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Abstract

Despite Parkinson’s disease being described over 200 years ago, its clinical hetero-

geneity remains unknown. Current research aims to stratify Parkinson’s disease by

identifying subgroups of patients with distinct clinical characteristics. This thesis in-

vestigates the potential of multimodal magnetic resonance imaging in differentiating

Parkinson’s disease patients from healthy controls and distinguishing between patients

with postural instability gait difficulty and tremor-dominant motor phenotype.

The study included 76 participants: 58 patients (27 with postural instability gait diffi-

culty and 20 with tremor-dominant phenotype) and 18 healthy controls recruited from

Haukeland University Hospital. Strategically acquired gradient echo imaging was used

to generate various images and maps using two triple-echo acquisitions with different

flip angles. Five classifiers, including XGBoost, were employed for the classification

task, utilizing mean intensities of the substantia nigra pars compacta and the locus

coeruleus as features.

The XGBoost classifier effectively differentiated Parkinson’s disease patients from

healthy controls (F1 score: 0.84, precision: 0.86, recall: 0.85). It also demonstrated

high discriminatory power in distinguishing patients with postural instability gait diffi-

culty from tremor-dominant patients (F1 score: 0.69, precision: 0.71, recall: 0.70).

The use of multimodal magnetic resonance imaging in differentiating Parkinson’s dis-

ease patients from healthy controls and stratifying patients based on their motor phe-

notype was successfully demonstrated. The locus coeruleus in the simGRE image

shows promise for distinguishing patients with Parkinson’s disease from healthy con-

trols, especially when combined with the Brief Smell Identification Test score. Po-

tential biomarkers for discriminating patients with postural instability gait difficulty

from tremor-dominant patients include the substantia nigra pars compacta and the lo-

cus coeruleus in the simDIR GM image, the substantia nigra pars compacta in the

simDIR WM image, and the Montreal Cognitive Assessment score.





Sammendrag

Selv om Parkinsons sykdom ble beskrevet for over 200 år siden, er dens kliniske het-

erogenitet fortsatt ukjent. Forskning søker nå å stratifisere sykdommen ved å identifis-

ere pasientgrupper med ulike kliniske egenskaper. Denne oppgaven undersøker multi-

modal magnetresonanstomografis potensiale til å skille mellom pasienter med Parkin-

sons sykdom og friske kontroller, samt skille mellom pasienter med postural instabilitet

og gangvansker, og tremor-dominant motorisk fenotype.

76 deltakere, inkludert 58 pasienter med Parkinsons sykdom (27 med postural insta-

bilitet og gangvansker, og 20 tremor-dominante) og 18 friske kontroller, ble rekruttert

fra Haukeland universitetssykehus. Strategically aquired gradient echo imaging gener-

erte bilder og maps basert på to trippel-echo sekvenser med ulike flippvinkler. Fem

maskinlæringsmodeller, inkludert XGBoost, ble brukt til klassifiseringen med gjen-

nomsnittsintensiteter av substantia nigra pars compacta og locus coeruleus som fea-

tures.

XGBoost viste god evne til å skille mellom pasienter med Parkinsons sykdom og friske

kontroller (F1 score: 0.84, precision: 0.86, recall: 0.85). Videre viste XGBoost høy

diskriminerende kraft til å skille mellom pasienter med postural instabilitet og gang-

vansker, og tremor-dominante pasienter (F1 score: 0.69, precision: 0.71, recall: 0.70).

Denne oppgaven demonstrerte at multimodal magnetisk resonanstomografi kan brukes

til å skille pasienter med Parkinsons sykdom fra friske kontroller, samt skille mel-

lom pasienter med postural instabilitet og gangvansker, og tremor-dominante pasienter.

Locus coeruleus i simGRE-bildet fremtrer lovende for å skille pasienter med Parkin-

sons sykdom fra friske kontroller, særlig i kombinasjon med Brief Smell Identification

Test score. Potensielle biomarkører for å skille postural instabilitet og gangvansker

fra tremor-dominant inkluderer substantia nigra pars compacta og locus coeruleus i

simDIR GM-bildet, substantia nigra pars compacta i simDIR WM-bildet og Montreal

Cognitive Assessment score.
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Chapter 1

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and

the most common neurodegenerative movement disorder in the world [1]. 2− 3% of

the worldwide population above 65 years of age is affected by PD [2]. Patients with

PD show highly heterogeneous clinical characteristics, indicating that they both can

and should be classified into subgroups to provide effective treatment [3]. Currently,

available treatments offer reasonable control of motor symptoms but do not halt the

progression of neurodegeneration, the evolution of the disease, or the increasing dis-

ability [2]. Limited knowledge about PD’s vast clinical and biological heterogeneity is

a major obstacle preventing the development of patient-tailored therapies [4].

Current research aims to stratify PD by identifying and characterizing subgroups of

patients with distinct clinical and molecular characteristics. Genetic, pathological, and

imaging markers, as well as motor and non-motor symptoms, might define subtypes of

PD [3]. Classifying PD patients into subgroups based on motor symptoms can be an

essential step toward personalized treatment. The Movement Disorder Society Unified

Parkinson’s Disease Rating Scale (MDS-UPDRS) is a widely used assessment tool

for motor and non-motor PD symptoms. It can also be used to determine the motor

phenotype of PD patients [5].

The motor phenotypes of PD include tremor-dominant (TD) and non-tremor-dominant

(nTD), which further splits into postural instability gait difficulty (PIGD) and akinetic-

rigid (AR) subtypes [6]. The tremor and PIGD subscales in part III of the MDS-UPDRS

consist of eight and five items, respectively. TD patients are identified by a ratio of

mean tremor score to mean PIGD score greater than or equal to 1.5, while PIGD pa-

tients have a ratio of less than or equal to 1.0 [7]. Patients with ratios between 1.0 and

1.5 are classified as indeterminate.
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On a pathological level, PD is characterized by progressive degeneration of subcortical

dopaminergic nigrostriatal systems, Lewy body (LB) aggregations, and dopamine (DA)

depletion in the striatum [8]. Postmortem histology has identified a loss of dopamin-

ergic neurons (DANs) in the substantia nigra pars compacta (SNpc) and noradrenergic

neurons (NANs) in the locus coeruleus (LC) in PD patients [9][10]. The degeneration

of DANs in the SNpc in PD has been extensively studied and is better comprehended

than the degeneration of NANs in the LC. Nonetheless, the loss of LC neurons occurs

before the loss of SNpc neurons in the PD brain and may serve as some of the ear-

liest evidence for the onset of PD [11]. Consequently, there is a growing interest in

investigating the role of the LC in PD.

In addition to the loss and degeneration of DANs in the SNpc and NANs in the LC, PD

has been strongly linked to the increased iron content in the basal ganglia (BG) [12].

Although it remains uncertain whether the rise in iron content is a primary factor or a

consequence of the disease, brain structures naturally rich in iron, such as the SNpc,

appear more susceptible to iron accumulation in neurodegenerative disorders like PD

[13]. Iron is necessary for DA production, but excessive iron buildup in the SNpc may

contribute to the degeneration of DANs [14]. Thus, high iron content in the SNpc may

serve as a potential biomarker for PD.

While the total concentration of iron in the SNpc increases with age in healthy individ-

uals, the total iron concentration in the LC is lower and remains stable throughout life

[15][16][17]. Consequently, iron may play a more significant role in neurodegenera-

tion in the SNpc compared to the LC. However, further research is necessary to fully

understand the role of iron in the pathogenesis of PD.

The SNpc and the LC are the two most pigmented regions in the human nervous system

[18]. They contain neuromelanin (NM), a dark-colored, complex, insoluble pigment.

In PD, NM-containing neurons in the SNpc and the LC consistently show degeneration,

which exceeds the degree expected from normal aging [19]. Several histopathological

studies of these regions have shown how neuronal cell loss correlates well with the

estimated NM loss, especially in the SNpc [20][21]. Thus, low NM content in the

SNpc and the LC may serve as potential biomarkers for PD.

Single-photon emission computed tomography (SPECT) and positron emission tomog-

raphy (PET) are considered gold-standard imaging techniques for evaluating the func-

tion of the brain’s dopaminergic system [22]. SPECT and PET can aid in differentiating

PD from other disorders with similar symptoms and monitor disease progression [22].
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However, SPECT and PET findings cannot fully explain motor impairments in PD, as

complex comorbid deficits and the degeneration of other neuronal systems co-occur

[23]. Additionally, SPECT and PET have limitations such as being expensive, involv-

ing exposure to ionizing radiation and having a limited spatial resolution, which can

make it challenging to localize changes in the brain precisely. The last limitation is

significant in prodromal PD, where subtle changes in the dopaminergic system occurs

[24].

Magnetic resonance imaging (MRI) is a non-ionizing imaging technique that utilizes

a strong magnetic field and radio waves to generate detailed brain images. MRI has

several advantages compared to SPECT and PET, including higher spatial resolution,

lower cost, no ionizing radiation, and better availability [25]. Moreover, MRI can pro-

vide various types of imaging data, such as structural images, diffusion-weighted im-

ages, and functional images, enabling a more comprehensive evaluation of changes in

the brain related to PD. Therefore, MRI can be particularly crucial when identifying

and characterizing PD patient subgroups.

MRI can indirectly detect iron accumulation in the brain by measuring magnetic sus-

ceptibility in tissue [26]. Magnetic susceptibility is a property of tissue that reflects its

ability to become magnetized in a magnetic field. Due to its large magnetic moment,

iron influence the MRI signal in susceptibility-weighted imaging (SWI). Iron and other

paramagnetic substances increase the magnetic field, creating a positive phase shift

compared to the surrounding tissues. There is a direct correlation between brain iron

concentration and phase shift [12]. Other MRI techniques developed to measure mag-

netic susceptibility in the brain includes T2*-weighted (T2*W) imaging and quantita-

tive susceptibility mapping (QSM).

Alterations of NM and its role in PD pathophysiology can be assessed in vivo through

NM-sensitive MRI (NM-MRI). NM has a paramagnetic T1 reduction effect on MRI

due to the presence of melanin-iron complexes [27]. Loss of SNpc hyperintensity in

an NM-MRI image is associated with the loss of NM-containing neurons in PD [28].

The utilization of NM-MRI for quantifying the loss of NANs in the LC is less prevalent

than for the SNpc. Nevertheless, it is reasonable to assume that the loss of NANs in the

LC in PD can also be quantified using NM-MRI.

Utilizing MRI to differentiate motor phenotypes in PD can enhance the ability to track

disease progression, identify at-risk populations, and optimize the targeting of non-

invasive and invasive neuromodulation therapies [29][30].
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A study using SWI showed lower values in the globus pallidus for the PIGD subtype

compared to non-PIGD subtypes, with a similar trend in other BG nuclei such as the

SNpc [12]. This indicates that the PIGD motor phenotype exhibits a higher iron content

in the SNpc compared to non-PIGD motor phenotypes, such as TD [31]. Additionally,

NM-MRI revealed more severe signal attenuation in the medial part of the SNpc for

the PIGD subtype compared to TD, with the SNpc ipsilateral to the most clinically

affected side being the most robust discriminator between the two subtypes [32]. This

indicates that the PIGD motor phenotype demonstrates a lower NM content in the SNpc

compared to the TD motor phenotype [28].

In a study conducted in 2019, Depierreux et al. discovered a significant reduction in

proton density (PrD) in the left and right SNpc of PD patients compared to healthy

controls (HCs) [33]. This signal intensity decline can potentially be attributed to the

loss of DANs in the SNpc, leading to decreased neuronal density and SNpc brightness

in PrD maps. Therefore, low PrD in the SNpc and possibly in the LC could serve as a

potential biomarker for PD.

The objective of this Master of Science project is to investigate the possibility of utiliz-

ing multimodal MRI to differentiate PD patients from HCs and stratifying PD patients

based on their motor phenotypes, specifically PIGD and TD. Various MRI techniques

will be employed to quantify the loss of DANs in the SNpc and the loss of NANs in

the LC. Through exploring the correlations between the quantified neuronal losses and

clinical data, this thesis aims to enable the classification of participants into either PD

patients or HCs and further stratify patients based on their motor phenotype.

Building upon the research presented in this chapter, the hypothesis regarding the clas-

sification of PD patients and HCs is as follows: PD patients demonstrate more pro-

nounced degeneration of DANs in the SNpc and NANs in the LC than HCs. These

neuronal losses can be observed through increased iron content, decreased NM con-

tent, and decreased PrD in both the SNpc and the LC.

Regarding the PIGD/TD classification, the hypothesis is that PIGD patients demon-

strate more pronounced degeneration of DANs in the SNpc and NANs in the LC com-

pared to TD patients. As for the PD/HC classification, these neuronal losses can be

observed through increased iron content, decreased NM content, and decreased PrD in

both the SNpc and the LC.
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Theory

2.1 MRI

MRI is a non-invasive and non-ionizing modality that provides a spatial map of hydro-

gen nuclei and their surroundings in different tissues [34]. The intensity of an MRI

image depends on the number of protons at each location in space, as well as tissue

properties such as viscosity and iron content. Because disease processes contribute

to changes in water content and the local chemical environment, MRI is particularly

suited to study disease-related changes in soft tissues such as the brain.

2.1.1 Principles of MRI
Hydrogen Protons in a Magnetic Field

The hydrogen proton is a charged particle that spins around its rotational axis with

angular momentum
−→
P [34]. Hence, it has a magnetic moment −→µ , which is proportional

to the angular momentum:

|−→µ |= γ|−→P | (2.1)

Here, γ is the gyromagnetic ratio. The magnitude of the magnetic moment is fixed for a

given nucleus since the angular momentum of the proton is quantized and fixed. How-

ever, the direction of the magnetic moment is random. Therefore, the net magnetization

is zero in the absence of an external magnetic field.

The fundamental components of an MRI scanner are a superconducting magnet, three

magnetic field gradient coils, and an radio frequency (RF) transmitter and receiver.

The magnet produces a static magnetic field
−→
B 0 in the horizontal direction (+z). When

placed in
−→
B 0, the proton spin will precess at a fixed angle about the direction of

−→
B 0.
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Precession is the circular motion of a spinning particle’s rotation axis about another

fixed axis caused by the application of torque in the direction of the precession [35].

The torque,
−→
C , which is caused by the

−→
B 0 field trying to align the proton magnetic

moment, is given by:

−→
C =

d
−→
P

dt
=−→

µ ×−→
B0 = |−→µ ||−→B0|sinθ (2.2)

Here, θ is the angle of precession. The direction of the torque is tangential to the

direction of −→µ , which causes the precession [34]. In a short time dt, −→µ precess through

an angle dφ resulting in a change d
−→
P in the angular momentum. Trigonometry gives

the relationship that:

sindφ =
d
−→
P

|−→P |sinθ
=

−→
C dt

|−→P |sinθ
(2.3)

The approximation that sindφ = dφ holds for small dφ [34]. Combination of Equation

2.2 and 2.3 gives the angular precession frequency, also called the Larmor frequency:

ω0 =
dφ

dt
=

−→
C

|−→P |sinθ
=

−→
µ ×−→

B0

|−→P |sinθ
=

γ
−→
P ×−→

B0

|−→P |sinθ
=

γ|−→P ||−→B0|sinθ

|−→P |sinθ
= γB0 (2.4)

Parallel configuration is when the z-component of the magnetic moment is aligned

with
−→
B0. Anti-parallel configuration is when the z-component of the magnetic moment

is aligned in the opposite direction of
−→
B0. The parallel state requires less energy than

the anti-parallel state. The energy differences between the two states are:

∆E = E↑↓−E↑↑ =
γhB0

4π
−
(
−γhB0

4π

)
=

γhB0

2π
(2.5)

Here, E↑↑ is the energy of the parallel state, E↑↓ is the energy of the anti-parallel state,

and h is Planck’s constant. The two energy states are populated following Boltzmann

statistics:

N↑↓
N↑↑

= e−
∆E
kbT = e−

γhB0
2πkbT (2.6)
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Here, N↑↑ is the number of hydrogen protons in the parallel state, N↑↓ is the number

of hydrogen protons in the anti-parallel state, kb is Boltzmann’s constant, and T is

thermodynamic temperature. Assuming γhB0 << 2πkbT :

N↑↓
N↑↑

= 1− γhB0

2πkbT
=⇒ N↑↓ = N↑↑−N↑↑

γhB0

2πkbT
(2.7)

Assuming Ntot = 2N↑↑:

N↑↑−N↑↓ = Ntot
γhB0

4πkbT
(2.8)

Thus, due to a difference in energy, the number of protons in the parallel state is slightly

larger than the number of protons in the anti-parallel state, leading to a net magnetiza-

tion in the positive z-direction [34]:

M0 = Mz =
Ntot

∑
n=1

µz,n =

N↑↑

∑
n=1

γh
4π

−
N↑↓

∑
n=1

γh
4π

=
γh
4π

(N↑↑−N↑↓) (2.9)

The net magnetization has only a z-component since the vector sum of the components

on the x- and the y-axis is zero.

Inserting Equation 2.8 into Equation 2.9:

M0 = |−→M |= γ2h2B0Ntot

16π2kbT
(2.10)

Hence, the MRI signal is proportional to the field strength B0 and inversely proportional

to the temperature T .

Signal Generation

Resonance, the basis for signal generation in MRI, happens when a nucleus is exposed

to an oscillating force with a frequency close to the Larmor frequency [34]. Energy is

then transferred to the nucleus. Inside the MRI magnet, when a RF pulse with a fre-

quency equal to the Larmor frequency for hydrogen is applied, resonance occurs and

the hydrogen nuclei are excited. This leads to an increase in the number of protons in

the anti-parallel state. The RF pulse is a short-lived electromagnetic field,
−→
B1, perpen-

dicular to the
−→
B0 field.
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The
−→
B1 field produces a torque that causes the net magnetization to rotate towards the

xy-plane. For a rectangular RF pulse, the flip angle (FA), α , which is the angle through

which the net magnetization is rotated, is given as:

α = γ B1τB1 (2.11)

Here, B1 is the RF field strength in Tesla and τB1 is the time at which the RF field is

applied. As long as the RF pulse is on, all the moving magnetic moments are phase

coherent. The net magnetic moment will then precess at Larmor frequency in a plane

at an angle determined by the FA.

Relaxation

The system will return to equilibrium immediately after the pulse is switched off [34].

This process, called relaxation, includes dephasing the net magnetization to realign

with
−→
B0 and consists of two independent processes. T1-relaxation, or spin-lattice re-

laxation, is when the z-component return to equilibrium due to individual magnetic

moments releasing energy to the surrounding tissue.

The longitudinal magnetization, Mz, at time t is given by:

Mz(t) = M0 cosα +(M0 −M0 cosα)
(

1− e−
t

T 1

)
(2.12)

The relaxation time T 1 is defined as the time when t = T 1 in Equation 2.12:

Mz(T 1) = M0 cosα +(M0 −M0 cosα)
(
1− e−1)≈ 0.63M0 +0.37M0 cosα (2.13)

Equation 2.13 states that when the FA is 90◦, T 1 is how long it takes for 63% of the

original net magnetization to be restored.

T2-relaxation, or spin-spin relaxation, is when the x- and y-components return to equi-

librium due to a loss of phase coherence, also called dephasing, which happens because

of molecular dynamics resulting in a small spread in precessional frequencies [34]. The

transverse magnetization, Mxy, at time t is given by:

Mxy(t) = M0 sinα e−
t

T 2 (2.14)
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The relaxation time T 2 is defined as the time when t = T 2 in Equation 2.14:

Mxy(T 2) = M0 sinα e−1 ≈ 0.37M0 sinα (2.15)

Equation 2.15 states that when the FA is 90◦, T 2 is how long it takes before only 37%

of the transverse magnetization is left.

Spatial inhomogeneities in the
−→
B0 within the patient is another factor that contributes

to T2-relaxation [34]. Local variations in the
−→
B0 field lead to precession frequency

variations, which causes faster dephasing than in normal T2-relaxation. One source for

this variation is that designing a magnet with a perfectly uniform field over the imaging

volume is impossible. Another source is the different magnetic susceptibilities in the

different parts of the body, including surgical implants, interfaces between tissues with

very different properties, and depositions of magnetic substances such as iron.

The effects of local inhomogeneity in the
−→
B0 field are represented by a relaxation time

T 2+. The combined relaxation time T 2∗ is then given by:

1
T 2∗

=
1

T 2+
+

1
T 2

(2.16)

Both T 1 and T 2 depend on the type of tissue and field strength because the strength of

the magnetic field experienced by a hydrogen proton is affected by the electron con-

figuration in its surroundings, leading to different resonance frequencies for different

tissues [34]. Taking this into account, the resonance frequency of the hydrogen proton

is given by:

ω0 = γB0(1−σ) (2.17)

Here, σ is a shielding constant related to the electronic environment surrounding the

nucleus. Since water and lipids have different electron configurations, the protons in

the two mediums resonate at different frequencies. The resonant frequency in water

is higher than in lipids because oxygen is more electronegative than carbon, making

protons in water less shielded than protons in lipids.

Signal Detection

The MRI signal is commonly detected in quadrature using receiver coils sensitive to

magnetic flux in two orthogonal directions [34].
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A voltage will be induced in the coils according to Faraday’s law of induction when the

net magnetic moment precesses:

V ∝ −dφB

dt
(2.18)

Here, V is the induced voltage in each loop, and φB is the magnetic flux. This voltage

represents the recorded MRI signal in time.

2.1.2 Imaging Sequences
MRI pulse sequences have three components: Preparatory module, acquisition, and

recovery [36]. The preparatory module includes all pulses applied prior to phase en-

coding. An example is inversion recovery (IR), where an inversion pulse is applied.

The acquisition portion can be any pulses that generate a signal, such as spin echo or

GRE. Recovery is the relative dead time when no signals are generated, and the system

can return to equilibrium. After recovery, the cycle is repeated.

Inversion time (TI), echo time (TE), and repetition time (TR) are basic pulse sequence

parameters. TI is the time between the middle of the inversion pulse β , and the middle

of the subsequent excitation pulse α [37]. TE is the time between the middle of the

excitation pulse α and the middle of the echo. Several echo times may be defined

for sequences with multiple echoes between each pulse. TR is the time between a

pulse sequence’s beginning and the succeeding pulse sequence. This thesis uses and

describes the following imaging sequences: Magnetization-prepared rapid GRE (MP-

RAGE) and multi-echo GRE (ME-GRE).

The 3D MP-RAGE Sequence

The three-dimensional (3D) MP-RAGE sequence can acquire T1-weighted (T1W) and

proton density-weighted (PDW) images with high resolution and high contrast in a rel-

atively short amount of time [38]. A typical 3D MP-RAGE pulse sequence consists of a

cycle with three steps [39]: 1) Magnetization preparation with a 180◦ inversion pulse β

and a medium TI of 600-900 ms for contrast control. 2) Data acquisition with a spoiled

GRE sequence with a short TE of 2-4 ms and a small FA α of 5-12◦. 3) Magnetization

recovery with a long TR of around 2000 ms for additional contrast control. A spoiled

sequence is a sequence where the transverse coherences are purposely disrupted [40].

Figure 2.1 illustrates a pulse sequence diagram for the 3D MP-RAGE sequence. The

image contrast is determined by the effective TI. The resulting MP-RAGE image is

primarily T1W, but density and T2* effects are also present.
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Figure 2.1: Pulse sequence diagram for the 3D MP-RAGE sequence. The magnetization period com-
prises a non-selective RF pulse β followed by a variable delay TI. During this delay, gradients are ap-
plied for spoiling. Data acquisition is performed with a GRE sequence with a excitation pulse α . There
are NY phase encoding steps and NZ slice encoding steps. All NZ slice encoding steps are collected fol-
lowing the inversion pulse, then repeated for all NY phase encoding steps. RF = radio frequency, GZ

= slice encoding gradient, GX = frequency encoding gradient, GY = phase encoding gradient, A/D =
analog to digital converter, TI = inversion time, TE = echo time, TR = repetition time.

The 3D ME-GRE Sequence

Single GREs can be repeated to generate one or more additional GREs following

a single RF pulse [41]. This technique is known as ME-GRE. Subsequent echoes

progressively decrease in magnitude due to T2* relaxation. Figure 2.2 illustrates a

pulse sequence diagram for the 3D ME-GRE sequence with three echoes and flow-

compensation. Flow-compensation, which is employed to suppress flow artifacts and

enhance image quality, involves the inclusion of additional gradient lobes before sig-

nal readout to compensate in advance for motion-induced dephasing at the time of the

echo [42].
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Figure 2.2: Pulse sequence diagram for the 3D ME-GRE sequence with three echoes. Spoiling and
flow-compensation are performed prior to data acquisition. α is the excitation pulse. There are NY

phase encoding steps and NZ slice encoding steps. RF = radio frequency, GZ = slice encoding gradient,
GX = frequency encoding gradient, GY = phase encoding gradient, A/D = analog to digital converter,
TE = echo time, TR = repetition time.

Signal Intensity and FAs

The choice of FA is critical for determining the signal intensity and image contrast [34].

