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Abstract

The study of quark-gluon plasma, a unique form of matter resulting from heavy-ion
collisions, relies on investigating jet quenching – energy loss and substructure modifi-
cations experienced by jets within a hot quark-gluon plasma. To address the challenge
of biased observations towards minimally modified jets, this thesis employs a graph
neural network to predict the degree of modifications. By transforming jets into graph
representations that capture their branching history, the network predicts energy loss
caused by interactions with the medium. The hybrid strong/weak approach effectively
models these interactions, while the energy loss ratio is determined by comparing the
initial and final transverse momentum of the jets.

The primary objective of this research is to train the graph neural network using hy-
brid jets and accurately predict the energy loss ratio, while examining the network’s re-
silience to background radiation. Results indicate satisfactory performance after train-
ing on hybrid jets. Notably, the network’s performance significantly deteriorates when
soft information is removed from the jets using grooming techniques. Furthermore,
embedding jets in a heavy-ion environment leads to a gradual decrease in performance,
albeit slower than information removal. Additionally, the choice of clustering algo-
rithm heavily influences the graph representation of the jets. This study contributes
to the understanding of energy loss estimation in jets traveling through a quark-gluon
plasma medium.
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Chapter 1

Introduction

Jets are collimated sprays of hadrons originating from the fragmentation of high-energy
quarks or gluons. In relativistic heavy-ion collisions, jets are modified, or quenched,
by interacting with the hot, dense quark-gluon plasma (QGP) created in the collision.
Historically, the jet quenching phenomenon has been primarily studied through the sup-
pression of intermediate-pT hadrons at the Relativistic Heavy-Ion Collider (RHIC) at
Brookhaven National Laboratory, and the dijet asymmetry and suppression of high-pT
hadrons and jets at the Large Hadron Collider (LHC) at CERN. Recently, efforts have
been made to measure the modifications of internal properties of jets, also known as jet
substructure measurements. Jet quenching has become one of the most powerful exper-
imental probes of the properties of the hot, deconfined quark-gluon plasma produced
in heavy-ion collisions [1].

It is generally believed that the momentum scales related to high-energy jet produc-
tion are much larger than the scale of the local medium. This implies that the parton
branching takes place independently of the medium. The parton branching plays an
important role in the evolution of the jet and the amount of medium modification it can
experience. Therefore, it is expected that the modification of measured jet properties
correlates with the amount of energy lost in the medium, and one would like to be able
to estimate the amount of energy loss a jet has experienced. This is a nontrivial task on
a jet-by-jet basis.

In recent years, machine learning techniques have been widely applied to jet physics
tasks, such as jet tagging [2], quark/gluon jet discrimination [3], and heavy flavor classi-
fications [4]. Various machine learning techniques have been employed to tackle these
problems, depending on how the jet is represented. The most popular jet representa-
tion is jet images, often used as input for convolutional neural networks (CNNs). Jet
images encode the radiation patterns of the jets, however providing the network with
additional substructure information presents a problem. Therefore, one can also pro-
pose using graph representations of jets. That can be done several ways, the most useful
is perhaps the representation of jets as point clouds of constituent particles where one
can use k-nearest neighbors to create a graph-like structure between the particle or as
a graph of parton splittings that encodes information about the radiation patterns and
substructure of jets.

Previous work has used CNNs and jet images to perform a regression task to predict
the amount of energy loss a jet has suffered [5]. The results were quite good, and the
network was able to draw correlations between the number of "extra" particles created
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by interactions with the medium, and the amount of energy lost by the jet. However,
when the jets are embedded into a realistic heavy ion environment, the performance of
this model decreases [5]. Improving the performance of the model under the conditions
in which jets are experimentally measured should be one of the primary focuses of such
an analysis.

In an attempt to improve the predictions of the amount of energy loss suffered while
embedded in a heavy ion background, this thesis will use a graph representation of
jets and subsequently use a graph neural network (GNN) to make predictions on jet
energy loss. This thesis will use a graph representation of the Lund tree of a jet, which
essentially is a graph of the parton branching within a jet. The Lund tree contains
a rich set of information on the substructure and radiation patterns of a jet, therefore
serving as a natural way to represent jets in machine learning. To do such an analysis,
we will use the existing framework of LundNet [6], modifying the network to perform
a regression task instead of the classification task it was created for. The results of
using the modified LundNet is that the overall prediction performance decreased but the
model showed great resilience towards the embedding into a heavy-ion environment.

This thesis will focus on the prediction of energy loss of a jet traveling through a
medium, while also discussing the effect of embedded heavy-ion background on these
jets. We also wish to study the network itself and what features of the graph it deems
most important to make accurate predictions.

This thesis is structured as follows: In Chapter 2 we introduce the fundamental con-
cepts of QCD and heavy-ion collisions. Chapter 3 will introduce the concept of jets,
both in medium and vacuum. We will focus on the concept of jet quenching and intro-
duce the hybrid strong/weak model of jet quenching. Then we will discuss jet defini-
tions, jet algorithms, and jet substructure, which will be important when we transform
the jets into graphs. In Chapter 4 we introduce the basic concepts of machine learn-
ing, including the LundNet model. Chapter 5 is dedicated to introducing the machine
learning task and summarizing previous results. In Chapter 6 we explore the effect
of embedded background on vacuum jets. Chapter 7 discusses the results from our
analysis and how well the model performed, as well as the different configurations of
the model. Finally, we present our conclusion and suggestions for further work and im-
provement. All the code developed for this master thesis is publicly available at GitHub
[7].

My contributions

I created vacuum jet events using PYTHIA [8] and identified the quark and gluon
jets using FastJet [9]. I developed a code for creating a thermal Blast-Wave model
for embedded heavy ion background, and to perform constituent subtraction and
SoftDrop.Then I extracted the events from the hybrid model data created specifi-
cally for this project by Daniel Pablos and matched the vacuum and hybrid jets to
calculate the energy loss ratio, and stored the jets and labels for the training of the
network. I modified the existing LundNet model by changing the task from clas-
sification to regression and setting up the prediction performance analysis. Then I
tuned the hyperparameters of the LundNet model to fit the data. Finally, I created
a Q-jet algorithm which did not make it into the thesis for more than an appendix.



Part I

Physics Background





Chapter 2

QCD and Colliders

Jet physics is QCD physics. Therefore, a description of jets and their substructure relies
on a deep understanding of the dynamics of strong interactions in collider experiments
[10].

QCD is the theory describing the interaction of quarks and gluons, which can be
found inside hadrons. We probe the underlying structure of hadrons through collider
experiments. Depending on what structures we wish to probe, one can collide differ-
ent types of particles. For example, by colliding electrons and protons in deep-inelastic
scattering, one can probe the structure of the proton, which resulted in the discovery
of point-like constituents inside the proton, namely quarks. Other collider experiments
such as proton-proton (pp) collisions are often used to explore different aspects of QCD
interactions, and collisions of heavy nuclei, called relativistic heavy-ion collisions, cre-
ate dense quark-gluon plasma inside the detectors which affects the QCD interactions.

In this chapter, we will describe the basics of QCD needed to understand jet physics.
After that, we will take a quick look at colliders, where we will look at what we should
expect to observe in a detector and how to do the simplest theoretical calculations in
relation to pp collisions. Finally, we will shortly introduce heavy-ion collisions and the
ever so important quark-gluon plasma.

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the strong interactions within the
Standard Model (SM) of particle physics. It describes the building blocks of strongly
interacting particles and the forces acting on them.

The development of QCD started in the 1960s, with the purpose of understanding
and classifying the multitude of new particles produced by the first particle colliders.
These new, strongly-interacting particles were collectively referred to as hadrons. It
was proposed that these hadrons were composed of different combinations of funda-
mental particles called quarks. This idea was the basis of the quark model which
successfully applied group theory to describe the quantum numbers of hadrons.

The quark model leads to another important discovery: the introduction of a new
quantum number, color. A baryon is a hadron composed of 3 quarks, therefore, since
the spin and spatial wave functions of baryons are symmetric under the exchange of
quarks, the Pauli principle demands that a new quantum number is introduced which
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discriminates between the three quarks of the baryons. There need to be at least 3 colors
to make an antisymmetric wave function. Through experimental measurements of the
R-ratio, the ratio of hadronic cross-sections to the muon pair cross-section

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

, (2.1)

they found the R-ratio to be consistent with exactly 3 colors. All hadrons have to be
non-colored. The color charges of the quark bind the quarks within hadrons.

To do precision studies of the internal structure of hadrons, one can do deep inelas-
tic scattering of electrons on protons. The results indicated that the electron did not
interact with the proton as a whole, but with point-like constituents inside the proton.
To explain these experimental results, the parton model was introduced. The parton
model assumed that in high energy interactions, hadrons behave as made up of almost
free constituents, partons, which carry a fraction of the hadron momentum.

QCD is a successful theory of the strong interaction, which unifies the quark and
parton models. The theory describes the strong interaction between fermions, quarks,
mediated by the gauge bosons, gluons. The gluons are massless mediators, but they do
carry a color charge. This gives rise to the self-interactions of the gluons.

2.1.1 The QCD Lagrangian
QCD is a quantum field theory that describes the strong interaction between quarks, me-
diated by gluons. QCD is a non-Abelian theory and can be described by the SU(NC = 3)
symmetry group, where NC = 3 is the number of color charges. The Lagrangian of QCD
is defined as

LQCD = ψ̄
f (i /D−m f )ψ

f − 1
4

GiµνGµν

i (2.2)

where f is a flavor index [11]. We follow the notation where the metric is given as
gαβ = (1,−1,−1,−1) and use natural units, with /h = c = 1. The field strength Gµν

i of
the gluon field A is defined as

Gµν

i = ∂
νAµ

i −∂
µAν

i +gs fi jkAµ

i Aν
k , (2.3)

where i, j = (1,2, ...,8) and fi jk is the structure constants.
The covariant derivative is defined as

/D = γµDµ , Dµ
ψ

f = (∂ µ + igsT aAµ

j )ψ
f . (2.4)

where T a is the generators for the SU(3) symmetry group. The covariant derivative
couples the quark field with a coupling strength gs =

√
4παs to the gluon field using the

SU(3) generators. The fine structure constant αs is often referred to as the "coupling".
The SU(3) group is a Lie group. The generators of the group are defined from the

traceless hermitian Gell-Mann matrices λa [11]. Since the symmetry group is a non-
Abelian Lie group, then the generators T a has to satisfy the Lie Algebra. They have to
obey the relations

[T a,T b] = i f abcT c, (2.5)
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where fabc is the structure constants. The structure constant is a completely anti-
symmetric tensor that we can normalize as ∑c,d f acd f bcd = Nδ ab, where N is the num-
ber of colors. From this it follows that the generators take the form of

T a =
1
2

λa , (a = 1,2, ...,8). (2.6)

These generators define the fundamental representation of the SU(3) group. A basis-
independent way of characterizing different representations of the generators is through
the quadratic Casimir C2(R) defined by

T a
R T a

R =C2(R)I, (2.7)

where R indicates the representation. For a given SU(N) group the index TR and the
quadratic casimir CR of a given representation R is given by

TA =CA = N , TF =
1
2

, CF =
N2 −1

2N
(2.8)

where F is the fundamental and A is the adjoint representation of the group. For SU(3)
this gives CA = 3 and CF = 4/3. These quantities are often referred to as color factors.

The Lagrangian in Eq. (2.2) is not gauge fixed and not suitable for quantization. To
be able to perform perturbative calculations on the Lagrangian, we need to introduce a
gauge fixing term.This is done using the Faadeev-Popov method [11], which fixes the
choice of gauge by adding a gauge-fixing term to the Lagrangian

L= LQCD − 1
2ξ

(∂µAµ

i )
2, (2.9)

with the gauge parameter ξ . Since QCD is a non-Abelian gauge theory, another gauge-
fixing term must be added to the Lagrangian. The additional term is called a ghost
Lagrangian. The Lagrangian becomes

L= LQCD − 1
2ξ

(∂µAµ

i )
2,+∂µη

i†(Dµ

i jη
j), (2.10)

where η i is a complex scalar field that obeys Fermi statistics. The ghost field is a result
of the Faadeev-Popov method. The ghost field only appears in higher-order calcula-
tions and cancels unphysical degrees of freedom, which otherwise would propagate in
covariant gauges [11].

The new Lagrangian is sufficient to define the Feynman rules. We can separate the
Lagrangian into a free part L0 and the separate interacting parts of the Lagrangian for
the quark, gluon, and ghost fields,

L= L0 +LI,quark +LI,gluon +LI,ghost . (2.11)

From this, we find the Feynman rules for QCD on page 10 in [11]. Using the
Feynman rules, one can make Feynman diagrams, calculate the transition amplitude of
most Feynman diagrams and derive the parton splitting functions.

Some of the most noticeable differences between QCD and quantum electrodynam-
ics (QED), the theory of the interactions of charged particles with the electromagnetic
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Figure 2.1: Tree level Feynman diagrams of 3-gluon and 4-gluon interaction.

field, is the gluon self-interaction. Unlike the photons that are the mediators of QED
interactions, gluons have color charge and are therefore able to interact with other glu-
ons. In Figure 2.1 we see the 3- and 4-gluon vertices. These appear in the last term of
the QCD Lagrangian in Eq. (2.2) as a consequence of the gluon carrying color charge.
We can ignore the 4-gluon vertex for tree-level calculations, however, they cannot be
neglected in higher-order diagrams and loop corrections.

2.1.2 Coupling and Confinement
In field theories, the coupling constant describes the strength of a given interaction,
relative to free fields. For QED the coupling constant is the fine-structure constant
α ≃ 1

137 which is proportional to the electric charge squared, which we can interpret as
how strongly an electrically charged particle interacts with an electric field.

For QCD, the coupling constant gs only appears in the interaction part of the La-
grangian. Higher order interactions scale with higher powers of gs. The QCD La-
grangian contains the coupling constant gs in the first order. This is only valid for tree-
level calculations in perturbation theory and leads to divergences in higher-order loop
corrections. This needs to be corrected with renormalization. Renormalization allows
us to replace the coupling constant with a renormalized coupling constant gr(µ), where
µ is a scale dependence. The new coupling is defined similarly to the fine-structure
constant, so that αs(µ) =

g2
r

4π
. The new coupling can be written, in leading order (LO),

as

αs(µ) =
2π

β0 ln(µ2/Λ2
QCD)

(2.12)

where β0 is the leading order expansion of the β -function, which decides how the
coupling changes with scale. The β -function is responsible for the running of the
coupling constant. ΛQCD is the scale at which the coupling constant becomes infinite,
and for QCD this scale is typically ΛQCD ∼ 0.2GeV [12].

Figure 2.2 illustrates the coupling strength of QCD and QED at different momentum
transfer scales. The regions of confinement and asymptotic freedom are highlighted.
The running coupling decreases at large momentum transfer, i.e., when µ is large, and
that phenomenon is known as asymptotic freedom. This implies that strong interac-
tions are computable in perturbation theory if the energy scale is sufficiently high. In
high energy regimes or at short distances, the quark and gluons would move as quasi-
free particles, called partons.

Quarks and gluons interact weakly at high energies, while their interaction grows
as the energy decreases until they reach the confinement of particles carrying non-
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Figure 2.2: QCD and QED coupling strength. Figure from [13]

zero color charges. The running coupling suggests that perturbative techniques break
down when the partons are confined [11]. Confinement, or color confinement, is the
phenomenon that particles with color charge do not exist as isolated particles under
normal conditions, i.e., low energies. As a consequence, quarks, and gluons are forced
to be bound into color-neutral states called hadrons [11]. An example is the mesons,
which are color-neutral hadrons composed by a qq̄ pair.

Another effect of confinement is pair production. The strong coupling between a
pair of color charges is constant regardless of their separation. Therefore, as two color
charges are forcefully separated, the potential between them would become so large
that it at some point becomes energetically favorable for a new qq̄ pair to appear. The
new pair will then combine with the existing pair, creating two mesons.

2.2 Colliders

The best way to probe QCD processes is through colliders. There are several ways one
can use colliders to explore QCD. One can use e−e+ collisions, deep inelastic lepton-
hadron (e.i. e+p) scattering, proton-proton (pp) collisions, or heavy ion collisions.
The common idea is that two or more fundamental particles interact with each other
and that the resulting particles further interact via the strong nuclear force with the
available particles.

Colliders like the LHC have been used to study the internal structure of compos-
ite particles, explore interactions between particles, and do precision measurements to
experimentally determine observables such as their mass and spin.

Let us use pp collisions as an example and take a short look at the process of collid-
ing two particles. As we know from QCD, partons are composite particles and consist
of several partons, each carrying a fraction of the total proton energy. In a pp colli-
sion, the partons in the two protons interact with each other through a large momentum
transfer, called the hard process. The hard process often leads to the creation of new
partons. The resulting partons are highly energetic and will continue to interact with
the environment and branch out while they lose energy. When the resulting partons
have lost enough energy to reach the confinement scale, they are bound together to
form color-neutral particles through the process of hadronization. Hadronization is a
non-perturbative process. The hadrons produced during hadronization can be measured
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in detectors.
In the hard process, large momentum transfers and interaction scales are explored.

New heavy particles can be created, and new interactions can be tested. However, it
is not only the hard processes that take place during the collisions. There is also mea-
surable radiation from the particles in the protons that did not contribute to the hard
process. As protons collide in bunches, multiple pp collisions can occur simultane-
ously. While one of these many events might be interesting, the other simultaneous
events can typically create noise in the detector and make reconstruction of the event
difficult. The resulting particles from the simultaneous events are called pileup.

In the aftermath of the collision, we look for interesting hard events to study. To
study the hard events, we have to compare the experiments to theoretical predictions
and look for anomalies or similarities between the two. However, the theoretical de-
scription of high-energy collisions of protons is quite complex. In a typical event,
hundreds of particles are produced. The high energy part of the process can be com-
puted using perturbation theory. However, the low energy part, the hadronization, is
non-perturbative. We still use perturbative calculations on these processes because
even though hadronization does modify the final state particles, it occurs so late in the
process that it does not modify the original probability for the event to happen.

Let us show the importance of perturbative calculations by taking a look at one of
the most important measurable quantities, namely the cross-section. The cross-section
is a measure of the probability that a specific process will take place when two protons
in the particle beams of a collider intersects. The hard scattering of two protons can
be described by the hard scattering of quarks and gluons inside the proton. The cross-
section to produce a parton k can then be written as

σ
k = ∑

i, j

∫
dx1dx2 fi(x1,Q2) f j(x2,Q2)σ̂ i j→k(p̂1, p̂2,αs(Q),Q), (2.13)

where p1 and p2 are the four momenta of the colliding protons, x1 and x2 are the frac-
tions of the interacting partons defined by x1 ≡ p̂1/p1. Q is the characteristic scale of
the scattering, which is the transverse momentum exchanged between the two incom-
ing partons. fi(x,Q2) are the parton distribution functions (PDFs) defined at a scale
Q. σ̂ i j→k is the scattering cross-section of two interacting partons to produce a parton
k. This parton will then subsequently fragment and form a jet through the processes
described in Chapter 3, which can be measured in experiments.

The partonic cross section can be calculated perturbatively. The cross-section is
usually approximated by a perturbative series in powers of the strong coupling, a fixed-
order expansion [10]. Theoretical precision is achieved by computing cross-sections σ

including increasingly higher order corrections in the strong coupling αs

σ(v) = σ0 +αsσ1 +α
2
s σ2 +O(α3

s ) (2.14)

where v is a dimensionless, generic observable. In Eq. (2.14) the leading order (LO)
contribution σ0 is the scattering process that produces one parton in the final state and
is a proxy of a simple jet. The other contributions in the perturbative expansion σi con-
stitute the next-toi-leading order (NiLO) corrections. In terms of Feynman diagrams,
each power of αs corresponds to the emission of a QCD parton in the final state or to a
virtual correction.
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The calculation of higher-order Feynman diagrams suffers from the appearance of
ultraviolet divergences. However, QCD is a renormalizable theory, which allows for
the absorption of these infinities into a redefinition of the Lagrangian’s parameters, such
as the strong coupling constant αs.

In fixed-order perturbation calculations, the presence of soft emissions and collinear
splittings leads to infrared divergences. To ensure the calculations are free from these
divergences, it is necessary to consider observables that are infrared and collinear safe
(IRC-safe). IRC-safety implies that if an event is modified by a collinear splitting or
the addition of soft radiation, the hard splittings within the jet should remain unchanged
[14]. Collinear splittings can occur due to non-perturbative dynamics, and soft emission
can occur through both perturbative and non-perturbative effects.

The goal of IRC-safety is to provide a framework for studying events that is less sen-
sitive to these effects. It is important to note that in practice, non-perturbative effects
such as hadronization regulate the soft and collinear divergences [10]. The requirement
of IRC safety allows for reliable computations of observables in perturbative QCD,
with non-perturbative corrections taken into account. However, there are also interest-
ing observables that are IRC-unsafe, which requires the inclusion of non-perturbative
functions to describe their soft and collinear behavior.

2.2.1 Collider Kinematics
Now that we have an idea of a collision works, we wish to define some IRC safe ob-
servables related to pp-collision.

When describing a particle in the detector, we need to know the four-momentum
of said particle. We typically describe the particle’s momentum in the detector by the
azimuthal angle φ and the rapidity y. The azimuthal angle is defined in the transverse
plane (px, py), which takes the values between {0,2π}. The four-momentum can be
described by the energy and momentum vector, or by the positions φ and y, as well as
the transverse momentum pT . This way, we can represent the momentum four-vector
of a particle with mass m as

pµ = (E, px, py, pz) = (mT coshy, pT cosφ , pT sinφ , mT sinhy), (2.15)

where pT is the transverse momentum, and the transverse mass is defined as mT =√
p2

T +m2. From this definition of the four-momentum, we can define the new observ-
ables. The transverse momentum pT is defined as

pT =
√

p2
x + p2

y, (2.16)

and the rapidity y as

y =
1
2

log(
E + pz

E − pz
). (2.17)

It is more common to use pseudorapidity η instead of rapidity, which we define as

η =− log(tan
θ

2
), (2.18)
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where θ us the polar angle with respect to the beam. For massless particles rapidity and
pseudorapidity are identical. One can define a distance between two particles inside the
detector, in the (y,φ) plane, as

△R =
√

△y2 +△φ 2. (2.19)

The distance between particles will be very useful when discussing jets in the following
chapters.

2.3 Heavy Ion Collisions

Figure 2.3: Sketch of relativistic heavy ion collisions. Figure from [15].

In relativistic heavy-ion collisions, we collide massive nuclei such as lead Pb or
gold Au. This is done at the LHC and RHIC colliders. The goal of such collisions is to
create and study quark-gluon plasma (QGP).

Figure 2.3 shows a sketch of a relativistic heavy-ion collision and shows the multi-
ple stages of the collision. First, the heavy ions are accelerated to relativistic velocities,
which flatten the nuclei like pancakes. When the pancaked nuclei collide, multiple par-
ticles smash together creating a hot, dense plasma of quarks and gluons, a QGP. The
dynamics of QGP can be described using hydrodynamics. As the system expands and
cools, it will cross over from the QGP phase to a hadron gas phase, through hadroniza-
tion. As the QGP continues to expand and cool, the collision rates between the hadrons
decrease and the system reaches kinetic freeze-out. After the freeze-out, the particles
can be detected by the detectors and studied.

When QGP is present, any particles propagating through the plasma will be modi-
fied by elastic and inelastic processes that take place during their passage through the
plasma [5]. By measuring the final state particles after they traverse the medium, one
can study both the plasma itself and the QCD processes that occurred due to the colli-
sion.

While we will return to how the plasma affects the particles propagating through it
in the next chapter, we will now introduce the QGP and one of the models to simulate
such a thermal background.
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2.3.1 Quark-Gluon Plasma
As discussed in the section about confinement, particles with color charge cannot exist
as isolated particles under normal temperature and pressure conditions. However, as
the energy scale increases, we observe the phenomenon of asymptotic freedom. With
rising temperature T or baryonic chemical potential µB, a phase transition occurs where
hadrons cease to exist.

