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Abstract

In 2022 the electricity prices and grid tariffs were never higher, and industrial com-

panies are seeking opportunities to lower their electricity bills. Today, the industry is

subject to three charges: A monthly fixed charge, a demand charge to the grid operator,

and a cost per kilowatt-hour. The market determines the price per kilowatt-hour, and

the peak demand charge is billed monthly for the highest peak power bought from the

market. One option for lowering electricity costs is installing Photovoltaic (PV) systems

to produce electricity for consumption and selling to the grid. With falling battery prices,

new opportunities arise, and the industry is questioning if such energy storage investment

can be a good idea for their facility. This thesis analyzes how optimally operated batteries,

combined with PV systems, can lower the cost of electricity for industrial facilities. The

demand for electricity and power production is uncertain, and, therefore, we develop a

scenario-based multistage stochastic optimization approach to answer this question. Our

study shows that an approach considering uncertainty can lower the cost substantively

compared with the deterministic approach. This study emphasizes that it is essential to

consider load and production as uncertain variables to grasp how much such installations

can reduce electricity costs.
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1 Introduction

1.1 Motivation

The Norwegian transmission system operator, Statnett, has issued that a substantial part of

the grid has capacity issues and needs room for more power-demanding industries [1]. The

grid is getting upgraded, but these expansions have significant investment costs and involve a

bureaucratic process that takes time [2].

The Norwegian Water Resources and Energy Directorate writes in their report [3] that to ensure

power balance in the Nordic grid by 2030, more of the electricity demand must be flexible.

As a consequence, not only must the industry pay a peak demand charge, but as of 2022, private

households must also pay for their highest peak bought from the grid [4]. A peak demand charge

encourages consumers to flatten out their consumption by lowering their electricity usage or

moving the flexible part of the demand. Private households may be able to change the time

they charge their car and wash their clothes, but this is often more complicated in the industry,

where shifting electricity demand might be expensive. For instance, it might be necessary to

maintain a warm temperature in the office buildings, provide energy to vessels at the dock or

run the crushing mill.

When the demand is not flexible, installing additional energy storage, such as a battery, might

be necessary to lower the peak demand and the electricity bill.

Whether a Photovoltaic (PV) system is a good investment highly depends on the spot price.

In 2022 Europe was in an energy crisis. We have seen record-high spot prices multiple times,

and the future market indicates that the situation will last even longer. And in Norway, in the

industry sector, the subsidizing of electricity costs is limited compared to private households.

Falling prices for PV systems and rising spot prices make PV systems a better investment

for lowering demand for electricity from the energy market and is therefore gaining significant

attention in Norway [5]. But the sun does not necessarily shine when there is power demand,

and the industry is questioning if battery storage is a smart investment when installing a PV

system.

Record-breaking spot prices are just one of our concerns in the future energy market. Hy-

dropower has provided Norwegian consumers with renewable energy for decades. Being reliable

and cheap is one of many advantages. Hydropower is also flexible and has the ability to store
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potential energy in reservoirs for periods of high demand. These storage capabilities can be

a shock absorber and have helpt keep the spot prices reasonable [6]. The green transition

leads to vast electrification and decarbonization, and we see a substantial increase in demand

for renewable energy. International Energy Agency (IEA) forecasts that renewable energy will

surpass coal as the largest source of electricity in 2025 [7].

With most potential hydropower plants already developed, new renewable power plants mainly

generate electricity from intermittent sources, with solar and wind being the largest contribu-

tors. And according to the studies [8] and [9], increasing the share of the electricity generated

from intermittent sources can increase the volatility of the spot price.

A battery can reduce electricity costs for an industrial facility in multiple ways. The battery can

store power generated from PV systems when the production exceeds the electricity demand

on the site, avoiding selling the power at a potentially lower cost.

A battery can also take advantage of the volatile spot prices by charging when the price is

low and discharging when the price is sufficiently high. We call this operation price arbitrage

operation. Also, supplying the load from the battery when there is high demand can reduce

the peak demand charge. This operation is called peak shaving. An optimally operated battery

takes advantage of low spot prices without increasing the peak load charge too much. This can

be challenging since electricity demand, power generated from a PV system, and the spot price

all have an uncertain nature.

1.2 Problem statement

During the energy crisis in 2022, the industry sector in Norway faced substantial electricity bills

and has since sought opportunities to lower this expense. Investing in PV systems is gaining

significant attention, and a question frequently being asked is if battery storage combines well

with intermittent energy resources. These investments can be hard to evaluate since a battery

can lower the bill both by peak demand reduction and by price arbitrage. And the stochastic

nature of electricity demand, solar radiation, and electricity prices complicates this further.

We aim to evaluate these decisions such that the industry can understand the potential benefits

and downsides of such an investment. By not addressing all the potential economic upsides with

such an investment, the investment can get avoided, and the grid operators lose much-needed

flexibility. Overvaluing such an investment, for instance, by ignoring uncertainty, can lead to a

disappointed purchaser.

2



The type of installations we will investigate is illustrated in Figure 1. This thesis analyzes how

Figure 1: Power system with grid (top left), PV system (top right), load (bottom left), and battery

(bottom right). An electrical connection is illustrated with dashed lines.

combining the PV system and optimally operated battery storage can lower electricity costs.

Specifically, we will address the following research questions:

• How can an optimally operated battery reduce electricity costs?

• Is it reasonable to assume perfect information about the uncertain variables when evalu-

ating how much batteries can reduce costs?

• How does a stochastic approach perform compared to a simpler deterministic method?

To answer these research questions, we first develop a deterministic model and then expand it

to a multistage stochastic optimization model to better address uncertainties. Because of how

the peak demand charge is calculated, we limit this study to industrial facilities.

By researching these questions, we aim to understand better the utilization of batteries for cost

reduction.

1.3 Thesis overview

This thesis starts with an introduction to the topic of this study. The rest of the thesis is

organized as follows:
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• Chapter 2 provides the fundamental theory in optimization, a literature review, and

proposes the approach this study takes.

• Chapter 3 describes the mathematical models, scenario generation method, and the data.

• Chapter 4 presents the results from the mathematical models.

• Chapter 5 concludes this study along with suggestions for future work.

4



2 Background

This chapter presents the fundamental theory of this study, including deterministic and stochas-

tic optimization. Subsequently, we conduct a literature review providing oversight over similar

work on optimizing battery operation for electricity cost reduction.

2.1 Theory

2.1.1 Deterministic modeling

G. B. Dantzig was the first to put Linear Programming (LP) in wide use during the Second

World War, and it has since been applied for solving optimization problems [10]. The algorithm

utilizes linear objective functions and constraints to solve problems where the objective is to

maximize or minimize the function subject to a set of constraints. A feasible region defined by

linear constraints is called a polyhedron [11].

For solving an optimization problem, each decision variable is assigned a value that satisfies all

constraints while optimizing the objective function. A set of values that satisfies the constraints

is called a feasible solution.

A LP problem can be formulated as

maximize
n∑

j=1
cT

j xj (1)

subject to
n∑

j=1
aijxj ≤ bi i = 1, 2, ...,m (2)

xj ≥ 0 j = 1, 2, ..., n. (3)

Where Equation (1) is the objective function and Equations (2) - (3) are constraints.

The simplex method was also introduced during the late 1940s and is a well-established al-

gorithm for solving LP problems [10]. The algorithm finds the optimal solution by iterating

through the polyhedron’s vertices while improving the objective function value. The algorithm

terminates when no neighboring vertex has a better solution or when determining that the

problem is infeasible or unbounded. A problem is unbounded when the objective function value

can be arbitrarily large without violating constraints.

The algorithm running time depends on the problem’s size and is not guaranteed to be poly-

nomial. However, the simplex method works very well in practice and is still used even for LP
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problems of considerable size.

Consider the LP problem

maximize 3x1 + 5x2 (4)

subject to x1 + 2x2 ≤ 4 (5)

2x1 + x2 ≤ 6 (6)

x1, x2 ≥ 0. (7)

The first step of the simplex method is to add slack variables and a variable ξ representing the

objective function

ζ =
n∑

j=1
cT

j xj

si = bi −
n∑

j=1
aijxj i = 1, 2, ...,m.

Then the problem can be expressed in standard form,

ζ = 3x1 + 5x2

s1 = 4− x1 − 2x2

s2 = 6− 2x1 − x2

x1, x2, s1, s2 ≥ 0.

This is the initial dictionary. As it progresses, the algorithm iterates through dictionaries to

search for the optimal solution. Each dictionary consists of m basic variables and n non-basic

variables, with B representing the collection of indices corresponding to the basic variables and

N denoting its complement[12].

At the start, we choose which variables that will be considered basic and which will be consid-

ered non-basic. For the LP problem we discussed earlier, x1, x2, s1, and s2 are the variables.

Since the algorithm works by iterating through vertices, we need a feasible starting point. As

mentioned in [12], this is not always straightforward, but in this example, we see that the

problem is feasible in the origin.

Variables x1 and x2 are chosen as the non-basic variables, and s1 and s2 as the basic. This

starting point corresponds to the feasible solution in which x1 = x2 = 0 and s1 = 4, and s2 = 6.

In the next iteration of the simplex method, one of the non-basic variables is selected to become

basic, and one of the basic variables is selected to become non-basic. Choosing which variables

to switch depends on improving the objective value and the problem’s constraints.
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The entering variable is chosen from the set of non-basic variables by the rule pick k from {j ∈

N : cj > 0}. The leaving variable is chosen from the set of basic variables by the rule

pick l from {i ∈ B : aik

bi
is maximal}. If there is no non-negative ratio in the column, the prob-

lem is unbounded.

The solution is optimal if all the coefficients in the objective function’s row are non-negative.

If a negative coefficient exists, we can improve the solution by another iteration.

The problem we have discussed can be solved as follows:

1. Select the entering variable: Since c1 = 3 > 0 and c2 = 5 > 0, we have two choices for

the entering variable and select the lowest value, x2.

2. Select the leaving variable: We calculate the ratio between the constraint’s coefficient of

x2 and its right-hand side: a12
b1

= 2
4 = 0.5, a22

b2
= 1

6 = 0.167. Since a12
b1

is larger than a22
b2

,

we choose x1 + 2x2 ≤ 4 as the constraint to pivot on and s1 as the leaving variable.

3. Update the dictionary: We perform the pivot operation by updating the values of x2, s1,

and the right-hand side of the constraints. We calculate the new value of x2 by solving for

it in terms of x1 and s1: x2 = 4−x1
2 We then update the values of s1 and the right-hand-side

of the constraints: s1 = 4− x1, right-hand side = [0, 4− x1, 6].

4. Repeat steps 1-3 until an optimal solution is found or until it is determined that no

optimal solution exists.

Figure 2: Feasible region and level curve for LP problem

After a few iterations, the algorithm finds the global optimum at the vertex indicated by the

red dot in Figure 2. We confirm that this is the optimal solution by plotting the level curve of
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the objective function and seeing which of the vertices it reaches the last.

But what if we add the constraint

x1, x2 ∈ Z, (8)

requiring that all the decision variables must be integer valued? This problem now becomes

a form of a Mixed-Integer Linear Programming (MILP) problem. Figure 3 shows that the

optimal solution of a MILP problem may not be located at a vertex of the feasible region. The

simplex method is not guaranteed to find the optimal solution for MILP problems since the

algorithm only checks solutions in the vertices, and the feasible region of a MILP is limited to

a set of points and not a continuous polyhedron. The only time the algorithm is guaranteed

to find the global optimal solution of such a problem is when each vertex is represented by

integers only.

If this is true, the constraints form the convex hull, where convex is a property of a set of points,

which means any line segment joining any two points in the set lies within the set [13]. The

convex hull is the smallest convex set that contains the feasible region of the MILP problem

[11].