For an ideal steady-state RF spoiled GRE data acquisition, the acquired signal, S, as a

function of FA, α , is given by the Ernst Equation:

S(α) = ρ0 sinα
1−E1

1− cosα E1
E2 (2.19)

Here, ρ0 is the PrD, E1 is e−T R/T 1, TR is the repetition time, T1 is the longitudinal

relaxation time, E2 is e−T E/T 2∗ , TE is the echo time, and T 2∗ is the transverse relaxation

time [43]. Figure 2.3 show the acquired signal as a function of FA for gray matter (GM)

and white matter (WM).

The FA maximizing signal from a tissue in a spoiled GRE sequence is called the Ernst

angle and is given by:

αE = arccose−T R/T 1 (2.20)



2.1 MRI 13

An FA smaller than the Ernst angle of WM gives a PDW image, whereas an FA larger

than the Ernst angle gives a T1W image [40].

Figure 2.3: Signal intensity, S, as a function of FA, α . Generated using Equation 2.19 with TR = 29
ms, TE = 7.5 ms, ρ0,GM = 0.84, ρ0,WM = 0.68, T1GM = 1600 ms, T1WM = 900 ms, T2∗GM = 66 ms and
T2∗WM = 50 ms. WM = white matter, GM = gray matter, TR = repetition time, TE = echo time, ρ0 =
proton density, T 1 = longitudinal relaxation time, T 2* = combined transverse relaxation time.

The WM/GM contrast-to-noise ratio (CNR) for a signal with a single FA, α , is given

by:

CNRα =
|SWM(α)−SGM(α)|

σ0
(2.21)

Here, SWM and SGM are mean signal values for respectively WM and GM in a particular

region, and σ0 is image noise standard deviations for both WM and GM [43]. The T1

ratio of WM and GM restricts the contrast between WM and GM. However, the contrast

can be improved by combining images with different FAs. One approach is to subtract

a PDW image from a T1W image. The WM/GM CNR for a signal with different FAs,

(α1,α2), is given by:

CNR(α1,α2) =
|(SWM(α2)−SWM(α1))− (SGM(α2)−SGM(α1))|√

2σ0
(2.22)

Including the effects of RF inhomogeneity, the acquired GRE signal is given as:

S′(α) = ρ0 bias sin(kα)
1−E1

1− cos(kα)E1
E2 (2.23)
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Here, k is the B1 transmit field (B1t) variation and bias is the B1 receive field (B1r) vari-

ation [43]. Equation 2.23 states that a FA smaller than the Ernst angle of WM suffers

more B1t field variation than an FA large than the Ernst angle and, therefore, should

be corrected. The T1W enhanced (T1WE) image is defined by the linear subtraction

between the signal with the larger FA, α2, and the signal with the smaller FA, α1, as:

ST 1WE = S′(α2,T En)−λ S′(α1,T En) (2.24)

Here, λ = 1/ka, k is the extracted B1t field variation, a is a constant and TEn is the n-th

echo time. For ME scans, the final T1WE image is given by the average of all T1WE

images calculated from Equation 2.24 using all echoes.

Quantitative MRI

Everyday clinical practice increasingly relies on quantitative MRI, which includes

methods such as quantitative PrD, T1, T2∗, and QSM [44]. These techniques can aid

in segmenting and classifying normal and abnormal tissue types by quantifying tissue

properties. The variable FA (VFA) method has gained popularity due to its accessible

data collection for estimating T1 and PrD. The VFA method is based on acquiring a

few spoiled GREs with different FAs to quantify T1 and PrD.

Equation 2.23 can be rewritten as:

S
sin(k α)

= E1
S

tan(k α)
+ρe f f (1−E1) (2.25)

Here, ρe f f = ρ0 biasE2 is the effective PrD [44]. To obtain T1 and ρe f f , data for differ-

ent FAs can be collected, transformed, and fitted to a line with slope E1 and intercept

ρe f f (1−E1). Two measurements with suitably optimized FAs are sufficient for reli-

able PrD and T1 mapping when one angle is below the Ernst angle in Equation 2.20

and the other is above it. However, due to RF inhomogeneity, the measured FA may

not accurately reflect the actual value used to conduct the scan, resulting in significant

errors when quantifying PrD and T1, particularly at high magnetic fields [44].

For small FAs where TR«T1, Equation 2.23 can be approximated as:

S = ρe f f
kα

1+ (kα)2

α2
E

(2.26)
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Estimations of the apparent PrD and T1 can be derived from Equation 2.26:

ρapp = k ρe f f = ρ0 k biasE2 (2.27)

T 1app = T 1k2 (2.28)

Hence, if the actual FA is scaled by k, the apparent PrD is scaled by the product of

bias and k, and the apparent T1 is scaled by k2. Therefore, correcting the FAs spatially

before fitting the data using Equation 2.25 is crucial.

The iron-sensitive MRI images and maps generated in this thesis are described in Table

2.1, while the non-iron-sensitive MRI images and maps are described in Table 2.2.

The descriptions were obtained through direct communication with Sagar Buch from

SpinTech MRI via email [45]. Some of the images are currently in an experimental

phase and do not have any related publications.

Constrained reconstruction of white noise (CROWN) is a self-trained, algorithmic ap-

proach to improve image quality by increasing the signal-to-noise ration (SNR) of WM.

The WM is chosen as a reference, and by using the WM mask, the image is smoothed

to improve the SNR and increase the contrast between the WM and other tissues [45].

Maximum intensity projection (MIP) and minimum intensity projection (mIP) are pro-

jection images that are obtained from 3D datasets by selecting, respectively, the maxi-

mum and minimum intensity along lines that cut through the 3D volume [37].
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Table 2.1: Description of iron-sensitive MRI images and maps generated in this thesis. The descriptions
were obtained through direct communication with Sagar Buch from SpinTech MRI via Email [45]. An
upward-pointing arrow indicates that the signal increases with an increase in iron content, while a
downward-pointing arrow indicates that the signal decreases with an increase in iron content. FA =
flip angle, CROWN = constrained reconstruction of white noise, TE = echo time, QSM = quantitative
susceptibility mapping.

Image/map Description Signal

T2* Combined transverse relaxation time. Generated using a mono-
exponential approach for two sequences with different FAs.

↓ [46]

T2* MIP Maximum intensity projection of the T2*. ↓ [46]

CROWN T2* Same as T2*, but with CROWN to improve image quality. ↓ [46]

CROWN T2* A2 Another version of the CROWN T2*. Currently under investi-
gation as an experiment.

↓ [46]

R2* Inverted version of T2*, as R2* = 1/T2*. ↑ [46]

R2* MIP Maximum intensity projection of the R2*. ↑ [46]

CROWN R2* Same as R2*, but with CROWN to improve image quality. ↑ [46]

CROWN R2* A2 Another version of the CROWN R2*. Currently under investi-
gation as an experiment.

↑ [46]

HPF High-pass filtered phase. Used to enhance local tissues by re-
moving unwanted global fields.

↓ [47]

pSWIM Phase susceptibility-weighted imaging mapping. The maxi-
mum intensity projection of the HPF image.

↓ [47]

mpSWIM Multi-phase susceptibility-weighted imaging mapping. Similar
to pSWIM. Currently under investigation as an experiment.

↓ [47]

SWI Paramagnetic susceptibility-weighted imaging. Generated by
combining a long TE magnitude image and a high-pass filtered
long TE phase image.

↓ [31]

SWI mIP Minimum intensity projection of the SWI. ↓ [31]

meiSWIM Multi-echo iterative susceptibility weighted imaging mapping.
An iterative, geometry-constrained truncated k-space approach
to generate QSM data. Obtained from multiple echos, as op-
posed to standard QSM, which improves the quality. Certain
brain areas may be removed due to high phase gradients, creat-
ing ’holes’.

↑ [48]

meiSWIM filled Same as meiSWIM, but with estimated information filled in for
any ’holes’ in the original meiSWIM data.

↑ [48]

meiSWIM filled MIP Maximum intensity projection of the meiSWIM filled. ↑ [48]

meiSWIM HPF High-pass filtered meiSWIM. Certain brain areas may be re-
moved due to high phase gradients, creating ’holes’.

↑ [48]

meiSWIM HPF filled Same as meiSWIM HPF, but with estimated information filled
in for any ’holes’ in the original meiSWIM HPF data.

↑ [48]

tSWI True susceptibility-weighted imaging. Generated by combin-
ing the original magnitude data with the QSM data instead of
combining the original magnitude data with the HPF as for
SWI.

↓ [49]

tSWI mIP Minimum intensity projection of the tSWI. ↓ [49]

tSWI HPF High-pass filtered tSWI. ↓ [49]
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Table 2.2: Description of non-iron-sensitive MRI images and maps generated in this thesis. The de-
scriptions were obtained through direct communication with Sagar Buch from SpinTech MRI via Email
[45]. An upward-pointing arrow indicates that the signal increases with degeneration or an increase
in NM content, while a downward-pointing arrow indicates that the signal decreases with degeneration
or an increase in NM content. DG = degeneration, NM = neuromelanin, VFA = variable flip angle,
WM = white matter, CSF = cerebrospinal fluid, FA = flip angle, T 2* = transverse relaxation time, GRE
= gradient echo, SNR = signal-to-noise ratio, GM = gray matter, CSF = cerebrospinal fluid, SWI =
susceptibility-weighted imaging, TE = echo time, B1 = radiofrequency field.

Image/map Description Signal

PrD Proton density. Generated using the VFA method. ↓ (DG) [33]
CROWN PrD Same as PrD, but with CROWN to improve image quality. ↓ (DG) [33]
True PrD True proton density. The WM and CSF PrD values are

used as a reference to obtain values closer to the absolute
PrD values across the tissues.

↓ (DG) [33]

CROWN true PrD Same as true PrD, but with CROWN to improve image
quality.

↓ (DG) [33]

CROWN true PrD A Another version of the CROWN PrD. Currently under in-
vestigation as an experiment.

↓ (DG) [33]

T1 Longitudinal relaxation time. Generated using the VFA
method.

↑ (NM) [28]

T1WE T1-weighted enhanced image. Post-processing of large FA
data is used to improve the T1 contrast between tissues.

↑ (NM) [28]

simGRE Simulated gradient echo. Magnitude image for the first
echo. Utilize the derived PrD, T1, T2*, and the known
imaging parameters to simulate the acquired data using
the 3D GRE signal equation. The simulated data have im-
proved SNR.

simGREa Same as simGRE, but for the second echo.
simFLAIR Simulated fluid-attenuated inversion recovery image. Gen-

erated by utilizing the derived PrD, T1, T2*, and the
known imaging parameters through the FLAIR signal
equation.

simDIR GM Simulated double inversion recovery gray matter. Allows
for GM segmentation.

simDIR WM Simulated double inversion recovery white matter. Allows
for WM segmentation.

simDIR CSF Simulated double inversion recovery cerebrospinal fluid.
Allows for CSF segmentation.

dSWI Diamagnetic susceptibility-weighted image. Show the op-
posite contrast to the SWI and enhance the edges of para-
magnetic structures.

dSWI mIP Minimum intensity projection of the dSWI.
MRA Magnetic resonance angiogram. A map of the major arter-

ies. Generated from a short TE large FA image.
k Map of B1 transmit field variations.
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2.2 Parkinson’s Disease

2.2.1 History

Dr. James Parkinson published his monograph ’An Essay on the Shaking Palsy’ in

1817 [50]. This monograph is considered the first description of PD, named after James

Parkinson himself. Parkinson described the disease as insidious with gradually devel-

oping disabilities. He identified three main symptoms: Resting tremor, flexed posture,

and gait festination.

Tremor is a rhythmical, involuntary oscillatory movement of a body part [51]. Resting

tremor occurs when the muscle is relaxed. A resting tremor often seen in PD patients

is called ’pill-rolling’ because of circular finger and hand movements which resemble

the rolling of small objects or pills in hand [52]. A flexed posture is characterized

by thoracic kyphosis, protrusion of the head, and, in severe cases, knee flexion [53].

Thoracic kyphosis refers to the excessive forward curvature of the spine in the upper

back. Gait festination is a locomotion disturbance that involves progressive shortening

of step length, accompanied by a compensatory increase in cadence [54].

A significant milestone in the history of PD was identifying LBs, intracytoplasmic

inclusions, a pathological hallmark made by Frederick Lewy in 1912 [55]. LBs are

abnormal clumps of specific substances [56]. Located within LBs is the misfolded

protein α-synuclein, which affects chemicals in the brain and can lead to problems

with thinking, movement, behavior, and mood [57].

In 1957, Arvid Carlsson and Oleh Hornykiewicz established a link between DA defi-

ciency in the BG and PD. DA is a neurotransmitter that contributes to the regulation of

movement and emotion. The BG refers to a group of interconnected subcortical nuclei

responsible primarily for motor control and other tasks such as motor learning, execu-

tive functions and behaviors, and emotions [58]. When DA levels in the BG decrease,

it causes atypical brain activity, leading to impaired movement and other symptoms of

PD [56].

The first clinical trial in PD treatment was carried out in 1961 and included the admin-

istration of intravenous levodopa [55]. Levodopa is a precursor to DA and can be used

as a DA replacement agent for the treatment of PD. It is most effectively used to con-

trol bradykinetic symptoms. Bradykinesia is often used synonymously with akinesia

and hypokinesia.
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Bradykinesia, the slowness of a performed movement, can make simple tasks such as

walking and getting out of a chair difficult and time-consuming [59]. Akinesia refers

to loss of automatic movements (i.e. decreased ability to perform unconscious move-

ments) including blinking, smiling, or arm swing when walking [56]. Other manifesta-

tions of akinesia are freezing and prolonged time required to initiate a movement [59].

Hypokinesia refers to decreased movement amplitude, which might lead to changes in

writing. It may become hard to write, and the writing may appear small [56].

In 1982, William Langston discovered that some patients using synthetic heroin de-

veloped Parkinsonian features. The cause of this drug-induced parkinsonism was later

found to be MPTP, which is toxic to DANs [55]. DANs are the primary source of DA

in the central nervous system. They are found in the SNpc, which is rich in DA and

has a high iron content [60]. The substantia nigra (SN) is a dopaminergic nucleus lo-

cated in the midbrain of the brainstem. It is considered the primary input into the BG

circuitry and, thus, a critical element to the function of the BG.

In the late 1900s, several studies reported an increased iron deposition in the SNpc of

PD patients [61]. These reports were supported by the discovery of a significant rise

in the Fe3+-binding protein, ferritin, and a shift in the Fe2+/Fe3+ ratio in favor of Fe3+

in the SNpc. With these studies’ emergence, researchers began exploring a potential

connection between excessive iron and dopaminergic neurodegeneration in the SNpc

in PD. However, whether or not the iron deposition represents the primary event in PD

remains controversial.

2.2.2 Functional Neuroanatomy of the BG
The BG and related nuclei can be divided into input nuclei, output nuclei, and in-

trinsic nuclei [58]. Input nuclei receive information from cortical, thalamic, and nigral

sources. The caudate nucleus, the putamen, and the accumbens nucleus, together called

the striatum, are input nuclei. Output nuclei send information to the thalamus, which

projects to the cerebral cortex. The internal segments of the globus pallidus (GPi) and

the SN pars reticulata (SNpr) are output nuclei. Intrinsic nuclei send information from

the input nuclei to the output nuclei. The external segment of the globus pallidus (GPe),

the subthalamic nucleus (STN), and the SNpc are intrinsic nuclei.

Information from the input nuclei to the output nuclei can go through two pathways:

The direct and indirect pathways [58]. In the direct pathway, striatal neurons project

directly to GPi and SNpr.
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In the indirect pathway, striatal neurons project to GPe, which again project to STN,

GPi, and SNpr. DANs in the SNpc contain the DA precursor NM. NM is a pigment

that can be seen as a black color in necropsies of the human brain. Its pigmentation

increases from early childhood to young adulthood, plateaus during middle age, and

decreases in the sixth decade [61]. Functions of NM include redox activities, free radi-

cal scavenging, binding of different biomolecules, and chelation of iron [62]. NM has

been shown to yield neuroprotective properties but also to promote neurodegeneration

[63].

NM strongly binds to metals, especially iron [61]. Apart from iron in hemoglobin, the

two primary forms of non-heme iron include transferrin for transportation and ferritin

for storage [26]. Iron binds to NM in the ferric Fe3+ form. Iron, DA metabolism,

and NM balance are crucial for cell homeostasis and can be disrupted under certain

conditions [63]. NM is visible to MRI due to the paramagnetic properties of the NM-

iron complex [64].

2.2.3 Pathogenesis
In PD, DANs in the SNpc degenerate, leading to DA depletion. DA depletion shifts the

balance in BG activity toward the indirect circuit, leading to excessive activity of the

STN that overstimulates the GPi and the SNpr. Increased output from the GPi and the

SNpr over-inhibits the thalamus, reducing cortical neuronal activation associated with

movement initiation. Also, when DANs degenerate, neuronal NM breaks down and is

released from the cells, resulting in depigmentation [65].

With the advancements in MRI technology, growing evidence shows increased iron

deposition in the SNpc of PD patients [61]. Moreover, increased iron deposition has

also been observed in other brain regions in PD patients, including the putamen, the

red nucleus, and the globus pallidus. Increased tissue iron levels may saturate iron-

chelating sites on NM, and the higher concentration of toxic free iron resulting from

the weaker association between iron and NM may lead to increased production of free

radical species, which contribute to the observed neuronal damage in PD [61].

Increased nigral iron accumulation in PD appears to be stratified according to disease

motor severity and correlates with symptoms related to dopaminergic neurodegenera-

tion [66]. Other vital molecular events in the SNpc in PD include α-synuclein mis-

folding and aggregation, mitochondrial dysfunction, impairment of protein clearance,

neuroinflammation, and oxidative stress [55].
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PD is also characterized by more widespread pathology in other brain regions [67].

LC is a nucleus of NANs located within pons in the brainstem [68]. It is a significant

source of noradrenaline in the brain. Polymerization of noradrenaline produces NM,

which makes LC blue in color. In addition to DANs in the SNpc, NANs in the LC are

also degenerating, which decreases the noradrenaline content in the frontal cortices and

the hypothalamus, causing motor symptoms such as frozen gait and autonomic nerve

symptoms and non-motor symptoms such as depression and sleeping problems.

2.2.4 Treatment
Current treatments of PD are targeted at disease symptoms and are not disease-

modifying [55]. Levodopa, a precursor for DA, is the most commonly used drug for

the symptomatic treatment of PD. The drug increases DA levels in the brain, leading to

motor symptom relief. Anticholinergics, antiglutamatergics, and dopamine antagonists

are other medications available for treating PD-related motor symptoms.

Non-motor symptoms of PD are treated with a variety of drugs, depending on the pres-

ence and severity of the symptoms. Deep brain stimulation is a surgical treatment used

on patients with moderate and advanced disease with poor quality of life due to fluctu-

ating response or levodopa-unresponsive symptoms.

An individualized therapeutic approach is required since the spectrum of motor and

non-motor symptoms is broad. The development of disease-modifying treatments is

challenging due to a lack of reliable biomarkers of progression and limited pathogenic

understanding. In order to develop disease-modifying therapies, it is necessary to rec-

ognize the variable slopes of disease progression, reflecting the clinical heterogeneity of

the disease. A potential neuroprotective or disease-modifying therapy uses α-synuclein

monoclonal antibodies to minimize the accumulation of aggregated α-synuclein [69].

Another treatment in development is nicotinamide adenine dinucleotide replenishment

therapy [70].

The PD diagnosis is based on motor symptoms of DA deficiency, including bradyki-

nesia, rigidity, and tremor [24]. Motor symptoms generally appear when 50-60% of

DANs in the SNpc are already lost, limiting the effectiveness of potential neuropro-

tective therapies. Prodromal PD, the latent phase of PD, represents an opportunity for

early detection of PD. Early detection of PD could allow the initiation of neuropro-

tective therapies at a stage where a smaller percentage of DANs in the SNpc are lost,

leading to more effective treatment.
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The prodromal phase of PD can vary from 5 to more than 20 years. Non-motor clinical

biomarkers for prodromal PD include olfactory loss, constipation, REM-sleep behavior

disorder, depression, anxiety, and global cognitive deficit.

2.2.5 Motor Phenotypes

It is increasingly evident that PD is not a single entity but rather a heterogeneous neu-

rodegenerative disorder [71]. Possible stratification uses include identifying biological

subtypes that predict therapeutic response to symptomatic treatments, such as target-

ing DA deficiency, or disease-modifying treatments, such as targeting mitochondrial

dysfunction [72]. PD patients can be divided into groups based on motor symptoms,

cognitive features, age of onset, rate of progression, or a combination of these fac-

tors [73]. Most commonly, motor symptoms and age of onset are used to distinguish

patients.

Already in 1990, Jankovic et al. provided support for the existence of motor pheno-

types in PD by comparing TD patients (mean tremor score / mean PIGD score ≥ 1.5,

N = 441) with PIGD patients (mean tremor score / mean PIGD score ≤, N = 233) [7].

The PIGD group reported significantly greater subjective intellectual, motor, and oc-

cupational impairment than the tremor group. The study also found that older age at

onset combined with PIGD is associated with more functional disability than younger

age at onset with TD.

nTD patients have shown to exhibit more severe loss of cells in the ventrolateral part

of the SNpc than TD patients, which causes inhibition of the direct pathway [23]. In

contrast, TD patients have shown to exhibit a more severe neuronal loss in the medial

SNpc, which causes inhibition of the indirect pathway. Considering this evidence, it

is hypothesized that the pathophysiology of nTD PD is mainly due to abnormal BG

output [74]. In contrast, TD PD may involve additional compensatory mechanisms

downstream.

2.2.6 Imaging Biomarkers

An ideal marker for prodromal PD would confirm its presence and provide information

about the time until the onset of motor symptoms and the rate of progression [75]. Di-

rect visualization of the SNpc and the LC with neuroimaging is an attractive diagnostic

approach due to the specificity of degeneration in these brain areas.
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Transcranial ultrasound has been used for many years to visualize structures in the

midbrain. Increased echogenicity of the SNpc has been found in up to 90% of patients

with PD [75]. However, hyperechogenicity does not appear to change with time or

correlate with disease severity.

SPECT imaging can determine DA transporters (DAT) levels in the striatum, which are

responsible for the uptake and clearance of DA from the synaptic cleft [22]. DAT-

SPECT shows decreased striatal DAT uptake in patients with PD, indicating SNpc

dopaminergic dysfunction [75]. PET imaging uses radiotracers such as [18F]-FDOPA

to measure the levels of DAT and the activity of the aromatic L-amino acid decar-

boxylase enzyme in the brain, which estimates the levels of DA storage in the brain.

Exposure to ionizing radiation is a significant disadvantage of both SPECT and PET,

especially in longitudinal studies where the cumulative risk of repeated scans may be

unacceptable.

MRI is commonly used in clinical practice to differentiate between Parkinsonian syn-

dromes. However, reliable identification of the specific neurodegenerative signature of

idiopathic PD has not been possible with the imaging sequences used in the clinical

routine. Diffusion tensor imaging (DTI) has been used to assess the integrity of nigros-

triatal fibers in PD. Although reduced fractional anisotropy in the SNpc in PD patients

is reported in several studies, there is substantial variation in the results [75].

A promising finding with high field strength MRI with T2∗-weighted sequences is that

nigrosome 1 (N1) has a high signal intensity in HCs, but a signal loss in patients with

PD [76]. N1, located within the dorsolateral SNpc, is the nigral area that sustains a

maximal loss of DANs in PD. The high-intensity signal of N1 in HCs is called the

’swallowtail sign’. A follow-up study using 3T MRI with an SWI sequence replicated

this finding [77]. Another study found that higher levels of iron in the SNpc, detected

via filtered MRI phase images, were positively correlated with MDS-UPDRS III scores

and bradykinesia-rigidity subscores, but not tremor subscores [66].

NM-sensitive modified T1W sequences, such as high-resolution turbo spin echo, dis-

play high signal intensity in NM-rich areas [64]. In 2006, Sasaki et al. found that in PD

patients, the NM-MRI signal intensity in the LC and SNpc was greatly reduced, sug-

gesting depletion of NM-containing neurons. Although the use of high-resolution turbo

spin echo T1W images has been consistently applied for visualizing NM, the GRE se-

quence with a magnetization transfer contrast (MTC) has recently been demonstrated

to achieve both sharper contrast and lower variability [78].
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This thesis aims to investigate the feasibility of using multimodal MRI to differentiate

PD patients from HCs and stratify PD patients based on their motor phenotype, specifi-

cally PIGD and TD. The loss of DANs in the SNpc and NANs in the LC is characterized

by a decrease in NM content and an increase in iron content in these regions.

SWI, tSWI, and phase are qualitative iron-sensitive MRI techniques that have the po-

tential to identify iron deposition related to the loss of DANs in the SNpc and NANs in

the LC. Moreover, T2*, R2*, and meiSWIM are quantitative iron-sensitive MRI tech-

niques that can not only identify but also quantify iron deposition related to the loss of

DANs in the SNpc and NANs in the LC. As increased iron accumulation in PD appears

to be positively correlated with disease motor severity, these iron-sensitive MRI tech-

niques are promising imaging biomarkers for stratifying patients based on their motor

phenotype.

Previous studies have shown that GRE sequences with MTC, which are NM-sensitive,

can differentiate between PD patients and HCs [78]. However, in this thesis, GRE

sequences without MTC will be used, making it unlikely that NM can be identified.

