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Abstract

The pathology lab at Haukeland University Hospital is currently facing a few
challenges. In the lab they process different specimens of tissue samples for
various reasons such as looking for signs of cancers and tumours. The last six
years the lab has had an average increase of 3.42% in the amount of test sam-
ples which needs to be analysed each year. This increase has led to queues
forming at various stages of sample analysis. Specific samples are hard to
locate within these queues and the queues lead to slowdowns of sample pro-
cessing. The pathology lab require a better solution to the way and order in
which samples are processed and tracked, to do so they need to gather data
about the processing by implementing a tracking solution. This project aims to
help them achieve this goal by looking for a potential software solution to part
of the problem. This solution aims to take advantage of technologies such as
optical character recognition (OCR) for detecting and tracking samples. The
goal for this research is to create and test solutions for cassette detection and
identification using pre-trained image processing libraries. Testing two differ-
ent methods, these being edge detection and the EAST neural network, they
achieved an accuracy of 77.84% and 93.41% respectively regarding cassette
detection. Tesseract OCR performance of detected cassettes also varies be-
tween the two methods, giving an accuracy score of 36.1% when using edge
detection and 62.1% using EAST. The increase in accuracy comes at a cost
in runtime. In addition to these evaluations an in-lab trial compares the sort-
ing time for the current solution of manual sorting versus the efficiency of sort-
ing using the proposed digital solution. The trial concluded that the proposed
digital solution is able to increase the amount of cassettes sorted within a set
amount of time by 54% decreasing the time spent on manual sorting activities
by 35%. This thesis also covers some of the interaction design decisions for
the proposed application to allow for manual error correction. Through concep-
tual designs the thesis shows how the proposed system could interface with a
process execution engine. There is also a proposal for what the architecture of
an integrated system could look like. Integrating this system would allow for the
generation of fine-grained event logs for process mining purposes. The data
from these logs have a possibility of leading to future improvements in pathol-
ogy lab workflow.
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Chapter 1

Introduction

1.1 Motivation

The pathology lab at Haukeland university hospital perform analyses on different test

specimens. An example of one type of specimens are tissue samples from human

organs used for diagnosing the existence of cancers and tumours. This is a compli-

cated process and involves the specimen getting split into multiple samples which are

then analysed and processed by different machines. To maximize efficiency a lot of

samples are parallel processed, this leads to the samples being split into processes at

different physical locations with varying times to finish the sample analysis. The final

step, which is a microscope study requires all the samples to be gathered back to-

gether again. As all the samples are stored in different locations, locating and sorting

all the samples from one specimen can in some cases be very time consuming. This

thesis will look at one possible solution to help the lab technicians at the pathology lab

locate, sort, and archive their samples faster.

Healthcare is an important part of our daily lives. It is also important for government

and society as a whole. However, healthcare systems are facing shortages of trained

professionals and there is a growing demand for medical services especially consid-

ering the ageing population in Norway. Currently the healthcare industry is facing a

digital revolution and work is being done at multiple stages to enhance and improve

processes with new digital tools. This leads to less waiting time and faster diagnoses
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which in certain cases have the potential to save lives. Appointments for pathology

can have very long wait times. A patient can experience waiting for 6 months before

they have a sample taken by their doctor. After the sample is taken the patient will

have to wait again for the sample the get processed and analysed by a pathologist. If

this process takes too long the patient can in some cases become sicker during the

period of waiting. Especially if the patient is fighting a disease like cancer that pro-

gresses in different stages over time. Streamlining this process has the potential to

not only help save lives, but will also contribute other benefits such as saving time and

money by allowing pathologists to focus on more important tasks.

According to one of the doctors of the pathology lab at Haukeland university hospital,

Friedemann Leh the pathology lab has a yearly increase of roughly 5 - 10% in test

samples which needs to be analysed each year. This increase has led to queues

forming at various stages of the sample analyses. In this project image processing

and optical character recognition (OCR) will be utilized to automate certain parts of

the process. Specifically, this thesis will be looking at the final step where currently a

lab technician must locate all samples of a specimen by reading the labels of multiple

samples stored in a container. Then proceed to sort all samples in numerical order by

their ID, before finally checking that all samples are present. This process should be

possible to automate using tools such as Python, openCV and PyTessaract.

Specimens in the pathology lab are stored in small cassettes after it is sliced into

samples. Each cassette contains some information. This includes a unique id for

each specimen, a batch number for each sample, a label indicating the sample is from

Haukeland, the year the sample is from as well as an indicator to whether the sample

is from a biopsy, an autopsy or cytology. In addition to these semantic identifiers there

is also a data matrix code on the cassette. This code identifies the sample in the

laboratory information system (LIS). However, the solution proposed in this thesis will

not have access to the data in the LIS. The information contained on the data matrix

code is therefore irrelevant as this project will be testing an OCR based approach to

extract the information found on the text contained on the cassettes.

There are two main problems with the current process of manually sorting the cas-

settes. Firstly, it is a very time-consuming process. Second the lack of any trails if
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a cassette is misplaced and sorted wrongly. Both of these have consequences that

can escalate into larger issues for the pathology department. According to the lab

technicians cassettes are sorted into the wrong slot on an almost daily basis.

There are multiple technologies that could be adapted to recognize the cassettes.

Some of these include adding additional information to the cassette used for auto-

matic scanning. However, the cassettes are small and the limited space for printing

on them has already been used, in addition multiple data matrix codes could cause

conflicts with the data matrix codes used by the LIS mentioned earlier. Cassettes

could be identified by adapting a low frequency technology by using a tag such as

radio-frequency identification (RFID) or near-field communication (NFC) tags. Using

RFID to keep track of the cassettes compared to barcodes would allow multiple cas-

settes to be scanned simultaneously, increasing speed and efficiency. However, RFID

could also lead to individual cassettes being harder to locate and RFID tags are sig-

nificantly more expensive compared to barcodes. (White et al., 2007, p. 122).

Implementing a new type of cassette to track would require a change in the production

of cassettes which could be costly and time consuming. Using OCR allows the text

data on cassettes to be extracted and the technology can be built into the existing

process without changing anything about the cassettes themselves. The proposed

solution would only require a camera able to capture images of the cassettes and the

software created in this project. The result of this study has the potential to lead to a

reduction of queued samples in the pathology lab, thereby increasing efficiency and

sample analyses rate. The application developed also required a user interface which

were developed with feedback from the pathology lab.

Another benefit that would help the pathology lab is that the system proposed by this

thesis would allow cassettes routes to be traceable. This is not only good for the

workers of the pathology lab in case they need to track down a specific cassette, but

traceability is also important for patient safety. Cassettes that are ”lost” by being sorted

into the wrong space can be very difficult to find as they can be almost anywhere in the

archive. This can lead to issues and in worst case scenario lead to a wrong diagnosis

of a patient if a cassette is mixed up at the wrong process.
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Traceability of cassettes is extremely important to the lab. Not only to locate specific

cassettes, but also for patient privacy. The current LIS system does not fully track

cassettes in the lab. This is due to the long times required to scan barcodes. Scanning

these at every step would introduce significant overhead. With an automatic solution,

the scanning process should be significantly faster. Traceability will also allow the

pathology lab to ensure that a good workflow is in place though empirical means. With

the proposed system in place cassettes in the wrong location will be less of a problem

as traceability will allow the pathology lab to locate when and where a cassette was

put in the wrong location. Haukeland is not the only pathology lab dealing with issues

of cassettes being placed in the wrong locations, as other pathology labs are dealing

with similar issues as seen in the following quote. “When you’re looking at hundreds of

blocks with a lot of numbers on them, eventually you’re going to pull the wrong block.

It’s extremely time consuming and extremely wasteful.” -Dr.Sue Paturzo, pathology

lab supervisor at Thomas Jefferson university hospital. (, Epredia, 2020, p. 2)

Traceability will also help when pulling cassettes from the archive, and activity which

is done on a daily basis and one of the reasons the cassettes have to be sorted in the

first place. At the moment there is no way to know if a cassette is currently sitting in its

supposed location in the archive or if someone has pulled out an old cassette and are

running tests on it. The reason cassettes are pulled from the archive daily could be to

see if a disease is hereditary. Knowing if a patient is dealing with the same disease as

their ancestors can give valuable insights on which treatments and cures have been

applied in the past, and which of these treatments were successful.

1.2 Problem Statement

The problem this thesis attempts to address is the build-up of queues at various stages

in the pathology lab at Haukeland university hospital. These queues are formed due

to challenges related to a human’s speed of identifying and sorting samples. The

existing queues and the addition of a considerate yearly increase in samples that have

to be analysed each year, leads to a further build-up of queues and slows down the

pathology lab considerably. The pathology lab also suffers from a lack of traceability in

certain stages of processing. Both of these issues can be addressed with one solution.
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To address these issue directly there is a need to propose a solution and figure out

how to implement this solution without causing disruptions in the existing workflow.

1.3 Objectives

The author of this thesis hypothesises that a human’s ability to identify cassettes will

increase in speed when assisted by digital tools. The augmented identification will

increase a user’s ability to find specific cassettes and lead to an increase in cassettes

sorted within a set period of time. Thus, making if faster for cassettes to be sent further

into the lab instead of being stuck in queues and improving the speed of the overall

process of a cassette traveling through the lab.

1.3.1 Research questions

There is one main research question which this thesis aims to answer. The main

question can be split into three sub-questions which are also directly answered when

resolving the main research question. All of these research questions directly relate

to the main goal of implementing OCR to create an application that help identify cas-

settes containing specimen for the medical domain. To simplify the goals of the thesis

into research questions the following research questions are proposed with RQ being

the main question and RQ1, RQ2 and R3 being sub-questions:

RQ: How can the pathology workflow be streamlined by implementing automatic sort-

ing mechanics for cassettes?

RQ1: How can the implementation of a tracking solution using optical character recog-

nition (OCR) improve the efficiency of sample processing at a pathology lab?

RQ2: How does the accuracy of cassette detection vary when using different pre-

trained image processing libraries, specifically edge detection and the EAST neural

network?

RQ3: What effect does the proposed digital solution have on the time it takes to sort
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cassettes compared to the current manual sorting method?

1.4 Contribution

The main contribution will be a demo of an application/artifact that aims to increase the

productivity and speed of cassette sorting at Haukeland university hospital’s pathol-

ogy lab. This application and research around it should answers the question stated in

RQ. The application developed should be tailored to the user’s (pathology lab) speci-

fications and easy to use without much prior knowledge. The process and evaluation

around this artifact will answer RQ1, RQ2 and RQ3. The application should help re-

solve the problem of queues building up, thereby enhancing the efficiency of the lab.

The application should be faster at sorting cassettes compared to the current method

of manually sorting cassettes, which leads to a large build-up.

Essentially the goal for the project is to create an artifact that extracts the textual infor-

mation from the cassettes and present it to a user in a way that makes it easier for the

user to find specific cassettes. The program should store the location of all cassettes

found in a format allowing for easy retrieval of this information.

The broader goal of the artifact is to propose a solution that allows more fine-grained

tracking of a cassette’s physical location inside the lab. The logs of such an application

can help tell how long a cassette have been at a certain processing step and allows

for backtracking to see which steps a specific cassette has been through. This is

a continuous system running in parallel with the lab and will be constantly supplying

data at a faster rate than what is currently done manually and with the current LIS. This

data will allow the staff at the lab to locate individual cassettes by searching for them

and getting an output of the cassettes previous location. It will also show the length of

different processing steps and can be used to identify bottlenecks and figure out where

in the most time-consuming areas to allocate additional resources. Knowing how long

a cassette has been at a certain processing step and backtracking to see which steps

a certain cassette has been through can provide an advantage when trying to optimize

the processing pipeline by performing process mining.

The thesis includes a comparison of two different methods of identifying pathology
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cassettes from images. One of these methods is edge detection, the other method

is EAST a neural network created for text detection. These are evaluated on images

captured in the pathology lab environment and the results are compared to identify

which is more suitable for use in a pathology lab.

How to present the artifact to the user in the form of a graphical user interface is

discussed in the thesis. Mainly in form of how to handle manual error correction and

the interaction design choices that could make this process easier for the users of the

artifact. This includes how to highlight specific cassettes with a search functionality

and present an overview of all cassettes detected in an image.

The aim of this is to free up the time of the lab technicians for more important tasks.

The work being done here is not removing jobs. In contrast this projects goals allow

for more important work to be done faster by freeing up the lab technicians from a

mundane task as the sorting process generally occupies the time of one lab technician

each day.

The artifact will also contribute to the open-source community. All the work done in

this thesis will be available for others to read and iterate upon further without the need

for proprietary hardware or software.

The data produced by the proposed artifact could also be relevant for another current

ongoing research project at the pathology lab. This project is focused on the workflows

of the lab. The project aims to extract these using process mining. Certain events are

not logged by the system currently in use. However, the data and event-logs generated

by the artifact proposed in this thesis could be used to fill in the missing data and

allow for more fine-grained process mining to take place. The data will increase the

traceability of cassettes.

To show how the artifact produced can be incorporated into the workflow conceptual

designs of how the artifact can interface with process execution engines are proposed.

In addition to a proposal of how the overall architecture of the system could be setup

if the pathology lab implemented an OCR based system for cassette tracking.

To compare the results of an automatic storage system to the current manual ap-

proach this thesis also includes data gathered from the pathology lab. This data has
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been collected through a series of interviews, meetings, and natural observation of cer-

tain tasks within the pathology lab. This thesis will help make this data more openly

available by open-sourcing data which will allow for others to help contribute to and

use this data to further advance the field of pathology lab workflows.



Chapter 2

Background

This part of the thesis will present the background information required to understand

the theory behind certain topics related to the thesis. Firstly, pathology concepts and

workflows will be introduced. Then the different technologies utilized will be described.

Prior research and current techniques related to this thesis will be discussed and an

overview will be presented. Finally related works will be explored.

2.1 Pathology

This part of the thesis introduce the problem domain. Here pathology workflows and

concepts required for understanding the work done in this thesis are presented.

2.1.1 What is pathology?

According to the oxford English dictionary pathology is “”The study of disease; the

branch of science that deals with the causes and nature of diseases and abnormal

anatomical and physiological conditions; (in later use) esp. the branch of medicine

that deals with the laboratory examination of body tissues, cells, and fluids for diag-

nostic purposes. Frequently with distinguishing word.” (Oxford English dictionary,

Pathology, 2022). This definition lines up with what Stünkel et al. points out when

they say that the word pathology can be split into the Greek words “pathos” and “lo-

gos” which translates to “the study disease” or more narrowly “study of cause and ef-
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fects of disease” (Stünkel et al., 2022, p. 3). Pathologists do not usually interact with

the patients themselves, but rather act as an advisor and consultant to other medical

professionals. “The primary clinician takes a specimen from the patient, e.g., a tis-

sue sample, and sends it to the pathologist, who examines the specimen and writes a

report, most often with a conclusive diagnosis, which will help the clinician on decid-

ing the further treatment, e.g. whether surgery or chemotherapy has to be scheduled”

(Stünkel et al., 2022, p. 3). The medical field is currently undergoing a large-scale dig-

itization, and this also impacts the pathology department. This thesis will contribute to

this digitization by looking at the potential use case of a new tool.

