
Machine Learning in Automated
Segmentation of Small Lesions in
Magnetic Resonance Imaging for

Multiple Sclerosis

Master Thesis in Medical Technology
by

Maria Mathea Køhler Aarhus

Department of Physics and Technology
University of Bergen

June 01, 2023

Scientific environment

This study was carried out at the Department of Physics and Technology at the Univer-
sity of Bergen, as well as Mohn Medical Imaging and Visualization Centre (MMIV),
Department of Radiology, Haukeland University Hospital (HUH).

ii Scientific environment

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to all those who
have supported and contributed to the completion of this thesis. Your assistance, guid-
ance, and encouragement have been extremely helpful throughout this journey.

Firstly I will start to thank my supervisors, Frank Riemer and Renate Grüner, for your
immense encouragement and ability to motivate. Thank you for not only sharing your
extensive expertise but also for providing unwavering support and creating an environ-
ment conducive to meaningful discussions. Your guidance and mentorship have been
invaluable, serving as steadfast pillars in the life of a stressed-out master’s student. I
also appreciate you for giving me the chance to participate in the Lund ISMRM Nordic
Chapter and the MMIV conference last year. It was a great opportunity for learning
and provided me with valuable feedback from prominent researchers in the field.

A special thanks to the entire team at MMIV for your warm welcome and exceptional
support, surpassing my initial expectations and making the process of writing this mas-
ter’s thesis truly remarkable. Your kindness and assistance have greatly enhanced my
experience. I would also like to thank Ellen Skorve, Astri J Lundervold, Øivind Tork-
ildsen, and Kjell-Morten Myhr from the Department of Neurology, HUH, for providing
me access to the data used in the thesis. Knowing that this work serves a practical pur-
pose in aiding patients, has been a great motivation. Also, a huge thank you to Fulvio
Zaccagna, who gave valuable insights into the multiple sclerosis disease.

Last but not least I have to thank my friends and fellow students, I would never have
gotten to submit this thesis without your help. Thank you for all your support and en-
couragement throughout the past five years, your love and helping hands have really
made a difference. Thank you to my father Jan-Tore and brother Markus, your reas-
surance has been irreplaceable. And thank you to Sindre for your patience and always
being there for me.

Maria Mathea Køhler Aarhus
Bergen, June 2023

iv Acknowledgements

Abstract

Introduction: Multiple Sclerosis (MS) is the most prevalent neurological disability in
young adults. It is an autoimmune-mediated disorder that involves demyelinating le-
sions affecting the central nervous system, with magnetic resonance imaging (MRI) as
one of the most important diagnostic tools. Small MS lesions are indicative of disease
progression and treatment but can be difficult to spot. The use of machine learning
(ML) can greatly aid in this process and this thesis aims to test and compare different
ML methods applied to structural MRI images, for this purpose.

Methods: The study employed various ML methods to automatically segment MS
lesions, with a specific focus on lesions smaller than or equal to 10 mm3. The models
evaluated included the popular lesion segmentation algorithms lesion segmentation tool
(LST) and nicMSlesions, as well as the neural networks U-Net and nnU-Net. The
neural networks were re-purposed and trained to perform small lesion segmentation to
see how they perform against established algorithms.

Results: Evaluation of the segmentations generated by each model was conducted us-
ing dice score, sensitivity, and specificity measures. Both overall lesion segmentations
and segmentations exclusive to small lesions were assessed for all models. The nnU-
Net exhibited the highest dice and sensitivity scores for both types of segmentations,
followed by the U-Net. The LPA, LGA, and nicMSlesions ranked subsequently in
descending order of scores. This trend was consistent for both overall lesion segmenta-
tions and segmentations excluding the larger lesions. The specificity values remained
high across all models throughout the assessment.