However, if NM can be identified, it will show up as high intensity in the T1 map and

the T1WE image.
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Methods

3.1 Participants

A total of 81 participants (60 PD patients and 21 HCs) were included through Neu-

roSysMed’s STRAT-PARK study [4]. The study was performed in accordance with the

Declaration of Helsinki, and all data were collected following written informed con-

sent. Ethical approval for the study was obtained from the Regional Committees for

Medical and Health Research Ethics (REK) in Norway (ID 74985).

NeuroSysMed is a research center for clinical treatment in neurology headed by Hauke-

land University Hospital (HUH) and the University of Bergen. STRAT-PARK is a

population-based cohort study where a total of 1500-2000 PD patients and HC will be

recruited from three clinical centers: HUH (Bergen, Norway), St. Olavs University

Hospital (Trondheim, Norway), and the London Movement Disorders Centre (Ontario,

Canada) [4]. Participants in the STRAT-PARK study are followed at yearly visits con-

sisting of clinical investigation, neuroimaging, blood and CSF sampling, and muscle

biopsies.

This thesis analyzed MRI images and clinical data from the participants’ first visit.

Initially, data from 81 participants were collected, 76 from HUH and five from St.

Olavs University Hospital. However, the participant group from St. Olavs University

Hospital was excluded from this thesis due to being few compared to the participant

group from HUH. The gender and age of both PD patients and HCs are presented in

Table 3.1, together with the Montreal Cognitive Assessment (MoCA) score and the

Brief Smell Identification Test (B-SIT) score. The MoCA is a rapid screening tool for

mild cognitive dysfunction, while the B-SIT is a 5-minute olfactory function screening

test.
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Table 3.1: Characteristics of PD patients and HCs. All clinical features except gender are presented as
mean±standard deviation (min-max). PD = Parkinson’s disease, HC = healthy control, SD = standard
deviation, MoCA = Montreal Cognitive Assessment, B-SIT = Brief Smell Identification Test.

Status PD (n=58) HC (n=18)

Gender
Female 22 12
Male 36 6

Age [years]
Mean ± SD 69±9 65±10
Min-max 32-84 45-80

MoCA score
Mean ± SD 24±4 26±2
Min-max 15-31 22-28

B-SIT score
Mean ± SD 6±2 10±2
Min - max 0-11 6-11

3.2 Clinical Data

Table 3.2 describes patients’ clinical examinations. The severity of PD was assessed

using the MDS-UPDRS. This scale comprises four parts: part I (non-motor experiences

of daily living), part II (motor experiences of daily living), part III (motor examination),

and part IV (motor complications). The total MDS-UPDRS score includes scores from

parts I-IV.

Table 3.2: Characteristics of patients with the PIGD, TD, and indeterminate motor phenotype. All clin-
ical features except gender are presented as mean±standard deviation (min-max). PIGD = postural
instability gait difficulty, TD = tremor-dominant, MDS-UPDRS = Movement Disorder Society Unified
Parkinson’s Disease Rating Scale, MDS-NMS = Movement Disorder Society Non-Motor Rating Scale,
NMF = non-motor fluctuation, MoCA = Montreal Cognitive Assessment, B-SIT = Brief Smell Identifi-
cation Test.

Motor phenotype PIGD (n=27) TD (n=20) Indeterminate (n=11)

Gender (female, male) (12, 15) (6, 14) (4, 7)
Age [years] 70±10 (32-84) 68±8 (56-81) 70±7 (57-79)
Age of diagnosis [years] 64±11 (30-78) 64±8 (55-79) 65±11 (57-73)
Age of symptoms [years] 62±10 (29-77) 62±8 (50-77) 62±7 (54-72)
Disease duration [months] 84±50 (14-228) 66±30 (35-132) 58±22 (30-84)
MDS-UPDRS I score 10±5 (4-23) 8±4 (2-17) 8±6 (3-18)
MDS-UPDRS II score 10±6 (1-24) 7±5 (1-24) 6±3 (3-10)
MDS-UPDRS III score 26±12 (4-57) 27±10 (10-48) 26±11 (12-47)
MDS-UPDRS IV score 3±3 (0-9) 1±2 (0-7) 1±3 (0-7)
Total MDS-UPDRS score 48±18 (12-90) 43±15 (17-68) 35±11 (18-45)
Hoen & Yahr score 2.1±0.5 (1-3) 1.9±0.4 (1-2) 1.9±0.7 (1-3)
Total MDS-NMS score 60±32 (16-155) 44±24 (19-98) 51±66 (7-181)
Total MDS-NMS NMF score 1±2 (0-6) 0.2±0.7 (0-3) 0±0 (0-0)
MoCA score 24±3 (18-30) 26±4 (19-31) 21±4 (15-27)
B-SIT score 6±2 (2-10) 6±2 (3-11) 6±3 (0-10)
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The Hoehn and Yahr scale was used to describe the progression of motor symptoms,

while the MDS Non-Motor Rating Scale (MDS-NMS) was used to assess non-motor

symptoms. The MDS-NMS Non-Motor Fluctuations (NMF) subscale was used to de-

termine whether and to what extent non-motor symptoms fluctuated.

A clinician calculated the time of diagnosis, the time at which motor symptoms first

appeared, and the number of years since the onset of motor symptoms based on patient

records and converted these to the patient’s biological age. Additionally, a clinician

determined the motor phenotype of each patient based on MDS-UPDRS part III, with

the options being TD, PIGD, and indeterminate. The classification of motor phenotype

excluded patients with an indeterminate motor phenotype since they did not represent

a distinct patient group but rather a combination of PIGD and TD phenotypes.

3.3 MRI Acquisition

All imaging was conducted using a 3T Siemens Biograph mMR scanner, a simultane-

ous MRI-PET scanner manufactured by Siemens Healthineers in Erlangen, Germany.

Seventy-six participants were scanned at Haukeland University Hospital in Bergen,

Norway. A 16-channel head and neck coil was utilized for signal reception.

The imaging protocol included three sequences of particular interest to this study: A

3D MP-RAGE sequence and two triple-echo GRE sequences with different FAs, as

shown in Table 3.3. The 3D MP-RAGE sequence was chosen for its excellent T1W

contrast, rendering it suitable for normalization to a T1W template. The selection of

GRE sequences enabled the use of Strategically Acquired GRE (STAGE) imaging.

Table 3.3: Specifications of the MRI protocol. MP-RAGE = magnetization-prepared rapid gradient
echo, ME-GRE = multi-echo gradient echo, PDW = proton density weighted, T1W = T1-weighted,
FOV = field of view, TR = repetition time, TE = echo time, FA = flip angle, BW = bandwidth, TA =
acquisition time.

Sequence 3D MP-RAGE 3D ME-GRE (PDW) 3D ME-GRE (T1W)

FOV [mm] x Phase FOV 256 x 100% 384 x 75%
Scanning matrix 256 x 256 384 x 288
Slice thickness [mm] 1 1.34
Voxel size [mm3] 1 x 1 x 1 0.67 x 0.67 x 1.34
TR [ms] 2400 29
TE [ms] 2.26 7.5/15/22.5
FA [degrees] 8 6 27
Pixel BW [Hz/pixel] 200 210/160/160
TA [min:sec] 6:06 4:59
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3.4 Generating Images and Maps

STAGE Research (version 2.8.1) from SpinTech MRI (Detroit, MI, USA) was used to

create the images and maps in Table 2.1 and Table 2.2 from the two ME-GRE sequences

based on the framework proposed by Haacke et al. [43][44][79]. SPIN Research (ver-

sion 1.5.12) from SpinTech MRI (Detroit, MI, USA) was used to sort the images from

the MRI acquisition before using STAGE.

Figure 3.1 shows the data processing workflow for quantifying T1 and PrD. To calculate

T 1app, two magnitude images with FAs 6◦ and 27◦ were used together with Equation

2.25, assuming k was equal to unity everywhere.

Figure 3.1: Data processing workflow for quantifying T1 and PrD. FA = flip angle, PDapp = apparent
proton density, T1app = apparent longitudinal relaxation time, GM = gray matter, WM = white matter,
k = radio frequency transmit field variation, HPF = high-pass filtered, B1t = radio frequency transmit
field, PDc = corrected proton density, T1c = corrected longitudinal relaxation time, B1r = radio fre-
quency receive field
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A mask representing pixels containing only WM was generated based on the T 1app

map by selecting all apparent values in the 800-1200 ms range as WM. The T1 value

for WM was set to 900 ms everywhere, and a WM-estimated k map was calculated

using Equation 2.28. The resulting apparent k map was high-pass filtered to remove

low-frequency changes and allowing the tissue types to be separated by thresholding

the image. The resulting high-pass filtered image is referred to as the k map. Masks

were created for WM, GM, and CSF.

The next step was to obtain the correct k values for GM. The T1 of GM was globally

fixed to be 1600 ms to obtain a GM-estimated k map using Equation 2.28. The WM

and GM k maps were created by multiplying their respective masks with the estimated

k maps and setting values outside the range of 0.5 to 1.2 to zero to prevent the GM from

being included as WM and vice versa. These two k maps were then merged by adding

them together. To remove noise spikes, a small sliding window calculated the mean and

standard deviation, and points outside the standard deviation were set to zero. Finally,

a second-order local polynomial fit was used to estimate the global B1t field.

Once the B1t was determined, it was utilized in Equation 2.25 to obtain T1c and PDc

maps, that is, corrected T1 and PrD. The T1c and PDc maps were used to generate

an image with a specific FA that made WM and GM isointense, so that the image’s

amplitude variation would represent the B1r field. A sliding window was employed

to eliminate bright vessels and noise spikes in the WM/GM isointense image. A third-

order local polynomial fit was used to account for the relatively strong non-uniformities

of the receive coil sensitivity, particularly near the coil elements at the edge of the brain.

Once the B1r field was known, the original two FA images and PrD maps was corrected

by dividing them by the B1r field.

The rest of the STAGE data processing workflow is described in Figure 3.2. The PrD

image was subtracted from the T1W image for each of the three echoes, and the three

T1WE images were averaged according to Equation 2.24. A constant was added to the

T1WE image to avoid negative values. The SWI and tSWI images were generated from

the third echo of the 6◦ scan. The R2∗ map were calculated using the three echoes for

each scan, then averaged.

A brain mask was created using a brain extraction tool and adjusted using a phase

image quality map to eliminate areas with rapid phase changes [80][81]. The resulting

masked phase images at each echo were processed using sophisticated harmonic artifact

reduction for phase data to remove the background field.



30 Methods

Figure 3.2: STAGE data processing workflow. R2* is the reciprocal of T2*. FA = flip angle, T1 =
longitudinal relaxation time, PD = proton density, k = radio frequency transmit field variation, T2*
= transverse relaxation time, T1WE = T1-weighted enhanced image, SWI = susceptibility-weighted
image, tSWI = true susceptibility-weighted image, QSM = quantitative susceptibility map.

QSM images were generated for each echo using a truncated k-space division algorithm

[82][83]. Additionally, the R2∗ map was utilized as a geometry mask for deep GM

and veins during the iterative QSM calculation. Finally, a combined QSM image was

generated by weighted averaging of all single echo QSM images to improve the SNR

of the final QSM image.

3.5 Image Preprocessing

The images and maps from STAGE were preprocessed through co-registration and nor-

malization. Co-registration aligned the functional and structural images, while normal-

ization moved all images to a standardized space using a template.

3.5.1 Co-registration

Co-registration refers to the process of aligning functional and anatomical images. Typ-

ically, registration algorithms begin by aligning the outlines of the images [84]. The

algorithm then adjusts the relative positions of the images and assesses the correspon-

dence of the voxels in one image with those in the other for each orientation. The

registration algorithm also considers the potential differences in contrast weighting be-

tween the anatomical and functional images. Once the optimal alignment has been

determined, the transformation is applied and saved as a matrix for future use.
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Linear registration tools employ affine transformations to warp images to a template.

These transformations are referred to as linear transformations because a transforma-

tion applied in one direction along an axis is counteracted by an equal transformation

in the opposite direction. The four types of affine transformations are translation, rota-

tion, zoom, and shear, each with three degrees of freedom that can be applied along the

x-, y-, or z-axis. Consequently, affine transformations have twelve degrees of freedom.

FMRIB’s Linear Image Registration Tool (FLIRT) from the FMRIB Software Library

(FSL) was utilized to co-register the STAGE images and maps with the MP-RAGE

image [85][86][87]. The MP-RAGE image was the reference image, while the T1WE

image from STAGE was the input image. As a result, the T1WE image was aligned

with the MP-RAGE image. The linear transformation that registered the T1WE image

to the MP-RAGE image was saved as a 4x4 affine matrix. FSL FLIRT then applied the

saved transformation to all the other images and maps in Table 2.1 and Table 2.2. The

T1WE image was selected to make the transformation matrix because it resembled the

MP-RAGE image the most.

3.5.2 Normalization

Normalization is the process of transforming each brain to have the same size, shape,

and dimensions as a template. A template is a brain with standard dimensions and co-

ordinates. This thesis employed the commonly used Montreal Neurological Institute

(MNI152) template, an average of 152 T1W images of healthy adult brains. The MP-

RAGE image was normalized to the MNI152 T1 1mm brain template using Statistical

Parametric Mapping (SPM12), and the transformation was saved [88]. The same trans-

formation was then applied to the co-registered images and maps, placing them in the

standardized MNI152 1mm space. As a result, the SNpc and LC of each participant

were now in alignment with one another.

The standard normalization procedure in SPM12 was inadequate for three of the par-

ticipants. For two of them, normalization in FSL FLIRT with the MNI152 T1 1mm

brain template as a reference and the MP-RAGE image as input was performed instead

of normalization in SPM12. For the last participant, the origin and angle of the MP-

RAGE image were set manually before normalization in SPM12 for the results to be

acceptable.
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3.6 Region of Interest Analysis

One way to create a region for a region of interest (ROI) analysis is to use an atlas that

partitions the brain into anatomically distinct regions. The SNpc atlas used in this thesis

was a probabilistic atlas generated using a 3T T1W fast spin-echo NM-MRI sequence

[89][90]. The atlas was constructed by manually delineating SNpc ROIs in 27 HCs

(age 39±11 years) and registering them to the MNI152 1mm template using Advanced

Normalization Tools software. The fslmaths function in FSL was used to divide the

SNpc mask into left and right hemispheres [91].

The LC atlas used in this thesis was as a population-based probabilistic atlas generated

from magnetization transfer images of 53 healthy volunteers (aged 52 to 84 years) using

7T MRI [92][93]. Individual LC binary masks were averaged to obtain an atlas with

a resolution of 0.4x0.4x0.5 mm. The fslmaths function in FSL was used to convert

the atlas into a binary mask image with a zero threshold to prepare the atlas for further

analysis. The image was then resampled to a resolution of 1x1x1 mm using the flirt
function in FSL. Finally, a new mask image with a zero threshold was created and

divided into left and right hemispheres using the fslmaths function in FSL.

Once masks of the ROIs were created, MRI data was extracted for each participant.

The fslmaths function is FSL was used to apply masks of six structures, namely the

left SNpc, the right SNpc, the SNpc, the left LC, the right LC, and the LC, to all the 38

normalized images and maps, and compute the mean intensity of all the voxels in the

masks. This resulted in a total of 228 MRI features.

3.7 Laterality

The ROI analysis yielded mean intensities for both the left and right sides of the SNpc

and LC, as well as the total structures. However, if the left and right structures display

the same mean intensity, including both sides in the subsequent analysis is unneces-

sary. Therefore, the significance of laterality in the SNpc and the LC across all STAGE

images was determined with statistical hypothesis testing.

Different statistical methods employed in data analysis rely on assumptions about nor-

mality, such as correlation, regression, t-tests, and analysis of variance [94]. Normality

refers to a specific statistical distribution called the Gaussian distribution, also known

as the normal distribution or bell-shaped curve [95]. The Gaussian probability density

function for a random variable x is defined as follows:
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p(x) =
1√

2πσ
exp

(
−(x−µ)2

2σ2

)
(3.1)

Here, µ and σ2 are the mean and variance of x, respectively, given by:

µ = E[x] =
∫ +∞

−∞

xp(x)dx (3.2)

σ
2 = E[(x−µ)2] =

∫ +∞

−∞

(x−µ)2 p(x)dx (3.3)

Here, E[·] denotes the random variable’s mean or expected value. The normality as-

sumption is met if the data distribution is similar to the Gaussian probability density

function, meaning the values fall into a bell shape. If the two populations satisfy the

normality assumption, parametric tests can be used to compare the means of the pop-

ulations [94]. However, if the data is not normally distributed, the mean does not

adequately represent the data. In that case, non-parametric methods are employed,

comparing medians between groups.

The central limit theorem states that if a random variable is the outcome of a summation

of several independent random variables, its probability density function approaches

the Gaussian function as the number of summands tends to infinity [95]. In practice, the

central limit theorem states that when a population has N = 100 or more observations,

violation of normality is not a major issue [94]. However, since all populations in this

thesis had N < 100 observations, their normality was tested.

Two commonly utilized tests for assessing normality are the Kolmogorov-Smirnov and

the Shapiro-Wilk tests [94]. The Shapiro-Wilk test is more suitable for smaller sample

sizes (N < 50), whereas the Kolmogorov-Smirnov test is employed for larger sample

sizes (N ≥ 50).

With N = 76 participants, the Kolmogorov-Smirnov test was employed to examine the

normality of the lateral MRI features. The Kolmogorov-Smirnov test uses N indepen-

dent and identically distributed observations of the variable being studied [96]. The

empirical cumulative distribution function of the ordered observations Xi is defined as

follows:

FN(x) =
number of (elements in the sample ≤ x)

N
=

1
N

N

∑
i=1

1(−∞,x](Xi) (3.4)
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Here, the indicator function 1(−∞,x](Xi) takes the value 1 if Xi < x and 0 otherwise. The

Kolmogorov-Smirnov statistic is calculated as follows:

DN = sup
x
|FN(x)−FE(x)| (3.5)

In this equation, supx represents the supremum of the set of distances and FE(x) is the

cumulative distribution function associated with the expected probability distribution

function of the variable of interest. The null hypothesis, denoted as H0 : FN(x) = FE(x)

for all x, is rejected if DN(x) exceeds a critical value Dα at a predetermined significance

level α .

To employ the Kolmogorov-Smirnov test on the lateral MRI features, the kstest func-

tion from the scipy.stats library in Python was utilized. The cdf parameter was set

to norm, enabling the normal distribution as the expected distribution. A significance

level of 95% was selected, meaning that the null hypothesis was rejected in favor of

the alternative hypothesis if the p-value was below 0.05. The obtained p-values were

less than 0.05 for all the lateral MRI features, indicating that none followed a normal

distribution. Therefore, a non-parametric method was employed when determining the

laterality.

The Wilcoxon signed-rank test is a non-parametric paired test [97]. It tests the null hy-

pothesis that the medians of two paired datasets are identical, implying that the paired

samples originate from the same distribution. Specifically, it evaluates whether the dis-

tribution of differences between the values in the two classes is symmetric around zero.

To determine the laterality of the SNpc and the LC in the MRI images, the wilcoxon
function from the Python library scipy.stats was utilized. Three significance lev-

els were chosen: 95% (p < 0.05) to indicate images with significant laterality, 99%

(p < 0.01) to denote images with highly significant laterality, and 99.9% (p < 0.001)

to represent images with strongly significant laterality.

3.8 Preprocessing Features

Preprocessing includes the processes performed on the features prior to their utiliza-

tion. Normalizing a dataset is a typical prerequisite for numerous machine learning es-

timators. The StandardScaler function from the sklearn.preprocessing library

and the make_pipeline function from the sklearn.pipeline module in Python was

used to standardize the features by eliminating the mean and scaling them to have unit

variance [98].
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The categorical features were converted into numerical variables using encoding, where

a unique numerical value is assigned to each category in categorical features. The

LabelEncoder function from the sklearn.preprocessing library in Python was

used to encode PD/HC status, PIGD/TD motor phenotype, and gender [98]. Once the

categorical features were encoded, they could be included with any numerical features

in the classification.

3.9 Feature Selection

Working with high-dimensional data in machine learning can give rise to various prob-

lems, collectively known as the curse of dimensionality [95]. One of these problems

is that using features with high mutual information can increase complexity without

providing many benefits.

Another factor is the required generalization properties of the classifier. Generalization

refers to the classifier’s ability to work effectively with data outside the training set. In

general, the higher the ratio of the number of training observations to the number of

features, the better the generalization properties of the resulting classifier. Therefore,

for the limited number of training observations in this thesis, it was desirable to keep

the number of features to a minimum to design classifiers with good generalization

capabilities.

Feature selection is the process of selecting the essential features to reduce their num-

ber and, at the same time, retain as much of their class-discriminatory information as

possible. In this thesis, feature selection was done based on statistical hypothesis test-

ing and pairwise correlation. The goal was to identify features that resulted in a large

between-class distance and small within-class variance in the feature vector space.

3.9.1 Feature Selection Based on Statistical Testing

During the feature selection process, the initial step often involves assessing the dis-

criminatory potential of each feature individually for the specific problem at hand [95].

A common approach for this is statistical hypothesis testing. As discussed in Section

3.7, it is crucial to evaluate the normality of the data before choosing a test. The nor-

mality of features within the PD group (N = 58) was evaluated using the Kolmogorov-

Smirnov test. The test was conducted utilizing the kstest function from the Python

library scipy.stats, with the cdf parameter set to norm [98].
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Conversely, the normality of features within the HC group (N = 18), PIGD group

(N = 27), and TD group (N = 20) was assessed using the Shapiro-Wilk test. Like

the Kolmogorov-Smirnov test, the Shapiro-Wilk test examines the null hypothesis that

the data is derived from a normal distribution. It was implemented using the shapiro
function from the Python library scipy.stats [98].

For features that displayed normality (p ≥ 0.05) in both the PD and HC groups, the

discriminatory capacity in the PD/HC classification was evaluated using the Student’s

unpaired t-test. The Student’s unpaired t-test assesses whether the means estimated

from two independent samples differ significantly [97]. It is a parametric method em-

ployed through the ttest_ind function from the scipy.stats library in Python [98].

Conversely, for features that did not exhibit normality (p < 0.05) in either the PD or

HC group, the Mann-Whitney U test was used to evaluate their discriminatory ability

in the PD/HC classification. The Mann-Whitney U test tests the null hypothesis that the

medians of two independent datasets are equal. It is the non-parametric counterpart of

the Student’s unpaired t-test and was implemented using the mannwhitneyu function

from the Python library scipy.stats [98].

The same approach was applied for the comparison between the PIGD group and the

TD group. Features with a p-value of less than 0.05 were deemed significant, features

with a p-value of less than 0.01 were considered highly significant, and features with

a p-value of less than 0.001 were regarded as strongly significant. These groups of

features were subsequently employed for the classification tasks.

The distribution of different classes was visualized using the boxplot function from

the seaborn library in Python for some of the features. The boxplot is a frequently

used graphical technique for analyzing univariate data [99]. The boxplot is constructed

in four steps. The first step is to draw a line at the height of the sample median Q2.

Then, draw a box from the first quartile Q1 to the third quartile Q3. Q1 is the value

under which 25% of data points are found when arranged in increasing order. Q3 is

the value under which 75% of data points are found when arranged in increasing order.

The length of this box equals the interquartile range IQR = Q3 −Q1, which is a robust

scale measure. Next, classify all points outside the fence given by

[Q1 −1.5 IQR, Q3 +1.5 IQR]

as potential outliers and mark them on the plot. Finally, draw the whiskers as the lines

that go from the ends of the box to the most remote points within the fence.
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3.9.2 Feature Selection Based on Pairwise Correlation

An alternative approach for feature selection involves removing features that share re-

dundant information with other features, which can be achieved by computing the cor-

relation coefficient between all the features. In cases where the population does not

follow a normal distribution, it is necessary to use a correlation measure that does not

rely on assumptions about the population parameters. To address this, the observations

can be ranked based on their magnitudes and calculations can be performed using these

ranks instead of the original values [100]. Spearman’s rank correlation coefficient is a

metric that captures this idea and is defined as:

ρ = 1− 6∑
n
i=1 d2

i
n(n2 −1)

(3.6)

In the Equation above, ρ represents the rank coefficient of correlation, di denotes the

difference in ranks between paired items in two series, and n represents the number

of observations. Spearman’s rank correlation coefficient assesses the strength and di-

rection of the relationship between two variables, ranging from -1, indicating a perfect

negative correlation, to +1, indicating a perfect positive correlation. A value of 0 signi-

fies no correlation.

The corr function from the pandas.DataFrame library in Python with the method
parameter set to spearman was used to compute the pairwise Spearman’s rank correla-

tion coefficient for all 228 MRI features. Then, an iterative process was applied to these

features. If the absolute correlation between two features exceeded a specific thresh-

old, one of the features was discarded. This procedure was repeated until only features

with an absolute correlation below the threshold remained. Nine different thresholds

were utilized: 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1. The resulting nine sets of

selected features were subsequently employed for classification purposes.

