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Abstract 

 

Human-induced evolution has led to large changes and evolution in many species. The some of 

the most well-known are household animals like the dog and sheep or plants like the tomato. 

Others are fish like the Atlantic salmon (Salmo salar). The selection done on such animals have 

resulted in evolution of phenotypes that might not be beneficial in the wild but are instead 

sought after by humans. 

Fisheries-induced evolution is a form of human-induced evolution caused by commercial and 

recreational fishing through the selection of fish through the use of fishing gear. This is mainly 

a size selective venture, but also selects on other traits like boldness and mouth size depending 

on the gear. 

Due to the complexity of fisheries-induced evolution, it can be hard to find the exact causes of 

these changes and if they stem from evolutionary changes or plastic responses in life history 

traits exhibited by the species of interest. Therefore, size-selective laboratory experiments and 

other applications of model organisms such as the Trinidadian guppy (Poecilia reticulata) in 

the lab can lead to better understanding the selective process that happen during harvesting of 

wild fish and the life-history changes that happen because of it. 

The use of length, size and shape of the guppy and hand fishing with an aquarium net show that 

the size and shape of fish from different size-selective lines can influence the vulnerability to 

being caught during group fishing and that there can be substantial differences in shape and size 

because of size-selective treatment over time. Mainly the differences in shape resulting in 

variable vulnerability to fishing was found in females.  
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1 Introduction 

1.1 Human-induced evolution 

Human induced evolution happens as humans introduce selective pressure in the part of nature 

they interact with (Herron and Freeman, 2015a). Evolution itself is based on changes of the 

genetic material we know as DNA, and can be as small as the change of one single base pair 

(Herron and Freeman, 2015b). However, such small changes do not have to enact actual 

changes in phenotypes, the expression of genes. Such changes can be the result of random 

mutations. In sexual species, genetic changes could also occur by the mixing of genetic material 

from two parents (recombination). What drives evolution by natural selection, however, is that 

the environment the phenotypes are exposed to drives selective pressures making some 

phenotypes have higher fitness (survival and reproduction). For the most part, no two 

individuals are exactly the same and therefore, a population can contain many different alleles, 

gene variants, that can be passed down to the next generation through reproduction. If some 

individuals are favoured or selected over others in the environment (i.e., they have higher 

fitness), these can pass down their genes to the next generation, i.e., the selected traits are 

heritable. At the core of evolution by natural selection, there must be phenotypic variation in 

traits, environmental selection that results in differential fitness among the traits, and trait 

heritability. For a whole population or species, this results in a change in total genetic content 

and the new generation will be different to the previous one. Potentially, new mutations may 

have come into play or the frequency of the alleles already present has changed. Over, time the 

population will change and adapt to new selective pressures, resulting in evolution. 

 

The rate of human-induced evolution is not constant, it changes according to the selective 

pressure and type of selective pressure. One of the clearest examples of human-induced 

evolution is domestication. As people started to tame animals, most of the evolution for these 

captive species was due to breeding animal species such as the wolf, by selecting for docile 

traits which, became the many types of dogs (Løberg; Eikeseth and Roig, 2020). Sheep  in many 

cases have been bred to make pure white wool instead of the grey or brown wool that would 

more easily camouflage them in the wild (Blix and Vangen, 2023). Therefore, human-induced 

selection is opposite to natural selection. Other examples of domestication are the tomato and 

the pigeon. The cultivated varieties of tomato often are selected for sizes larger than the wild 

variety and as a consequence have a fw2.2 gene that is less active than in smaller domesticated 
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or wild varieties (Frary et al., 2000). For pigeons, they were selected for several purposes, one 

of them being their visual appearance and colours (Herron and Freeman, 2015a). Here, the 

individuals with the traits deemed most desirable were paired up for reproduction in the hope 

that their offspring would be even more desirable than their parents. This type of artificial 

selection is, however, not the only type of selective pressure humans exert upon nature. 

 

Several aquatic organisms have also been domesticated and kept as food sources. Some of them 

are even kept as farm animals such as the Atlantic salmon (Salmo salar) (Norris; Bradley and 

Cunningham, 1999). The selection of salmon used in farming has even resulted in genetic 

differences to such a degree that analysis of DNA microsatellites can provide information as to 

the origin of the individual fish and if it is wild or farmed. Furthermore, individuals that can be 

considered to originate from farm stocks have adaptations that would be disadvantageous in the 

wild (Diserud et al., 2022). This is because the salmon harvested from farms are selectively 

bred to cope with the high density of fish in the nets or tanks they are kept in, as well as selected 

for other traits such as fast growth to maximise food production. Again, giving evidence that 

human-induced selection might counteract natural selection. 

 

Far from all fish commonly used as food are kept as farm animals. Some are instead harvested 

from the wild, such as Atlantic cod (Gadus morhua), which is seasonally harvested by 

fishermen in countries such as Norway both commercially and recreationally using different 

forms of passive and active fishing with several types of equipment (Jørgensen; Ernande and 

Fiksen, 2009). This enacts selective pressure on the fish stocks and results in changes in 

phenotypes due to plasticity and genetic changes in the overall population. Therefore, fishing 

selection could lead to human induced evolution, commonly termed as fisheries-induced 

evolution. Fishing most commonly leads to selection on size, but different fishing gears may 

also lead to different selective pressures. 

 

Passive fishing with gill nets, for example, selectively capture fish with a head that closely 

matches the mesh size in the net, and lets smaller fish to go through the net, while it acts as an 

obstacle for fish that are too big for the net (Jørgensen; Ernande and Fiksen, 2009). Therefore, 

gillnets select for intermediate size fish, which results in disruptive selection and higher fitness 
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for fish of smaller and larger sizes. Trawls on the other hand, a form of active fishing, are less 

size selective, and harvest everything over a certain size that ends up within the net, leading to 

directional selection for small sizes. Such harvesting selection on size can lead fish to adapt to 

size ranges outside the harvest range. In addition, changes in size may lead to changes in life 

history traits such as growing slower and reallocating the energy that would have been used for 

growth over to maturation and reproduction (Miller, 1957; Law and Grey, 1989). On top of 

large scale fishing with nets and trawl, smaller scale fishing with rod and reel or angling, also 

has an effect on life history traits of the populations harvested (Cooke et al., 2019). However, 

angling acts by catching the interest of the fish that are caught, either by resembling their prey 

using flies or other lures, presenting something shiny or by giving the fish an easy meal. This 

form of fishing, therefore, selects more on behaviour than physical traits, like size (Arlinghaus 

et al., 2017). This includes inquisitiveness, boldness, and hunger. In addition, such fishing can 

result in the harvest of a wider size range and result in a more evenly spread harvest size-wise 

(Kleiven et al., 2016). 

 

Different levels of harvesting result in differing amounts of selective pressure and, therefore, 

differing rates of change. Commercial harvesting of wildlife is often higher than that of 

recreational harvest, like the 2022 data from the Norwegian Directorate of Fisheries show 

(Fiskeridirektoratet, 2022a; Fiskeridirektoratet, 2022b). This can result in commercial strategies 

for harvest having a larger impact on the populations targeted for harvest, especially those that 

are less used by recreational fishermen. In some cases, where the fishing grounds are easily 

available to recreational fishing, the many types of gear that the recreational fishermen 

implement can result in higher cumulative harvest than that of commercial activity and 

therefore, higher selective pressure (Kleiven et al., 2016).  