Conclusion: The nnU-Net and U-Net demonstrated the ability to segment lesions
smaller than or equal to 10 mm3, suggesting the feasibility of this task for future work.
Furthermore, the fully automated process of the nnU-Net emphasizes the significance
of automation in achieving high segmentation scores, underlining its importance be-
yond initial expectations.

vi Abstract

Contents

Scientific environment i

Acknowledgements iii

Abstract v

Abbreviations xi

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 2

2 Background 3
2.1 Magnetic resonance imaging . 3

2.1.1 MRI basics . 3
2.1.2 MR signal generation . 6
2.1.3 Relaxation . 7
2.1.4 Image formation . 9

2.2 Multiple sclerosis . 10
2.2.1 Subtypes of multiple sclerosis 11
2.2.2 Multiple sclerosis diagnosis 12

2.3 Machine learning . 13
2.3.1 Image segmentation . 13
2.3.2 Transfer learning . 14
2.3.3 Dataset splitting . 14
2.3.4 Data augmentation . 15
2.3.5 Logistic regression model . 15

viii CONTENTS

2.4 Deep learning . 16
2.4.1 Convolutional neural networks 17
2.4.2 Epochs . 20
2.4.3 Loss functions . 20
2.4.4 Optimizers . 20
2.4.5 Learning rate . 21

2.5 Algorithms and neural networks . 21
2.5.1 Lesion segmentation tool . 21
2.5.2 Lesions growth algorithm . 21
2.5.3 Lesion prediction algorithm 24
2.5.4 NicMSlesions . 25
2.5.5 U-Net . 27
2.5.6 fastMONAI . 28
2.5.7 nnU-Net . 28

2.6 Performance evaluation . 29
2.6.1 Dice score . 30
2.6.2 Sensitivity and specificity . 30

2.7 Recent advances . 31

3 Methods 33
3.1 Study population . 33
3.2 MRI acquisition . 34
3.3 Image processing pipelines . 34

3.3.1 Data splitting . 34
3.3.2 Localization of small lesions 35

3.4 Obtaining lesion segmentations . 36
3.4.1 Lesion segmentation tool . 36
3.4.2 NicMSlesions . 37
3.4.3 U-Net employed trough fastMONAI 38
3.4.4 nnU-Net . 39

3.5 Postprocessing . 40
3.5.1 Validation pipeline . 40
3.5.2 Extraction of small lesion predictions 41

3.6 Evaluation . 42
3.6.1 Metrics . 42
3.6.2 Visualizations . 42

CONTENTS ix

4 Results 45
4.1 Lesion growth algorithm . 45

4.1.1 Segmentation of all lesions . 45
4.1.2 Segmentation of small lesions 47

4.2 Lesion prediction algorithm . 47
4.2.1 Segmentation of all lesions . 47
4.2.2 Segmentation of small lesions 49

4.3 NicMSlesions . 49
4.3.1 Segmentation of all lesions . 49
4.3.2 Segmentation of small lesions 51

4.4 U-Net employed through fastMONAI 51
4.4.1 Segmentation of all lesions . 51
4.4.2 Segmentation of small lesions 53

4.5 nnU-Net . 53
4.5.1 Segmentation of all lesions . 53
4.5.2 Segmentation of small lesions 55

4.6 All model segmentations . 55
4.6.1 Segmentation of all lesions . 55
4.6.2 Segmentation of small lesions 57
4.6.3 U-Net optimization . 59
4.6.4 Training duration . 60

5 Discussion 61
5.1 Small lesions . 61
5.2 Model comparison . 62

5.2.1 Lesion growth algortihm . 62
5.2.2 Lesion prediction algorithm 63
5.2.3 nicMSlesions . 64
5.2.4 U-Net . 65
5.2.5 nnU-Net . 67

5.3 Dataset . 68
5.4 Validation pipeline . 69
5.5 Performance measure . 69

5.5.1 Specificity . 69
5.5.2 Mean . 70

6 Conclusions and future work 71

x CONTENTS

A Appendix: Source code 73

B Appendix: Small lesion visualization 75
B.1 nicMSlesions . 75
B.2 U-Net . 76
B.3 nnU-Net . 76