3.10 Differentiating PD from HC and TD from PIGD

3.10.1 Datasets

Classifying participants into PD patients and HCs involved using 12 sets of MRI fea-

tures and two sets of clinical features, resulting in 24 distinct datasets. The MRI feature

sets utilized were as follows:
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1. All MRI features.

2. Features selected based on statistical hypothesis testing.

(a) Significant features.

(b) Highly significant features.

3. Features selected based on pairwise correlation.

(a) Features with |ρ|< 0.9.

(b) Features with |ρ|< 0.8.

(c) Features with |ρ|< 0.7.

(d) Features with |ρ|< 0.6.

(e) Features with |ρ|< 0.5.

(f) Features with |ρ|< 0.4.

(g) Features with |ρ|< 0.3.

(h) Features with |ρ|< 0.2.

(i) Features with |ρ|< 0.1.

Additionally, two sets of clinical features were considered:

1. No clinical features.

2. All clinical features (see Table 3.1).

Classifying patients into PIGD and TD motor phenotypes involved using 12 sets of

MRI features and three sets of clinical features, resulting in 36 distinct datasets. The

MRI feature sets used were the same as those employed for the PD/HC classification.

However, the sets of clinical features were defined as follows:

1. No clinical features.

2. Selected clinical features (see Table 3.1).

3. All clinical features (see Table 3.2).

The data was split into training and test sets using the train_test_split function

from the sklearn.model_selection library in Python [98]. The test_size param-

eter was set to 0.2 so that 80% of the data was used for training and 20% for testing. The

stratify parameter was set to the target array y to split the data stratified. Stratified

sampling is a technique that allows the splitting of the data by preserving the distri-

bution percentage of each class on the training and test set. This technique benefits

imbalanced datasets by ensuring that the learning algorithms are proportionally trained

with all classes [101].
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3.10.2 Classification

Participants were classified into PD patients and HCs, and patients were further classi-

fied into PIGD and TD, using five different supervised machine learning algorithms:

1. Logistic regression (LR) classification.
2. Decision tree (DT) classification.
3. Random forest (RaF) classification.
4. Support vector classification (SVC).
5. Extreme gradient boosting (XGBoost) classification.

These specific algorithms were selected based on their widespread recognition and ease

of implementation. XGBoost was chosen specifically for its built-in capability to han-

dle missing values by default. When dealing with datasets with clinical features and

missing values, XGBoost was the sole model for the classification tasks.

Supervised machine learning problems involve using training data with multiple fea-

tures denoted as Xi to predict a target variable yi [102]. A mathematical model predicts

yi based on the input Xi. The model’s parameters θ represent the unknown variables

learned from the available data. Training the model involves determining the optimal

values for the parameters, which yield the best fit to the training data Xi and their corre-

sponding labels yi. An objective function measures the quality of the model’s fit to the

training data. The objective function, comprising the training loss and a regularization

term, can be expressed as:

ob j(θ) = L(θ)+Ω(θ) (3.7)

Here, L represents the training loss function, quantifying the model’s predictive ac-

curacy on the training data. Ω denotes the regularization term, which controls the

complexity of the model. Managing model complexity is crucial to prevent overfitting.

The most common supervised learning tasks are classification, which involves sepa-

rating data into different categories, and regression, which focuses on fitting data to a

continuous function.

LR is a statistical model based on probability commonly employed in machine learn-

ing to address classification problems [102]. In LR, the estimation of probabilities is

accomplished using a logistic function, also known as the sigmoid function, which is

mathematically defined as:

g(z) =
1

1+ e−z (3.8)
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In this thesis, LR was conducted using the LogisticRegression function from the

sklearn.linear_model library in Python [98]. The class_weight hyperparameter

was set to balanced to address the class imbalance in the input data. This adjustment

ensured that the weights were inversely proportional to the class frequencies, effec-

tively handling the class imbalance issue. Apart from that, default hyperparameters

were utilized. The DT, RaF, and SVC classifications used the same hyperparameter

configuration.

DT is a non-parametric supervised learning method [102]. The DT learning process

involves classifying instances by traversing the tree from the root to the appropriate

leaf nodes. Each node corresponds to an attribute, and the instance is classified based

on the attribute value determined by that node. The most commonly used criteria for

splitting in DT is the Gini impurity which is defined as:

Gini(E) = 1−
c

∑
i=1

p2
i (3.9)

In this thesis, DT was performed using the DecisionTreeClassifier function from

the sklearn.tree library in Python [98].

RaF is an ensemble classification technique [102]. This method employs parallel en-

sembling by training multiple DT classifiers in parallel on different subsets of the

dataset, and the final result is obtained through majority voting or averaging. In this

thesis, RaF was implemented using the RandomForestClassifier function from the

sklearn.ensemble library in Python [98].

SVC is a specific implementation of a support vector machine. In SVC, a hyperplane or

a set of hyperplanes is constructed in high-dimensional space [102]. The idea is to find

a hyperplane that maximizes the distance from the nearest training data points in each

class, as a larger margin generally leads to a lower generalization error of the classi-

fier. In this thesis, SVC was performed using the SVC function from the sklearn.svm
library in Python [98].

XGBoost is a variant of gradient boosting, which, similar to RaF, is an ensemble learn-

ing algorithm that combines multiple individual models, typically DTs [102]. XGBoost

calculates second-order gradients of the loss function to minimize loss and utilizes ad-

vanced regularization techniques such as L1 and L2 regularization to address overfit-

ting, thereby enhancing model generalization and performance. In this thesis, XGBoost

was implemented using the XGBClassifier function from the xgb library in Python.

Default hyperparameters were utilized.
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3.10.3 Evaluation
The Confusion Matrix

Evaluating a classifier’s predictive performance is crucial to determine its usefulness

and compare it with other methods [103]. The evaluation is conducted on test data that

the machine learning model has not been exposed to before. In binary classification, the

data is divided into two distinct classes: positives and negatives. The binary classifier

then assigns each data instance as either positive or negative. This classification results

in four possible outcomes: two correct classifications, namely true positives (TP) and

true negatives (TN), and two incorrect classifications, namely false positives (FP) and

false negatives (FN).

The confusion_metrics function in the sklearn.metrics library in Python was

used to compute a confusion matrix on the test data for each classification [98]. A

confusion matrix is a 2x2 matrix with elements A(i, j), representing the number of data

points whose actual class label is i and were classified as class j [95]. Figure 3.3 shows

the layout of a binary confusion matrix.

Figure 3.3: The layout of a binary confusion matrix. PP = predicted positive, PN = predicted negative.

In the PD/HC classification: P represents PD patients, N represents HCs, PP represents

participants classified as PD patients, PN represents participants classified as HCs, TP

represents PD patients correctly classified, FN represents PD patients wrongly classi-

fied, FP represents HCs wrongly classified, and TN represents HCs correctly classified.
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In the PIGD/TD classification: P represents TD patients, N represents PIGD patients,

PP represents patients classified as TD patients, PN represents patients classified as

PIGD patients, TP represents TD patients correctly classified, FN represents TD pa-

tients wrongly classified, FP represents PIGD patients wrongly classified, and TN rep-

resents PIGD patients correctly classified.

Due to the small sample sizes, the confusion matrix was significantly influenced by

choice of random_state hyperparameter in the train/test split. Therefore, one hundred

train/test splits were conducted with random_state ranging from 0 to 99. The 100

resulting confusion matrices were then averaged.

The ideal binary classifier has a confusion matrix with TP=P, FN=0, FP=0, and TN=N.

However, in reality, this is rarely the case. Therefore, the elements in the confusion

matrix are often combined to make metrics that can evaluate binary classifiers.

Precision and Recall

Previous research has indicated that precision and recall are appropriate metrics for

evaluating binary classifiers on imbalanced datasets [103]. Precision refers to the per-

centage of data points classified as class i, whose actual class label is i [95]. The pre-

cision of the negative class is referred to as the negative predictive value (NPV) given

by:

NPV =
T N
PN

=
T N

T N +FN
(3.10)

A model with low NPV may identify many negatives, but its selection process is prone

to noise, resulting in numerous false negative predictions. On the other hand, a model

with high NPV accurately identifies true negatives, even if it may miss some negatives.

The precision of the positive class is referred to as the positive predictive value (PPV)

given by:

PPV =
T P
PP

=
T P

T P+FP
(3.11)

A model with low PPV may identify many positives, but its selection process is prone

to noise, resulting in numerous false positive predictions. On the other hand, a model

with a high PPV accurately identifies true positives, even if it may miss some positives.

Macro average precision (MAP) is defined as the arithmetic average of the two classes’

precision given by:

MAP =
NPV +PPV

2
(3.12)
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Weighted average precision (WAP) is defined as the weighted mean of the two classes’

precision given by:

WAP =
P

P+N
·PPV +

N
N +P

·NPV =
P ·PPV +N ·NPV

P+N
(3.13)

The recall is the percentage of data points with true class label i, correctly classified in

that class [95]. The recall of the negative class is referred to as the true negative rate

(TNR), also called the specificity, and is given by:

T NR =
T N
N

=
T N

T N +FP
(3.14)

A model with high TNR effectively detects negative cases in the data, even though it

may also mistakenly identify some positive cases as negative. Conversely, a model

with low TNR fails to find a significant portion of the negative cases in the data. The

recall of the positive class is referred to as the true positive rate (TPR), also called the

sensitivity, and is given by:

T PR =
T P
P

=
T P

T P+FN
(3.15)

A model with high TPR effectively detects positive cases in the data, even though it

may also mistakenly identify some negative cases as positive. Conversely, a model

with low TPR fails to find a significant portion of the positive cases in the data. Macro

average recall (MAR) is defined as the arithmetic average of the two classes’ recall

given by:

MAR =
T PR+T NR

2
(3.16)

Weighted average recall (WAR) is defined as the weighted mean of the two classes’

recall given by:

WAR =
P

P+N
·T PR+

N
N +P

·T NR =
P ·T PR+N ·T NR

P+N
(3.17)

In an ideal scenario, a model should identify all positive cases accurately while min-

imizing the number of false positives and identify all negative cases accurately while

minimizing the number of false negatives. However, there is often a trade-off between

precision and recall.
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The F1 Score and the Classification Report

The F1 score, also known as the dice similarity coefficient when applied to binary data,

is a metric that combines precision and recall by calculating their harmonic mean. The

F1 score of the negative class is referred to as the negative F1 (NF1) score and is given

by:

NF1 =
2NPV ·T NR
NPV +T NR

=
2T N

2T N +FN +FP
(3.18)

The F1 score of the positive class is referred to as the positive F1 (PF1) score and is

given by:

PF1 =
2PPV ·T PR
PPV +T PR

=
2T P

2T P+FP+FN
(3.19)

The macro average F1 (MAF1) score is defined as the arithmetic average of the two

classes’ F1 score given by:

MAF1 =
PF1+NF1

2
(3.20)

The weighted average F1 (WAF1) score is defined as the weighted mean of the two

classes’ F1 score given by:

WAF1 =
P

P+N
·PF1+

N
N +P

·NF1 =
P ·PF1+N ·NF1

P+N
(3.21)

When both precision and recall are high, the model will attain a high WAF1 score,

whereas low values for both precision and recall will lead to a low WAF1 score. A

model with either high precision or high recall, while the other metric is low, will

achieve a moderate WAF1 score. The WAF1 score can be interpreted as a measure of

the model’s overall performance on a scale from 0 to 1, where 1 represents the best

performance.

The WAF1 score is widely used in classification models as it yields reliable results for

balanced and imbalanced datasets while considering the model’s precision and recall

capabilities [103]. The WAF1 score was therefore chosen as the primary evaluation

metric in this thesis. The classification_report function in the sklearn.metrics
library in Python was used to build a classification report, which is a text report showing

the main classification metrics, on the test data for each classification [98]. Figure 3.4

shows the layout of a binary classification report. In addition to the metrics defined in

the previous sections, it includes accuracy (ACC), which is defined as the percentage

of correct classifications:

ACC =
T P+T N

P+N
=

T P+T N
T P+T N +FP+FN

(3.22)
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Figure 3.4: The layout of a binary classification report.

The WAF1 score and other evaluation metrics were significantly influenced by choice

of random_state in the train/test split due to the small sample sizes. Therefore, one

hundred train/test splits were conducted with random_state ranging from 0 to 99. The

100 resulting classification reports were then averaged. The combination of dataset and

classifier that yielded the highest WAF1 score was considered the best.

Interpreting WAF1 scores lacks a standardized approach as it heavily relies on the spe-

cific case and dataset. However, comparing the score to the best achievable result with-

out knowledge can provide insight into its quality. In the PD/HC classification scenario,

the test set comprised 12 PD and 4 HC cases. Since PD represents the majority class,

the best outcome is achieved by classifying all participants as PD without any prior in-

formation. Consequently, the WAF1 score without prior knowledge was determined to

be 0.64 using Equation 3.21, Equation 3.19, and Equation 3.18. This score is referred

to as the neutral WAF1 score for the PD/HC classification.

In the PIGD/TD classification, the test set comprised 6 PIGD and 4 TD cases. Without

prior knowledge, the optimal outcome is achieved by classifying all patients as PIGD.

Consequently, the WAF1 score without prior knowledge was determined to be 0.45

using Equation 3.21, Equation 3.19, and Equation 3.18. This score is referred to as the

neutral WAF1 score for the PIGD/TD classification.

In general, if the WAF1 score for a classifier surpasses the neutral WAF1 score, it

implies that the dataset provides additional information that enhances the performance

of the classification. Moreover, the more significant the difference between a classifier’s

WAF1 score and the neutral WAF1 score, the better its performance.
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Feature Evaluation

To identify biomarkers for differentiating PD from HC and PIGD from TD, under-

standing the interaction of features in the classifier’s prediction is crucial. This involves

determining the importance of features in the classification. One way to do this is us-

ing permutation feature importance [104]. The permutation importance of a feature

is measured by calculating the increase in the model’s prediction error after permut-

ing the feature [105]. A feature is important if shuffling its values increases the model

error, and unimportant if shuffling its values leaves the model error unchanged. The

permutation feature importance technique benefits from being model agnostic [106].

The permutation_importance function in the sklearn.inspection library in

Python was used to compute permutation importances for all features for each classifi-

cation [98]. The permutation feature importance was computed on test data to highlight

which features contribute the most to the generalization power of the inspected model

[105]. The scoring hyperparameter was set to f1_weighted to use WAF1 as score.

The Scikit-learn permutation importance algorithm comprises the following steps

[106]:

1. Compute the reference score s of the model m on the data D.

2. For each feature j in D:

(a) For each repetition k in 1, ...,K:

i. Randomly shuffle column j of dataset D to generate a corrupted version

of the data named D̃k, j.

ii. Compute the score sk, j of the model m on corrupted data D̃k, j.

(b) Compute importance i j for feature j defined as:

i j = s− 1
K

K

∑
k=1

sk, j (3.23)

Due to the small sample sizes, the permutation importances were significantly influ-

enced by the choice of random_state hyperparameter in the train/test split. There-

fore, one hundred train/test splits were conducted with random_state ranging from

0 to 99. The 100 resulting permutation importances for each feature were then aver-

aged. The features with the highest permutation importance were considered the most

important. Additionally, the closer the permutation importance of a feature were to the

WAF1 score, the more important it was considered.
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Results

4.1 Generating Images and Maps

Figure 4.1 presents the images acquired from the two ME-GRE sequences described

in Table 3.3, specifically for one of the TD patients. The corresponding iron-sensitive

MRI images and maps generated for this patient are displayed in Figure 4.2, while the

non-iron-sensitive MRI images and maps are shown in Figure 4.3. The quality of the

images and maps was deemed adequate for further analysis.

Figure 4.1: Images acquired from the two ME-GRE sequences for one of the TD patients. FA1 = 6◦,
FA2 = 27◦, TE1 = 7.5 ms, TE2 = 15 ms, TE3 = 22.5 ms. FA = flip angle, TE = echo time, ME-GRE =
multi-echo gradient echo, TD = tremor dominant.
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Figure 4.2: Iron-sensitive MRI images and maps for one of the TD patients. T2* = transverse re-
laxation time, MIP = maximum intensity projection, CROWN = constrained reconstruction of white
noise, HPF = high-pass filtered phase, pSWIM = phase susceptibility-weighted imaging mapping, mp-
SWIM = multi-phase susceptibility-weighted imaging mapping, SWI = susceptibility-weighted image,
mIP = mimimum intensity projection, meiSWIM = multi-echo iterative susceptibility-weighted imag-
ing mapping, tSWI = true susceptibility-weighted image, MRI = magnetic resonance imaging, TD =
tremor-dominant.
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Figure 4.3: Non-iron-sensitive MRI images and maps for one of the TD patients. PrD = proton density,
CROWN = constrained reconstruction of white noise, T1WE = T1-weighted enhanced image, simGRE
= simulated gradient echo, simFLAIR = simulated fluid-attenuated inversion recovery, simDIR = sim-
ulated double inversion recovery, GM = gray matter, WM = white matter, CSF = cerebrospinal fluid,
dSWI = diamagnetic susceptibility-weighted imaging, mIP = mimimum intensity projection, MRA =
magnetic resonance angiogram, k = radio frequency transmit field variation, MRI = magnetic reso-
nance imaging, TD = tremor-dominant.

4.2 Region of Interest Analysis

Visual inspection showed acceptable co-registration and normalization in the midbrain

for all participants. Figure 4.4 shows the SNpc and LC mask outline in all participants’

co-registered and normalized T1WE images. The SNpc mask is outlined in red, and the

LC mask is outlined in blue. The quality of the normalization was deemed sufficient

for further analysis.
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Figure 4.4: Mask outlines of the SNpc and the LC in the normalized T1WE image for all participants.
The SNpc is outlined in red and the LC is outlined in blue. SNpc = substantia nigra pars compacta, LC
= locus coeruleus, T1WE = T1-weighted enhanced.
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4.3 Laterality

MRI images displaying significant SNpc and LC laterality are presented in Table 4.1.

The p-values were calculated using the Wilcoxon signed-rank test. As participants

demonstrated significant laterality across multiple images, it became necessary to con-

sider the left and right components of the SNpc and LC as distinct features in the

subsequent analysis.

Table 4.1: MRI features with statistically significant laterality. The p-values were calculated using the
Wilcoxon signed-rank test. SNpc = substantia nigra pars compacta, LC = locus coeruleus, CROWN
= constrained reconstruction of white noise, PrD = proton density, T2* = transverse relaxation time,
HPF = high-pass filtered phase, k = radio frequency transmit field variation, SWI = susceptibility-
weighted imaging, T1 = longitudinal relaxation time, T1WE = T1-weighted enhanced, simDIR = sim-
ulated double inversion recovery, CSF = cerebrospinal fluid, GM = gray matter, WM = white matter,
simFLAIR = simulated fluid-attenuated inversion recovery, simGRE = simulated gradient echo, tSWI =
true susceptibility-weighted imaging, MRA = magnetic resonance angiogram, mIP = mimimum inten-
sity projection, MRI = magnetic resonance imaging.

Level of significance Structure Images/maps

Strongly significant
(p < 0.001)

SNpc CROWN PrD, CROWN T2*, CROWN T2* A2, CROWN true
PrD, CROWN true PrD A, HPF, k, PrD, SWI, T1, T1WE,
simDIR CSF, simDIR GM, simDIR WM

LC CROWN PrD, CROWN R2*, CROWN T2*, CROWN true PrD,
CROWN true PrD A, k, PrD, R2*, T1, T2*, simDIR CSF, sim-
FLAIR, simDIR WM, simGREa

Highly significant
(0.001 < p < 0.01)

SNpc CROWN R2*, true PrD, tSWI HPF

LC CROWN R2* A2, CROWN T2* A2, T1WE, true PrD

Significant
(0.01 < p < 0.05)

SNpc CROWN R2* A2, MRA, SWI mIP, T2*, tSWI

LC simGRE

4.4 Feature Selection Based on Statistical Testing

Table 4.2 displays the structures and MRI images demonstrating statistically significant

differences between PD patients and HCs. The p-values were obtained using the Mann-

Whitney U test. PD patients exhibited a significantly higher mean intensity in the

simGRE image than HCs in all LC regions. Furthermore, the mean intensity in the

simDIR CSF image was significantly higher for PD patients than for HCs in the SNpc.

Figure 4.5 presents a boxplot illustrating the distribution of simGRE mean intensity

across each class for every part of the LC.
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Table 4.2: MRI features with statistically significant differences between PD patients and HCs. The p-
values were determined using the Mann-Whitney U test. The highest median for each structure in each
image is highlighted in boldface. Q1 = first quartile, Q3 = third quartile, PD = Parkinson’s disease, HC
= healthy control, LC = locus coeruleus, SNpc = substantia nigra pars compacta, simGRE = simulated
gradient echo, simDIR CSF = simulated double inversion recovery cerebrospinal fluid, MRI = magnetic
resonance imaging.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

simGRE LC
Total 556 (520 - 565) 531 (491 - 550) 0.02*
Left 554 (512 - 567) 527 (474 - 550) 0.03*
Right 555 (538 - 566) 541 (516 - 548) 0.008**

simDIR CSF SNpc Total 16 (3 - 52) 2 (0 - 13) 0.02*

* Significant difference between PD and HC (p < 0.05).
** Highly significant difference between PD and HC (p < 0.01).

Figure 4.5: Distribution of mean intensity in the left LC (p = 0.03), the right LC (p = 0.008), and the
LC (p = 0.02) in the simGRE image for PD patients and HCs. simGRE = simulated gradient echo, LC
= locus coeruleus, PD = Parkinson’s disease, HC = healthy control.

Appendix A includes the p-values associated with the discrimination of PD from HCs

across various structures and MRI images. Non-significant differences between PD and

HC can be referred to as trends. There was a trend indicating that PD patients had a

higher mean intensity in the SNpc compared to HCs in the R2* maps and the meiSWIM

maps. Conversely, there was a trend indicating that HCs had a higher mean intensity

in the SNpc compared to PD patients in the T2* maps, SWI images, the tSWI images,

and the PrD maps. Moreover, there was a trend indicating that PD patients had a higher

mean intensity in the LC compared to HCs in the meiSWIM maps.
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Table 4.3 displays the structures and MRI images demonstrating statistically significant

differences between patients with PIGD and TD motor phenotypes. The p-values were

calculated using the Student’s unpaired t-test for normally distributed populations and

the Mann-Whitney U test for non-normally distributed populations.

Table 4.3: MRI features with statistically significant differences between PIGD patients and TD pa-
tients. The p-values were calculated using the Student’s unpaired t-test for populations with normal
distribution and the Mann-Whitney U test for non-normally distributed populations. The highest me-
dian/mean for each structure in each image is highlighted in boldface. Q1 = first quartile, Q3 = third
quartile, SD = standard deviation, PIGD = postural instability gait difficulty, TD = tremor-dominant,
SNpc = substantia nigra pars compacta, LC = locus coeruleus, simDIR = simulated double inversion
recovery, GM = gray matter, CROWN = constrained reconstruction of white noise, PrD = proton den-
sity, simGRE = simulated gradient echo, WM = white matter, CSF = cerebrospinal fluid, k = radio
frequency transmit field variation, MRI = magnetic resonance imaging.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

simDIR GM

SNpc
Total 66±21 89±30 0.004**
Left 74±26 95±33 0.02*
Right 58±25 83±30 0.003**

LC
Total 105±29 127±25 0.008**
Left 105±31 126±26 0.02*
Right 105±29 128±25 0.006**

CROWN PrD SNpc Right 635±29 654±32 0.04*

CROWN true PrD A SNpc Right 760±30 781±35 0.03*

simGREa SNpc
Total 553±22 566±17 0.03*
Left 550±22 563±17 0.03*

simDIR WM SNpc Right 274±65 231±69 0.04*

simDIR CSF SNpc Total 34 (5 - 85) 8 (2 - 31) 0.03*

k

SNpc
Total 1273±50 1240±46 0.03*
Left 1270±50 1238±46 0.03*
Right 1275±51 1242±47 0.03*

LC
Total 1228±52 1193±52 0.03*
Left 1234±52 1199±51 0.03*
Right 1222±52 1188±52 0.03*

* Significant difference between PIGD and TD (p < 0.05).
** Highly significant difference between PIGD and TD (p < 0.01).

A significantly higher mean intensity was observed for TD patients compared to PIGD

patients in all regions of the SNpc and the LC in the simDIR GM image. Furthermore,

TD patients exhibited significantly higher mean intensity than PIGD patients in the

following regions: the SNpc in the CROWN PrD map, the SNpc in the CROWN true

PrD A map, and the left SNpc and the SNpc in the simGREa image.
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Conversely, PIGD patients demonstrated significantly higher mean intensity than TD

patients in the right SNpc in the simDIR WM image, the SNpc in the simDIR CSF

image, and all SNpc and LC regions in the k map.

Figure 4.6 presents a boxplot showcasing the distribution of simDIR GM mean inten-

sity for each part of the SNpc across each class. Likewise, Figure 4.7 displays a boxplot

illustrating the distribution of simDIR GM mean intensity for each part of the LC across

each class.

Figure 4.6: Distribution of mean intensity in the left SNpc (p = 0.02), the right SNpc (p = 0.003),
and the SNpc (p = 0.004) in the simDIR GM image for PIGD patients and TD patients. simDIR GM
= simulated double inversion recovery gray matter, SNpc = substantia nigra pars compacta, PIGD =
postural instability gait difficulty, TD = tremor-dominant.