The state of matter where quarks and gluons can move freely is known as quark-
gluon plasma (QGP). We can expect to find QGP in three places: in the early universe,
at the center of compact stars, and in the initial stage of energetic heavy ion collisions
[16]. The easiest of these options to precisely explore is heavy ion collisions.

Although QGP is referred to as a plasma, it is unclear whether it should be inter-
preted as a weakly interacting gas or a strongly interacting fluid. At sufficiently high
temperatures the QGP must be weakly coupled, however, in the temperature range
explored by current colliders, we know from the comparison of precisely measured
experimental observables and sophisticated calculations of relativistic hydrodynamics
that QGP produced in heavy ion collisions is a strongly coupled liquid that expands
and flows hydrodynamically [17]. This makes the QGP a very interesting form of mat-
ter, but it also complicates the theoretical understanding of its properties and dynamics.

QGP is short-lived and difficult to measure directly. The main method to study QGP
is to probe it using jets, or highly energetic particles. Jets lose energy when traveling
through a QGP, in a process called jet quenching. Jets are “hard probes”, meaning
they are strongly interacting but moving so fast and with so much energy that they are
often not completely absorbed by the surrounding quark-gluon plasma. The degree of
jet quenching, the jet properties, and how the energy is transferred to the medium reveal
the properties of the QGP. These kinds of experiments are currently done at the particle
accelerators RHIC at Brookhaven National Laboratory and LHC at CERN.

The first evidence for jet quenching was seen in 2003 in experiments at RHIC [18].
Recently at the LHC, they have been reaching higher collision energies and doing more
precise measurements of the QGP, using jets [18]. However, the theoretical understand-
ing of these measurements is challenging, and we will discuss the theoretical under-
standing of jet quenching in the next chapter.

2.3.2 Blast Wave Model
Heavy-ion collisions are extremely complex, and there are several models trying to
explain one or more features. One of these models is the blast wave model [19]. The
blast wave model describes the freeze-out phase of the QGP, which creates a thermal
background of hadrons originating from the QGP.

For an ideal hydrodynamical fluid, the local momentum distribution of hadrons
should be a thermal distribution, for example, a Bose-Einstein distribution. The fluid is
not at rest, thus the thermal distribution must be boosted to the laboratory frame. One
model for such a boosted distribution is the blast wave model where the distribution of
momentum is

dNi

mtdmtdy
= AimtK1(

mt coshρ

TF
)I0(

pt sinhρ

TF
) (2.20)
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Figure 2.4: Distribution of φ , η and pT , using βT = 0.63 and TF = 100MeV to obtain 1000 background
particles in each rapidity slice.

where Ai is a normalization constant, mt =
√

p2
t +m2, K1 is the modified Bessel func-

tion of second kind, I0 is the modified Bessel function of the first kind, ρ = tanh−1
βT ,

TF is the "true temperature" and βT is the transverse expansion velocity.
Depending on how many background particles we wish to create, we use figures

5 and 6 in [20] to find the value of βT and TF . For example, we wish to create 1000
particles per unit rapidity η in the aftermath of a heavy ion collision at the LHC, which
collides PbPb. In Figure 5 in [20], we find the marker for PbPb collisions and read
βT ∼ 0.62 and in Figure 6 in [20] we find TF ∼ 100MeV .

In our model, we wish to create background particles with zero mass, m = 0. Using
a uniform distribution for φ between {0,2π} and a uniform distribution for η between
{−2.5,2.5}, we find the distribution of pt of the background particles from Eq. (2.20).
We use the Monte Carlo Accept-Reject Method [21] when we sample from the blast
wave model to obtain a pt value.

The Accept-Reject method is quite simple. The probability distribution is normal-
ized so that the largest value is dNi/d pt = 1. You also sample a number from a uniform
distribution between {0,1}. First, you sample a pt value, between {0,1000}MeV, and
get the probability of getting that number from the blast wave probability distribution.
Then we check if this probability is larger than the random number we generated. If
that is the case, we keep the sampled value as our pt . Otherwise, we resample from our
distributions until we get an accepted sample.

By sampling from these distributions and getting a φ , η and pT , we create the
4-momentum for the background particles using Eq. (2.15). In Figure 2.4 we have
plotted the distribution of the φ , η and pT after generating 1000 background particles
per rapidity slice with the blast-wave model. Based on this distribution of background
particles the average transverse momentum is about < pt >= 0.17GeV, which is at the
scale of the temperature T = 0.1GeV. A more realistic average transverse momentum
would be < pT >= 0.4−0.5GeV.

By using this method to generate thermal background particles, we can embed jets
in a heavy-ion environment and simulate real experimental conditions where the re-
moval of background particles is difficult.
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The Key Concepts of This Chapter

QCD is the theory of the strong interaction between quarks, mediated by gluons.
The coupling constant describes the strength of the interactions. The coupling
strength depends on the energy scale of the interaction. At high energy scales, we
reach asymptotic freedom, where quarks and gluons can move as free particles,
called partons. At small energy scales, the partons are confined and bound into
color-neutral hadrons. The best way to study QCD processes is through collider
experiments. Proton-proton collisions are described using perturbation theory.

Relativistic heavy-ion collisions are the collision of heavy nuclei such as lead.
When large nuclei are smashed together, they create a hot, dense quark-gluon
plasma. Quark-gluon plasma is a state of matter where quarks and gluons can
move freely. QGP is described by hydrodynamics as a strongly coupled liquid.
QGP is difficult to measure directly and is often studied using jets as hard probes.
There are many models to simulate QGP, such as the blast-wave model which
simulates the thermal particles created by the hadronization of the quark-gluon
plasma.



Chapter 3

Jets

High-energy quarks and gluons are not directly observable but instead undergo a series
of successive branchings at small angles, resulting in a cascade of collimated partons
known as a parton shower. When the parton shower reaches the scale of hadronization,
the collimated cluster of hadrons is referred to as a "jet." Jets are directly detected in the
detectors, where the hadronic final state appears as collimated structures in the (y,φ)
space within the detector.

The branching and evolution of the parton shower give rise to the characteristic
radiation patterns observed in jets. In the presence of a medium, such as in heavy-
ion collisions, each parton in the parton shower interacts with the medium, leading to
energy loss in the jet. This phenomenon is known as jet quenching. Jet quenching can
be described using various modeling approaches. Due to the contrasting nature of the
strongly coupled quark-gluon plasma and weakly coupled QCD processes involved in
parton shower formation, a hybrid model can be employed to account for the physics
at different energy scales.

Partons are not well-defined objects, due to higher-order QCD corrections. There-
fore, whether two particles are part of the same jet, or belong to different jets has some
degree of arbitrariness, depending on what we mean by “collimated”. The simple con-
cept of what a jet is meant to represent is therefore not sufficient to identify the jets in
an event. To do that, one relies on a jet definition, a well-defined procedure that tells us
how to reconstruct the jets from the set of hadrons in the final state of the collision.

This chapter begins by discussing jets in vacuum, and how the branching evolves,
then moving on to a discussion of jets in a medium where we delve into one hybrid
model of jet quenching. Afterward, the jet observables are introduced, focusing on
the Lund plane. Finally, the relevant jet definitions are introduced, as well as the jet
substructure tools that will be used in this paper.

3.1 Jets in Vacuum

In some regions of phase space, we cannot neglect higher-order terms in our perturba-
tive calculation. Instead of aiming for a precise prediction to some fixed order pertur-
bation theory, we seek an approximate result where terms of all orders are considered
[11]. This led to parton shower pictures which can be implemented in computer simu-
lations, such as Monte Carlo event generators.
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A parton shower relies on the factorization of a process into a hard scattering, a
perturbative shower, describing soft and collinear emissions, and a non-perturbative
hadronization process. Parton shower generators can generate fully exclusive events
consisting of hadrons, allowing in principle arbitrary questions to be asked about the
final state [22]. However, with this generality comes a loss of theoretical precision
compared to calculations, as well as a reliance on models.

To understand the creation of parton showers and jets, we need to understand the
processes of parton branching and parton evolution.

3.1.1 Parton Branching

Figure 3.1: Branching of an outgoing gluon a from some initial blob, into two gluons b,c.

Parton branching is the process of an energetic parton splitting into two new partons.
This can happen via splitting and radiation, which allows for the number of partons in
the jet to increase and lead to a parton shower. When discussing parton branching,
we generally mean soft and collinear branching. In soft branching, the emitted parton
carries a very small transverse momentum fraction, z, relative to the parent parton. In
collinear branching, the emitted parton travels in roughly the same direction as the
parent parton, which implies that the opening angle θ is very small. The branching is
illustrated in Figure 3.1. The momentum-sharing fraction z can be defined as

z =
Eb

Ea
= 1− Ec

Ea
(3.1)

The opening angle in the small angle limit is given as

θ = zθb +(1− z)θc (3.2)

Without any medium present, the parton shower will be angular ordered, meaning
the angle between each successive splitting decreases. Angular ordering leads to re-
solvable branchings, meaning we can identify each branch in the shower and where it
branched from [11]. This also implies that color charge is conserved along the parton
shower. This is useful when we simulate the parton shower using a Monte-Carlo event
generator.

3.1.2 Parton evolution
We can introduce the parton distribution function (PDF) f (x, t) that we mentioned
earlier, which represents the probability to find a parton with a momentum fraction x of
the original momentum p, at a given time in the evolution of the jet. The probability that
a parton j emits a collinear parton i, with a momentum fraction z, is described by the
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Altarelli-Parisi splitting functions Pi j(z) [23]. The method of deriving the splitting
functions is outlined in section 5 in [11]. The resulting splitting functions is,

Pgg =CA[
1− z

z
+

z
1− z

+ z(1− z] (3.3)

Pqg(z) = n f TR[z2 +(1− z)2] (3.4)

Pqq(z) =CF
1+ z2

1− z
(3.5)

Pgq(z) = Pqq(1− z) =CF
1+(1− z)2

z
(3.6)

where the color factors are CA = 3, CF = 4/3 and TR = 1/2. The factor n f = 5 is the
number of active quark flavors and represents the probability of a gluon emitting a qq̄-
pair with equal probability for all flavors. The probability of emitting a gg-pair from a
quark is the same regardless of its flavor and also, when a quark emits a gluon there is
no flavor change. This is all under the assumption that the quarks are massless [23].

This parton distribution f (x, t) is described by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) evolution equations [11]. The DGLAP equations read [24]

f (x, t) =△(t) f (x, t0)+
∫ dt ′

t ′
△(t2)

△(t ′)

∫ dz
z

P(z) f (
x
z
, t ′), (3.7)

where P(z) is the Altarelli-Parisi splitting functions where we have dropped the flavor
indices, t = Q2 ≃ p2

T is the evolution parameter, f (x, t) is the PDF and △(t) is called
the Sudakov form factor. The Sudakov form factor is defined as

△(t) = exp[−
∫ t

t0

dt ′

t ′

∫
dz

αs

2π
P(z)]. (3.8)

The Sudakov is the probability of a parton not decaying between the evolution scales
t0 to t, which in our case is the virtuality. Hence, the DGLAP describes the decreasing
virtuality of an initially hard particle. Eq. 3.7 consists of two terms. The first term
describes the evolution of a particle if no decay takes place. The second term describes
the evolution of a particle if a decay happens between the evolution scale t and Q2.
Formulating the parton evolution in terms of the Sudakov is well suited for computer
simulations of jets and parton showers.

As a parton evolves, the time it takes before a decay happens is called the formation
time t f . The formation time is defined as

t f = 2
E
Q2 (3.9)

where the factor 1/Q is the time scale of decay for an off-shell particle and the factor
E/Q is a boost factor due to time dilation. The formation time of a particle becomes
endowed with physical meaning when we consider a particle moving through a medium
since the plasma has an extension in space-time.
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3.1.3 Monte Carlo Event Generators
Monte Carlo (MC) event generators are used to simulate QCD parton branching.
They simulate QCD parton branching by using the DGLAP equations and the Sudakov
form factor. In the second term in Eq. 3.7, we have the ratio △(t)/△(t ′) which tells us
the probability of a parton branching between the evolution scales t and t ′. This is the
basis of the modern MC branching algorithms.

The branching algorithm works as follows: given the evolution parameter t1 and
momentum fraction z1, after some step in the evolution, generate the values (t2,z2) of
the next step [11]. This is done by generating a random number R from a uniform
distribution between 0 and 1, and obtaining t2 by solving

△(t1)
△(t2)

= R. (3.10)

If the value of t2 is lower than the cut-off value t0, then there is no further branching
[11]. Otherwise, we continue with the next branching and generate a new momentum
fraction z = x2/x1. We can do this by solving the equation∫ x2/x1

ε

dz
αs

2π
P(z) = R′

∫ 1−ε

ε

dz
αs

2π
P(z) (3.11)

where R′ is another random number between 0 and 1, P(z) is the appropriate splitting
function and ε is the infra-red cut-off for resolvable branching. This applies to timelike
parton branching. The values (ti,xi) generated define the virtual masses and momentum
fractions of the exchanged parton, from which one can compute the momenta of the
parton.

Successive timelike branching generates a parton shower. Each branch is the source
of a new cascade until the cut-off is reached. At the cut-off scale, the outgoing partons
are converted into hadrons via some hadronization model to simulate real-life events.
Typical cut-off scales are around 0.2− 1 GeV. Hadronization will not be discussed in
this thesis.

Numerous parton shower generators exist, each with its own advantages and disad-
vantages. In this thesis, we use the event generator of PYTHIA8 [8] to generate vacuum
events.

3.2 Jets in a Medium

When a particle propagates through a medium, it interacts with the medium, giving
rise to complex phenomena such as jet broadening and energy loss. When a jet travels
through a medium, such as a QGP, it interacts with the medium and loses energy to the
medium, this is known as jet quenching.

3.2.1 Jet Quenching
Jet quenching is the suppression of high-energy jets in heavy-ion collisions. When a
jet propagates through a QCD medium, the components of the jet suffer energy loss
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Figure 3.2: Illustration of jet quenching in a head-on nucleus-nucleus collision. Two quarks suffer a
hard scattering: one goes out directly to the vacuum, radiates a few gluons and hadronises, and the other
goes through the dense plasma created (characterized by transport coefficient q̂, gluon density dNg

dy and
temperature T ), suffers energy loss due to medium-induced radiation and finally fragments outside into
a (quenched) jet. Figure from [25].

while the jet passes through the medium. Figure 3.2 illustrates the quenching of a jet
in a heavy-ion collision. The quenching of a jet depends on both the characteristics of
the jet propagating through it and on the medium properties.

When measuring jet quenching in experiments, one measures the ratio of the pT
spectrums of a jet from a heavy-ion collision and a pp-collision. This is quantified by
the nuclear modification factor RAA, defined experimentally as

RAA =
1

nAA

dNAA

d pT dη
/

dN pp

d pT dη
(3.12)

where nAA is the average number of binary nucleon-nucleon collisions, NAA is the av-
erage particle multiplicity and N pp is the multiplicity in proton-proton collisions. The
presence of jet quenching manifests itself in the suppression of the pT spectrum of
high pT hadrons [26].

High-energy jets are good probes to study jet quenching because they are produced
at high energy scales, which guarantees that their production spectrum is under good
theoretical control since it is governed by perturbative QCD [27]. Similarly, the proper-
ties of jets in a vacuum are also controlled by physics at high energy scales. Therefore,
systematic deviations of these properties in a heavy-ion environment must be due to the
jet’s interaction with the medium. In general, interaction with a medium will lead to
energy loss in the final jet, but the precise process depends on the nature of the medium.

A weakly coupled medium means unrealistic high temperatures at which the cou-
pling constant at the medium scale is so small that the medium can be described as a
collection of scattering centers. Then one can describe the interaction between a par-
ton and the scattering centers in the medium using weak coupling techniques. The
two techniques for weakly coupled mediums are collisional and radiative energy loss
[12], shown in Figure 3.3. The collisional energy loss is due to the elastic scattering
of an incoming parton with a medium constituent. [12]. Collisional energy loss is the
dominant process at low particle momentum. Radiative energy loss through inelas-
tic scatterings with the medium dominates in high momentum processes. This process
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Figure 3.3: Diagrams for collisional (left) and radiative (right) energy losses of a quark of energy E
traversing a quark-gluon medium. Figure from [25].

causes the parton to radiate gluons through gluon bremsstrahlung [25].
The production of a hard parton and the fragmentation of that parton is controlled by

weakly coupled physics at high momentum scales. However, the physics of the medium
produced by heavy ion collisions is not weakly coupled, as previously mentioned the
QGP is more like a droplet of strongly coupled liquid. To combine the weakly coupled
physics of the parton with the strongly coupled physics of the medium, they proposed
a new approach called the hybrid strong/weak approach to jet quenching [27].

3.2.2 The Hybrid Strong/Weak Coupling Approach
The hybrid strong/weak coupling approach [27] is a model for the energy loss of a
jet traveling through a strongly coupled medium. The model treats physical processes
at different energy scales separately. The model treats the weakly coupled dynamics
involved with the creation and evolution of jets perturbatively. The dynamics of the
strongly coupled medium are obtained via gauge/gravity duality. That allows us to
draw quantitative relations between a strongly coupled gauge field theory and a weakly
coupled string theory [28].

The weakly coupled processes occur at momentum scales set by the virtuality,
Q ∼ pT . The strongly coupled process involves momenta at the typical scales that
characterize the medium, which is at the order of the temperature T . For high-energy
processes involved in heavy-ion collisions at the LHC, these two scales are sufficiently
separated so that Q ≫ T . We use this separation of scales to justify the different treat-
ment of the relevant dynamics at each regime.

The hybrid model is a minimalistic model. It only uses the well-understood weakly
coupled and strongly coupled physics, and introduces as few as possible phenomeno-
logical parameters. In the hybrid strong/weak model, they focus only on the loss of
energy of the partons in the shower which can be modeled with a single free parame-
ter. Since the momentum transfer between the partons and the medium is not large, the
physics of energy loss can be described by strong coupling processes.

While the jet evolves inside the medium, its constituents continuously interact with
the medium and exchange momentum. In this model, we assume that the exchange
of momentum with the medium is so small that it cannot alter the weakly coupled
processes of the high-virtuality partons. This assumption holds since the evolution
reaches the non-perturbative hadronization scale when almost all the partons in the
shower are outside the medium [29]. We also assume that the splitting probabilities are
not modified by these soft exchanges.
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As a consequence of the soft exchanges of momenta with the medium, the particles
in the shower lose energy as they propagate through the strongly coupled medium [30].

Figure 3.4: Sketch of two views of the interaction of a high energy jet with the strongly coupled plasma.
In the gauge theory, represented by the white plane at the top of the figure, an energetic virtual parton
propagates through the medium, loses energy, and splits via (vacuum) DGLAP evolution. In the dual
gravitational view, represented below, the soft interactions are represented by a string trailing behind
each parton, transporting energy from the parton “down” to the horizon which is represented by the
black plane at the bottom of the figure. Figure from [30].

In vacuum physics information about when and where anything happens is unim-
portant since the components of the jet do not interact with anything, they simply frag-
ment. However, in a heavy-ion environment, before the jet emerges from the medium,
every parton in the particle shower interacts with the medium, and the medium changes
as a function of time and space. Therefore, we need to know when and where each
splitting happens. This is where the formation time t f from Eq. 3.9 comes in. The
formation time describes the time it takes for a parton to decay.

To model this interaction with the medium, we use the gauge-gravity duality. The
concept of gauge-gravity duality is illustrated in Figure 3.4. The vacuum interaction
and DGLAP evolution happen in 4-dimensional spacetime. If we add a 5th dimension
in the y-axis of this plot and say that the bottom plane is the horizon of a black hole, then
we can use the gauge-gravity duality description. The black hole is a proxy for the
medium, where the black hole has the same Hawking temperature T as the medium.
The interaction with the medium can be represented by a string trailing behind each
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parton, transporting energy from the parton "down" to the horizon. The pull of the
string causes the partons to lose energy. The parton itself is represented by the endpoint
of the string, and is also pulled "downward" toward the horizon. If a parton gets pulled
so far down that it disappears into the horizon, then it is no longer part of the jet but
becomes part of the medium.

Due to the gauge-gravity duality, we get this equation for the energy loss of a parton
per distance x, or time since we are in spacetime after all,

dE
dx

|stronglycoupled =− 4
π

Ein
x2

x2
stop

1√
x2

stop − x2
, xstop =

1
2κSC

E1/3
in

T 4/3 (3.13)

Here, Ein is the initial energy of the parton before it enters the plasma, T is the local
temperature of the plasma, and xstop is the stopping distance. The stopping distance
is the smallest distance traveled through the medium which results in the energetic
excitation losing all of its energy. The dimensionless κSC is taken as a free parameter
that is fit to hadron and jet suppression data [31].

Figure 3.5: Evolution of the wake through time. Figure from [32].

The amount of energy lost by a parton, as described by Eq. 3.13, corresponds to
the amount of energy flowing into the QGP [33]. The flow of energy into the QGP
generates a wake that moves in the same direction as the jet [34]. When energy is
deposited into the medium, the energy is spread out through the medium through time
as one can see in Figure 3.5. As one can see, the energy is spread out over a larger area
of the medium and diluted after some time. As the plasma reaches hadronization, or
parton freezeout, the energy of the wake is deposited into thermal particles, using the
equation here.

Since the wake dilutes the energy deposited in the medium, then the wake creates
many soft particles at wider angles. For a jet with a certain jet radius, this means that a
lot of thermal particles are not within that radius after exiting the medium, and that is
why not all the energy deposited into the medium is returned to the jet, and the jet in
question loses energy.

The contribution from the wake in the hybrid model is estimated by an expansion
of the Cooper-Frye formula at the perturbed freeze-out hypersurface, which yields [35]

E
d△N
d3 p

=
1

32π

mT

T 5 cosh(y− y j)exp [−mT

T
cosh(y− y j)]

{pT△PT cos(φ −φ j)+
1
3

mT△MT cosh(y− y j)},
(3.14)
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where pT , mT , φ and y are the kinematic parameters of the emitted thermal particles,
and where △PT and △MT =△E/coshy j are the transverse momentum and transverse
mass transferred from the jet, with φ j and y j. The thermal particles are then hadronized
using the Lund string model included in PYTHIA [8].

The final state particles after the jet has passed through the medium will contain
the hadronized particles from the parton shower after they have been modified and lost
energy, as well as the hadronized thermal partons from the wake.

Figure 3.6: Illustration of energy loss in the hybrid model. Figure from [36].

To determine the amount of energy loss suffered by the jet due to the propagation
through a QCD medium, we calculate, on a jet-by-jet basis, the energy loss ratio

χ ≡
E f

Ei
, (3.15)

where E f is the final state energy after interactions with a medium pT and Ei is initial
energy. We identified as the initial jet energy as the energy of the corresponding vacuum
jet after the matching procedure, with Ei = pT,pp. The pT of the vacuum jet will not
be exactly the same as the initial energy, because even here the vacuum jet loses some
energy in the branching. An example of a vacuum jet and a corresponding medium-
modified jet can be found in Figure 3.6. To ensure we find the corresponding jets, we
perform the matching procedure explained here:

Given a medium-modified jet of energy, E f = pT,PbPb, we find its vacuum partner
with the following matching procedure:

1. Create the vacuum jets by clustering the list of vacuum hadrons, without medium
modifications.

2. Create the medium jets by clustering the list of medium-modified hadrons, in-
cluding the hadrons from the hadronized parton shower and the wake.

3. For each medium jet, get its vacuum partner by selecting the highest pT vacuum
jet whose axis is within △R < 0.4 from the medium jet axis.