Abbreviations

AI Artificial Intelligence

CNN Convolutional Neural Network

CNS Central Nervous System

CSF Cerebrospinal Fluid

DL Deep Learning

DNN Deep Neural Network

DSC Dice Score Coefficient

DOIT Determination of Optimal Initial Threshold

FC Fully Connected

FDR False Discovery Rate

FN False Negative

FOR False Omission Rate

FP False Positive

FLAIR Fluid Attenuated Inversion Recovery

GM Grey Matter

HUH Haukeland University Hospital

LGA Lesion Growth Algorithm

LPA Lesion Prediction Algorithm

LR Logistic Regression

LST Lesion Segmentation Tool

MAGNIMS Magnetic Resonance Imaging in MS

MICCAI Medical Image Computing and Computer Assisted Intervention

ML Machine Learning

MNI Montreal Neurological Institute

xii Abbreviations

MRI Magnetic Resonance Imaging

MS Multiple Sclerosis

MSE Mean Squared Error

NMR Nuclear Magnetic Resonance

NPV Negative Predictive Value

PPMS Primary Progressive MS

PRMS Progressive Relapsing MS

PVE Partial Volume Estimate

ReLU Rectified Linear Unit

RF Radio Frequency

ROI Region of Interest

RRMS Relapsing-Remitting MS

SGD Stochastic Gradient Descent

SPM Statistical Parametric Mapping

SPMS Secondary Progressive MS

TE Echo Time

TI Inversion Time

TL Transfer Learning

TN True Negative

TP True Positive

TR Repetition Time

TPM Tissue Probability Map

TLV Total Lesions Volume

WM White Matter

List of Figures

2.1 Spin of a hydrogen nucleus with magnetic moment 4
2.2 Hydrogen proton experiences gyroscopic motion 6
2.3 T1 recovery and T2 decay of water and fat 8
2.4 T1, T2 and FLAIR MRI . 10
2.5 Muliple sclerosis lesions . 11
2.6 FLAIR MRI with lesion and mask . 12
2.7 Automatic segmentation . 13
2.8 Overfitting vs. balanced fitting . 15
2.9 Neural network . 17
2.10 CNN architecture . 18
2.11 Kernel traversal . 18
2.12 Max pool calculation . 19
2.13 Lesion growth model . 23
2.14 2D U-Net architecture . 28
2.15 Dice score coefficient . 30

3.1 3D connectivity . 35
3.1 Binary lesion mask . 41

4.1 LGA predicted segmentations . 46
4.2 LPA predicted segmentations . 48
4.3 nicMSlesions predicted segmentations 50
4.4 U-Net predicted segmentations . 52
4.5 nnU-Net predicted segmentations . 54
4.6 DSC, sensitivity and specificity barplots 56
4.7 DSC, sensitivity, and specificity small lesion graphs 58
4.8 U-Net learning rate . 59
4.9 U-Net train and validation loss . 60

B.1 nicMSlesions small lesion prediction 75

xiv LIST OF FIGURES

B.2 U-Net small lesion prediction . 76
B.3 nnU-Net small lesion prediction . 76

List of Tables

3.1 Participant data . 34
3.2 MRI acquisition protocol . 34

4.1 LGA predicted segmentations . 46
4.2 LGA predictions on small lesions . 47
4.3 LPA predicted segmentations . 48
4.4 LPA predictions on small lesions . 49
4.5 nicMSlesions predicted segmentations 50
4.6 nicMSlesions predictions on small lesions 51
4.7 U-Net predicted segmentations . 52
4.8 U-Net predictions on small lesions . 53
4.9 nnU-Net predicted segmentations . 54
4.10 nnU-Net predictions on small lesions 55
4.11 Model training time . 60

xvi LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Multiple Sclerosis (MS) is the most prevalent neurological disability in young adults. It
is an autoimmune-mediated disorder that involves demyelinating lesions affecting the
central nervous system (CNS) and can often lead to serious cognitive or physical issues
[1]. The prevalence lies around 50–300 per 100.000 people, meaning that about 2-3
million people are estimated to live with multiple sclerosis globally [2].

The introduction of magnetic resonance imaging (MRI) revolutionized the diagnosis
and treatment of MS. It allowed for the visualization of disease activity, providing
valuable insights. As MRI technology continued to advance over the following decades,
it became the most important diagnostic and monitoring tool available. MRI has also
gained prominence as a crucial appliance in MS clinical trials and is routinely used
for long-term clinical monitoring [3]. By analyzing lesions through MRI sequences,
specific criteria have been established to facilitate the diagnosis of multiple sclerosis in
patients who exhibit clinical symptoms commonly associated with the condition. The
McDonald diagnostic criteria for multiple sclerosis, established in 2001 and revised in
2017, relies on assessing the number, size, and location of brain and spinal cord lesions
as key indicators of the disease [4].