Figure 4.7: Distribution of mean intensity of the left LC (p = 0.02), the right LC (p = 0.006), and the
LC (p = 0.008) in the simDIR GM image for PIGD patients and TD patients. simDIR GM = simulated
double inversion recovery gray matter, LC = locus coeruleus, PIGD = postural instability gait difficulty,
TD = tremor-dominant.
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Appendix B includes the p-values related to the differentiation of PIGD from TD across

all structures and MRI images. A trend indicated that PIGD had a higher mean intensity

in the SNpc compared to TD in the R2* maps. Conversely, there was a trend indicating

that TD had a higher mean intensity in the SNpc compared to PIGD in the PrD maps.

Furthermore, there was a trend indicating that PIGD had a higher mean intensity in the

LC compared to TD in the T2* maps and the meiSWIM maps.

4.5 Feature Selection Based on Pairwise Correlation

Table 4.4 presents the structures and MRI images with pairwise absolute Spearman’s

rank correlation coefficients below 0.7, while Table 4.5 showcases the structures and

MRI images with pairwise absolute Spearman’s rank correlation coefficients between

0.7 and 0.9. These nine sets of MRI features were further used to classify patients based

on PIGD/TD motor phenotype.

Table 4.4: MRI features with pairwise absolute Spearman’s rank correlation coefficients |ρ| = below
0.7. SNpc = substantia nigra pars compacta, LC = locus coeruleus, CROWN = constrained recon-
struction of white noise, PrD = proton density, HPF = high-pass filtered phase, k = radio frequency
transmit field variation, MRA = magnetic resonance angiogram, T2* = transverse relaxation time,
T1WE = T1-weighted enhanced, mpSWIM = multi-phase susceptibility-weighted imaging mapping,
simDIR = simulated double inversion recovery, CSF = cerebrospinal fluid, MIP = maximum intensity
projection, simGRE = simulated gradient echo, WM = white matter, meiSWIM = multi-echo iterative
susceptibility-weighted imaging mapping, simFLAIR = simulated fluid-attenuated inversion recovery,
SWI = susceptibility-weighted imaging, GM = gray matter, dSWI = diamagnetic susceptibility-weighted
imaging, mIP = mimumum intensity projection, tSWI = true susceptibility-weighted imaging, MRI =
magnetic resonance imaging.

Coefficient Structure Images/maps

|ρ|< 0.1 SNpc CROWN PrD, CROWN R2*

0.1 ≤ |ρ|< 0.2 SNpc HPF

0.2 ≤ |ρ|< 0.3
SNpc k, MRA

LC HPF

0.3 ≤ |ρ|< 0.4
SNpc CROWN T2*, T1WE, mpSWIM, simDIR CSF

LC CROWN PrD, CROWN R2*, R2* MIP, simGRE

0.4 ≤ |ρ|< 0.5
SNpc simDIR WM, simGREa

Right SNpc simDIR CSF

LC meiSWIM, simFLAIR

0.5 ≤ |ρ|< 0.6
SNpc R2* MIP, SWI, simGRE

LC MRA, SWI, mpSWIM, simDIR GM, simDIR WM, simGREa

0.6 ≤ |ρ|< 0.7
SNpc T2* MIP, T2*, True PrD, dSWI mIP, meiSWIM, simFLAIR, tSWI

LC R2*, SWI mIP, T2* MIP, meiSWIM HPF
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Table 4.5: MRI features with pairwise absolute Spearman’s rank correlation coefficients |ρ| = be-
tween 0.7 and 0.9. SNpc = substantia nigra pars compacta, LC = locus coeruleus, PrD = proton den-
sity, SWI = susceptibility-weighted imaging, mIP = mimumum intensity projection, T1 = longitudinal
relaxation time, dSWI = diamagnetic susceptibility-weighted imaging, meiSWIM = multi-echo itera-
tive susceptibility-weighted imaging mapping, MIP = maximum intensity projection, pSWIM = phase
susceptibility-weighted imaging mapping, tSWI = true susceptibility-weighted imaging, MRA = mag-
netic resonance angiogram, CROWN = constrained reconstruction of white noise, HPF = high-pass
filtered phase, simDIR = simulated double inversion recovery, GM = gray matter, T2* = transverse re-
laxation time, CSF = cerebrospinal fluid, WM = white matter, simGRE = simulated gradient echo, mp-
SWIM = multi-phase susceptibility-weighted imaging mapping, simFLAIR = simulated fluid-attenuated
inversion recovery, MRI = magnetic resonance imaging.

Coefficient Structure Images/maps

0.7 ≤ |ρ|< 0.8

SNpc PrD, R2*, SWI mIP, T1, dSWI, meiSWIM filled MIP, pSWIM,
tSWI mIP

Left SNpc MRA, T1

Right SNpc MRA

LC meiSWIM filled MIP

Right LC CROWN PrD, meiSWIM HPF

0.8 ≤ |ρ|< 0.9

SNpc CROWN true PrD, meiSWIM HPF, simDIR GM, tSWI HPF

Left SNpc CROWN PrD, CROWN R2*, CROWN T2*, CROWN true PrD,
HPF, R2*, SWI, SWI mIP, T2*, T2* MIP, True PrD, dSWI, simDIR
CSF, simDIR WM, simGRE, simGREa, tSWI, tSWI HPF

Right SNpc CROWN T2*, HPF, R2* MIP, R2*, T1, T2* MIP, T2*, True PrD,
meiSWIM HPF, mpSWIM, pSWIM, simGREa

LC T2*, dSWI mIP, mpSWIM, tSWI, tSWI mIP

Left LC CROWN PrD, CROWN R2*, HPF, R2*, T2*, T2* MIP, meiSWIM
HPF, simFLAIR, simDIR WM

Right LC CROWN R2*, HPF, R2*, T2*, mpSWIM, simDIR CSF, simFLAIR,
simDIR WM

4.6 Differentiating PD from HC

4.6.1 Classification without Clinical Features
Table 4.6 presents the WAF1 scores for the PD/HC classification of participants without

clinical features. Four achieved an WAF1 score of 0.70 among the various combina-

tions of datasets and classifiers. These combinations included: 1) RaF classification

using significant features from Table 4.2, 2) SVC using features with |ρ| < 0.9 from

Table 4.4 and Table 4.5, 3) SVC using features with |ρ| < 0.6 from Table 4.4, and

4) SVC using features with |ρ| < 0.4 from Table 4.4. These four combinations were

therefore explored further.



4.6 Differentiating PD from HC 57

Table 4.6: WAF1 scores for the PD/HC classification of participants without clinical features. The
WAF1 score is an average of the WAF1 score of 100 train/test splits with random state 0-99. The
highest scores are highlighted in bold. The test group included 12 PD patients and 4 HCs. MRI =
magnetic resonance imaging, WAF1 = weighted average F1, LR = logistic regression, DT = decision
tree, RaF = random forest, SVC = support vector classification, XGBoost = extreme gradient boosting,
ρ = Spearman’s rank correlation coefficient.

MRI features WAF1 score
LR DT RaF SVC XGBoost

All 0.57 0.62 0.66 0.66 0.67
Significant a 0.64 0.64 0.70 0.64 0.68
Highly significant a 0.67 0.67 0.67 0.62 0.68
|ρ|< 0.9 b 0.58 0.61 0.66 0.70 0.66
|ρ|< 0.8 b 0.56 0.63 0.66 0.68 0.67
|ρ|< 0.7 b 0.55 0.62 0.66 0.68 0.63
|ρ|< 0.6 b 0.57 0.62 0.66 0.70 0.65
|ρ|< 0.5 b 0.59 0.64 0.67 0.68 0.65
|ρ|< 0.4 b 0.57 0.63 0.67 0.70 0.65
|ρ|< 0.3 b 0.52 0.61 0.65 0.62 0.62
|ρ|< 0.2 b 0.52 0.63 0.68 0.68 0.66
|ρ|< 0.1 b 0.52 0.62 0.65 0.68 0.64

a Features with (p < 0.05) in Table 4.2.
b Features with (p < 0.01) in Table 4.2.

Classification with Significant MRI Features

The RaF classifier obtained the highest WAF1 score of 0.70 for the PD/HC classifica-

tion using only significant MRI features (p < 0.05), as depicted in Table 4.6. Figure 4.8

and Table 4.7 show the accompanied confusion matrix and classification report. Most

patients were correctly classified as patients. However, the majority of HCs were also

classified as patients. The precision, recall, and F1 score were notably higher for the

patient group than for the control group. The PD group exhibited higher recall than

precision, whereas the HC group demonstrated higher precision than recall.
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Figure 4.8: Confusion matrix for the RaF classifica-
tion of PD/HC status with significant MRI features
(p< 0.05). An average of 100 train/test splits with ran-
dom state 0-99. HC = healthy control, PD = Parkin-
son’s disease, RaF = random forest, MRI = magnetic
resonance imaging.

Table 4.7: Classification report for the RaF
classification of PD/HC status with significant
MRI features (p < 0.05). An average of 100
train/test splits with random state 0-99. PREC
= precision, REC = recall, F1 = F1 score, SUP
= support, HC = healthy control, PD = Parkin-
son’s disease, ACC = accuracy, MA = macro
average, WA = weighted average, RaF = ran-
dom forest, MRI = magnetic resonance imag-
ing.

PREC REC F1 SUP

HC 0.43 0.24 0.29 4
PD 0.78 0.90 0.83 12

ACC 0.73 16
MA 0.61 0.57 0.56 16
WA 0.69 0.73 0.70 16

The permutation importances presented in Figure 4.9 reveal that the right LC in the

simGRE image was an essential feature for the RaF classification of PD/HC status with

significant MRI features (p < 0.05), followed by the SNpc in the simDIR CSF image

and the LC in the simGRE image.

Figure 4.9: Permutation importances for the RaF classification of PD/HC status with significant MRI
features (p < 0.05). An average of 100 train/test splits with random state 0-99. RaF = random forest,
MRI = magnetic resonance imaging, LC_R = right locus coeruleus, simGRE = simulated gradient
echo, SNpc = substantia nigra pars compacta, simDIR = simulated double inversion recovery, CSF =
cerebrospinal fluid, LC = locus coeruleus, LC_L = left locus coeruleus, PD = Parkinson’s disease, HC
= healthy control.

Classification with MRI Features with |ρ|< 0.9

The SVC attained the highest WAF1 score of 0.70 among all classifiers for the PD/HC

classification using only MRI features with |ρ| < 0.9, as shown in Table 4.6. Figure

4.10 and Table 4.8 show the accompanied confusion matrix and classification report.
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Figure 4.10: Confusion matrix for the SVC of PD/HC
status with MRI features with |ρ| < 0.9. An average
of 100 train/test splits with random state 0-99. HC =
healthy control, PD = Parkinson’s disease, SVC = sup-
port vector classification, MRI = magnetic resonance
imaging.

Table 4.8: Classification report for the SVC of
PD/HC status with MRI features with |ρ|< 0.9.
An average of 100 train/test splits with random
state 0-99. PREC = precision, REC = recall,
F1 = F1 score, SUP = support, HC = healthy
control, PD = Parkinson’s disease, ACC = ac-
curacy, MA = macro average, WA = weighted
average, SVC = support vector classification,
MRI = magnetic resonance imaging.

PREC REC F1 SUP

HC 0.41 0.26 0.30 4
PD 0.76 0.89 0.83 12

ACC 0.73 16
MA 0.60 0.58 0.57 16
WA 0.69 0.73 0.70 16

Most patients were correctly classified as patients, but many HCs were also classified as

patients. However, the number of correctly classified HCs was slightly higher compared

to the classification with significant MRI features. Despite this, the precision, recall,

and F1 score were still higher for the PD group than for the HC group.

The permutation importances shown in Figure 4.11 indicate that the most crucial fea-

ture for SVC classification of PD/HC status with MRI features having |ρ| < 0.9 was

the LC in the simGRE image, followed by the left LC in the simFLAIR image and the

right SNpc in the simDIR CSF image.

Figure 4.11: The eight highest permutation importances for the SVC of PD/HC status with MRI fea-
tures with |ρ|< 0.9. An average of 100 train/test splits with random state 0-99. SVC = support vector
classification, MRI = magnetic resonance imaging, ρ = Spearman’s rank correlation coefficient, LC =
locus coeruleus, simGRE = simulated gradient echo, LC_L = left locus coeruleus, simFLAIR = sim-
ulated fluid-attenuated inversion recovery, SNpc_R = right substantia nigra pars compacta, simDIR
= simulated double inversion recovery, CSF = cerebrospinal fluid, T2* = transverse relaxation time,
SNpc_L = left substantia nigra pars compacta, SNpc = substantia nigra pars compacta, PD = Parkin-
son’s disease, HC = healthy control.
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Classification with MRI Features with |ρ|< 0.6

SVC achieved the highest WAF1 score of 0.70 for the classification of PD/HC with

MRI features having |ρ|< 0.6, as presented in Table 4.6. The corresponding confusion

matrix is shown in Figure 4.12, and the classification report is provided in Table 4.9.

Compared to the classifications with significant MRI features and with MRI features

having |ρ|< 0.9, this classification correctly predicted more HCs but fewer PD patients.

Figure 4.12: Confusion matrix for the SVC of PD/HC
status with MRI features with |ρ| < 0.6. An average
of 100 train/test splits with random state 0-99. HC =
healthy control, PD = Parkinson’s disease, SVC = sup-
port vector classification, MRI = magnetic resonance
imaging.

Table 4.9: Classification report for the SVC of
PD/HC status with MRI features with |ρ|< 0.6.
An average of 100 train/test splits with random
state 0-99. PREC = precision, REC = recall,
F1 = F1 score, SUP = support, HC = healthy
control, PD = Parkinson’s disease, ACC = ac-
curacy, MA = macro average, WA = weighted
average, SVC = support vector classification,
MRI = magnetic resonance imaging.

PREC REC F1 SUP

HC 0.43 0.32 0.34 4
PD 0.79 0.85 0.82 12

ACC 0.72 16
MA 0.61 0.58 0.58 16
WA 0.70 0.72 0.70 16

The permutation importances for the SVC of PD/HC status with MRI features with

|ρ|< 0.6 are presented in Figure 4.13.

Figure 4.13: The eight highest permutation importances for the SVC of PD/HC status with MRI features
with |ρ| < 0.6. An average of 100 train/test splits with random state 0-99. SVC = support vector
classification, MRI = magnetic resonance imaging, ρ = Spearman’s rank correlation coefficient, LC
= locus coeruleus, simFLAIR = simulated fluid-attenuated inversion recovery, mpSWIM = multi-phase
susceptibility-weighted imaging mapping, SNpc = substantia nigra pars compacta, simDIR = simulated
double inversion recovery, CSF = cerebrospinal fluid, k = radio frequency transmit field variation, MIP
= maximum intensity projection, simGRE = simulated gradient echo, PD = Parkinson’s disease, HC =
healthy control.
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The LC in the simFLAIR image was an essential feature for the SVC of PD/HC status

with MRI features with |ρ| < 0.6, followed by the LC in the mpSWIM map and the

SNpc in the simDIR CSF image.

Classification with MRI Features with |ρ|< 0.4

Among all classifiers, SVC achieved the highest WAF1 score of 0.70 for the classifi-

cation of PD/HC using MRI features with |ρ| < 0.4, as presented in Table 4.6. The

corresponding confusion matrix is shown in Figure 4.14, and the classification report

is provided in Table 4.10. Compared to the other classifications without clinical fea-

tures that also yielded an WAF1 score of 0.70, this classification correctly predicted

more HCs but fewer PD patients. The precision and recall were nearly equal for both

patients and HCs.

Figure 4.14: Confusion matrix for the SVC of PD/HC
status with MRI features with |ρ| < 0.4. An average
of 100 train/test splits with random state 0-99. HC =
healthy control, PD = Parkinson’s disease, SVC = sup-
port vector classification, MRI = magnetic resonance
imaging.

Table 4.10: Classification report for the SVC of
PD/HC status with MRI features with |ρ|< 0.4.
An average of 100 train/test splits with random
state 0-99. PREC = precision, REC = recall,
F1 = F1 score, SUP = support, HC = healthy
control, PD = Parkinson’s disease, ACC = ac-
curacy, MA = macro average, WA = weighted
average, SVC = support vector classification,
MRI = magnetic resonance imaging.

PREC REC F1 SUP

HC 0.40 0.41 0.39 4
PD 0.81 0.80 0.80 12

ACC 0.70 16
MA 0.60 0.61 0.59 16
WA 0.71 0.70 0.70 16

The permutation importances shown in Figure 4.15 indicate that the LC in the simGRE

image was the most crucial feature for the SVC classification of PD/HC status using

MRI features with |ρ|< 0.4, followed by the SNpc in the simDIR CSF image and the

LC in the CROWN R2* map.
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Figure 4.15: The eight highest permutation importances for the SVC of PD/HC status with MRI fea-
tures with |ρ|< 0.4. An average of 100 train/test splits with random state 0-99. SVC = support vector
classification, MRI = magnetic resonance imaging, ρ = Spearman’s rank correlation coefficient, LC =
locus coeruleus, simGRE = simulated gradient echo, SNpc = substantia nigra pars compacta, simDIR
= simulated double inversion recovery, CSF = cerebrospinal fluid, CROWN = constrained reconstruc-
tion of white noise, HPF = high-pass filtered phase, MIP = maximum intensity projection, MRA =
magnetic resonance angiogram, k = radio frequency transmit field variation, mpSWIM = multi-phase
susceptibility-weighted imaging mapping, PD = Parkinson’s disease, HC = healthy control.

4.6.2 Classification with Clinical Features
The WAF1 scores for classifying PD/HC participants using clinical features are pre-

sented in Table 4.11. The clinical features considered include gender, age, and the

MoCA and B-SIT scores. When combined with the clinical features and utilizing XG-

Boost, two MRI datasets achieved an WAF1 score of 0.84. These datasets were: 1)

Significant features from Table 4.2, and 2) Highly significant features from Table 4.2.

These two combinations were therefore explored further.

Classification with Significant MRI Features and Clinical Features

The PD/HC status classification using significant MRI features and clinical features

with XGBoost yielded a WAF1 score of 0.84, as displayed in Table 4.11. The F1 score

was higher for the PD group than the HC group, although the difference was smaller

than in classifications without clinical data. The corresponding confusion matrix can be

seen in Figure 4.16, and the classification report is provided in Table 4.12. The majority

of both PD patients and HCs were accurately classified.



4.6 Differentiating PD from HC 63

Table 4.11: WAF1 scores for the PD/HC classification of participants with clinical features. The WAF1
score is an average of the WAF1 score of 100 train/test splits with random state 0-99. The highest scores
are highlighted in bold. The test group included 12 PD patients and 4 HCs. WAF1 = weighted average
F1, MRI = magnetic resonance imaging, XGBoost = extreme gradient boosting, ρ = Spearman’s rank
correlation coefficient.

MRI features WAF1 score
XGBoost

All 0.80
Significant a 0.84
Highly significant a 0.84
|ρ|< 0.9 b 0.80
|ρ|< 0.8 b 0.81
|ρ|< 0.7 c 0.81
|ρ|< 0.6 c 0.80
|ρ|< 0.5 c 0.82
|ρ|< 0.4 c 0.82
|ρ|< 0.3 c 0.79
|ρ|< 0.2 c 0.80
|ρ|< 0.1 c 0.79

a See Table 4.2.
b See Table 4.4 and Table 4.5.
c See Table 4.4.

Figure 4.16: Confusion matrix for the XGBoost clas-
sification of PD/HC status with significant MRI fea-
tures and clinical features. An average of 100 train/test
splits with random state 0-99. HC = healthy control,
PD = Parkinson’s disease, XGBoost = extreme gradi-
ent boosting, MRI = magnetic resonance imaging.

Table 4.12: Classification report for the XG-
Boost classification of PD/HC status with sig-
nificant MRI features and clinical features. An
average of 100 train/test splits with random
state 0-99. PREC = precision, REC = recall,
F1 = F1 score, SUP = support, HC = healthy
control, PD = Parkinson’s disease, ACC = ac-
curacy, MA = macro average, WA = weighted
average, XGBoost = extreme gradient boosting,
MRI = magnetic resonance imaging.

PREC REC F1 SUP

HC 0.77 0.62 0.66 4
PD 0.88 0.92 0.90 12

ACC 0.84 16
MA 0.83 0.77 0.78 16
WA 0.86 0.84 0.84 16
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The permutation importances presented in Figure 4.17 highlight that the B-SIT score

was the most noteworthy feature for the XGBoost classification of PD/HC status, utiliz-

ing significant MRI features and clinical features. Following the B-SIT score, the right

LC in the simGRE image and the left LC in the simGRE image exhibited significant

importance in the classification.

Figure 4.17: Permutation importances for the XGBoost classification of PD/HC status with significant
MRI features and clinical features. An average of 100 train/test splits with random state 0-99. XGBoost
= extreme gradient boosting, MRI = magnetic resonance imaging, B-SIT = Brief Smell Identification
Test, LC_R = right locus coeruleus, simGRE = simulated gradient echo, LC_L = left locus coeruleus,
LC = locus coeruleus, MoCA = Montreal Cognitive Assessment, SNpc = substantia nigra pars com-
pacta, simDIR = simulated double inversion recovery, CSF = cerebrospinal fluid, PD = Parkinson’s
disease, HC = healthy control.

Classification with Highly Significant MRI Features and Clinical Features

The XGBoost classification of PD/HC status, incorporating highly significant MRI

features and clinical features, achieved a WAF1 score of 0.84, as indicated in Table

4.11. The accompanying confusion matrix is displayed in Figure 4.18, and the de-

tailed classification report is provided in Table 4.13. The results closely resemble those

obtained from the classification with significant MRI and clinical features, showing

similar weighted average precision and F1 score.

The permutation importances presented in Figure 4.19 highlight that the B-SIT score

was an essential feature for the XGBoost classification of PD/HC status, utilizing

highly significant MRI features and clinical features, followed by the right LC in the

simGRE image.
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Figure 4.18: Confusion matrix for the XGBoost classi-
fication of PD/HC status with highly significant MRI
features and clinical features. An average of 100
train/test splits with random state 0-99. HC = healthy
control, PD = Parkinson’s disease, XGBoost = extreme
gradient boosting, MRI = magnetic resonance imag-
ing.

Table 4.13: Classification report for the XG-
Boost classification of PD/HC status with
highly significant MRI features and clinical fea-
tures. An average of 100 train/test splits with
random state 0-99. PREC = precision, REC
= recall, F1 = F1 score, SUP = support, HC
= healthy control, PD = Parkinson’s disease,
ACC = accuracy, MA = macro average, WA =
weighted average, XGBoost = extreme gradient
boosting.

PREC REC F1 SUP

HC 0.78 0.63 0.66 4
PD 0.89 0.92 0.90 12

ACC 0.85 16
MA 0.83 0.78 0.78 16
WA 0.86 0.85 0.84 16

Figure 4.19: Permutation importances for the XGBoost classification of PD/HC status with highly sig-
nificant MRI features and clinical features. An average of 100 train/test splits with random state 0-99.
XGBoost = extreme gradient boosting, MRI = magnetic resoance imaging, B-SIT = Brief Smell Iden-
tification Test, LC_R = right locus coeruleus, simGRE = simulated gradient echo, MoCA = Montreal
Cognitive Assessment, PD = Parkinson’s disease, HC = healthy control.

4.7 Differentiating PIGD from TD

4.7.1 Classification without Clinical Features
The WAF1 scores for the PIGD/TD classification of patients without clinical features

are provided in Table 4.14. Among the different combinations of datasets and clas-

sifiers, the XGBoost classification with significant MRI features achieved the highest

WAF1 score of 0.63. This combination was therefore explored further.
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Table 4.14: WAF1 scores for the PIGD/TD classification of patients without clinical features. The
WAF1 score is an average of the WAF1 score of 100 train/test splits with random state 0-99. The
highest score is highlighted in bold. The test group included 6 PIGD and 4 TD. WAF1 = weighted
average F1, MRI = magnetic resonance imaging, LR = logistic regression, DT = decision tree, RaF
= random forest, SVC = support vector classification, XGBoost = extreme gradient boosting, ρ =
Spearman’s rank correlation coefficient.

MRI features WAF1 score
LR DT RaF SVC XGBoost

All 0.52 0.52 0.50 0.51 0.53
Significant a 0.61 0.62 0.61 0.56 0.63
Highly significant a 0.62 0.59 0.57 0.59 0.59
|ρ|< 0.9 b 0.56 0.56 0.49 0.50 0.50
|ρ|< 0.8 b 0.59 0.56 0.51 0.56 0.48
|ρ|< 0.7 c 0.60 0.56 0.52 0.58 0.51
|ρ|< 0.6 c 0.61 0.58 0.55 0.59 0.51
|ρ|< 0.5 c 0.60 0.53 0.54 0.55 0.53
|ρ|< 0.4 c 0.52 0.51 0.54 0.56 0.58
|ρ|< 0.3 c 0.49 0.47 0.50 0.40 0.50
|ρ|< 0.2 c 0.55 0.50 0.51 0.50 0.50
|ρ|< 0.1 c 0.56 0.45 0.49 0.57 0.45

a See Table 4.3.
b See Table 4.4 and Table 4.5.
c See Table 4.4.