 

Even though it is predicted that fishing-induced selection of size affects size and other life 

history traits, many issues are not clear, like how fast the process is or if size is the only trait 

affected (Audzijonyte; Kuparinen and Fulton, 2013). If any, what other traits are affected? Are 

the changes a result of genetic change, making it evolution, or are they a result of plasticity or 

learning? This is where laboratory experiments, using specific animal species as model 

organisms and maintaining controlled environments, can yield information about what happens 

to wild populations. Laboratory experiments create parallels of what happens in the wild, but 
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under more controlled environments. Using model organisms, which commonly take up less 

space and have a shorter generation time than the original species of interest, predictions of 

what will happen to harvested populations can be obtained. 

 

1.2 Experiments to study fisheries-induced evolution 

In general, experiments have a significant chance of revealing data and results that are obscured 

by unknown variables in the wild (Diaz Pauli and Heino, 2014). This happens because of the 

sheer complexity of an ecosystem and the ecology in or around the studied system or organism. 

By reducing the number of variables and therefore simplifying the studied system, experiments 

can reveal previously unknown interactions or changes in populations or areas under study. The 

experimental study of fisheries-induced evolution lends insight into the effects of selective 

fishing (Diaz Pauli, 2012; Diaz Pauli and Heino, 2014). Using artificial selection in the lab or 

in regulated ponds, simplified parallels to what happens in the wild can be established and be 

used as proxies for what happens to populations that are under size-selective pressure form 

fisheries. 

 

Experiments on fisheries-induced evolution have also uncovered changes in overall behaviour 

among fish because of fishing (Diaz Pauli and Heino, 2014). For instance, fishing-induced 

selection of larger individuals led to reduced feeding rate, reduced willingness to forage after a 

predator attack (reduced boldness) in silversides (Menidia menidia) (Walsh et al., 2006), while 

in zebrafish (Danio rerio) it led to less exploration and bold behaviour (Uusi‐Heikkilä et al., 

2015), as well as, more individual vigilance but reduced attention to social cues and hence 

reduced shoal cohesion (Sbragaglia et al., 2022). This reduction of cohesion was predicted by 

a model to reduce vulnerability to fishing, but increase vulnerability to a natural predator 

because the reduced cohesion and hence reduced confusion effect was a disadvantage in front 

of a natural predator and not fishing gear (Sbragaglia et al., 2022). 

 

In some cases, escaping from nets can be seen as a proxy to escaping from predators because 

the netting simulates the casing of a predator (Li; Li and Zhang, 2019), but it will never be the 

same as predators are live creatures that give of other signals such as smell and has a behaviour 

of its own. Nets, on the other hand, are inanimate objects that the fish must observe in order to 
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know are present. In addition, shoaling behaviour is anti-predator behaviour, as individuals in 

large groups are less vulnerable to predator attack, but shoaling are more vulnerable to fishing. 

 

1.3 Objective 

This study aims to find differences in escape behaviour among the selection lines of Trinidadian 

guppies (Poecilia reticulata) at the University of Bergen. These populations have been selected 

for size in three different ways, positive size-selection, where the larger individuals are 

harvested; negative size-selection where the smaller individuals are harvested; and random 

selection where a mixture of both large and small individuals is harvested. These lines resemble 

differing forms of size-selective mortality that can be expected from predators or humans. 

Mostly, humans select for larger fish to acquire as much food as possible, whereas predatory 

fish can have strategies leading them to focus their efforts on small-sized, medium-sized, or 

large-sized fish, or even a mixture according to species of predator and prey and their survival 

strategies (Reznick and Endler, 1982; Jørgensen; Ernande and Fiksen, 2009). Individuals 

exposed to positive size-selection are smaller in size, have faster life histories (Diaz Pauli, 2012; 

Bartuseviciute et al., 2022), and had higher sociability and less boldness (lower inspection of 

natural predators) than negative and random size-selected fish (Diaz Pauli et al., 2014) 

 

Therefore, this study aims to identify differences in how effective the fish from three different 

selection lines are in their escape behaviour using an aquarium net, while also considering the 

body shape differences between the selection lines after generations of size-selective harvest.  

 

The predicted outcome is that the larger fish from the negatively selected populations used in 

this study will be able to avoid the nett for longer than those from the positively and randomly 

selected populations (Reznick and Endler, 1982; O'Steen; Cullum and Bennett, 2002; Cano-

Barbacil et al., 2020). 

 

This study is focused on behaviour and morphology linked to vulnerability to capture, rather 

than the size of the fish. The fishing in this study is a form of active fishing using a small net 

and entails visually finding the fish before catching them in the net. This means that the 



Endre Åbø Hallingstad  Spring 2023 

6 
 

experiment measures net avoidance behaviour and is linked to swimming speed, acceleration, 

and agility further connected to fish size and shape (Webb, 1994; Cano-Barbacil et al., 2020). 
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2. Methods 

2.1 Model species: The guppy (Poecilia reticulata) 

The model species for the experiment is the guppy from Trinidad (Tjernshaugen, 2021). The 

guppy is a freshwater fish originally found in the rivers and streams in the northernmost parts 

of South America. The species has its vernacular name from Robert John Lechmere Guppy, 

whom, as a British citizen that sent sample individuals from Trinidad to the Natural History 

Museum in London.  

 

The phylogeny places the species within the live-bearing tooth-carps or Poeciliidae along with 

other fish such as the molly. The guppy, therefore, does not lay eggs, but perform live births 

(David, 2011; Tjernshaugen, 2021). The species also has significant sexual dimorphism with 

the male being much smaller than the female at maximum length of 3.5 and 6 cm respectively. 

In addition, the male is brightly coloured with orange and dark pigments and have refractive 

scales that can give of colours such as silver or gold. The female, on the other hand, are grey to 

olive-green. 

 

As the guppy is a small fish it can be kept in a relatively small volume of water compared to 

larger species of fish. In addition, generation time is only 2-3 months, and therefore, react 

quickly to selective pressures (David, 2011; Tjernshaugen, 2021). As a result of these traits, the 

guppy has not just been used as a model organism in research but is also a pet animal with many 

colourful breeding varieties. 

 

One of the more prominent researchers that have used this guppy as an experimental organism 

was John A. Endler (1980), looking into the evolution of colour patterns in P. reticulata. 

Specifically, the effect of predation and sexual selection. These experiments showed that the 

guppy is highly polymorphic in terms of colour patterns, but also that the patterning in different 

populations can be quite similar if the physical environment and the level of predation is the 

same. 
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2.2 Predator selection on size 

Reznick and Endler (1982) looked more broadly into the impact of predation, focusing on life 

history traits, and showing that the fish can adapt to selective pressures in many traits. They 

also demonstrate that the overall size of the fish within distinct populations differ according to 

the predation they experience. Within some of the streams where Anablespsoides hartii 

(previously Rivulus hartii), a predator that mainly preyed on smaller guppies of smaller sizes. 

Other streams contained other predators, like the Crenicichla alta or Hoplias malabaricus, that 

like to feed upon larger prey. With predation on opposite sides of the size spectrum, over time, 

the fish started to differ in size between the streams, resulting in larger fish that invested more 

energy in growth in the streams containing A. hartii and smaller fish, investing more energy in 

reproduction in streams containing larger predators. This is a result of larger individuals 

surviving better in streams with A. hartii, and smaller individuals having a greater chance of 

surviving in the streams with C. alta and H. malabaricus.  