Figure 3: Feasible region and level curve for MILP problem

When dealing with MILP problems, finding the optimal solution can be much more challenging.

The feasible region is restricted to integer values, and there is no guarantee that the polyhedron

represents the convex hull. As described in [11], a given two formulations P1 and P2, P1 is a

better formulation of the feasible area if P1 ⊂ P2. We, therefore, need algorithms for reducing

the size of the formulations of the problem.
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There has been produced a wealth of literature facing these problems, and Ralph E. Gomory

introduced a cutting plane algorithm in 1958 [14]. And this was later expanded to the Branch-

and-Bound (B&B) method [15]. The method works by breaking the problem into a series of

smaller problems. We refer to these new problems as subproblems.

The steps of the B&B algorithm are

1. Start with an initial relaxation of the problem, where the integer constraints on the

variables are ignored. Solve this relaxed problem to obtain the optimal objective function

value and the corresponding optimal solution.

2. Choose one of the integer variables with a fractional value and create two subproblems by

adding constraints that restrict the variable to be either less than or equal to or greater

than or equal to its integer part.

3. Solve each subproblem and obtain the optimal objective function values and solutions.

4. Keep track of the best feasible solution found so far.

5. Discard subproblems that cannot possibly contain a better feasible solution than the

currently best solution. The algorithm terminates when all paths are explored.

The enumeration tree for solving the integer optimization problem described by equations (4)-

(7) and (8) is shown in Figure 4.

9



max 3x1+5x2

subject to

x1 + 2x2 ≤ 4

2x1 + x2 ≤ 6

x1, x2 ≥ 0

x1, x2 ∈ Z

max 3x1+5x2

subject to

x1 + 2x2 ≤ 4

2x1 + x2 ≤ 6

x1, x2 ≥ 0
x∗

1 = 8/3

x∗
2 = 2/3

z∗ = 34/3

max 3x1+5x2

subject to

x1 + 2x2 ≤ 4

2x1 + x2 ≤ 6

x1 ≤ 2

x1, x2 ≥ 0
x∗

1 = 2

x∗
2 = 1

z∗ = 11

max 3x1+5x2

subject to

x1 + 2x2 ≤ 4

2x1 + x2 ≤ 6

x1 ≥ 3

x2 ≥ 0
x∗

1 = 3

x∗
2 = 0

z∗ = 9

solve as continuous problem

x1 ≥ 3x1 ≤ 2

Figure 4: Branch-and-Bound method

The problem in Figure 4 is relatively small and can be solved quickly with only one branching,

but solving larger integer optimization problems can be challenging. For instance, the B&B

algorithm is sensitive to which order the subproblems are solved, so inefficient branching can

significantly increase the solution time.

Solving MILP problems are generally challenging, and as mentioned in [16], the industry often

accepts solutions significantly away from the optimal since the computation time of these algo-

rithms can be immense. As a consequence, techniques for solving such problems approximately

is developed.

A heuristic algorithm is designed to find an approximate solution to a problem more quickly

when classic methods are too slow or fail to find any exact solution and are often used to solve

complex optimization problems that involve large, nonlinear, non-convex, or stochastic models

[17].

In summary, it is essential to set realistic expectations for both the solution time and quality

10



of any optimization algorithm when solving MILP problems.

LP and MILP problems are both parts of deterministic optimization. A weakness of these

approaches is that they are generally unable to produce optimal solutions when dealing with

uncertain formulations. The next section introduces stochastic optimization.

2.1.2 Stochastic modeling

While optimization methods that rely on deterministic assumptions may not be effective when

facing uncertainty, stochastic optimization aims to find solutions close to optimal, even when

dealing with random data. Stochastic optimization is also known as optimization under uncer-

tainty. Using probabilistic assumptions, we can consider the uncertainty of the problems and

find solutions that are more likely to succeed in various scenarios [18].

Stochastic problems are often formulated in two stages. In the first stage, a decision must be

made before important information is known [19]. Then, the uncertainty is revealed in the

second stage, and a second decision is made. This second decision is called a recourse decision.

This action is made to minimize or maximize the objective function value based on the first

stage decision and the revealed uncertainty.

Suppose that we can model the uncertainties of a problem as random variables ξ with a specific

probability distribution. Then a two-stage optimization problem can be formulated as

min cTx+ Eξ[Q(x, ξ)]

s.t Ax = b

x ≥ 0,

where x denotes the initial decisions made in the first stage, Q(x, ξ) is the second-stage cost

function that depends on both the initial decisions and ξ. The expectation is taken with respect

to the probability distribution of ξ. This second stage cost function can be expressed as an

optimization problem itself as

Q(x, ξ) = min q(ξ)Ty

s.t T (ξ)x+W (ξ)y = h(ξ)

y ≥ 0.
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The vector y represents the recourse variables, T is called the technology matrix, W is the

recourse matrix, and h denotes the right-hand side of the constraints, all depending on the

realization of the uncertain variables.

For a simple numerical example, we investigate the following problem:

min 2x+ Eξ[Q(x, ξ)] (9)

x ≥ 0 (10)

where,

Q(x, ξ) = min 3y (11)

s.t. x+ y ≥ ξ (12)

y ≥ 0. (13)

In this two-stage stochastic problem, x is determined before the realization of the uncertainty,

and then once ξ is realized, y is determined. Here the objective is to choose x to minimize the

objective function value. This involves a trade-off since choosing x too small might incur an

additional cost in the second stage.

While two-stage modeling can be valuable, many practical decision problems involve multiple

decisions depending on the outcomes of previous decisions. Leading to the concept of multistage

stochastic programs [18]. In this approach, decisions are made at each stage based on the

information available, including previous decisions and the realizations of random variables. A

multistage stochastic optimization problem can be formulated as of [20]:

Qt(xt−1, ξt) = min
xt∈Xt

cT
t xt + E[Qt+1(xt, ξt+1) | ξt]

s.t Wtxt = ht − Ttxt−1

where ξt = {ct,Wt, ht, Tt}.

Here the determination of x1 is based on ξ1, then after receiving the outcome ξ2 makes a new

decision x2, taking into account both x1 and the realizations of ξ1 and ξ2. The decision xt

depends on all ξi and xi for all i ∈ {0, 1, ..., t− 1}.
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A challenge of stochastic optimization is how to model uncertain variables. The following

section discusses how uncertainties of stochastic optimization problems can be represented in

scenario trees.

2.1.3 Modeling uncertainty in terms of a scenario tree

Stochastic optimization is all about considering various outcomes of the uncertain variables

ξ. A challenge is that ξ can be represented by a continuous probability distribution that

the solution method cannot handle. We, therefore, need to approximate the distribution by

discretization. This discretization is referred to as a scenario tree, where a scenario represents

a possible outcome of the uncertain variables as a function of time [21].

Figure 5 illustrates a scenario tree. The tree divides into branches at the root node representing

possible outcomes of the uncertain variable and that a decision under uncertainty must be made.

A child represents a possible outcome, and each path from the root node to a leaf represents a

scenario. In this tree, a decision is only made at the root node, making the problem two-stage.

ξ1

ξ2(s1)

ξ3(s1)

ξ4(s1)

ξ2(2)

ξ3(s2)

ξ4(s2)

ξ2(s3)

ξ3(s3)

ξ4(s3)

ξ2(s4)

ξ3(s4)

ξ3(s4)

ξ2(s5)

ξ3(s5)

ξ4(s5)

ξ2(s6)

ξ3(s6)

ξ4(s6)

ξ2(s7)

ξ3(s7)

ξ4(s7)

ξ2(s8)

ξ3(s8)

ξ4(s8)

Figure 5: Two-stage scenario tree

On the other hand, a multistage scenario tree consists of multiple stages, where each stage is

a moment in time when a decision is taken. Such a tree is more flexible, making it possible to

model problems where effects carry over from one stage to another. For managing multistage

scenario trees, we introduce some notation.

Let S be a finite set where each s ∈ S represents the scenarios. Denote by ξt(s) be the

outcome of the uncertain parameters revealed at t given that scenario s is realized. If ξk(s1) =

ξk(s2) ∀k = 1, .., t, we say that s1 and s2 are t-equivalent. Let Ωt be the set of equivalence

classes in the equivalent relation. Hence, a set ω ∈ Ωt consists of scenarios that coincide in all

periods up to t, and all s′ /∈ ω differs from each s ∈ ω in at least one period k ≤ t.
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Looking at the scenario formulation of a stochastic problem as [20]:

min
∑
s∈S

∑
t∈T

ps(cT
t,sxt,s) (14)

s.t W1,sx1,s = h1,s, ∀s ∈ S (15)

Wt,sxt,s + Tt−1,sxt−1,s = ht,s ∀s ∈ S, t ∈ T \ {1} (16)

xk,s1 = xk,s2 , ∀s1, s2 ∈ ω,∀ω ∈ Ωt, ∀k ∈ {1, ..., t} (17)

xt,s ≥ 0 ∀s ∈ S,∀t ∈ T . (18)

Here, ps denotes the probability of scenario s of occurring, and for a given stage t, scenarios

with an equivalent relation up to t are grouped into the same partition ω ⊂ S. The set Ωt

represents the set of all ω induced by the equivalence relation up to t.

The nonanticipativity constraint (17) ensures that decisions at a given stage are identical for

all scenarios that are t-equivalent, thereby ensuring that the decision is based only on available

information and is not anticipating what will happen in the future [19].

In Figure 6, a 4-stage scenario tree is illustrated. In the following figure and similar figures in

this thesis, the notation ξt(s) is replaced with ξt(ω) to illustrate that for all s ∈ ωi the same

uncertainty is unrevealed.

ξ(ω1)

ξ2(ω2)

ξ3(ω4)

ξ4(ω8) ξ4(ω9)

ξ3(ω5)

ξ4(ω10) ξ4(ω11)

ξ2(ω3)

ξ3(ω6)

ξ4(ω12) ξ4(ω13)

ξ3(ω7)

ξ4(ω14) ξ4(ω15)

Figure 6: Multistage scenario tree

The process of constructing a scenario tree is called scenario generation. There has been devel-

oped a variety of algorithms for generation scenarios, including sampling, moment-matching,

and path-based methods [21].

A suitable scenario generation method can discretize the stochastic process such that it is not

the generation method that drives the problem but the model [19]. At the same time, the tree

must be kept tractable. Hence, the critical issue of scenario trees is that they must adequately
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represent the stochastic process underlying distribution, but with few enough scenarios such

that the problem can be solved in reasonable time [22].

2.1.4 Progressive Hedging Algorithm

The Progressive Hedging Algorithm (PHA) was first presented by Rockafellar and Wets in [23]

and is a popular method for solving stochastic optimization problems. It is used in various

applications, including energy systems [24].

A challenge with stochastic problems is that they can get huge with the number of scenarios.

The PHA handles this issue by breaking down the large problem into smaller subproblems by

relaxing the nonanticipativity constraints. Now each scenario can be solved separately as a

subproblem. Then, the algorithm iteratively solves the subproblems and achieves consensus on

the nonanticipative constraints by penalizing the distance from the expected solution, x̄.

The guarantee that the PHA converges to the global optimum relies on the assumption of the

problem being convex. Despite this, the algorithm can still give valuable results as a heuristic,

for instance, in MILP problems [25].