Newly formed MS lesions often appear small, meaning detecting them is an important
step in early MS diagnosis. The identification of these lesions provides crucial infor-
mation when evaluating the disease activity and determining the effectiveness of treat-
ment. The emergence of new lesions is also closely associated with disease progression
and severity, often accompanied by heightened symptoms. As they can be difficult to
spot due to their size and analyzing MRI scans manually can be a time-consuming pro-
cess, the inclusion of artificial intelligence (AI) to automatically detect and segment

2 Introduction

MS lesions can greatly assist in monitoring the disease [5]. Research in the field of MS
diagnosis using MRI modalities and deep learning (DL) architectures have been initi-
ated since 2016. The research is comprised of the utilization of conventional machine
learning (ML) methods and DL models for segmentation and classification applications
[6].

1.2 Aims

The goal of this thesis is to investigate different machine learning methods, both con-
ventional ML algorithms and DL-based models, to segment MS lesions. The focus is
on finding how well these models perform on lesion segmentation in general, and small
lesions in particular. In this project, small lesions have been defined as lesions smaller
than or equal to 10 mm3.

The models chosen for the project include well-established algorithms such as the le-
sion segmentation tool (LST), which provides two segmentation algorithms, and nicM-
Slesions. Both have been used as benchmark methods in MS lesion segmentation pub-
lications [7]. For the DL models the U-Net developed by Ronneberger et al. [8] and the
more automated nnU-Net [9] were chosen. The U-Net because of its viability through
fastMONAI [10], which is an open-source deep learning library chosen because of its
accessibility to state-of-the-art DL techniques. The nnU-Net is proposed to handle
a wide variety of target structures and image properties. It has produced high per-
formance scores from international segmentation challenges [9] and is, therefore, an
interesting algorithm to evaluate and compare for this type of task.

The results will be presented, evaluated, and compared using appropriate performance
measures such as sensitivity, specificity, and dice score.

Chapter 2

Background

The background chapter presents the foundation for understanding the concepts and
terminology relevant to the research. It delves into the fields of MRI and MS disease, as
well as establishing the theory behind the algorithms and neural networks appropriate
to the thesis. The current state of knowledge in the field is also briefly overviewed.

2.1 Magnetic resonance imaging

The nuclear magnetic resonance (NMR) phenomenon was first described experimen-
tally in 1946 by Bloch and Purcell [11][12]. It was first clinically utilized in 1981,
providing the physical basis for generating images through NMR [13]. Magnetic reso-
nance imaging has emerged as a potent diagnostic tool for assessing and monitoring the
treatment of patients. To do this, it utilizes magnetic fields and radio-frequency (RF)
signals to generate visual representations of anatomical structures and functions [14].

2.1.1 MRI basics

All atomic nuclei are built up of protons and neutrons, which both are spin-1
2 particles.

Some nuclei, like the hydrogen nucleus, 1H, thus have a resultant net spin based on
the number of nucleons present. Associated with this spin is a net magnetic moment
specific to the nucleus at hand. There must be an odd number of neutrons and/or protons
as both are spin-1

2 particles. This spin generates a magnetic field with north and south
poles and can be compared to the analog dipole bar magnet, with the poles aligning
along the axis of rotation (Figure 2.1). When applying a strong external magnetic field
(
�!
B0) the nucleus will align parallel or antiparallel to

�!
B0 [15]. These two orientations

correspond to two different energy states. When the spin of the spin-1
2 particles is

oriented parallel to
�!
B0, it is called a low-energy state, and while oriented antiparallel to

�!
B0, it is a high-energy state. For all states of matter, the majority of spins are pointed in

4 Background

Figure 2.1: Image showing the spin of a hydrogen nucleus with a magnetic moment, to the left. The
behavior is similar to that of the bar magnet shown to the right. N and S represent north and south,
respectively. The directions of the straight arrows represent the direction of the magnetic field.

the same direction as
�!
B0. The magnetic momentum for these energy states is described

by Equation 2.1, where the positive sign means that the momentum is pointing in the
direction of the magnetic field.

�!µz =±1
2

g} (2.1)

When placed in an external magnetic field, say along the z-direction, the magnitude of
the z-component is exactly known and can only assume discrete values. Quantum me-
chanically, this is because applying an external magnetic field is equivalent to making
a measurement or observation in this direction [16].

During MRI, the sum of the magnetic moment of all the spin particles is observed. This
is because the individual magnetic moments are too small to be measured directly. This
new magnetization (

�!
M) that arises within an object due to the presence of

�!
B0 is seen

in equation 2.2. Ns is the number of spins being observed. Considering a coordinate
system with its z-axis along

�!
B0, at rest, the net magnetization is approximately entirely

in the z-direction, making
�!
M =

�!
Mz.