 

Predator avoidance is a big part of the survival strategies the small guppies have, and they have 

several strategies (Magurran and Seghers, 1990; Magurran et al., 1992; Bleakley; Martell and 

Brodie, 2006). One of them is schooling, which, according to Magurran et al. (1992), increases 

significantly in wild populations where predation is a significant threat compared to populations 

with low predation. The same can be said for inspection behaviour, where fish from low 

predation areas approach closer to the predator model than those from high predation areas. On 

top of this, fish familiar with a predator, or that lived in a high predation area was more weary 

of the head of the predator and generally stayed further away from the predator itself and the 

attack cone of said predator (Magurran and Seghers, 1990). Guppies also display the ability to 

change behaviour according to stimuli as Bleakley; Martell and Brodie (2006) show that the 

fish spend more time frozen or in a state of agitation after presented with a predator. 

 

The morphology of the guppy is also influenced by the remaining biotic and abiotic factors in 

the local environment as well as predation. One such example is the difference in tail depth 

between some wild and laboratory populations(Burns; Di Nardo and Rodd, 2009). For wild 

females living in running water their tails were larger, or deeper, and more powerful tails than 

the tails of fish kept in captivity. This is a result of the flow of water in the guppies’ natural 

habitat and the lack thereof in laboratory aquariums. This difference was not as pronounced in 



Endre Åbø Hallingstad  Spring 2023 

9 
 

male guppies as they naturally reside in calmer waters at the edges of the streams. As for the 

effect of predation, more heavily predated populations of fish develop stronger tails that allow 

them to more easily escape their predator, much like when the current in the stream is strong 

(Hendry et al., 2006). 

 

2.3 Size-selective harvest 

The fish used in this study had undergone a size-selective harvest experiment where the fish 

originally were collected from the Yarra river in Trinidad. All populations were kept in a 

dedicated fish-lab since April of 2009 in tanks of the same size, 400 litres, and given plastic 

netting, simulating weed, floating on the surface of the water for fish to hide in. They were all 

given the same food, Artemia (Brine shrimp). The research group responsible for the fish lab 

and the harvest protocol is EvoFish at the University of Bergen. 

The size-selective harvest experiment consists of nine populations that had undergone size-

selective harvest for over a decade, which occurred every 6 weeks from 2010 to 2019 and every 

12 weeks after that. 

 

The three selection treatments all serve a purpose. The positive size-selection mimics the 

selection that fisheries perform. Fish are selected according to size through the mesh size in 

nets and trawls, as well as entrances and escape holes in traps or the size of a hook. Like 

commercial or hobby fishing there is a minimum size regulation, either on the equipment used 

or for the size of the fish itself, for landing and euthanizing fish (Norwegian Ministry of Trade, 

2021). The negative size-selection on the other hand is the opposite of this and more closely 

resembles natural mortality where smaller, younger fish have a larger chance of dying 

(Jørgensen; Ernande and Fiksen, 2009). The third treatment, random, is used as a control on 

size-selection, as fish are fished out independently on size. On top of this, the random size-

selection subjects the fish to increased mortality like the other two selection lines. This 

increased mortality also ensures that the individual populations do not suffer from 

overcrowding. 
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The nine separate populations are selected after one of three selection treatments replicated 

three times:  

1) Random size-selection:  

An equal portion of both large and small fish are harvested from the population. 

2) Positive size-selection: 

A large portion of the larger fish are harvested from the population. 

3) Negative size-selection: 

A larger portion of the smaller fish are harvested from the population. 

 

In all three of the selection lines the fish were separated into two buckets of fish below 16 mm 

length and over 16 mm in length. The measurement of length used was standard length, the 

length from the tip of the snout to the base of the caudal peduncle. The buckets were then sorted 

so that an appropriate fraction of the fish was selected for euthanasia. In the case of positive 

and negative size-selection ¾ of the fish of appropriate size were selected for euthanasia. As for 

the random size-selection, 3/8 of each group, both smaller and larger than 16 mm were selected 

adding up to the same fraction as for the other selective treatments. The chosen method of 

euthanasia was an overdose of the sedative MS222 (Tricaine methane sulfonate), often used for 

sedation of fish. 

 

2.4 Fish used in the present study. 

The fish used in this study (N = 180 individuals; 20 from each population) were sampled from 

the populations between the 26th and the 29th of September 2022, during size-selective harvest 

number 68. 

In total, 288 fish, 32 fish from each population were separated from their parent population and 

set aside as possible participants in the study as well as backups in case of death during 

procedures or other unfortunate events. All fish were adults, and 16 mm or longer. This was 

done to homogenise the size and the life stage of the focal fish. 

 

The individual fish were selected at random from within the bucket. This was done by the usage 

of a small aquarium net and the visual selection of a random fish in the selected bucket. This 

was then repeated until a total of 32 fish, 16 males and 16 females, were selected from each 
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population. A total of 20 fish, 10 females and 10 males, from each population were then 

randomly picked for marking. 

 

If possible, the selected fish were taken from the buckets selected for euthanasia during the size-

selective harvest, leaving as many as possible of the fish supposed to go back into their parent 

population. This applied to the populations under a positive or random selection regime. As for 

the negative selection regime, the fish were taken from buckets supposed to go back into the 

main population. The reason for this choice is based in the thought that a loss of life is to be 

avoided as well as minimising the potential effect the removal of additional fish can have on 

the already running size-selective experiment. 

 

2.5 Marking and individual ID. 

Marking of the fish was done to give each fish a recognisable mark and a unique ID and was 

performed using elastomer injections under the skin of the fish with 1 mL syringes (Visible 

Elastomer tags or VIE tags;(Northwest Marine Technology). The tail was selected as the site of 

injection because the skin in this area was lighter in colour. The fish were marked on the left or 

right side of the tail to account for differences in marking and escape time caused by the marking 

procedure and potential damage the injection can have caused. The selected colours were red, 

blue, yellow, pink, and green, giving a total of ten combinations when all five colours were used 

on both the left and right side of the fish. As a total of ten individuals per sex were selected, 

every fish would then be given a unique ID including population number, sex, the side the 

elastomer was injected into, and the colour injected. Some of the elastomers were also 

luminescent and gave of a shine with the use of a UV-light, making it easier to spot of the mark 

had weakened. The marking treatment as seen by examples in Table 2.1, was the result with 

five selected colours. 

 

 

 

 

 



Endre Åbø Hallingstad  Spring 2023 

12 
 

Table 2.1 Examples of marking treatment and ID. 

Population Sex Side Colour ID 

1 Female Left Red 1FLR 

1 Female Right Red 1FRR 

1 Male Left Red 1MLR 

1 Male Right Red 1MRR 

2 Female Left Pink 2FLP 

2 Female Right Green 2FRG 

 

In preparation of the marking procedure an appropriate solution of the sedative MS222 (mixture 

of 0.030 g MS222 and 0.020 g bicarbonate to 100 mL of water from the system) was mixed. As 

the mixture grew less effective with dilution through extra water with transfer of the fish, new 

batches were mixed if necessary. In addition, a platform with good lighting and a soft and 

moistened sponge, was prepared for the marking procedure. 

 

During marking, two people worked in unison: one sedating the fish one by one and recording 

length in millimetres and weight in grams before handing over to person number two for 

marking. The fish were dabbed dry with a paper towel before weighing to get an accurate value 

from the scale. 