PHA is based on the Augmented Lagrangian Method (ALM) [26]. With the ALM, an optimiza-

tion problem, such as

min f(x)

s.t g1(x) = 0

g2(x) = 0

x ≥ 0,

is relaxed by inserting the constraint in the objective function using a penalty function. Re-

sulting in

min f(x) + ρψ(g1(x))

s.t. g2(x) = 0

x ≥ 0,

where ρ is a positive penalty parameter and ψ is a penalty function. Applying ALM on (14) -

(18) gives the Lagrangian function

L(x, x̄, y, λ) =
∑
s∈S

∑
t∈T

pt,s(cTxt,s + λT
t,s(xt,s − x̄t,ω) + ρ

2 ||xt,s − x̄t,ω||2).
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The final term in the equation, represented by ψ, is a quadratic function that serves as a

penalty function. Despite the connected nature of all scenarios through x̄, the problem can still

be solved through an iterative approach. This approach entails replacing x̄ with its updated

estimate x̄(k+1) from the preceding iteration, which is typically calculated as the expected value:

x̄t,ω =
∑
s∈ω

psxs,t∑
s∈ω ps

.

The update of the Lagrange multipliers then becomes

λ
(k+1)
t,s = λ

(k)
t,s + ρ(k)(x(k+1)

t,s − x̄(k+1)
t,ω ),

which then leads to the Lagrangian function

L(x, λ) =
∑
s∈S

∑
t∈T

ps(cT
t,sxt,s) + (λ(k)

t,s )T(xt,s − x̄(k)
t,ω) + ρ(k)

2 ||xt,s − x̄t,ω||22).

The solution is considered to have converged when it is sufficiently close to x̄t,ω. The convergence

criterion is defined as:

δ(k) =
∑
s∈S

∑
t∈T

ps||x(k)
t,s − x̄

(k)
t,ω ||.

The complete algorithm is presented in Algorithm 1.

The penalty parameter ρ plays a crucial role in the PHA. In the original work of Rockefeller and

Wets, it was pointed out that the algorithm is guaranteed to converge to an optimal solution,

for any ρ > 0, given that the problem is convex [23]. But they did not provide any guidance

on how to choose it.

Mulvey and Vladimirov [27] later pointed out that the algorithm is sensitive to this parameter

and that a high value of ρ typically converges faster but to a suboptimal solution. In contrast,

low values yield weaker enforcement of the nonanticipativity constraints and result in a more

gradual convergence to close to optimality, but after many iterations.

As discussed by Zehtabian and Bastin [28], various strategies have been proposed for setting the

penalty parameter, including dynamic updates. For instance, the method presented by Zéphyr

et al. [29] updates the parameter based on the nonanticipativity and optimality gap. Hvattum

and Løkketangen [30] proposed a method that investigates dual and primal convergence, and

Goncalves et al. [31] suggested an approach where the parameter starts at a low value and

gradually increases.

Despite these many strategies, there is still no consensus on the optimal approach for initializing

the penalty parameter in the PHA.
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2.2 A literature review on the utilization of batteries for electricity

cost reduction

Batteries for cost reduction either by peak demand charge reduction, price arbitrage, or both

has produced a wealth of literature in recent years. This section aims to provide an overview

of the existing literature in the field and how it addresses these issues.

2.2.1 Peak shaving

Peak shaving is a technique used to reduce electricity consumption during periods of maximum

demand. It works as follows with a battery:

• Charge the battery: During low demand, the battery charges up by storing the excess

power. This is typically during off-peak hours, like late at night.

• Discharge the battery: During peak times, when demand is high, the battery discharges

its stored power to reduce the amount of power bought from the grid.

Peak shaving aims to minimize the costs associated with peak electricity demand. These peak

times incur demand charges, which are additional fees based on your highest rate of energy

usage during a billing cycle. Over which periods these peaks are calculated and also the billing

cycles are defined varies. In [32–34] the billing cycle was monthly, and the demand charge was

based on a single maximum demand over a 15-minute period. While the Norwegian case study

[35] utilized a monthly billing cycle with the highest hourly consumption during a month as

the peak demand.

Various papers have explored the opportunity to utilize a battery solely for peak shaving.

In 2007, Oudalov et al. [32] presented a dynamic programming approach for reducing peak

demand. An example of a large industrial customer was used to demonstrate the application

of their methodology. The results indicated that, compared to a situation without a battery,

there could be a potential reduction in the electricity bill by 4 %.

Later in 2014, Hanna et. al. utilized a linear optimization model for planning an energy

dispatch schedule inside a 24-hour window using forecasts for electricity demand and solar

power production [36]. They underscored the importance of accurate forecasts since only one

single error inside the billing cycle can erase a large portion of the potential demand charge

reduction.

The year after, Neumann and Simpson [33] studied the economic benefits of combining batteries
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with PV systems for peak demand charge reduction by utilizing the National Renewable Energy

Laboratory’s Battery Lifetime Analysis and Simulation Tool [37].

This research responded to increasing mandates and incentives for energy storage in the USA

with ambitious targets for energy storage by 2020. As part of these incentives, customers were

encouraged to adopt batteries to reduce demand charges.

Interesting findings in this report are that the size of the PV system did not impact whether

a battery is a good investment since the majority of the economic benefits come from peak

shaving, and PV systems are generally unable to reduce the peak demand. They explained this

by solar power production being intermittent and cannot produce stable enough over a long

period of time. This is sensible since the demand charge is based on a single maximum over a

15-minute period in a monthly billing cycle.

Another finding in this report, which is supported by [36], is that the shape of the electricity

demand profile is vital when considering the benefits of installing a battery for peak shaving

applications. The reason for this is that a high peak over a short period requires a relatively low

amount of energy compared to a more uniform case where the peaks last over longer periods.

In their discussion, they point out that the amount of energy needed increases nonlinearly with

the peak reduction amount.

The work done by Oudalov et al. [32], Hanna et al. [36], and Neumann and Simpson [33] gives

interesting insights into the potential of peak demand charge reduction with battery. However,

they share a common limitation of relying on deterministic assumptions of electricity demand

and solar power generation. Possessing perfect information about the future is unrealistic,

and the potential cost reduction can be exaggerated in [32] and [37]. In the paper by Hanna

et al., they assume a deterministic forecast, which can affect the potential cost reduction. A

stochastic approach might be more robust to uncertainties in the forecast. Additionally, their

focus is exclusively on peak shaving applications and does not consider the potential advantages

of price arbitrage. The next section of the literature review focus on studies investigating

utilizing batteries for price arbitrage operations.

2.2.2 Price arbitrage

Price arbitrage in energy markets refers to taking advantage of fluctuating electricity prices

throughout the day to buy low and sell or consume when the price is high. It works as follows

with a battery:
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• Charge the battery: When electricity prices are low, the battery charges with energy from

the grid.

• Discharge the battery: When electricity prices are high, typically during the late afternoon

or early evening, the battery discharges its stored power back to the grid or is used to

cover the electricity demand of the facility.

The fundamental principle here is buying power when it’s cheap and spending or selling it when

it’s expensive.

Utilizing batteries for price arbitrage alone has been discussed in various papers. Youn and

Cho [38] present a linear programming technique for combining a battery with a small power-

producing facility to make it possible to buy and sell under the spot prices to the power grid. In

2015, Telaretti et. al. [39] investigated how to maximize the profit for the electricity customer

by doing price arbitrage with a battery. They focused on testing various batteries for this

application and the importance of accurate electricity demand forecasts. They utilized an

operation strategy that works regardless of the shape of the facility’s demand.

It is not only the spot price that is dynamically priced. Hassan et. al. [40] formulate a

MILP problem for maximizing revenue from a PV system combined with battery storage under

varying tariffs. They consider four different tariff structures in the UK where the price per

kilowatt-hour (kWh) varies through the day. They also consider a feed-in tariff that makes it

favorable to consume the energy instead of selling it to the grid.

While the studies reviewed consider various approaches to price arbitrage under different pricing

structures, the consensus is that deploying batteries solely for price arbitrage operations is not

economically viable in the long run. Therefore, much of the literature investigates both peak

demand and price arbitrage.

2.2.3 Combined peak shaving and price arbitrage

In 2019, Berglund et al. [35] presented a MILP model that minimized the electricity bill

by considering both the peak demand charge and the spot price while considering battery

degradation.

Operating a battery causes degradation at some level. Frequently charging and discharging

a battery on a high level can cause high temperatures and accelerate degradation, leading to

shorter battery life. It can therefore be an important aspect to consider in the modeling since
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replacing batteries is expensive.

They ran a year-long, hourly resolution simulation based on the 2018 spot prices. Their battery

degradation model resulted in the battery charging and discharging only a relatively small

amount of energy each time. Interestingly, no energy was sold to the grid during this period,

and peak shaving was the most significant contributor to the reduction in the electricity bill.

When they conducted a sensitivity analysis on the spot prices, it revealed that spot price

volatility led to more active battery operation and, consequently, greater earnings.

Schneider et al. [41] also consider a MILP formulation of the problem. They investigate both

peak shaving and price arbitrage while accounting for battery degradation. The simulation of

a Swiss facility shows that 95.6 % of the cost reduction was because of peak shaving and only

an additional 4.4% was achieved by price arbitrage operations. Other findings from the study

are that in that case, the trade-off between peak shaving and price arbitrage is minimal, and

similar to [36, 37], they illustrated that the amount of peak shaving is sensitive to the shape of

the electricity demand profile.

2.2.4 Stochastic modelling

The papers discussed so far rely on deterministic assumptions. By assuming a perfect forecast,

the estimated economic benefits of implementing a battery can be too high, and a deterministic

forecast can make the algorithm sensitive to errors. With a stochastic approach, more realistic

results can be obtained. In contrast to deterministic assumptions, a stochastic approach ad-

dresses uncertainty in the forecasts, making it more robust to forecast errors and providing a

more realistic estimation of the benefits of battery storage systems.

Hafiz et al. [42] utilize a multistage stochastic optimization model and the Stochastic Dual

Dynamic Programming Algorithm to address uncertainty in electricity demand and solar power

production. Machine learning is used for forecasting and construction of the scenario tree. The

case study results in an 8.4 % reduction in electricity costs compared to the scenario without

battery storage. While the study provides exciting results and methodology, they do not

consider peak demand charge or battery degradation.

In their study, ”A Two-Stage Stochastic Programming Model for Energy Management in Local

Electricity Systems with Peak Shaving Service,” de la Nieta et al. formulate an approach to

battery scheduling in southern Norway [43].

They introduce a two-stage stochastic MILP model to maximize the expected operating profit
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based on peak shaving and price arbitrage. They integrated uncertain parameters, which

were modeled using scenarios based on historical data that capture the stochastic nature of

demand, PV generation, and spot prices. This study shows that peak shaving service and

price arbitrage alone do not make battery systems under the current pricing and regulatory

framework profitable. They also emphasize that the battery’s efficiency is an important aspect

to consider. While de la Nieta et al. give valuable insights into battery operation in a stochastic

environment, their scenario generation procedure may not fully account for the uncertainties

in the parameters. Also, incorporating more than two stages in the decision-making process

can give a more flexible decision-making process. However, this comes with its own set of

challenges, like an increased computational burden and the need for more detailed data.

2.2.5 Proposed approach

Based on the literature review, how to optimally operate a battery for electricity cost reduc-

tion has produced many research papers in recent years. Most studies rely on deterministic

assumptions, while limited work has used multistage stochastic optimization considering both

price arbitrage and peak shaving.

While we acknowledge that considering a realistic battery model with degradation will affect the

results, the runtime of over one hour presented in [35] leads to disregarding battery degradation

in this study. A stochastic formulation of the problem will be larger than a deterministic one,

and the computational load must be kept low.

By identifying the gaps in the current literature, our study focuses on a multistage stochastic

optimization problem, including price arbitrage and peak shaving applications.

To the best of the author’s knowledge, the concepts of Value of Stochastic Solution (VSS)

and Expected Value of Perfect Information (EVPI) are not discussed in this literature. By

addressing these concepts, we aim to expand the understanding of optimally operated batteries

considering uncertain electricity demand and solar power production.
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3 Methodology

This chapter presents the methodology used in this study to explore how a battery can reduce

electricity bills. In that context, we need data from different sources, including electricity prices,

consumption, solar power production, and weather data.