The procedure described above is for hadronic jets, but the matching procedure is
analogous for partonic jets.
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3.3 Jet Definitions

A jet definition is composed of two building blocks: the jet algorithm and a recombi-
nation scheme. The jet algorithm is the recipe and a set of parameters associated with
the algorithm. A typical parameter is the jet radius, R, which provides a distance in the
(η ,φ) plane where particles outside the radius are not considered part of the jet. A re-
combination scheme specifies how the kinematic properties of the jet are obtained from
its constituents. Most jet definitions today use the “E-scheme”, which simply sums the
components of the four-vector.

Some general properties a jet definition should have were proposed by the Snow-
mass accord, which was published in 1990 [37] by a group of theorists and experimen-
talists. The Snowmass accords contain the fundamental criteria that any jet definition
should satisfy, and reads as follows,

1. Simple to implement in experimental analysis.

2. Simple to implement in the theoretical calculation.

3. Defined at any order of perturbation theory.

4. Yields finite cross sections at any order of perturbation theory.

5. Yields a cross-section that is relatively insensitive to hadronization.

There is no one standard jet definition that suits all scenarios. Multiple jet algo-
rithms exist, each serving different purposes. There is no single source of informa-
tion about all the different algorithms, and it is not always evident how well the al-
gorithms follow the Snowmass accords. The sensitivity of various jet definitions to
non-perturbative effects, such as pileup and detector effects, has been extensively de-
bated in the context of selecting a jet definition at the LHC [10].

Jet algorithms can be categorized into two main groups: Cone algorithms and
sequential recombination algorithms.

Cone algorithms can be imagined as "top-down" algorithms, relying on the notion
that jet energy flows into a cone-shaped region. In the past, experimentalists favored
cone algorithms, but they were not as popular among theorists due to their lack of
IRC-safety, potentially leading to unphysical outcomes.

Sequential recombination algorithms are "bottom-up" techniques based on the
fact that jets result from successive parton branchings. These algorithms try to invert
this process by iteratively combining pairs of particles into a single object. This recom-
bination is determined by a distance measure, which is minimized when the desired
kinematic property is most favorable. Jets are formed by iteratively clustering particles
that minimize the distance measure, mimicking the progression of a parton shower.

The most popular sequential recombination algorithms are the generalized kT al-
gorithms [9]. These algorithms take a list of the particles in the event and cluster them
with the following algorithm:

1. From the list of objects, create two distance measure metrics: An inter-particle
distance

di j = min{p2p
T,i, p2p

T, j}
△R2

i j

R2 (3.16)
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where p is a free parameter that we will return to shortly, △Ri j is the angular
distance between the particles in the (η ,φ) plane and R is the jet radius, and a
beam distance

diB = p2p
T,i. (3.17)

2. Iteratively find the smallest distance among the di j and diB

• If the smallest distance is a di j then object i and j are recombined into a new
object k using the recombination scheme. The objects i and j are removed
from the list of objects and k is added.

• If the smallest distance is a diB then object i is called a jet and removed from
the list of objects.

3. Repeat until left with only one object.

We see that two objects close in the (η ,φ) plane have small distances di j and are
more likely to recombine. This aligns with our understanding of collinear splittings
in parton showers, where recently split particles exhibit small inter-particle distances.
The choice of the free parameter p allows the distance measure to emphasize various
kinematic properties. The most popular algorithm is the kT algorithm when p = 1, the
Cambridge/Aachen algorithm, when p = 0, and the anti-kT algorithm when p =−1.

The kT algorithm is historically the best-known algorithm in the generalized-kT
family of algorithms. In that case, soft emission will be associated with a small distance
and therefore recombine early in the clustering process. The sensitivity to soft emission
is desirable from a perturbative QCD standpoint, however, has the disadvantage that jets
become sensitive to background radiation and pileup.

Another important algorithm is the Cambridge/Aachen algorithm (C/A). In this
case, the distance measure becomes purely geometrical, and the algorithm is less sen-
sitive to background radiation than the kT algorithm.

At the LHC, jets are almost exclusively identified with the anti-kT algorithm, cor-
responding to p = −1. This algorithm favors hard particles, which will cluster first.
A hard jet will successively combine soft particles around it until it has reached a dis-
tance R away from the jet axis. This means that the hard jets will be insensitive to soft
radiation. Since the algorithm is less sensitive to soft radiation, the anti-kT algorithm
allows calibration in experimental contexts, and that is the main reason it is the default
jet algorithm at the LHC experiments.

In jet substructure studies, several jet algorithms are used. Typically, the jets are
initially reconstructed using the anti-kT algorithm with a large radius. Then, many of
the jet substructure tools require reclustering of the constituents contained in a jet. The
reclustering is then often done with other algorithms, such as C/A, which is easier to
decluster into subjets.

3.4 Kinematics of Parton Branching

Jets can be used to explore different processes by studying different jet observables. Jet
observables are experimentally accessible properties of the kinematic of the jet. One
would like to work with observables that are IRC safe, as little sensitive as possible to
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model-dependent non-perturbative effects such as hadronization, and as little sensitive
as possible to pileup and soft background radiation.

When a jet is measured we typically have access to the transverse momentum pT ,
the mass m, and the detector coordinates in the (φ ,η) space. Each constituent of the jet
has a four-momentum p = (E, p⃗). From these kinematic variables, one can make a lot
of different observables.

Let us define some observables for an arbitrary 1 → 2 splitting. In Eq. 3.1 we
have defined the momentum-sharing fraction, which can be rewritten in terms of the
transverse momentum as

z =
min(pT,1, pT,2)

pT,1 + pT,2
, (3.18)

where the indices 1,2 represent the two subjets of the splitting. We can also rewrite the
opening angle, or splitting angle, θ from Eq. 3.2 as

θ = arccos
p⃗1 · p⃗2

|p⃗1|+ |p⃗2|
=△R12. (3.19)

where △R is the distance between the particles, or subjects, in the (φ ,η) space. Finally,
one can also rewrite the formation time from Eq. 3.9 as

t f =
2pT

M
=

2
kT θ

. (3.20)

In addition to the observables above, we also define the invariant jet mass M, using
the energy sharing fraction and splitting angle, by the relation

M2 = z(1− z)p2
T θ

2, (3.21)

and the relative transverse momentum kT

kT = z(1− z)pT θ . (3.22)

These are some relevant examples of observables that encodes a lot of information
about each splitting in the jet and the jet substructure.

3.4.1 Lund Plane
Lund diagrams [39] are theoretical representations of the internal structure of a jet.
Lund diagrams represent the radiation patterns inside the jet and are often plotted as a
triangle in a lnR/θ and lnkT/pT ≈ lnzθ/R plane, also called the Lund plane, as shown
in the left plot in Figure 3.7. Depending on the characteristics of the jet, certain areas of
the Lund diagram are populated. The area right below z = 1 is typically populated by
jets containing hard, collinear radiation with large z values. Jets with soft, large-angled
radiation typically resides at low values of 1/θ .

The Lund diagram is obtained by reclustering a jet’s constituents with the Cambridge-
Aachen algorithm, and then decluster the jet and going through each step in the clus-
tering sequence from the full jet down to the constituents creating a tree-like structure.
The Lund tree is created by the following process:
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Figure 3.7: Left: The Lund plane for jets with opening angle R, highlighting the areas typically popu-
lated by soft, large-angled radiation and hard, collinear radiation. Right: Example of how to construct
the primary Lund Plane. Figures from [38].

1. Declustering the current jet into two subjets j1, j2.

2. Calculate a number of kinematic variables associated with the declustering, which
we denote as the tuple T(i)

T(i) = {kT ,θ ,z,m,ψ} (3.23)

where ψ = tan−1( yb−ya
φb−φa

) is the azimuthal angle around the subjet j1’s axis.

3. Repeat the procedure for subjets j1 and j2 if they contain more than one particle.

This procedure produces a binary Lund tree with a tuple of observables T(i) for each
splitting i of the Lund tree. The first two elements of the tuple provide the coordinates
in the Lund plane of the splitting, and the remaining variables provide complementary
kinematic information.

A Lund diagram is then built by mapping every splitting along one branch of the
jet to a point on the Lund plane. One branch is defined as following the hardest split-
ting in each vertex all the way through the tree. The primary emissions off the main
branch build up the primary Lund plane and are illustrated in the right plot in Figure
3.7. Emission from each of these primary emissions generates new, orthogonal Lund
planes, and so on. The primary Lund plane can be used as a two-dimensional visual
representation of the radiation patterns in a jet [40].

Corrections to the Lund plane originating from non-perturbative hadronization ef-
fects affect the low kT region of the plane [6]. One can therefore limit the dependence
on non-perturbative effects by removing emissions that fall below a certain transverse
momentum kT threshold.

3.5 Jet Substructure Tools

Jet substructure studies aim to investigate the inherent kinematic characteristics of jets.
However, the presence of background radiation and pileup can obscure the internal
structure of jets. To disentangle the signal from noise, various jet structure tools are em-
ployed. Two widely used tools are background subtraction and jet grooming. Although
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these tools share similarities, background subtraction primarily focuses on eliminating
soft radiation within the jet, while grooming techniques are designed to target specific
regions on the Lund plane.

3.5.1 Background Subtraction
Constituent subtraction [41] is the local subtraction of soft background radiation and
pileup at the level of individual constituents. Constituent-based subtraction is per-
formed particle-by-particle, simultaneously correcting the 4-momentum of the jet and
its substructure. This is done by combining the kinematics of particles within a specific
jet with the kinematics of soft "negative" particles that are added to balance the pileup
contribution.

The basic ingredient of constituent subtraction is pileup energy density estimation.
The contamination due to pileup is described in terms of the transverse momentum
density ρ and mass density ρm. All particles in the event are grouped into patches in
order to estimate the densities. The patches are defined by jets reconstructed using the
kT algorithm. The pT,patch and mδ ,patch of each patch are determined by summing over
all particles within the patch, so that

pT,patch = ∑
i∈patch

pT,i, mδ ,patch = ∑
i∈patch

(
√

m2
i + p2

T,i − pT,i), (3.24)

where pT,i and mi are the transverse momentum and mass of particle i. Each patch
covers a certain area Apatch in the (η ,φ ) plane. The overall pT and mass densities are

ρ = medianpatches{
pT,patch

Apatch
}, ρm = medianpatches{

mδ ,patch

Apatch
}. (3.25)

The estimation of the background densities is followed by a scheme by which to do
the subtraction. In this approach, massless particles with very low momentum are
incorporated into the event so that they uniformly cover the (η ,φ ) plane with high
density. These soft particles are referred to as ghosts and are most commonly used to
define the area of a jet [42]. Each ghost covers a fixed area, Ag, in the (η ,φ ) plane. The
4-momentum of each particle or ghost is expressed by

pµ = [E, px, py, pz] = [(pT +mδ )coshy, pT cosφ , pT sinφ ,(pT +mδ )sinhy] (3.26)

where mδ =
√

m2 + p2
T − pT . After adding ghosts into the event, the jet clustering

algorithm runs over all particles and ghosts, giving back the same jets as in the case
without the ghosts. Now the jets contain the real particles as well as ghosts, where the
ghosts can be used to correct for the pileup in each jet.

We pick the jet we are interested in and separate the ghost particles from the real
particles. We then create the 4-momentum for each ghost by identifying the transverse
momentum pg

T and mass mg
δ

for each ghost with area Ag as

pg
T = Ag ·ρ, mg

δ
= Ag ·ρm. (3.27)
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For each pair of particle i and ghost k, the distance measure △Ri,k is defined as

△Ri,k = pα
T,i ·

√
(yi − yk)2 +(φi +φk)2 (3.28)

Generally, α can be any real number but is taken to be zero here. The list of all distance
measures is sorted from the lowest to the highest value. Then we start from the particle-
ghost pair with lowest △Ri,k. For each pair, the transverse momentum pT and mass mδ

for each particle i and ghost k are modified as follows

pT,i ≤ pT,k :

{
pT,i → pT,i − pT,k

pT,k → 0
otherwise :

{
pT,i → 0
pT,k → pT,i − pT,k

(3.29)

mδ ,i ≤ mδ ,k :

{
mδ ,i → mδ ,i −mδ ,k

mδ ,k → 0
otherwise :

{
mδ ,i → 0
mδ ,k → mδ ,i −mδ ,k

(3.30)

The azimuthal angle φ and rapidity η of the particles and ghosts remain unchanged.
The iterative procedure ends when the end of the sorted list is reached. One can also
introduce a threshold △Rmax to stop the iterations, this can guarantee that only a ghost
neighboring to a given particle is used to correct it. Then, particles with zero transverse
momentum are discarded, and we can recombine the jet of the remaining particles.

The above-described subtraction procedure corrects the 4-momentum of a jet with-
out ruining its internal substructure.

3.5.2 Jet Grooming
Jet grooming techniques have been developed to mitigate the influence of soft back-
ground radiation on jets. These methods typically involve the removal of soft radiation
originating from the background rather than the QCD radiation within the jet. By tar-
geting regions in the Lund plane that are predominantly populated by background par-
ticles, groomers effectively reduce the impact of soft radiation. Additionally, groomers
can be applied in a tagger mode, allowing them to identify the most important 1 → 2
splittings in the Lund tree. In the following section, we will outline several well-known
grooming techniques.

The Mass-drop tagger was originally proposed as a tool to isolate boosted Higgs
bosons from the QCD background [43]. In this method, one first reclusters the jet
constituents of the jet with the C/A algorithm, and follow the recipe as follows:

1. Break the jet j into subjets j1 and j2 by undoing the last step of the clustering

2. If the splitting follows these two conditions, then we keep j as the final jet:

max(m j1,m j2)< µcutm j (3.31)

min(p2
T, j1, p2

T, j2)△R2
j1 j2 > ycutm2

j (3.32)

3. Otherwise, we redefine j to be the most massive of the subjets, and iterate the
procedure.
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4. If j can no longer be declustered, keep j as the final jet

The procedure has two parameters, the mass-drop parameter µcut and the symmetry cut
ycut . The mass-drop tagger is a technique used to identify two-pronged boosted objects
by utilizing the principles of symmetric cut and mass-drop condition. The symmetric
cut requires the identification of two distinct and energetic prongs within the jet, while
the mass-drop condition ensures the transition from a jet originating from a massive
boson to two jets arising from massless QCD radiation. Originally designed as a tagger,
the mass-drop tagger also serves as a grooming tool as it progressively removes soft
radiation located in the outer regions of the jet.

The modified mass-drop tagger (mMDT) was proposed as an adaptation of the
Mass-drop tagger to prioritize the hardest branch, rather than the most massive branch,
during the iterative declustering process [44]. This modification simplifies and en-
hances the analytical calculations involved in the tagger. Additionally, the study in-
troduced two minor modifications to further refine the technique. First, the symmetry
condition is replaced by

min(pT, j1, pT, j2)> zcut(pT, j1 + pT, j2) (3.33)

which slightly reduces sensitivity to non-perturbative effects. Second, the mass-drop
condition would only enter as a secondary correction in the strong coupling constant,
compared to the symmetry condition, and can therefore usually be ignored.

SoftDrop[45] can be seen as a generalization of mMDT. It replaces the symmetry
condition for the declustering with

min(pT, j1, pT, j2)

pT, j1 + pT, j2
> zcut(

△R j1 j2
R

)β (3.34)

where R is the jet radius, zcut is the symmetry cut and the β parameter control how
aggressive the groomer is. zcut is the same as in mMDT, keeping the hard structure
and excluding the soft emission, starting from large angles. The β parameter controls
the strength of the groomer, wherein the limit β → 0, SoftDrop reduces to mMDT.
Increasing β leads to less aggressive grooming, with β → ∞ returning an ungroomed
jet.

For β > 0, SoftDrop declustering removes soft radiation while maintaining a frac-
tion of the IRC radiation. The consequence of this is that the SoftDrop procedure gives
IRC safe results even on a jet with one constituent. In this regime, SoftDrop acts as a
groomer. For β < 0, SoftDrop declustering can remove both soft and collinear radia-
tion. Thus, in this regime, SoftDrop acts as a tagger since it vetoes jets that do not have
two hard prongs. We typically consider zcut ≃ 0.1 and β ≃ 1.

The Key Concepts of This Chapter

Jets are collimated sprays of hadrons that are created from the branching and evo-
lution of a parton produced in particle collisions. Parton branching refers to the
process of a single parton splitting into two, while parton evolution equations
describe the evolution of the partons from one evolution scale to another.

When a jet travels through a medium, its constituent particles interact with the
medium, resulting in energy loss through a phenomenon known as jet quenching.



32 Jets

Various models exist to describe jet quenching, depending on the properties of
the medium. In the case of QGP, a strongly coupled liquid, a hybrid model is
employed, treating physical processes at different energy scales separately. First,
all constituent particles interact with the medium and experience energy loss. This
energy is transferred to the medium and generates an energy wake that propagates
through the medium. Finally, during hadronization, this energy wake converts into
thermal particles. Since the wake has been distributed through the medium, the
thermal particles from the wake are deposited over a larger region, causing the jet
to lose energy.

Jets are not well-defined objects. To create jets, one has to rely on a clustering
algorithm. The generalized kT algorithms are commonly employed clustering
algorithms, merging pairs of particles based on a chosen distance measure. The
choice of distance measure can slightly influence the kinematic properties of the
resulting jet, which, in turn, can impact the construction of graphs derived from
the jets.
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Chapter 4

Introduction to Machine Learning

Machine learning (ML) is a group of algorithms where the general goal is to recognize
patterns in data. ML algorithms identify and classify structures within a dataset. In
recent times, the improvement in the field of ML has led to a variety of applications
for such algorithms. In physics, the goal is also to learn about the unknown patterns
in nature, and analyze data to create models that are able to predict the behavior of
complex systems [46]. ML tools are able to make predictions based on patterns in data,
however, the resulting models are often referred to as black box models. A black box
model refers to the lack of insight into the underlying workings of the parameters of
the model. This means that our understanding of the physics behind the patterns found
in the data, is limited by our understanding of the data patterns themselves.

The type of ML tools we are interested in is the different approaches to optimize jet
substructure analyses. A jet is defined by a clustering algorithm, which is an example of
an unsupervised machine learning technique [22]. Unlike the output of most clustering
procedures, jets have a physical meaning.

Another ML tool used in jet physics is supervised learning, which includes all forms
of jet tagging, or classification. In high-energy physics, it is possible to generate large
datasets of jets with a known origin, or label. This makes ML especially well suited to
tackle jet physics problems, such as tagging.

In this chapter, we will first give a short introduction to machine learning in general.
Then we will discuss jet representations, such as jet images and graphs, that can be used
in ML. After that, we will take a look at the most relevant machine learning algorithms
for this thesis, namely neural networks (NNs), convolutional neural networks (CNNs),
and graph neural networks (GNNs).

4.1 Basic Concepts of Machine Learning

Machine learning is a subfield of artificial intelligence that enables machines to learn
patterns from data without being explicitly programmed. It involves developing algo-
rithms that can improve their performance at a specific task with experience. There are
various types of machine learning algorithms, including supervised learning, unsuper-
vised learning, and reinforcement learning.

Unsupervised learning is used to find structure in unlabeled data. The goal of
unsupervised learning is often to cluster or group data points based on similarities in
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Figure 4.1: Overfitting vs underfitting. Figure from [47].

the input data. This approach can help identify underlying patterns or relationships in
data sets, even when the categories or labels for the data are unknown.

Supervised learning, on the other hand, relies on labeled datasets. In this approach,
the machine learning model is given input data along with corresponding target outputs
or labels. The model then makes predictions based on the input data and compares
these predictions to the true outputs or labels. The parameters of the model are then
updated based on the differences between the predicted and true outputs, with the aim
of minimizing the error.

Reinforcement learning is a bit different, as it involves the algorithm learning
through trial and error. The algorithm is provided with rules or constraints, and then
tries to learn optimal strategies by maximizing rewards and minimizing punishments.
A classic example of reinforcement learning is training an algorithm to play a video
game, where the reward might be a higher score.

The most commonly used machine learning approach is supervised learning, which
can be used for both classification and regression tasks. In classification tasks, the
algorithm is trained to identify which category or class a data point belongs to. For
example, it might be used to distinguish between images of cats and dogs. In regression
tasks, the algorithm is trained to estimate a continuous relationship between the input
and output variables. For example, it might be used to predict the energy loss of a jet
as it moves through a medium.

Regardless of whether we are dealing with classification or regression, supervised
learning is about learning a function that maps inputs to outputs. The basic operation
of a machine learning algorithm involves a forward pass and a backward pass. During
the forward pass, the input data is processed layer by layer through the model until a
prediction is made. During the backward pass, the algorithm calculates the error in the
prediction and adjusts the weights of the model to improve the performance.

When it comes to choosing the right algorithm for a particular task, it’s important
to keep in mind the "no free lunch" (NFL) theorem [47]. This theorem states that
there is no one algorithm that works best for every problem, and that the performance
of an algorithm is highly dependent on the specific problem being solved. Therefore,
it’s important to evaluate and compare different algorithms based on their performance
on specific tasks.

Another important concept in machine learning is the bias-variance tradeoff,
which explores the relationship between the two sources of error for any model. Bias
refers to how closely the model’s predictions match the true values, while variance
refers to how much the predictions vary based on changes in the input data. This trade-
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off involves balancing the bias of the model with the variance of the model. A high-bias
model is one that is too simple and fails to capture the complexity of the data, while a
high-variance model is one that is too complex and overfits the data. A visualization of
the underfitting of a high-bias model and overfitting of a high-variance model is shown
in Figure 4.1. The optimal model has enough bias to avoid simply memorizing the
training data, and enough variance to actually fit the patterns of the data[47]. Achiev-
ing the right balance between bias and variance is important for building a model that
performs well on new data.

It’s important to be aware of the issue of overfitting when training machine learn-
ing algorithms. Overfitting occurs when the algorithm becomes too good at recognizing
patterns in the training data, to the point where it starts to perform poorly on new, un-
seen data. This can happen if the algorithm is too complex, or if there is not enough data
available to train it effectively. To avoid overfitting, it’s important to test the algorithm
on a separate dataset from the one used for training.

One way to test for overfitting is to split the dataset into training and testing sets.
The training data is used to train the algorithm, while the testing data is used to evaluate
how well it generalizes to new data. A common choice is to split the dataset in 80%
training data and 20% test data. Another way to avoid overfitting is to use regularization
techniques to discourage overly complex models.

Another important consideration when training machine learning algorithms is
choosing the right hyperparameters. Hyperparameters are settings that determine how
the algorithm is trained, such as the learning rate or the number of layers in a neural net-
work. Choosing the right hyperparameters can have a big impact on the performance
of the algorithm, and often requires trial and error to tune.

In summary, machine learning involves creating algorithms that can learn patterns
from data and make predictions or decisions based on that data. When selecting an
algorithm, it is important to choose one that is well-suited for the specific problem being
solved. Overfitting is a common challenge in machine learning that can be addressed
through regularization techniques.

4.2 Jet Representation in Machine Learning

Machine learning algorithms require a proper representation of the data, so the first
step is to decide how to represent particle jet data. Jet physics has complex structures,
and there is no one unique way to encode information about the radiation pattern. In
Figure 4.2, we provide an overview of popular jet representations and the corresponding
algorithms.

One of the most commonly used representations of jets for machine learning pur-
poses is jet images [2], as shown in the middle section of Figure 4.2. Jet images are
snapshots of the energy distribution of the final state particles of a jet, in the azimuthal
angle and rapidity plane, (φ ,η) space. Jet images are great at visualizing the energy
distribution in a jet, and by using pre-processing methods based on jet substructure, we
can extract important information about the jet. When working with images, convolu-
tional neural networks (CNNs) are a natural choice. CNNs are widely used for image
classification tasks, and their use in jet physics has also gained popularity in recent
years.
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Figure 4.2: A schematic overview of the ways to represent jets and the NN that goes with the represen-
tations. Figure from [22].