In this thesis samples from three different strands of pathology will be encountered

which the information system must be able to handle. These are Histology/biopsy,

cytology, and autopsy. Histology deals with the study of tissue abnormalities using

gross and microscopic examination of biopsy samples. (Othman, 2019, p. 11). A

cytology sample is a sample of a single cell specimen (Stünkel et al., 2022, p. 3) and

deals with the study of cellular changes. (Othman, 2019, p. 11). An autopsy sample

deals with pathological examination of human cadaver after death(Othman, 2019, p.

11). Autopsy samples can be used to confirm or identify an illness and in cases where

it is applicable an autopsy sample can be used to observe if treatment had any effect

before the death of the patient. All of these three sample types are processed by

different processing pipelines in the pathology lab and therefore have differences in

processing times.

2.1.2 Histological sample processing pipeline

This thesis will focus on improving the processes in the laboratory. To give an example

of what is done in the pathology lab a description of the processing of a histological

sample will be provided. This process can be seen in the petri net in figure 2.1. ”A

petri net is a abstract, formal model of information flow.” Peterson (1977). In this case

it visualizes the workflow of a histological sample in the pathology lab.

The processing of a single histology sample at the pathology lab is a time-consuming

process. After a sample has been extracted from its host it is placed in a container

of fixative solution and put in cold storage until it is ready to start processing. Sam-
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Figure 2.1: This petri net model from Stünkel et al. shows an abstract model of how a histology

sample is processed in the pathology lab. Model from (Hatlem et al., 2023, p. 3) updated from

original model found in (Stünkel et al., 2022, p. 3)

ples start out with grossing, here samples are sliced and examined by pathologists

before being placed in cassettes. The samples are then split-up and put into separate

machines for parallel processing. “This step is performed by a specialized machine

that automates dehydration, clearing and infiltration of the tissue with paraffin wax”

(Stünkel et al., 2022, p. 4). Once the processing is finished the samples are embed-

ded in paraffin. They are then sectioned into slices and stained before being studied

under a microscope and once the study is finished the samples are put away for archiv-

ing. Between all these stages are large queues where the sample have to wait for an

available spot in the processing machines. These queues of cassettes found around

processing machines as well as before archive is where this project aim to make an

impact.

2.1.3 The cassettes

The cassettes used at the pathology lag contain various information easily readable by

humans, but the text provides challenging for a digital actor to interpret. The cassettes

also often referred to as ”blocks” in the pathology lab is the plastic housing that holds

the embedded sample. Before plastic cassettes were adopted as a method of storage
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the samples used to be stored in embedded paraffin wax blocks hence the multiple

names. In this paper the term cassette will be preferred, but in the pathology lab the

two terms ”block” and ”cassette” are interchangeable. Cassettes contain a data matrix

code which is used in the internal systems. These data matrix codes must be scanned

one by one and cannot be scanned in batches. The OCR based system proposed in

this thesis aims is able to handle multiple cassettes at the same time. The existing

system records some data, but hand scanning takes too long therefore the cassettes

are not completely tracked throughout the lab. This leads to certain events missing

from the event-log generated by the existing LIS. The work done in this thesis aims to

fill in the missing data by applying an automatic solution. In three out of four places

in the pathology lab the OCR system could be used to scan cassettes in batches and

fill in the data missing from the LIS. These three steps are coordinating which is a

process that takes place before processing, during processing itself and archiving. It

will also allow for an additional activity to be added to the archive. This would be a

searching activity for finding cassettes when needed.

Figure 2.2: This illustration shows the data on the Cassettes

The top of the cassettes contains text data, this data is what the OCR system will

extract. The cassettes also contain a data matrix code. This code contains a unique

number used to identify specific cassettes in the LIS. The LIS system connects the
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data on the cassette with patient data as well as other information about the sample.

This data matrix will not be relevant to the OCR system. The data relevant to the

archives and OCR system is:

• The hospital identifier - This is noted in figure 2.2 by HBE indicating that this

cassette belongs to Helse Bergen. All other pathology labs within Helse vest

use a distinct 3-letter identifier.

• The case identifier/(case ID) - This is very important and can be found in the top

right of the cassette. This number indicates which case the cassettes belong

to and is a continuous sequential order/requisition number within a year and

specimen category.

• Block ID per case - Each case can have multiple blocks related to them. These

are annotated by the Block ID which is the number seen in the lower left of the

cassette. The samples per case can range from 001 to 999 and there are no

holes in the numbering, this means that if the highest number detected is 98 the

system should expect there to be 97 other cassettes related to the same case.

The total amount of samples per case are unknown without access to the LIS

which provides an additional challenge for the system as it does not have access

to this information.

• Type of sample + year - The last data point on the cassette contains type of

sample stating whether it is a biology (B), autopsy (O), or cytology (C) sample in

addition to the last two numbers in the year which the sample was taken. This

identifier is located in the bottom right of a cassette.

The case ID in combination with the block ID and Type of sample gives each cassette

a unique identifier that would allow each cassette to be sorted individually. This unique

ID would also not conflict with older cassettes from the archive.

The cassettes are color-coded. These colors signify different aspects to the staff such

as which cassettes are a priority, if a sample is split into a lot of cases and if a certain

sample has to be processed in a specific manner.

Some of the most common cassette colors and their significance:
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• Red - Needs to be analysed now, the patient could be under an operation and

the doctor is waiting for pathology results

• Yellow - High-priority

• Orange - Large, high-priority samples

• Pink - Small samples

• White - Very large, low-priority samples

• Purple - Intestine sample

• Blue - Autopsy sample

One of the largest challenges when sorting cassettes into the archive is to ensure

there is enough space left open in the event of a case containing many cassettes

need to be fitted between two other cases. Due to this the archive section need to

keep empty space in each box when sorting. Storage space cannot be compressed

until all cassettes are accounted for. This can take a long time as priority cassettes and

parallel processing ensure that cassettes arrive in a different order from the numerical

case ID which they are sorted by.

2.1.4 Data from the lab

Table 2.1: Cassettes sorted on average in different times

Year Number of cases Total number of samples/cassettes processed
2016 46276 155414
2017 48670 164179
2018 51110 169817
2019 52277 172879
2020 50625 171505
2021 54564 180323
2022 56637 185065

The pathology lab has data showing how many cases they process each year, as well

as how many samples (cassettes) each case contains. Compiling this data allows

us to see how many total cassettes are processed in the lab each year. All of these
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cassettes also need to be sorted, this data will allow for estimates regarding how long

this task takes. Comparing 2016 to 2022 shows us that in those 6 years they had a

22% increase in cases and a 19% in samples. The amount of samples per case can

vary a lot depending on a case by case basis. If we look at the increases each year,

we can see that every year besides 2020 has had a steady increase in samples. The

reason for the slight fall in cases analysed in 2020 is most likely due to the COVID-19

epidemic, which also explains the significant rise seen in the gap between 2020 and

2021. The average increase in samples per year the last six years is 3.42% in cases

and 3.39% in samples.

2.2 Technologies

This part will cover technologies that will be relevant in the project.

2.2.1 Machine learning

One of the tools utilized in this project is the Efficient and Accurate Scene Text de-

tector (EAST detector) neural network as well as Tesseract. To have a better un-

derstanding of how these models work we first need to understand machine learning

and subsequently neural networks. Machine learning (ML) is the process of training a

computer to detect certain patterns by feeding it input and rating the output based on

various factors. The English Oxford dictionary defines machine learning as ”the use

and development of computer systems that are able to learn and adapt without fol-

lowing explicit instructions, by using algorithms and statistical models to analyze and

draw inferences from patterns in data.” (Oxford English dictionary, Machine learning,

2022). ML has many applications including natural language processing, sentiment

analysis, image processing and can also be used for classification tasks. Neural net-

works (NN) are a subset of machine learning. NN’s are inspired by how the human

brain works and the neural structure, hence the name. There are a multitude of dif-

ferent network types such as the perceptron and feed forward neural networks. The

different neurons (nodes) are linked together and send a signal through the network.

The strength of this signal is calculated based on the weights and biases. More ad-

vanced networks also include support for back propagation. Back propagation means
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the network has the ability to send data back to the previous node which allows it to

learn from the earlier result and calculate weights more accurately in a way that re-

flects and considers earlier trials. LSTM stands for long-short term memory and utilize

back propagation. Tesseract 4.0 has an OCR engine based on LSTM neural networks

(Tesseract - GitHub.com, 2023). The other NN utilized in this thesis is EAST text de-

tector which is a fully convolutional network (FCN) (Zhou et al., 2017, p. 1). An FCN

also known as a deep filter makes use of a nonlinear filter. This means that it is a

neural network where all layers compute a nonlinear filter of average pooling or utilize

matrix multiplication for convolution (Long et al., 2015, p. 3). Deep learning-based

OCR is an emerging technology that could be very relevant to this thesis, but will not

be covered here as it would be too extensive.

EAST Zhou et al. (2017) introduces an efficient and accurate scene text detector

(EAST). EAST is a fully convolutional neural network which aims to be as efficient

and accurate as possible. In the paper the authors propose “the first fast and accurate

scene text detection pipeline that has only two stages” Zhou et al. (2017). The paper

outlines the pipeline and the decisions behind the neural network training design such

as loss function, optimizers and number of batches required. Quantitative and qualita-

tive experiments were done to compare with three public benchmarks datasets. These

datasets were ICDAR 2015, COCO-Text and MSRA-TD500. The resulting finds were

that “compared with existing methods, the proposed algorithm achieves significantly

enhanced performance, while running much faster, according to the qualitative and

quantitative experiments on standard benchmarks.” Zhou et al. (2017)

2.2.2 Image processing and OCR

Image processing will be one of the topics discussed as it is part of the proposed so-

lution for the challenges the lab is facing. Image processing is quite an extensive field

and there has been done a lot of research around it. This section will cover the most

essential parts that relates to this thesis. Essentially the point of image processing is

to handle data contained in an image. This could be done by extracting data from the

image, or by manipulating and changing certain aspects of the image. Image process-

ing can also be split into subcategories such as text extraction, facial recognition and
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vision systems for autonomous vehicles. Just to mention a few of the many use cases

and subfields.

Optical character recognition (OCR), occasionally referred to as text extraction from

images refers to the process of extracting text from images turning the ”text into

analysable, editable and searchable data.” (Memon et al., 2020, p.142,642). It is also

one of the many sub-fields contained within the genre of “image processing”. To learn

how to identify text from an image machine learning is often utilized. In this project the

author will not be training a text extractor but rely upon a previously trained alternative

created which will be described further later. The last few years ”OCR has gained in-

creasing attention in both academic research and in industry” (Chaudhuri et al., 2017,

p. 9)

What advantages could the OCR tool lead to in the lab? Mainly there are three main

use cases for the tool.

• 1. Finding lost cassettes

The tool will be able to see when and where a cassette has been scanned. Using

this data, one could track down the area a missing cassette was last seen in and

get an idea of where to start looking for it.

• 2. Data extraction from tracking cassettes in the lab

This is more of a general advantage. Cassettes being tracked and timestamped

enables the lab to extract data such as timings and cassette paths through the

lab. This data can be used to locate bottlenecks and help find areas which are

in need of more resources or enable the lab to start working on solutions to

currently unidentified problems.

• 3. Reduces time spent on sorting cassettes by hand for archiving

Currently there is no digital archive system. All cassettes are sorted by hand and

stored manually in numerical order by case number. This is an extremely large

and time-consuming process which takes up the time of a trained lab technician

every day. Being able to create a digital copy of where cassettes are stored in the

archive with the OCR tool would allow the lab to just scan cassettes in batches

and label where they are stored. Doing so will massively improve the speed as
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it eliminates the need for a cassette sorting process and instead replace it with

a scanning process which should be faster.

There are many OCR applications currently in user in different industries. Automatic

number plate recognition (ANPR) is an example of a use case for an OCR application.

For example, registering cars in a parking garage to keep track of how long it has been

parked. ANPR is also a useful tool to ensure road safety. An example could be the

Norwegian public roads administration (Statens Vegvesen) who use ANPR to scan

vehicles for safety reasons such as ensuring road tax have been paid or that a vehicle

does not have a deregistration claim (Statens Vegvesen, 2023).

Another example of OCR used in practice today is for automatic mail sorting of postal

envelopes. Here a similar challenge to this project is presented. First the destination

address block has to be identified, before OCR can take place Radha and Aparna

(2013). Similar techniques could be of use when looking for the data on the cassettes.

However, the images from the pathology lab contain multiple cassettes per image in

contrast to the mail where each image only contains a single piece of mail with only

one area of interest per image.

2.2.3 Python

The foundation of the project will be built in Python. Python is an interpreted, object

oriented and high-level programming language. ”It incorporates modules, exceptions,

dynamic typing, very high-level dynamic data types, and classes. It supports multiple

programming paradigms beyond object-oriented programming, such as procedural

and functional programming.” (Python, 2022). Python is generally considered easy

to work with and very popular among the machine learning crowd. This means a

large selection of machine learning related libraries are available to use. In addition to

Python, multiple Python libraries will be utilized. The most important libraries related

to this project are OpenCV and PyTesseract.

OpenCV (open computer vision) offers a real-time optimised computer vision library

and tools. This makes it easier to process images in python as code does not need

to be written from scratch. ”OpenCV was built to provide a common infrastructure
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for computer vision applications and to accelerate the use of machine perception in

commercial products” (OpenCV, 2022). It includes a plethora of algorithms that can

be applied for a large variety of tasks. Anything from recognizing faces, tracking,

and identifying 3d objects, image up-scaling and much more. For this thesis it will be

employed as a way of processing and representing image data in a format the OCR

tools recognize.

PyTessaract is a wrapper for Google’s Tesseract-OCR Engine. This simplifies the pro-

cess of reading text from images as it has already been trained for this purpose. This

will allow us to extract the text from the cassettes. Tesseract rivals the performance

and accuracy of commercial applications according to its release paper: ”Tesseract is

now behind the leading commercial engines in terms of its accuracy.” (Smith, 2007,

p. 633) This in addition to the fact that it is open-source and freely available to use

makes it ideal for this project. Other alternatives include Vision AI by Google (Vision

AI, 2022) and Azure computer vision by Microsoft (Azure Computer Vision, 2022).

However, both of these tools requires to be paid per API call and neither of them are

open source. They are thereby unideal for this project.