Classification with Significant MRI Features

Table 4.14 shows that the XGBoost classifier achieved the highest WAF1 score of 0.63

for classifying motor phenotype using only significant MRI features. Figure 4.20 and

Table 4.15 show the accompanied confusion matrix and classification report. The ma-

jority of both PIGD and TD cases were classified correctly. Moreover, the precision,

recall, and F1 score were higher for PIGD than for TD.

The permutation importance presented in Figure 4.21 highlights that the right SNpc in

the simDIR WM image was the most crucial feature for the XGBoost classification of

PIGD/TD motor phenotype using significant MRI features, followed by the LC in the

simDIR GM image and the right SNpc in the simDIR GM image.
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Figure 4.20: Confusion matrix for the XGBoost clas-
sification of PIGD/TD motor phenotype with signifi-
cant MRI features. An average of 100 train/test splits
with random state 0-99. XGBoost = extreme gradient
boosting, HC = healthy control, PD = Parkinson’s dis-
ease, MRI = magnetic resonance imaging.

Table 4.15: Classification report for the XG-
Boost classification of PIGD/TD motor pheno-
type with significant MRI features. An average
of 100 train/test splits with random state 0-99.
XGBoost = extreme gradient boosting, PREC =
precision, REC = recall, F1 = F1 score, SUP =
support, HC = healthy control, PD = Parkin-
son’s disease, ACC = accuracy, MA = macro
average, WA = weighted average, MRI = mag-
netic resonance imaging.

PREC REC F1 SUP

PIGD 0.71 0.69 0.69 6
TD 0.56 0.56 0.54 4

ACC 0.64 10
MA 0.64 0.63 0.61 10
WA 0.65 0.64 0.63 10

Figure 4.21: The eight highest permutation importances for the XGBoost classification of PIGD/TD
motor phenotype with significant MRI features. An average of 100 train/test splits with random state
0-99. XGBoost = extreme gradient boosting, MRI = magnetic resonance imaging, SNpc_R = right
substantia nigra pars compacta, simDIR = simulated double inversion recovery, WM = white matter,
LC = locus coeruleus, GM = gray matter, LC_L = left locus coeruleus, k = radio frequency transmit
field variation, SNpc = substantia nigra pars compacta, simGRE = simulated gradient echo, LC_R =
right locus coeruleus, LC_R = right locus coeruleus, PIGD = postural instability gait difficulty, TD =
tremor-dominant.

4.7.2 Classification with Selected Clinical Features
The WAF1 scores for the PIGD/TD classification of patients with selected clinical

features are provided in Table 4.16. The clinical features considered in this analy-

sis included gender, age, MoCA score, and B-SIT score. The XGBoost classification

with highly significant MRI features and selected clinical features achieved the highest

WAF1 score of 0.69. This combination was therefore explored further.
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Table 4.16: WAF1 scores for the PIGD/TD classification of patients with selected clinical features. The
WAF1 score is an average of the WAF1 score of 100 train/test splits with random state 0-99. The highest
score is highlighted in bold. The test group included 6 PIGD and 4 TD. WAF1 = weighted average F1,
MRI = magnetic resonance imaging, XGBoost = extreme gradient boosting, ρ = Spearman’s rank
correlation coefficient.

MRI features WAF1 score
XGBoost

All 0.52
Significant a 0.68
Highly significant a 0.69
|ρ|< 0.9 b 0.50
|ρ|< 0.8 b 0.49
|ρ|< 0.7 c 0.50
|ρ|< 0.6 c 0.52
|ρ|< 0.5 c 0.54
|ρ|< 0.4 c 0.58
|ρ|< 0.3 c 0.50
|ρ|< 0.2 c 0.52
|ρ|< 0.1 c 0.52

a See Table 4.3.
b See Table 4.4 and Table 4.5.
c See Table 4.4.

Classification with Highly Significant MRI Features and Selected Clinical Features

The classification of motor phenotype using XGBoost with highly significant MRI fea-

tures and selected clinical features yielded an WAF1 score of 0.69, as shown in Table

4.16. Figure 4.22 and Table 4.17 show the accompanied confusion matrix and clas-

sification report. The majority of both PIGD and TD cases were classified correctly.

Moreover, the precision, recall, and F1 score were higher for this classification than for

the one without clinical features.

The permutation importances presented in Figure 4.21 indicate that the right SNpc

in the simDIR GM image was an essential feature for the XGBoost classification of

PIGD/TD motor phenotype using highly significant MRI features and selected clinical

features, followed by the LC in the simDIR GM image and the MoCA score.
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Figure 4.22: Confusion matrix for the XGBoost classi-
fication of PIGD/TD motor phenotype with highly sig-
nificant MRI features and selected clinical features. An
average of 100 train/test splits with random state 0-99.
XGBoost = extreme gradient boosting, HC = healthy
control, PD = Parkinson’s disease, MRI = magnetic
resonance imaging.

Table 4.17: Classification report for the XG-
Boost classification of PIGD/TD motor pheno-
type with highly significant MRI features and
selected clinical features. An average of 100
train/test splits with random state 0-99. XG-
Boost = extreme gradient boosting, PREC =
precision, REC = recall, F1 = F1 score, SUP
= support, HC = healthy control, PD = Parkin-
son’s disease, ACC = accuracy, MA = macro
average, WA = weighted average, MRI = mag-
netic resonance imaging.

PREC REC F1 SUP

PIGD 0.77 0.75 0.75 6
TD 0.63 0.63 0.61 4

ACC 0.70 10
MA 0.70 0.69 0.68 10
WA 0.71 0.70 0.69 10

Figure 4.23: Permutation importances for the XGBoost classification of PIGD/TD motor phenotype
with highly significant MRI features and selected clinical features. An average of 100 train/test splits
with random state 0-99. XGBoost = extreme gradient boosting, MRI = magnetic resonance imaging,
SNpc_R = right substantia nigra pars compacta, simDIR = simulated double inversion recovery, GM
= gray matter, LC = locus coeruleus, MoCA = Montral cognitice assessment, LC_R = right locus
coeruleus, B-SIT = Brief Smell Identification Test, SNpc = substantia nigra pars compacta, PIGD =
postural instability gait difficulty, TD = tremor-dominant.

4.7.3 Classification with All Clinical Features
The WAF1 scores for the PIGD/TD classification of patients with all clinical features

are provided in Table 4.18. The XGBoost classification with highly significant MRI

features and all clinical features achieved the highest WAF1 score of 0.66. This com-

bination was therefore explored further.
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Table 4.18: WAF1 scores for the PIGD/TD classification of patients with all clinical features. The
WAF1 score is an average of the WAF1 score of 100 train/test splits with random state 0-99. The highest
score is highlighted in bold. The test group included 6 PIGD and 4 TD. WAF1 = weighted average F1,
MRI = magnetic resonance imaging, XGBoost = extreme gradient boosting, ρ = Spearman’s rank
correlation coefficient.

MRI features WAF1 score
XGBoost

All 0.50
Significant a 0.64
Highly significant a 0.66
|ρ|< 0.9 b 0.48
|ρ|< 0.8 b 0.51
|ρ|< 0.7 c 0.52
|ρ|< 0.6 c 0.53
|ρ|< 0.5 c 0.55
|ρ|< 0.4 c 0.54
|ρ|< 0.3 c 0.53
|ρ|< 0.2 c 0.55
|ρ|< 0.1 c 0.57

a See Table 4.3.
b See Table 4.4 and Table 4.5.
c See Table 4.4.

Classification with Highly Significant MRI Features and All Clinical Features

The classification of motor phenotype using XGBoost with highly significant MRI fea-

tures and all clinical features resulted in a WAF1 score of 0.66, as shown in Table 4.18.

Figure 4.24 and Table 4.19 respectively show the accompanied confusion matrix and

classification report. The majority of both PIGD and TD cases were classified correctly.

However, it is noteworthy that the F1 scores for PD and HC were lower than those for

the classification that incorporated only selected clinical features.

The permutation importances presented in Figure 4.25 indicate that the right SNpc in

the simDIR GM image was the most crucial feature for the XGBoost classification

of PIGD/TD motor phenotype using highly significant MRI features and all clinical

features, followed by the MoCA score and the LC in the simDIR GM image.
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Figure 4.24: Confusion matrix for the XGBoost classi-
fication of PIGD/TD motor phenotype with highly sig-
nificant MRI features and all clinical features. An av-
erage of 100 train/test splits with random state 0-99.
XGBoost = extreme gradient boosting, HC = healthy
control, PD = Parkinson’s disease, MRI = magnetic
resonance imaging.

Table 4.19: Classification report for the XG-
Boost classification of PIGD/TD motor phe-
notype with highly significant MRI features
and all clinical features. An average of 100
train/test splits with random state 0-99. XG-
Boost = extreme gradient boosting, PREC =
precision, REC = recall, F1 = F1 score, SUP
= support, HC = healthy control, PD = Parkin-
son’s disease, ACC = accuracy, MA = macro
average, WA = weighted average, MRI = mag-
netic resonance imaging.

PREC REC F1 SUP

PIGD 0.74 0.76 0.74 6
TD 0.60 0.56 0.55 4

ACC 0.68 10
MA 0.67 0.66 0.65 10
WA 0.68 0.68 0.66 10

Figure 4.25: The eight highest permutation importances for the XGBoost classification of PIGD/TD
motor phenotype with highly significant MRI features and all clinical features. An average of 100
train/test splits with random state 0-99. XGBoost = extreme gradient boosting, MRI = magnetic reso-
nance imaging, SNpc_R = right substantia nigra pars compacta, simDIR = simulated double inversion
recovery, GM = gray matter, MoCA = Montreal Cognitive Assessment, LC = locus coeruleus, MDS-
UPDRS = Movement Disorder Society Unified Parkinson’s Disease Rating Scale, PIGD = postural
instability gait difficulty, TD = tremor-dominant.





Chapter 5

Discussion

This thesis aimed to investigate the possibility of utilizing MRI to classify study partic-

ipants as patients or HCs and evaluate its capacity to stratify patients according to their

motor phenotype. Both iron-sensitive and non-iron-sensitive MRI techniques were em-

ployed to measure the loss of DANs in the SNpc and NANs in the LC. This chapter

presents the findings from Chapter 4 and discusses the methods’ limitations.

5.1 Laterality

Participants showed significant laterality in both the SNpc and the LC in multiple im-

ages. Laterality in the SNpc indicates asymmetric DAN loss in the brain, while later-

ality in the LC indicates asymmetric NAN loss. This supports previous research show-

ing PD’s asymmetric nature, with only 16.4% of patients exhibiting symmetric motor

symptoms [107]. Future studies should consider including motor function laterality as

a clinical feature and see if it correlates with the laterality in the MRI images.

5.2 Feature Selection Based on Statistical Testing

The first hypothesis in this thesis was that individuals with PD exhibit more significant

degeneration of DANs in the SNpc and NANs in the LC compared to HCs, and that

this neuronal loss can be observed through increased iron and decreased NM content.

Elevated iron levels lead to a decrease in T2* and an increase in R2* [46], a decrease

in SWI [31], an increase in meiSWIM [48], and a decrease in phase [47]. Reduced NM

content results in a decrease in T1 [28]. Moreover, PrD maps have indicated a decreased

signal in the SNpc of PD patients compared to HCs, suggesting that degeneration leads

to a reduction in the PrD signal [33].
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Significantly higher mean intensity levels were observed in PD patients compared to

HCs in all regions of the LC within the simGRE image. Moreover, within the simDIR

CSF image, PD patients exhibited significantly higher mean intensity levels in the SNpc

than HCs. Interestingly, these two images were the only ones to demonstrate significant

differences between PD patients and HCs. This finding is interesting as it contrasts with

the initial expectation that SWI-based techniques and relaxation maps would be the best

methods for distinguishing between PD patients and HCs.

The PrD maps exhibited a trend wherein higher signal intensity was observed in HCs

compared to PD patients, aligning with the hypothesis and the findings of Depierreux

et al. [33]. In the SNpc, PD patients tended to have decreased T2*, increased R2*, de-

creased SWI, and increased meiSWIM. These trends indicate that PD patients have a

greater iron accumulation in the SNpc compared to HCs, which aligns with the hypoth-

esis.

A similar trend was observed in the LC for T2*, R2*, and meiSWIM, suggesting that

PD patients have a higher iron deposition than HCs in the LC. It is important to note that

these associations did not reach statistical significance. However, they might have been

significant with larger sample sizes, particularly for HCs. No trends were observed for

the T1 map and the T1WE image. This can be because previous studies assessing NM

have employed sequences with MTC, which was not used in this thesis [78][28].

The second hypothesis addressed in this thesis proposed that individuals with PIGD

motor phenotype exhibited more pronounced degeneration of DANs in the SNpc and

NANs in the LC compared to TD patients. The mean intensity within the simDIR GM

image was significantly higher in TD patients than in PIGD patients across all SNpc and

LC regions. DIR images are sensitive to variations in T1, which is associated with NM

content [108]. The higher intensity in the simDIR GM image suggests a higher NM

content. Consequently, patients with the PIGD motor phenotype demonstrate lower

NM content than patients with the TD motor phenotype in both the SNpc and the LC.

This finding supports the hypothesis and is consistent with previous studies that have

reported elevated iron content in the SNpc of PIGD patients compared to non-PIGD

patients [12].

The anticipation was that SWI-based techniques and relaxation maps would best differ-

entiate between PIGD and TD patients. However, similar to the PD/HC classification,

the simulated images exhibited superior discriminatory capabilities.
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Among the non-simulated images, the signal intensity in the SNpc within the CROWN

PrD map and the CROWN true PrD A map was significantly higher in TD patients

compared to PIGD patients. This finding aligns well with the hypothesis, suggesting

that PIGD patients experience more pronounced SNpc degeneration than TD patients.

TD patients also exhibited significantly higher mean intensity than PIGD patients in

the left SNpc and the SNpc in the simGREa image. In contrast, PIGD patients had sig-

nificantly higher mean intensity than TD patients in the right SNpc within the simDIR

WM image, the SNpc in the simDIR CSF image, and all regions of the SNpc and the

LC in the k map.

The observed trend, where PIGD patients exhibited higher mean intensity in the SNpc

compared to TD patients within the R2* maps, indicates greater iron deposition in the

SNpc for PIGD patients, consistent with the hypothesis. However, the trends indicating

higher mean intensity in the LC for PIGD compared to TD in both the T2* maps and

meiSWIM maps contradict expectations since increased iron leads to decreased T2*

and increased meiSWIM [46][48].

5.3 Feature Selection Based on Pairwise Correlation

Consistent with expectations, several MRI features exhibited strong correlations with

each other. After eliminating features with a pairwise absolute Spearman’s rank cor-

relation coefficient |ρ| > 0.9, the number of MRI features decreased from 228 to 108.

When features with |ρ| > 0.4 were removed, no lateral MRI features were no longer

present. The two least correlated features were the CROWN PrD map and the CROWN

R2* map in the SNpc. This observation is logical, as PDW sequences aim to minimize

T2* contrast.

5.4 Differentiating PD from HC

The selection of the classifier and MRI features significantly affected the WAF1 score

when classifying participants as either PD patients or HCs without clinical features,

as depicted in Table 4.6. Among the combinations tested without clinical features,

four achieved the highest WAF1 score of 0.70: 1) RaF classification using significant

MRI features, 2) SVC with MRI features where |ρ| < 0.9, 3) SVC with MRI features

where |ρ|< 0.6, and 4) SVC with MRI features where |ρ|< 0.4. Although these four

combinations obtained the same WAF1 score, their performance varied for each class.
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The RaF classification with significant MRI features and the SVC with MRI features

where |ρ| < 0.9 accurately predicted the most PD patients. Conversely, the SVC with

MRI features where |ρ| < 0.4 achieved the highest number of correct predictions for

HCs.

The permutation importances for the top four combinations of classifiers and MRI fea-

tures when clinical features were not considered, highlighted the importance of the

following features in distinguishing between PD and HC: the LC in the simGRE im-

age, the SNpc in the simDIR CSF image, the LC in the simFLAIR image, the LC in

the mpSWIM map, and the LC in the CROWN R2* map. However, whether these fea-

tures are genuinely crucial for this specific classification task is unclear. As discussed

in Section 3.10.3, the neutral WAF1 score for the PD/HC classification is 0.64, repre-

senting the score obtained without any prior information. The achieved score, higher

than 0.64, indicates that the model has been able to generalize to some extent based on

the provided information. However, an increase of 0.06 in the WAF1 score is relatively

small.

Integrating clinical features into the classification model alongside MRI features re-

sulted in higher WAF1 scores compared to using MRI features alone. When clinical

features were included, the XGBoost classifier achieved the highest WAF1 score of

0.84 when utilizing significant MRI features and highly significant MRI features. This

score of 0.84 is significantly higher than the score obtained without clinical data, 0.70,

and the neutral score of 0.64 obtained without any information. This finding suggests

that gender, age, MoCA score, and B-SIT score provide valuable information that aids

in determining the PD/HC status of the participants. The F1 score for PD patients was

0.90, while the F1 score for HCs was 0.66, suggesting that the model performed bet-

ter in identifying PD patients than HCs. This discrepancy in performance could be

attributed to class imbalance, with PD patients being the majority class.

The permutation importances for the top two combinations of classifiers and MRI fea-

tures, with clinical features, indicated that the B-SIT score, in combination with the LC

in the simGRE image, was the most crucial feature when distinguishing between PD

and HC.

Using all MRI features, regardless of whether clinical data were included, reduced the

WAF1 score. While adding more features to a classification model often improves its

ability to distinguish between classes, there are instances where including more features

can decrease the WAF1 score [95].
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This phenomenon can be attributed to overfitting, where the model becomes overly

complex and starts to fit the noise in the training data rather than capturing the underly-

ing patterns. Consequently, although the model may perform well on the training data,

it may struggle to generalize effectively to new data, resulting in a decline in the WAF1

score. Moreover, in cases where the classes are imbalanced, adding more features can

cause the model to exhibit bias towards the majority class, leading to poor performance

on the minority class and a subsequent decrease in the WAF1 score.

5.5 Differentiating PIGD from TD

In the absence of clinical features, the WAF1 score for the PIGD/TD classification was

influenced by choice of classifier and MRI features, similar to the PD/HC classifica-

tion. The XGBoost classifier achieved the highest WAF1 score of 0.63 for the motor

phenotype classification, utilizing only significant MRI features. This score of 0.63 is

significantly higher than the neutral WAF1 score of 0.45, representing the score ob-

tained without any prior information. The permutation importances for the optimal

combination of classifier and MRI features, without clinical features, indicate that the

SNpc in the simDIR WM image and the LC in the simDIR GM image were essential

when distinguishing between PIGD and TD.

By incorporating the clinical features of age, gender, MoCA score, and B-SIT score

into the classification model alongside MRI features, higher F1 scores were achieved

compared to when using MRI features alone, suggesting that these clinical features pro-

vide valuable information for identifying the motor phenotype of PD patients. When

incorporating these clinical features, the XGBoost classifier attained the highest WAF1

score of 0.69 when utilizing highly significant MRI features. This score of 0.69 sur-

passes the score obtained without clinical data of 0.64 and the neutral score of 0.45

without any information. The F1 score for PIGD patients was 0.75, while for HC

patients, it was 0.61, indicating that the model performs slightly better in identifying

PIGD patients than TD patients, potentially due to class imbalance, with PIGD being

the majority class.

The permutation importances for the best combination of classifier and MRI features,

considering selected clinical features, indicated that the SNpc and the LC in the simDIR

GM image and the MoCA score were the most significant when distinguishing between

PIGD and TD.
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When incorporating all clinical features, including MDS-UPDRS scores, the XGBoost

classifier attained the highest WAF1 score of 0.66 when utilizing highly significant

MRI features. The decreased score observed when adding all clinical features suggests

that these features provide redundant information when classifying patients into PIGD

and TD. The permutation importances for this classification highlighted that the SNpc

and the LC in the simDIR GM image, in conjunction with the MoCA score, were the

most influential features when distinguishing between PIGD and TD.

Like the classification of PD/HC status, the classification of motor phenotype also ex-

hibited a decline in the WAF1 score when utilizing all MRI features instead of solely

significant MRI features. Several factors can contribute to this, including overfitting,

irrelevant or redundant features, class imbalance, or insufficient training samples [95].

5.6 Methodological Considerations

5.6.1 Participants

This thesis included 58 PD patients and 18 HCs, resulting in imbalanced classes. Im-

balanced classes can affect machine learning algorithms, leading to biased predictions

and poorer performance for the minority class [95]. Although excluding patients would

have addressed the issue, it would have resulted in small sample sizes for both PD pa-

tients and HCs. Therefore, the class imbalance was tolerated. Additionally, the control

group is often considered more homogeneous and requires a smaller sample size. The

ongoing STRAT-PARK study will include 1500-200 PD patients and HCs, providing

more data for future studies. It is recommended that future studies prioritize balanced

classes to ensure accurate predictions for all classes and prevent bias towards the ma-

jority class.

The participant group had balanced age distributions: PD patients (69±9 years) and

HCs (65±10 years). The patient group comprised 22 females and 36 males, while the

HC group comprised 12 females and six males. The significant difference in gender

balance between the two groups could have affected the results and should be avoided

in future studies. Among the PD patients, 20 had TD motor phenotype and 27 had PIGD

motor phenotype. 11 patients with an indeterminate motor phenotype were excluded

from motor phenotype classification. The limited data availability during the study was

the reason for the small sample sizes. In future studies, it is recommended to include a

larger number of instances of each class to improve the statistical power of the analysis.
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5.6.2 Clinical Data

The clinical data contained missing values. Specifically, 5 participants had missing

B-SIT scores, and 3 had missing MoCA scores. Additionally, 22 patients had missing

age of diagnosis, six had missing age of symptoms and disease duration, nine had

missing MDS-UPDRS scores, and eight had missing MDS-NMS scores. The presence

of missing values can affect the accuracy and validity of study results, particularly if the

missing values are not randomly distributed, leading to biased estimates of population

values [109].

The presence of missing values influenced the selection of algorithms in this study.

XGBoost was specifically chosen due to its inherent capability to handle missing values

by default. On the other hand, LR, DT, RaF, and SVC were not employed on datasets

containing missing values. If no missing values existed in the datasets, one of these

models could potentially have outperformed XGBoost.

Although the sample size could have been reduced to exclude participants with missing

data, this approach was not advisable due to the already small sample size and the large

number of samples with missing values. Future studies should minimize the number of

missing values and carefully consider how to handle them to ensure the accuracy and

validity of the results.

5.6.3 MRI Acquisition

During the MRI scans used in this thesis, three different sequences were employed,

resulting in a total scan time of over 16 minutes. Given the duration of the scans, it

is unlikely that participants could remain perfectly still throughout the entire process.

Consequently, head movements could have introduced errors in the resulting images.

While co-registration and normalization techniques can help mitigate the impact of

head movements to some extent, errors due to movement could still be present in the

means calculated during the ROI analysis. Furthermore, other factors such as B0 inho-

mogeneity, gradient artifacts, and RF noise may have also contributed to image errors.

However, correction for B0 inhomogeneity and gradient non-linearity was performed

when generating images and maps with STAGE, leading to minimized effects.
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5.6.4 Generating Images and Maps

The ME-GRE sequences produced various images and maps with different contrasts

using STAGE. The image processing time per participant was approximately 15 min-

utes on a consumer-grade laptop equipped with an AMD Ryzen 7 4700U processor

featuring eight cores. During this process, k maps were generated, with fixed values of

T1WM and T1GM at 900 ms and 1600 ms, respectively. However, the chosen values of

T1WM and T1GM may vary in different research studies and could potentially impact

the results [44].

The SWI image generated had a lower resolution than the usual isotropic in-plane SWI

scans [79]. However, it might be possible to double the SWI resolution by employing

a split k-space coverage concept for the second echoes. Additionally, although not

utilized in this study, STAGE allows MTC data to be included. Incorporating MTC

data offers another approach to NM-MRI and should therefore be considered in future

research endeavors [110].

5.6.5 Image Preprocessing

The images and maps generated by STAGE were preprocessed using co-registration

and normalization techniques. Specifically, FSL FLIRT was used to co-register the

STAGE images and maps with the MP-RAGE image. The T1WE image was chosen

to create the transformation matrix, as it resembled the MP-RAGE image and provided

satisfactory co-registration results. However, other STAGE images may be better suited

for this task, and future studies should consider exploring alternative reference images

and other co-registration tools.

The MP-RAGE image was normalized to the MNI152 T1 1mm brain template using

SPM12. However, this standard procedure proved inadequate for three participants,

potentially due to head movements during acquisition as discussed in Section 5.6.3.

