rational polynomial algebras being smooth. Reading the diagram
from right to left, we have also established the commutativity of the first and third
square, with the second being commutative trivially.

Even for the nonzero commutator we have as noted that the composition

dc∗ : L2(X,A,Q) → L1(S
1 ∨ S1,Q[t],Q)

is zero. We may then do a little bit of diagram chasing using the exactness of the
bottom row to find that the map

L2(S
1 ∨ S1,Q[s],Q) → L2(S

1 ∨ S1, A,Q)

maps a′ha′v 7→ ahav = c∗(b). This means that we can as Q-vector spaces make a lift
up to homotopy

Q⊗Q[s]

⊗
S1∨S1 Q[s]

Q⊗A

⊗
X A Q⊗A

⊗
S1∨S1 A

f

c∗

(3.20)

by defining the lift to be zero on all cycles other than b, and have f(b) = a′ha′v.

This makes precise exactly how naturality fails for the higher Hochschild homology
in this counter example. The square

L2(X,Q[s],Q) L2(X,A,Q)

L2(S
1 ∨ S1,Q[s],Q) L2(S

1 ∨ S1, A,Q)

does not commute with the top right composition giving

b′ 7→ b 7→ ahav

and the bottom left having b′ 7→ 0 7→ 0, even though the latter map still maps
a′ha′v 7→ ahav and the aforementioned lift exists.
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Appendix

We have deferred writing out some explicit sums to keep the presentation less heavy.
Two important ones we have however listed here for reference.

The Boundary of Alpha

The boundary ∂α is the sum given by

+ τ∆3×∆1(1233, 0001)− τ∆3×∆1(0233, 0001) + τ∆3×∆1(0133, 0001)

− τ∆3×∆1(0123, 0001) + τ∆3×∆1(0123, 0000)− τ∆3×∆1(1223, 0011)

+ τ∆3×∆1(0223, 0011)− τ∆3×∆1(0123, 0011) + τ∆3×∆1(0123, 0001)

− τ∆3×∆1(0122, 0001) + τ∆3×∆1(1123, 0111)− τ∆3×∆1(0123, 0111)

+ τ∆3×∆1(0123, 0011)− τ∆3×∆1(0113, 0011) + τ∆3×∆1(0112, 0011)

− τ∆3×∆1(0123, 1111) + τ∆3×∆1(0123, 0111)− τ∆3×∆1(0023, 0111)

+ τ∆3×∆1(0013, 0111)− τ∆3×∆1(0012, 0111).

where there are two pairs of terms along the diagonals of the vertical shifts cancelling
each other, namely those given by the simplices:

(0123, 0001), (0123, 0011), (0123, 0111).

66
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The Chain Beta

The chain β, where we have as an abuse suppressed the τ∆3×∆1 for brevity, is the
sum

β =

+ ([ 0 0 0 0
5 0 1 0 ] + [ 0 0 0 0

5 0 1 0 ] + [ 0 0 0 0
2 0 3 1 ] + [ 0 0 0 1

2 0 3 0 ] + [ 0 0 0 1
1 1 1 2 ]) · [ 0 0 0 2

1 1 1 1 ]

− ([ 0 0 0 0
4 0 2 0 ] + [ 0 0 0 0

4 0 2 0 ] + [ 0 0 0 0
2 0 2 2 ] + [ 0 0 0 2

2 0 2 0 ]) · [ 0 0 0 1
1 1 1 2 ]

+ ([ 0 0 0 0
3 0 3 0 ] + [ 0 0 0 0

3 0 3 0 ]) · [ 0 0 0 1
1 1 2 1 ]

− ([ 0 0 0 0
2 1 1 2 ] + [ 0 0 0 2

2 1 1 0 ]) · [ 0 0 0 1
1 2 1 1 ]

+ ([ 0 0 1 1
0 2 2 0 ]− [ 0 0 0 0

5 0 1 0 ]− [ 0 0 0 0
5 0 1 0 ]− [ 0 0 0 0

2 0 3 1 ]− [ 0 0 0 1
2 0 3 0 ]− [ 0 0 0 1

0 2 2 1 ]− [ 0 0 2 1
1 1 1 0 ]) · [ 0 0 1 2

1 1 1 0 ]