Despite the promising performance, the jet image representation has two main short-
comings. While it can include all information about the energy distribution within the
jet, how to incorporate additional information of the particles is unclear. Moreover,
treating jets as images also leads to a very sparse representation. A jet typically needs
atleast a 32× 32 image in order to fully contain the jet, however, more than 90% of
the pixels are blank. This makes the CNNs computationally inefficient on jet images.
However, jet images are not the only representation of jets, as shown in Figure 4.2. We
can also use unordered sets of four-vectors, variable sets of observables, sequences of
constituent particles, binary trees originating from the clustering history, or graphs to
represent jets.

Let us now consider the graph representation of jets, which is an extension of the
sequence and binary tree representation. One can represent jets as graphs in various
ways. One can represent each particle in the jet as a node, creating a particle cloud
where the particles can be combined in different ways. Another graph representation
of jets is using the Lund declusterings, or the clustering history of the jet. As we hav
discussed previously, one can build a Lund tree by working through the reclustered jet.
One can transforming the Lund tree into a graph, where each node corresponds to a
Lund declustering and carries the tuple of kinematic variables T from Eq. 3.23. This
graph representation models the branching history of the jet, with each node represent-
ing a branching, or declustering, at a point in the jet’s evolution and being connected to
other nodes through edges. The graph structures allow for the inclusion of any kind of
features for each particle and therefore is significantly more flexible representation of
jets, and can be utilized by graph neural networks (GNNs).

Although GNNs are becoming more popular, they are not yet widely used in jet
physics. However, access to information about the structure and evolution of a jet
should allow the network to learn more about the data and hopefully make better pre-
dictions.

To summarize, jets can be represented in a number of different ways, but the most
relevant for us is jets represented as images and graphs. The use of jet images is very
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popular, and CNNs are widely used for all kinds of image classification tasks. The
graph representation of jets is gaining popularity due to the vast amount of information
available in the clustering history of the jet and GNNs are becoming state of the art
within the machine learning community. In the next sections, we will dive deeper into
CNNs and GNNs, however as both CNNs and GNNs are neural networks (NNs), then
we should first introduce the more general NNs.

4.3 Neural Network

Figure 4.3: Left: An example of a fully connected neural network with the input layer, two hidden
layers and one output node. Figure from [22]. Right: Image of one artificial neuron. Figure from [48].

Neural networks (NNs) are algorithms inspired by the way biological neurons in
the brain work. They are composed of connected nodes that exchange and process
information. There are various types of NNs, including fully connected neural networks
(FCNNs), convolutional neural networks (CNNs), and graph neural networks (GNNs),
which we’ll explore in this section.

Typically, an NN consists of an input layer, one or more hidden layers, and an output
layer. The input layer receives data, and the output layer produces the network’s final
output. In between, the hidden layers perform computations on the data. The left image
in Figure 4.3 shows a simple neural network.

A fully connected neural network, also known as a multilayer perceptron (MLP),
is a simple example of an NN. In an MLP, each node is a perceptron, or artificial
neuron. The typical structure of a perceptron is shown in right image in Figure 4.3.
Each perceptron receives inputs, calculates the weighted sum of the inputs and a bias
term, and applies an activation function to produce an output. The weights and biases
of the perceptrons are the trainable parameters of the network, often called Θ, that get
adjusted during training to optimize the network’s performance. The calculation of the
weighted sum of the inputs is called a linear operation and looks like this:

L(x,Θ) =
n

∑
i=0

Θixi +b (4.1)

where n is the number of inputs.
Activation functions are essential components of neural networks. They introduce

non-linearity to the output, which is crucial for learning complex patterns in the data.
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All activation functions need to be differentiable and quickly converging with respect
to the weights, for optimization purposes. The most common activation functions are
sigmoid, ReLU [49], and softmax.

To improve the performance of an MLP, various tools can be used. Batch normal-
ization [50] is a technique that normalizes the inputs to a layer for each mini-batch,
which speeds up training and reduces the number of epochs needed for convergence.
Dropout [51] is a regularization method that randomly drops nodes in the hidden layers
to reduce overfitting and make the network more robust.

To summarize, simple neural network, such as MLPs, typically consists of an input
layer, one or more hidden layers, and an output layer. The neurons in the network are
interconnected and each neuron performs a computation on its inputs and passes the re-
sult to the next layer of neurons. Neural networks use activation functions to introduce
non-linearity to the model which is crucial to learn complex patterns in data. Various
methods can be used to improve the performance of MLPs, but MLPs are not suitable
for all types of data, such as images or graphs. Convolutional neural networks (CNNs)
are designed to handle image data, while graph neural networks (GNNs) are tailored to
work with graph data. We’ll discuss these specialized types of neural networks in the
next sections.

4.4 Convolutional Neural Network

Figure 4.4: An example of a convolution operator, and padding. Figures from [52].

A convolutional neural network (CNN) is a specialized neural network commonly
used for image processing. Unlike regular MLPs, CNNs are designed to preserve the
spatial information of an image by extracting local features through one or more con-
volutional layers.

CNNs contain one or more convolutional layers, which apply a set of filters to the
input image to extract features. Each filter is applied to a specific area of the image, and
a dot product is computed between the input pixels and the filter. By moving the filter
across the image, a series of dot products are generated, resulting in a feature map that
represents the presence of a certain local feature in the image. This is illustrated in the
left image in Figure 4.4. After the feature map is created one can apply an activation
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function to introduce non-linearity to the model and determine whether a certain feature
is present at a given location in the image. The most common activation function for
CNNs is ReLU. Depending on what filter you apply, different features may be detected.
The filters are updated as the network is trained.

One challenge of using convolutional layers is that the filters do not run along the
edges. As we can see in the left image in Figure 4.4, the filter is placed at the first
possible position, but the output of that filter describes the middle pixel of the filter. To
consider the edge pixels of the image one can apply padding, which adds zeros around
the image before applying the filters as shown in the right image in Figure 4.4. This
ensures we do not lose information about the edge of the image and that the resulting
feature map has the same dimensions as the original image.

After each convolutional layer, a pooling layer is often added to reduce the size of
the feature map and extract the most important features. There are different types of
pooling, such as max pooling and average pooling, which compute the maximum or
average value of a local region of the feature map. Pooling helps to reduce the number
of parameters in the network and prevent overfitting.

After several convolutional and pooling layers, the network typically ends with one
or more fully connected layers, which flatten the output of the previous layer and apply
a set of weights to produce the final output. The fully connected layers can be used to
classify the input image into different categories or perform regression tasks.

To summarize, convolutional neural networks extract local features from images
using convolutional layers. Convolutional layers apply a set of filters to the image and
compute the dot product between the filter and the input pixels. One can use padding
to extract information also from the edges of the image, while one can use pooling to
reduce the dimension of the feature maps and reduce the number of trainable parameters
in the network. CNNs usually end with fully connected layers leading to a single output
node.

4.5 Graph Neural Network

A Graph Neural Network (GNN) is a type of neural network that is specifically de-
signed to operate on graph-structured data [53]. A graph is a collection of objects,
referred to as nodes, and the connections between them, called edges. Graphs can rep-
resent various types of data and their relationships, making them a flexible and powerful
data structure. The information associated with each node or edge can be used as input
to a GNN, and the entire graph can also contain global information. By utilizing the in-
formation of the neighboring nodes, information is accumulated through the layers in
a GNN, as visualized in Figure 4.5.

An adjacency matrix is a way to represent the connectivity of a graph in matrix
form. It is a square matrix where each entry corresponds to a connection between two
nodes. In Figure 4.6 we find an example of the adjacency matrix for a reclustered jet.

The simplest GNNs apply separate MLPs on each component of the graph - nodes,
edges, and the global graph - to learn representations of each component. The output
graph has the same number of nodes and edges as the input graph, and its connectivity
remains unchanged.

Pooling is a technique commonly used in CNNs to reduce the spatial dimensions of
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Figure 4.5: An example of how information from one node accumulates through layers in a GNN.
Figure from [53].

Figure 4.6: An examples of an adjacency matrix for a simple jet with two subjets.

Figure 4.7: Example of message passing. Figure from [53].

the input, but it can also be used in GNNs to aggregate node features or edge features.
One way to perform pooling in GNNs is by using message passing [54], where neigh-
boring nodes or edges exchange information. Message passing works in three steps:
gathering messages from neighbors, aggregating the messages, and updating the node
or edge embeddings using an update function. The concept of message passing is illus-
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trated in Figure 4.7. The message-passing steps are key to utilizing the connectivity of
graphs, and by stacking multiple message-passing GNN layers, a node can incorporate
information from across the entire graph.

Different GNN architectures may focus on node features or edge features, depend-
ing on the problem at hand, such as node classification, graph classification, and link
prediction. In the context of jet physics, there are several popular GNN architectures
that emphasize different types of features and employ different message-passing strate-
gies.

To summarize, graph neural networks are specialized for operating on graphs. In-
formation can be stored in both the nodes and edges of a graph, making them very
flexible and powerful data structures. The basis of GNNs is the message-passing be-
tween neighboring nodes, which allows information from the whole graph to accumu-
late through various layers of the GNN.

4.5.1 ParticleNet and EdgeConv

Figure 4.8: The architecture of the EdgeConv block and ParticleNet. Figure from [55].

One of the most popular GNNs for jet physics is ParticleNet [55]. With ParticleNet
they propose an approach that considers a jet as a point cloud of particles. ParticleNet
is a CNN-like graph neural network for jet tagging with particle cloud data. Motivated
by the success of CNNs, ParticleNet adopts a similar approach to learning on particle
cloud data.

However, regular convolution operation cannot be applied on point clouds, as the
points can be distributed irregularly, rather than following some uniform grids as the
pixels in an image. Therefore they have to redefine the definition of a "local patch" for
point clouds.

Edge convolution [56] (EdgeConv) is proposed as a convolution-like operation on
point clouds. EdgeConv starts by representing a point cloud as a graph, whose nodes
are the points them self and the edges are constructed as connections between each
point and its k nearest neighboring points. The EdgeConv operation for each point xi
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has the form
x⃗′i =□k

j=1hΘ(⃗xi, x⃗i j), (4.2)

where x⃗i denotes the feature vector of the point xi and {i1, ..., ik} are the indices of the k
nearest neighboring point of the point xi. The edge function hΘ is some function with
learnable parameters Θ, and □ is a symmetric aggregation operation, such as max,
sum, or mean. The learnable parameters Θ are shared for all nodes. Generally, given
a graph with n nodes and an F dimensional feature vector belonging to each node,
EdgeConv produces a graph with the same number of nodes and an F ′ dimensional
feature vector for each node. The choice of edge function hΘ and aggregation operator
influence the properties of the EdgeConv. In [56] they use the edge function

hΘ(⃗xi, x⃗i j) = h̄Θ(⃗xi, x⃗i j − x⃗i), (4.3)

which encodes both the global shape captured by the features at the central node x⃗i
and the local information captured by x⃗i j − x⃗i [56]. The edge function can be imple-
mented as an MLP, whose parameters are shared among all edges. For the aggregation
operation, they use an element-wise average of the edge features of all the neighboring
edge features, as it shows the best performance [55]. A shortcut connection [57] is also
added to allow the input features to pass through directly.

Putting this all together, one creates an EdgeConv block, as shown in the left image
in Figure 4.8. The input to the EdgeConv blocks is the coordinates of the particle,
to find the k-nearest neighbors and the feature vector for the node. An EdgeConv
block is characterized by the number of neighbors k and the number of channels C
corresponding to the number of units in each linear layer. One important feature of the
EdgeConv is that it can easily be stacked, similar to regular convolutions, as it only
changes the dimensions of the feature vector while the graph itself stays the same.

The architecture of ParticleNet is shown in the right image in Figure 4.8. It consists
of three EdgeConv blocks, then a global average pooling operation is applied to aggre-
gate the learned features over all particles in the cloud. This is followed by two fully
connected layers, where the second fully connected layer had two units, and is followed
by a softmax activation function, as to generate the output for the binary classification
task.

To summarize, ParticleNet is a CNN-like graph neural network that does jet tagging
on a particle cloud. To do this it uses a similar approach as CNNs, by implementing
an edge convolution operation. The edge convolution operator considers the k nearest
neighbor of each particle when creating the feature map. This allows information from
essentially the whole graph to be accumulated into the later layers of the model. Par-
ticleNet then ends with a couple of fully connected layers and finish with a softmax
function to generate a binary classification output.

4.5.2 LundNet
Jets can also be represented as graphs by considering the Lund tree. The Lund tree
contains a rich set of information on the substructure and radiation patterns of a jet,
therefore serving as a natural way to represent jets in machine learning. As mentioned,
one can transform the Lund tree into a graph with each declustering as a node with the
feature vector T from Eq. 3.23.
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Figure 4.9: (a) Illustration of the EdgeConv operation on a node in the Lund Tree. (b) The architecture
of the EdgeConv block. (c) The architecture of the LundNet model. Figure from [6].

To utilize this graph representation one can use LundNet [6], which is an adaptation
of ParticleNet, with edge convolutions. In these graphs, each node corresponds to
a Lund declustering and carries feature vector T. Figure 4.9(a) is an illustration of
how the EdgeConv operation updates a node in the graph. While the EdgeConv in
ParticleNet updates the feature vectors based on the k nearest neighbors, the graphs
in LundNet are predetermined and each node can only have up to three edges. This
means that LundNet does not require the k-nearest neighbor search, which reduces the
computational cost drastically.

Much like ParticleNet, LundNet consists of several EdgeConv blocks. As the opera-
tion is simplified to at most three known connections, the EdgeConv block is simplified,
as one can see in Figure 4.9(b).

The architecture of the LundNet model is shown in Figure 4.9(c). They stack six
EdgeConv blocks to form a deep graph network. The model can now use more Edge-
Conv blocks than as the computational cost is reduced without the k-nearest neighbor
search. The outputs from these EdgeConv blocks are concatenated per node and fur-
ther processed by another MLP to better aggregate features learned at different stages.
Then, a global average pooling is applied to read out information from all nodes in the
graph. This is followed by a fully connected layer with dropout, before the final output.

The LundNet model is implemented using Deep Graph Library [58] and PyTorch
[59].

To summarize, LundNet is an adaption of ParticleNet which considers the Lund
tree. The Lund tree is a binary tree, meaning it has only up to three connections for each
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node. This means that the k nearest neighbor search from ParticleNet is not necessary
and the computational cost is drastically reduced.

The Key Concepts of This Chapter

The utilization of jet images and convolutional neural networks (CNNs) has be-
come increasingly popular in the field of jet physics. However, due to the inherent
limitations of jet images in capturing additional information beyond radiation pat-
terns, alternative jet representations for machine learning applications have gained
attention.

One such representation is the graph-based approach, which allows for the ex-
traction of information from the internal structure of jets and enables the inclusion
of plenty of node-specific information. Jets can be represented as graphs using
various methods, such as point clouds with k nearest neighbors or the Lund tree
representation.

To exploit the graph-like nature of jets, we can use graph neural networks. In
particular, we are interested in using the framework of LundNet, a powerful tool
designed to analyze the Lund tree. The Lund tree contains a rich set of information
regarding a jet’s substructure and radiation patterns. LundNet employs edge con-
volutions, inspired by the convolutional operators in CNNs, to effectively gather
information from the entire tree structure through the graph neural network.



Chapter 5

Task Description and Network Architec-
ture

This chapter delves into the specifics of our task, which revolves around predicting the
energy loss experienced by a jet as it traverses a medium.

During the jet’s journey through the medium, interactions with the environment
result in energy loss for its constituent particles. However, the presence of a steeply
falling production spectrum introduces a bias towards jets that have undergone minimal
energy loss. This bias poses a challenge to the interpretation of jet quenching, as it
neglects the most heavily modified jets. To overcome this limitation, it is useful to be
able to estimate the magnitude of energy loss suffered by jets due to interactions with
the medium. In this regard, various machine learning techniques can be employed.

The primary objective of this chapter is to provide a comprehensive overview of our
task, examine previous work on the subject, and describe the network architecture we
will employ in this thesis. Furthermore, we introduce the dataset, introduce all relevant
pre-processing steps, and outline the key aspects we aim to investigate in the analysis.
Through these efforts, we establish the groundwork for a detailed exploration of our
approach to predicting jet energy loss.

5.1 Task Description

When studying modifications of jets in experiments, it is common to select jets within a
specific pT range. However, this introduces a selection bias due to the steeply declining
jet production spectrum. Jets that have lost a significant amount of energy are unlikely
to be observed above the pT cut, as they would have been produced at higher pT where
the spectrum is suppressed. Consequently, the actual impact of medium effects on final
measurements becomes obscured, posing challenges in extracting information about
the properties of the medium.

To mitigate the selection bias and gain a better understanding of the medium effects,
it is essential to estimate the energy loss experienced by individual jets, a nontrivial
task on a per-jet basis. Machine learning techniques provide a means to predict energy
loss, where regression models learn the relationship between input features and the true
output values. However, the choice of machine learning model depends on the type of
input representation employed.
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In this section, we delve into the most relevant architectures, inspired by previous
work, as we explore alternative jet representations. These explorations aim to enhance
our approach to predicting energy loss.

Before proceeding, it is worth mentioning our decision to predict the energy loss
ratio, denoted as χ , and the rationale behind this choice. Firstly, χ serves as a suitable
metric for assessing energy shifts at the level of observable particles, aiding in the
mitigation of event generator bias. Moreover, neural networks demonstrate effective
approximation capabilities for χ , outperforming alternative quantities [5]. Lastly, the
calculation of χ from hybrid events is straightforward, further supporting its selection
as the target variable for our predictions.

5.2 Previous work

Figure 5.1: Architecture of the CNN for predicting the energy loss ratio χ jh from jet images. Figure
from [5].

A previous study employed jet images and a convolutional neural network (CNN)
to predict energy loss in a hybrid model [5]. The goal of the study was to predict the
energy loss and explore the modification of observables depending on the amount of
energy loss.

The jet images were created as 33×33 pixel representations, with each pixel’s color
corresponding to the deposited energy amount. To preprocess the images, the jet was
first shifted so that the hardest subjet was centered. Next, the image was rotated such
that the second hardest subjet aligned with −π/2 radians. Lastly, a parity flip ensured
that the right side of the jet consistently had a higher sum of pixel intensities. These
preprocessed images served as the input to the network.

The CNN architecture, illustrated in Figure 5.1, comprised three convolutional
layers and one fully connected layer. Batch normalization, PReLU activation [60],
dropout, and average pooling were applied after each convolutional and fully connected
layer. The weight and bias matrices of the filters and dense layers were initialized us-
ing the "He normal" initializer [60] and constrained with L2 regularization [61] in the
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loss function. The output layer consisted of a single neuron for predicting the energy
loss ratio χ .

To assess the difference between the true and predicted χ , the regression task uti-
lized a Log-Cosh loss function. The CNN’s trainable parameters were updated using
the AdaMax optimizer [62], and the network was constructed using Tensorflow Keras
[63].

Figure 5.2: Prediction Performance. Figure from [5].

Figure 5.2 demonstrated the CNN’s prediction performance of χ based on the pre-
processed jet images. The green column represents the normalized joint distribution,
indicating the probability of predicted χ given the true χ bin. The red line with error
bars quantifies the average and standard deviation of the predicted χ for each true χ

bin. The error bar decreases as χ increases. Notably, the red line deviates slightly from
the diagonal line in low and high χ values.

This study explored various input configurations, and the overall conclusion was
that the network performed well. The analysis revealed that the soft particles within the
jet carry highly relevant information about the energy loss magnitude. The total number
of activated pixels in the jet image, predominantly contributed by the production of
thermal particles from the wake, exhibited a strong correlation with the energy loss
ratio.

However, this approach has one shortcoming. There is a decrease in prediction
performance once jets are embedded into a heavy-ion environment. To investigate the
robustness of the results, the jets were embedded in a thermal heavy-ion background,
and constituent subtraction was performed. The performance declined due to noise
from the thermal particles with pT similar to the soft particles originating from the
wake. Enhancing performance under experimental conditions where jets are actually
measured represents the next step in advancing this type of analysis.
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5.3 Our Network Architecture: A Modified LundNet

In this thesis, we adopt a graph representation of the Lund tree to encode the radiation
pattern and jet substructure, utilizing the LundNet framework to predict the energy
loss ratio. The utilization of a graph structure enables us to input a feature vector of
observables for each Lund declustering, incorporating the feature vector T from Eq.
3.23 to provide the network with comprehensive jet information.

However, LundNet is originally designed as a jet-tagging model, which implies that
the graph neural network (GNN) functions as a classification algorithm. As our task
involves regression to predict the energy loss ratio, several modifications are necessary
to transition from a classification task to a regression task.

The first modification involves reducing the number of output neurons to one, align-
ing with the regression setup where a single output predicts a continuous variable rep-
resenting the target value.

Next, we employ a sigmoid activation function on the network’s output. The sig-
moid function confines the output within the range of 0 to 1, which is suitable given
that the energy loss ratio cannot exceed 1 in this case.

Furthermore, we adapt the loss function for regression tasks. Mean squared error
(MSE) loss is a simple and effective choice for regression, in contrast to the Log-Cosh
loss used in the previous work. We also implement L2-regularization and the "He
normal" initializer, following the approach of the previous work.

The final step involves establishing the prediction performance measure. Drawing
inspiration from Ref. [5], we adopt the visualization of prediction performance, which
effectively demonstrates performance across different energy loss ratio values. Addi-
tionally, to provide a concrete performance metric, we compute the average MSE loss
over the test data.

Aside from these modifications, the LundNet architecture remains the same as in
Figure 4.9.

5.4 Dataset and Pre-Processing

The first dataset comprises approximately 100,000 hybrid model events generated from
a parton gun. In this setup, a parton with a transverse momentum of p̂T = 1000 GeV is
fired into a medium.

The second dataset consists of approximately 100,000 hybrid model events created
by a full dijet spectrum at p̂T = 50 GeV and

√
s = 5.02 ATeV, with an oversampling

factor of the hard cross-section of p4
T to ensure sufficient statistics at high pT . These

events correspond to PbPb collisions in the 0 − 5% centrality bin, with an average
temperature of T ≃ 250 MeV.

Both datasets include lists of particles belonging to the vacuum event and medium
event at both partonic and hadronic levels. To construct the jets, we extract the relevant
particles and perform clustering using the anti-kT algorithm with a jet radius of R= 0.4.
Subsequently, we apply the matching procedure outlined in Chapter 3.2.2 to identify
matching vacuum and medium jets. The energy loss ratio χ is then calculated, and the
medium-modified jets and corresponding energy loss ratio are stored for generating the
graphs.
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Since the dataset includes particles at both the hadronic and partonic levels, we can
consider the partonic and hadronic jets separately. Partonic-level jets do not contain
wake particles, as the thermal wake particles are not generated before hadronization.
Therefore, parton jets can be regarded as more perturbative or "clean" objects, while
hadron-level jets capture a broader range of physics, including non-perturbative effects.
Consequently, we now have four datasets that we aim to train our network on.

To train the network using the jet data in our datasets, we need to transform them
into graphs. Graphs are generated by reclustering the jets using the C/A algorithm and
declustering each jet to construct the Lund tree. In this representation, each declustering
corresponds to a node in the graph, and the splitting of particles results in two new
particles, which can be envisioned as the edges connecting the nodes. Therefore, each
node represents a splitting, and the connecting edges represent the particles generated
by the first splitting and subsequently splitting again. Thus, the graph structure serves
as input data for our network.

However, it is important to note that the realistic jet spectrum data exhibits a steeply
falling distribution. Consequently, there is an imbalance in the dataset, with fewer
samples having a large energy loss ratio. This imbalance poses challenges for machine
learning algorithms. To address this, a pre-processing step is implemented to re-weight
the samples, as done in Ref. [5].