 

During the marking itself, the fish was placed onto a wet sponge under good lighting with the 

head facing to the left of the person executing the marking procedure (right-handed). The needle 

with the polymer was then inserted into the tail of the fish at a sharp angle from the tail towards 

the head and adjusted after the skin broke so that the pigment would be as close to the surface 

of the skin as possible to make the pigmented polymer more visible. Placement of the pigment 

mark had to be adjusted from time to time if the fish had a slender tail or other, natural pigments 

such as the males. In this case, the pigment was placed higher or lower in the tail to have the 

individual fish identifiable also by the placement of the mark and so that the pigment was not 

obscured by dark spots (areas high in melanin) on the skin of the fish. 

 

After marking the required fish, the individual populations were placed in small (3 L) tanks, 

with circulation of water, overnight to ensure that every fish survived through the recovery 

period. If any fish died, they were identified by their mark and a new fish was selected from the 
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remaining redundancies and given the same marking. The required measurements were done 

for the new fish and overwrote those of the previous one. 

 

The marking was performed on the 3rd of October 2022. The fish were then checked after the 

recovery period, on the 4th of October. A few fish were then found dead, and were replaced, 

before being rechecked on the 5th.  

After the required 180 fish survived recovery, they were placed in larger tanks (80 L) and left 

to acclimatise to their new surroundings. These same tanks were used for the “Group fishing”-

part of the experiment. 

 

2.6 Vulnerability to capture. 

This study used size-selective harvested populations as the origin of our fish, and the fishing 

method used in the present study are different from the size-selective harvesting performed on 

the parent populations. In this study, fishing is equivalent to removal from the population and 

short-term transfer to new accommodations for the group fishing and catch and release for 

individual fishing. No fish were intentionally hurt or euthanised during the fishing experiment. 

While the size-selective harvests focused on size alone, this study is focused on behaviour and 

morphology linked to vulnerability to capture, rather than the size of the fish. The fishing in 

this study is a form of active fishing using a small net and entails visually finding the fish before 

catching them in the net. This means that the experiment measures net avoidance behaviour and 

is linked to swimming speed, acceleration, and agility.  

 

As the fish were raised in a lab for several years, the aquarium-nets are the only possible 

equivalent to predators the fish have had contact with for several generations. However, 

avoidance behaviour is in many was the same between wild and captive populations (Magurran 

and Seghers, 1990). This means that the net avoidance being measured can be used to speculate 

around predator avoidance in the wild. 
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2.6.1 Group fishing 

The focal populations (20 individuals, sex ratio 1:1) were housed in 80 L tanks. The tanks were 

arranged in two levels with five tanks in each level.  

The fishing itself was performed with a small aquarium net, a hand-net, elongated with a plastic 

stick so that the net could reach the bottom of the tank. Each catch of one or more fish was then 

placed in small tanks with numbered sections to maintain the order in which the fish were 

caught. The timing of the individual catch was also noted using a stopwatch and the data was 

transferred to a datasheet. Therefore, the vulnerability to capture within a group was measured 

as both time until capture and order in the capture sequence. In addition, the total time used to 

catch the whole population was recorded. 

 

This procedure was performed for three populations per day for three days within the same 

week, Monday to Wednesday. The group fishing was performed twice for each population.  

 

As the separation between the tanks were glass, the fish could see through to other tanks on 

their level and the decision was made to not fish two adjacent populations on the same day to 

minimise the stress on each individual and any potential learning from the experience of the 

adjacent population. 

 

2.6.2 Individual fishing 

Immediately following the Group fishing, the fish were separated into individual tanks (3 L) 

and left to acclimatise overnight in preparation for the individual fishing. The following 

morning paper or cardboard was placed between the tanks for the fish not to see the procedure 

being performed on a neighbouring fish and reducing the amount of stress on them. After the 

paper was placed between the tanks there would be an acclimatisation period of 10 minutes 

before the fishing experiment was performed to enable the fish to settle after the disturbance 

(O’Neill et al., 2018). The reason for not separating the fish visually at an earlier stage is that 

the guppy is a social species and spend a significant amount of time socialising (Wilson et al., 

2014).  
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The individual fishing was performed in the 3 L tanks with a small, round sieve. The choice of 

the sieve was made to give a handicap to the fisher during fishing procedure so that the fish 

would have more opportunity to escape than a square net would provide, given the size and 

shape of the smaller tanks. 

 

Time was measured from the time the sieve touched the water until the fish was safely in the 

sieve and out of water for 2 seconds. If the fish jumped out of the sieve immediately, the fishing 

continued as if the target fish was never caught. The time it took to catch each fish was recorded 

in a datasheet. This time variable is referred to as time until capture in individual fishing. 

 

2.6.3 Replicates and resting period 

In total the complete fishing experiment, including both group- and individual- fishing was 

performed twice before the next stage of the experiment. The populations were given a resting 

period of a minimum 10 days. 

 

2.7 Morphology 

Morphological data for the study was gathered using photographs of each fish, presenting the 

opportunity to use geometric morphometrics to study the shape of the fish through 10 chosen 

landmarks.  

 

2.7.1 Photography 

The fish were sedated using MS222 (same mixture as used during marking), one at a time and 

measured for length before being dabbed dry with a paper towel and weighed. Afterwards, the 

fish was placed on a plastic plate with a white background, millimetre-paper for scale, and a 

colour scale along with a note for ID on the side of the picture. The plate was well lit, and the 

camera was placed on a rail above the platform. A Canon DS126231 fitted with a Tamron SP 

60 mm F/2 macro lens, was chosen for the photography session. The settings for the camera 

can be seen in Figure 2.1. 

 



Endre Åbø Hallingstad  Spring 2023 

16 
 

 

Figure 2.1 Settings used for the camera during photography. 

 

Before the photo could be taken, the fish was adjusted using a small, moistened paintbrush so 

that the body was straight, and the fins were separated from the body as shown in Figure 2.2. 

The focus on the camera was then adjusted and the picture was taken. This procedure was 

repeated for every fish. 
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Figure 2.2 Picture of the male guppy ID-ed as 1MRY (Pop. 1, male, right-side mark, colour 

yellow) with a scale for length and colour and an ID mark. Fins and body adjusted to preferred 

angles. 

 

2.7.2 Landmarks 

Ten homologous landmarks were selected to characterise the lateral body shape of adult guppies 

(Table 2.2 and Figure 2.3) following earlier studies (Jayawickrama, 2013; Klingenberg, 2013; 

Ahmed Idris, 2016). Landmarks were digitised from pictures using the software tpsUtil (V. 

1.82) to create a “.tps” text file, and tpsDig2 (V. 2.32) to place the landmarks, and a size scale, 

which was defined using every image as explained by Crampton (2021) in in her video tutorials 

for morphometrics. 
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Table 2.2 Definition of the used landmarks. 

Landmark 

nr. 

Anatomical position 

1 Tip of the snout 

2 Centre of the eye 

3 Anterior extent of the dorsal fin insertion 

4 Posterior extent of the dorsal fin insertion 

5 Dorsal extent of the caudal insertion 

6 Posterior tip of the caudal peduncle 

7 Ventral extent of the caudal fin insertion 

8 End of the caudal fin 

9 Posterior extent of the anal fin insertion 

10 Anterior extent of the anal fin insertion 

 

 

Figure 2.3 1MRY with the ten defined landmarks used to digitise the shape of the fish. 

 

The landmarks data was imported to the software MorphoJ (V. 1.07a) (Klingenberg, 2011) 

which was used to extract the shape data from the landmarks (as a covariance matrix or 

Procrustes fit) through Procrustes superimposition by removing the information on orientation, 

position and scale. In addition, a wireframe was created (Figure 2.4) to approximate the shape 

of the fish into graphics, which was later used to visualise the data and analysis. The outer 

connections between the landmarks are for the general shape, whereas the line from landmark 
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1 to landmark 2 is to note the position of the eye and the connection between landmark 4 and 

landmark 9 is to indicate the approximate start of the tail on the fish.  