Two different mathematical models are used. The deterministic model is presented before

expanding to a multistage stochastic optimization model. The scenario generation method is

vital for representing uncertainty in the stochastic approach and is also outlined.

Various metrics and the base case are presented to compare the results of the different ap-

proaches.

3.1 Data

3.1.1 Consumption

Smart electricity meters were implemented in Norway in 2018 and 2019. These meters can

measure real-time information about voltage, current, and electric power. Because of privacy

matters, only hourly consumption data is shared from the meter and stored in Elhub. Elhub

is a comprehensive database that stores all electricity production and consumption data in

Norway.

This study utilizes data from an office building that spans from January 2021 until the beginning

of February 2023. The raw data obtained from Elhub requires cleaning and preprocessing before

it is suitable for analysis.

3.1.2 Electricity prices

Understanding how the electricity bill for an industrial facility is put together is vital when

utilizing a battery. This section describes the components of the electricity cost and discusses

spot price levels and volatility.

The electricity price for an industrial facility is split into four parts:

1. The cost per kilowatt-hour bought from the grid.

2. The revenue from selling electricity production to the grid.

3. The peak demand charge.

4. A fixed fee to the grid operator.
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Figure 7: Nord Pool price areas

Since the fixed fee remains constant and does not affect the outcome of the analysis, it will

not be discussed further. Buying kWh of electricity consists of four components: the spot price

determined by the power market, Nord Pool. In addition to the energy tariff and consumption

tax paid to the grid operator for the given location and the markup to the electricity provider.

In this study, the electricity is bought from price area NO5, with Volte as the electricity provider

and BKK as the grid operator. BKK and Volte have fixed prices for 2022, while the market

determines Nord Pool’s prices. The market prices for each hour are published daily at 13:00

for the following day.

The demand cost is calculated as the monthly peak demand multiplied by the demand tariff.

When electricity is sold back to Volte, the revenue is determined only by the spot price for the

given hour, without including the energy tariff, consumption tax, or markup.

Table 1 shows the price per kWh for energy, peak load demand, and markup to the electricity

provider.
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Table 1: Peak demand tariffs, energy tariffs, consumption taxes, and markup [44] [45]

Demand Energy Consumption Markup

Tariff [NOK/kWh] Tariff [NOK/kWh] Tax [NOK/kWh] [NOK/kWh]

Winter 59 0.07 0.0916 0.0198

Summer 49 0.06 0.1584 0.0198

Figure 8 illustrates the monthly average spot price from 2012. It shows a prediction up until

2026, provided by Eviny Fornybar. The figure shows that the prices were stable from 2012

before a drop in 2020 caused by the corona pandemic. Then, the Energy Crisis hit in 2021,

causing record-high prices that peaked in August 2022. These trends can potentially explain

why investing in PV systems has recently gained significant attention in Norway.

Figure 8: Monthly Average NO5 Spot Prices: Historical and Predicted Trends (2012-2026)

The daily fluctuations of the spot price are important for battery operations. This volatility

enables price arbitrage operations, such that the battery can charge during cheap hours and

discharge when expensive. For our study, we interpret volatility as the daily standard deviation

σ of the spot price. This can be expressed as

σ =

√√√√ 1
23

24∑
i=1

(xi − x̄)2 (19)

where,
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• xi denotes the ith spot price observation.

• x̄ is the daily average spot price, calculated as 1
24
∑24

i=1 xi.

In this section, we’ve broken down the makeup of electricity prices, how they hit industrial

facilities, and how they can guide battery operations. The understanding of these elements is

fundamental to the following modeling and analysis.

3.1.3 Solar power generation

The solar power production data used in this study is obtained from the Photovoltaic Geo-

graphical Information System (PVGIS) using the Solar Surface Radiation Data Set - Heliosat

(SARAH), which is a comprehensive resource offering solar radiation and temperature data for

simulating photovoltaic systems [46]. To retrieve relevant data, we input the configurations of

the PV systems we want to simulate, which include longitude, latitude, tilt, azimuth, energy

loss factors, and the capacity of the PV system measured in kilowatt-peak (kWp).

Longitude and latitude determine the geographical location of the PV systems, while tilt and

azimuth represent the panels’ mounted angles relative to the roof and sky direction, respectively.

Since some energy is lost during transmission through cabling and conversion by inverters, the

production data is multiplied by a number less than one.

3.1.4 Weather data

This study utilizes weather data to predict electricity demand and solar power production. The

data is from the weather station on Florida and is retrieved from The Norwegian Meteorological

Institute [47].

We use historical temperature data for predicting electricity demand, while temperature and

cloud cover data are utilized for predicting solar power production. Temperature data can be

valuable for forecasting demand since heating and cooling have a major impact on consumption

patterns for many facilities [48].

Cloud data is vital for predicting solar power generation since the amount of cloud cover explains

the amount of solar radiation that will reach the panels. Combining temperature and cloud

data provides a good foundation for forecasting solar power generation from a PV system [49].
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3.2 Deterministic model

This study examines a system consisting of a battery (B), a PV system (E), the electric grid

(G), and demand (D). The components and the connections are illustrated in Figure 9. The

figure shows that the demand can draw energy from the battery, grid, and the PV system. The

grid can receive power from both the battery and the PV system, and the PV system can serve

the battery, the demand, and the grid. The battery can charge from the grid and PV system

and discharge to the demand and the electric grid.

D

G

E

B

Figure 9: Schematic representation of the connections in the power system. Arrows indicate the

possible energy transfer between components.

3.2.1 Decision variables and sets

This study aims to manage the energy flows in the connections to minimize cost. To do this

we assign decision variables to the flows for each hour. The setM represent the set of months

under consideration for the problem, and Tm represents the set of all hours in each month m.

Each arc in Figure 9 corresponds to a decision variable, such that

• The energy flow from the PV system in month m and hour t is represented by xED
t,m for

the demand, xEB
t,m for the battery, and xEG

t,m for the grid.

• The energy flow from the battery is denoted by xBD
t,m for the demand and xBG

t,m for the grid

• The energy flow from the grid to the battery and the demand are represented by xGB
t,m and

xGD
t,m , respectively.

In addition, the model consists of decision variables corresponding to the peak demand lm,

binary variables µt,m and πt,m and the battery rt,m. They are addressed later in the section.
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3.2.2 Constraints

To optimally operate a battery in this setting has certain limitations, and this section aims to

define the feasible area of the problem and describe the constraints.

The battery is a vital model component represented by its energy content rt,m. With the

constraint

rt0,m0 = 0

where t0,m0 represents the first hour of the first month, we initialize the battery as empty. To

ensure that the battery content does not exceed the capacity B, we impose the constraint

rt,m ≤ B ∀m ∈M,∀t ∈ Tm.

It is crucial to maintain energy balance and the equations

rt+1,m = rt,m + xEB
t,m + xGB

t,m − xBD
t,m ∀t ∈ Tm \ |Tm|, ∀m ∈M

r1,m = r|Tm|,m−1 + xEB
|Tm|,m−1 + xGB

|Tm|,m−1 − xBD
|Tm|,m−1 − xBG

|Tm|,m−1 ∀m ∈M,

ensure that the battery content at time t depends on the state and energy flow at t− 1.

Charging and discharging a battery simultaneously can cause unnecessary deterioration. We

also want to avoid selling and buying from the grid in the same time period. Introducing the

binary variables

µt,m ∈ {0, 1} ∀t ∈ Tm,∀m ∈M

πt,m ∈ {0, 1} ∀t ∈ Tm,∀m ∈M,

and the inequalities

xGB
t,m + xEB

t,m ≤ B · µt,m ∀t ∈ Tm, ∀m ∈M, (20)

xBD
t,m + xBG

t,m ≤ B · (1− µt,m) ∀t ∈ Tm,∀m ∈M, (21)

xBG
t,m + xEG

t,m ≤M · πt,m, ∀t ∈ Tm,∀m ∈M, (22)

xGD
t,m + xGB

t,m ≤M · (1− πt,m) ∀t ∈ Tm,∀m ∈M, (23)

where M is large, we ensure these undesired events will not occur.
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While introducing binary variables and their associated inequalities may appear to complicate

our model, the binary constraints are only limiting the solution space to a set of sensible

solutions and are not changing the convex structure.

Ensuring that the energy demand Dt,m is consistently met is crucial, with the equation

xED
t,m + xBD

t,m + xGD
t,m = Dt,m ∀t ∈ Tm, ∀m ∈M,

it is ensured that the sum of energy bought from the grid, produced by the PV system, or

drained from the battery is equal to the demand.

There is also a need for a constraint to ensure that the solar power energy exploited in the

model is less than or equal to the actual production Et,m:

xED
t,m + xEB

t,m + xEG
t,m ≤ Et,m ∀t ∈ Tm, ∀m ∈M.

We assume that the system’s owner is a procumer and has to keep the amount of electricity

sold under a given level of A according to Norwegian regulations [50]. This level can correspond

to power that exceeds the capacity of the electrical installation F , and it is crucial to consider

that as a limit as well:

xEG
t,m + xBG

t,m ≤ min(A,F ) ∀t ∈ Tm,∀m ∈M.

This study assumes F > A, but it is important to note that in practice, this is not necessarily

true and can have implications for the potential exploitation of solar power production and

should be considered.

Lastly, we have the constraints

xGD
t,m , x

BD
t,m , x

BG
t,m , x

GB
t,m , x

EB
t,m , x

ED
t,m , x

EG
t,m, rt,m ≥ 0 ∀t ∈ Tm,∀m ∈M,

that makes sure that all energy flows and the battery content are non-negative.

3.2.3 Objective function

The objective function of this model aims to minimize the cost considering the peak demand

charge, cost per unit of energy, and the revenue from selling energy to the grid. The function

consists of three terms.

The monthly peak demand charges are represented by the demand charge Wm, and the peak

demand defined as
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lm ≥ xGD
t,m + xGB

t,m ∀t ∈ Tm,∀m ∈M.

The cost of electricity is calculated by multiplying the hourly price of electricity Qt,m with the

amount of energy bought from the grid, specifically xGD
t,m + xGB

t,m . Similarly, the revenue from

selling energy to the grid is calculated by multiplying the selling price Kt,m with the energy

sold, xBG
t,m + xEG

t,m. For more details on the electricity prices, refer to Section 3.1.2.

The three terms are summed over all periods such that the complete objective function is

defined as

min
∑

m∈M

Wmlm +
∑

t∈Tm

Qt,m(xGD
t,m + xGB

t,m)−
∑

t∈Tm

Kt,m(xBG
t,m + xEG

t,m)
 .

This section introduced a mathematical model that aims to optimize the utilization of a battery.

The complete model will be summarized in Appendix B.

3.3 Stochastic model

This study investigates optimization under uncertainty of electricity demand and solar power

production. To do this, we expand the deterministic model to a multistage stochastic one.

This model must incorporate several recourse variables such that it is able to make corrective

decisions when the uncertainty is revealed [18].

We denote the demand at time t in month m for scenario s as ξD
t,m(s) and solar power production

as ξE
t,m(s). Note that t corresponds to one hour and not necessarily one stage. Having one

separate stage for each hour would incorporate a significant amount of uncertainty but will also

lead to a huge scenario tree. For instance, if we have one stage for each hour and one branching

for each stage for 24 hours, the tree contains 224 = 16777216 scenarios, and the problem is

computationally intractable.

To account for uncertainty in demand, we introduce the recourse variables αt,m,s and replace

the constraint

xED
t,m + xBD

t,m + xGD
t,m = Dt,m ∀t ∈ Tm,∀m ∈M
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with the following constraint:

xED
t,m,s + xGD

t,m,s + xBD
t,m,s = ξD

t,m(s) + αt,m,s ∀t ∈ Tm, ∀m ∈M,∀s ∈ S.