The re-weighting procedure involves assigning each sample a weight in the loss
function during training and validation. Since the data is unbalanced both in terms of χ

and pT , a two-dimensional re-weighting approach is proposed. The procedure begins
by creating a two-dimensional histogram with the energy loss ratio χ along the y-axis
and the transverse momentum pT along the x-axis. Next, the effective sample number
Ne f f [64] is calculated for a specific (pT ,χ) bin using the formula:

Ne f f =
1−β N

1−β
, (5.1)

where N is the total sample number in that bin and β represents the probability that a
new sample in that bin is independent of the previous ones.The weight assigned to each
sample is inversely proportional to the effective sample number in the corresponding
bin. To balance the dataset, we choose β = 0.9998, which corresponds to a maximum
of 5000 effective samples in each bin. The choice of β was inspired by Ref. [5]. Bins
with a low number of samples receive higher weights, while bins with a large number
of samples are assigned smaller weights, ensuring that the effective number of samples
in each bin is capped at the maximum limit.

This re-weighting procedure is particularly necessary for jets from the realistic dijet
spectrum, characterized by a steeply falling pT spectrum. In contrast, jets from the
parton gun dataset do not exhibit the same steeply falling spectrum, as they follow
a Gaussian distribution of transverse momentum centered around the peak at p̂T =
1000 GeV. Nonetheless, the distribution of the energy loss ratio remains significantly
imbalanced. Therefore, for parton gun jets, the same re-weighting procedure is applied,
but only for the energy loss ratio, resulting in a one-dimensional re-weighting. This
adjustment helps balance the parton gun datasets.

By employing these re-weighting techniques, we obtain more balanced datasets,
which are then used for training the network.
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5.5 Hopes and Dreams

In this thesis, we delve into our hopes and dreams for this thesis and bring up several
intriguing problems concerning jet quenching and machine learning.

Our primary focus will be on tuning our network to improve the prediction perfor-
mance, and hopefully match the previous work. The previous work done in Ref. [5]
was very successful, and while we have no ambition of surpassing their results, we
do wish to match their preliminary results for hadron-level jets originating from the
realistic jet spectrum.

Another critical aspect of our thesis involves understanding the network’s behavior
and its perception of different jet features. We aim to determine whether the network
favors more or less information and assess the impact of increasing or decreasing the
number of input features. Additionally, we seek to explore the effects of grooming
techniques, such as removing soft radiation, on the network’s performance. Given the
importance of hard radiation in the IRC-safe definition of jets, we believe that removing
soft radiation should not hinder the prediction of energy loss.

Furthermore, we wish to study the robustness of the model, which posed a chal-
lenge in the previous work. We plan to introduce additional soft radiation, effectively
injecting noise into the network, to examine its response. This study will shed light
on whether the network prefers the removal of soft radiation using grooming tools or
if such removal impedes accurate energy loss prediction. Understanding the causes of
performance degradation and exploring the effects of information reduction techniques,
including grooming, are key aspects of our research.

Finally, we recognize the dependence of the clustering algorithm on the construc-
tion of our graphs. Therefore, we wish to investigate the significance of the choice of
clustering algorithm within our framework.

Through this thesis, we hope to be able to make accurate predictions on energy loss
and explore what makes the performance decrease.

The Key Concepts of This Chapter

The aim of this thesis is to enhance the prediction of energy loss experienced by
jets traversing through a medium. Previous studies utilized jet images and a CNN
to achieve promising results, establishing a correlation between the activated pixels
in the image and energy loss (Ref. [5]). However, the performance of the network
declined when the jet was embedded in a thermal background, which is an essential
consideration in realistic experimental scenarios.

To address this limitation, we propose a novel approach by employing a graph
representation of the jet and a GNN. Specifically, we transform the Lund tree
into a graph and adapt the LundNet architecture accordingly to conduct the anal-
ysis. Notable modifications include transforming LundNet from a classification
network into a regression model and adjusting the loss function.

Through this investigation, we aim to explore the inherent graph structure of
jets and develop a network that effectively handles the challenges posed by realistic
scenarios involving an embedded background.



Part III

Analysis and Results





Chapter 6

Vacuum Jets Embedded in a Heavy-Ion
Environment

In the process of reconstructing jets from the final-state hadrons in collisions, no back-
ground subtraction procedure can remove all the particles coming from the hadroniza-
tion of the medium. Therefore, measurements of jets in experiments are often obscured
by the presence of thermal particles emitted by the medium.

To gain a deeper comprehension of the implications of a jet being embedded in a
heavy-ion environment, we will conduct a brief investigation focusing on vacuum jets
embedded within a thermal background. This chapter aims to examine the influence of
embedded background particles on various jet observables and utilize grooming tech-
niques to minimize the impact of the embedded background.

Through this analysis, our objective is to distinguish the signal from the background
and comprehend how the presence of an embedded background influences the charac-
teristics of a jet in a vacuum. This analysis will serve as a foundation for the subsequent
exploration of medium-modified jets embedded in a heavy-ion environment.

6.1 Generating the Vacuum Events

To initiate this study, we begin by generating vacuum events. We generate 100 000
events using PYTHIA8 [8] with an average energy p̂T min = 200GeV . The clustering of
jets is performed utilizing the anti-kT algorithm with a jet radius R = 0.7, using FastJet
[9]. A relatively large jet radius is used to ensure that the jets capture a large number of
background particles.

The background is generated using the Blast Wave model outlined in Chapter 2.3.2.
For this analysis, we create two different background configurations. We establish two
distinct background configurations for this analysis. The first configuration consist
of 375 thermal particles per rapidity, corresponding to the blast-wave parameter values
βT = 0.52 and TF = 120MeV . The second configuration involves 1000 thermal particles
per rapidity, which correspond to the parameter values βT = 0.63 and TF = 100MeV .

When embedding the jet within a heavy-ion environment, we introduce hundreds
of particles to the jet. The desired signal becomes obscured by the noise caused by the
thermal background particles. Therefore, our aim is to eliminate a significant portion
of the background while preserving the signal. To achieve this, we apply constituent
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subtraction as described in Chapter 3.5.1. The resulting jets following constituent sub-
traction are referred to as the ungroomed jets in this chapter.

Figure 6.1: Overview plots of pT and the number of particles in the jet. Left: pT distribution of the
hardest jets in each event, with p̂T min = 200GeV. Right: Ntot distribution, the number of constituents in
the jet.

After creating the datasets, we examine the distribution of transverse momentum
pT . Jets with a minimum transverse momentum of 200 GeV are generated, and the
left plot in Figure 6.1 showcases a peak at 200 GeV with a decreasing spectrum. The
right plot in Figure 6.1 illustrates the number of constituents in the jets, differentiat-
ing between jets with and without background particles. The dataset associated with
375 background particles per rapidity is denoted as background 1, while the dataset
with 1000 background particles per rapidity is referred to as background 2. It is evi-
dent from the plot that the number of constituents in each jet is significantly greater in
background 2 compared to the other datasets. The distribution peak has shifted from
approximately 10 constituents in jets without background to roughly 50 constituents in
the jets featuring background configuration 2.

6.2 Without Grooming

To establish a baseline for our study, we examine the distribution of observables with-
out the application of any groomer, relying solely on constituent subtraction. The key
observables of interest are the mass m, the splitting angle θ , momentum-sharing frac-
tion z, and relative transverse momentum kT . Additionally, we investigate IRC-unsafe
observables associated with the number of constituents in the jet (Ntot) and the distribu-
tion of those constituents in the first pair of subjets derived from the initial declustering.
We study the distribution of constituents in the subjets through the ratio N1−N2

Ntot
, where

N1 and N2 are the numbers of constituents in each of the two primary subjet.
The analysis is performed on jets reclustering with the C/A algorithms, which are

commonly employed in grooming techniques and will be utilized in constructing the
Lund tree in the subsequent chapter.

We begin by examining the observables of the ungroomed jets. The upper left plot
in Figure 6.2 depicts the distribution of the mass m)scaled by the transverse momentum
pT of the jet. It is observed that jets without additional background particles exhibit
slightly lower mass compared to jets with background particles.

Next, the distribution of the relative transverse momentum kT scaled by the trans-
verse momentum pT is presented in the upper right plot of Figure 6.2. The distributions
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Figure 6.2: Plots of observable distribution for p̂t min = 200GeV when only applying constituent sub-
traction. Upper Left: Mass distribution. Upper Right: kT distribution. Lower Left: θ distribution.
Lower Right: z distribution.

with and without background particles are very similar, with only minor differences in
the tail region.

Moving on to the lower left plot in Figure 6.2, we observe the distribution of the
splitting angle θ scaled by the jet radius. Jets without any background display a broader
distribution than those containing background particles. Additionally, a slight shift in
the distribution peak is evident, whereby an increased number of particles leads to a
narrower peak at a lower θ value. Figure 5 in Ref. [38] reveals that upon introducing
thermal background particles, the radiation in the low lnR/θ region of the Lund plane
intensifies, resulting in a shift of the θ spectrum towards larger θ/R values.

The lower right plot in Figure 6.2 portrays the distribution of the energy sharing
fraction (z). Jets without background exhibit a higher distribution at high z values.
Given the logarithmic scaling of the y-axis, the differences between the distributions
are smaller than they look.

Furthermore, we examine observables associated with the distribution of con-
stituents within the jets. Figure 6.3 presents the distribution of the ratio of constituents
between the two primary subjets. It is evident that the second subjet predominantly
contains the greater number of constituents. Jets without background particles exhibit
a more pronounced peak, indicating a strong preference towards the majority of parti-
cles populating the second subjet, while jets with background particles display flatter
distributions. Considering that jets clustered with C/A algorithms should ideally exhibit
an even spread of constituents throughout the jet due to the angle-based clustering, the
figure agrees with this expectation.
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Figure 6.3: Plot of the distribution of the ratio N1−N2
Ntot

for vacuum jets with p̂T = 200GeV and different
degrees of background radiation. The ratio signifies the distribution of constituents within the two
primary subjects of each jet.

6.3 Dependence on Reclustering Algorithm

Figure 6.4: The ratio N1−N2
Ntot

(upper) and the opening angle θ (lower). Left: Jets reclustered with the kT

algorithm. Right: Jets reclustered with the anti-kT algorithm.

The distribution of the jet observables are to some degree dependent on the choice
of reclustering algorithm. Typically, one uses the anti-kT to identify the initial jet,
which is then reclustered using another algorithm before analyzing the observables.
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The most commonly used reclustering algorithm for jet substructure analyses is the C/A
algorithm. However, certain observables, such as the ratio of constituents in each subjet
and the opening angle θ , are highly dependent on the clustering algorithm. Therefore,
we wish to explore other reclustering algorithms, such as kT and anti-kT .

For jets clustered with the kT algorithm, the upper left plot in Figure 6.4 shows that
the distribution of constituents between the two subjets is more evenly distributed, with
the peak close to 0. The differences between the jets with and without background
particles are minor, whereas the distribution for jets without background radiation is
slightly shifted towards more constituents in the second subject. The lower left plot in
Figure 6.4 shows the θ distribution, which diverges significantly from the θ distribu-
tion for jets clustered with C/A. In kT clustered jets, most of opening angles are very
small and there are only minor differences between jets with and without background
particles. The kT algorithm clusters soft radiation first before incorporating the hardest
particles towards the end, likely explaining the small opening angles observed..

Moving on to the upper right plot in Figure 6.4, we examine the distribution of
constituents in the primary subjets of jets reclustered with anti-kT . The distributions
are vastly different from the previous algorithms, where the jets almost exclusively have
the majority of the constituents in one subject. The jets without background particles
have a slightly wider distribution but still has the majority of particles in one subjet. The
lower right plot in Figure 6.4 displays the distribution of the opening angle θ for anti-kT
jets. Here, the majority of the jets have a large opening angle. In contrast to the other
clustering algorithms, anti-kT combines the hardest particles first, and subsequently
merges them with softer particles. As a result, the final step involves combining the
hard subjet with a soft one at the largest opening angle. Furthermore, the distribution of
the opening angle for jets without background particles is wide, meaning that the jets
can have large opening angles, while the jets with background particles consistently
have small opening angles.

The choice of clustering algorithm does not only impact the distribution of jet ob-
servables but also has implications for jet grooming methods. In this thesis, we employ
the SoftDrop grooming technique which typically utilizes C/A declustering. However,
changing the clustering algorithm significantly affects the outcome of grooming [38].
To illustrate the effect of clustering algorithms on SoftDrop grooming, we examine the
distribution of the number of grooming steps ng.

The upper left plot in Figure 6.5 presents the distribution of ng for jets without back-
ground particles, showcasing the distributions for the different clustering algorithms.

We begin by examining the distribution of C/A-clustered jets, which is typical for
SoftDrop grooming. The number of grooming steps is generally quite small and is a
middle ground between the other two distributions. A small number of grooming steps
means that the effect of grooming is small, and the risk of losing crucial information in
the jet is small. C/A jets typically have a small number of grooming steps because the
jet is clustered based on geometrical distance, and that closely resembles the partonic
branching history. We expect the Lund plane to be uniformly filled with radiation and
so grooming should only remove a few branches.

For kT clustering, grooming has a minimal effect, and the average number of groom-
ing steps is even smaller than for C/A clustering. This result is reasonable considering
that the kT algorithm clusters soft partons with small angles early in the process, re-
sulting in a fragmented jet. Therefore, the initial declustering produces two wide jets
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Figure 6.5: Effects of grooming on trees that are built up using different reclustering algorithms. Upper
Left: For jets without additional background. Upper Right: For jets with additional 750 background
particles. Lower: For jets with additionally 5000 background particles.

comprising both soft and hard particles
In contrast, when anti-kT clustering is employed, the number of grooming steps

can be significantly larger, often exceeding three times the number observed with other
algorithms. Given that the anti-kT algorithm initially combines the hardest partons, nu-
merous soft partons are frequently clustered onto the hardest branch, making them sus-
ceptible to removal by SoftDrop. Removing such a substantial number of soft branches
can lead to a less energetic jet and strongly affects the observables.

The upper right and lower plots in Figure 6.5 show the distribution of the number
of grooming steps for jets with the two configurations of background. It is evident that
the number of grooming steps increases for all clustering algorithms when background
particles are present. However, a significant distinction remains between using anti-
kT and the other algorithms. The utilization of anti-kT results in the removal of a
considerable number of soft particles from the jets, leading to substantial impacts on
the observables.

The distribution of the number of grooming steps presented in this section aligns
with the findings in Ref. [38], reinforcing the choice of utilizing the C/A algorithm
when applying SoftDrop grooming.
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6.4 With SoftDrop Grooming

To minimize the presence of soft background particles, we will employ SoftDrop
grooming. SoftDrop, as detailed in Chapter 3.5.2, will be utilized with specific param-
eters for this analysis, namely zcut = 0.1 and β = 1. These SoftDrop parameter settings
result in an aggressive grooming approach, targeting particles at larger angles. Now,
we will examine the impact of SoftDrop grooming on the observables and investigate
how it reduces the differences between jets with and without background radiation.

6.4.1 SoftDrop Observables

Figure 6.6: Plots of observable distribution for p̂t min = 200GeV when applying SoftDrop grooming.
Upper Left: Mass distribution. Upper Right: kT distribution. Lower Left: θ distribution. Lower Right:
z distribution.

In Figure 6.6 we observe an overall reduction of the difference between the distri-
butions of the jets with and without background particles for all the observables.

Let us begin by examining the distribution of the jet mass in the upper left plot
in Figure 6.6. Compared to the corresponding plot in Figure 6.2, both the jets with
and without background radiation exhibit much more coherent mass distributions. Al-
though there is still a slight tail in the distribution of jets with background radiation, the
difference has significantly diminished.

Moving to the upper right plot in Figure 6.6, we observe that the kT distributions of
jets with background radiation still display a wider tail compared to the distribution of
jets without background radiation.
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In the lower left plot of Figure 6.6, the opening angle θ distributions exhibit notable
differences from those in Figure 6.2. Prior to grooming, the majority of jets have a
large opening angle θ , whereas after applying SoftDrop, the distribution shifts towards
smaller opening angles. This indicates that grooming effectively removes soft particles
in the first splitting. It is also interesting to note that the distributions of θ for jets with
and without background radiation are very similar after grooming, whereas they were
quite different in the ungroomed distributions.

Finally, in the lower right plot in Figure 6.6, the momentum-sharing fraction z dis-
tribution looks very similar to the distribution without grooming. However, the distri-
bution without grooming had more of a dip from small z values to intermediate ones,
while the distributions after grooming are flatter. For the z distributions after applying
SoftDrop, then the distributions mostly overlap for the whole z scale.

Overall, the differences between the observables before and after applying Soft-
Drop grooming are mainly that the distributions for jets with and without background
radiation are more coherent. Only the distribution of the opening angle θ has been
significantly changed after applying SoftDrop, but the other distributions have also ex-
perienced some modifications.

Figure 6.7: Plot distributions of the number of constituents in the jets with p̂t min = 200GeV, when
applying SoftDrop grooming. Left: Distribution of the total number of constituents in the jet. Right:
The ratio N1−N2

Ntot
.

Now, let us examine the distribution of jet constituents among the first two subjets,
considering our previous section’s discussion. Applying SoftDrop grooming using the
C/A algorithm removes some soft particles within the jet, resulting in a slight decrease
in the overall number of constituents and potential shifts in the distribution of con-
stituents between the leading subjets.

The left plot in Figure 6.7 displays the distribution of the total number of con-
stituents in the jet Ntot . We observe that the distributions have shifted towards lower
values compared to the corresponding ungroomed plot. While the distributions appear
to peak around similar Ntot values, there still exists a significant gap in the tail between
the number of constituents in jets with and without background radiation, as expected
due to the additional particles introduced in the jets with background radiation. How-
ever, it is worth noting that the gap between the different distributions has reduced
compared to before applying SoftDrop grooming.

If we examine the plot which shows the distribution of particles in the two subjects,
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in the right plot in Figure 6.7, the distribution looks quite different. Before applying
grooming, the majority of particles were concentrated in the second subjet. However,
after applying SoftDrop, the distribution appears to have flattened out. There is no
longer a pronounced majority in the second subjet, particularly in the distributions of
jets with background radiation. This is intriguing, as the SoftDrop algorithm removes
the first soft subjets, leaving the jet with two subjets that are fairly evenly populated.

In summary, applying SoftDrop grooming to jets with and without background radi-
ation leads to more coherent distributions of observables. The gaps between the observ-
ables of jets with and without background radiation have diminished, and we observe
a shift in the distribution of particles within the jets from a dominant presence in one
subjet to a more evenly distributed configuration.

Alternative grooming techniques can be utilized to address this issue, or a more di-
rect approach of implementing cuts on specific observables can be attempted. Appendix
A presents a cautionary tale regarding the impact of placing cuts on observables. The
main discovery of that detour is that when a cut is imposed on an observable, it leads
to a very biased set of jets that no longer represent the true jet distribution.

Conclusion to the Background Study

When jets are embedded in a heavy-ion environment, they tend to contain sig-
nificantly more particles. This increased number of constituent particles leads to
several noticeable effects in the jet observables. Firstly, the mass of the jets and
the opening angle between subjets increase, and the momentum-sharing fraction
decreases. Secondly, the distribution of particles in the two subjets resulting from
the first splitting becomes more uneven. In jets without background radiation, the
majority of particles tend to be concentrated in one subjet, while in jets embedded
in a thermal background, the distribution becomes wider, although the majority of
constituents still remain in one subjet.

These studies are dependent on the choice of clustering algorithm. Typically,
the anti-kT algorithm is used to locate the jet, while a different clustering algorithm
is applied to analyze the jet substructure. The choice of clustering algorithm also
determines the effect of SoftDrop grooming. SoftDrop is typically performed
with the use of the C/A algorithm, as anti-kT clustering tends to remove too much
of the jet, while kT clustering removes almost nothing from the jet. After applying
SoftDrop grooming to both the jets with and without background radiation, the re-
sulting distributions become more similar. However, some differences still persist,
particularly in the distribution of constituents among the two leading subjets.

Overall, SoftDrop has the effect of removing a significant portion of the
background radiation, making the distributions of observables more similar be-
tween jets with and without background radiation. However, it is important to note
that SoftDrop does not eliminate all background radiation and may inadvertently
lead to the loss of vital information through the removal of soft particles.



Chapter 7

Training on Medium-Modified Jets

This chapter presents the main results of the thesis, which focuses on training a graph
neural network to predict the energy loss experienced by a jet traversing a medium. As
discussed earlier, the interaction between jet constituents and the medium leads to en-
ergy dissipation and the generation of soft thermal particles from the wake traveling
through the medium. By comparing medium-modified jets with their vacuum counter-
parts, we can calculate the energy loss ratio χ using Equation 3.15.

To extract information about jet radiation patterns and substructure, the jets are
transformed into a graph-like representation known as the Lund tree. A graph neural
network is then employed to train a regression model for predicting the energy loss ratio
χ . The GNN model used in this study is a modified version of LundNet, as detailed in
Chapter 5.3.

The performance of the LundNet model is evaluated on two distinct datasets dis-
cussed in Chapter 5.4. The first dataset is generated using a parton gun, while the
second dataset represents a more realistic dijet spectrum. The latter dataset is of partic-
ular interest as it resembles the conditions of a heavy-ion collision, except for the lack
of a thermal background created by the QGP.

To gain a better understanding of energy loss in medium-traversing jets, we begin
by analyzing the differences between the medium-modified jets and the vacuum jets.
The most significant distinction lies in the transverse momentum pT spectra, where the
medium-modified jets exhibit a shift towards lower energies due to the energy loss.
Additionally, we investigate the variation in the number of constituents within each jet.
In particular, we expect an increase in the number of jet constituents, especially for
hadron-level jets, as they contain numerous thermal particles from the wake generated
by the jets’ interaction with the quark-gluon plasma.

Consequently, our focus shifts to examining the GNN model’s internal workings,
particularly in relation to the realistic spectrum. We aim to gain insights into the inner
mechanisms of the network.

Finally, we delve into the effects of embedding the jet in a heavy-ion environment.
We assess the model’s robustness and discuss whether the utilization of a GNN im-
proves the prediction performance under conditions resembling real experimental data,
in comparison to a previous study outlined in Ref. [5].
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7.1 Parton Gun

In Chapter 5.4, we outlined the creation of the parton gun dataset, which involves trac-
ing the trajectory of a parton through a thermal medium with a transverse momentum
pT = 1000GeV and an average medium temperature of T ≈ 250MeV. The jets are
reconstructed using the anti-kT algorithm with a radius parameter of R = 0.4. Sub-
sequently, the medium-modified jets are paired with their corresponding vacuum jets,
allowing us to extract the energy loss ratio χ .

In this analysis, we approach the study from both partonic and hadronic perspec-
tives, thereby dividing it into two sections. Firstly, we examine the parton-level jets,
followed by an investigation of the hadron-level jets. Subsequently, we compare the
results obtained from these two levels and discuss the observed differences.

7.1.1 Parton Level

Figure 7.1: Jet pT spectra for parton-level jets originating from a parton gun, with a skewed Gaussian
fit and one plot containing the ratio of the two others. Left: pT spectrum for the medium-modified
jet. Middle: pT spectrum for vacuum jets. Right: Distribution of the ratio between these spectra, also
known as the nuclear modification factor RAA.

We expect the pT spectra of the parton gun datasets to be a Gaussian-like distribu-
tion around p̂T = 1000GeV . The pT spectra of the medium-modified and vacuum jets
are depicted in Figure 7.1. The medium-modified spectrum is characterized by a shift
towards lower energies and a broader peak compared to the vacuum spectrum. Fitting
a skewed Gaussian distribution to the data reveals that the medium-modified spectrum
has a lower mean and a greater negative skewness, indicating a significant alteration
in the distribution shape. Furthermore, the ratio between the spectra demonstrates an
increase in the abundance of low-energy medium-modified jets, with up to three times
more jets than the vacuum spectrum, while the number of high-energy jets decreases by
approximately half. These findings highlight the substantial impact of medium modifi-
cation on the transverse momentum distribution of jets.