2.3 Previous Research

2.3.1 OCR research

Computer vision technology has been steadily progressing since the invention of com-

puters all according to Moore’s law which expresses that we’ll see a ”doubling in the

numbers of transistors placed on an integrated circuit every two years” (Moore’s law,

1965). The doubling of transistors should also in theory lead to a large increase in

compute power every two years. The rise of cloud computing, neural networks, and

the increase in compute power seen in the early 2000’s all played a factor in computer

vision becoming more and more usable in toady’s systems. This allows features such

as unlocking your phone with your face and the technology is also used in prototypes

of driver-less cars. Together with all the other use cases for image processing OCR

has also emerged and have been gaining more traction.

The author has not been able to find any cases where OCR has been used for the
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exact same purpose as proposed in this thesis. OCR is not new to the medical field;

Tesseract OCR is currently being implemented in a pipeline which aims to scan and

process physical written medical reports from the UK’s NHS to a digital PDF format.

(Karthikeyan et al., 2021, p. 2580)

In this pipeline the authors tried to enhance the process of digitizing patient journals,

as OCR is not perfect and can cause errors. Especially when dealing with medical

terminologies not commonly found in general language lexicons. This is also important

to keep in mind for this thesis. However, instead of medical terminology The OCR

engine in this thesis will be mostly dealing with digits and serials and ensuring that

the OCR technology read them correctly. There is also a large difference between

scanning large hand written reports and extracting printed data from digital images.

Outside of the medical domain in a project more similar to the one conducted in this

thesis OCR is being implemented to track wines based on their serial numbers. (Cakic

et al., 2020, p. 1) As of currently writing a pilot study has been released. The authors

tested and compared several OCR tools and their performance for the wine tracking.

The OCR engines tested were: PyTesseract, Vision Ai by Google and Azure com-

puter vision by Microsoft. In the end the authors decided upon using Tesseract OCR

for their pilot study. However, their artifact was only tested under lab conditions on

pre-captured images which had been cropped and audited manually. The research

published so far does not contain any real word performance. Their implementation

managed to correctly identify 87.5% of their labels. (Cakic et al., 2020, p. 4) The ad-

ditional challenge introduced in this thesis where the application will be tested in real

world performance compared to lab trials are mostly factors such as lighting, camera

angle and many more external factors which play a role in the quality of the image and

thereby the resulting classification.

With the evidence presented so far, there is an impression that the current OCR tech-

nology still has a way to go until it is ”perfect” and can be utilized completely reliably

on its own. Which is why the application created in this project will work in conjunc-

tion with a human user. As the state of the art OCR technology has an accuracy of

roughly 90% in handwritten English with a ”character error rate(CER) and word er-

ror rate(WER) of 4.7%, 8.22%, 2.46%, 5.68% respectively” (Memon et al., 2020, p.
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142,655). Based on these results a claim can be made that current OCR technology

is not suitable for solving sensitive tasks alone and still needs a manual overseer to

confirm the results. Which is the implementation that will be tested in this project.

2.3.2 Similar products

There are also products available that servers a similar purpose in a pathology lab as

this thesis aims to achieve. An example could be the product called PathTracker by

SPOT Imaging which is a company that produce science imaging systems for pathol-

ogy, bioresearch, and OEM applications (SPOT Imaging, 2023). However, instead

of opting for OCR they aim to scan cassettes in batches by scanning the data ma-

trix codes. They offer a specialized machine with software to do this operation and

their way of scanning codes would require access to the LIS, which this project aim to

avoid when testing. In contrast the proposed solution in this thesis would not require

an expensive specialized machine, just a computer and a camera.

Another company that has developed a solution to this problem is Dreampath (Dream-

path, 2023). They have developed a system called FINA currently being considered

as a solution to the archive problem in the pathology department. This is a larger ma-

chine that scans the cassettes and archives their information. The drawback is that

purchasing this machinery is expensive and FINA also requires proprietary storage

solutions such as proprietary storage racks for cassettes, purchasing more of these

could get expensive in the long run. Therefore, Dreampath’s solution suffers from the

same drawbacks as SPOT’s solution.

Dreampath compares and advertises its product by referencing another product

named Arcos by Epredia which seems to have the exact same functionality as FINA

(Epredia, 2021). Epredia also provide some interesting research and case studies re-

garding how much money and time has been saved using their systems, these would

be relevant here as the saved time would be interesting to compare to the system

developed in this project.

An example of a hospital that adopted FINA is Thomas Jefferson university hospital

(TJUH) in Philadelphia, USA. They process over 800 to 900 cassettes daily (, Epre-
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dia, 2020, p. 2). Some of their problems where with the traceability of their cassettes.

”A block would be removed from the serially organized cabinet, and there would be

a discontinuation of the audit trail, jeopardizing patient safety. Without proper docu-

mentation, there was no way to track who retrieved it, when it was retrieved, and for

what purpose it was removed. A documentation process was difficult to enforce with

this workflow” (, Epredia, 2020, p. 2). This was a large problem as according to the

supervisor TJUH’s pathology lab Dr.Sue Paturzo ”we are constantly going back to our

blocks, whether it be for additional testing or research for a clinical trial, and being able

to locate them in a timely manner and track them is the most important thing for me.”

(, Epredia, 2020, p.3)

Arcos helped the team at TJUH grain control of material management. This led to

multiple gains such as ”The check-in/out controls provide visibility into who retrieved

a block, why it was needed (reason), who requested the block (requestor) and when

it is due to return (TAT reporting). Blocks that are checked out longer than anticipated

populate a report that can be run as needed. As a result, the team no longer wastes

time organizing blocks in numerical order and the increased traceability ensures pa-

tient safety is maintained.” (, Epredia, 2020, p. 4). In addition to all these TJUH also

saved $51,168 due to the 2132 hours they saved by sorting, retrieving and refilling

blocks using a digital system instead of manually. (Epredia, 2020)

The First Hospital of Jilin University in China have greatly benefited by adopting Arcos

after testing it from 2019 - 2020 as it ”saves a lot of manpower and material resources,

so that pathological data can bemore traceable, reduce the risk of sample loss, ensure

the safety of samples to the greatest extent, and improve the efficiency of pathological

data management.” (Wang et al., 2020, p. 2). During the year they saved 2356 hours

on sorting an filing and they saved 203 hours on reworking. Wang et al. (2020). Before

adopting Arcos they struggled with similar issues as Haukeland’s pathology lab related

to ”a large number of sections and wax specimens that makes it difficult to locate

specimens for filing, borrowing and returning” (Wang et al., 2020, p. 2).

The process of manually storing is highly susceptible to human error. If a cassette

is placed or sorted into the wrong place it can lead to an extremely time-consuming

process to retrieve it. The Jilin University ”no longer suffer from issues related to ”loss”
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of cassettes artificially created through filing errors (Wang et al., 2020, p. 3) after using

Arcos.

The data from these systems show that this project can be of value. If we had ac-

cess to one of these machines it would be interesting to see the differences in results

when comparing their method of data matrix scanning versus OCR based scanning

proposed by this thesis.

2.3.3 Research from the pathology lab

Earlier research has also been done in the pathology lab at Hukeland, most notable for

this case is the currently ongoing research by Stünkel et al. Where the co-supervisors

of this thesis look at process mining the lab at Hukeland. In a paper recently published

they cover some of their work done so far as well as some of their future plans and

challenges. Stünkel et al. (2022). In this paper they give us a good overview of the

aforementioned issues in the pathology lab and why they are important to solve. They

propose to utilize process mining as a solution.

Process mining is the extraction of valuable, process-related information from event

logs (Van Der Aalst, 2011, p. 3) (i.e., chronological records of activities). This data can

give valuable insight into business processes. They have a plethora of use cases such

as giving insight, starting structure discussions, verification procedures to find errors,

performance analysis, animation models to test different scenarios, specification of

models before creation and configuration of systems (Van Der Aalst, 2011, p. 6).

Process mining allows an organization to identify activities and how long each activity

takes based on the aforementioned event log. ”Unfortunately, often the 20% least

frequent behavior may causemost of the compliance and performance problems. This

is called organizational friction. Process mining aims to identify and remove such

organizational friction” (van der Aalst, 2019, p. 4).

For the process mining done at Haukeland “the overarching objective of the project

is to reduce the overall cycle time in the pathology department, i.e., the time from

receiving a specimen to sending a diagnostic report back.” (Stünkel et al., 2022, p. 5).

Further on they describe a few of the challenges they have faced before and during the
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process mining. Firstly, security clearance is an issue. The domain data in this case

is healthcare data which is highly regulated and have “strict requirements concerning

access to data: the project had to apply for exemption from the duty of confidentiality,

to do a data protection impact assessment, to carry out a risk analysis and to establish

a data management plan” (Stünkel et al., 2022, p. 6). The project also faced technical

issues once access to the LIS data had been granted. These issues ranged from badly

structured data to lack of certain events (Stünkel et al., 2022, p. 8). One of the larger

challenges was that the pathology process is hard to represent using only atomic-

token based workflow which means that “a case is represented as an atomic token

that flows through a net structure representing the control flow” (Stünkel et al., 2022,

p. 9). The effect of this is that “existing process mining algorithms are not perfectly

suited for the specimen preparation workflow in the pathology laboratory” (Stünkel

et al., 2022, p. 9). These are the only issues they have faced so far in their work, they

also outline a few potential future challenges for later in the project. One of these being

that the authors are unsure how they “eventually can transfer the analytical results to

operational results. For instance, there are some physical limitations to what degree

a “redesign” of the process is possible.” (Stünkel et al., 2022, p. 10). The other future

challenge they highlight is the potential future social ramifications of their research.

One of the precautions they will be taking is to ensure that the workers of the lab will

have their privacy insured by “hashing all usernames with a random and hidden salt”

(Stünkel et al., 2022, p. 10) thus obscuring all personal data related to specific users.

Some of these challenges can be relevant to keep in mind when looking at what will

be done in this project.

Another master thesis written by Platou at Haukeland pathology lab focuses on busi-

ness process simulation in the pathology lab Platou (2021). Most of Platou’s work

focuses on business process simulation, but there are some key points which will also

be relevant for the project. One of the interesting things he points out is that the logs

form the LIS does not include end and start points for specific tasks (Platou, 2021,

p. 47). This is definitely information that would be possible to add into the system

proposed by this thesis.

To better understand Platou’s work at the pathology lab we need a definition of Busi-
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ness process management (BPM). “BPM is a comprehensive system for managing

and transforming organizational operations” (Hammer , 2014, p. 3). Platou worked

more specifically on business process simulation (BPS). “It is important to analyze

processes not only before they are put into production (to find design flaws) but also

while they are running (for diagnosis and decision support).” (Van der Aalst et al.,

2010, p. 314). This gives you an idea of where BPS comes in. As it allows you to sim-

ulate both future and current cases in a production environment to generate valuable

data.

A process model includes processes (sometimes referred to as activities) as well as

the flow between these processes. Business Process Modelling Notations (BMPN)

have been adopted to represent these processes. A BMPN is supported by a process

execution engine which allows processes to be executed in a predefined workflow.

The pathology workflow can be shown using a BMPN execution engine as seen in

the work done by Platou. Platou (2021). Here Platou used the state-of-the-art BMPN

engine Camunda Camunda (2023) to represent the workflow of the pathology lab.

Platou did some experiments on the data exported from the LIS. As well as some pre-

processing such as removal of rows withmissing data (Platou, 2021, p. 51). Once data

clean-up was complete, he created a business process model and ran four different

experiments testing various constraints in the model he created.

The aforementioned studies that are done at Haukeland pathology department give

insightful knowledge as to what goes on in the lab and what has been attempted before

in terms of solving the queue problem and gathering data. They also help line out

some potential challenges for this study as all these studies are essentially looking at

different solutions to the same problem.

Both of these studies goes in-depth looking for digital solutions to the problems the

lab is facing. However, to a certain degree they ignore the physical aspects of the

lab and the tangible nature of the work done there. This paper will aim to bridge the

physical and digital aspects of the pathology lab and create a software solution that

encompasses and solves both real world and software challenges.
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2.3.4 Relevant works in healthcare

In (Dangott, 2015, p. 43) The concept of a specialized laboratory information sys-

tem is introduced. These systems are defined by the need to perform a “a limited

number of functions extremely well rather than trying to serve the needs of an entire

laboratory” Dangott (2015). The article outlines four pillars essential to consider when

developing an in-house solution. These four pillars are scalability, building a design

team, support costs and total cost of ownership versus long-term benefit. The pro-

posed solution fulfils the requirements of a specialized laboratory information system

and should therefore take these four pillars into account.

• Scalability and timeliness: These are very dependent on the existing LIS and the

support that is available for it. Commercial solutions may already offer modules

which already fit into the current LIS. These can often be integrated faster than

an in-house solution. “If there is no acceptable product, then developing in house

may be faster than waiting for a vendor solution” (Dangott, 2015, p. 45).

• Building a design team: It is important to consider that the design team must

be familiar with the constraints. They also highlight the danger of such a system

only being understood by few individuals and that “Retiring or departing staff who

possess this intellectual capital can leave a knowledge gap that can be hard to

fill” (Dangott, 2015, p. 45).

• Supports costs: Keeping in mind maintenance costs after the system is build

and implemented. How many people are required to maintain the system and

how often would it require maintenance?

• Total costs of ownership versus long-term benefit: Dangott presents eight ques-

tions to keep in mind in regards to the long term benefits and costs.

”

– 1. Will the system deliver strategic advantages to the laboratory?

– 2. Will the workflow be more efficient or allow more automation?

– 3. Will the in-house system allow customized reports that are strategically
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valuable to the client base?

– 4. Can integration with other systems and instrumentation be easily

achieved?

– 5. Are Web-based reports a priority?

– 6. Are dollars that would be invested in LIS development better spent else-

where?

– 7. What is the long-term impact of the LIS on the organization?

– 8. Does the in-house product allow better-quality management and improve

operational efficiency?

” Dangott (2015).

These four pillars also applies if the pathology department wants to solidify the work

done here and create their own in-house system for cassette management. This is

also important for this project as the work done in this thesis could be built upon in the

future.

Hanna and Pantanowitz outline the history of barcodes in pathology Hanna and Pan-

tanowitz (2015). They outline the different types of codes used, including the 2-D data

matrix codes utilized at Haukeland. They detail how Hospitals have improved their er-

ror rate by incorporating barcode scanning and they explain the shortcomings of how

barcode scanning could fail. “A major advantage of implementing a bar coding and

tracking system is the opportunity to eliminate labelling errors and achieve optimal pa-

tient safety, consequently reducing adverse events.” (Hanna and Pantanowitz, 2015,

p. 17). These advantages would also apply to the system proposed in this paper.

In 2009 Buese looked at adapting lean workflow models to histology labs. He starts

by presenting the history of workflow methods all the way back to the automotive in-

dustry, and how these management techniques evolved to include quality control and

total quality management concepts. Before introducing lean manufacturing or just

“lean” which “was coined to describe its fundamental characteristics of unitary pro-

duction, minimum waste and customer “pulling” of the production process” (Buesa,

2009, p.324). Buese then goes on to show how these methods have been applied to
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Histology labs. The article summarizes results of 25 histology facilities which imple-

mented management tools and from this data extrapolates that laboratories handling

more than 20 000 cases a year gain a greater benefit by incorporating these methods.