�!
M =

Ns

Â
n=1

�!µ n (2.2)

Boltzmann statistics (Equation 2.3) show the ratio between the number of spins up and
down when influenced by a strong magnetic field.

N"
N#

= exp
✓

DE
KTs

◆
(2.3)

N" is the number of spins in the same direction as
�!
B0 while N# is the number of spins

opposing
�!
B0. Ts is the absolute temperature of the system in Kelvin and DE is the

2.1 Magnetic resonance imaging 5

energy difference between the two spin states, which can be seen in Equation 2.6. K is
the Boltzmann constant, K = 1.38x10�23J/K and } is Planck’s constant, } = 6.63×10�34

m2 kg/s. The two energy states E" and E# are the energies of the protons opposing and
parallel to

�!
B0, respectively. They can be written as Equation 2.4 and 2.5.

E" =�1
2

g}�!B0 (2.4)

E# =
1
2

g}�!B0 (2.5)

DE = E# �E" = g}�!B0 (2.6)

Equation 2.6 shows that the difference between the energy states depends on
�!
B0. More

energy is needed for a nucleus to oppose the magnetic field, and only higher-energy
nuclei possess enough energy to do this. As a consequence of this, when the strength
of

�!
B0 increases, fewer nuclei have enough energy to oppose the magnetic field in the

antiparallel direction. In thermal equilibrium, there are always fewer high-energy nu-
clei than low-energy nuclei. The magnetic moments of the aligned nuclei, therefore,
cancel out the magnetic moment of those opposing the field, creating the net magneti-
zation

�!
M because of the larger number of aligned nuclei [17]. Both thermal energy and

the strength of
�!
B0 can affect how many nuclei align in what direction, which is why the

MRI signal depends so strongly on these variables. Low temperatures and a large mag-
nitude of

�!
B0 make it hard for the nuclei to go to the higher energy state, thus leading to

a high positive net magnetization and a strong signal. For clinical use,
�!
B0 usually has a

value of 1.5T or 3T [14].

While a bar magnet would orient itself completely parallel or antiparallel to the mag-
netic field, a nucleus would not. Even under the influence of the strong external mag-
netic field, the spin of the hydrogen proton experiences a small precession around the
direction of

�!
B0, giving each spin a small magnetic component in the x-y direction (

�!
Mxy)

Because of angular momentum, the nucleus adopts a gyroscopic motion (Figure 2.2).
The angular frequency around

�!
B0 is called the Larmor frequency and is proportional to

the field strength. This variable is described by the Larmor equation as seen in Equation
2.7. w is the angular frequency of the protons, g is the gyromagnetic ratio which is a
constant fixed for a specific nucleus, and

�!
B0 is the field strength. The gyromagnetic

ratio is denoted in MHz/T [17].

w = g�!B0 (2.7)

6 Background

Figure 2.2: Image of how a hydrogen proton experiences gyroscopic motion around the direction of a
main magnetic field.

The hydrogen atom has one of the highest gyromagnetic ratios of all the nuclei and has
a value of 42.57 MHz/T [17]. Hydrogen is the most abundant atom in the human body
as it appears in water and fat molecules. This is why 1H gives the strongest MR signal
and is frequently used in clinical MRI [17][16].

2.1.2 MR signal generation

In the acronym MRI, the "R" denotes resonance. Resonance in MRI occurs when a
nucleus is subjected to an oscillating force that has a frequency close to the natural fre-
quency of the nucleus (wn). Exposure to this oscillating force transfers energy from the
external force to the nucleus [17]. If the frequency of the transferred energy matches
the Larmor frequency (w0) of the nucleus, resonance occurs, causing the nucleus to
become excited. The Larmor frequency of hydrogen lies within the radio frequency
(RF) band of the electromagnetic spectrum for all B0 field strengths used in clinical
MRI. Applying an RF pulse with the same frequency as the Larmor frequency of hy-
drogen allows the hydrogen nuclei to resonate, resulting in an increase in nuclei with a
downward spin.