 

Figure 2.4 1MRY fitted with the wireframe used in graphics produced by MorphoJ. 

 

2.8 Statistical analyses 

2.8.1 Vulnerability 

Vulnerability to fishing was represented by three time variables in this study: 1) time until 

capture during individual fishing, 2) time until capture during group fishing, 3) total time used 

to catch the whole population during group fishing. In addition, we recorded sex, population, 

harvest size-selection treatment, length of the fish in millimetres, and the ID of the fish as 

potential explanatory variables. These response time variables were then analysed in R (V. 

4.1.1) through RStudio (V. 2022.07.2+576) (RStudio Team, 2022). 

 

Firstly the time variables were checked for repeatability (Table 2.3) using the package rptR 

(Stoffel; Nakagawa and Schielzeth, 2017). Repeatability is a quantification of variability 

between replicates of the same experiment and for measurements performed by the same 

operator (Zanobini et al., 2016). Repeatability is therefore a value that indicates the accuracy 

of the gathered data. In addition, trait repeatability is a measure of how stable the trait is over 

time within individuals. This is important when considering the effects of selection, as for 
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selection to occur the traits should be important for fitness and heritable. Trait repeatability has 

been suggested to set the upper limit for trait heritability (Killen et al., 2016). The variable for 

total time to catch a whole population gave the highest repeatability but represents the whole 

population vulnerability rather than individual vulnerability. Using this time variable as an 

estimate of individual vulnerability would be pseudo replication if used to compare with the 

individual values of each fish. Therefore, time until capture from group fishing started was used 

to represent individual vulnerability in a group setting. This variable was selected over order in 

the capture sequence because repeatability of the former was higher and both variables were 

highly correlated (corr. = 0.89). Pairwise correlation between variables was assessed using the 

package Performance Analytics (Peterson and Peter, 2020) by making a correlation matrix with 

absolute values for Pearson correlation. All time variables were log-transformed before 

analysis. 

 

Table 2.3 Repeatability and P-value as given by rptR. 

Tested variable Repeatability P-value 

(LRT/Permutations) 

Time until capture during 

individual fishing 

0.14 0.111 (LRT) 

  0.103 (Permutation) 

Order in the capture sequence 

(group fishing) 

0.15 0.025 

  0.024 

Time until capture from start of 

group fishing 

0.17 0.015 

  0.009 

Total time used to catch the whole 

population (group fishing) 

0.31 <0.001 

  0.010 

 

The three time variables representing vulnerability to fishing were tested if they were affected 

by the size-selective harvest regimes and the length of the fish. All three response variables 

were log-transformed. This was performed separately for each sex using one of the time 

variables as a dependent variable, giving in total six models. 
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The full model setup used was based on linear mixed effects models from the R package lme4 

(Bates et al., 2015), using the intercept as a random effect on the population without interaction 

with the other variables. The other independent variables were set to 1) the length of the fish 

centered to the mean length (18.9 mm) and scaled by the standard deviation of length (2.5 mm), 

and 2) the selection regime from the size-selective harvests. The reasoning for doing it this way, 

and not including more variables, was that the initial model was extremely complex. Using the 

drop1-function, AIC-scores were compared between the potential models. And the model with 

the lowest AIC was retained as the final model. 

 

The final touch was to control that the models performed well and satisfied all requirements 

through the use of DHARMa (Hartig, 2022) by checking for deviation in residuals. One change 

made from the original model was to separate the group fishing from the individual fishing 

because the Levene test for homogeneity of variance was not satisfied. In addition, the packages 

tidyverse (Wickham et al., 2019) and ggplot2 (Wickham, 2016) was the two packages used for 

cleaning the data and visualising data and models. 

 

2.8.2 Morphology 

All analyses using morphological data were performed with the intent of finding differences 

between the size-selection treatments used on the origin populations, the populations that the 

focal fish were selected from during the size-selective harvest. In addition, the effect of the 

shape on vulnerability to fishing was tested. 

 

Using MorphoJ (Klingenberg, 2011), selection treatments were tested for differences in shape 

or morphology in the three size-selective treatments. Three different types of analysis were 

performed on the shape data. Some variables from the fishing experiment were also used in 

regressions. 1) Canonical Variant Analysis (CVA) used to confirm sexual dimorphism between 

the sexes by using the Procrustes coordinates together with sex as a classifier. 2) After sexual 

dimorphism was confirmed in the Procrustes coordinates, the dataset was split into female and 

male, and the CVA was redone for the separate sexes with selection as a classifier. 3) Regression 

analyses were performed separately for two time variables: time until capture in individual 

fishing (replicate 1 and 2) and the time until a fish was caught in group fishing. The vulnerability 
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time variables were the response variable while the centroid size for the fish was the 

independent variable. The total time to catch an entire population (N = 20) was not used because 

it would imply pseudo replication. The time variables were also transformed into logarithmic 

values before use in the analyses. Permutation tests were performed in all analyses to test for 

significant differences. For all tests, the effect of size allometry on shape was accounted for. 
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3 Results 

3.1 Size-selective fishing experiment 

One of the first variables registered was the length of the fish. The overall distribution is shown 

in Figure 3.1, showing that all three size-selective treatments have two peaks, indicating 

groupings within the treatments. This is further confirmed by plotting female (Figure 3.2) and 

male (Figure 3.3) separately and confirming that the sexes are different in length. These data 

were further used in the analysis of the time variables recorded during the fishing experiment. 

Note that these differences in body length among size-selective treatments were not statistically 

tested. Populations are known to differ in standard length (Diaz Pauli, 2012; Bartuseviciute et 

al., 2022). 

 

 

Figure 3.1 Overall length distribution of the fish, in millimetres, grouped by size-selective 

treatment. Density plot with vertical lines noting the group wise mean length. 
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Figure 3.2 Length distribution of the female fish, in millimetres, grouped by size-selective 

treatment. Density plot with vertical lines noting the group wise mean length. 

 

 

Figure 3.3 Length distribution of the male fish, in millimetres, grouped by size-selective 

treatment. Density plot with vertical lines noting the group wise mean length. 

 

3.1.1 Group fishing 

Time to capture for group fishing did not show a significant correlation with fish length (Table 

3.1; Figure 3.4), as opposed to replicate 1 of time until capture in indevidual fishing. The lack 
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of relationship between time to capture in group fishing is the same for female fish (Figure 3.5) 

and male fish (Figure 3.6). In addition, the linear mixed effects models show that there is no 

significant difference between the size-selection treatments. This means that neither length or 

size-selection treatment had any effect on time until capture in group fishing. 

 

Table 3.1 Linear mixed effects model results for both male and female and the sexes separate 

with time until caught (in seconds, log-transformed) for group fishing. “Both” refers to the 

sexes together in the same model, whereas the other two contain only female and male fish 

respectively. Mean length = 18.9 (±2.5) mm. 