Another important aspect of jets is the number of constituent particles they contain.
The distribution of the number of constituents in both vacuum and medium-modified
jets is illustrated in Figure 7.2. Interestingly, the medium-modified jets tend to have
fewer constituents on average than the vacuum jets. Since the energy loss experienced
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Figure 7.2: Distributions of the number of constituents for parton-level jet, originating from the parton
gun. Left: Distribution for medium-modified jets. Right: Distribution for vacuum jets.

by a jet is proportional to the number of partons passing through the medium, jets with
fewer constituents are expected to lose less energy. This observation allows us to utilize
the distribution of constituent numbers as a predictive indicator for the χ distribution
in medium-modified jets. Consequently, a significant peak at high χ values is expected
in the χ distribution for medium-modified jets.

The low number of constituents in jets not only corresponds to low χ values but also
results in a highly sparse graph for the Graph Neural Network (GNN). During training,
the network relies on nodes representing parton splittings and their associated feature
vectors. When there are few nodes, the network has limited information to work with.

Figure 7.3: The distribution of χ for the jets on parton-level from the parton-gun dataset illustrates how
much energy a jet has lost after traveling through a medium. Left: Distribution of χ without applying re-
weighting. Middle: Distribution of χ after applying one-dimensional re-weighting. Note the change of
scale on the y-axis. Right: The joint histogram of χ vs medium-modified pT after the one-dimensional
re-weighting.

Figure 7.3 presents three plots related to the χ distribution of parton gun jets. The
left plot displays the true χ distribution, which predominantly consists of jets with
high χ values. However, this imbalanced distribution poses challenges during network
training. To address this issue, we assign weights to each sample in the loss function
during training and validation, aiming to achieve a relatively flat one-dimensional χ
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distribution. This re-weighting process, described in Chapter 5.4, results in a more
balanced distribution of χ values, as shown in the middle plot of Figure 7.3. Note the
change of scale on the y-axis, indicating that each bin contains fewer samples. By re-
weighting the dataset, we obtain a more suitable distribution of χ values for training
the network.

The joint histogram of χ and pT of the medium-modified jet in the right plot of
Figure 7.3 offer insights into how χ affects the pT distribution. This plot provides a
visual representation of the impact of χ on the pT distribution and allows us to assess
the influence of re-weighting on this distribution. By applying the re-weighting pro-
cedure, we achieve a more balanced distribution of χ values, which can enhance the
performance of the network when applied to the dataset.

Figure 7.4: Plot illustrating the prediction performance for the parton-level jets from the parton-gun
data. The green color represents the probability of predicted χ along the y-axis given true χ in the joint
histogram. Each column is normalized here. The red line with error bars quantifies the average and
standard deviation of the predicted χ within the given true χ bin.

Finally, the GNN is trained on parton-level jets from the parton gun dataset, utilizing
the one-dimensional re-weighting of each sample to improve training. The training
involves 50 epochs with a starting learning rate of lr = 0.01. The performance of the
trained network is evaluated by visualizing the results in Figure 7.4. The plot shows a
joint distribution of the predicted χ values normalized by the total number of events in
each true χ bin, which is represented by the green columns. The red line with error bars
represents the average and standard deviation of the predicted χ values within each true
χ bin. We observed that the network struggles to accurately predict low χ values due to
the limited number of training samples available. Furthermore, the dataset’s χ values
cover only a small range, approximately half of the full χ range, resulting in challenges
for the network in accurately predicting these low χ values. Decent predictions are
achieved for high χ bins; however, all true χ bins exhibit wide distributions of predicted
χ values and large error bars, therefore, all results should be interpreted with caution.
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Figure 7.5: Jet pT spectra for hadron-level jets originating from a parton gun, with a skewed Gaussian
fit and one plot containing the ratio of the two others. Left: pT spectrum for the medium-modified
jet. Middle: pT spectrum for vacuum jets. Right: Distribution of the ratio between these spectra, also
known as the nuclear modification factor RAA.

7.1.2 Hadron Level
The pT spectra of medium-modified and vacuum hadron-level jets are depicted in Fig-
ure 7.5. As observed, the medium-modified spectrum exhibits a shift towards lower
energies and a broader peak compared to the vacuum spectrum. Fitting a skewed Gaus-
sian distribution to the data reveals that the medium-modified spectrum displays a lower
mean and greater negative skewness than the vacuum spectrum, indicating a notable al-
teration in the distribution shape. This shift in shape is consistent with the observations
made for parton-level jets, albeit the distribution of hadron-level jets is slightly wider
and more skewed. Analyzing the ratio between the spectra, the nuclear modification
factor RAA, we find that the medium-modified spectra contain up to six times more jets
in the low pT bins compared to the vacuum spectrum, while the vacuum spectrum has
a higher number of jets in the high pT bins. These findings indicate that the medium
modification has significantly shifted the pT spectrum, mirroring the modifications ob-
served in parton-level jets.

Figure 7.6: Distributions of the number of constituents for hadron-level jet, originating from the parton
gun. Left: Distribution for medium-modified jets. Right: Distribution for vacuum jets.

Let us now turn our attention to the distribution of constituent particles in the jets.
Figure 7.6 presents the distributions of the number of constituents for both the medium-
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modified and vacuum cases. Surprisingly, we observe an opposite trend compared to
the parton-level jets. In the case of hadron-level jets, there is a general increase in the
number of constituent particles, and the medium-modified jets exhibit an even greater
average number of constituents compared to the vacuum jets. As the energy loss of a
jet is believed to be proportional the number of partons interacting with the medium,
we can expect a wider distribution of χ for the hadron-level jets.

Figure 7.7: The distribution of χ for the jets on hadron-level from the parton-gun dataset illustrates
how much energy a jet has lost after traveling through a medium. Left: Distribution of χ without
applying re-weighting. Middle: Distribution of χ after applying one-dimensional re-weighting. Note
the change of scale on the y-axis. Right: The joint histogram of χ vs medium-modified pT after the
one-dimensional re-weighting.

The χ distribution in the left plot in Figure 7.7 bears a resemblance to the parton-
level distribution. However, it is noteworthy that the hadron-level distribution exhibits a
longer tail. Similar to the parton-level case, the unbalanced nature of the χ distribution
poses a challenge during network training. To address this, we employ the same one-
dimensional re-weighting technique along the χ axis. The resulting re-weighted χ

distribution is depicted in the middle plot of Figure 7.7. By applying this re-weighting
procedure, we achieve a more balanced dataset where the low χ bins are now populated
as well. Consequently, the dataset encompasses a broader range of χ values. Finally,
in the right plot of Figure 7.7, we present the joint histogram of χ and pT for the re-
weighted dataset, allowing us to visualize the joint distribution and assess the impact
of the re-weighting procedure.

Subsequently, we proceed to train the GNN using the parton-level jets obtained
from the parton gun dataset, while incorporating the one-dimensional re-weighting of
each sample to enhance the training process. The GNN was trained for 50 epochs, em-
ploying a initial learning rate of lr = 0.01. To assess the performance of the trained
network, we present the visualized outcomes in Figure 7.8. The plot illustrates a joint
distribution of the predicted χ values, which have been normalized by the total number
of events in each true χ bin, represented by the green columns. The red line accom-
panied by error bars represents the average and standard deviation of the predicted χ

values within each true χ bin. We observed that the network encountered challenges
when making accurate predictions for the lower range of χ values due to the limited
number of training samples available. However, in the high true χ bins, the average
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Figure 7.8: Plot illustrating the prediction performance for the hadron-level jets from the parton-gun
data. The green color represents the probability of predicted χ along the y-axis given true χ in the joint
histogram. Each column is normalized here. The red line with error bars quantifies the average and
standard deviation of the predicted χ within the given true χ bin.

predicted values demonstrated a reasonably accurate performance. It is important to
note that the light color of the distribution indicates a significant spread of the pre-
dicted values. Overall, the prediction performance exhibited the anticipated trend of
being reliable for high χ bins and less accurate for low χ bins.

7.1.3 Comparison

Figure 7.9: Ratio between parton- and hadron-level pT spectrums originating from the parton-gun data.
Left: Ratio of medium-modified jets pT spectrum. Right: Ratio of vacuum jets pT spectrum.

Having examined both the parton-level jets and the hadron-level jets, we can now
compare their pT spectra by analyzing the ratios between the two distributions. The
left plot in Figure 7.9 displays the ratio of the pT spectrum for medium-modified jets
at the parton and hadron levels. It reveals that the hadron-level jets have a greater
abundance of jets in the low pT bins compared to the parton-level jets. Conversely, in
the high pT bins, the two distributions are quite similar, while the parton-level spectrum
demonstrates a scarcity of jets in the low pT region. This discrepancy arises due to the
fact that only a few parton-level jets possess small χ values, indicating a limited loss
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Medium-modified Vacuum
Parton Hadron Parton Hadron

µ 1.026 1.035 1.048 1.051
σ 0.110 0.127 0.091 0.097

skewness -2.307 -2.814 -1.781 -1.965

Table 7.1: Table of parameter values for the pT spectrum fits for the jets originating from the parton-
gun.

of energy. Consequently, a smaller number of jets have low medium-modified pT . In
the right plot of Figure 7.9, we observe a similar trend in the ratio for vacuum jets, with
fewer parton-level jets in the low pT bins. However, in the high pT bins, there is an
increase in the number of parton jets. The effect of medium modifications has shifted
the surplus parton level jets towards lower energies, creating a more evenly steeply
falling ratio.

Furthermore, we can compare the parton-level and hadron-level pT spectra through
spectrum fits. By fitting the pT spectra with skewed Gaussians, we obtain the param-
eters summarized in Table 7.1. The µ and σ values of the parton-level distributions
are shifted towards smaller values compared to the hadron-level distributions, while
the skewness is greater. However, the differences between the pT distributions are rel-
atively minor.

Input Average MSE Loss
Parton level jets 0.00289
Hadron level jets 0.00134

Table 7.2: Table of average MSE loss for parton- and hadron-level jets from the parton-gun dataset.

To quantify the model’s performance on the two datasets, we utilize the average
MSE loss. The corresponding results are presented in Table 7.2. It is evident that the
network performs better on the hadron-level jets, which aligns with our observations
from the prediction performance plots in Figure 7.4 and 7.8.

7.2 Realistic Jet Spectrum

In accordance with Chapter 5.4, the realistic jet spectrum dataset was generated based
on a complete dijet spectrum with p̂T = 50GeV . The jets are reconstructed using anti-
kT algorithm with a radius parameter R = 0.4, and a minimum transverse momentum
requirement of p jet

T > 100GeV is imposed.
Similar to the approach taken in analyzing the parton gun data, this analysis is also

divided into two distinct parts. First, we examine the jets at the parton level, followed
by an investigation of the jets at the hadron level. Subsequently, we compare the results
obtained from both levels and discuss the observed differences.
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Figure 7.10: Plots relating to the jet pT spectra for parton-level jets originating from the realistic dijet
spectrum. Upper Left: pT spectrum for the medium-modified jet with pT > 100GeV and fitted to the
curve in Eq. 7.1. Upper Right: pT spectrum for vacuum jets with pT > 100GeV and fitted to the
curve in Eq. 7.1. Lower Left: Distribution of the ratio between these spectra, also known as the nuclear
modification factor RAA. Lower Right: Comparing the fits for medium-modified and vacuum jet spectra.

7.2.1 Parton Level
The pT spectra of jets originating from the realistic dijet spectrum exhibit a steeply
falling distribution. In contrast to the Gaussian fitting used for the parton gun pT spec-
tra, we now aim to fit a curve to these rapidly declining spectra for a better represen-
tation. By plotting the distributions with logarithmic axes, we seek to find a suitable
curve to describe the spectra. Specifically, we fit the spectra to the logarithm of the
following curve:

dσ

d pT
= A0(

pT,0

pT
)n(pT ), n(pT ) = n0 +n1 log(

pT

pT,0
)+ ... (7.1)

The shape of the curve is motivated by perturbative QCD, where σ̂ ∼ 1/Q4 from Eq.
2.13, and the parameter n(pT ) accounts for scaling violations in the parton evolution
functions.

The upper plots in Figure 7.10 display the pT spectra of medium-modified and
vacuum jets, respectively, fitted to the curve in Eq. 7.1. The fits accurately capture
the curvature of the distributions.

Upon comparing the fits for the medium-modified and vacuum spectra, as depicted
in the lower right plot of Figure 7.10, we observe that the medium-modified spectrum
is shifted towards lower values. The difference between the vacuum and medium-
modified fits is most prominent in the low pT bins and diminishes in the high pT bins,
although the medium-modified jets consistently have a smaller number of particles in
each bin.
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A similar trend is also noticeable in the RAA plot presented in the lower left plot
of Figure 7.10. Generally, the medium-modified spectrum has fewer samples in each
pT bin compared to their vacuum counterparts. This indicates that several medium-
modified jets are absent from these plots. This absence is a result of imposing a pT >
100GeV cut on both the medium-modified and vacuum jets. The next section will
address the selection bias effect in detail, but it essentially implies that all vacuum jets
whose modified energy is less than 100GeV due to energy loss are not accounted for in
these plots. Consequently, the pT spectrum for medium jets will exhibit a low pT tail,
occupied by the missing jets. We will revisit these missing jets shortly. However, the
network is trained on all the jets, even the ones not shown in these plots due to the pT
cut on the medium-modified jets.

However, the crucial findings from these plots are that the vacuum jets have ex-
perienced substantial energy loss, shifting the medium-modified pT spectrum towards
lower values.

Figure 7.11: Distributions of the number of constituents for parton-level jet, originating from the real-
istic dijet spectrum. Left: Distribution for medium-modified jets. Right: Distribution for vacuum jets.

The plots displayed in Figure 7.11 illustrate the distribution of the number of con-
stituents in both the vacuum and medium-modified jets. Similar to the distributions
observed in parton-level jets from the parton gun, the medium-modified jets generally
have a lower average number of constituents compared to the vacuum jets. This trend
suggests that we should anticipate a narrow distribution of χ values, akin to what was
observed previously.

However, it is worth noting that the average number of constituents for parton-level
medium-modified jets from the parton gun is approximately five, whereas the left plot
in Figure 7.11 shows an average of three constituents. A jet with three constituents
implies that there are at most two splittings in the clustered tree. Consequently, a graph
with only two nodes does not contain a substantial amount of information about the jet.
As a result of these sparsely populated graphs, we can expect the performance of the
network to be severely impacted.

The observations from the plots in Figure 7.12 deviate from our initial expectations.
In the left plot, the true distribution of χ appears to be significantly different from
the narrow distribution observed in parton-level jets from the parton gun. Instead, the
distribution appears more like an exponential graph, spanning across most of the χ

range.
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Figure 7.12: The distribution of χ for the jets on parton-level from the realistic dijet spectrum dataset
illustrates how much energy a jet has lost after traveling through a medium. Left: Distribution of χ

without applying re-weighting. Middle: Distribution of χ after applying two-dimensional re-weighting.
Note the change of scale on the y-axis. Right: The joint histogram of χ vs medium-modified pT after
the two-dimensional re-weighting.

Given the unbalanced nature of the dataset, it becomes necessary to perform re-
weighting before proceeding with network training. In this case, we employ a two-
dimensional re-weighting approach within the pT versus χ joint histogram, following
the procedure outlined in Chapter 5.4, but applied to each (pT ,χ) bin individually. The
impact of the re-weighting process becomes more apparent when examining the joint
histogram in the right plot of Figure 7.12. In this visualization, we observe a more
evenly distributed pixelated weight pattern across the (pT , χ) space. Furthermore, the
middle figure displays the re-weighted distribution of χ , which demonstrates a more
balanced distribution with a greater emphasis on the low χ bins.

Figure 7.13: Plot illustrating the prediction performance for the parton-level jets from the realistic dijet
spectrum data. The green color represents the probability of predicted χ along the y-axis given true
χ in the joint histogram. Each column is normalized here. The red line with error bars quantifies the
average and standard deviation of the predicted χ within the given true χ bin.

We can now proceed with training the GNN on the given dataset. The prediction
performance is depicted in Figure 7.13, and unfortunately, the results are far from sat-



7.2 Realistic Jet Spectrum 75

isfactory. The network consistently produces high values for most of the samples, indi-
cating a lack of accuracy. However, we do observe some instances where the predicted
values align more closely with the true χ values, as indicated by the lighter green areas
along the diagonal.

The poor performance of the network poses a challenge, and we are currently in-
vestigating the underlying cause. Our primary hypothesis is that the low number of
constituents in the jets plays a significant role. In cases where there is only one or two
nodes present in the graph, the network receives minimal information to distinguish
between different graphs. Consequently, if the feature values among the nodes are sim-
ilar, the network struggles to discern the variations between graphs with large or small
χ values. For jets with a minimal number of constituents, it appears that the network
resorts to "guessing" rather than making informed predictions

Comparatively, the parton-level jets from the parton gun dataset have slightly more
constituents per jet. This increased information content may enable the network to
better capture the distinctions. Aside from that, identifying the factors contributing to
the difference in performance between the parton-level jets from the parton-gun dataset
and the realistic jet spectrum dataset is challenging.

7.2.2 Hadron Level

Figure 7.14: Plots relating to the jet pT spectra for parton-level jets originating from the realistic dijet
spectrum. Upper Left: pT spectrum for the medium-modified jets with pT > 100GeV and fitted to
the curve in Eq. 7.1. Upper Right: pT spectrum for vacuum jets with pT > 100GeV and fitted to the
curve in Eq. 7.1. Lower Left: Distribution of the ratio between these spectra, also known as the nuclear
modification factor RAA. Lower Right: Comparing the fits for medium-modified and vacuum jet spectra.

The upper plots in Figure 7.14 depict the pT spectrum of medium-modified and vac-
uum jets. The plots adopt logarithmic axes and have been fitted with the logarithm of
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the curve described in Eq. 7.1. It is evident that both spectra are steeply falling, with
the fitted curve appearing almost linear. Comparing the fits, we observe a noticeable
shift towards lower pT values for the medium-modified spectrum, as shown in the bot-
tom right plot of Figure 7.14. This difference between the fitted curves is particularly
pronounced at low pT values.

Similar trends are also evident in the RAA plot presented in the lower left plot of Fig-
ure 7.14. In this plot, we observe a consistent reduction in the number of samples for the
medium-modified spectrum across all pT bins, in comparison to their vacuum counter-
parts. The RAA plot bears resemblance to that of the parton-level jets, with the exception
of a flatter plateau observed in the high pT bins. Once again, it is important to note that
the medium-modified spectrum consistently contains fewer jets in each bin compared
to the vacuum spectrum. This discrepancy arises from the pT > 100GeV threshold ap-
plied to both the medium-modified and vacuum jets, making it easier to compare the
two distributions. Consequently, the pT spectrum for the medium-modified jets dis-
plays an extended tail at lower pT values.

Nonetheless, it is crucial to emphasize the significant shift towards lower pT values
induced by the medium modification of the jets.

Figure 7.15: Distributions of the number of constituents for hadron-level jets, originating from the
realistic dijet spectrum. Left: Distribution for medium-modified jets. Right: Distribution for vacuum
jets.

The plots in Figure 7.15 illustrate the distribution of constituent particles in jets.
Notably, the medium-modified jets tend to possess a greater number of constituents
compared to the vacuum jets. Although the difference between the two distributions is
not substantial, we observe a slightly broader distribution with a marginally higher peak
for the medium-modified jets. Given the significant number of constituent particles
involved, it is reasonable to anticipate a wider distribution of χ values. This expectation
arises from the fact that energy loss scales with the number of partons traversing the
medium.

The distribution of χ values depicted in the left plot of Figure 7.16 exhibits an ex-
ponential curve with a slightly wider spread compared to other datasets. To address
the dataset imbalance, we apply two-dimensional re-weighting to the joint pT vs χ

histogram, following the procedure outlined in Chapter 5.4. The resulting joint distri-
bution is presented in the right plot of Figure 7.16, while the re-weighted χ distribution
is displayed in the middle plot. Notably, the re-weighted χ distribution achieves bet-
ter balance, and we notice the altered scale on the y-axis. Following the re-weighting
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Figure 7.16: The distribution of χ for the jets on hadron-level from the realistic dijet spectrum dataset
illustrates how much energy a jet has lost after traveling through a medium. Left: Distribution of χ

without applying re-weighting. Middle: Distribution of χ after applying two-dimensional re-weighting.
Note the change of scale on the y-axis. Right: The joint histogram of χ vs medium-modified pT after
the two-dimensional re-weighting.

process, the samples in the joint histogram exhibit a more even distribution across the
(pT ,χ) space.

Figure 7.17: Plot illustrating the prediction performance for the hadron-level jets from the realistic dijet
spectrum data. The green color represents the probability of predicted χ along the y-axis given true
χ in the joint histogram. Each column is normalized here. The red line with error bars quantifies the
average and standard deviation of the predicted χ within the given true χ bin.

Once the dataset is balanced, we proceed with training using the re-weighted
dataset. The training process comprises 50 epochs with an initial learning rate of
lr = 0.01. The performance of the network on the re-weighted dataset is depicted
in Figure 7.17.

The network demonstrates its best performance on this dataset. The predictions for
χ cover the entire range successfully. Across the entire χ range, the average of each
true χ bin aligns closely with the diagonal. For high χ values, the average tends to
be slightly lower than the true value, while for low χ values, the average tends to be
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slightly higher. The predicted χ values exhibit a relatively narrow distribution around
the average, and the error bars decrease as χ increases.

This result can be compared to the findings in [5], as both studies utilize machine
learning methods and focus on hadron-level jets derived from similar jet spectra. How-
ever, the results obtained using a GNN are less accurate compared to those using a
CNN. The predictions generated by the GNN exhibit wider distributions for each true
χ value and larger error bars. One noticeable distinction when employing the GNN is
that the predicted values for high true χ tend to be lower than expected. The red line
representing the average predicted value for each true χ bin lies slightly below the di-
agonal for the CNN, and even lower for the GNN, particularly for high true χ values.
The GNN predictions for low true χ bins display substantial error bars, thereby requir-
ing cautious interpretation. Overall, similar trends emerge in the results obtained using
both the GNN and CNN.

It is worth noting that the CNN underwent longer training and employed slightly
different hyperparameters. Nevertheless, we can still infer that the CNN outperforms
the GNN in predicting χ . We do not know why the CNN outperforms our GNN model,
but perhaps the predictions of the energy loss are more accurate when the network
obtains less information for each jet.

7.2.3 Comparison

Figure 7.18: Ratio between parton- and hadron-level pT spectrums originating from the realistic dijet
spectrum data. Left: Ratio of medium-modified jets pT spectrum. Right: Ratio of vacuum jets pT

spectrum.

Medium-modified Vacuum
Parton Hadron Parton Hadron

A0 1809.52 1851.32 8464.80 8450.69
pT,0 80.76 78.44 43.84 44.13
n0 1.692 1.515 0.163 0.171
n1 1.544 1.577 1.499 1.504

Table 7.3: Table of parameter values for the pT spectrum fits for jets originating from the realistic dijet
spectrum dataset.

Having examined the parton-level and hadron-level jets, we now proceed to com-
pare their pT spectra. Firstly, we analyze the ratio of the pT spectrum between medium-
modified parton-level jets and hadron-level jets, as illustrated in the left figure of Figure
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7.18. Notably, the ratio remains consistently close to one, indicating a remarkable sim-
ilarity between the two spectra. There is a slightly larger number of samples in the high
pT bins for parton jets.

Next, we explore the ratio of the pT spectrum between vacuum jets at the parton
level and the hadron level, depicted in the right figure. Here, the ratio appears to be
relatively flat, suggesting minimal differences between the two spectra. The only dis-
cernible distinction is a slightly higher number of samples in the high pT range for
hadron-level jets.