However, all 25 hospitals saw an increase in performance. The article concludes by

suggesting 13 changes to improve the workflow in any histology lab.

In Zayas-Cabán et al. (2021) 123 articles related to automation approaches imple-

mented in different industries are reviewed to identify opportunities for workflow au-

tomation in healthcare. They identified characteristics that promotes automation are

“manual data entry, high frequency or repetition, clearly defined independent and de-

pendent variables for modelling, clear roles and responsibilities.” (Zayas-Cabán et al.,

2021, p. 689). The paper found that different tasks can be automated to different

stages such as low-, semi- and fully automated tasks. The level of automation is

highly reliant on how well the task is defined. These findings support the argument to

automate the sorting task in the pathology lab and the task should in theory be fully

automatable.



Chapter 3

Methodology

For this thesis design science will be employed as a research methodology. The main

goal of the project has been to develop a solution to the sorting problem taking ad-

vantage of the emergence of new technologies such as image processing and text

extraction. The development of the application followed guidelines and design pat-

terns specified in the design science approach as detailed below.

3.1 Design Science

Information systems and the tasks they perform are complex. To help us design and

implement such complex systems we require rules and guidelines of which we need

to abide. Design science is one such research paradigm, it has seven core rules

which needs to be followed to ensure the smooth creation of an artifact. ”IT artifacts

are broadly defined as constructs (vocabulary and symbols), models (abstractions

and representations), methods (algorithms and practices), and instantiations (imple-

mented and prototype systems)” (Hevner et al., 2004, p, 77) ”Behavioural science

encourages research by developing and justifying theories that explain or predict phe-

nomena. Whereas design science aims to encourage research through building and

evaluation artifacts. The goal of behavioural science is truth. The goal of design sci-

ence is utility. Hevner et al claim that that truth and utility are inseparable. Truth

informs design and utility informs theory.” (Hevner et al., 2004, p, 80). According to

Hevner the essence of Design science is inherently a problem-solving process.
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There is an ongoing discussion regarding the final artifact of design science. Hevner

argues that it should produce an artifact as described above, whilst other researchers

like Jones and Gregor claim design science should result in a design-science theory.

A theory which can generalize a product architecture or generalize a method (Jones

and Gregor , 2007, p. 322). No matter which of these arguments are supported ”The

design-science research paradigm is still evolving.” (Williamson and Johanson, 2017,

p. 268) and any artifact which follow the rules stated by either claims are considered

a piece of design science.

Here are the seven guidelines that design science implores to evaluate the artifact.

These guidelines exists to ”to assist researchers, reviewers, editors, and readers to

understand the requirements for effective design-science research” (Hevner et al.,

2004, p, 82). For a project to be a successful piece of design science each of these

guidelines should be addressed at some point.

Figure 3.1: The seven guidelines for rigorous design science. (Hevner et al., 2004, p. 83)

Below is described how each guideline in the aforementioned guidelines seen in fig-
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ure 3.1 were used to apply design science research (DSR) to this thesis. How these

guidelines are followed will be seen more in depth in the proposed methods section.

1. An application have been produced through an iterative trial-and-error search pro-

cess. It has the capability to identify specific cassettes using OCR to extract the data

from cassettes labels. It has been tested to help sort the cassettes in the pathology

lab and with the GUI it is able to tell the user if any cassettes are missing and the GUI

allows the user to input the missing data.

2. This exact problem has yet to be solved using OCRmethods. However, other meth-

ods such as process mining and Business process simulation has been attempted.

There are also machines available that achieves similar results, but these are propri-

etary and the results are achieved through other methods than OCR. In regard to the

more specific OCR challenge, OCR is mostly a cutting-edge technology which leads

to it being considered too risky to be applied in a lot of cases. Since this system will

be used in conjunction with a user who can verify results, applying OCR to this prob-

lem is more applicable. And second, this problem is a relatively recent problem. The

problem occurred when the pathology lab got too many samples to analyse, and the

samples started queuing up in the sorting zones. A few years ago, the amount of sam-

ple the lab had to analyse was low enough that a lab technician could reliably sort the

samples manually. Now with the growing number of samples they need additional

tools to help manage the workload.

3. The application have been tested on images from the pathology lab to ensure it

fulfils the applications requirements.

4. This artifact will test the process of using OCR to see if it is a viable approach

to solve challenges that previously required manual labour. To show that OCR can be

an important tool in the future for workflow improvements in the pathology lab.

5.The application will be freely available as well as the code used for creating it, so all

experiments should be replicable.
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6. The artifact has been created with background research looking at earlier work

in similar domains.

7. The main research outcome will be this thesis which should be approachable by

people unfamiliar with both image processing technologies and pathology workflows.

3.1.1 Design evaluation

Once an artifact has been developed it has to be evaluated by certain criteria as eval-

uations are crucial for the research process. ”IT artifacts can be evaluated in terms of

functionality, completeness, consistency, accuracy, performance, reliability, usability,

fit with the organization, and other relevant quality attributes” (Hevner et al., 2004, p.

85). Table 3.2 shows the evaluation methods proposed by Hevner et al.
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Figure 3.2: Evaluation methods for design science. (Hevner et al., 2004, p. 86)

3.2 Proposed methods

This project primarily relies on the design science methods. Iterative design and soft-

ware development allows progress to be evaluated underway. This allows time for

changes to address concerns and requirements from the pathology department as

they surface. This helps to ensure the end result is as cohesive as possible.

For evaluation multiple processes were utilized in this project according to the crite-

ria seen in figure 3.2. Some of these evaluations are done multiple times during the

iterative phases of the project such as interface and feature evaluations. These eval-

uations often take the form of discussion and specific feature testing of a component.

Other types of evaluations are done at the end of the project such as performance

evaluations, these evaluations were done through experiments both in the pathology

lab and simulations of the lab environment.
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Real world performance metrics also had to be gathered to allow for direct compar-

isons of performance between the artifact and the current solution. To gather this data

natural observation using unobtrusive methods have been employed to gather em-

pirical data. For more quantitative data a series of interviews and discussions were

performed to understand the processes and challenges faced in the pathology lab.

There have been multiple sessions to gather feedback for evaluation through the

course of this project. Certain parts of this theses have been submitted as a scientific

paper to the 3rd International Health Data Workshop (HEDA) 2023. The HEDA sub-

mitted paper titled ”Intelligent Tracing and Process Improvement of Pathology work-

flows using Character Recognition” was also written by the supervisor and both co-

supervisors of this thesis. Feedback and peer review of the HEDA submitted paper

will not be public at the time of the thesis submission.

To gather data and better understand the processes at the pathology lab 7 meetings

either digital or in person have taken place with representatives of the pathology lab

over the course of this thesis. Some of these meetings included a tour of the pathology

laboratory facilities, interviews, in lab trials, progress reports on the state of the project

and feedback for the project. In addition to the feedback gathered from the pathology

lab the contents of the thesis have been presented at a meeting for the Intelligent

Information Systems (I2S) research group at Bergen University as well as a poster

presentation for upcoming master students and staff at UiB. All of these occasions

were used as opportunities to gather feedback and evaluations from domain experts.

The contribution of this thesis is based on the main artifact created which is the pro-

totype of an image processing application capable of specimen tracking by locating,

identifying, extracting, and storing data from cassettes. This artifact consists of two

smaller artifacts. Mainly a REST API artifact which is responsible for processing an

image. This API locates and extracts a cassette location and the text on the cas-

sette. The API is tested using two different methods of cassette localisation these two

methods are edge detection and EAST. The results of these two different methods are

compared and evaluated in this thesis.

The REST API artifact is not capable of solving the problem of cassette localisation on
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its own as it does not recognize 100% of all cassettes and data. To solve this manual

error correction is required. The output from the REST API is passed on to another

artifact, the graphical user interface (GUI) artifact. The GUI artifact gives the user an

overview of the output of the REST API artifact and allows for manual error correction

for the API output. This ensure the data is correct before being saved.

The combination of the REST API artifact and GUI artifact results in the prototype

artifact evaluated in this thesis. To compare the results from the prototype to the

current state in the pathology lab, data had to be gathered from the pathology lab.

This was done through an onsite test gathering data by using unobtrusive natural

observation techniques. To generate data from the prototype artifact an offline test

was setup where pre-captured images were processed with the API and then manual

error correction took place in the GUI. The data generated in the offline test is then

compared with the onsite data from the natural observation to evaluate the efficiency

of the prototype artifact compared to the current solution used in the pathology lab.

In addition to the main artifact capable of specimen tracking the thesis also covers

how this artifact could be implemented in the pathology lab environment by proposing

a conceptual design. This design allows the pathology lab to see how the main arti-

fact would interface with process execution engines to create fine grained event logs.

These logs can then be used for process mining and simulations to further improve

the workflow processes in the lab. An overall architectural design is proposed which

explains how these processes would work together to achieve these results.
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Methods

This part of the thesis will cover what was actually done, how it was done as well

as some of the choices made during creation, implementation and evaluation of the

application. The end of this chapter will show how the artifact can be implemented into

to current pathology lab structure.

Figure 4.1: This mind map shows the different areas and corresponding sections this thesis

touches upon
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The contribution of this thesis spans a wide variety of topics but can be divided into

four main categories. As seen in the mind map in figure 4.1 these four main categories

are image processing, interaction design, interfacing with process execution engine,

and evaluation. All of these four categories can also be split into subsections. The

mind map shows which sections of the thesis the relevant subsections are covered in.

4.1 Process and procedures

The workload for the artifact development was divided and organized according to

agile methods. Firstly, there was a research phase. Here the work was focused on

previous research. What had been done before both in the medical domain as well as

other domains which potentially utilized similar applications were considered. Goals

were set based on what was considered feasible to achieve. After this phase, two

milestones were set for the project. The first milestone was be to create a workable

solution, the minimal viable product (MVP). This MVP included a preview of the user

interface and some basic functionality. The goal of this prototype was to gather feed-

back for the second iteration which would be presented in the second milestone. The

secondmilestone is where the goal was to incorporate domain knowledge, work on the

models, and adjust performance. This is also the phase where most of the actual re-

search was done. The final step after completing both milestones was the evaluation

of the artifact.

4.2 Implementation

Initially the work on the artifact was started by creating a prototype of the user interface,

this was done by pen and paper. As it is quick to create and gave an idea of what to

work towards. Once a good design along with a list of features which needed to be

included was created the project moved on to the design and programming of the

actual application. The creation of a preliminary model signified the end of the first

milestone. This model worked more like a proof of concept. It had the ability to read

the text on some cassettes, but the OCR engine took an entire image as an input

thereby all the noise between the cassettes were included. The user interface had the

minimum viable features. At this point a user could only see cassettes, their data and
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the text. The user also had the ability to “draw” on new cassettes. This prototype was

then showcased in a meeting with the pathology department for feedback.

After showing the progress in the pathology lab and gathering some feedback for fea-

tures and getting a general sentiment work started towards the second milestone. The

second revision came with improved features both in terms of the backend and fron-

tend. For the backend there were one major change. The image was now being split

up into multiple smaller images of each cassette, instead of featuring all cassettes in

the same image. The goal was to not feed tesseract with one image containing 40

cassettes, but rather feeding tesseract with 40 images containing 1 cassette each. To

do so both edge detection and EAST were implemented. In addition to the inclusion of

these methods, improvements were made to the image pre-processing pipeline. On

the user interface side some new features were added. These include search, high-

lighting and a better display of how many cassettes were located. Additionally, a way

to define where the cassettes are physically located or where in storage they were

about to be placed had now been added. There were also a few minor tweaks and

some visual changes. Most of the improvements to these features were inspired by

the needs of the pathology lab after a meeting and improve based on the results. Once

this was completed the second milestone had been reached and the solution had to

be evaluated.

Figure 4.2: This figure shows the differences in the frontend for milestone 1 (left) and milestone

2 (left)
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4.3 Development challenges

4.3.1 Why not integrate with the LIS?

Before the development of the system one of the decisions that had to be made was if

the application should communicate with the laboratory information system (LIS). The

LIS is what connects the patient data to the cassettes, as established the LIS also

tracks cassettes through part of the lab. In Henricks (2015) Hendricks introduce the

concepts of a LIS and goes though the architecture that supports the system. “An LIS

is at its core a database” (Henricks, 2015, p. 4). Connecting this with the proposed

system would give some advantages. Namely the proposed system would know how

many cassettes to expect per case and additional data could be retrieved from the data

matrix code. However, integrating with the LIS also comes at a cost. Firstly, gaining

security clearance to it would introduce an additional challenge as clearance is highly

regulated on a need to access basis as seen in the earlier work done by Stünkel et al.

(Stünkel et al., 2022, p. 6). If the LIS and the OCR system was linked the OCR system

would now technically be responsible for customer data directly which would have put

very strict regulations related to data storage and usage due to regulations such as

GDPR. These regulations would be especially strict considering the data stored in

the LIS is very sensitive healthcare data. Currently the data manged by the OCR

system is of no value on their own as they are just arbitrary numbers. However, these

arbitrary numbers once linked with the LIS would enable someone to tie a cassette

to an individual patient which would compromise their healthcare data. With these

restrictions in mind the author and representatives from the pathology lab decided to

test a standalone system with no connections to the patient database. Essentially

creating a new specialized LIS as detailed by Dangott.

Dangott presents the general characteristics of a specialized LIS which performs a

critical function such as interfacing with equipment that a traditional LIS does not sup-

port. This leads to enhancements in operation such as improved turnaround time,

specimen tracking, enhanced reports, diagnostic data representation, correlation with

previous results, etc. Dangott (2015). These characteristics lines up with the solution

proposed in this thesis. The current LIS has no way of interfacing with the cassettes
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by reading the semantic text on top of the cassettes, and neither does it have a mod-

ule to organize the archive and locate cassettes. The results of the system should

improve turnaround time and reduce the amount of time spent on sorting cassettes

manually.

The major drawback of not having access to the LIS is that the system cannot utilize

the data matrix codes on the cassettes. Data matrix codes are also not flawless, and

errors can occur. This can be seen in the research done by Hanna and Pantanowitz.

Misread failures can lead to one barcode being read as another if a defaced coded

string represents another valid barcode. This type of defacement is likely to occur in

pathology labs where the barcodes are exposed to blades, heat, harsh chemicals, and

microwaves Hanna and Pantanowitz (2015). The 2-D data matrix codes utilized at the

pathology lab at Haukeland have some capacity of inbuilt redundancy, but it is not im-

possible for errors to occur. Departments at Haukeland university hospital have had

issues with medicine mix-up in the past. As recently as 2018 the medicines kaliumk-

lorid and calciumklorid were switched around due to a human read-error causing the

death of a patient Otterlei (2019).