Sex Variable / Interaction Estimate SE t-

values 

P 

Both Negative selection 5.22027 0.32522 16.05 <2e-16 

 Length 0.16591 0.29665 0.56 0.577 

 Positive selection 0.17774 0.36641 0.49 0.631 

 Random selection -0.55535 0.41972 -1.32 0.192 

 Males -0.03870 0.41620 -0.09 0.926 

 Length : Positive selection 0.03692 0.33212 0.11 0.912 

 Length : Random selection 0.25788 0.36698 0.70 0.483 

 Length : Males 0.29410 0.56022 0.53 0.600 

 Positive selection : Males -0.03855 0.61415 -0.06 0.950 

 Random selection : Males 0.39156 0.66513 0.59 0.557 

 Length : Positive selection : 

Males 

-0.10743 0.70173 -0.15 0.879 

 Length : Random selection : 

Males 

-0.61131 0.81905 -0.75 0.456 

Females Negative selection 5.33424 0.18509 28.82 2.11e-06 

 Length 0.17109 0.24145 0.71 0.481 

 Positive selection 0.19693 0.26764 0.74 0.499 

 Random selection -0.36020 0.25917 -1.39 0.230 

 Length : Positive selection -0.01562 0,27750 -0.06 0.955 

 Length : Random selection 0.19591 0.29954 0.65 0.515 

Males Negative selection 4.851478 0.220037 22.05 <2e-16 

 Length 0.182156 0.206135 0.88 0.379 

 Positive selection 0.201381 0.295679 0.68 0.498 

 Random selection 0.089000 0.277812 0.32 0.749 

 Length : Positive selection -0.002196 0.267888 -0.01 0.993 

 Length : Random selection -0.142242 0.317252 -0.45 0.655 
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Figure 3.4 Time until a fish was caught in group fishing plotted against the length of the fish. 

Mean times were 242.10, 252.43 and 193.19 seconds for negative, positive, and random size-

selection respectively. 

 

 

Figure 3.5 Time until a fish was caught in group fishing plotted against the length of the fish. 

Females only. Mean times were 276.24, 296.66 and 209.64 seconds for negative, positive, and 

random size-selection respectively. 
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Figure 3.6 Time until a fish was caught in group fishing plotted against the length of the fish. 

Males only. Mean times were 207.96, 209.67 and 176.73 seconds for negative, positive, and 

random size-selection respectively. 

 

For the total time to catch a whole population (20 fish, 9 populations), there are no clear results 

as to differences between the size-selection treatments, except for an indication that negatively 

size-selected populations took longer to catch as a whole compared to the random selection 

treatment (P = 0.0511, Table 3.2). Positive size-selection treatment presents no difference from 

the negatively selected. 

 

Table 3.2 Differences in total time to catch a population. 

Variable Estimate (log(s)) SE t-values P 

Negative 

selection 

6.42923 0.08 81.23 <2e-16 

Positive selection -0.03545 0.11 -0.32 0.7558 

Random selection -0.23732 0.11 -2-12 0.0511 
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3.1.2 Individual fishing 

In the first replicate negatively size-selected fish of mean length have a time until caught for 

individual fish of 4.53 seconds (Table 3.3). An increase in length of 1 SD (Standard Deviation) 

to mean length the time to capture becomes 5.53 seconds, meaning that length has a negative 

effect (Table 3.3; Figure 3.7). Looking then at the rest of the output, especially the interactions 

between length and the remaining two selection treatments, there is no significant difference in 

the trend here compared to the other size-selective treatments (Table 3.3). Therefore, the three 

size-selective treatments have equal time until capture for individual fishing and the same 

negative trend with increasing length (Figure 3.7). 

 

The second replicate of time until caught for single fish tells a slightly different story. Here 

there is no longer the negative relationship of time until capture for individual fishing with 

increased length (Table 3.3). But there is a significant difference between the negative size-

selection lines and the positive size-selection treatment, showing that fish of mean length 

exposed to positive selection has a time until caught that is 0.85 seconds shorter than that of the 

negative size-selection (Table.3.3; Figure 3.8). This resulting in fish exposed to positive size-

selection being more vulnerable to capture in individual fishing in the second replicate. The 

remaining variables and interactions do not account for any significant difference from the 

negatively selected fish in either a negative or positive trend. 

 

Even though the models present significant results, it should be remembered that the time 

variable was not stable. The first and second replicates of time to capture an individual fish 

were unrepeatable. Explaining the different results obtained for replicate 1 and 2.  
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Table 3.3 Linear mixed effects model results for time until capture for individual fishing. 

Replicate refers to the two times the time variable was assessed. The estimate and standard 

error (SE) are natural log transformed. Mean length = 18.9 (±2.5) mm. 

Replicate Variable / interaction Estimate 

(log(s)) 

SE t-

values 

P 

1 Negative selection 1.71 0.11 16.03 6.87*𝟏𝟎−𝟔 

 Length  -0.20 0.06 -3.26 0.001 

 Positive selection  -0.01 0.15 -0.09 0.935 

 Random selection  0.06 0.15 0.39 0.713 

 Length : positive 

selection  

0.16 0.09 1.77 0.079 

 Length : Random 

selection 

0.05 0.08 0.66 0.509 

2 Negative selection 1.62 0.06 28.75 <2*𝟏𝟎−𝟏𝟔 

 Length -0.07 0.07 -1.06 0.291 

 Positive selection -0.17 0.08 -2.07 0.039 

 Random selection 0.04 0.08 0.45 0.652 

 Length : positive 

selection 

0.01 0.08 0.15 0.881 

 Length : Random 

selection 

0.07 0.08 0.85 0.396 

 

 

 

Figure 3.7 Replicate 1 for time until capture for individual fishing in a 3 L tank plotted against 

the length of the fish. Mean times were 5.74, 6.16 and 6.52 seconds for negative, positive, and 

random size-selection respectively. 
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Figure 3.8 Replicate 2 for time until capture for individual fishing in a 3 L tank plotted against 

the length of the fish. Mean times were 5.45, 4.73 and 5.96 seconds for negative, positive, and 

random size-selection respectively. 

 

 

3.2 Morphology 

3.2.1 Shape differences between sexes and among size-selective treatments 

The shape differences between male and female are significant. Males and famales’ shape 

differed in 17 standard deviations (Malahanobis distance; P = <0.001, Figure 3.9, Table 3.4). 

The wireframe shows that females (light blue, Figure 3.9) are somewhat leaner, have a slightly 

shorter caudal fin, and have an anal fin that is both wider and placed further back compared to 

their male counterpart. The separate grouping for male and female fish can also be seen in 

Figure 3.10. 
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Figure 3.9 Shape changes between male (dark blue) and female (light blue). All fish included. 

Scale of changes in shape set to 5. 

 

 

Table 3.4 Shape differences in Procrustes (absolute distance) and Mahalanobis distance 

(relative to within-group variation) between male and female. Result id from a CVA where 

the data was grouped by sex. 

 Mahalanobis distance Procrustes distance 

Value 17.4794 0.1631 

P-value <0.001 <0.001 

 

 

 

 

Figure 3.10 Distinct groups for male and female fish along the plotted variate. 

 

Female Male 
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Moving on to comparisons of size-selective treatments within sexes, the differences between 

the groups are smaller compared to between sexes and in addition, not all Canonical Variate 

Analysis gave significant P-values. CV1: Eigenvalue = 77.24, Variance = 100 %. 

 

For female fish, all three size-selection treatments were different from each other Table 3.5. 

This is illustrated in Figure 3.11 where the positively size-selected female fish are significantly 

shorter and leaner than their counterparts subjected to random or negative size-selection. 

Furthermore, negative size-selection has a more robust tail than the other two size-selection 

treatments, at least towards the end of the tail and the base of the tail fin. 
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Figure 3.11 Shape differences as illustrated by wireframe along the plotted variates (light blue 

to dark blue) showing the groupings for the three size-selective treatments for females only. 

Scale of changes in shape set to 5. 