Resonance serves as the fundamental basis for generating signals in MRI. One of the
outcomes of resonance is that the magnetic moment rotates away from the alignment
with the main magnetic field

�!
B0. The magnitude of the angle in which the

�!
M misaligns

with
�!
B0 is called the flip angle. This misalignment also leads to the reduced magnitude

of
�!
M in the

�!
Mz direction and increased magnitude in the

�!
Mxy direction [18]. The size of

the flip angle depends on the amplitude and duration of the RF pulse [17]. A flip angle
of 90� would fully transfer the magnetic moment into the transverse plane (x-y plane),

2.1 Magnetic resonance imaging 7

which is perpendicular to the main magnetic field. Another outcome of resonance is
that the magnetic moments of the nuclei within

�!
Mxy begin to move into phase with each

other. During the application of the RF pulse, all individual magnetic moments move
in phase, leading to a coherent net magnetic moment that precesses in the transverse
plane at the Larmor frequency [17].

Faraday’s law of induction state that if a conduction coil is placed close to a rotating
magnetic field, a voltage will be induced in the coil [19]. A signal is produced when in-
phase magnetization cuts across the coil. As

�!
M precess in-phase in the traverse plane,

the movement causes fluctuations inside this coil and also induces voltage within it.
This induced voltage is what constitutes the MR signal. The frequency of the signal
is consistent with the Larmor frequency, and the magnitude depends on the amount of
transverse magnetization [17].

2.1.3 Relaxation

When an RF pulse is no longer applied, the nuclei give up absorbed RF energy and
start to realign with

�!
B0. The dephasing is caused by individual magnetic moments

releasing energy into the surrounding tissue and interaction with adjacent magnetic
nuclei, leading to the occurrence of T1 recovery and T2 decay. This relaxation results
in recovery of magnetization in the longitudinal plane,

�!
Mz (spin-lattice relaxation) and

decay of magnetization in the transverse plane,
�!
Mxy (and spin-spin relaxation) [17].

T1 recovery

T1 recovery is also called spin-lattice relaxation, where "lattice" refers to the environ-
ment surrounding the nucleus. During this relaxation, the energy from the nucleus is
dissipated into the surrounding environment which causes the nuclei to recover their
longitudinal magnetization [17]. The recovery rate is exponential, and the T1 constant
is the amount of time elapsed before 63% of the longitudinal magnetization is recov-
ered (Equation 2.8) [16].

Mz(t) = M0(1� e�
t

T 1) (2.8)

The value of 63% becomes apparent when setting time t equal to T1 in equation 2.8,
leading to equation 2.9.

Mz(T 1) = M0(1� e�
T 1
T 1) = M0(1� e�1) = M0 ·0.63 (2.9)

8 Background

T2 decay

T2 decay or spin-spin relaxation, expresses the process by which protons fall out of
phase in the x–y plane and leads to the decay of transverse magnetization. The relax-
ation happens due to inhomogeneity within the surrounding tissue which causes the
nuclei to exchange energy with adjacent nuclei. This happens as a result of the mag-
netic fields of nuclei affecting the surrounding magnetic fields [17]. The decay rate is
exponential and the T2 constant is the time it takes before only 37% of the transverse
magnetization is left [16].

Mxy(t) = M0e�
t

T 2 (2.10)

The value of 37% becomes apparent when setting time t equal to T2 in equation 2.10,
leading to equation 2.11.

Mxy(t) = M0e�
T 2
T 2 = M0e�1 = M0 ·0.37 (2.11)

Both T1 and T2 depend on tissue composition, structure, and surroundings. Fat is
hydrogen linked to carbon and consists of large molecules. This structure allows for
electrons to work as a protecting cloud, shielding the nucleus from the effects of the
magnetic field. Water, on the other hand, is hydrogen linked to oxygen, which has a
tendency to pull electrons away from the hydrogen nucleus. This causes the Larmor
frequency of hydrogen in water to be higher than that of fat. Hydrogen in fat recovers
faster along the longitudinal axis than in water, as well as the transverse magnetization
decaying faster in fat than in water (Figure 2.3). These effects cause fat and water to
appear in different ways in MR images [17]. Typical values in biological tissues are T1
⇡ 300–2000 ms and T2 ⇡ 30–150 ms [16].

Figure 2.3: To the left is a graph showing the difference in T1 recovery for fat and water. Here the
y-axis shows the longitudinal magnetization

�!
Mz. To the right is the graph showing T2 decay in fat and

water, the y-axis refers to the transversal magnetization
�!
Mxy. Fat is shown in red while water is shown

in blue, this is true for both graphs.