The LIS also has a problem with certain data points missing. This is due to the time

it takes to scan all barcodes by hand. Scanning is a time-consuming process and

cannot be done at all stages of sample processing due to the time required. The

proposed solution would be able to fill inn these missing data points if the scanning is

faster compared to barcode scanning. If the data generated by the OCR program is

collected and merged with the data from the LIS, the system would be able to replace

the current barcode scanning in three out of four distinct places. These three being

the archive, processing, and coordination. Allowing for cassettes to pass though the

lab faster as hand scanning them individually would be replaced by scanning trays of

multiple cassettes in batches.

4.3.2 Pre-Processing challenges

There are two main challenges the proposed application faces. The first is individual

cassette detection, the second part is the OCR itself. This thesis mostly focuses on

cassette detection, as that case is unique to the pathology department. OCR hasmany
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use cases in practice as seen in earlier examples. However, there is one large differ-

ence between the examples shown earlier and the solution attempted in the pathology

lab. Both licence plate detection and text detection on mailed letters only feature one

area-of-interest per image, the images from the pathology lab features multiple fields

of text which needs to be segmented before it can be read by tesseract. If an image

containing all cassettes as tested in milestone 1 performs badly as tesseract is not

able to distinguish which text belongs together. The way the text is placed on the cas-

settes also creates some difficulty as each text field is in a separate corner and the text

is spread out, this means text and paragraph detection algorithms would perform in-

accurately due to the distance between the text that corresponds with each cassette.

The real challenge with the OCR system for the pathology lab is to detect the cas-

settes individually first and segmenting each cassette into an individual image. Once

that is done more traditional OCRmethods and pre-processing can be applied to each

cassette/image individually for greater results.

4.3.3 Challenges with OCR in this domain

When using OCR there are a few challenges and possible hurdles that need to be

kept in mind. A sampled of 16 Pictures captured with a phone from various angles

and camera distances in the pathology lab was provided. These images represented

the conditions found in the lab. In an ideal situation the images should have been

taken by mounted cameras. Making a camera mount would allow for a fixed angle

and minimal motion blur being caused by unsteady hands which the images taken by

mobile phones suffer from. Ideally a high-resolution camera would perform better we

lacked equipment. After inspecting the images four specific elements were immedi-

ately observed as potential causes of issues. These four issues are text being too

small to read (blur), obscured text, skewed text, and light reflections.
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Figure 4.3: Shows a blurred cassette

If an image is taken too far away the text becomes too small and blurry for the OCR

tools (and humans) to read. To fix this the image need to be taken closer to the trays.

Figure 4.4: Shows an obscured cassette

Cassettes sometime contains partially or in some cases completely obscured data

from elements such as other cassettes, as can be seen image 4.4 is taken at an angle

leading to the block ID and the type id being obscured. This can be fixed by positioning

the camera further above the cassettes and would be easier with a mounted camera

setup.
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Figure 4.5: Shows a cassette with reflected text

Reflections from the lab lighting conditions can hide the cassette text and make it

harder for the OCR tools to identify the text. This issue is caused by the lighting con-

ditions in the lab. Finding an area with possibilities of controlling lighting and reducing

sharp lights would alleviate this issue.

Figure 4.6: Shows a with cassette with skewed text
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Text can becomemore and more skewed depending on the angle of cassettes and the

angle the image is taken at. There seems to be two main causes of this issues. The

first being the angle the image is taken at. As mentioned, having a custom camera

mount would help with this. Second is the way cassettes are stacked in the lab. In

the image above you can see that the cassette at the top is more readable than the

cassettes in the lower part of the image. The cause of this is cassettes not being

stacked properly together in the trays. This can be fixed by lab workers moving the

cassettes a little closer together.

There are a few different measures that the pathology lab could implement to alleviate

or remove some of these issues. The issues with obscured text could be fixed by

packing cassettes closer together on a tray, making sure they are always standing the

right way up and facing the same direction, this in addition to mounting a camera at

the correct angle and distance would produce better quality images with less blur and

less skewed text. The reflections could be lessened by having a designated area with

stricter light control for image taking or an area with more constant light. Both of these

measures are possible to implement in the lab. A camera with higher resolution than

3024x4032 which is the resolution of the images used in this thesis could also produce

better results as the text would be easier for Tesseract to extract. A few measures

could also be taken in software such as improvements to the pre-processing pipeline

as well as specific training of a custom neural network, these will be discussed later.

4.4 Software details and choices

The software developed for the pathology lab had a few different goals. After talking

to the staff at the lab some of these were established. Multiple options were consid-

ered, such as an application for phones, but after talking to the lab and taking their

preferences into consideration and looking at OCR challenges with capturing images

it was settled to develop the program as a windows application. The software needed

the ability to take input images or capture images, count the number of cassettes,

locate them, and read the text labels, with minimal user input required. When con-

sidering which programming language to use a few factors stood out. The author’s

previous experience, as choosing something the author was more familiar with would
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save time. Speed and suitability for the task of image processing and OCR also had to

be considered. As well as availability of tools such as libraries and documentation re-

lated to the task. After taking this into account the remaining languages for the image

processing part consisted of either C++ or Python. Python was chosen as the author

have previous experience with it for the sake of development speed. Python also has

a high standard for images processing with libraries such as OpenCV. OpenCV is al-

ready extensively documented and easy to work with as it has ”more than 47 thousand

people of user community and estimated number of downloads exceeding 18 million.

The library is used extensively in companies, research groups and by governmental

bodies.” (OpenCV, 2022). Python also have libraries available to allow us to easily

connect it with an output engine such as pyTesseract, or API based OCR tools like

Azure OCR.

When choosing OCR engine multiple factors came into consideration. As mentioned

above there were multiple different choices to consider. In the end Tesseract was

chosen for various reasons. Firstly, it has its own python library accessible which

works natively and is therefore easy to setup. Tesseract is free to use and download,

this means we can run it locally on our machine and not be worried about a Wi-Fi

connection as well as dealing with time-outs and error messages that could be part of

an online solution.

With python running in the backend, the application needed way to display informa-

tion to the user and allow them to interact with the application in a more user-friendly

manner than a terminal. Python have many libraries that allows for user-interface de-

velopment, but from earlier experience with some of them none of these covered the

baselines which the project aimed for. Instead, the choice was made to opt for using

Electron. Electron ”is a framework for building desktop applications using JavaScript,

HTML, and CSS. By embedding Chromium and Node.js into its binary, Electron al-

lows you to maintain one JavaScript codebase and create cross-platform apps that

work on Windows, macOS, and Linux” (Electron, 2023). This allowed development

to be done using native JavaScript (JS), node JS and related JS libraries for the code

related to the user experience. With this technology the structure of the the user in-

terface could be created using html and CSS. These technologies are used in the
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majority of the web with javascript being utilized for 98.5% of all websites as of March

1st 2023 (w3techs.com, 2023). This allowed for quick development due to the well

documented frameworks and wealth of information easily accessible. Using Electron

also lets the program run on a local machine eliminating requirement of running an

online server and allowing for a local server instead, giving more options on how to

setup the program depending on the pathology labs needs.

For python and Electron to communicate an internal API would allow for fast commu-

nication. For this flask was chosen as it is easy to use, fast to setup and meet all

requirements for this project. As flask is a web framework written to be an extensible

”micro-framework”. It acts as a solid core for other services and allows to integrate

with any database or components by using extensions. This lets us tailor our own net-

working stack. (Grinberg, 2018, p. 1). The local flask server starts and stops itself with

the electron application and allows data to travel back and forth between the frontend

and backend.

The API used for frontend and backend communication could also be hosted on a

server as a REST API to allow the OCR tool to serve multiple clients at once without

running locally. As of the current iteration the API set to handle images from local

storage. However, for an implementation in the pathology lab the API can be possible

to call by sending a link to an image over hypertext transfer protocol (HTTP) to a

uniform resource identifier (URI) pointing to the API. The API returns a JSON object

with the data generated by the program acting as a REST API. This works in the

same way as the current backend to frontend communication, but instead of a local

file path as a parameter the input parameter would be a link to the image that should be

processed. This REST API would then be usable by multiple thin clients allowing for

all the heavy processing to take place on one central server which communicates with

the different clients. This would end up saving the pathology lab money in the amount

of processing heavy clients required and make the API more easily accessible from

different workstations.
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Figure 4.7: This figure shows the pipeline for the rest API that processes images
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One of the largest challenges with the OCR engines is pre-processing the input. When

doing so the program is attempting to do multiple things in one algorithm, these include

noise removal, image correction and binarization (Bieniecki et al., 2007, p. 1). Here

different factors and image condition can yield different results in similar images. Two

different options of pre-processing the images were utilized in this thesis. One more

successful than the other, but the heavier processing algorithm also comes with higher

computing requirements thus leading to a drastic increase in runtime.

Before doing any pre-processing, the program increases the resolution of the images,

this would not be needed if the images were taken by high resolution cameras. How-

ever, as tesseract prefers an input of at least 300DPI (Tesseract - GitHub.com, 2023).

The program upscale the images which are all 3024x4032 by 1,5 using inter cubic in-

terpolation.

Tesseract works better when there is less text and noise in the image (Tesseract -

GitHub.com, 2023), for noise removal two different methods were attempted. The first

method tried to remove and filter as much as possible. The algorithm first attempts

to use edge detection to detect and split each cassette into a separate image. The

other alternative involved using a neural network called ”An Efficient and Accurate

Scene Text Detector” or EAST detector for short. EAST attempts to locate the text on

each cassette, a custom written algorithm for this project then merge the text on each

individual cassette to locate them. Essentially, the program wants to take cassettes

from an image containing 100 cassettes and instead have 100 images containing one

cassette each. Edge detection allows us to see the results when attempting to capture

an entire cassette, this is interesting to when comparing the results to only capturing

area of interest, which in this case is the text on the cassettes. Edge detection is

implemented through conventional pre-processing methods whereas text recognition

is only possible with neural methods.
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4.4.1 Edge Detection

Figure 4.8: This figure shows an image processed by edge detection

For the edge detection approach the image is first converted into grayscale, then var-

ious pre-processing effects such as a bilateral blur filter and sharpening is applied.

The blurring smooths out some noise and the sharpening helps increase the outline

of the edges the software is attempting to detect. The image is then thresholded us-

ing adaptive threshold, this binarizes the pixels in the image making it consist of only

black and white pixels. Erosion is applied to remove noise and contour detection is

applied, where the smallest contours are removed again to decrease the amount of

noise in the image. Contour detection is then applied to the image to detect the re-

maining cassettes. The coordinates are then extracted, and each cassette is cut-out

from the grey image.

The pre-processing done in edge detection needs to be tuned for specific distances

and sizes of cassettes, creating a “catch-all” is incredibly difficult. Therefore, edge

detection works significantly better on images with the same distance and cassette

sizes as the images it is tuned for and performs much worse in images the more the
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camera moves away from or closer to the cassettes.

4.4.2 EAST

For the EAST segmented cassettes, a slightly different approach is at play. Firstly,

the images need to be padded as EAST only works on images with a resolution in

a multiple of 32. To do so black pixels are added to the right and the bottom of an

image until it fits the resolution requirements. The image is then prepared and input

into EAST according to the pipeline the neural network expects Zhou et al. (2017).

The output is parsed until the vertices surrounding each part of text is returned. An

issue arises as each cassettes contain 4 pieces of text, and these four boxes needs to

be merged for the text on each cassette to be joined in a segment as illustrated below.

Figure 4.9: This figure shows how the algorithm merges the results from EAST to capture all

the data on one cassette

To do so a custom algorithm was written, this algorithm loops over the boxes starting

in the bottom left of the image and using a merge threshold it merges with the boxes to

the right and above them as long as they are not outside of a certain distance or above

certain size. The distance between boxes is decided by the average size divided by

3 or multiplied by 1.5 depending on if it is height or width respectively. The max size

of a box is width and height multiples of 8 and 4 accordingly. This allows the merge

algorithm to work on images with different sizes of boxes as the algorithm will scale the

merging accordingly, and image resolution will be unaffected. The algorithm repeats

itself until all boxes are either too large to be merged and none are overlapping. The

coordinates surrounding the text is then extracted and cut out from a grayscale image.

Processing images with EAST is considerably more compute heavy and takes more

time than the edge detection approach, but it should give much better results.
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4.4.3 OCR

Both the grayscale images from the EAST-text detector and the images cut-out using

cassette edge detection are then processed for OCR. This process thresholds each

individual image using OTSU thresholding which attempts to automatically split the

greyscale images into foreground and background Otsu (1979). A mask is then cre-

ated from the contours of the thresholded image. This mask is used to filter out noise.

The last thing to be done to the image before OCR is a layer of Gaussian blur which is

applied to smooth the image for the OCR process and remove speckle noise. When

applying Gaussian blur ”the average value of the surrounding pixel or neighbouring

pixels replaces the noisy pixel present in the image which is based on Gaussian dis-

tribution.” Kumar and Nachamai (2017).

Edge detection faces some additional challenges compared to EAST in this pre-

processing step. This comes in the form of multiple cassettes being detected as one

cassette if they are in a very close proximity. This effect can be seen the two first

”cassettes” on the second column in figure 4.8.

Each image is then individually fed to Tesseract for OCR, the coordinates and text is

extracted and returned to the user interface Electron application. Here the information

is presented to the user. The user can then confirm the information and help label

the boxes that tesseract is not able to read. Before submitting the final results to the

database.

4.5 User interface

This section will detail a few of the features in the graphical user interface (GUI) created

for the application. As a user interface has also been developed for the application.

This interface allows for searching and highlighting of individual cassettes, easily dis-

plays the information and allows a user to label cassettes not recognized by the OCR.

The user interface also supports drawing bounding boxes around cassettes using the

mouse cursor. These cassettes can be drawn onto the image in case the cassette

was not detected by the edge detection or EAST. The user can save the data to a file

or database which will allow for easy retrieval and searching. The data exported in-
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cludes the unique key of each cassette, this consists of case ID, block ID and sample

type. This information is also accessible in its own rows. Additional data generated

by the program includes rough cassette location in image and tray, which is split into

a 3x3 grid as seen in the figure below this allows quick location of specific cassettes

without having to look through all of them. Additionally, local time, local date and an

ISO timestamp is saved. And finally, cassette status, so whether it is in a machine or

on the way to the archive if so which machine and exact location in the archive the

cassettes are located in will be stored as well.

Figure 4.10: This figure represents how the data of cassette location is converted and stored

into plain-text
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Figure 4.11: The start page on the application

When the application is launched users are greeted with a page that lets the user

capture an image or upload an image file. The black box in figure 4.11 will show a live

camera feed if a webcam is connected. When an image is uploaded or captured the

user will be moved an animated loading screen whilst the cassette location and OCR

is processed in the background. Once the process is done the user will be presented

with an overview of all the cassettes as seen in figure 4.12

For this application 3 different colors were utilized as seen in figure 4.13. These colors

were chosen based on a variety of factors. Green is often considered the ”ok” color

and used in cases where all the information on a cassette is successfully extracted.