If we plan for less demand than what actually is realized, energy will be bought from the

grid to ensure feasibility. Hence, xGD
t,m,s is a recourse variable. If the opposite happens, that

xED
t,m,s + xGD

t,m,s + xBD
t,m,s exceeds the demand, α represents the excess amount.

Similarly, to handle uncertainty in solar power production, we replace the constraint

xEG
t,m + xEB

t,m + xED
t,m ≤ et,m ∀t ∈ Tm,∀m ∈M

with

xEB
t,m,s + xED

t,m,s + xEG
t,m,s ≤ ξE

t,m(s) + βt,m,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S.

In this case, xEG
t,m,s is a recourse variable, such that we can always exploit solar power production.

Now, βt,m,s will represent the excess amount if xED
t,m,s and xEB

t,m,s exceed the amount of energy

produced by the PV system in scenario s.

In more detail, the amount βt,m,s is redirected to be bought from the grid instead, while αt,m,s

represents excess energy and is sold. We update the objective function to incorporate the re-

course variables and the scenarios. Reflecting the goal of minimum expected costs, the objective

is

min
∑
s∈S

ps

 ∑
m∈M

(
Wm,slm,s +

∑
t∈Tm

Qt,m,s(xGD
t,m,s + xGB

t,m,s + βt,m,s)

−
∑

t∈Tm

Kt,m,s(xBG
t,m,s + xEG

t,m,s + αt,m,s)
).

Where ps denotes the probability of scenario s occurring. We must also ensure that the energy

sold is still under the allowed limit and that the peak demand is adjusted. By including the

recourse variables in the constraints

xEG
t,m,s + xBG

t,m,s + αt,m,s ≤ min(A,F ) ∀t ∈ Tm,∀m ∈M,∀s ∈ S (24)

lm ≥ xGD
t,m,s + xGB

t,m,s + βt,m,s ∀t ∈ Tm, ∀m ∈M, ∀s ∈ S, (25)
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we take into account the energy sold and peak demand adjustments. Equation (24) ensures

that the energy sold does not exceed the allowed limit, while (25) adjusts the peak demand

based on the energy bought from the grid and the recourse variables.

Recall the scenario tree notations from Section 2.1.3, where we defined Ωt as the set of ω and

each s ∈ ω is t-equivalent. The nonanticipativity constraints are added as follows

xGB
t,m,s1 = xGB

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ T ,∀m ∈M

xBG
t,m,s1 = xBG

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ T ,∀m ∈M

xBD
t,m,s1 = xBD

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ T ,∀m ∈M

xEB
t,m,s1 = xEB

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ T ,∀m ∈M

xED
t,m,s1 = xED

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ T ,∀m ∈M,

to prevent the model from exploiting future information unavailable in the current stage. Note

that the decision variables xGD
t,m,s and xEG

t,m,s are not part of the nonanticipativity constraints.

They depend on the revealed uncertainty and are recourse variables.

The rest of the model needs to be slightly adjusted to account for the uncertainty introduced

by the stochastic variables. The complete stochastic model will be presented in Appendix C.

3.4 Scenario generation procedure

This section describes the scenario generation method. We are utilizing the machine learning

algorithm Quantile Regression Forest (QRF) [51] for forecasting electricity demand and solar

power production and K-means clustering [52] for constructing the scenario tree. We refer to

the values used to make a prediction as input features and the values we aim to predict as target

values. The data for the input features are obtained as described in Section 3.1.4 and the data

for the target values in Sections 3.1.1 and 3.1.3. Data spanning from January 2021 until the

beginning of February 2023 is utilized for training the forecast model.

QRF is a popular algorithm for forecasting electricity demand and renewable power generation

[53]. The algorithm offers the advantage of predicting individual quantiles and is helpful when

we are interested in the probability distribution and not just the average of the predicted value.

The training datasets, X and Y , contain the input features and corresponding target values,

respectively. We train the machine learning models on these datasets such that we can map

the input features to the target value and predict them accurately.
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For electricity demand, the features are temperature, weekdays, and hours. While for solar

power production, the features are temperature and cloud cover. Each row in the dataset

corresponds to historical observations for one hour.

Given the input features, the models learn to predict the target values. The QRF is able to

forecast the whole distribution of the target value, which is crucial when generating scenario

trees.

We use the models to make predictions of all quantiles from 1-100 for each target value. We

store these predictions in matrices, F , where each row corresponds to one quantile ranging

from lowest to the highest. Each column in F denotes one hour t.

This way, we have discretized the probability distribution for each target value corresponding

to one-hour electricity demand and solar power production. Now we utilize K-means clustering

to construct the scenario tree as similar to [54].

The tree construction process works as follows:

• Beginning at the first column of F , we apply k-means clustering and group similar values

into a predefined number of clusters.

• The centroid of each cluster represents one scenario value.

• The number of rows assigned to each cluster indicates its probability of occurring.

• We continue the clustering with the subsequent columns while increasing the number of

clusters if t corresponds to a stage.

• The clustering is finished when the desired tree depth is reached.

Now, we have scenario values for each stage. These stages are connected in a sorted fashion,

such that high values tend to be followed by high values. This reflects that if the value is

lower than expected we assume that it will remain at a low value. However, we introduce some

randomness to make the model more realistic, such that by 10 % probability, there is a random

connection between the stages.

When constructing the scenario tree we assume a perfect negative correlation between solar

power production and electricity demand. This assumption is made to represent the uncertain-

ties in fewer scenarios and keep the scenario tree manageable. While it is recognized that a

perfect correlation does not hold in practice, it comes from the idea that higher temperature

typically yields higher solar power production and reduced need for heating in buildings.
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The scenario generation procedure offers advantages, including that the QRF can discretize the

distribution of the target values without making assumptions about the underlying probability

distribution. However, it has weaknesses related to sensitivity to parameter choices, computa-

tional complexity, reliance on the K-Means clustering algorithm, and assuming that solar power

production and electricity consumption is negatively correlated.

3.5 Comparison of stochastic, deterministic, and perfect informa-

tion approaches

Stochastic programs get large with the number of scenarios and can be challenging to solve.

This extra computational burden often leads to questioning whether it is worth implementing

a stochastic model instead of a simpler deterministic one.

To answer these questions, we introduce two concepts, EVPI and VSS, as discussed in [18].

For calculating these values, we address the stochastic model introduced in Section 3.3 and the

PHA outlined in Appendix A.

The first phase of the PHA relaxes the nonanticipativity constraints, and the scenarios are

solved independently. By taking the expected value of the optimal objective function value of

these solutions, we obtain the wait-and-see solution, denoted XP I . This value quantifies the

expected cost when we have perfect information about the future.

When the PHA converges, and the nonanticipativity constraints are enforced, we obtain the

expected objective function value for the stochastic problem. Denoted Xstochastic.

Lastly, we obtain the expected-value-solution. This is done by instead of considering all scenarios

in a tree, we neglect uncertainty and assume that the expected scenario will occur. These

scenarios are illustrated with blue arrows in Figure 10. We denote the expected-value-solution

as Xdeterministic.

ξ(ω1)

ξ2(ω2)

ξ3(ω4)

ξ4(ω8) ξ4(ω9)

ξ3(ω5)

ξ4(ω10) ξ4(ω11)

ξ2(ω3)

ξ3(ω6)

ξ4(ω12) ξ4(ω13)

ξ3(ω7)

ξ4(ω14) ξ4(ω15)

Figure 10: Multistage scenario tree and blue arrows indicating the expected scenario
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Madansky [55] declared that

Xdeterministic ≥ Xstochastic ≥ XPI.

This inequality demonstrates that the expected objective function value of a stochastic solution

will, at worse, be equal to the deterministic.

For comparing the performance of the two models, we calculate the VSS as

V SS = Xdeterministic −Xstochastic.

The VSS indicates how much better results we can obtain by implementing a stochastic model.

In some cases we also are interested in how much better solutions we can achieve by obtaining

better information about the future. This is calculated as

EV PI = Xstochastic −XPI.

Both the EVPI and VSS can indicate if a problem requires a stochastic model [18].

By comparing the stochastic, deterministic, and perfect information approaches we aim to

understand better the benefits of implementing a stochastic optimization model.

3.6 The base case

In this section, we define the base case scenario, which represents the situation without the

battery, considering only the electricity demand and solar power production. We use a tilde

symbol to denote variables belonging to the base case.

Let Dt,m denote the electricity demand and Et,m represent the solar power production at hour

t in month m. The net load, Ñt,m, is defined as the difference between these at each hour:

Ñt,m = Dt,m − Et,m ∀t ∈ Tm,∀m ∈M, (26)

where a positive net load represents energy bought from the grid, and a negative net load

indicates energy sold.

We define the maximum net load for each month m, denoted as l̃m, by finding the maximum

value of Ñt,m across all hours t in that month:

l̃m ≥ Ñt,m ∀t ∈ Tm,∀m ∈M. (27)

By defining the base case, we establish a benchmark to better evaluate the potential cost

reduction by installing and optimally operating a battery.
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4 Experiments

This chapter presents the experiments. In the first case study, the deterministic model is

solved with perfect information about all data. The goal is to illustrate how a battery can

reduce electricity costs. However, we hypothesize that the assumption of perfect information

on electricity demand and solar power production can give unrealistic expectations of such an

investment.

In case studies 2 and 3, we examine two types of industrial facilities where we consider the

uncertainty of electricity demand and solar power production. By comparing the stochastic

approach with a simpler deterministic one, we aim if determine if a stochastic model can lower

costs and, if so, to which extent.

In the last experiment, we look into the PHA. We illustrate how the value of the penalty param-

eter affects convergence and the objective function value and how we initialize this parameter

to achieve optimal solutions.

All experiments are executed on a computer with 11th Gen Intel(R) Core(TM) i7-1165G7

2.80GHz processor, 16GB RAM, and 64-bit Windows 10 Pro operating system using Gurobi

9.5.2 [56].

4.1 Case study 1: Deterministic analysis with perfect information

This section utilizes the deterministic model outlined in Section 3.2. By combining a PV

system with battery storage and having perfect information about electricity demand, solar

power production, and spot prices, this case study aims to investigate how a battery reduces

costs by peak shaving and price arbitrage operations and to what degree.

We focus on an office building located on the west coast of Norway and the base case described

in Section 3.6. The data from the whole of 2022 is utilized such that the setM = {1, 2 . . . , 12}

and Tm represent all hours of the month m. Data for electricity demand, prices, and solar

power production is described in Sections 3.1.1-3.1.3 and the parameters used are presented in

Table 2.
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Table 2: Case Study 1 parameters

PVGIS Inputs Other Parameters

PV system capacity 100 kWp Battery capacity[B] 100 kWh

Longitude 60.36° Maximum net grid injection [A] 100 kWh

Latitude 5.35° Spot price area NO5

Surface-tilt 10°

Surface-azimuth 90°

Loss 14%

Table 3 shows the experienced costs in 2022 for the base case along with the optimal objective

function value for each month, demonstrating the potential cost reduction that can be achieved

by installing a battery.

Table 3: Case study 1 results

Month Total cost without Total cost with Reduction [NOK] Reduction [%]

battery [NOK] battery [NOK]

1 65838 63902 1935 2.94

2 56834 55090 1744 3.07

3 68069 64645 3423 5.03

4 50497 48279 2218 4.39

5 51054 48179 2874 5.63

6 49570 46587 2982 6.01

7 45739 42843 2896 6.33

8 99772 95238 4533 4.54

9 94656 85701 8954 9.46

10 49475 45693 3781 7.65

11 42217 38943 3273 7.75

12 112225 106812 5413 4.82

Total 785940 741912 44026 5.60

Table 3 illustrates that the cost reduction achieved with the model equals 44,026 NOK, with

the monthly savings ranging from 1,744 NOK in February to 8,954 NOK in September. The
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variation in monthly cost reduction is quite high, and we are investigating why this is the case.