2.1 Magnetic resonance imaging 9

2.1.4 Image formation

Image contrast

An image has contrast if there are areas of high signal as well as areas of low signal.
A high signal can be seen as areas with a large component of transverse magnetiza-
tion, while the opposite is true for areas of low signal [17]. For the image contrast to
be manipulated, four pulse sequence parameters are first introduced. The flip angle a ,
as mentioned in Section 2.1.2, is the angle between the position of the perturbed mag-
netization vector immediately after an RF pulse and its equilibrium position along

�!
B0.

The echo time, TE, is the time delay from the excitation pulse to the signal readout.
The repetition time, TR, is the time between two successive RF pulses. The last pa-
rameter is the inversion time, TI, which is the time between pulses to selectively zero
out the signal contribution of one particular tissue such as fat [16]. Specific values for
these sequence parameters lead to the formation of differently weighted images such as
T1-weighted or T2-weighted images [17].

T1 contrast

Because the T1 time is shorter for fat than for water, hydrogen residing in fat realigns
faster with

�!
B0. Thus the longitudinal component of magnetization is also larger in fat

than in water. When a 90� RF pulse is applied after a certain TR the longitudinal com-
ponent of magnetization for both tissues is flipped into the transverse plane. Because
there is more longitudinal magnetization in fat before the RF pulse, there is more trans-
verse magnetization in fat following the pulse. This leads to fat having a higher signal
than water and appearing bright on a T1-contrast image. For the same reason, water
has a low signal and therefore appears dark. This generates a T1-weighted image. The
value of TR controls how much T1-recovery can occur between RF pulses and thus
also controls the amount of T1-weighting. A short TR makes sure that both water and
fat have not recovered all of their longitudinal magnetization before the new RF pulse
is applied [17].

T2 contrast

T2-weighted images work similarly to that of the T1-weighted. T2 is shorter in fat
than in water, causing the transverse magnetization component to decay faster in fat.
Since water has a larger transverse component, it also gets a higher signal and appears
bright on a T2-contrast image, in contrast to fat which appears dark. The TE parameter
controls the amount of T2 decay that happens before the signal is received. A long TE

10 Background

results in a T2-weighted image as both water and fat are given enough time to decay
[17].

Fluid Attenuated Inversion Recovery

Fluid Attenuated Inversion Recovery (FLAIR) is an inversion recovery pulse sequence
with long TR and TE and a TI that effectively nulls out the signal from cerebrospinal
fluid (CSF) [20]. It is particularly useful in brain imaging to visualize lesions or abnor-
malities that the bright signal from CSF may obscure [21]. FLAIR applies a 180-degree
inversion pulse to the tissue of interest, nulling the signal from fluids in the tissue. The
tissue is then imaged with a standard T2-weighted sequence, highlighting the abnormal
areas that may have been hidden in a conventional T2-weighted image [22]. FLAIR
imaging is regarded as one of the most sensitive imaging techniques for the detection
of white matter lesions, either age-related or in patients with multiple sclerosis [21].

Figure 2.4: Image showing how MR images from T1-weighted, T2-weighted and FLAIR image se-
quences look. Image reprinted from [23].

2.2 Multiple sclerosis

Multiple Sclerosis is a chronic demyelinating disease affecting the central nervous sys-
tem. The disease is one of the most common causes of neurological impairment in
young adults and can lead to severe physical or cognitive disability as well as neu-
rological defects [1]. MS is defined as the immune system attacking the nerve fibers
and the myelin coating around them, resulting in inflammation (Figure 2.5). This in-
flammation can damage or destroy the nerve cells and myelin, altering the electrical
messages in the CNS. These areas of damage caused by demyelination are called le-
sions. MS-related lesions appear on MRI images as light or dark spots, depending on
the MRI technique used [3].

2.2 Multiple sclerosis 11

Cell body

Cell body

AxonMyelin sheath

AxonDamaged myelin sheath

Healthy nerve cell

Multiple sclerosis

·

·

x
-,
- I
-

C
n

·

·

x
~ ↑

I
-
C
n

Figure 2.5: Image showing how the myelin sheath of a neuron gets damaged in patients with MS.

2.2.1 Subtypes of multiple sclerosis

Determining the type of MS correctly is essential for prognosis and treatment deci-
sions regarding the patient. There are four subtypes to consider, which are relapsing-
remitting MS (RRMS), primary progressive MS (PPMS), secondary progressive MS
(SPMS), and progressive relapsing MS (PRMS).