Additionally, we can compare the fitted curves of the pT spectra for medium-
modified and vacuum jets at the parton and hadron levels by examining the parameter
values in Equation 7.1. Table 7.3 presents the parameter values for the various cases.
Upon comparing the fits for parton-level and hadron-level jets, we observe minimal
differences in the parameter values between medium-modified jets and vacuum jets.
Therefore, we can conclude that there are negligible differences between the pT spec-
tra at the hadron level and the parton level. This is expected from perturbative QCD,
as hadronization and non-perturbative physics should only mildly change high-pT ob-
servables. Especially the pT spectrum should experience very little change as pT is
the dominant scale, while substructure observables are more affected as they span over
larger energy scales.

Input Average MSE Loss
Parton level jets 0.03103
Hadron level jets 0.00777

Ref. [5] Hadron level jets 0.0028

Table 7.4: Table of average MSE loss for parton- and hadron-level jets from the realistic jet spectrum
dataset.

Finally, we proceed to compare the model’s performance on the two datasets derived
from the realistic jet spectrum data. Table 7.4 displays the average MSE loss for the
two datasets. It is evident that the parton-level jets perform poorly compared to the
hadron-level jets. As discussed earlier, the parton level jets exhibit a limited number of
constituents and sparse graphs, which likely contribute to the performance challenges.

However, the results obtained for the hadron-level jets are of utmost importance, as
this dataset is most realistic of the datasets we have considered so far, as it is a more
realistic scenario than the parton-gun dataset and what we measure in the detector are
hadron jets. It is worth noting that this dataset aligns with the one utilized in Reference
[5], enabling a meaningful comparison between the CNN and GNN models. Unfortu-
nately, our results for the hadron level jets do not match the performance achieved in
Reference [5], where an average loss of 0.0028 was accomplished.

7.3 Selection Bias Effect

In Chapter 5, we briefly discussed the concept of selection bias when outlining the
objective of this analysis. Selection bias arises when applying a pT cut to a steeply
falling spectrum, making it challenging to capture jets that have undergone significant
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Figure 7.19: Sketch of the bias effect.

energy loss. This effect is evident in the observed shift in the spectrum, as depicted in
the lower right plot of Figure 7.14.

When dealing with a rapidly decreasing pT spectrum, selecting jets based on their
medium-modified pT introduces a bias towards jets that have experienced minimal en-
ergy loss [65]. Jets with substantial energy loss would have had higher energies if not
quenched, but high-energy jets are less frequently produced in collisions. Hence, se-
lecting jets above a certain pT threshold implies a lower likelihood of capturing jets
with significant energy loss. This bias effect is illustrated in Figure 7.19, highlighting
the potential loss of jets with substantial energy loss due to the applied cut.

Figure 7.20: The full pT spectrum for the jet spectrum parton-level jets.

In the left plot of Figure 7.10, we observe the medium-modified pT spectrum after
applying a pT < 100GeV cut. Notably, it consistently exhibits fewer jets in each pT
bin compared to the vacuum spectrum. The missing jets predominantly populate the
medium-modified pT bins below 100GeV . The complete pT spectrum can be found
in Figure 7.20. Except for the pT plots, no pT cuts will be imposed on the medium-
modified jets to include all jets originating from vacuum jets with pT > 100GeV . How-
ever, for the purpose of comparing the vacuum and medium-modified jet pT within the
range of 100GeV −1500GeV , it is more convenient to utilize the pT cut.

7.4 Looking inside the GNN

To gain a deeper understanding of our analysis results, it is crucial to delve into the inner
workings of the Graph Neural Network (GNN). While Convolutional Neural Networks
(CNNs) offer sophisticated tools to examine different layers and their representations,
similar tools are not yet standard for GNNs.

Therefore, in our attempt to comprehend the internal dynamics of the GNN, we will
focus on several key aspects of the network. Firstly, we will examine the structure of the
input graphs themselves and how they are presented to the network. This exploration
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will provide insights into the initial information fed into the GNN. Secondly, we will
investigate the impact of the number of input features supplied to each node on the
model’s performance. By varying this aspect, we can explore whether the additional
information provided to the network is beneficial or simply add noise to the network.

Lastly, we will explore the effects of removing specific information related to the
jets. This will be achieved by imposing a kT cut on the jets, without adding any back-
ground radiation at this stage of the analysis. By applying this cut, we effectively
remove constituents that have undergone energy loss or soft particles associated with
the jet wake. This investigation will shed light on the importance of such information
for the model’s performance.

Another idea to examine the input to the network would be to examine how certain
jet observables are influenced by the amount of energy loss experienced by the jet.
This analysis would help us understand the relationship between the amount of energy
loss and various observable properties of the jets, providing valuable insights into the
underlying physics. This will not be part of the main analysis, but a short study on this
can be found in Appendix B.

By conducting these investigations, we aim to improve our understanding of the
GNN and its behavior, even in the absence of comprehensive visualization tools.

7.4.1 Visualizing the Graphs

Figure 7.21: The visualized graph of a hadron level vacuum jet, clustered with C/A algorithm. The
dotted lines are the final state particles, which are not considered to be part of the graph inside the
GNN. The color scale represents the kT of each node.

To gain a clearer understanding of the input provided to our graph neural network,
let us visualize some of the graphs representing the Lund plane. As we have discussed
previously, these graphs consist of nodes representing splittings in the jet’s Lund plane.
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It is important to note that the graphs we present to the network do not include the
final state particles, as they do not undergo splittings and therefore lack nodes at the end
of the line. Additionally, we have information about the formation time, denoted as t f ,
and the opening angle associated with each splitting. To visualize the graph and the
underlying physics effectively, we choose to plot the graph with the true opening angle
at each splitting, while adjusting the edge lengths to be proportional to the formation
time of the particles. Moreover, we aim to highlight the most energetic particles within
the jets, so we assign a color to each node based on the kT of the corresponding splitting.
The color scale is determined by the color bar in the plots.

In Figure 7.21, we provide an example of such a graph visualization. This particular
graph corresponds to a vacuum jet clustered using the C/A algorithm. The final state
particles, which are not part of the actual graph used as input to the network, are rep-
resented by dotted lines in the visualization. we notice that the opening angle of each
splitting increases as we move from the bottom to the top. Additionally, we observe that
the most energetic subjets do not necessarily appear at the top of the graph. It is worth
mentioning that if the jet were to undergo grooming procedures such as SoftDrop, the
less energetic branch of the graph would be pruned or removed.

Figure 7.22: The visualized graph of the same hadron level jet after medium modifications, clustered
with C/A-algorithm. The dotted lines are the final state particles, which are not considered to be part of
the graph inside the GNN. The color scale represents the kT of each node.

In the case of hadron-level jets, the graph representation for vacuum jets will typi-
cally contain fewer constituent particles compared to the medium-modified jets, which
include additional particles from the wake. Due to this difference in the number of par-
ticles, one can expect the graph structure of vacuum jets to be vastly different from the
medium-modified jets. In Figure 7.22, we present the corresponding medium-modified
jet graph that matches the one shown in Figure 7.21. This particular jet exhibits an in-
teresting feature with a final state particle appearing at the first splitting, a result of the
plenty of soft splittings included in the jet. However, due to the soft- and collinear-safe
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nature of the jet algorithms used, we anticipate that the hardest nodes should remain
consistent. Although the addition of soft particles may alter the graph’s overall struc-
ture, the essential hard features are expected to persist.

These graph representations heavily depend on the choice of clustering algorithm
used to deconstruct the jet and construct the Lund tree. The most common clustering
algorithm for these kinds of jet substructure tasks is C/A clustering, but another option
could be kT clustering. Depending on the jet clustering algorithm used, the graphs will
look different. To explore this, we can generate the corresponding graphs using the kT
clustering algorithm.

Figure 7.23: The visualized graph of a hadron level vacuum jet, clustered with kT -algorithm. The dotted
lines are the final state particles, which are not considered to be part of the graph inside the GNN. The
color scale represents the kT of each node.

First, we have the vacuum jet clustered with the kT algorithm, shown in Figure
7.23. The kT algorithm clusters jets after their kT . This means that the most energetic
particles are combined last. In this graph, we see that the most energetic nodes are at the
top of the graph, with the color of the nodes showing the kT value of the node. This kT
clustered jet is quite different from the one clustered with C/A. We can see the biggest
difference in the opening angles and in the location of the hardest nodes. For the kT
clustered jets, the opening angles are quite similar throughout the whole tree, while for
C/A clustered jets, the opening angle increases as we move up the tree. In kT clustered
jets, we see the most energetic splittings at the top of the tree, while for C/A clustered
jets they appear somewhere else in the graph. This difference in the location of the
hardest node is quite important when it comes to grooming techniques, as discussed in
Chapter 3.3, C/A clustered jets where the hardest splittings happen later are better for
grooming, as they leave room for softer branches early in the jet to be removed.

Figure 7.24 displays the medium-modified jets clustered using the kT algorithm.
Once again, the graph exhibits notable differences compared to both the vacuum jet
clustered with the same algorithm and the medium-modified jet clustered with C/A.
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Figure 7.24: The visualized graph of the same hadron level jet after medium modifications, clustered
with kT -algorithm. The dotted lines are the final state particles, which are not considered to be part of
the graph inside the GNN. The color scale represents the kT of each node.

Despite these variations, the presence of the hardest splittings at the top of the graph
remains consistent, indicating that the softest particles are combined first during the
clustering process.

It is evident that the choice of clustering algorithm has a significant impact on the
resulting graph structure. Further investigations can delve into exploring different clus-
tering algorithms and their corresponding prediction performance. Alternatively, re-
searchers could consider utilizing non-deterministic clustering algorithms to alleviate
the network’s dependence on a specific clustering approach. This approach would en-
able the network to be more robust and adaptable to different clustering scenarios.

7.4.2 Number of Features
Next, let us examine how the number of features assigned to each node impacts the net-
work’s performance. The LundNet model allows for flexibility in choosing the desired
observables or features to provide the network. Typically, the model is trained with up
to five features represented by the feature vector T, as described in Equation 3.23.

The network can be trained in different modes depending on the desired number of
features. The most commonly used mode is lundnet3, which includes three features
T = {log(z), log(θ), log(kT )}. Other modes include lundnet4, which adds the mass m
as an additional feature, and lundnet5, which includes both the mass and the azimuthal
angle ψ around the subjet’s axis. Alternatively, one can opt for the lundnet2 mode,
which reduces the number of features to only {log(θ), log(kT )}.

Throughout this thesis, lundnet3, the most popular configuration, has been used
exclusively. This choice is a balance between providing the network with sufficient in-
formation and maintaining a reasonable performance level. The inclusion of additional
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Figure 7.25: Prediction performance for the hadron level jets from the realistic jet spectrum with a
different number of input features. Upper Left: Trained with lundnet2. Upper Right: Trained with
lundnet4. Lower Middle: Trained with lundnet5.

Input Average MSE Loss
lundnet2 0.00946
lundnet3 0.00777
lundnet4 0.00834
lundnet5 0.00940

Table 7.5: Table of average MSE loss for hadron-level jets from the jet spectrum dataset, with a different
number of features. Including the lundnet3 result from Table 7.4.

features enhances the amount of information available to the network, but it comes at
the cost of reduced performance and increased training time. On the other hand, re-
ducing the number of features can expedite the training process, but it leads to sparser
information input, resulting in a decline in performance. Thus, lundnet3 strikes a suit-
able middle ground.

These assumptions are motivated by training the network with the different modes
and observing the results. Figure 7.25 showcases the performance of lundnet2, lund-
net4 and lundnet5 models trained on the hadron-level jets from the realistic jet spec-
trum. We observe a broader distribution of predicted values for each true χ , indicating
that the inclusion of additional features introduces more noise into the network. This
effect becomes more pronounced when examining the average MSE loss presented in
Table 7.5. The table also includes the average loss for lundnet2. As we can see, the
loss increases with the addition of extra features and even when one feature is removed
from lundnet3. Overall, while additional input features provide the network with more
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information, they result in decreased performance and longer training times. Moreover,
reducing the number of features leads to an increase in average loss roughly equivalent
to the loss incurred by adding two additional features, proving to be the worst option
so far.

7.4.3 kT Cut

Figure 7.26: For hadron-level jets from the realistic jet spectrum. Left: Number of nodes or splitting in
a jet, when applying a kT cut. Right: kT,max distribution, which we will use to determine where to place
a kT cut

Having explored the network’s response to the inclusion of additional information,
we will now examine the consequences of removing information from the jets by im-
plementing cuts on the kT values of the nodes.

Since the jets are IRC-safe by definition, as discussed earlier, then the hardest split-
tings should be the most important ones while the soft particles can be safely removed.
Therefore, one might expect that placing a kT cut on the jets would eliminate the softer
particles that contribute mainly to noise, but we observe a decrease in performance as
information is removed.

It is important to note that no additional background radiation has been added to the
jets at this stage. All particles inside the jet are either constituent particles that have lost
energy to the medium or particles from the wake. All particles within the jet represent
either constituent particles that have experienced energy loss in the medium or particles
from the wake.

To determine where to place the cut, we examine the distribution of the maximum
kT for all the jets. We analyze the maximum kT rather than just the kT of the first
splitting because the C/A algorithm does not always have the hardest splitting first. The
right plot in Figure 7.26 displays the distribution of kT,max, peaking at approximately
1.3 GeV. To remove as much soft radiation as possible without discarding the most
important hard splittings, we choose to apply a cut just below the peak, at kT = 1.0
GeV. While this represents the ideal cut, we also select two "extreme" cuts: a small
cut at kT = 0.1 GeV and a large cut at kT = 2.0 GeV. The small cut should eliminate
only the softest splittings, while the large cut risks removing significant information
contained in the hard splittings.
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To demonstrate the impact of each cut, we explore the distribution of the number
of splittings in each jet, depicted in the left plot of Figure 7.26. Without any cut, the
graphs typically contain a lot of nodes, or splittings. However, as we apply increasingly
larger cuts, more soft particles are progressively removed, leading to a gradual decrease
in the number of splittings within the jets. This results in narrower distributions with
peaks shifting towards lower values, indicating a decrease in the number of splittings.

When employing the largest cut of kT > 2.0 GeV, the distribution of the number
of nodes becomes significantly sharper, centered around a very small number of split-
tings. This suggests that an excessive amount of information may have been lost in the
process, raising concerns about the potential impact on the analysis. In particular, if
our hypothesis regarding the small number of nodes being the cause for the poor per-
formance of parton-level jets is accurate, this could also result in quite unsatisfactory
outcomes.

Figure 7.27: Prediction performance for the hadron level jets from the realistic jet spectrum after apply-
ing a kT cut. Upper Left: With a cut at kT = 0.1GeV. Upper Right: With a cut at kT = 1.0GeV. Lower
Middle: With a cut at kT = 2.0GeV.

We proceed with training the network on hadron-level jets derived from the realistic
spectrum while progressively applying larger kT cuts. The resulting prediction perfor-
mances are illustrated in Figure 7.27. Upon comparing these performances with the
results from Figure 7.17, where no kT cut was applied, we observe an overall deteri-
oration in performance. The predicted values are more spread out, and the error bars
are slightly larger. However, we still observe the same trends of lower predicted value
for high true value and higher predicted value for low true value. Although the results
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are not disastrous, there is a noticeable difference between the performances before and
after applying kT cuts.

Furthermore, as the kT cut increases, we observe a further decline in prediction
performance. This degradation is particularly pronounced in the lower middle plot of
Figure 7.27, corresponding to the largest kT cut. The application of this cut reduces the
graph to only a few nodes, resembling the structure of parton-level graphs, and in turn,
our results look similar to that of the parton-level graphs.

Input Average MSE Loss
No cut 0.00777

kT,min = 0.1GeV 0.01018
kT,min = 1.0GeV 0.01188
kT,min = 2.0GeV 0.01575

Table 7.6: Table of average MSE loss for hadron-level jets from the jet spectrum dataset, after applying
different kT cuts. Including the result without any cut from Table 7.4.

To effectively compare the performance of jets with different kT cuts, we calculate
the average MSE loss for each configuration, as presented in Table 7.6. As we introduce
kT cuts to the jets, the average loss consistently increases. However, applying a kT cut
of 2.0 results in a significant spike in the average loss, indicating that the model suffers
when such a large amount of information is removed from the jets.

The model exhibits progressively worse performance as we remove information
through kT cuts, even more so than when we introduced additional features in the pre-
vious section. Despite the expectation that the hardest splittings are the most crucial
and removing soft particles would have little impact on the network’s performance, the
importance of the soft radiation to the network is evident. The network prefers to add
more information through additional features rather than remove soft particles.

7.5 Robustness Towards Embedded Background

Up until now, the jets we have examined were only modified by medium and contained
the additional particles from the wake. However, in a realistic experimental setting, it
is inevitable to obtain a medium-modified jet without the additional background radia-
tion resulting from collision pileup and the hadronization of the QGP. These processes
introduce additional soft, thermal background particles that obscure the signals of in-
terest. Various grooming techniques are employed to mitigate the effect of background
radiation on the jets, but completely removing all background while preserving the in-
teresting signals is incredibly challenging. Therefore, machine learning methods such
as LundNet must be somewhat resilient to background radiation for them to be appli-
cable to experimental settings.

In this section, we will investigate the model’s robustness to the additional back-
ground particles by embedding the medium-modified jets into a heavy-ion environ-
ment. The heavy-ion environment is simulated using the blast-wave model discussed in
Chapter 2.3.2. We will begin with the original jets and gradually introduce more back-
ground particles until we reach realistic levels of background radiation. In heavy-ion
collisions, an average of 1400 charged background particles per rapidity are produced
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[24]. When considering neutral particles as well, the estimated additional background
particles is approximately 2100 particles per rapidity.

The first step is to generate new datasets that incorporate the additional background
particles. Both the jets and the background particles are clustered using the anti-kT
algorithm and then matched to their corresponding jets without background particles.
Specifically, we match the medium-modified jets with a background to the medium-
modified jets without a background, rather than comparing them to vacuum jets with
background particles. This approach avoids the possibility of obtaining an energy loss
ratio greater than 1. By comparing the medium-modified jets with background and
vacuum jets with background, one could potentially include different amounts of back-
ground radiation in the two jets leading to a change in the energy loss ratio. Therefore,
by using the same energy loss ratio calculated for the jets without background, we en-
sure that the energy loss ratio remains between 0 and 1.

Essentially, this section primarily examines how well the network handles the pres-
ence of additional soft particles, given the same labels as before. Given our under-
standing that the network tends to favor including additional information rather than
removing any data, we expect a slow decrease in performance as additional particles
are introduced. However, this decline should be slower compared to when applying jet
substructure techniques to remove background radiation from the jets. To demonstrate
this, we will also create a corresponding dataset where we apply constituent subtraction
to the jets, allowing us to compare the performance of the network.

Figure 7.28: Distribution of the number of constituent particles for jets with different amounts of back-
ground particles. Left: Distribution without applying subtraction to the jets. Right: Distribution after
applying constituent subtraction. Legend show the number of background (bkg) particles added is per
rapidity.

We begin by examining the distribution of the number of constituents in jets with
varying amounts of background radiation, as depicted in the left plot of Figure 7.28. Ev-
idently, the effective number of constituents in the jets, after incorporating background
particles, is significantly smaller than the number of particles added per rapidity. That
is a result of our relatively small jet radius of R = 0.4, and an uneven distribution of
background particles across the (η ,φ) space.

Then we explore the impact of constituent subtraction on the number of constituents
in the jets, as illustrated in the right plot in Figure 7.28. In this case, all distributions
have shifted towards lower values of the number of constituents. The peaks of the
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distribution are much closer to the peak of the distribution with no background particles.
While we still observe a broader spread of the number of constituents for jets with
higher levels of background radiation, the overall distribution has shifted significantly
towards lower values. This indicates that a large number of soft particles have been
removed through the constituent subtraction process.

Figure 7.29: Distribution of kT,max for jets with background radiation and no background subtraction.

Based on our previous findings, we have found that the network does not respond
well to the removal of information, and while constituent subtraction removes soft ra-
diation without ruining the jet’s internal substructure, it still results in information loss.
Therefore, we wish to compare the sophisticated subtraction method to a more crude
removal of information and explore whether the method of information removal matter
or if the network simply struggles with any form of information removal.

To explore this, we apply a kT cut to the un-subtracted jets with varying levels of
background radiation, following the methodology employed in the previous section. To
determine the optimal cut, we examine the distribution of kT,max, as shown in Figure
7.29. The kT,max distribution differs significantly across different amounts of back-
ground particles. To ensure that the cut does not cause extreme energy loss for any of
the distributions, we select a cut at kT = 1.0GeV. It is worth noting that the kT distribu-
tions demonstrate considerable resilience to additional background radiation until we
reach 440 background particles.

Next, we train the network using these datasets and evaluate the average MSE loss,
as presented in Table 7.7. In general, the performance decrease as the number of back-
ground particles increases. Moreover, applying constituent subtraction leads to a fur-
ther decrease in performance, and the decline is even more pronounced when imple-
menting a kT cut at 1.0 GeV.

To better visualize this difference in performance, we plot the average loss for the
various amounts of background particles per rapidity in Figure 7.30. Here, we observe
that jets without subtraction or cuts consistently perform best, with the loss stabilizing
at approximately 0.011. In contrast, for jets subjected to constituent subtraction, the
loss continues to increase with the addition of more background particles. The worst
results belong to the jets with a kT cut instead of constituent subtraction, which tells
us that applying a kT cut is exceedingly more invasive than constituent subtraction,
removing vital information from the jets.
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dNbkg/dy No Subtraction Constituent Subtraction No Subtraction and kT > 1.0GeV
0 0.00777 0.00945 0.01188

20 0.00977 0.01082 0.01197
80 0.01013 0.01037 0.01211
240 0.01126 0.01045 0.01162
440 0.01045 0.01111 0.01282
1000 0.01138 0.01252 0.01206
1600 0.01110 0.01206 0.01427
2000 0.01179 0.01267 0.01269
2400 0.01159 0.01283 0.01346

Table 7.7: Table of average MSE loss for jets with different amounts of background particles. The
first column is without applying any background subtraction, the second column is after applying back-
ground subtraction and the third is without background subtraction but applying a kT cut instead.

Figure 7.30: Plot of the average MSE loss for different numbers of additional background particles per
rapidity. The distributions show jets with background particles but no background subtraction or cuts,
jets with additional background and background subtraction, and jets with additional background and a
kT cut.

Overall, the LundNet model handled the embedding of jets in a heavy-ion envi-
ronment quite well. The additional noise introduced by the background radiation is
preferred over the removal of soft particles. We can conclude that the soft particles are
equally as important to the network’s ability to predict the energy loss ratio as the hard
particles. The best performance is achieved when background particles are added to
the modified jets without utilizing any subtraction techniques. Although the loss in-
creases by approximately 30 percent, the average loss remains relatively stable as the
background density increases.
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7.6 Future Considerations

After finishing our results, we wish to provide an insightful outlook on the future
prospects and potential topics of discussion to further explore the use of GNNs to pre-
dict the energy loss of jets traveling through a QGP.

Among the things we would like to further explore is the odd behavior of the net-
work when dealing with the parton-level jets from the realistic spectrum. As of now,
we can only assume this happens due to the limited information in the sparse graphs,
but with further investigation, one may discover approaches to mitigate this effect.

We also discussed how the graphs of the jets look very different for vacuum and
medium-modified jets. This discussion led us to consider the importance of clustering
algorithms and their impact on the graph representation of jets. Since the graphs of
the corresponding vacuum and medium-modified jets appear so different, we question
whether the choice of jet clustering algorithm is as important as initially suggested.
To explore this further, we propose the utilization of non-deterministic jet algorithms,
such as Q-jets [66], to free the network from the deterministic structure of clustered
jets. The concept of Q-jets is shortly introduced in Appendix C, and considers multiple
graphs weighted by some metric. By training the network on jets with varying graph
structures, we may uncover the most optimal structure for accurate predictions.