Figure 11 illustrates the net load for both the base and optimal cases. Recall from Equation

(26) in Section 3.6 the definition of the net load Ñt,m for the base case, as the difference between

the electricity demand and solar power production. And for the optimal case, the net load is

given by xGB
t,m + xGD

t,m − xEG
t,m − xBG

t,m .

Figure 11: Comparison of net load during 2022 with and without battery storage

The figure displays net load demand for the base case and net load for the optimal case, one

value for each hour in 2022 with unit kWh. The base case shows a relatively high net load

during daytime hours and a relatively low net load during nighttime and weekends. During

the summer months, negative values are observed because the production from the PV system

exceeds the electricity demand. On the other hand, in the optimal case, we see a spikey pattern,

with each month displaying a consistent peak demand that holds through the month. We also

observe that negative values in the optimal case are not constrained to hours of solar power

production.

4.1.1 Peak Shaving

Figure 12 shows how the battery affects the peak demand for each month. The figure compares

the peak demand for the base case l̃t,m and the optimal case lt,m.
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Figure 12: Monthly peak electricity demand during 2022

We see that when optimally operating a battery with perfect information, the peak demand is

reduced every month. The most significant reduction is in July, and in September, the peak is

only slightly reduced.

Figures 13a and 13b illustrate the same as Figure 11, zoomed in on February 10 and July 10,

respectively.

(a) Dense peak (b) Light peak

Figure 13: Comparison of light and dense peak
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In Figure 13a, there is a dense peak, meaning that the volume of the electricity demand is

spread out over multiple hours, while on July 10, the peak is lighter such that the peak demand

charge can be reduced more with an equal amount of battery capacity. This demonstrates that

the shape of the electricity demand is vital for how much it is possible to reduce the peak

demand charge with a battery and aligns with the findings in [36, 37].

To comprehend the relatively low peak shaving observed in September, examining the price

arbitrage operations that may coincide with peak shaving is necessary.

4.1.2 Price arbitrage

In Figures 14a and 14b, the average price of electricity bought and sold, measured in NOK per

kWh, is visualized along with the average spot price in the same period.

(a) Average spot price of electricity purchased

from the grid during 2022

(b) Average revenue from selling electricity to the

grid during 2022

Figure 14: Comparison of average spot prices and revenues for electricity transactions in 2022

The figures show that the model can reduce the average purchase price and raise the average

electricity sales revenue. At the same time, it is shown that the average purchase price is less

affected compared to the average revenue. This is because the battery’s capacity is relatively

low compared to the amount of energy bought from the market. The difference in average

revenue is more significant than the average buying price. This is because when solar power

production exceeds the demand in the base case, the production is sold regardless of the spot

price in that period. An optimally operated battery can charge and wait until the price reaches

39



a sufficiently high level before the energy content is sold to the grid.

To better understand why the reduced costs are that high in September, we investigate the

spot price volatility, as introduced in Section 3.1.2.

Figure 15 visualizes the volatility of the spot price. Each bar represents the average daily

standard deviation for each week.

Figure 15: Spot price volatility in 2022

The volatility is relatively high in September and December and relatively low from January

to August, which can explain the reduced costs in September. Looking back at Figure 11, we

see that the net load for the base case is relatively low in that month, such that the battery

can use more of the capacity of doing price arbitrage operations and take advantage of the

high volatility. We expect to see the same amount of price arbitrage operations in December.

However, Figure 11 reveals that the net load is much higher this month, and the optimal

exploitation of the battery prioritizes peak shaving.

To better illustrate how the battery reduces costs, the reduction percentage from Table 3 is

split up in Table 4. We can identify some trade-offs between peak shaving and price arbitrage

operations during high volatility, especially in September and December. And we can also see

that price arbitrage is the largest contributor to cost reduction. This finding deviates from [41],

where peak shaving led to 95.6 % of the reduced electricity bill. There can be multiple reasons

for this, including the different demand patterns and the fact that the spot price volatility in

2022 was especially high.
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Table 4: Monthly total electricity cost reduction percentages resulting from peak shaving and price

arbitrage operations

Month Peak shaving

[%]

Price

arbitrage [%]

Month Peak shaving

[%]

Price

arbitrage [%]

1 1.55 1.39 7 3.64 2.69

2 2.23 0.84 8 1.16 3.39

3 1.52 3.51 9 0.10 9.36

4 1.77 2.62 10 1.11 6.54

5 1.59 4.04 11 2.33 5.43

6 2.11 3.90 12 0.76 4.06

4.1.3 One week

To get a better understanding of how the battery is contributing to reducing costs and to be

able to study the operation in more detail, we examine one week from August 12th to August

19th. Figure 16a presents the same as Figure 11, focusing on this specific week. This figure

shows a relatively low net load Ñt,m during the first three days, where negative values indicate

that solar power production exceeds demand. Moreover, we see a substantial peak in net load

on August 15th, indicating large electricity demand and relatively low solar power production.

(a) Net load for the base case and the optimal case (b) Solar power production

Figure 16: Net load and solar power production
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When we look at the net load for the optimal case, the pattern is quite different from the base

case. The optimal net load is very spikey, which shows the relatively cheap hours when the

battery charges up. When there are no spikes in the net load, the battery is discharging. One

interesting point is how the peak in Ñt,m during the middle of the week gets shaved off in the

optimal case. This is the only time in this period when the battery is used for peak shaving.

The battery is utilized for price arbitrage operations rather than peak shaving for the rest of

the time.

The values of the decision variables corresponding to solar power production are visualized in

Figure 16b. The figure shows that the production of the PV system was relatively high on five

days of that week. The figure also shows that most of the production is assigned to xED
t,m , and

nothing is sold to the grid during this period. When comparing this with Figure 16a, we see

that energy is only used for charging the battery when the net load in the base case is negative.

This illustrates that the optimal exploitation of solar power production is to cover the demand

and that the spot price is not sufficiently high during this period.

Figures 17a and 17b illustrate the values of the variables corresponding to the battery and the

spot price during the same period. Figure 17a shows the battery charging from the grid, while

Figure 17b displays the battery discharging.

(a) Energy flow from the

grid to the battery

(b) Energy flow from the

battery to the demand and the grid

Figure 17: Battery decision variable values

The plots show the battery charges in periods with a relatively the spot price and discharges

when the price increases. Notably, no energy is sold from the battery to the grid, emphasizing
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that covering the demand is prioritized.

This study investigates how an optimally operated battery and a PV system reduce electricity

costs. Despite possessing perfect information on all parameters, we can draw some interesting

findings from this case study.

Optimally exploiting a 100 kWh battery reduces costs by 44025 NOK, or 5.60%, on 2022 data.

This is done by utilizing both peak shaving and price arbitrage operations.

The analysis shows that the shape of the electricity demand is crucial for the amount of peak

shaving being done within a billing period. Lighter peaks lead to more demand charge reduc-

tion compared to months with denser peaks. Additionally, the economic potential of utilizing

a battery for price arbitrage operations is sensitive to spot price volatility which can vary

substantially during a year.

However, this case study might have limited generalizability because of the assumption of

perfect information. In the following two case studies, we investigate how uncertainty can

influence the economic potential of battery installations.

4.2 Stochastic approach

In the following case studies, we investigate the results from the stochastic model as presented

in Section 3.3.

As before, the consumption data, solar power production data, and electricity prices are ob-

tained as described in Section 3.1.

We use scenario trees to represent demand and solar power production. We recall from Section

2.1.3 the scenario tree notation, represented by the equivalence classes ω, the set of equivalence

classes Ωt, and the set of scenarios S, which we utilize to model uncertainties. We also refer

back to Section 3.3 to recall the scenario notations for demand and solar power production,

denoted by ξD
t,m(s) and ξE

t,m(s) respectively.

Also, be reminded of the Algorithm 1 and the concept of δ and kmax as explained in Sec-

tion 2.1.4. The results of the stochastic optimization model lead to the determination of

Xdeterministic, Xstochastic, XP I , EV PI, and V SS as introduced in Section 3.5.
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4.2.1 Case Study 2: An office building

In this extension of Case Study 1 from Section 4.1, we now investigate the same industrial facility

under a stochastic setting, where the electricity demand Dt,m and solar power production Et,m

are uncertain.

For this case study, we focus on February 1, 2023, to evaluate the performance of the stochastic

optimization model. The parameters of this case study are shown in Table 5.

Table 5: Case Study 2 parameters

PVGIS Inputs Other Parameters

PV system capacity 100 kWp Battery capacity [B] 50 kWh

Longitude 60.36° Maximum net grid injection [A] 100 kWh

Latitude 5.35° M {Feb}

Surface-tilt 10° Tm 1 - 24

Surface-azimuth 90° Year 2023

Loss 14% Spot price area NO5

Max iterations [kmax] 200

Convergence criterion [δ] 0.1

Penalty parameter [ρ] 1

Our scenario trees that represent ξD
t,m(s) and ξE

t,m(s) are generated and combined using the

method described in Section 3.4 and are illustrated in Figure 18.
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Figure 18: Scenario trees for electricity demand and solar power production

The scenario tree is constructed by 27 scenarios such that,

|S| = 27

ω1 = {s1, s2, ..., s27}

ω2 = {s1, ..., s9}, ω3 = {s10, s11, ..., s18}, ω4 = {s19, ..., s27}

ω5 = {s1, s2, s3}, ω6 = {s4, s5, s6}, ω7 = {s7, s8, s9}, ω8 = {s10, s11, s12}ω9 = {s13, s14, s15},

ω10 = {s16, s17, s18}, ω11 = {s19, s20, s21}, ω12 = {s22, s23, s24}, ω13 = {s25, s26, s27}

Ω8 = {ω1},Ω12 = {ω2, ω3, ω4},

Ω23 = {ω5, ω6, ω7 ω8, ω9, ω10, ω11, ω12, ω13}

The first decision is made at t = 0. It is both low electricity demand and solar power production

during the night, so the second stage is set at t = 8, the third stage at t = 12, and the final

stage at t = 23.

Including a larger tree with more stages and finer branching can improve the representation of

the uncertainty and a more realistic decision-making process, but as the number of scenarios

increases, the model size grows and increases the computational burden.

We set the convergence criterion at δ = 0.01 and the maximum number of iterations to kmax =

200. The results of the case study are presented in Table 6.
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Table 6: Case Study 2 results

Metric Value Metric Value

Xdeterministic 5258 NOK EV PI 55 NOK

XP I 4957 NOK V SS 246 NOK

Xstochastic 5012 NOK Running time 7900 s

In Table 6, it is shown that the values of both VSS and EVPI are quite low. There can be

multiple reasons for low values of VSS and EVPI. The scenario tree we are using to represent

electricity demand and solar power production might not be able to fully incorporate the

uncertainties, which can lead to relatively similar solutions across the scenarios.

Additionally, more than one 24-hour window might be required to evaluate the benefits of

considering uncertainty in this case. This can also indicate that the scenario generation method

is not effectively capturing the randomness. But it could also suggest that the problem is less

sensitive to uncertainties, meaning that the benefits of a stochastic approach over a simpler

deterministic one are limited.

The next section investigates how the stochastic approach performs in an industrial facility

with more uncertainty.

4.2.2 Case Study 3: An energy-intensive industry

This case study investigates applying the stochastic model and the PHA to a consumption

pattern inspired by an energy-intensive industry, specifically a crushing mill. The purpose

is to explore the differences between the stochastic and deterministic approaches and how

stochasticity in electricity demand affects the solution.