For two participants, normalization with FSL FLIRT was used instead. For the third

participant, the origin and angle of the MP-RAGE image had to be manually set before

normalization in SPM12 to obtain acceptable results. Future studies should explore

alternative normalization tools to optimize the preprocessing of the STAGE images and

maps. Additionally, it may be worth considering the possibility of cropping the images

into smaller sizes and manually adjusting their angles.
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5.6.6 Region of Interest Analysis

In this thesis, the SNpc atlas was a population-based probabilistic atlas generated

through manual delineation, normalization, and averaging a 3T NM-MRI sequence

[89]. The atlas was thresholded at a probability of 0.5 to include most of the voxels

within the atlas and prevent overestimation of the SNpc region. The resulting 1x1x1

mm SNpc atlas had a volume of 500 mm3 (left SNpc 235 mm3 and right SNpc 265

mm3). On the other hand, the LC atlas used was a population-based probabilistic at-

las generated through manual delineation, normalization, and averaging a 7T MRI se-

quence with a spatial resolution of 0.4x0.4x0.5 mm [93].

Three versions of the LC atlas were created based on the slice-wise distribution of

group-level probabilities. A zero threshold (0%) was applied to obtain a template (925

voxels, 115.625 mm3) more sensitive to the LC spatial distribution. A liberal threshold

(5%) was applied to obtain a template (705 voxels, 88.125 mm3) which was sensitive

to the LC spatial distribution while controlling for the potential noise seen in the cau-

dal part of the LC. A stringent threshold (25%) was applied to the atlas to produce a

template (284 voxels, 35.5 mm3) more specific to the core LC locations.

In this thesis, the un-thresholded atlas was chosen to ensure that as much as possible of

the LC, with a volume of 125.7±59.3 mm3 in HCs, was present inside the mask [111].

This was done partly due to possible normalization errors, which can significantly affect

small structures such as the LC, and partly because of significant individual variations

in LC volume.

The LC atlas had to be re-sampled to a resolution of 1x1x1 mm using FSL FLIRT.

Again, a zero threshold (0%) was set to ensure that the entire LC was present inside the

mask for all participants, even with a small normalization error. The resulting 1x1x1

mm LC atlas had a volume of 280 mm3 (left LC 140 mm3 and right LC 140 mm3),

about double the size of the actual LC.

The choice of thresholds could have significantly affected the results, as the mean inten-

sity of all voxels in the mask depends on which voxels are included. The disadvantage

of choosing zero thresholds is that they can introduce noise from the caudal part of the

LC or neighboring structures in the dorsal pons ventral of the fourth ventricle. Future

studies should experiment with more stringent thresholds of the LC mask.
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Another potential avenue for future research involves investigating the size of the SNpc

and the LC in study participants to identify potential differences between individuals

with PD and HCs and variations between the PIGD and TD motor phenotypes. The

size of the SNpc and the LC can be found by converting the masks into the participants’

native space using the inverse transformation method employed during normalization.

The main advantage of atlas-based segmentation methods is the possibility of segment-

ing any brain structure available for multiple study participants without any additional

cost [112]. In contrast, manual segmentation, which refers to the process where a

human operator segments and labels an image by hand, is time-consuming and thus

expensive. A disadvantage of atlas-based segmentation methods is that they are di-

rectly dependent on the quality of the registration method used. Registration errors are

transferred directly to the ROI analysis when using atlases.

Another disadvantage is that atlases depend on the population they are constructed on

[112]. The SNpc and LC atlas used in this thesis were constructed on healthy individ-

uals. Several studies have shown that the volume of the SNpc and the LC is smaller in

PD patients than in HCs due to neuronal degeneration [113][114][115]. Therefore, the

atlases are better suited for HCs than PD patients. The SNpc atlas was also constructed

on healthy individuals with a mean age of 39± 11 years. However, the mean age of

the participants in this thesis was 69±9 for PD patients and 65±10 for HCs. A recent

study showed that the NM region in the SNpc increase until the 30s and decreases into

the 80s [116]. Therefore, the SNpc atlas used in this thesis may not be the best suited

for either PD patients or HCs. Future studies should consider using alternative atlases

for the SNpc and the LC with different biases or properties. Additionally, future studies

should explore other segmentation methods, such as automatic segmentation methods.

Automatic segmentation methods, such as the Multimodal Image Segmentation Tool,

have produced high-quality segmentations of the SNpc in 7T MRI, suggesting that au-

tomatic segmentations are at least as accurate as manual delineations and may be less

sensitive to confounding differences in image intensity between participants [117]. Ad-

ditionally, the deep neural network U-Net has segmented the SNpc with results that are

more accurate and better correspond to theoretical assumptions about the volume of

NM in the brain in different stages of PD than atlas-based methods [118]. A disadvan-

tage of the deep learning approach for segmentation is that it requires a lot of labeled

training data [100].
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However, U-Net is optimized for segmenting biomedical images, so it does not need

as much training data as standard convolutional neural networks [118]. Like the atlas-

based approach, deep learning methods depend on the representation of the training

data, meaning that training data should include not only HCs but also PD patients.

5.6.7 Laterality

In this thesis, the determination of laterality in the MRI images was based on statis-

tical hypothesis testing. However, alternative measures for assessing laterality exist.

Future studies should consider exploring alternative methods, such as the laterality in-

dex (LI), commonly used to indicate hemispheric dominance in functional MRI studies

[119]. The LI is typically calculated as the difference between the activity levels in each

hemisphere divided by the total activity across both hemispheres. In the context of this

research, the LI could be defined as the difference in mean intensity between each part

of the SNpc divided by the mean intensity of the entire SNpc. A similar approach could

be applied to the LC.

5.6.8 Preprocessing Features

An outlier is a point that lies very far from the mean of the corresponding random

variable [95]. Points with values very different from the mean value produce significant

errors during training and may have disastrous effects. Outliers in small populations can

be tricky to detect, and there is an increased risk of removing observations that are not

outliers. No outliers were removed in this thesis due to the small sample size. However,

this means that participants with values significantly different from the median value

could have potentially introduced significant errors during training [95]. Therefore,

future studies with larger sample sizes should consider the removal of outliers.

The features were scaled using standardization, subtracting the mean from each feature

and dividing by the standard deviation. However, none of the MRI features followed

a normal distribution, making the representation of feature values by the median more

appropriate than the mean. Consequently, standardization may not be the most suitable

scaling technique in this context. An alternative approach is a min-max normaliza-

tion, which ensures that each feature is scaled to the [0,1] interval without assuming

normality [120].
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The MRI data did not contain any missing values. However, the clinical data did. Most

classifiers, such as the logistic regression (LR) classifier, the decision tree (DT) clas-

sifier, the random forest (RaF) classifier, and the support vector classification (SVC),

do not handle missing values by default. However, some classifiers, such as eXtreme

Gradient Boosting (XGBoost), do this. When the dataset had no missing values, LR,

DT, RF, and SVC classifiers were employed in addition to XGBoost. However, when

the dataset included missing values, only XGBoost was utilized. This limitation could

have been addressed by imputing the missing values.

Traditional techniques for dealing with missing data involve replacing the missing val-

ues with (a) zeros, (b) the unconditional mean computed from the available values of the

respective feature, or (c) the conditional mean if the probability density function of the

missing values given the observed data is estimated [95]. A more advanced approach

is multivariate feature imputation, where each feature with missing values is modeled

as a function of other features, and the estimated values are used for imputation [121].

Future studies should explore different imputation techniques and investigate whether

alternative machine learning classifiers can outperform XGBoost in this context.

5.6.9 Feature Selection
In this thesis, the selection of features was based on statistical testing and pairwise cor-

relation. Evaluating features individually offers computational simplicity but may not

be effective for complex problems and highly correlated features [95]. Alternatively,

feature vector selection techniques evaluate the classification capabilities of feature

vectors rather than individual features. Another approach is dimensionality reduction,

which involves transforming a given set of features into a smaller set. In this thesis,

dimensionality reduction was not performed, as the goal was to understand the impor-

tance of individual features in the classification process. However, if the objective was

to build a good model without focusing on feature interpretation, dimensionality re-

duction techniques such as principal component analysis and independent component

analysis could have been employed for dimensionality reduction.
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5.6.10 Differentiating PD from HC and TD from PIGD
Datasets

Stratified sampling was employed to divide the data into training and test sets, allo-

cating 80% of the data for training and 20% for testing. Stratified sampling helps to

mitigate bias towards the majority class. There is no definitive guidance on the ideal

data allocation for training and testing [122]. Determining a suitable train-test split de-

pends on various factors, including dataset size, model complexity, and the nature of

the problem. In this thesis, an 80:20 split ratio was selected as it is widely used and

provides a significant portion of the data for training while still retaining enough for

testing purposes [122].

Classification

This thesis utilized five machine learning classifiers: LR, DT, RF, SVC, and XGBoost.

These classifiers were chosen for their well-established nature and diverse character-

istics. LR is a simple probabilistic-based model. While LR can encounter overfitting

with high-dimensional datasets, it performs well when the dataset can be linearly sepa-

rated [102]. Regularization techniques such as L1 and L2 regularization can be applied

to mitigate overfitting in such scenarios. One notable drawback of LR is its assumption

of linearity between the dependent and independent variables.

On the other hand, SVC is particularly effective in high-dimensional spaces, and its

behavior can vary depending on the choice of mathematical functions, known as kernels

[102]. The most frequently used kernel in SVC is the linear function. However, SVC

may encounter challenges with noisy data or overlapping classes.

DT is a non-parametric model that is easily visualized and simple to understand. It can

capture interactions among variables. However, a drawback of DT is that it is prone

to overfitting [123]. RF, on the other hand, is a well-known ensemble classification

technique. Consequently, the RaF learning model, consisting of multiple decision trees,

tends to yield higher accuracy than a single DT-based model [102]. RF is recognized

as one of the most accurate learning algorithms available. However, a disadvantage of

RF is that the resulting classifications can sometimes be challenging to interpret.

XGBoost is an ensemble learning algorithm [102]. It uses advanced techniques such as

computing second-order gradients of the loss function to minimize loss and employing

regularization to reduce overfitting, enhancing model generalization and performance.
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XGBoost is known for its ability to handle large datasets efficiently and the built-in

capability to handle missing values. However, it is worth noting that XGBoost is highly

sensitive to outliers, as each classifier is compelled to correct errors made by preceding

learners.

Alternative classifiers that could have been utilized in this thesis include K-nearest

neighbors, adaptive boosting, and stochastic gradient descent [102]. Additionally, clus-

tering algorithms such as k-means could have been employed [95].

In general, constructing an effective machine learning model involves not only selecting

the appropriate algorithm, but also obtaining an optimal model architecture by fine-

tuning its hyperparameters [124]. Hyperparameters are parameters used to configure

a machine learning model or specify the algorithm used to minimize the loss function.

The process of designing the ideal model architecture with an optimal hyperparameter

configuration is known as hyperparameter tuning. While hyperparameter tuning was

not prioritized in this thesis, it is strongly encouraged in future studies as it is considered

a crucial component of building an effective machine-learning model, particularly for

tree-based models with numerous hyperparameters.

Evaluation

The primary evaluation metric in this thesis was the WAF1 score. For this, partici-

pants with a probability score of 0.5 or higher were classified as PD or TD, while those

with a probability score below 0.5 were classified as HC or PIGD. The receiver oper-

ating characteristics curve (ROC) and the precision-recall (PCR) plot can provide an

overview of the model’s performance across different thresholds [103]. The ROC plot

illustrates the tradeoff between specificity and sensitivity, while the PRC plot shows

precision values for corresponding recall values. It is recommended that future studies

utilize ROC or PCR plots to determine the best threshold.

Permutation feature importance was employed to evaluate and identify the most im-

portant features. Permutation feature importance offers several advantages, including

comparability across different problems and classifiers [105]. However, a major draw-

back of permutation feature importance is that the importance of an associated fea-

ture can decrease if a correlated feature is added, as it splits the importance between

them. This can lead to incorrect estimates of feature importance when correlations ex-

ist among features. Given that many of the features in this thesis were correlated, there

may be more suitable algorithms than permutation feature importance in this context.
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An alternative algorithm is PIMP, which adapts the permutation feature importance by

providing p-values for the importances [125]. Variance-based measures present an-

other model-agnostic option for feature importance assessment. These measures, such

as Sobol’s indices and functional analysis of variance, assign higher importance to fea-

tures that cause more significant variance in the prediction function [105]. Shapley

additive explanations importance also shares similarities with variance-based impor-

tance measures. It is recommended for future studies to explore other methods for

feature evaluation.





Chapter 6

Conclusions and Future Work

This thesis successfully demonstrated the use of multimodal MRI for differentiating

PD patients from HCs and stratifying PD patients based on their motor phenotypes,

specifically PIGD and TD. To achieve this, a robust pipeline was implemented, uti-

lizing an atlas-based segmentation method to compute the mean intensity of the left

SNpc, the right SNpc, the SNpc, the left LC, the right LC, and the LC in various MRI

images and maps, including iron-sensitive images and maps. Two feature selection

techniques were employed to reduce the number of MRI features while retaining their

class-discriminatory information. Five machine learning classifiers were compared us-

ing various evaluation metrics, including the WAF1 score. The most important features

were identified through the technique of permutation feature importance.

The mean intensity of the LC in the simGRE image emerged as a promising biomarker

for distinguishing PD patients from HCs, especially when combined with the B-SIT

score. Additional potential biomarkers for PD/HC classification include the mean in-

tensity of the SNpc in the simDIR CSF image, the LC in the simFLAIR image, the

LC in the mpSWIM image, and the LC in the CROWN R2* map. To ensure balanced

data representation and prevent bias towards the PD patient class, future studies should

include a larger number of HCs.

Promising biomarkers for differentiating PIGD patients from TD patients include the

mean intensity of the SNpc and the LC in the simDIR GM image, the SNpc in the

simDIR WM image, and the MoCA score. These findings are novel in the field and

demonstrate the potential of this approach to contribute to more precise diagnosis of PD

patients in a clinical setting. To further strengthen these results, it would be valuable to

investigate their reproducibility in an independent cohort or a larger dataset.
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Future studies should consider exploring additional NM-MRI techniques such as MTC

[110]. Moreover, non-atlas-based segmentation methods, like deep learning segmen-

tation with U-Net [118], should be investigated. Additionally, including the volume

of the SNpc and the LC as additional features in the classification process should be

considered in future research. Furthermore, it is recommended that future studies ana-

lyze the relationship between motor asymmetry and multimodal MRI laterality among

patients with different motor phenotypes.



Code Availability

All the relevant code utilized to produce the results presented in this thesis can be

accessed at the following URL: https://github.com/signehogstad/master. The

repository will be regularly updated and supplemented with explanatory comments.

https://github.com/signehogstad/master




Appendix A

Mean of SNpc and LC for PD and HC

Tables A.1-A.6 show the mean intensities of the SNpc and the LC for PD patients and

HCs in all images and maps generated in this thesis. The p-values were determined

using the Mann-Whitney U test.

Table A.1: Mean intensities of the SNpc and the LC in the R2*, the R2* MIP, the CROWN R2*, and the
CROWN R2* A2 for PD and HC. The p-values were determined using the Mann-Whitney U test. The
highest median for each structure in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

R2*

SNpc
Total 3178 (2893 - 3510) 3071 (2819 - 3326) 0.3
Left 3153 (2804 - 3489) 2982 (2818 - 3200) 0.4
Right 3148 (2910 - 3587) 3123 (2686 - 3472) 0.3

LC
Total 1553 (1377 - 1729) 1551 (1310 - 1659) 0.5
Left 1516 (1310 - 1631) 1354 (1154 - 1634) 0.1
Right 1680 (1365 - 1853) 1627 (1361 - 1836) 0.9

R2* MIP

SNpc
Total 4045 (3689 - 4406) 3849 (3700 - 4066) 0.2
Left 4034 (3619 - 4535) 3720 (3504 - 4163) 0.1
Right 4049 (3678 - 4330) 3978 (3619 - 4205) 0.6

LC
Total 2532 (2360 - 2730) 2567 (2389 - 2821) 0.7
Left 2560 (2365 - 2754) 2552 (2326 - 2759) 0.8
Right 2538 (2345 - 2701) 2564 (2386 - 2844) 0.6

CROWN R2*

SNpc
Total 2506 (2384 - 2699) 2434 (2189 - 2661) 0.2
Left 2459 (2296 - 2670) 2303 (2169 - 2750) 0.3
Right 2571 (2378 - 2818) 2473 (2283 - 2583) 0.2

LC
Total 1482 (1365 - 1706) 1562 (1336 - 1767) 0.7
Left 1419 (1266 - 1735) 1476 (1168 - 1641) 1.0
Right 1592 (1387 - 1763) 1647 (1333 - 1877) 0.6

CROWN R2* A2

SNpc
Total 3002 (2687 - 3377) 2766 (2442 - 3200) 0.1
Left 2935 (2650 - 3236) 2627 (2485 - 3408) 0.2
Right 3085 (2706 - 3456) 2825 (2611 - 3057) 0.2

LC
Total 1512 (1346 - 1859) 1617 (1274 - 1904) 0.9
Left 1454 (1288 - 1872) 1562 (1153 - 1831) 0.8
Right 1637 (1357 - 1853) 1758 (1301 - 2017) 0.6
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Table A.2: Mean intensities of the SNpc and the LC in the T2*, the T2* MIP, the CROWN T2*, the
CROWN T2* A2, the SWI, the SWI mIP, and the tSWI for PD and HC. The p-values were determined
using the Mann-Whitney U test. The highest median for each structure in each image is highlighted in
boldface.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

T2*

SNpc
Total 3581 (3177 - 3922) 3711 (3404 - 3913) 0.5
Left 3638 (3207 - 4063) 3731 (3535 - 3924) 0.1
Right 3455 (3085 - 3824) 3420 (3182 - 4094) 0.6

LC
Total 7662 (6622 - 9301) 7752 (7125 - 9482) 0.4
Left 8067 (6916 - 9678) 9076 (7542 - 10782) 0.2
Right 6585 (5816 - 9027) 6800 (6329 - 8676) 1.0

T2* MIP

SNpc
Total 2598 (2453 - 2851) 2734 (2635 - 2895) 0.2
Left 2641 (2415 - 2935) 2840 (2557 - 2930) 0.1
Right 2629 (2398 - 2896) 2638 (2517 - 2911) 0.6

LC
Total 4013 (3765 - 4338) 3951 (3681 - 4241) 0.6
Left 4029 (3742 - 4289) 3960 (3755 - 4331) 0.7
Right 4041 (3749 - 4345) 3943 (3573 - 4252) 0.4

CROWN T2*

SNpc
Total 4270 (4032 - 4560) 4372 (4041 - 4768) 0.3
Left 4365 (4005 - 4745) 4593 (4012 - 4795) 0.6
Right 4143 (3785 - 4396) 4157 (4054 - 4615) 0.2

LC
Total 7603 (6107 - 8676) 7114 (6333 - 8590) 0.9
Left 8195 (6064 - 9180) 7496 (6844 - 10569) 1.0
Right 6531 (5929 - 8199) 6366 (5551 - 8388) 0.7

CROWN T2* A2

SNpc
Total 3679 (3467 - 4165) 4008 (3508 - 4462) 0.2
Left 3855 (3466 - 4260) 4140 (3376 - 4567) 0.5
Right 3559 (3277 - 3992) 3859 (3473 - 4096) 0.2

LC
Total 7318 (5916 - 8529) 6797 (5541 - 8812) 0.8
Left 7850 (5792 - 9121) 7144 (5880 - 10361) 0.9
Right 6728 (5762 - 8120) 6286 (5229 - 8635) 0.7

SWI

SNpc
Total 154 (141 - 171) 169 (146 - 184) 0.1
Left 159 (145 - 179) 173 (157 - 180) 0.2
Right 150 (135 - 168) 168 (137 - 183) 0.1

LC
Total 229 (214 - 237) 230 (215 - 236) 0.9
Left 228 (211 - 238) 231 (214 - 237) 0.9
Right 228 (215 - 238) 229 (206 - 237) 0.8

SWI mIP

SNpc
Total 120 (107 - 129) 121 (108 - 132) 0.5
Left 123 (108 - 131) 126 (115 - 134) 0.3
Right 118 (106 - 130) 119 (100 - 131) 0.9

LC
Total 164 (154 - 177) 161 (153 - 166) 0.2
Left 162 (156 - 176) 160 (153 - 169) 0.3
Right 164 (154 - 177) 159 (151 - 165) 0.3

tSWI

SNpc
Total 128 (106 - 143) 138 (127 - 141) 0.2
Left 133 (115 - 147) 139 (117 - 147) 0.5
Right 118 (103 - 142) 133 (115 - 145) 0.2

LC
Total 227 (213 - 241) 229 (214 - 241) 0.9
Left 223 (216 - 240) 229 (215 - 242) 0.6
Right 226 (212 - 242) 230 (210 - 241) 0.8
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Table A.3: Mean intensities of the SNpc and the LC in the tSWI mIP, the tSWI HPF, the meiSWIM,
the meiSWIM filled, the meiSWIM filled MIP, the meiSWIM HPF, and the meiSWIM HPF filled for PD
and HC. The p-values were determined using the Mann-Whitney U test. The highest median for each
structure in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

tSWI mIP

SNpc
Total 96 (78 - 112) 104 (86 - 116) 0.2
Left 99 (75 - 116) 108 (90 - 117) 0.3
Right 90 (74 - 111) 98 (87 - 111) 0.3

LC
Total 166 (158 - 177) 160 (148 - 168) 0.1
Left 167 (159 - 177) 159 (148 - 170) 0.1
Right 166 (155 - 177) 161 (149 - 170) 0.1

tSWI HPF

SNpc
Total 154 (143 - 164) 161 (152 - 177) 0.1
Left 159 (144 - 171) 165 (153 - 176) 0.4
Right 148 (138 - 164) 159 (139 - 176) 0.3

LC
Total 229 (214 - 238) 229 (214 - 240) 1.0
Left 227 (213 - 237) 232 (214 - 239) 0.6
Right 229 (213 - 238) 226 (204 - 240) 0.8

meiSWIM

SNpc
Total 80 (49 - 109) 77 (59 - 89) 0.7
Left 83 (43 - 106) 72 (50 - 101) 0.6
Right 78 (53 - 113) 86 (66 - 95) 0.8

LC
Total -2 (-13 - 9) -10 (-17 - 4) 0.2
Left -4 (-15 - 8) -8 (-21 - 3) 0.2
Right -4 (-12 - 7) -9 (-17 - 2) 0.2

meiSWIM filled

SNpc
Total 82 (56 - 109) 77 (67 - 89) 0.6
Left 84 (47 - 107) 72 (54 - 101) 0.6
Right 78 (62 - 113) 86 (66 - 95) 0.8

LC
Total -2 (-12 - 9) -10 (-17 - 4) 0.1
Left -4 (-15 - 8) -8 (-21 - 3) 0.2
Right -4 (-12 - 7) -9 (-17 - 2) 0.2

meiSWIM filled MIP

SNpc
Total 127 (102 - 160) 112 (104 - 131) 0.3
Left 121 (98 - 159) 116 (94 - 128) 0.2
Right 129 (101 - 153) 118 (96 - 134) 0.4

LC
Total 31 (24 - 42) 33 (29 - 37) 1.0
Left 30 (24 - 41) 32 (25 - 38) 0.9
Right 33 (25 - 42) 34 (25 - 40) 0.8

meiSWIM HPF

SNpc
Total 24 (8 - 37) 20 (15 - 29) 0.8
Left 19 (4 - 39) 18 (9 - 24) 0.7
Right 22 (9 - 37) 19 (13 - 36) 1.0

LC
Total 4 (0 - 10) 2 (-2 - 7) 0.2
Left 5 (1 - 9) 3 (-5 - 6) 0.1
Right 3 (0 - 7) 3 (-1 - 7) 0.6

meiSWIM HPF filled

SNpc
Total 24 (9 - 37) 20 (15 - 29) 0.7
Left 19 (4 - 39) 18 (10 - 23) 0.7
Right 23 (10 - 37) 19 (13 - 36) 0.9

LC
Total 4 (0 - 10) 2 (-2 - 7) 0.2
Left 5 (1 - 9) 3 (-5 - 6) 0.1
Right 3 (0 - 7) 3 (-1 - 7) 0.6
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Table A.4: Mean intensities of the SNpc and the LC in the HPF, the mpSWIM, the pSWIM, the PrD, the
CROWN PrD, the true PrD, and the CROWN true PrD for PD and HC. The p-values were determined
using the Mann-Whitney U test. The highest median for each structure in each image is highlighted in
boldface.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

HPF

SNpc
Total 2072 (2037 - 2092) 2048 (2031 - 2078) 0.2
Left 2056 (2034 - 2086) 2054 (2025 - 2080) 0.6
Right 2083 (2059 - 2112) 2066 (2030 - 2101) 0.3

LC
Total 2057 (2047 - 2068) 2056 (2050 - 2067) 0.9
Left 2060 (2046 - 2072) 2059 (2048 - 2070) 1.0
Right 2057 (2042 - 2066) 2063 (2045 - 2069) 0.5

mpSWIM

SNpc
Total 2245 (2196 - 2263) 2234 (2208 - 2254) 0.6
Left 2239 (2197 - 2267) 2236 (2209 - 2256) 0.7
Right 2240 (2201 - 2269) 2234 (2216 - 2254) 0.6