 

Table 3.5 Pairwise comparison of shape differences in Procrustes (absolute distance) and 

Malahanobis distance (relative withing-group variation) for female fish between the size-

selective treatments and their P-values. 

Selection 

comparison 

Mahalanobis 

distance 

P Procrustes 

distance 

P 

Positive:Negative 1.83 <0.0001 0.01 0.0096 

Positive:Random 2.16 <0.0001 0.01 0.0072 

Negative:Random 1.56 0.0010 0.01 0.7928 

 

Positive selection 

Negative selection 

Random selection 
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For the male fish much the same as for the females when looking at the positively size-selected 

fish (Figure 3.12, Table 3.6), shorter and leaner. The positively size-selected fish are shorter 

and leaner than their counterparts from the other two treatments, but also longer than the 

randomly selected fish that seem to be more compact. The negatively selected fish are overall 

the longest fish. For females the largest shape difference was between positive and random size-

selection, while for males the largest differences occurred between positive and negative size-

selection (Table 3.5 and Table 3.6). 

 

 

Figure 3.12 Shape differences as illustrated by wireframe along the plotted variates (light blue 

to dark blue) showing the groupings for the three size-selective treatments for males only. Scale 

of changes in shape set to 5. 

 

Positive selection 

Negative selection 

Random selection 



Endre Åbø Hallingstad  Spring 2023 

35 
 

Table 3.6 Pairwise comparison of shape differences in Procrustes (absolute distance) and 

Malahanobis distance (relative withing-group variation) for male fish between the size-

selective treatments and their P-values. 

Selection 

comparison  

Mahalanobis 

distance 

P Procrustes 

distance 

P 

Positive:Negative 1.83 <0.0001 0.01 0.0474 

Positive:Random 1.51 0.0035 0.02 0.0574 

Negative:Random 1.66 0.0001 0.02 0.0158 

 

3.2.2 Effect of shape on vulnerability to fishing 

For the time until catch for individual fish (in both replicas) in a 3 L tank, there were no 

significant effect of centroid size and the morphology of the fish explained very little of the 

variance (<1.2%, not significant, Table 3.7). However, time until capture for group fishing was 

affected by the centroid size, at least for females (Table 3.7). Here the centroid size and shape 

of the fish accounts for almost 6% of the variance seen for female fish (P = 0.025). But a similar 

shape effect is not seen for male fish. The size effect for females was positive (0.55, P = 0.025, 

Table 3.7), meaning that a larger size will lead to longer time until caught as can be seen by the 

shape change in Figure 3.13, where the female fish have longer caudal peduncle along the CV1 

for the regression. Longer caudal peduncle can therefore be indirectly linked to longer times 

until caught during group fishing. The depth of the fish are also larger. 

 

Table 3.7 Regression results for the three time variables separately as independent variables 

and plotted against centroid size, the overall size of the fish. 

Time variable Sex % prediction Regression 

coefficient 

P 

Time until caught 

for individual 

fishing 1 

Female <0.01 <-0.01 0.993 

 Male 0.16 -0.08 0.703 

Time until caught 

for individual 

fishing 2 

Female 0.63 -0.09 0.456 

 Male 1.12 0.21 0.326 

Time until caught 

for group fishing 

Female 5.73 0.55 0.025 

 Male 1.41 0.47 0.272 
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Figure 3.13 Centroid size and shape changes for females along the regression for time until 

caught for group fishing. Light blue is the start and dark blue is the end. Scale of changes set to 

5. 
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4. Discussion 

4.1 Summary of results 

Overall, there are no clear and consistent differences among size-selection in vulnerability to 

fishing. For time until capture for individual fishing is impacted by length in replicate 1 and 

positive selection in replicate 2. In both cases the difference is negative compared to the 

negatively selected fish. However, time to capture for group fishing was not affected by either 

length or size-selection. For the total time it took to fish a whole population, there are little 

speak of although there is an inkling that the randomly size-selected fish are easier to catch than 

the negatively size-selected fish. 

 

As expected from the literature and the original measurements of length, there are significant 

differences in the shape of the fish between the sexes. Furthermore, the positively size-selected 

fish of both sexes are shorter and leaner than the randomly and negatively size-selected fish. 

For females, the tail of the negatively size-selected fish is somewhat longer and more robust 

than the other two. The randomly size-selected females are the most robust and have the deeper 

body. For males, the negatively size-selected fish are slightly longer and more robust than 

positive and random, whereas positively and randomly size-selected fish are not significantly 

different, although there is an indication that random is the shorter of the two. The morphology 

had no significant effect on time until caught for males in group fishing nor for males and 

females in individual fishing. Centroid size explains almost 6% of the variation shown in time 

until caught for females in group fishing. 

 

4.2 Group vulnerability 

In general fish body length did not affect vulnerability to group fishing. Killen; Nati and Suski 

(2015) also found that the length of the fish does not have significance for the vulnerability to 

be captured. Instead, they point to the metabolism of the fish and adaptations for anaerobic 

metabolism. This is because burst swimming, which utilises the anaerobic capacity of the 

animal, is often used by fish to avoid predators or to catch prey. In addition, size-selected lines 

did not differ in their vulnerability to fishing when accounting for differences in body-length.  
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For the total time to catch the whole population (20 fish, 9 populations), there is no significant 

difference between the size-selective treatments. However, the randomly size-selected may be 

easier to catch than the negatively size-selected line. This may suggest that the longer fish of 

the negatively size-selected populations are better at avoiding the net, possibly through a higher 

maximum speed (Cano-Barbacil et al., 2020). But when vulnerability to fishing was tested for 

each fish length, no significant result was found. Thus, this difference in vulnerability between 

random and negative size-selected lines might be due to other factors not accounted for in this 

study. 

 

4.3 Individual vulnerability 

The results for vulnerability to individual fishing show a negative correlation between time until 

caught and the length of the fish (replicate 1). This means that the shorter fish had a better 

chance of avoiding being caught when alone. When considering replicate 2, positively size-

selected fish are more vulnerable to fishing relative to negative size-selected fish. Therefore, 

the populations where the larger fish had been selected out (positive size-selection) also had a 

negative effect on time until caught for individual fish and was more vulnerable to being caught 

This, to some degree nullifies the result from replicate 1. If size-selected lines only differed in 

size, the result from replicates 1 and 2 would indicate opposite effect of length on vulnerability 

to individual fishing. However, the size-selected lines differ in other traits and thus the 

vulnerability of fishing might be due to other factors (Diaz Pauli, 2012). The time until capture 

in individual fishing was also unstable (not consistent over time), and the results should not be 

trusted outright, as both time variables might measure different things, as habituation or learning 

might have occurred. 

 

4.4 Sex and selection on shape 

Sex plays a major part in the size differences in the fish. The differences are large enough to 

create two distinct groups in Figure 3.10. This is, however, expected as the sexual selection is 

evident in the several conspicuous ways. Colouration, for one, is an energy expenditure that the 

females do not have. On top of this the males have the specialised gonopodium, adding to the 

differences between the sexes. Although pure shape differences are not as visible to the naked 

eye as colouration and size, they are large enough that the results were muddled by using both 
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sexes in the same analysis. The clearest difference between the sexes shape wise is the position 

of the anal fin, being placed further forward in the male fish and that it has a narrower 

attachment to the fish. 