As the assumption of a negative correlation between electricity demand and solar power pro-

duction is not valid in this context, we set

ξE
t,m(s) = 0 ∀t ∈ Tm,∀m ∈M,∀s ∈ S.

This case study examines a site with high electricity demand and without a PV system. There-

fore, we do not consider parameters from PVGIS. Since the demand is relatively high, we set

the battery capacity to 1000 kWh. The parameters used in this study are described in Table 7.
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Table 7: Case Study 3 parameters

Parameters

Battery capacity [B] 1000 kWh

Maximum net grid injection [A] 100 kWh

M {Feb}

Tm 1-24

Year 2023

Spot price area NO5

Max iterations [kmax] 1000

Convergence criterion [δ] 0.1

Penalty parameter [ρ] 1

The problem is simplified by focusing on eight scenarios for ξD
t,m(s), structured into four stages

as follows:

S = {s1, s2, s3, s4, s5, s6, s7, s8}

ω1 = {s1, s2, s3, s4, s5, s6, s7, s8}

ω2 = {s1, s2, s3, s4}, ω3 = {s5, s6, s7, s8}

ω4 = {s1, s2}, ω5 = {s3, s4}, ω6 = {s5, s6}, ω7 = {s7, s8}

Ω12 = {ω1},Ω16 = {ω2, ω3},Ω18 = {ω4, ω5, ω6, ω7}

Ω23 = {ωi : i ∈ {8, 9, ..., 15}}, where ωi = {si−7} i = 8, ..., 15

The actual values of the uncertain demand are drawn randomly from a uniform probability
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distribution specified as follows:

ξD
t,m(s) ∼ U(10, 12) ∀s ∈ ω1, 0 ≤ t ≤ 5

ξD
t,m(s) ∼ U(10, 12) ∀s ∈ ω2, 6 ≤ t ≤ 11

ξD
t,m(s) ∼ U(210, 220) ∀s ∈ ω3, 6 ≤ t ≤ 11

ξD
t,m(s) ∼ U(10, 12) ∀s ∈ (ω4 ∪ ω6), 12 ≤ t ≤ 15

ξD
t,m(s) ∼ U(210, 220) ∀s ∈ (ω5 ∪ ω7), 12 ≤ t ≤ 15

ξD
t,m(s) ∼ U(10, 12) ∀s ∈ (ω8 ∪ ω10, ω12 ∪ ω14), 16 ≤ t ≤ 17

ξD
t,m(s) ∼ U(210, 220) ∀s ∈ (ω9 ∪ ω11, ω13 ∪ ω15), 16 ≤ t ≤ 17

ξD
t,m(s) ∼ U(10, 12) ∀s ∈ S, 18 ≤ t ≤ 23

All the scenarios are illustrated in Figure 19, where each node denotes the value for ξD
t,m up to

that stage. All scenarios have an equal probability of occurrence.

Root

U(10, 12)

U(10, 12)

U(10, 12)

U(10, 12)

s1

U(210, 220)

s2

U(210, 220)

U(10, 12)

s3

U(210, 220)

s4

U(210, 220)

U(10, 12)

U(10, 12)

s5

U(210, 220)

s6

U(210, 220)

U(10, 12)

s7

U(210, 220)

s8

t = 0

t = 6

t = 12

t = 16

t = 18

Figure 19: Case Study 3 scenario tree

The metrics, Xdeterministic, Xstochastic, XP I , EV PI, and V SS are calculated, and the results are

presented in Table 8.

The data in Table 8 shows that a stochastic approach reduces the costs by 1583 NOK, or

15.3%, compared to the deterministic model that ignores uncertainty. This underscores that

it is important to consider the uncertainties of electricity demand to optimally reduce costs in

this case. The EVPI of 3561 NOK indicates that it is not valid to assume perfect information

and that it is crucial to consider this uncertainty before investing in a battery for cost-reduction
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Table 8: Case Study 3 results

Metric Value Metric Value

Xdeterministic 11957 NOK EV PI 3561 NOK

XP I 6813 NOK V SS 1583 NOK

Xstochastic 10369 NOK Running time 7206 s

purposes. We look closer at one of the scenarios to better understand why the VSS and EVPI

are so high.

In Figures 20 to 22, we illustrate the rightmost scenario s8 from the scenario tree presented in

Figure 19, along with the solutions. The scenario s8 represents a situation where we observe high

values continuously from t = 6 to t = 18. Specifically, we examine the sum xGB
t,m + xGD

t,m + βt,m,

which represents the total amount of energy purchased from the grid, and xBG
t,m + αt,m, which

denotes the total amount of energy sold.

Figure 20: Deterministic re-

sults

Figure 21: Stochastic results Figure 22: Perfect informa-

tion results

In this scenario, the stochastic model is able to reduce costs substantially compared to a de-

terministic one. That is because the model can weigh the consequences of both high and low

scenarios. In this case, the optimal solution is prioritizing shaving off the peak instead of price

arbitrage operations. The deterministic model assumes the expected scenario and underesti-

mates the actual electricity demand. By underestimating the demand, the battery is getting

charged during hours with already high consumption, and that strategy leads to a costly peak

demand charge.

For this specific scenario, we can see that the solutions for the stochastic approach and perfect

information are similar. To understand better why the EVPI is high, we must investigate the
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solution for the other scenarios.

Figure 23 presents the objective function values for the stochastic, deterministic, and perfect

information approaches across all eight scenarios.

Figure 23: Objective function values

The bar chart illustrates that the stochastic approach finds better solutions in seven of the

eight scenarios compared to the deterministic model.

We also see that the difference between the objective function value of the stochastic model

and the approach with perfect information is similar in scenarios where ξD
t,m(s) is high and not

so close for scenarios with low demand. This relationship illustrates that the stochastic model

weighs the consequences of all the scenarios and converges against a solution that is robust to

high demand and, as a cost, performs worse in scenarios with low electricity demand. By that,

we can see that the optimal decision is not to assume the expected scenario when uncertain

since underestimating the future electricity demand can be relatively expensive.

In conclusion, this case study highlights the advantages of using a stochastic model for battery

management for an energy-intensive industry. This case study shows that a simpler determin-

istic model that ignores uncertainty leads to an additional cost of 1583 NOK or 15.3%. And

the costs can be reduced by as much as 3561 NOK, or 34.3%, with more information about the

scenarios.

This suggests that assuming perfect information is invalid when analyzing the potential electric-
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ity cost reductions in this case. Also, this value indicates how much it is possible to additionally

reduce the costs by getting better information about the scenarios. This can be done by, for

instance, consulting with the operator of the industrial facility or investing in forecast models.

When interpreting the results one should keep in mind that the model operates within a 24-hour

window. This means that while these savings are relatively high, the daily cost reduction will

be less since the billing cycle of the peak demand charge is monthly. The optimal exploitation

of the battery, in this case, will be to empty its content within the time window. In practice,

it could save energy beyond this time period.

4.3 Initializing the penalty parameter in the Progressive Hedging

Algorithm

This experiment focuses on the PHA. In Section 2.1.4, we discuss how the value of ρ can

significantly impact the algorithm’s convergence and that while multiple strategies for assessing

the value of this parameter exist, there is no consensus on an optimal approach. This experiment

will explore how varying ρ affects our problem. Case study 3 is used as an illustrative example,

and a similar approach is done for initializing ρ in case study 2.

In this study, we initialize the parameter to a fixed value ρ > 0. To determine the appropriate

value for the parameter, we test a range of values between 0.01 and 50.

Remember that k, denotes the current iteration number, while the convergence criterion, δ,

measures how close a solution is to feasibility. The value of ρ can influence the number of

iterations needed to meet this convergence criterion.

Figures 24a - 24b illustrate δ the first 200 and last 200 iterations of a total number of 1000

iterations of the PHA. We have set the maximum number of iterations to 1000 to keep the

running time approximately two hours for each value.
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(a) Iterations 0-200 (b) Iterations 800-1000

Figure 24: Distance plots for different values of ρ during the first 200 iterations and the last 200

iterations

In Figure 24a, we notice that when initializing with a low value for ρ, the PHA starts with a

less implementable solution. In other words, the nonanticipativity constraints are not enforced.

When initializing with higher values, the algorithms find solutions closer to feasibility faster.

These findings are expected as described in [27].

In Figure 24b, we observe that the values of ρ < 0.5 still have a noticeable distance from δ = 0,

while ρ ≥ 0.5 is close to convergence.

In Figures 25a - 25b, the objective function value in the first and last 200 iterations of the

algorithm is illustrated. In Figure 25a, we observe that the lower the penalty parameter we

start with, the lower the objective function value is.
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(a) Iterations 0-200 (b) Iterations 800-1000

Figure 25: Objective function value plots for different values of ρ during the first 200 iterations and

the last 200 iterations

Recall from the value of XP I = 6813 from Table 8 in Section 4.2.2. A low initializing of ρ

will penalize the deviation from this solution relatively little, so we start close to that solution.

However, as shown in Figure 25a, this solution is far from feasible, and the algorithm slowly

converges toward an implementable solution.

On the contrary, a large initializing of ρ makes the algorithm start with a solution with a

high objective function value; however, as we see in Figure 25a, it is also a solution closer to

feasibility.

In Figure 25b, we notice that the objective function value for solutions with ρ ≥ 10 is much

larger than for the rest of the penalty parameters.

In conclusion, in this experiment, we have seen that implementations with penalty parameters

ρ < 0.5 do not converge sufficiently close to δ = 0 within the kmax = 1000 iterations. We also

observed that solutions with ρ ≥ 10 lead to sub-optimal convergence. We observe that we get

similar solutions for 0.5 ≤ ρ ≤ 1, and we initialize the parameter to 1.
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5 Conclusion and future work

This study examines how optimally operated batteries can reduce the electricity bill for in-

dustrial facilities and how the uncertainty of electricity demand and solar power production

affects these cost reductions. We address these questions by implementing both deterministic

and stochastic optimization models.

The results of the first case study demonstrate that electricity costs are reduced both by peak

shaving and price arbitrage operations. The degree of reduction depends on the electricity

demand’s shape and the spot price’s volatility. Our deterministic analysis with perfect infor-

mation demonstrates that the cost was reduced by 5.60%, compared to the base case, using

2022 data. This analysis highlights that it is crucial to consider both price arbitrage and peak

shaving when minimizing costs utilizing a battery.

Extending the deterministic model into a multistage stochastic optimization model allows us

to assess the impact of uncertain electricity demand and solar power production. Our results

illustrate the extent to which the EVPI and the VSS vary with the degree of uncertainty. If the

uncertainty is sufficiently low, a deterministic may suffice, and it is not necessary to complicate

the model with stochasticity.

However, the case study in Section 4.2.2 with relatively high uncertainty in the electricity

demand results in a cost reduction of 1583 NOK when comparing a stochastic approach to a

simpler deterministic model that ignores uncertainty. The same case study demonstrated an

EVPI of 3561 NOK which underscores that it is not always valid to assume perfect information

when evaluating how much a battery installation can reduce electricity costs.

While the results give valuable insights into optimal battery operation and the implications of

uncertainty, some limitations of this study should be acknowledged.

Only hourly resolution data were available for this study. More granulated data can be increas-

ingly available because of the vast implementation of HAN-adapters. Possessing finer-resolution

data can lead to a more realistic analysis of the battery operation. It can also help address

additional questions, such as optimal dimensioning of the battery capacity and power.

The battery model is relatively simple, and ignoring battery degradation impacts battery ex-

ploitation. Also, degradation can affect the battery’s capacity and energy efficiency over time.

A potential model improvement can be to include a more comprehensive battery model.

Our study considered two 24-hour windows only. This will give end-of-horizon issues to some
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degree. Future research could reduce these issues by implementing larger time windows or

a rolling horizon approach. This can provide additional knowledge about the benefits and

limitations of a stochastic approach. A rolling-horizon approach can also be more practical-

oriented since the decision made at the first time period is likely the only one being implemented.