The orange-red was chosen for the search functionality as it stands out and is easy to

locate. The yellow color also stands out and is easy to locate among the cassettes,

this color signifies that a cassette is missing certain information. For an actual imple-

mentation of the system other colors should be considered as the red and green colors

could cause problems for a user suffering from deuteranomaly which is a type of color

blindness affecting a user’s ability too differ those two colors. The colors used can

also in certain cases blend with the cassettes in the image. Especially the orange-red
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Figure 4.12: This image shows the final user interface and the results from a scan.

Figure 4.13: The different colors used in the GUI
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and the orange cassettes. Research could be done to identify colors that are easy to

spot mixed in with the colors already existing on the cassettes. There could also be

potentials to find an alternative method to highlight the cassettes. However, this type

of interface would not be needed in a fully automatic setting.

The green and yellow colors are also used in the sidebar located on the right side

as seen in figure 4.12. The green box at the top lists all cassettes found with infor-

mation successfully extracted by the OCR process. The yellow box list all cassettes

located and in need of some manual data entry. Both boxes are sorted in numerical

order and have a counter displaying the amount of cassettes. The boxes are updated

dynamically whenever a user makes changes to any cassette data.

On the top left in figure 4.12 the search function is located. This allows the user to

highlight specific cassettes by either searching for the text data the cassette contains

or by clicking on a cassette in the green or yellow preview box on the right side of the

image. To identify all cassettes missing data the user can search for ”none”.

Figure 4.14: Shows the information that appears when clicking on a cassette

To change or add information to a cassette the user can click on the colored boxes

seen in figure 4.13. This action will bring up a menu as seen in figure 4.14. Here

the user has the ability to change the Case ID, Block ID and the type and year identi-

fier. The data edited will not be accepted unless in a valid format. Saving the wrong

cassette data will highlight the text filed containing wrong data in red. The boxes auto-

matically turn from yellow to green once the issues are resolved. Colored boxes can

also be delete in case they are in wrong location. To draw new colored boxes the user

can click and hold on the image. The user can then surround an area containing a

cassette and manually enter the information an empty text box, the manual entered

data is also checked for validity.
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Once a user is done, they can submit the data. The submit button is not available

to press as long as there are still cassettes that require corrections. Once there are

no more yellow cassettes the user needs to select which activity the cassettes are at.

In the case of the archive the user must manually enter a storage location into a text

field. Once these conditions are fulfilled the user can submit the data. This saves the

results and bring the user back to the start page seen in figure 4.11 to scan another

image of cassettes.

The code and installation instructions for the program including processing pipelines

and user interface can be found in the appendix, see chapter 6.

4.6 Suggested framework

The cassette tracking process should ideally not interfere with the current workflow in

the lab. Therefore, a framework must strive to be as non-intrusive as possible to avoid

disrupting the current workflow. Ideally it would be light-weigh and should not include

toomany steps which adds to the process. The light-weight framework suggested here

takes all these factors into consideration whilst aiming to enhance the traceability of

cassettes.

Figure 4.15: conceptual framework

The pathology lab requires access to cassette data on an individual level. The current

system in place skips tracking certain processes due to the time constraints of scan-

ning. Each cassette is not tracked in each individual activity leading to a loss of data

when applying process mining techniques. The data generated by the proposed sys-

tem would allow the pathology lab to use process mining to achieve a better overview
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of the workflows in the pathology lab. As the new system will allow individual cassette

tracking though all activities where tracking is currently missing. This is a requirement

for process mining techniques and will allow for process mining on a granular level.

The concept framework seen in figure 4.15 is proposed for the pathology lab. It allows

the cassette tracking to work in tandem with the processes in the lab, but at the same

time both processes work independent from each other. Both the lab process and

the individual cassette tracking will output event-logs. Using a combination of these

will allow for fine-grained processing of the workflow. This could potentially lead to

discoveries being made by the team working on process mining the pathology lab and

further help gain insight into the processes and workflows.

Cassettes Tracking API

Locate Cassette API

Sort Cassettes API

+ +
Process Execution Engine

Image Processing Component

Case-id Time Activity Resource

…....................... …............. …............. ….............

…....................... …............. …............. ….............

…....................... …............. …............. ….............

…....................... …............. …............. ….............

…....................... …............. …............. ….............

…....................... …............. …............. ….............

Event-logs

Process mining

Figure 4.16: Conceptual framework for enhanced process monitoring in pathology laboratories

Figure 4.16 shows how the process execution in the pathology lab could be carried

out. This will lead to enhanced process monitoring which will add cassette location

and information to the event logs.
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4.7 Augmenting the logs

Case-id Time Activity Cassette Slide

1 9.05, 15:00 Accessessioning

1 10.05, 10.00 Grossing Cassette#HB0011

1 10.05, 10.00 Grossing Cassette#HB0012

1 10.05, 10.00 Grossing Cassette#HB0013

Case-id Time Activity

1 9.05, 15:00 Accessessioning

1 10.05, 10:00 Grossing

Transformation of Event-log for process mining

Accessioning Processing Embedding Sectioning StainingGrossing

These logs are generated at the 
grossing step by processing the 
images of cassettes using optical 
character recognition

Case-id Time Activity Specimen Slide

Cassette#HB0011 9.05, 15:00 Accessessioning 1

Cassette#HB0012 9.05, 15:00 Accessessioning 1

Cassette#HB0013 9.05, 15:00 Accessessioning 1

Cassette#HB0011 10.05, 10.00 Grossing 1

Cassette#HB0012 10.05, 10.00 Grossing 1

Cassette#HB0013 10.05, 10.00 Grossing 1

Fine grained event log for analyzing cassettes movement in 

the pathology lab

Coarse-grained event log for 

analyzing specimens' movement in 

the pathology lab

Raw event log 

Figure 4.17: Transformation of raw logs for coarse-grained and fine-grained process analysis

Figure 4.17 is an example of what data output from the application could look like in

conjunction with the data from the LIS. The figure shows how the data can be merged.

With this merged data the pathology lab would be able to utilize process mining to gain

a better overview of the workflows in the lab than what is available today using only

the LIS data.
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Case
requisition

Accessiong
:start

Accessiong
:finish Processing

:start
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:start

Grossing
:finish

Processing
:finish

Embedding
:start

Embedding
:finish

Sectioning
:start

Final
Report

Microscopy
:start

Scanning
:finish

Scanning
:start

Staining
:finish

Staining
:start

Sectioning
:finish

Block
archived

Extra
Analysis

Order

Block
retrieved

Accessioning_queue in_Accessioning Grossing_queue in_Grossing Processing_queue

in_Processing

Embedding_queue

in_Embedding

Sectioning_queue

in_Sectioning

Archive_queue

in_Archive

Staining_queuein_Staining

Scanning_queue

in_Scanning

in_Microscopy

Microscopy_queue

b

b

b

b

bbbb

b

b

b

b

b

b

Assets

Case Timestamp Event Token

... ... ...

B23 12345 2023-05-15 09:15:18 Grossing:finished B23 12345

B23 12345 2023-05-15 12:01:23 Processing:start B23 12345 01

B23 12345 2023-05-15 12:01:28 Processing:start B23 12345 02

B23 12345 2023-05-16 08:00:51 Embedding:start B23 12345 01

B23 12345 2023-05-16 08:03:10 Embedding:finish B23 12345 01

B23 12345 2023-05-16 08:03:10 Embedding:start B23 12345 02

B23 12345 2023-05-16 08:05:42 Embedding:finish B23 12345 02

B23 12345 2023-05-16 14:11:11 Sectioning:start B23 12345 01

B23 12345 2023-05-16 14:18:01 Sectioning:finish B23 12345 01

B23 12345 2023-05-16 14:18:03 Sectioning:start B23 12345 02

B23 12345 2023-05-16 14:23:42 Sectioning:finish B23 12345 02

B23 12345 2023-05-16 18:07:01 Staining:finish B23 12345 01 01

B23 12345 2023-05-16 18:07:03 Staining:finish B23 12345 02 01

B23 12345 2023-05-17 10:52:00 Scanning:finish B23 12345 01 01

B23 12345 2023-05-17 10:55:00 Scanning:finish B23 12345 02 01

B23 12345 2023-05-18 13:01:33 Microscopy:start B23 12345

B23 12345 2023-05-18 16:08:02 ExtraAnalysisOrder B23 12345

B23 12345 2023-05-19 07:55:10 Sectioning:start B23 12345 01

B23 12345 2023-05-19 07:58:55 Sectioning:finish B23 12345 01

B23 12345 2023-05-19 12:45:44 Staining:finish B23 12345 01 02

... ... ... ...

2023-05-16 01:00:00; Processing:end; B23 12345 01
2023-05-16 01:00:00; Processing:end; B23 12345 02

2023-05-16 15:03:17; Block archived; B23 12345 01
2023-05-16 15:15:01; Block archived; B23 12345 02

2023-05-16 16:06:01; Staining:start; B23 12345 01 01
2023-05-16 16:08:01; Staining:start; B23 12345 02 01

2023-05-19 07:45:52; Block retrieved; B23 12345 01

2023-05-16 10:49:01; Scanning:start; B23 12345 01 01
2023-05-16 10:52:01;Scanning:start; B23 12345 02 01

Replay

Figure 4.18: Shows how the proposed solution augments the workflow from figure 2.1 Hatlem

et al. (2023)
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The top part of figure 4.18 shows how the solution proposed here is able to augment

the current workflow from figure 2.1 and fill in the data currently missing in the LIS,

which is displayed in red in the model. The lower part of figure 4.18 shows how the

results of combining the LIS logs with the data this system allow us to generate. This

will result in a more comprehensive log able to display more of the events happening

the pathology lab. This data can be of use when process-mining.

4.8 System architecture

Pathology Lab

LIS ELT

Assets

Case Timestamp Event ...

... ... ...

... ... ... ...

... ... ... ...

Event Log

Image Processing

Process Mining

Simulation

Optimization

Tracking API

Locating API

exports produces

augments

neededFor

foundationFor

foundationFor

Predictions

Plans

interacts

interacts

Figure 4.19: The overall architecture of the system Hatlem et al. (2023)

The overall architecture of the systemwould be as seen in figure 4.19. Data is gathered

from the pathology lab by both the LIS and image processing system proposed here.

The logs from the LIS are exported and turned into an event log. This log is augmented

with the data from the image processing system. This comprehensive event log is then

used for process mining. This is fundamental for allowing simulations and predictions

which can be used to better understand and optimize the workflows in the lab. The

logs from the LIS data and image processing system can then verify these workflow

improvements and locate new areas suitable to improve. Creating a self-perpetuating

loop.
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Figure 4.20: BPMN model modified from Platou (2021) to show how the OCR tool would

interface with the system
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The BMPN model in figure 4.20 is a modified version of the model created by Platou

in Platou (2021). The model has been slightly simplified by removing the cytology

section. The histology section has been modified with new activities added by the

OCR-scanning tool. These are color coded by the orange boxes. Activities that are

altered are displayed in green, this is only the archive section as instead of a sorting

process the manual sorting activity is now replaced by a scanning activity.
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Evaluation

This chapter will show how evaluation was done, summarize the findings, and give

an analysis of the results from this study. In addition, an in-depth discussion will be

looking at the how sorting assisted by the application compares to doing it manually.

The performance of the OCR algorithmwill also be reviewed. Is it able to read numbers

consistently? Will it struggle under the conditions of the pathology lab? How many

cassettes does it misidentify with the wrong number? Is there a notable difference in

time between edge detection and EAST for locating cassettes?

5.1 Results and Experiments

For the experiment data from 4 different images will be compared. These images were

chosen because they have as few of the challenging components mentioned earlier

i.e. they have little, skew, reflection, and blur. The images are all taken at consistent

lengths using an iPhone 13. The images have not been altered in any way except for

a small amount of zoom to make cassettes roughly the same size.

table 5.1 and 5.2 show the results from the edge detection and East when locating

and identifying cassettes. The same four images were used for testing both methods.

The different columns in the table display the following information:

• Fully recognized are all cassettes that are found and all the text is completely
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read. An example of a fully recognized cassette would be 11111-001-b23.

• Partially recognized are cassettes that are found and the text is unable to be

read or the text is partially read, but not enough to get the full unique ID of the

cassette. A partially recognized cassette could be either (NONE representing

missing data) 11111-NONE-b2, NONE-NONE-NONE or any combination where

a part is unidentified.

• False detections are cases where an area not containing a cassette is highlighted

by the system. This can be caused by noise or by false detections.

• OCR errors tells us how many fully recognized cassettes contained errors. An

example of this could be a number being read wrong such as 11111 being seen

as another similar number like 71111. As it still is a valid number the system

does not flag it as incorrect and it needs to be discovered by the user.

• Runtime is displayed in seconds. Runtime shows how long it took the program

to run, one thing to keep in mind here is that runtime includes the time it took to

both locate and to perform OCR on the cassettes. Hardware does of affect the

speed of the runtime, in the case of this program runtime is mostly CPU bound.

In the testing done here an AMD Ryzen 3800x with 8-cores running at a 4.5Ghz

boost was used.

Table 5.1: Results from edge detection

Image name Total Cassettes
in image

Total
Recognized

Fully
Recognized

Partially
recognized

False
detections

OCR
Errors

Runtime
(seconds)

IMG 0892 37 22 16 6 1 0 6.90
IMG 0894 49 37 19 18 0 1 9.02
IMG 0895 37 32 9 23 3 0 8.48
IMG 0896 44 39 3 36 0 1 8.80

In addition to data gathered from the program real world data was gathered in the

pathology lab for comparison. This was gathered through a series of interviews and

meetings. to get an idea of how much time and resources is spent sorting cassettes

natural observation techniques were used to gather data. The author spent over one

hour with a lab technician working in the archive section on a randomly selected day.
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Table 5.2: Results from EAST detection neural network

Image name Total Cassettes
in image

Total
Recognized

Fully
Recognized

Partially
recognized

False
detections

OCR
errors

Runtime
(seconds)

IMG 0892 37 35 27 8 1 0 31.44
IMG 0894 49 49 37 12 0 0 35.23
IMG 0895 37 34 18 16 1 1 27.42
IMG 0896 44 38 25 13 0 1 27.15

This design setup meant that the lab technicians had no time to prepare for the exper-

iment in any way. This allowed the observation of the sorting activity to be as natural

as possible, with as few external factors as possible manipulating the results. Had the

staff been alerted to the fact that sorting would have been observed at a specific time,

it is possible they would have prepared themselves to seem as productive as possible.

The selected approach minimized the chances of an artificial performance.

The lab technician observed had over 17 years of experience in the pathology lab and

can therefore give a good idea of the sorting speed of a more experienced worker. For

one hour the amount of cassettes that were moved from the pile of unsorted cassettes

and sorted into the archive was counted. Results were written down every 10 minutes

to get an overview of how much variation could occur in short intervals of sorting.