 

When concerning the size-selective treatments, the sexes were split, and the differences 

between the groups became more obvious. For the females, positive size-selection resulted in 

leaner fish and negative and random resulted in more robust fish. For the males the positive 

selection resulted in leaner fish, like it did for females. However, in this case randomly size-

selected fish are now different from negative and like positively size-selected. This means that 

the randomly selected fish were affected oppositely between sexes in the randomly selected 

populations. These results are different from previous studies made on the same selection lines 

performed by Ahmed Idris (2016) and Jayawickrama (2013) who found no significant 

differences between the size-selective lines. The reason for this change in results may be 

because of the fish still adapting to aquarium tanks without water currents like Burns; Di Nardo 

and Rodd (2009) found. Further selection and evolution may therefore have proceeded in a 

slightly different direction than in these earlier studies. The selection lines may also have 

experienced genetic drift or changed through a plasticity response before, and selection can 

have taken a firmer grip over time by eliminating some of the gene pool and leading to more 

directional evolution for the positive and negative size-selection over time. 

 

Although fishing with a handheld net is not the same as rod and lure like Alós et al. (2014) 

derived their data from. Fishing equipment can affect the morphology of fish. In the case of 

wild fish being selected by rod and lure, the fish with larger mouths are being selected as they 

can swallow the lure more easily and driving the selection towards smaller mouths on future 

generations in the populations.  

 

Again, the shape differences between the size-selective treatments were as follows: For females, 

positive size-selection resulted in leaner fish and the other two resulted in more robust fish. For 

the males the positive selection resulted in leaner fish, like it did for females. However, 

randomly size-selected fish are now different from negative and like positively selected. This 

means that the randomly selected fish were affected oppositely between sexes in the randomly 

selected populations. 
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Shape differences being linked to vulnerability to capture can be found in other studies as well. 

Allendorf and Hard (2009) for example found that populations of Sockeye salmon 

(Oncorhynchus nerka) that are under pressure from fishing evolve smaller and more slender 

bodies less attractive to fishermen as the fish are smaller in weight. This can be compared to 

the negatively size-selected line where the smaller fish are harvested leading to larger and more 

robust fish compared to the positive size-selective line. Similarities in change caused by 

selection can also be found in a study by Alós et al. (2014) where recreational fishing with rod 

and reel result in harvesting the fish with larger mouths and more streamlined bodies. In other 

words, fish that have an easier time swallowing the lure and can glide through the water at a 

faster velocity. Fenberg and Roy (2008) also found that the selection of larger individuals has 

large effects on the targeted species resulting in more than changes in size and shape, but also 

transferring effects over to other life-history traits. This may help explain the lack of 

significance in the case of length for the lines. Differences between the seize-selective lines 

found in other traits not explored in this study can be evening out the differences between the 

selection lines when looking at length.  

 

4.5 Individual vs group vulnerability 

In natural conditions, within a shoal an individual fish gets muddled and it is hard to target by 

a predator, in addition, there are better opportunities to forage when fish shoal as the individual 

spends less time looking out for predators (Thambithurai et al., 2018). In nature active fishing 

such as trawling by larger fishing vessels will find and follow large shoals of fish using sonar 

to achieve larger catches, large shoals are more easily seen and thus more vulnerable to fishing. 

Thambithurai et al. (2018) also suggest that passive and active fishing gear select for opposite 

behaviour patterns as larger shoals, normally consisting of more timid fish are more likely to 

be caught by a trap than smaller shoals of bolder fish and that trawling may target bolder fish 

that are more willing to approach an unknown object. The use of an aquarium net to catch fish 

is not the same as setting a trap and can therefore not be compared directly. Lone fish have to 

be much more vigilant towards predators in the wild, and therefore, have much less time to 

forage for food (Thambithurai et al., 2018). This suggests that the fish are more sensitive to 

changes and may react more intensely to a predator than a single individual in a shoal.  
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Although direct comparison between individual and group fishing were not possible, there are 

indications that length can impact time until capture for both groups and individual fish. For 

the groups this is from the total time until capture for the whole population, randomly size-

selected fish may be easier to catch relative to the other two selection treatments, suggesting a 

positive relationship between vulnerability and length, whereas the vulnerability individual 

fishing may indicate is a negative relationship between length and time until caught.  

 

Can the negative trend with length be contributed to the confined space the fish was in? 

Considering the tanks were as small as 3 L, they were smaller, relatively than the group tanks 

with a volume of 80 L (4 L per fish). On top of that the sieve that was used, although smaller 

than the net used for the group fishing and with rounded edges was also relatively large for the 

size of the tank. These inconsistencies in the design of the experiment may have contributed to 

the group fishing and individual fishing being so different that the model could not compare 

them. As a result, the model became too complex, and any possible significance muddled. 

 

In addition to the inconsistencies in the choice of instruments, there is a large possibility that 

the fisherman in this study became better at manoeuvring the aquarium net and the sieve during 

the fishing experiment, affecting the time variables collected. This can have led to shorter times 

between replicate 1 and replicate 2 as well as between populations as they were consecutively 

fished. The marking procedure may also have affected the populations differently as it 

proceeded. This is because one of the people performing the marking had limited experience 

beforehand, and can have improved significantly over time, leading to fish marked early 

potentially being more affected by the injection because of unnecessary amounts of elastomer 

injected into the fish or a bad angle of the syringe leading to unnecessary injury. 

 

4.6 Effect of shape on vulnerability to fishing 

There was little of note for the effect of shape on the vulnerability to being caught in both 

individual and group fishing. This is with the exception of time from group fishing started until 

a fish was caught for female fish. Here the shape of the fish explained 5.73 % (P = 0.025) of 

the variability seen in the time until caught. This is with a positive coefficient, meaning that 

larger fish can avoid being caught for longer.  
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Furthermore, Hendry et al. (2006) found that fish are affected by higher predation may end up 

with a more robust tail, meaning that the fish adapting to new predators are selected for 

avoidance through a more powerful tail potentially resulting in faster bursts when avoiding 

predators. This is, however, not the same as pure size-selective treatment, but shows that a more 

powerful tail can help the fish in the effort of avoidance. 

 

4.7 Size-selective harvests 

The main selective treatment performed on the fish used in this study has been size-selective 

(Diaz Pauli, 2012; Jayawickrama, 2013; Ahmed Idris, 2016). This is apart from the random 

selection process performed during the last harvest where the fish for the current study was 

separated from the origin populations. This means that it is the size-selective treatment that has 

resulted in shape and size differences between the three size-selection treatments and therefore 

also been linked to vulnerability to capture. This treatment may also have affected other traits 

not addressed here, and therefore, would need further research to investigate if the indicative 

results are correct. 

 

4.8 Relevance 

The results of this study can be related to the effects of trawling in some way, even though the 

fishing activity is somewhat different in the reaction to the movement of the fish. Nonetheless, 

it implies that selective treatment can lead to differences in vulnerability to capture from fishing 

and that the differences in shape and length can affect overall vulnerability. 

This coincides with what Fenberg and Roy (2008) found, where many traits are affected by the 

size-selective harvest of wild fish for consumption. Among them are a reduction in body size 

and reproductive investment. Further research, looking at experiments like this study has used 

also found that understanding of fisheries-induced evolution can be obtained (Diaz Pauli, 2012). 

And that such research can make it easier to build programs for conservation (Cooke et al., 

2019). The native environment of a species is a vastly more complex system than the lab and 

can contain many variables that can influence selection (Killen et al., 2016). Therefore, 

laboratory experiments are vital in the acquisition of knowledge. 



Endre Åbø Hallingstad  Spring 2023 

43 
 

This study contributes to that, but more research is needed, and the experiment needs alteration 

and more stringent guidelines to produce better results. 
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