However, the mentioned additions come with an increasing complexity and model size, which

increases the computational time. Future studies can research alternatives to the PHA, either

exact or good approximations.

Future studies can also investigate developing a more case-specific scenario generation method.

By consulting with human experts close to the operation of a facility, it can be possible to

gain additional knowledge about the uncertainty of the electricity demand and represent the

underlying distribution with relatively few scenarios.

55



References
[1] Statnett. Omr̊adeplan Nord: Nordre Nordland, Troms og Finnmark. Statnett. September.

Norway, 2022.

[2] BKK. Regional Kraftsystemutredning for BKK-omr̊adet og indre Hardanger. Tech. rep.

BKK, 2020.

[3] Magnus Buvik et al. Norsk og nordisk effektbalanse fram mot 2030. Tech. rep. 20/2022.

NVE, 2022.

[4] The Norwegian Water Resources and Energy Directorate. Ny nettleie (fra 1. juli 2022).

Retrieved from https://www.nve.no/reguleringsmyndigheten/kunde/nett/ny-

nettleie-fra-1-juli-2022/. Last updated on July 1, 2022. July 2022.

[5] Sol-data fra Elhub. Tech. rep. Updated on May 2, 2023. Norway: Elhub, May 2023. url:

https://elhub.no/app/uploads/2023/05/ManedsrapportSOL.pdf.

[6] Olukunle O Owolabi et al. “A robust statistical analysis of the role of hydropower on the

system electricity price and price volatility”. In: Environmental Research Communications

4.7 (2022), p. 075003.

[7] International Energy Agency. Renewables 2022. License: CC BY 4.0. Paris, 2022. url:

https://www.iea.org/reports/renewables-2022.

[8] Serhan Cevik and Keitaro Ninomiya. “Chasing the Sun and Catching the Wind: Energy

Transition and Electricity Prices in Europe”. In: (2022).
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[54] Kristina Šutiene, Dalius Makackas, and Henrikas Pranevičius. “Multistage K-Means Clus-
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A Progressive Hedging Algorithm

Algorithm 1 PHA
1: Set the iteration counter k ← 0, the initial penalty parameter ρ(0) ← ρ0

2: for all s ∈ S do

3: Solve the scenario subproblem:

find (x(0)
t,s )t∈T ∈ arg min

∑
t∈T

cT
t,sxt,s

subject to W1,sx1,s = h1,s,Wt,sxt,s + Tt−1,sxt−1,s = ht,s, xt,s ∈ X

4: end for

5: Compute the initial solution x̄(0)
ω,t ←

∑
s∈ω

psx
(0)
t,s∑

s∈ω
ps

and the initial duals λ(0)
t,s ← ρ(0)(x(0)

t,s−x̄
(0)
t,ω)

for all s ∈ ω, ω ∈ Ωt, t ∈ T

6: repeat

7: for all s ∈ S do

8: Solve the augmented scenario subproblem:

find (x(k+1)
t,s )t∈T ∈ arg min

∑
t∈T

cT
t,sxt,s + (λ(k)

t,s )Txt,s + ρ(k)

2 ∥xt,s − x̄(k)
t,ω∥2

2

subject to W1,sx1,s = h1,s,Wt,sxt,s + Tt−1,sxt−1,s = ht,s, xt,s ∈ X

9: end for

10: for all ω ∈ Ωt, t ∈ T do

11: Update the solution x̄
(k+1)
t,ω ← ∑

s∈ω
psx

(k+1)
t,s∑

s∈ω
ps

12: end for

13: for all s ∈ ω, ω ∈ Ωt, t ∈ T do

14: Update the duals λ(k+1)
t,s ← λ

(k)
t,s + ρ(k+1)(x(k+1

t,s − x̄(k+1)
t,ω )

15: end for

16: k ← k + 1

17: until ∑s∈S
∑

t∈T ps||x(k+1)
t,s − x̄(k+1)

t,ω || ≤ δ or k > kmax
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B Deterministic Model

min
∑

m∈M

Wmlm +
∑

t∈Tm

Qt,m(xGD
t,m + xGB

t,m)−
∑

t∈Tm

Kt,m(xBG
t,m + xEG

t,m)


s.t. rt+1,m = rt,m + xEB
t,m + xGB

t,m − xBD
t,m − xBG

t,m ∀t ∈ Tm \ {|Tm|},∀m ∈M

r1,m = r|Tm|,m−1 + xEB
|Tm|,m−1 + xGB

|Tm|,m−1 − xBD
|Tm|,m−1 − xBG

|Tm|,m−1 ∀m ∈M

xED
t,m + xBD

t,m + xGD
t,m = Dt,m ∀t ∈ Tm,∀m ∈M

xEG
t,m + xEB

t,m + xED
t,m ≤ et,m ∀t ∈ Tm,∀m ∈M

xGB
t,m + xEB

t,m ≤ B · µt,m ∀t ∈ Tm,∀m ∈M

xBD
t,m + xBG

t,m ≤ B · (1− µt,m) ∀t ∈ Tm,∀m ∈M

xBG
t,m + xEG

t,m ≤M · πt,m ∀t ∈ Tm,∀m ∈M

xGD
t,m + xGB

t,m ≤M · (1− πt,m) ∀t ∈ Tm,∀m ∈M

xEG
t,m + xBG

t,m ≤ min(A,F ) ∀t ∈ Tm,∀m ∈M

xGD
t,m + xGB

t,m ≤ lm ∀t ∈ Tm,∀m ∈M

rt,m ≤ B ∀t ∈ Tm,∀m ∈M

r1,1 = 0

µt,m ∈ {0, 1} ∀t ∈ Tm,∀m ∈M

πt,m ∈ {0, 1} ∀t ∈ Tm,∀m ∈M

xGD
t,m , x

BD
t,m , x

BG
t,m , x

GB
t,mx

EB
t,m , x

ED
t,mx

EG
t,m, rt,m ≥ 0, ∀t ∈ Tm,∀m ∈M
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Table 9: Description of parameters, sets, and decision variables of the deterministic model

Symbol Description

Parameters

Qt,m Price for buying electricity

Kt,m Revenue for selling electricity

Et,m Electricity generated from PV system

Dt,m Demand for electricity

Wm Demand charge

B Size of battery

F Electrical installation capacity

A Maximum grid injection

M A very large number

Sets

Tm Set of hours

M Set of months

Decision Variables

xED
t,m Flow of energy from PV system to demand

xEB
t,m Flow of energy from PV system to battery

xEG
t,m Flow of energy from PV system to grid

xGD
t,m Flow of energy from grid to demand

xGB
t,m Flow of energy from grid to battery

xBG
t,m Flow of energy from battery to grid

xBD
t,m Flow of energy from battery to demand

rt,m Energy in battery during hour t and month m

lm Peak demand

µt,m Binary variable. 1 when battery storage is charging, 0 otherwise

πt,m Binary variable. 1 when selling to the grid, 0 otherwise
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C Complete Stochastic Model

min
∑
s∈S

ps

 ∑
m∈M

(
Wm,slm,s +

∑
t∈Tm

Qt,m,s(xGD
t,m,s + xGB

t,m,s + βt,m,s)

−
∑

t∈Tm

Kt,m,s(xBG
t,m,s + xEG

t,m,s + αt,m,s)
)

s.t. rt+1,m,s = rt,m,s + xEB
t,m,s + xGB

t,m,s − xBD
t,m,s − xBG

t,m,s

∀t ∈ Tm \ |T |,∀m ∈M,∀s ∈ S

r1,m,s = r|T |,m−1,s + xEB
|T |,m−1,s + xGB

|T |,m−1,s − xBD
|T |,m−1,s

− xBG
|T |,m−1,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xED
t,m,s + xGD

t,m,s + xBD
t,m,s = ξD

t,m(s) + αt,m,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xEB
t,m,s + xED

t,m,s + xEG
t,m,s ≤ ξE

t,m(s) + βt,m,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xGB
t,m,s + xEB

t,m,s ≤ B · µt,m,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xBD
t,m,s + xBG

t,m,s ≤ B · (1− µt,m,s) ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xBG
t,m,s + xEG

t,m,s ≤M · πt,m,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xGD
t,m,s + xGB

t,m,s ≤M · (1− πt,m,s) ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xEG
t,m,s + xBG

t,m,s + αt,m,s ≤ min(A,F ) ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xGD
t,m,s + xGB

t,m,s + βt,m,s ≤ lm,s ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xGB
t,m,s1 = xGB

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ Tm,∀m ∈M

xBG
t,m,s1 = xBG

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ Tm,∀m ∈M

xBD
t,m,s1 = xBD

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ Tm,∀m ∈M

xEB
t,m,s1 = xEB

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ Tm,∀m ∈M

xED
t,m,s1 = xED

t,m,s2 ∀s1, s2 ∈ ω,∀ω ∈ Ωt,∀t ∈ Tm,∀m ∈M

rt,m,s ≤ B ∀t ∈ Tm,∀m ∈M,∀s ∈ S

r1,1 = 0

µt,m,s ∈ {0, 1} ∀t ∈ Tm,∀m ∈M,∀s ∈ S

πt,m,s ∈ {0, 1} ∀t ∈ Tm,∀m ∈M,∀s ∈ S

xGD
t,m,s, x

BD
t,m,s, x

BG
t,m,s, x

GB
t,m,sx

EB
t,m,s, x

ED
t,m,sx

EG
t,m,s, rt,m,s ≥ 0, ∀t ∈ Tm,∀m ∈M,∀s ∈ S
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Table 10: Description of parameters, sets, and decision variables of the stochastic model

Symbol Description

Parameters

Qt,m.s Price for buying electricity

Kt,m,s Revenue for selling electricity

Et,m,s Electricity generated from PV system

Dt,m,s Demand for electricity

Wm,s Demand charge

ps Probability of scenario s occurring

B Size of battery

F Electrical installation capacity

A Maximum grid injection

M A very large number

Sets

Tm Set of hours in month m

M Set of months

S Set of scenarios

ω Set of equivalent scenarios

Ωt Set of ω in time t

First Stage Decision Variables

xED
t,m,s Flow of energy from PV system to demand

xEB
t,m,s Flow of energy from PV system to battery

xGB
t,m,s Flow of energy from grid to battery

xBG
t,m,s Flow of energy from battery to grid

xBD
t,m,s Flow of energy from battery to demand

rt,m,s Energy in battery

µt,m,s Binary variable. 1 when battery storage is charging, 0 otherwise

πt,m,s Binary variable. 1 when selling to the grid, 0 otherwise
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Recourse Decision Variables

xGD
t,m,s Shortfall of planned energy relative to demand

αt,m,s Overestimation of planned energy relative to demand

xEG
t,m,s Underestimation of planned solar power production

βt,m,s Overestimation of planned solar power production

lm Peak demand
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D Case study 1 results

Table 11: Cost and Revenue without Battery

Month Cost of energy Revenue from Peak demand

bought selling energy cost

from the grid to the grid

1 61015 0 4823

2 51949 0 4885

3 63743 50 4377

4 47145 249 3602

5 48148 536 3442

6 45742 227 4055

7 41718 472 4493

8 95062 310 5020

9 91270 337 3723

10 45329 0 4146

11 38069 0 4148

12 107154 0 5071
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Table 12: Cost and Revenue with Battery

Month Cost of energy Revenue from Peak demand

bought selling energy cost

from the grid to the grid

1 60173 74 3803

2 51538 66 3619

3 62247 946 3345

4 46631 1058 2707

5 45962 415 2632

6 43922 342 3007

7 40307 291 2827

8 95215 3843 3866

9 88749 6672 3625

10 42571 476 3598

11 35913 135 3165

12 103636 1038 4215
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