LC
Total 2135 (2124 - 2152) 2138 (2124 - 2151) 0.9
Left 2133 (2120 - 2156) 2142 (2118 - 2148) 1.0
Right 2139 (2123 - 2155) 2146 (2129 - 2158) 0.6

pSWIM

SNpc
Total 2249 (2220 - 2277) 2238 (2227 - 2257) 0.5
Left 2249 (2213 - 2275) 2245 (2218 - 2266) 0.6
Right 2244 (2220 - 2282) 2241 (2226 - 2256) 0.7

LC
Total 2137 (2124 - 2155) 2144 (2125 - 2155) 0.4
Left 2133 (2121 - 2157) 2145 (2127 - 2155) 0.3
Right 2139 (2123 - 2155) 2146 (2129 - 2158) 0.5

PrD

SNpc
Total 617 (597 - 635) 646 (594 - 667) 0.1
Left 622 (599 - 639) 647 (596 - 670) 0.2
Right 611 (584 - 635) 645 (596 - 664) 0.1

LC
Total 720 (671 - 750) 706 (664 - 748) 0.7
Left 735 (668 - 777) 704 (683 - 806) 1.0
Right 690 (643 - 737) 683 (643 - 735) 0.8

CROWN PrD

SNpc
Total 651 (632-676) 669 (637 - 682) 0.4
Left 660 (636-688) 673 (635 - 688) 0.9
Right 638 (621-669) 669 (635 - 677) 0.2

LC
Total 720 (681 - 751) 703 (684 - 737) 0.7
Left 744 (684 - 767) 728 (683 - 788) 1.0
Right 685 (658 - 729) 691 (658 - 730) 1.0

True PrD

SNpc
Total 803 (757 - 834) 814 (752 - 846) 0.8
Left 810 (763 - 843) 812 (759 - 846) 0.9
Right 802 (732 - 833) 817 (748 - 839) 0.6

LC
Total 806 (766 - 835) 793 (753 - 828) 0.6
Left 817 (773 - 853) 793 (755 - 862) 0.6
Right 792 (742 - 831) 802 (743 - 824) 0.9

CROWN true PrD

SNpc
Total 783 (755 - 803) 785 (760 - 796) 0.9
Left 788 (765 - 814) 786 (768 - 796) 0.6
Right 780 (742 - 797) 785 (752 - 791) 0.6

LC
Total 800 (783 - 824) 793 (781 - 815) 0.6
Left 818 (780 - 839) 817 (773 - 843) 0.9
Right 783 (758 - 809) 777 (760 - 815) 0.9
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Table A.5: Mean intensities of the SNpc and the LC in the CROWN true PrD A, the T1WE, the T1,
the simGRE, the simGREa, the simFLAIR, and the simDIR GM for PD and HC. The p-values were
determined using the Mann-Whitney U test. The highest median for each structure in each image is
highlighted in boldface.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

CROWN true PrD A

SNpc
Total 780 (755 - 804) 780 (763 - 802) 0.8
Left 787 (761 - 818) 786 (764 - 801) 0.4
Right 773 (749 - 799) 777 (749 - 801) 0.7

LC
Total 802 (783 - 821) 786 (780 - 817) 0.5
Left 818 (779 - 837) 811 (773 - 842) 0.8
Right 782 (760 - 809) 784 (758 - 811) 1.0

T1WE

SNpc
Total 422 (381 - 469) 427 (368 - 441) 0.7
Left 419 (378 - 462) 422 (363 - 445) 0.7
Right 426 (384 - 475) 429 (372 - 438) 0.6

LC
Total 395 (358 - 441) 387 (354 - 412) 0.6
Left 397 (349 - 441) 386 (354 - 413) 0.5
Right 400 (351 - 444) 396 (355 - 432) 0.6

T1

SNpc
Total 1095 (1031 - 1151) 1081 (1052 - 1123) 0.9
Left 1124 (1049 - 1203) 1112 (1057 - 1148) 0.6
Right 1025 (1001 - 1112) 1061 (990 - 1129) 0.5

LC
Total 1480 (1277 - 1754) 1515 (1406 - 1671) 0.8
Left 1643 (1292 - 1870) 1680 (1345 - 2096) 0.7
Right 1240 (1171 - 1609) 1334 (1185 - 1593) 0.8

simGRE

SNpc
Total 555 (542 - 573) 564 (551 - 578) 0.4
Left 558 (545 - 575) 562 (554 - 570) 0.9
Right 552 (538 - 572) 564 (556 - 583) 0.1

LC
Total 556 (520 - 565) 531 (491 - 550) 0.02*
Left 554 (512 - 567) 527 (474 - 550) 0.03*
Right 555 (538 - 566) 541 (516 - 548) 0.008**

simGREa

SNpc
Total 562 (547 - 571) 560 (547 - 574) 0.8
Left 557 (543 - 570) 554 (543 - 573) 0.9
Right 567 (552 - 576) 565 (539 - 577) 0.7

LC
Total 531 (496 - 563) 556 (512 - 571) 0.2
Left 529 (478 - 563) 559 (505 - 569) 0.3
Right 548 (520 - 562) 559 (539 - 572) 0.1

simFLAIR

SNpc
Total 457 (445 - 468) 460 (443 - 474) 0.8
Left 459 (444 - 472) 456 (438 - 480) 0.9
Right 454 (443 - 470) 462 (446 - 468) 0.4

LC
Total 492 (474 - 512) 481 (456 - 500) 0.2
Left 491 (461 - 509) 468 (439 - 499) 0.2
Right 502 (481 - 517) 493 (483 - 506) 0.3

simDIR GM

SNpc
Total 69 (55 - 96) 85 (65 - 122) 0.2
Left 80 (66 - 97) 95 (72 - 116) 0.2
Right 66 (47 - 95) 78 (55 - 123) 0.2

LC
Total 120 (98 - 129) 117 (102 - 126) 0.9
Left 117 (101 - 132) 114 (99 - 125) 0.6
Right 120 (96 - 131) 125 (102 - 135) 0.4

* Significant difference between PD and HC (p < 0.05).
** Highly significant difference between PD and HC (p < 0.01).
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Table A.6: Mean intensities of the SNpc and the LC in the simDIR WM, the simDIR CSF, the dSWI, the
dSWI mIP, the MRA, and the k for PD and HC. The p-values were determined using the Mann-Whitney
U test. The highest median for each structure in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) p-value
PD HC

simDIR WM

SNpc
Total 229 (192 - 275) 223 (173 - 254) 0.7
Left 215 (155 - 258) 212 (172 - 239) 1.0
Right 248 (202 - 295) 246 (168 - 288) 0.6

LC
Total 105 (78 - 142) 114 (99 - 134) 0.9
Left 77 (51 - 138) 83 (58 - 121) 1.0
Right 122 (86 - 166) 128 (93 - 155) 0.9

simDIR CSF

SNpc
Total 16 (3 - 52) 2 (0 - 13) 0.02*
Left 6 (1 - 78) 2 (0 - 11) 0.1
Right 2 (0 - 13) 0 (0 - 2) 0.1

LC
Total 103 (31 - 208) 113 (66 - 229) 0.7
Left 135 (19 - 276) 141 (45 - 362) 0.6
Right 7 (1 - 174) 31 (5 - 184) 0.5

dSWI

SNpc
Total 163 (151 - 174) 173 (159 - 183) 0.1
Left 162 (151 - 179) 172 (161 - 183) 0.2
Right 159 (146 - 175) 168 (156 - 185) 0.1

LC
Total 231 (217 - 241) 230 (216 - 242) 0.8
Left 229 (219 - 246) 235 (217 - 240) 1.0
Right 232 (216 - 244) 229 (212 - 243) 0.7

dSWI mIP

SNpc
Total 115 (101 - 134) 126 (106 - 138) 0.3
Left 116 (98 - 136) 128 (109 - 140) 0.2
Right 116 (102 - 133) 126 (107 - 133) 0.4

LC
Total 172 (161 - 182) 166 (156 - 179) 0.3
Left 170 (161 - 181) 170 (157 - 185) 0.7
Right 173 (160 - 182) 167 (155 - 174) 0.2

MRA

SNpc
Total 376 (301 - 422) 372 (301 - 433) 1.0
Left 336 (283 - 455) 404 (300 - 457) 0.5
Right 323 (288 - 378) 320 (288 - 358) 0.7

LC
Total 352 (334 - 369) 353 (339 - 366) 0.8
Left 351 (332 - 369) 352 (343 - 360) 0.9
Right 350 (331 - 368) 348 (330 - 369) 0.9

k

SNpc
Total 1256 (1228 - 1280) 1240 (1196 - 1283) 0.2
Left 1255 (1228 - 1290) 1234 (1191 - 1283) 0.2
Right 1258 (1231 - 1284) 1241 (1201 - 1273) 0.1

LC
Total 1216 (1178 - 1251) 1191 (1153 - 1235) 0.1
Left 1222 (1184 - 1257) 1196 (1157 - 1230) 0.1
Right 1210 (1172 - 1246) 1185 (1150 - 1235) 0.2

* Significant difference between PD and HC (p < 0.05).
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Mean of SNpc and LC for PIGD and TD

Tables B.1-B.6 show the mean intensities of the SN and the LC for PIGD and TD

in all images and maps generated in this thesis. The p-values were determined using

the Student’s unpaired t-test for populations with normal distribution and the Mann-

Whitney U test for non-normally distributed populations.

Table B.1: Mean intensities of the SNpc and the LC in the R2*, the R2* MIP, and the CROWN R2*
for PIGD and TD. The p-values were calculated using the Student’s unpaired t-test for populations
with normal distribution and the Mann-Whitney U test for non-normally distributed populations. The
highest median/mean for each structure in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

R2*

SNpc
Total 3104 (2907 - 3542) 3059 (2829 - 3374) 0.5
Left 3184 (2777 - 3463) 3003 (2789 - 3366) 0.6
Right 3260 (2932 - 3692) 3097 (2946 - 3518) 0.8

LC
Total 1416 (1363 - 1694) 1575 (1401 - 1798) 0.4
Left 1520±280 1534±242 0.9
Right 1573±306 1675±335 0.3

R2* MIP

SNpc
Total 4073 (3747 - 4404) 3991 (3540 - 4319) 0.7
Left 4000 (3647 - 4441) 3766 (3580 - 4449) 0.6
Right 4053 (3735 - 4278) 4044 (3576 - 4368) 0.9

LC
Total 2506 (2330 - 2679) 2599 (2432 - 2929) 0.1
Left 2502 (2351 - 2740) 2575 (2483 - 2878) 0.1
Right 2474 (2341 - 2655) 2608 (2363 - 2720) 0.3

CROWN R2*

SNpc
Total 2574 (2446 - 2796) 2474 (2280 - 2648) 0.2
Left 2469 (2308 - 2752) 2408 (2209 - 2608) 0.3
Right 2644 (2405 - 2914) 2517 (2328 - 2738) 0.2

LC
Total 1551±256 1555±254 1.0
Left 1515±317 1491±261 0.8
Right 1586±315 1619±301 0.7
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Table B.2: Mean intensities of the SNpc and the LC in the CROWN R2* A2, the T2*, the T2* MIP, the
CROWN T2*, the CROWN T2* A2, the SWI, and the SWI mIP for PIGD and TD. The p-values were
calculated using the Student’s unpaired t-test for populations with normal distribution and the Mann-
Whitney U test for non-normally distributed populations. The highest median/mean for each structure
in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

CROWN R2* A2

SNpc
Total 3038 (2683 - 3419) 2966 (2586 - 3336) 0.4
Left 2926 (2661 - 3236) 2924 (2535 - 3216) 0.4
Right 3163 (2782 - 3473) 3090 (2653 - 3408) 0.6

LC
Total 1647±355 1644±357 1.0
Left 1445 (1353 - 2029) 1708 (1278 - 1849) 0.5
Right 1679±416 1699±420 0.9

T2*

SNpc
Total 3652±597 3508±629 0.4
Left 3720±632 3608±717 0.6
Right 3461 (3068 - 3861) 3455 (3112 - 3699) 0.8

LC
Total 8095±1742 7545±1562 0.3
Left 8379±2008 8007±1696 0.5
Right 6641 (5856 - 9631) 6611 (5649 - 8630) 0.3

T2* MIP

SNpc
Total 2675±345 2606±409 0.5
Left 2645±395 2662±429 0.9
Right 2632 (2447 - 2885) 2561 (2383 - 2915) 0.5

LC
Total 4109 (3792 - 4413) 3895 (3644 - 4180) 0.1
Left 4053 (3727 - 4380) 3942 (3710 - 4149) 0.2
Right 4066 (3819 - 4401) 3916 (3733 - 4271) 0.3

CROWN T2*

SNpc
Total 4207 (4015 - 4465) 4274 (4004 - 4535) 0.9
Left 4353 (4083 - 4703) 4364 (3959 - 4816) 1.0
Right 3997 (3695 - 4292) 4117 (3825 - 4436) 0.4

LC
Total 7663±1685 7389±1665 0.6
Left 7950±2198 7865±1858 0.9
Right 6465 (5972 - 8369) 6405 (5804 - 7893) 0.6

CROWN T2* A2

SNpc
Total 3679 (3445 - 4181) 3642 (3443 - 4062) 1.0
Left 3874±637 3792±671 0.7
Right 3520±567 3539±548 0.9

LC
Total 7411±1806 7194±1895 0.7
Left 7615±2241 7530±1978 0.9
Right 6699 (5677 - 8285) 6175 (5680 - 7798) 0.8

SWI

SNpc
Total 152±20 156±25 0.5
Left 158±21 163±28 0.5
Right 147±23 151±24 0.6

LC
Total 224±17 225±21 0.8
Left 224±21 225±21 1.0
Right 224±18 226±25 0.7

SWI mIP

SNpc
Total 116±18 118±17 0.8
Left 117±20 121±17 0.5
Right 116±20 115±19 0.9

LC
Total 165±17 158±20 0.3
Left 166±19 159±20 0.2
Right 160 (154 - 172) 165 (153 - 174) 1.0
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Table B.3: Mean intensities of the SNpc and the LC in the tSWI, the tSWI mIP, the tSWI HPF, the
meiSWIM, the meiSWIM filled, the meiSWIM filled MIP, and the meiSWIM HPF for PIGD and TD. The
p-values were calculated using the Student’s unpaired t-test for populations with normal distribution
and the Mann-Whitney U test for non-normally distributed populations. The highest median/mean for
each structure in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

tSWI

SNpc
Total 126±27 126±33 0.9
Left 131±31 131±38 1.0
Right 120±28 123±32 0.8

LC
Total 224±17 224±24 1.0
Left 224±19 224±25 0.9
Right 224±19 225±25 0.9

tSWI mIP

SNpc
Total 97±28 90±30 0.5
Left 107 (86 - 116) 86 (72 - 120) 0.4
Right 95±30 88±28 0.4

LC
Total 166±16 160±21 0.3
Left 167 (158 - 175) 162 (156 - 175) 0.5
Right 166 (158 - 174) 167 (154 - 174) 0.6

tSWI HPF

SNpc
Total 151±21 155±26 0.5
Left 156±22 160±30 0.6
Right 146±23 151±25 0.5

LC
Total 224±16 225±22 1.0
Left 224±18 224±22 0.9
Right 224±18 225±24 0.9

meiSWIM

SNpc
Total 80 (60 - 100) 81 (48 - 112) 0.9
Left 83 (44 - 91) 75 (47 - 109) 0.9
Right 88±48 82±46 0.7

LC
Total -2±11 -5±19 0.5
Left -3±13 -6±20 0.6
Right -2±13 -5±19 0.5

meiSWIM filled

SNpc
Total 80 (60 - 100) 81 (54 - 112) 0.9
Left 83 (46 - 93) 75 (51 - 109) 0.8
Right 88±47 85±43 0.8

LC
Total -2±11 -5±19 0.6
Left -3±13 -5±20 0.6
Right -2±13 -4±20 0.6

meiSWIM filled MIP

SNpc
Total 117 (99 - 147) 133 (102 - 161) 0.3
Left 115 (95 - 139) 129 (97 - 164) 0.3
Right 129 (101 - 142) 130 (110 - 156) 0.5

LC
Total 34 (27 - 41) 31 (27 - 44) 0.9
Left 32 (24 - 41) 31 (26 - 38) 0.7
Right 34 (26 - 40) 34 (27 - 42) 0.7

meiSWIM HPF

SNpc
Total 25 (11 - 36) 21 (7 - 37) 0.4
Left 21 (8 - 38) 14 (1 - 38) 0.4
Right 24 (14 - 41) 19 (7 - 36) 0.3

LC
Total 4±5 3±7 0.6
Left 5±6 4±8 0.7
Right 4±6 3±8 0.5
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Table B.4: Mean intensities of the SNpc and the LC in the meiSWIM HPD filled, the HPF, the mp-
SWIM, the pSWIM, the PrD, the CROWN PrD, and the true PrD for PIGD and TD. The p-values were
calculated using the Student’s unpaired t-test for populations with normal distribution and the Mann-
Whitney U test for non-normally distributed populations. The highest median/mean for each structure
in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

meiSWIM HPF filled

SNpc
Total 26 (10 - 36) 21 (11 - 37) 0.5
Left 21 (7 - 38) 14 (3 - 38) 0.5
Right 30±26 24±23 0.4

LC
Total 4±5 3±8 0.5
Left 5±6 4±8 0.7
Right 4±6 3±8 0.5

HPF

SNpc
Total 2070 (2035 - 2088) 2066 (2049 - 2091) 0.8
Left 2048 (2040 - 2079) 2052 (2010 - 2089) 0.7
Right 2077±62 2089±56 0.5

LC
Total 2058 (2043 - 2068) 2055 (2048 - 2064) 0.6
Left 2058 (2041 - 2074) 2062 (2050 - 2068) 0.9
Right 2057±22 2051±22 0.3

mpSWIM

SNpc
Total 2249 (2196 - 2258) 2236 (2201 - 2264) 1.0
Left 2240 (2185 - 2262) 2221 (2205 - 2258) 0.9
Right 2241 (2202 - 2260) 2239 (2202 - 2274) 0.7

LC
Total 2140 (2122 - 2159) 2133 (2125 - 2145) 0.6
Left 2133 (2117 - 2159) 2137 (2124 - 2144) 0.8
Right 2146 (2129 - 2161) 2129 (2120 - 2143) 0.1

pSWIM

SNpc
Total 2252 (2228 - 2282) 2244 (2212 - 2275) 0.3
Left 2253 (2225 - 2273) 2228 (2208 - 2258) 0.2
Right 2245 (2226 - 2271) 2242 (2214 - 2287) 1.0

LC
Total 2141 (2122 - 2159) 2133 (2125 - 2145) 0.6
Left 2133 (2119 - 2159) 2137 (2124 - 2144) 0.9
Right 2146 (2129 - 2160) 2129 (2120 - 2143) 0.1

PrD

SNpc
Total 616 (589 - 624) 617 (599 - 642) 0.3
Left 613±35 622±36 0.4
Right 596±39 614±33 0.1

LC
Total 708±62 712±62 0.9
Left 722±81 734±71 0.6
Right 694±78 689±66 0.8

CROWN PrD

SNpc
Total 646±22 660±31 0.1
Left 657±28 666±32 0.3
Right 635±29 654±32 0.04*

LC
Total 714±51 717±50 0.9
Left 727±68 738±60 0.6
Right 684 (657 - 725) 684 (655 - 735) 0.9

true PrD

SNpc
Total 781±50 809±68 0.1
Left 782 (747 - 838) 804 (765 - 852) 0.5
Right 767±62 804±70 0.1

LC
Total 791±54 798±60 0.6
Left 802±71 813±66 0.6
Right 780±63 784±66 0.8

* Significant difference between PIGD and TD (p < 0.05).
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Table B.5: Mean intensities of the SNpc and the LC in the CROWN true PrD, the CROWN true PrD A,
the T1WE, the T1, the simGRE, the simGREa, and the simFLAIR for PIGD and TD. The p-values were
calculated using the Student’s unpaired t-test for populations with normal distribution and the Mann-
Whitney U test for non-normally distributed populations. The highest median/mean for each structure
in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

CROWN true PrD

SNpc
Total 773±29 788±34 0.1
Left 786±39 796±37 0.4
Right 761±34 781±36 0.1

LC
Total 798±37 800±38 0.8
Left 806±51 814±46 0.6
Right 774 (756 - 803) 779 (758 - 810) 1.0

CROWN true PrD A

SNpc
Total 772±26 787±34 0.1
Left 785±38 795±39 0.4
Right 760±30 781±35 0.03*

LC
Total 796±38 801±38 0.7
Left 805±52 815±47 0.5
Right 772 (754 - 800) 780 (759 - 812) 0.8

T1WE

SNpc
Total 422 (395 - 499) 435 (389 - 473) 0.6
Left 439±70 419±61 0.3
Right 423 (400 - 507) 439 (387 - 477) 0.6

LC
Total 392 (367 - 474) 417 (346 - 443) 0.6
Left 390 (361 - 469) 411 (346 - 445) 0.6
Right 420±71 400±61 0.3

T1

SNpc
Total 1081±78 1097±72 0.5
Left 1146±135 1129±86 0.6
Right 1014 (990 - 1070) 1092 (1007 - 1125) 0.1

LC
Total 1564±361 1515±333 0.6
Left 1638±463 1655±424 0.9
Right 1236 (1139 - 1644) 1234 (1165 - 1495) 1.0

simGRE

SNpc
Total 558±21 554±23 0.5
Left 559±19 558±24 0.9
Right 557±28 549±25 0.3

LC
Total 556 (518 - 562) 560 (541 - 571) 0.1
Left 558 (512 - 565) 559 (544 - 568) 0.3
Right 555 (544 - 562) 559 (545 - 571) 0.2

simGREa

SNpc
Total 553±22 566±17 0.03*
Left 550±22 563±17 0.03*
Right 556±28 568±18 0.1

LC
Total 540 (486 - 556) 523 (496 - 547) 0.5
Left 530 (495 - 559) 513 (469 - 541) 0.3
Right 548 (520 - 557) 542 (522 - 559) 1.0

simFLAIR

SNpc
Total 455±19 455±19 1.0
Left 456±19 458±21 0.7
Right 454±20 453±19 0.8

LC
Total 487±28 489±31 0.8
Left 482±33 480±38 0.8
Right 498 (481 - 515) 499 (485 - 519) 0.6

* Significant difference between PIGD and TD (p < 0.05).
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Table B.6: Mean intensities of the SNpc and the LC in the simDIR GM, the simDIR WM, the simDIR
CSF, the dSWI, the dSWI mIP, the MRA, the HPF, and the k for PIGD and TD. The p-values were
calculated using the Student’s unpaired t-test for populations with normal distribution and the Mann-
Whitney U test for non-normally distributed populations. The highest median/mean for each structure
in each image is highlighted in boldface.

Image/map Structure Median (Q1 −Q3) / Mean±SD p-value
PIGD TD

simDIR GM

SNpc
Total 66±21 89±30 0.004**
Left 74±26 95±33 0.02*
Right 58±25 83±30 0.003**

LC
Total 105±29 127±25 0.008**
Left 105±31 126±26 0.02*
Right 105±29 128±25 0.006**

simDIR WM

SNpc
Total 250±59 217±60 0.1
Left 223±75 202±60 0.3
Right 274±65 231±69 0.04*

LC
Total 120 (92 - 145) 92 (72 - 143) 0.1
Left 93 (62 - 139) 64 (43 - 139) 0.1
Right 142±59 127±63 0.4

simDIR CSF

SNpc
Total 34 (5 - 85) 8 (2 - 31) 0.03*
Left 23 (1 - 106) 4 (1 - 56) 0.2
Right 2 (0 - 39) 2 (0 - 7) 0.3

LC
Total 184 (9 - 283) 75 (38 - 180) 0.3
Left 109 (13 - 339) 124 (23 - 257) 0.9
Right 7 (2 - 190) 3 (0 - 87) 0.3

dSWI

SNpc
Total 158±17 164±24 0.3
Left 161±17 166±27 0.4
Right 155 (141 - 167) 163 (154 - 186) 0.2

LC
Total 228±16 228±22 0.9
Left 229±19 228±21 0.9
Right 228±18 228±25 1.0

dSWI mIP

SNpc
Total 109±30 117±24 0.3
Left 115 (94 - 131) 114 (106 - 137) 0.4
Right 110±30 116±25 0.4

LC
Total 168 (160 - 182) 169 (159 - 176) 0.6
Left 168 (158 - 179) 166 (160 - 179) 0.8
Right 174 (160 - 182) 168 (156 - 180) 0.3

MRA

SNpc
Total 369±88 374±83 0.9
Left 329 (278 - 437) 338 (283 - 453) 0.9
Right 325 (293 - 420) 341 (299 - 427) 0.6

LC
Total 346 (326 - 363) 355 (349 - 379) 0.1
Left 345 (328 - 357) 358 (347 - 381) 0.1
Right 347 (322 - 362) 356 (344 - 377) 0.2

k

SNpc
Total 1273±50 1240±46 0.03*
Left 1270±50 1238±46 0.03*
Right 1275±51 1242±47 0.03*

LC
Total 1228±52 1193±52 0.03*
Left 1234±52 1199±51 0.03*
Right 1222±52 1188±52 0.03*

* Significant difference between PIGD and TD (p < 0.05).
** Highly significant difference between PIGD and TD (p < 0.01).
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