Another approach to free the jets from the constraints of clustering algorithms would
be to use ParticleNet. ParticleNet was briefly described in Chapter 4.5.1, and treats the
jets as particle clouds, using EdgeConv operations on the k nearest neighbors of each
particle, thereby aviding the need for clustering algorithms. This alternative method
may allow us access to even more valuable information from the jets. Ref. [6] reveal
that ParticleNet performs similarly to LundNet in jet tagging studies, suggesting its
potential efficacy in our analysis as well.

Furthermore, we can explore the network’s response to grooming techniques such as
SoftDrop, or Dynamical Grooming [67]. As discussed in Chapter 6, SoftDrop groom-
ing effectively removes soft radiation to recover the desired signal. While we are aware
that the network suffers when information is removed from jets, we wonder if the appli-
cation of SoftDrop may stabilize performance, particularly in scenarios with a higher
density of background radiation.

While this thesis primarily focuses on one specific model for jet quenching, we are
intrigued by the possibility of the network’s dependence on the model used to generate
the medium-modified jets. We hope to capture universal features rather than model-
specific features. Though we have not discussed other jet quenching models, we know
that hybrid models, such as the hybrid strong/weak model we employ in this thesis,
commonly contain both hard and soft components, but specific details about the im-
plementation of the different models could vary. Therefore, future work might benefit
from attempting to identify any indications or patterns that might shed light on a poten-
tial relationship between the learning process and the model of jet quenching

Conclusion to the Main Study of the Thesis

We observed that our model achieved performance comparable to, or slightly
worse than, the previous work conducted in Ref. [5]. This suggests that our ap-
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proach is consistent with existing methods.
This thesis focused on studying the sensitivity of the model to various cuts and

the influence of additional features and background radiation from the embedded
heavy-ion environment. We found that the network is "greedy" for additional in-
formation, and prefers additional noise rather than having information removed.

We conducted a comparison between constituent subtraction and applying a
kT cut. Our analysis revealed that the removal of information through kT cuts s a
highly invasive procedure, leading to a greater decrease in performance compared
to constituent subtraction. This finding underscores the importance of considering
how information is removed, as constituent subtraction aims to preserve the inter-
nal structure of the jet, while a kT cut blindly discards information below a certain
threshold.

Surprisingly, our investigation of the most realistic scenario involving hadron-
level jets originating from the realistic spectrum, with medium modifications em-
bedded in a heavy-ion environment, demonstrated decent performance. Despite a
slight decrease in performance with increasing background radiation, we observed
a stable performance level even in the presence of significant background radia-
tion.



Conclusion and Outlook

This thesis focuses on the application of machine learning techniques to predict the en-
ergy loss of jets traversing a quark-gluon plasma. Our approach involves representing
the jets as graphs derived from the declustered Lund tree and training a graph neural
network model, known as LundNet, to perform the energy loss predictions. Overall,
the network has exhibited promising performance in its predictions.

Properties of the QGP can be studied through the effect of medium modifications
on jet observables. However, jets that are suffering great energy losses are typically
underrepresented in statistics as they often are lost due to the selection bias effect.
Therefore, it is desirable to be able to recognize how much energy a jet has lost in order
to uncover part of this information.

Previous work has successfully utilized convolutional neural networks to predict
energy loss based on jet images. However, these approaches faced limitations when
it came to embedding jets into a heavy-ion environment. In experimental settings,
measurable jets are influenced by the thermal background generated by other detector
processes and the thermal background originating from the quark-gluon plasma itself.
Consequently, there is a need to extend energy loss prediction to jets embedded in
heavy-ion environments, accounting for these additional factors.

To improve upon this previous work, we opted to use a new approach by utilizing
a different representation of jets, moving away from jet images. While jet images ef-
fectively capture radiation patterns, they lack the ability to incorporate comprehensive
information about the jets. To address this limitation, we chose to work with graph
data structures, which offer greater flexibility. Specifically, we employed a graph rep-
resentation of the Lund tree, which is great at encoding both the radiation patterns
and substructure of jets. By using graphs we can essentially include a wide range of
observables at any point within the graph, thereby allowing us to provide more infor-
mation into our machine-learning model. However, using a graph representation of jets
introduces a dependency on the clustering algorithm used to construct the jets. As no
clustering algorithm perfectly aligns with the true branching history, there is a possibil-
ity that the machine learning model becomes reliant on the artificial structure generated
by the chosen clustering algorithm.

Considering our goal to incorporate the embedding of jets into a heavy-ion environ-
ment, we conducted a preliminary study to examine how jet observables are influenced
when a vacuum jet is embedded within a heavy-ion environment. We found that
there was quite a difference between the distribution of observables with and without
embedded background, especially for the mass, the opening angle, and the momentum-
sharing fraction. To mitigate these disparities, we applied SoftDrop grooming to the
jets. This grooming technique significantly improved the resultant distributions of ob-
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servables, making the distributions more similar between jets with and without em-
bedded background radiation. In regard to this study, we also discussed the effect of
different clustering algorithms when performing SoftDrop grooming. We found that
the use of Cambridge-Aachen clustering in SoftDrop grooming is advantageous as a
decent amount of soft radiation is removed.

Subsequently, we moved on to the main study of this thesis, which involved training
our model to predict jet energy loss. We used two different datasets, one created by a
parton gun and one by a realistic dijet spectrum. First, we focused on the parton gun
dataset and trained the network on both parton-level and hadron-level jets. Notably,
we observed that the network exhibited superior performance when trained on hadron-
level jets. This can be explained by the inclusion of particles from the wake in hadronic
jets, resulting in larger graphs replete with informative content. In contrast, partonic
jets contained only a sparse number of particles, limiting the information available to
the network.

Next, we trained the network using the jets derived from the realistic dijet spec-
trum. Surprisingly, the network’s performance on parton-level jets from the realistic
dijet spectrum proved to be unsatisfactory, performing considerably worse than the par-
tonic jets from the parton gun. We expect the poor performance to be due to the sparse
graphs belonging to the parton-level jets, containing only a few nodes. The hadronic
jets from the realistic spectrum are the most realistic jets for experimental measure-
ments that we have considered so far. The network performs very well on this data, as
visualized in Figure 7.17. The network still predicts a slightly too-high energy loss for
the jets with very low energy loss and too low energy loss for the jets with very high
energy loss.

In order to gain insight into the network’s decision-making process and identify
what it considers the most important features, we conducted several brief studies. First,
we visualized the graphs provided to the network and observed notable differences
between the vacuum jet graph and its corresponding medium-modified jet. This is to
be expected since the medium-modified jets contain a larger number of particles. Fur-
thermore, we recognized that the choice of clustering algorithm significantly impacts
the graph structure. However, given the large difference between the vacuum jet and
medium-modified jet graphs, we concluded that the clustering algorithm’s influence
may not be as crucial as initially believed.

Next, we tried to change the number of features assigned to each node. Introduc-
ing additional features resulted in a performance decrease, although at a slower rate
compared to when removing a feature. Then we explored the effect of applying a kT
cut on the graphs to remove soft radiation. Due to the IRC-safe jet definition, we ex-
pect that the hard splittings are the most important to accurately predict the energy loss.
Surprisingly, removing the soft splittings led to a significant decline in performance, in-
dicating that the network considers soft radiation crucial for accurate predictions.

Finally, we embedded the medium-modified jets into a heavy-ion environment
and trained the network using samples with varying quantities of background particles.
As the number of background particles increased, the network’s performance gradu-
ally decline. Furthermore, applying background subtraction to remove some of the soft
background particles resulted in a more rapid decline in performance. Overall, the net-
work displayed a preference for receiving additional information rather than removing
information through kT cuts and background subtraction tools.
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To improve upon our results, we would like to eliminate the dependence on clus-
tering algorithms by introducing the Q-jet algorithm, which is briefly outlined in Ap-
pendix C. Although the reliance on clustering algorithms may not be as significant as
we feared, we wish to free ourselves from such dependencies. Additionally, groom-
ing methods like SoftDrop could be employed in future work to close the performance
gap between jets with embedded background radiation, with and without background
subtraction. Finally, we would also like to investigate whether the machine learning
models are dependent on the jet quenching model.

These results are promising, and with further improvements, the network will be
capable of sufficiently predicting energy loss for realistic experimental measurements.
The precise estimation of energy loss on a jet-by-jet basis can significantly contribute
to our understanding of the quark-gluon plasma by amplifying the signals from heavily
modified jets. This, in turn, opens up new avenues to explore new aspects of the QGP
and gain deeper insights into its properties.
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Appendix A

Cautionary Tale of Applying Cuts on Jet
Observables

In this thesis, we have discussed the inherent bias introduced when removing jets or
their constituents based on a threshold set for a particular observable. One of the most
prominent examples is the selection bias resulting from the transverse momentum (pT )
cut applied to jets, which serves as the primary motivation for conducting this thesis. It
is important to recognize that if we just cut away jets, or constituents, naively then we
end up with a very biased set of jets that no longer represent the true jet distribution.

If we return to Chapter 6, we see that after applying SoftDrop grooming the distribu-
tion of observables has become more cohesive, but there is still room for improvement
if we wish to mitigate the effect of background completely. To delve deeper into this
matter, we will examine the impact of imposing a cut on a specific jet observable for
the vacuum jets embedded in a heavy-ion environment, the same dataset as discussed
in Chapter 6.

To decide what observable we wish to apply a cut on, we take another look at
the distribution of observables in Figure 6.6 and 6.7. We want to apply a cut to an
observable which still has a considerable difference between the jets with and without
background radiation. We are looking for a border where we can separate the majority
of the distribution without background on one side of the cut, and as much as possible
of the distribution with background on the other side.

Possible candidates can be removing the tail of the mass distribution or removing
the tail of the kT distribution. Another possibility is to place a cut on the distribution of
the number of constituents or the ratio plot, which shows the distribution of constituents
in the first two subjets. There is a much clearer border between jets with and without
background in these plots, however, it is quite risky to put too much faith in these
observables as they are not IRC-safe observables. As the differences for the mass and
kT distributions are so small, we will try to apply cuts to the observables related to the
number of constituents in the jets and in each of the first subjets.

To determine the optimal cut, we calculate a ROC curve, which stands for Receiver
Operating Characteristic curve. The ROC curve provides a graphical representation of
the performance of a classification model across various classification thresholds [68].
In our specific case, it demonstrates the performance of each cut option considered.
The effectiveness of the cut can be evaluated based on how well it retains jets without
background while removing as many jets with background as possible. By achieving
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this outcome, we can approximate the distribution of jets with background to closely
resemble the distribution of jets without background.

This curve is constructed by plotting two parameters: the True Positive Rate (TPR)
and the False Positive Rate (FPR), given by:

T PR =
T P

T P+FN
, FPR =

FP
FP+T N

. (A.1)

In our plot, the True Positive (TP) corresponds to the number of surviving samples
for jets without background when the cut is applied, while the False Negative (FN) de-
notes the number of samples that did not meet the criteria. Furthermore, we determine
the False Positive (FP) as the number of surviving samples for the distribution with
background particles, and the True Negative (TN) as the number of samples that were
removed by the cut.

cut1 cut2 cut3 cut4 cut5 cut6 cut7 cut8 cut9 cut10 cut11 cut12
Ntot cut 0 5 10 11 13 15 17 20 25 30 35 40

N1−N2
Ntot

cut -1 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2

Figure A.1: The ROC curve for N1−N2
Ntot

cut and Ntot cut. The points on the graph represent the cuts in
the table. The table does not contain the TPR or FPR of the distributions, only the value of the cuts.

Next, we implement multiple cuts on our SoftDrop jets and evaluate their perfor-
mance using the ROC curve depicted in Figure A.1. To achieve optimal separation
between the signal and background, we aim for a high True Positive Rate (TPR) and
a low False Positive Rate (FPR). Based on the curve, the most favorable point is a cut
that eliminates all jets with Ntot > 17.

Upon implementing this cut, the distributions of observables exhibit larger differ-
ences between jets with and without background radiation. It appears that the applied
cut has removed crucial information from the jets, leading to noticeable differences in
the observables. Thus, we can call this a cautionary tale of what not to do if we wish to
keep the most crucial information of a jet.

In the upper left plot of Figure A.2, the impact of the cut is clearly visible. The
distributions of Ntot with background exhibit a sharp cutoff at 17 particles per jet.

However, when examining the ratio N1−N2
Ntot

in the upper right plot, we observe a
striking similarity to the same plot where only SoftDrop had been applied. The pri-
mary difference is that the jets with background now closely resemble the distribution
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Figure A.2: Plots of observable distribution for p̂t min = 200GeV when applying SoftDrop grooming
and cut Ntot > 17. Upper Left: Ntot distribution. Upper Right: N1−N2/Ntot distribution. Lower Left:
Mass distribution. Lower Right: θ distribution.

without background, aligning more with its shape compared to when only SoftDrop
was employed.

Moving to the lower left plot in Figure A.2, we analyze the mass distribution post-
cut application. All distributions appear narrower than before the cut was implemented.
Notably, jets with background radiation exhibit a significantly narrower distribution
compared to jets without background, which display a slightly broader distribution.

Lastly, in the lower right plot of Figure A.2, we examine the distribution of the
opening angle θ after applying the cut. The distributions appear less concentrated,
featuring wider spreads and a peak at lower values.

The Key Concepts of This Appendix

By applying cuts on the observables, we essentially discard jets in a crude manner,
resulting in observable distributions that no longer accurately represent the true
underlying jet distributions.

When a cut is imposed on the number of constituents within a jet, the ob-
servable distributions experience a shift, altering their characteristics. As a con-
sequence, the difference between jets with and without background radiation in-
crease compared to when only SoftDrop grooming is employed.
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Correlations between χ and Observables

In order to gain a deeper understanding of the graphs used as input for the network, we
aim to conduct a brief study on the correlations between the energy loss ratio and var-
ious observables. This study serves as an indirect investigation into the impact of cuts
on the graphs, as we examine the behavior of different observables after undergoing
various degrees of modification caused by the medium.

Specifically, we will focus on the characteristics of the first node within each graph,
dividing them into χ bins and analyzing the ratio relative to the corresponding vacuum
feature. This analysis will provide valuable insights into the relationship between the
energy loss ratio and observables within the graphs.

Figure B.1 provides insight into the distribution of features associated with the first
nodes, as well as their ratio to the vacuum kT values. The full medium-modified dataset
has been subdivided into smaller datasets based on the extent of modification experi-
enced by the jets, or how large the energy loss is. Through this analysis, our objective
is to identify any observables that exhibit notable sensitivity to specific levels of modi-
fication.

First, let’s consider the kT distribution in the upper right plot. There is a noticeable
difference between medium-modified jets and those with extensive modifications com-
pared to the vacuum jets, particularly for high kT values. The distributions are shifted
towards lower values. The ratio plot shows that jets with minimal energy loss have a
higher proportion of high kT values.

Moving on to the opening angle θ in the upper middle plot, which reveals a shift
towards larger opening angles for medium-modified jets. The degree of shift increases
with the level of modification, with a higher concentration of jets with significant mod-
ifications in the tail of the distribution at high θ values.

Examining the distribution of the momentum-sharing fraction z in the upper left
plot, we observe a shift towards lower z values for all modified jets. Interestingly,
jets with minimal modifications exhibit the most distinct distribution for z compared to
vacuum jets.

The lower left plot shows the mass distribution, which is shifted towards smaller
values for medium-modified jets. The average mass decreases as the level of modifica-
tions increases

As expected, the distribution of the number of constituents in the lower right plot
increases with higher levels of modifications. Vacuum jets have relatively few con-
stituents, while jets with extensive modifications contain a larger number of soft wake
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Figure B.1: Distribution of observables for hadron-level jets from the jet spectrum for different χ bins.
Upper Left: The kT distribution. Upper Middle: The distribution of the opening angle θ . Upper Right:
The distribution of the momentum-sharing fraction z. Lower Left: The distribution of the mass m.
Lower Right: The distribution of the number of jet constituents.

particles.
In summary, we find that the observables are primarily influenced by jets with the

most significant modifications, except for the momentum-sharing fraction z, where jets
with minimal modifications display the most distinct distribution compared to the vac-
uum counterpart.

The features of the first node may not necessarily be the most reliable jet observables
due to the changes in jet structure caused by additional soft particles. To mitigate this,
we employ SoftDrop grooming to remove some of the soft branches and focus on the
distributions of jet features corresponding to the modified observables after applying
SoftDrop. These SoftDrop observables provide a more informative characterization of
the system compared to the features of the first nodes, which can be heavily influenced
by the choice of jet algorithm. The distributions of these observables after applying
SoftDrop are presented in Figure B.2.

Starting with the kT distribution in the upper left plot, we observe that the distri-
bution after applying SoftDrop remains largely unchanged compared to before. The
distributions follow similar trends, and no significant differences are noticeable.

However, in the upper middle plot depicting the distribution of the opening angle
θ after applying SoftDrop, a distinct change is apparent. The distributions no longer
exhibit a peak at high θ values but instead display a flatter distribution across the entire
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Figure B.2: Distribution of jet observables for hadron-level from the jet spectrum dataset for different
χ bins, after applying SoftDrop. Upper Left: The kT distribution. Upper Middle: The distribution of
the opening angle θ . Upper Right: The distribution of the momentum-sharing fraction z. Lower Left:
The distribution of the mass m. Lower Right: The distribution of the number of jet constituents.

range. Jets with significant modifications, characterized by small χ values, are shifted
closer to their pre-SoftDrop distributions and exhibit the most noticeable deviations
from the vacuum distribution.

Moving to the upper right plot, we examine the momentum-sharing fraction z dis-
tributions after applying SoftDrop. These distributions are quite similar to the pre-
SoftDrop distributions, with the exception that the jets with the most modifications
now display the least resemblance to the vacuum distribution, showing a shift towards
larger z values.

In the lower left plot, we find the mass distributions after applying SoftDrop, which
closely resemble the distributions obtained without SoftDrop. The distributions exhibit
similar trends and characteristics as observed previously.

Finally, the distribution of the number of constituents in the lower right plot remains
highly consistent with the previous distributions. The distributions of medium-modified
jets continue to exhibit the most significant differences from the vacuum jets, as they
still contain a substantial number of soft particles that have not been entirely removed
by SoftDrop grooming.

Overall, applying SoftDrop did not have large effects on the observable distributions
in the sense that the difference between the vacuum jets and the medium-modified jets
still have quite different observable distributions after SoftDrop.
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The Key Concepts of This Appendix

Our analysis reveals that the observables are primarily influenced by jets experi-
encing the most substantial modifications. Specifically, jets with significant energy
loss, indicating large modifications, exhibit observable distributions that are least
similar to those of vacuum jets. In these cases, the distributions tend to be shifted
towards lower values for observables such as kT , mass, and momentum-sharing
fraction z.

Furthermore, we find that the application of SoftDrop grooming to the jets has
minimal impact on the distributions of observables. The observed trends in the
distributions remain consistent with those obtained for jets subjected to medium-
modifications, indicating that SoftDrop does not introduce significant alterations
to the observable behavior.



Appendix C

Q-jets

The clustering of particles into jets is typically done using deterministic clustering al-
gorithms, such as Cambridge-Aachen or anti-kT . These jets take a graph-like structure
when clustered. These clustering algorithms create one deterministic graph for each jet
based on some distance measure between each particle.

Instead of considering just one graph per jet, one could use a non-deterministic
approach called Q-jets [66]. This approach considers multiple graphs for each jet,
weighted by an appropriate metric. Then each jet in an event produces a distribution
for each observable, rather than one single value [66].

This could be useful to free the graph neural network from the constraint of the
choice of a clustering algorithm. If we can supply the network with different-looking
graphs for each jet, then we could potentially make the network more robust and not as
dependent on the clustering algorithm.

C.1 Definition of Q-jet

The algorithm assembles a graph using a series of 2 → 1 mergings. It works as follows

1. At every stage of the clustering, a set of weights ωi j for all pairs ⟨i j⟩ are com-
puted, using the formula

ω
(α)
i j = exp

{
−α

(di j −dmin)

dmin

}
(C.1)

where the distance measure is di j = min{p2p
T,i, p2p

T, j}
△R2

i j
R2 in Eq. 3.16, with p = 1

for kt distance measure or p = 0 for C/A distance measure, and α is the rigidity
parameter.

2. Then compute the probability for each pair

Ωi j = ωi j/N (C.2)

where N = ∑⟨i j⟩ωi j

3. Generate a random number and use it to choose a pair ⟨i j⟩ with probability Ωi j.

4. Merge the chosen pair and repeat the procedure until all particles are clustered.
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The algorithm produces a graph with a weight Wgraph = ∏mergings Ωi j. To produce a
distribution of graphs for each jet, repeat the algorithm Ngraph times.

The algorithm reduces to a traditional clustering algorithm when α → ∞. The algo-
rithm is dependent on what distance measure one use, for example using the geometric
distance measure of the C/A algorithm.

C.2 Dependence on the Rigidity Parameter and Distance
Measure

Figure C.1: Distribution of the SoftDrop mass for a jet with pT = 440GeV and m = 43GeV , for 1000
Q-jets. Left: With the C/A distance measure. Right: With the kT distance measure. The classical value
of the respective deterministic clustering algorithm is marked in gray.

The Q-jet algorithm provides us with a distribution of graphs representing the same
jet, allowing us to examine the distribution of each observable for each jet. To illustrate
this, we select a specific jet with a transverse momentum of pT = 440 GeV and a mass
of m = 43 GeV, and take a look at one observable.

We examine the SoftDrop mass, which corresponds to the mass of the first Soft-
Drop splitting. Figure C.1 displays the distribution of SoftDrop masses for 1000 Q-jets
obtained using both kT and C/A distance measures. The gray area indicates the observ-
able value obtained when clustering the jet with a deterministic algorithm. Notably, the
classic SoftDrop mass value mSD is smaller than the true mass m = 43GeV.

In the left plot of Figure C.1, we observe the SoftDrop mass distribution for Q-
jets using the C/A distance measure. The distributions are spread out, and only the
distribution corresponding to α = 1.00 exhibits a peak around the original value. As
the value of α decreases, the distributions of mSD progressively shift closer to the true
mass m and deviate from the classical value of the SoftDrop mass mSD.

In the right plot of Figure C.1, we examine the SoftDrop mass distribution for Q-jets
employing the kT distance measure. In this case, all the distributions peak at the true
mass m value, significantly differing from the classical mSD value.

Once again, we observe the notable differences between jets clustered using the
kT and C/A distance measures. The SoftDrop mass distribution mSD displays a wider
distribution when the C/A distance measure is used, while the distribution associated
with the kT distance measure is more focused around the true mass m value. This
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indicates that the C/A algorithm and distance measure are better suited for SoftDrop
observables.

For large values of α , the graphs are constrained to resemble classical graphs, result-
ing in the SoftDrop mass mSD remaining close to the classical value. As α decreases,
a broader spectrum of graphs can be considered, leading to a wider range of SoftDrop
mass values.

As α decreases further, the differences between the distributions of graphs gener-
ated from the C/A and kT distance measures diminish. In reference [66], it is suggested
that for sufficiently small rigidity parameter α , the Q-jets become independent of the
choice of distance measure. In conclusions, a non-deterministic jet reconstruction algo-
rithm such as Q-jets allows to explore a wider variety of probable jet trees constructed
from the same set of final-state particles, and could thereby be more robust to the choice
of a specific jet algorithm.

The Key Concepts of This Appendix

Q-jets is a non-deterministic approach to jet clustering, where multiple weighted
graphs are created for each jet. Q-jets can be used to mitigate the dependence on
clustering algorithms. By decreasing the rigidity parameter the Q-jets can become
more robust towards the choice of clustering algorithm.
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