+ ([ 0 0 0 0
4 0 2 0 ] + [ 0 0 0 0

4 0 2 0 ] + [ 0 0 2 0
2 0 2 0 ] + [ 0 0 0 2

2 0 2 0 ]) · [ 0 0 2 1
1 1 1 0 ]

− ([ 0 0 0 0
3 0 3 0 ] + [ 0 0 0 0

3 0 3 0 ]) · [ 0 0 1 1
1 1 2 0 ]

+ ([ 0 0 0 0
2 1 2 1 ] + [ 0 0 2 0

2 1 1 0 ] + [ 0 0 0 2
2 1 1 0 ]− [ 0 0 1 0

2 1 2 0 ]) · [ 0 0 1 1
1 2 1 0 ]

+ ([ 0 0 1 0
1 2 2 0 ]− [ 0 0 0 0

1 2 2 1 ]) · [ 0 0 1 1
2 1 1 0 ]

+ ([ 0 0 0 0
5 0 1 0 ] + [ 0 0 0 0

5 0 1 0 ] + [ 0 0 0 0
2 0 3 1 ] + [ 0 0 0 1

2 0 3 0 ] + [ 0 0 0 1
0 2 2 1 ] + [ 0 1 2 1

1 1 0 0 ]− [ 0 0 1 1
0 2 2 0 ]) · [ 0 1 1 2

1 1 0 0 ]

− ([ 0 0 0 0
4 0 2 0 ] + [ 0 0 0 0

4 0 2 0 ] + [ 0 0 2 0
2 0 2 0 ] + [ 0 0 0 2

2 0 2 0 ]) · [ 0 1 2 1
1 1 0 0 ]

+ ([ 0 0 0 0
3 0 3 0 ] + [ 0 0 0 0

3 0 3 0 ] + [ 0 1 2 0
3 0 0 0 ] + [ 0 1 0 2

3 0 0 0 ]− [ 0 0 2 0
3 0 1 0 ]− [ 0 0 0 2

3 0 1 0 ]) · [ 0 2 1 1
1 1 0 0 ]

+ ([ 0 0 1 0
2 1 2 0 ]− [ 0 0 0 0

2 1 2 1 ]− [ 0 1 2 0
2 1 0 0 ]− [ 0 1 0 2

2 1 0 0 ]) · [ 0 1 1 1
1 2 0 0 ]

+ ([ 0 0 0 0
1 2 2 1 ]− [ 0 0 1 0

1 2 2 0 ]) · [ 0 1 1 1
2 1 0 0 ]

+ ([ 0 0 1 1
0 2 2 0 ]− [ 0 0 0 0

5 0 1 0 ]− [ 0 0 0 0
5 0 1 0 ]− [ 0 0 0 0

2 0 3 1 ]− [ 0 0 0 1
2 0 3 0 ]− [ 0 0 0 1

0 2 2 1 ]− [ 1 1 2 1
1 0 0 0 ]) · [ 1 1 1 2

1 0 0 0 ]

+ ([ 0 0 0 0
4 0 2 0 ] + [ 0 0 0 0

4 0 2 0 ] + [ 0 0 2 0
2 0 2 0 ] + [ 0 0 0 2

2 0 2 0 ]) · [ 1 1 2 1
1 0 0 0 ]

+ ([ 0 0 2 0
3 0 1 0 ] + [ 0 0 0 2

3 0 1 0 ]− [ 0 0 0 0
3 0 3 0 ]− [ 0 0 0 0

3 0 3 0 ]− [ 0 1 2 0
3 0 0 0 ]− [ 0 1 0 2

3 0 0 0 ]) · [ 1 2 1 1
1 0 0 0 ]

+ ([ 0 0 1 0
1 2 2 0 ]− [ 0 0 0 0

1 2 2 1 ]) · [ 1 1 1 1
2 0 0 0 ]

+ ([ 0 0 0 0
2 1 2 1 ] + [ 1 1 2 0

2 0 0 0 ] + [ 1 1 0 2
2 0 0 0 ]− [ 0 0 1 0

2 1 2 0 ]) · [ 2 1 1 1
1 0 0 0 ]
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