The table below shows the sorting times measured in the lab. The first column shows

the time, the second column displays howmany cassettes have been sorted in the last

10-minute interval and the final column shows the accumulated amount of cassettes

sorted since the start of the observation.

Table 5.3: Results from hand sorting in the lab

Time Sorted last 10 minutes Total sorted
09:57 0 0
10:07 109 109
10:17 84 193
10:27 44 237
10:37 115 352
10:47 122 474
10:57 173 647
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Figure 5.1: This graph show the variation in cassettes sorted in each 10 minute session

Sorting times were also gathered and measured from the application. The same im-

ages as the earlier trial were reused as they were a great baseline and reusing them

allows for some interesting comparisons and statistics in the discussion.

• Total cassettes in the image shows how many cassettes each image contains.

• Corrected cassettes tells us how many cassettes had to be edited to get the

information right.

• OCR runtime is the runtime of theOCR and EAST/ ED algorithms. OCR runtimes

are slightly different from last trial, this is to be expected as it can variate slightly

based on system performance and background processes.

• Error correction time is how long it took to edit and fix the errors using the soft-

ware.

• Total time shows how long this process took in total with the accumulated times

for runtime and error correction.

The last row shows the accumulated times for all images processed. All times are

written as minutes:seconds.
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Table 5.4: Results for using EAST for image sorting

image id Total cassettes
in image

Corrected
cassettes

OCR runtime
(minutes)

Error correction time
(minutes)

Total time
(minutes)

IMG 0892 37 11 00:30 01:41 02:11
IMG 0894 49 12 00:34 01:24 01:58
IMG 0895 37 21 00:26 02:26 02:52
IMG 0896 44 20 00:26 02:34 03:00

Total 167 64 01:56 08:05 10:01

Table 5.5: Results for using ED for image sorting

image id Total cassettes
in image

Corrected
cassettes

OCR runtime
(minutes)

Error correction time
(minutes)

Total time
(minutes)

IMG 0892 37 22 00:06 02:51 02:57
IMG 0894 49 31 00:08 03:45 03:53
IMG 0895 37 31 00:07 03:38 03:45
IMG 0896 44 42 00:08 04:46 04:54

Total 167 126 00:29 15:00 15:29

5.1.1 Data and analysis

The ED model has a total accuracy of 77.84% (130/167). Compared to using EAST

which achieves an average accuracy of 93.41% (156/167). This accuracy increase

comes at a cost of an average runtime increase of 22.01 seconds more as the average

runtime of edge detection is 8.3 seconds whereas EAST has averages 30.31 seconds

per image processed. In both cases the runtime does not seem to have a strong

correlation with the amount of cassettes detected or the amount of cassettes in an

image as seen IMG 0892 and IMG 0896 compared to the other two.

After looking at cassette detection, we see that OCR performance also vary from edge

detection to EAST. Out of the 130 cassettes detected by ED only 47 is completely rec-

ognized which gives ED an accuracy of 36.1% in cassette detection. EAST performs

a little better completely recognizing 97 out of 156 for an accuracy score of 62.1%.

The system occasionally detects cassettes where there are none. Edge detection

seems to have a slightly higher likelihood to detect false cassettes at 2.39% (4/167)

false cassette per cassette in an image compared to EAST which detects 1.19%
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(2/167) false cassettes per image. None of the false cassettes contain any text and

they are all labelled as ”none-none-none”. In addition to these some of the cassettes

which were fully recognized contained incorrect information which have to be identified

and corrected by the user. Out of the 47 recognized by ED 2 cases contained incor-

rect information giving a failure rate of 4.2% thus 95.8% of the text recognized by the

ED based methods are correct. EAST also had 2 errors out of the 97 cassettes giving

it an error rate of 2.06% and it means that EAST is able to correctly read 97.94% of

the text it is able to recognize. One interesting fact to note is that one of the cassettes

which were incorrectly read by the OCR program were the same cassette in both ED

and EAST.

Looking at the cassettes sorted in the lab we can see the lab technician were able

to sort 647 cassettes in one hour. This gives us an average of 107.8333 cassettes

in a 10-minute interval and 10.7833 cassettes per minute. The amount of cassettes

sorted in 10-minutes intervals vary by a large amount. The lowest amount moved from

the unsorted pile into the archive in a single 10-minute session was 44. Whereas the

largest amount was 173. The reason for the drop of cassettes sorted in the third inter-

val is due to a sample containing too many blocks to fit in the space that was left. This

meant that a large amount of already sorted blocks had to be moved and restructured

to make space for the new blocks. Usually, they make space for a few large sam-

ples, but very often situations like this occur where a large section of cassettes has to

be moved in order to make space. Moving and transferring cassettes like this is very

time consuming. In addition, items are pulled from archive daily and must often be

re-sorted into it. When sorting they have to take this into account and make space for

cassettes by checking numbers before and after to ensure that there is always space

for new cassettes. This is very time-consuming, and it also stops lab technicians from

being able to compress space and put as many cassettes as possible in a single box.

As they never know how many cassettes might appear to fill an empty space to keep

the archive in numerical order. Restructuring can take time if a large order needs to

fit into a small space. Other challenges also appeared in the hour of observation the

technician worked. One of the boxes of cassettes that came in had been processed by

a student. Unfortunately, this student had made the mistake of placing the cassettes

in the wrong order. Thus, the lab technician had to re-structure the entire box be-
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fore placing the cassettes into the archive. Leading to further slowdowns. In the final

10 minutes a box of cassettes arrived where the cassettes were already in numerical

order. This greatly sped up the process, but this does not happen often. During sort-

ing two cassettes placed wrong were located and fixed, human errors such as these

are constantly taking place and slip though. When mistakes like this happen it makes

those wrongly placed cassettes impossible to locate in an archive where the section

for 2022 contained a total of 185065 cassettes as per table 2.1

To get some more useful data out of the table 5.5 and 5.4 we first need to convert the

data into a format easier to compare. To figure out how many cassettes can be sorted

each minute using the application you can take the total of 167 cassettes and multiply

with the minutes and seconds it took to sort. Each second needs to be converted into

a numerical scale that goes to 1. This is done by dividing 1 by 60 resulting in 0.0166.

EAST spent 10 minutes and 1 second in total on runtime and error correction giving

us this calculation: 167/(10+0.0166) = 16.67221 cassettes per minute. Multiplying by

10 gives 166.7221 cassettes per 10 minute and multiplying this number by 6 gives a

total of 1000.333 cassettes sorted per hour. For ED we can do a similar calculation to

find that ED had a longer total time with a shorter runtime, but much more time spent

on error correction for a total of 15 minutes and 29 seconds. To calculate cassettes

sorted per minute we do: 167/(15+(29*0.0166)) giving us a total of 10.7857 cassettes

sorted per minute. 107.8579 in 10 minutes and 647.1475 cassettes sorted per hour.

Table 5.6: Cassettes sorted on average in different times

Manual sorting EAST ED
Per minute 10.78333 16.67221 10.78579

Per 10 minutes 107.8333 166.7221 107.8579
Per hour 647 1000.333 647.1475

Looking at how many cassettes can be sorted on average it is obvious that EAST out-

perform ED by quite a bit. As ED barley outperform manual sorting by a negligible

amount of time. Looking at EAST the difference between the proposed solution and

the manual solution of today is quite noticeable. In total EAST gives a sorting speed

increase of 54% compared to manual sorting. Whereas ED gives a performance in-

crease of 0.0028% essentially being akin to the current manual sorting speed.
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Table 5.7: Estimated amount of hours it takes to sort in lab and automatic and time saved

Year Cassettes Manual sorting time EAST sorting time Time saved with EAST
2016 155414 240.21 155.36 84.84
2017 164179 253.75 164.12 89.63
2018 169817 262.47 169.76 92.71
2019 172879 267.20 172.82 94.38
2020 171505 265.08 171.45 93.63
2021 180323 278.71 180.26 98.44
2022 185065 286.04 185.00 101.03

Figure 5.2: This graph shows an estimate of the sorting times saved and the amount of cas-

settes increasing each year

Table 5.7 shows the estimated times of the current manual sorting technique com-

pares to using EAST in the current state it is in. In 2022 101 hours of manual labour

could have been saved in sorting activities if a digital tool with the performance of the

proposed EAST sorting tool was available to assist. This means that a lab technicians

would have an addition 101 hours of time to focus on more important tasks. As seen

in figure 5.2 more time is saved each year as the time to sort increases due to the

amount of cassettes need to be sorted which also keeps increasing. As can be seen

in figure 5.2 the pathology is estimate to be able to save 35.32% of the time spent on

sorting activities by using the proposed solution using EAST.
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5.2 Discussion

This part will be an in dept-discussion regarding the use of the application and if it is

suitable for deployment in the pathology department. The data from results will be

analysed. does the application provide enough of an increase in production and is it

accurate enough to possibly utilize? If not, what, and how can be improved?

5.2.1 Performance

At the moment the application is able to locate almost all cassettes in an image with

a high consistency using both edge detection and EAST. However, EAST performs

slightly better with 15.57% higher average accuracy, but also comes with a trade-off

of much higher average runtimes with an additional 22.01 seconds. There might be

ways to improve edge detection and achieve scores more in-line with EAST at a faster

time. The easiest would probably be to test a few different ways of pre-processing the

images and tuning the algorithm accordingly.

As you can see the system occasionally ”find” cassettes that does not exist. This is

easily rectified by the user when using the application as the user would spot that

the system highlighted an area without cassettes. As mentioned, the system requires

all cassettes to contain data before allowing for data submission, none of the false

detections contain any text and can easily be found and deleted.

Once the cassettes are detected both edge detection and EAST struggle to read the

text. This could be due to some of the challenges related to image recognition men-

tioned earlier, but also due to limitations with OTSU thresholding andGaussian blurring

being the only pre-processing steps before OCR. Different methods of thresholding

can be attempted as well as more intensive pre-processing, It would also be inter-

esting to see compare how different OCR solutions would perform. It is possible that

tesseract is under performing.

The almost 30% difference in OCR performance in EAST and ED is very interesting.

As once the cassette detection has detected the cassette the OCR pre-processing is

the same for both cases. The only difference between the two methods of findings
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cassettes is the size of the cut-out as can be seen in Figure 5.3. ED keeps a larger

part of each cassette as it keeps the entire cassette in the cut-out, whereas EAST just

keeps the text part, ignoring the data matrix code and the area between. This could

be why the OCR performance between the two images is so different. The data matrix

code could also be the cause of the large gap as it could be recognized as text and

obscure the results.

Figure 5.3: This image shows the difference in the cut-outs of ED and EAST

The reason OCR performance varies in EAST and ED could be due to the size of the

detected area. Edge detection finds the entire cassette whereas EAST only finds the

area containing text. This means images from ED contains more noise, specifically

the data matrix code could be causing issues with the tesseract. It should be possible

to remove it from the image and see if that gives any better results. Larger images

also contain more noise and shadows these factors would make the OTSU threshold

perform differently depending on the content and size of the image. A more advanced

processing pipeline should be able to produce better results for ED either by shrinking

the detected area a little or removing the data matrix code. A more advanced pre-

processing line in general would be ideal to achieve an accuracy higher than both ED

and EAST as they are currently suboptimal.

The system developed is not fully automatic and the user is able to correct some

mistakes through the GUI. If the system were to be fully automatic, which is a long-time

goal we would need some way of error handling to ensure all cassettes are detected.

As mentioned earlier losing even one cassette can be detrimental in changing the

course of a patient’s life. The current goal of creating a user overseen system.

Manually typing in the text on cassettes does introduce the possibilities of human er-
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rors. There are a few methods to counter this. Firstly, a method to ensure there are no

cassettes containing the same information is one. Human error is one of the largest

challenges and cassettes are placed wrongly every day. Making them almost unfind-

able in the sorted pile. According to the technician that were sorting when observation

occurred.

5.2.2 Specific cases

Looking at the images on a case-by-case basis it is apparent that some images perform

very differently when the images are similar in nature. One difference can be seen in

image 0896 which has a lot of shadows. It also features darker cassettes which in turn

causes the shadows to be perceived as even darker. This could be causing issues

with the OCR.

Image 0892 also does not work well with edge detection. This specifically suffers from

an issue where due to the edges not being too visible the cassettes are captured and

perceived as being too large and therefor disregarded as noise. Image 0892 also

suffers slightly from obscured cassettes due to the image angle.

5.2.3 Barcode scanning times versus runtime

Looking at runtime, both methods proposed would be faster than barcode scanning

the cassettes one by one. According to SPOT imaging which claim scanning 150 cas-

settes takes 450 seconds to scan by hand (SPOT Imaging, 2023). This translates to

an average of 3 seconds of scanning time per cassette. To hand scan 35 cassettes

would already take 2 minutes which is much longer both solutions for identifying cas-

settes proposed and tested here. In addition, hand scanning would also require man-

ually sorting cassettes which would add a lot of additional time to the total not required

by the proposed tracking solution. According to the pathology lab SPOT’s timings are

not entirely correct, cassette scanning time can vary between 1 second per cassette

to 3 seconds. It depends on the training of the person scanning and how many times

a cassette has to be re-scanned if scanning fails. They estimated that scanning 150

cassettes would take somewhere around one to two minutes for a trained employee

in contrasts with SPOT’s estimation of seven and a half minute. Both of these are still
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longer than the runtime for the application proposed here.

To verify these claims, we did a quick in lab trail by scanning twp boxes of cassettes.

The first box was not sorted, and cassettes occasionally had to be moved to perform

a scan. It took 3 minutes and 43 seconds to scan 136 cassettes. Giving a time of

1.5 second per cassette. We also tried scanning a newer box with spacers to see

if there was a noticeable difference. Using the spacer, we were able to scan a box

of 226 cassettes in 2 minutes and 11 seconds, which is 0.5 seconds per cassette.

However, the box with the spacers are currently in limited supply and part of a new

project. Meaning that currently for most boxes we need to look at the first and slowest

of these timings. Comparing these measurements to SPOT’s we see that they are

way lower and much closer to the estimates made by the lab workers.

5.2.4 Comparing manual and automatic sorting

Looking at the improvements gained compared to how long sorting takes in the lab

we see some interesting results. Again, EAST has a much longer runtime compared

to ED, but the amount of manual work that has to be done and labelled after ED’s

poor OCR performance leads to a lot of time lost manually typing in the cassette data.

In turn ED ends up being almost as slow as manual sorting. However, even though

ED is as slow as manual sorting it does come with some advantages. Cassettes with

their data digitally stored should be easier to locate and can be directly searched and

should be retrievable faster.

If OCR performance is increased by any means and the time spend on error correction

could be lowered the amount of time saved could be immensely improved. In theory if

we could achieve an accuracy of 100%and keep the same run times as EAST currently

have we can achieve a cassette sorting speed of 86.38 cassettes per minute. These

calculations are based on total runtime without error correction: 167/(1+(56*0.0166)).

If this were feasible, we would achieve a sorting speed increase of 701% compared to

manual sorting. This is however a theoretical maximum and is reliant on improvements

to the OCR technologies to a point where they are completely automatic and able to

perform without producing any errors.
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One thing this study has not been able to time is the retrieval process. Right now,

a pathologist or lab technician need to manually look through the cassettes to find

a specific sample. If the sample is in the sorted pile finding it requires them to look

through until they find the start and follow the numbering to locate the cassette. If the

cassette however is in the unsorted queue, it can be extremely difficult to find. The

digital solution would hopefully help trivialize both of these processes into a search

interface which would allow for quick retrieval. The author did not have time to develop

this interface as it was not a priority, but the data required is stored in searchable format

with the current solution. Being able to quickly locate cassettes should also save time

for the pathology lab.

Another thing to keep in mind when comparing the manual and automatic sorting

comes regarding the software’s runtime. During runtime the user does not need to

be present. Knowing runtime takes around 30 seconds the lab could use more than

one computer and a worker could possibly run two or three boxes through the sys-

tem instead of waiting for a runtime to finish, further saving time by parallel processing

boxes of cassettes into the archive.

This improvement in sorting time will not only lead to benefits for the pathology lab in

allowing them to spend less time per sample, but it will also make each sample less

expensive to analyse. From an economical perspective reducing sorting time will also

help reduce the cost per sample as each sample is not manually handled for as long

during automatic sorting as it is during manual sorting. Therefore, the pathologists and

lab technicians can focus on other more important tasks and the administration does

not have to pay an educated lab technician for spending a large amount of time doing

a trivial task such as sorting.

In addition to the improvements in sorting speed the digital solution would also offer

a new layer of traceability to the cassettes in the lab. This will ensure that cassettes

are located where they are supposed to be. In an event where a cassette is lost and

needs to be located traceability will allow the cassette to be found. If a cassette is not

located in its designated position after manual sorting there is currently no easy way

to locate it, a digital solution would solve this issue. The logs created by a traceable

system will allow for fine grained process mining to be applied. Which can further be
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used to increase overall productivity in the lab as seen in the proposed architecture in

figure 4.19. Traceability in the archive will be an entirely new addition that can allow

the workers in the lab to see if a specific cassette is in the archive or if it has been

pulled out to be inspected. Cassettes from the archive are frequently retrieved for

various reasons such as checking if a certain type of cancer could be hereditary.

The data reviewed in the results directly supports the initial thoughts that a human’s

ability to identify cassettes will increase in speed when assisted by digital tools. The

augmented identification led to an increase in cassettes sorted within a set period of

time. Thus, making if faster for cassettes to be sent further into the lab instead of being

stuck in queues and improving the speed of the overall process of a cassette traveling

through the lab.

5.2.5 Possible use cases

The proposed system has potential to be used in creating a training set. The data being

handled by the system is exactly the type of data that would be needed for such a task.

If all the images processed are saved after automatic labelling and user verification,

the pathology lab would have all the data necessary to train a neural network. This

would require the system to be used in the lab for a prolonged period of time and all

data would need to be labelled correctly.

It is also possible to further enhance the system by incorporating additional features.

One such feature which were considered during development was incorporating a dig-

ital twin. The Digital Twin concept consists of three distinct parts. Firstly, the physical

object or the process and its physical environment, the digital representation of the

object or process, and the communication channel (the digital thread) between the

physical and virtual representations. The connections between the physical version

and the digital version include information flows and data that includes physical sensor

flows between the physical and virtual objects and environments.

If a digital twin was implemented as such, this digital twin would work in tandem with

the OCR system. Incorporating a digital twin would make the system capable of more

sophisticated handling and processing of the data output. If implemented in the en-
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tire lab the cassettes will be scanned in batches by OCR based tech every time the

cassettes are moved from one location to another. The cassette data, location, time

and more will then be logged in the system. The digital twin is updated and can be ac-

cessed in real time as it is continuously mirroring the physical state of the lab. Utilizing

digital twin technologies would allow for a better connection to bridge the physical and

the digital gap between cassettes in the lab.

5.2.6 Future challenges introduced by the system

The system presented here has to be rigorously tested and iterated upon if it were to

be implemented in the lab. The demo system for this thesis was created to gather data

and see what is feasible in the pathology lab. There is a high probability that the current

solution contains bugs and issues that can lead to errors down the line if implemented

in its current state. As an example, if the system is used by the pathology lab for a

set amount of time such as 5 years. An issue could occur rendering the data storage

solution inaccessible. This would mean that all the cassettes in the archive would

be considered ”lost” as they would all be stored in random orders in random places.

Finding a cassette in such conditions would require too much time to be feasible.

If the pathology lab is interested in developing an in-house solution it would require

more work than what one master student is capable in producing in one year. Not to

mention that the pathology lab would require a solution to maintaining the software

over longer periods of time. As mentioned by Dangott there is inherent risk in having

the system rely on the knowledge of only a few individuals. Dangott (2015). Mainte-

nance and future development will also be required. One such support case could be

that the current way of labelling the cassettes would be unfeasible for the system pro-

posed here after the year 2100, due to how the system creates unique IDs. As seen in

figure 2.2 the semantic information on cassettes only consists of the last two numbers

in the current year. This will lead to conflicts in creating a unique ID for each cassette

once it starts to loop over and the numbers start to repeat. To solve this the pathology

department could display the full year instead of just the last two digits. However, this

introduces another support case to consider. If the pathology lab makes any changes

to the semantic information on the cassettes, parts of the application would have to
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be reworked to account for such changes. Without developers to support the appli-

cation this will create certain limitations for the pathology department if they want to

keep using the system but make changes to the semantic information contained on

cassettes.

5.2.7 Answering research questions

RQ: How can the pathology workflow be streamlined by implementing automatic

sorting mechanics for cassettes?

It is possible to streamline a pathology workflow by integrating automatic sorting mech-

anisms for cassettes. The solution proposed and presented in this thesis implemented

automatic sorting mechanisms by utilizing OCR and pre-trained libraries for image pro-

cessing. This allows a pathology lab to implement workflows as seen in figure 4.18.

This enhances the speed of cassettes being sorted in a set amount of time drastically

compared to sorting these cassettes by hand.

RQ1: How can the implementation of a tracking solution using optical character

recognition (OCR) improve the efficiency of sample processing at a pathology

lab?

Implementation of a tracking solution using OCR is able to improve pathology workflow

by reducing the time spent on trivial tasks such as cassette sorting. In addition, the

software allows for traceability and tracking of cassettes which generate fine-grained

data for process mining when appended to the data from the LIS. The results of this

process mining can be utilized for simulations which can lead to further improvements

of pathology lab workflows.

RQ2: How does the accuracy of cassette detection vary when using different

pre-trained image processing libraries, specifically edge detection and the EAST

neural network?

According to the results presented in this thesis the EAST Neural Networks outper-

form the image processing technique of edge detection. EAST has an accuracy in



5.2 Discussion 79

cassette detection of 93% and edge detection is able to locate 77% of all cassettes

in an image. The accuracy of OCR performance also varies between the two differ-

ent models with EAST achieving 62% and edge detection performs significantly worse

at 36%. There are improvements that can be made to both of these. For instance,

one could label images and train a custom neural network instead of relying on off

the shelf solutions. Other image processing approaches could also be attempted to

see if they achieve better results by some significance. Improvements need to be

made in the OCR section before a fully automatic solution can be attempted. As was

covered briefly in the background section there are other OCR tools available some of

which could potentially produce better results in terms of OCR accuracy than tesseract.

These OCR models were not tested here due to their financial models and proprietary

closed-source approach.

RQ3: What effect does the proposed digital solution have on the time it takes to

sort cassettes compared to the current manual sorting method?

This thesis has proven that even a low performing OCR solution is able to reduce

the time spent sorting cassettes in certain workflows by 35% with a 54% increase in

the amount of cassettes sorted in a set amount of time. In total this decreases the

time it takes to process each individual cassette. The result of the saved time frees up

the pathologists and lab technicians to focus on more important tasks than sorting. It

will also reduce the time spent looking for cassettes as a digital archive will most likely

speed up the process of cassette retrieving.
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Conclusions and Future Work

This Chapter concludes the thesis by summarizing the findings from the study, the

contributions, and possible limitations of the approach. It can also identify issues that

were not solved, or new problems that came up during the work, and suggests possible

directions going forward.

In this paper a new approach to locate, sort and track cassettes in the pathology lab at

Haukeland university hospital have been proposed. The proposed system is currently

able to give an average of 54% increase in cassettes sorted in a set amount of time and

reduce the time spend on sorting activities by 35% compared to the current solutions

in place. This increase would be very beneficial as it would allow the pathology lab to

reduce a large amount of the time spent on manual sorting activities in the pathology

lab.

In addition to increased sorting time and sorting performance the system will also

gather more data than currently available in the LIS, enhancing the traceability of the

cassettes in the pathology lab. This data will allow for more fine-grained process min-

ing and can potentially lead to further increases in productivity and future reductions

in manual labor. This data will also allow for cassettes to be easier and faster to locate

in specific areas of the lab where they currently have to be searched for manually.

Two different methods to locate and sort cassettes have been attempted. These are

edge detection and EAST, a neural network for text extraction. Out of these two EAST
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performed significantly better compared to edge detection.

The system proposed still have a few challenges. Firstly, the OCR performance could

and should be improved before a system like this is put in place in the pathology lab.

EAST has an OCR accuracy of 62%. This should be improved before a system can

be put into place, even though the current accuracy allows for faster sorting than the

current manual method used in the archive. Testing another OCR engine instead of

tesseract could yield interesting results.

Currently the cassette detection system is at an acceptable level with an accuracy of

93.41%, but there are small improvements to be made here. It must be considered

that this system will operate in the healthcare sector and thus needs to be as error-

proof as possible. There is an argument to be made that a fully automatic solution

should be completely accurate due to the nature of the healthcare data. Even a semi

accurate solution should strive for as few errors as possible, as the current system in

place already suffer from human-errors. Interesting future work can be done looking

at how to handle possible errors both human made and OCR based. The system

developed here is a proof-of-concept to see what can be done with limited resources,

but it shows that there are significant improvements to be made and gives an idea of

which techniques to pursue.

A GUI have also been developed to give an idea of how manual error correction would

work in a semi-automatic solution. With proposals for how a user might interact with

the system to fix incorrect data extracted from the cassettes.

The thesis presents models to show how the pathology lab could incorporate a tool

for cassette tracking. The advantages of the system would allow the pathology lab

to generate fine-grained data, which would allow for process mining to find methods

which could further improve the pathology labs workflows.

With enough time and resources, one could process images and export the data from

the software to create a training set and use this to adjust tesseract or create a new

OCR-tool from scratch more accustomed to the environment in the pathology lab.

In the long run this could also remove the need for using EAST for text detection.

However, doing so would require a lot of cassette images and manual labelling to
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create.

Multiple computer vision-based systems already exist, many of these already utilize

text extraction. However, none of the systems that exists would fit the requirements

needed at Haukeland. The system create would also have the possibility to be aug-

mented further in the future. It should be possible to utilize the cassette detection in

synergy with a mechanical arm and use it to fully automate the process of sorting cas-

settes. The technology created in this thesis could also lay the groundwork for such

an alternative solution to this problem. Instead of creating a digital log of cassettes

for the archive the cassette location technology and OCR tool could be combined with

robotics to sort the cassettes in the correct numerical order automatically. Such a sys-

tem would bring even more benefits as you would have a digital catalogue in addition

to the cassettes being sorted and findable without the need for a look-up tool to search

for their specific locations.

The digital tools developed in this thesis might also be applicable in for domains facing

similar issues. The artifact is freely available as an open-source project at GitHub.
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Appendix

.1 Code and file structure

The code developed for this thesis is freely available at GitHub and can be found at

the following link: https://github.com/M-Hatlem/ocr-mastersthesis

• The assetes folder includes icons and animations utilized in the user interface.

The current iteration only includes a loading icon for when cassettes are being

processed.

• The Output folder contains an empty JSON file. When the program is run the

output will be appended to this file.

• The python folder includes the python scripts used for the image processing

pipelines. When follwing the installation instructions below the user will need to

add a python environment folder and the EAST files to this folder.

• README.MD includes information and install instructions.

• functions.js is a JavaScript file containing functions for the GUI.

• index.html is the HTML page for the GUI

• index.js is the electron index file and contains the code to start the user interface

and the image processing python scripts.

• package-lock.json and package.json includes the node packages.

• style.ccs includes the CSS styling for the GUI.

https://github.com/M-Hatlem/ocr-mastersthesis


.2 Installation instructions and requirements to run the program

.2 Installation instructions and requirements to run

the program

These instructions cover installation for the OCR application

• 1. First install Git and clone the repository from GitHub with the commnad:

git clone https://github.com/M-Hatlem/ocr-masterthesis

• 2. Download node (recommended is latest LTS) (16.18.0 used for development)

• 3. Install electron (Developed using version 21.0.1) by navigating to the Ocr-

Master directory and running the command:

npm install electron --save

• 4. Download Python (Developed using Python 3.10) and setup a Venv with flask,

tessaract and CV2 by running:

pip install flask tesseract cv2 numpy

• 5. Move the Python Venv into Ocr-Masterthesis/Python/ –> should look like Ocr-

Masterthesis/Python/Venv....

• 6. Download EAST text detector and place the file in Ocr-Masterthesis/Python/

• 7. Install Tessaract and add it to the console/Path

• 8. Run the app using ”npm start” from Ocr-Masterthesis in command line

npm start

https://nodejs.org/en/download/
https://www.python.org/downloads/
(https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
https://tesseract-ocr.github.io/tessdoc/Downloads.html
https://ironsoftware.com/csharp/ocr/blog/ocr-tools/tesseract-ocr-windows/


Appendix

.3 How to use the program

The program should run after following the instructions above. The program is able

to capture images using a connected webcam as prompted on the initial start page.

There is also support for uploading images from local storage and run the images

through the programs cassette location and OCR pipelines. At the request of the

pathology lab images of pathology cassettes from Haukeland are not included with

the GitHub repository. However, permission was granted to use images of cassettes

within the thesis.

Once an image is captured or uploaded to the application it will run the images through

the application pipeline seen in figure 4.7. The program will use EAST or edge detec-

tion based on the EAST checkbox being ticked or not. This process could take a while

depending on the specifications of the machine it is running on and methods selected.

Edge detection should perform significantly faster than EAST.

Once the process is finished the user interface should look like figure 4.12. Here cas-

settes can be clicked on, searched and highlighted using the boxes on the right or

search bar on the left. To draw a cassette on the image, move the cursor to the

location the rectangle should start. click and hold the left mouse button and pull

until the box surrounds the desired area. Boxes can be deleted and the informa-

tion on the changed by clicking inside the colored rectangles. Once all cassettes

are labeled and fixed as well as the archive field being filled out the results can be

submitted. This will save the output as a JSON object in the file located in: Ocr-

Masterthesis/Output/OutputData.JSON
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