The most common type with a prevalence of approximately 87% is RRMS, which
is characterized by alternating periods of inflammatory attacks on myelin and peri-
ods of remission. The symptoms vary and may include fatigue, intestinal and urinary
disorders, visual impairment, numbness, learning disability, and memory impairment.
About 65% of patients with RRMS will, later on, develop SPMS; this is considered to
be the second phase of the disease [1]. Only image data from patients diagnosed with
RRMS were included in the current thesis.

The subtype PPMS affects approximately 10%–15% and is characterized by a wors-
ening neurological function at the beginning of symptoms without early relapses or
remission. Patients with PPMS tend to have more lesions in the spinal cord rather than
the brain, leading to symptoms like stiffness, weakness, and problems with walking and
balance. The least common type of MS is PRMS and occurs in approximately 5% of
patients. This type has symptoms such as dizziness, depression, eye pain, and double
vision [1].

12 Background

2.2.2 Multiple sclerosis diagnosis

MRI is one of the most important diagnostic tools when it comes to early diagno-
sis of MS. This has led to the incorporation of MRI related criteria into the Interna-
tional Panel criteria for diagnosis (McDonald criteria), which was last revised in 2017
[24]. Guidelines have also been published by the Magnetic Resonance Imaging in MS
(MAGNIMS) network in order to optimize the MS diagnosis process [25]. The guide-
lines include standardized MRI protocols, such as T2-weighted sequences required to
be obtained in at least two planes [25].

Multiple sclerosis lesions

In multiple sclerosis, a lesion can be seen as a localized area of increased signal in-
tensity on imaging sequences such as T2-weighted. These lesions are usually round to
ovoid in shape and can vary in size from a few millimeters to more than one or two
centimeters in diameter. To meet diagnostic criteria, lesions should be at least 3 mm
in their long axis, and their location should also be taken into consideration. For ex-
ample, a lesion smaller than 3 mm located on the floor of the fourth ventricle should
still be considered abnormal because lesions and flow-related artifacts rarely occur in
this location. To exclude artifacts or small hyperintensities, lesions should be visible
on at least two consecutive slices, although in acquisitions with higher slice thickness,
smaller lesions may be visible on a single slice [26].

In multiple sclerosis, lesions typically develop in both hemispheres, but their distribu-
tion may be mildly asymmetric in the early stages. Compared to other disorders that
cause white matter lesions, multiple sclerosis lesions tend to affect specific white mat-
ter regions and the spinal cord. The involvement of these areas should be assessed to
evaluate dissemination in space in patients suspected of having multiple sclerosis [26].

Figure 2.6: Image showing how multiple sclerosis lesions can show up on a FLAIR image (A). In the
image to the right (B), the same image is shown but with the lesions colored in white. The images are
from this project’s dataset.

2.3 Machine learning 13

2.3 Machine learning

Machine learning is a scientific branch that focuses on computers and how they learn
from data [27] [28]. It combines statistics, which seeks to understand relationships
from data, and computer science, with its efficient computing algorithms [28]. Ma-
chine learning can be divided into two sub-types; supervised and unsupervised learn-
ing. Supervised learning requires a labeled dataset to predict a known target value and
is often used for classifying or predicting an outcome. On the other hand, unsupervised
learning does not need labeled data and can be used for analysis and clustering, among
other things [29].

2.3.1 Image segmentation

Medical image analysis heavily relies on image segmentation, typically the initial and
most critical step in numerous clinical applications. For example, image segmenta-
tion is frequently employed in brain MRI analysis to measure and visualize anatomi-
cal structures, analyze changes, delineate pathological regions, and plan surgeries and
image-guided interventions [30]. Image segmentation aims to split an image into dis-
tinct, non-overlapping parts with semantically meaningful and homogeneous attributes
such as color, texture, intensity, or depth. The outcome of this process is either an im-
age that labels each homogeneous region or a collection of contours that describe the
boundaries between the regions.

Figure 2.7: Image showing an example of how automatic segmentation can be used to outline a region
of interest. Image is reprinted from Di Ieva et al. [31], a study where deep learning was applied to
automatically segment brain tumors in magnetic resonance images.

14 Background

As the medical image segmentation process is demanding [32], computerized methods
for image segmentations have become popular to assist with this task. Automatic image
segmentation is a supervised learning technique that utilizes annotated datasets to teach
a model how objects in an image should be sectioned. An example can be seen in Figure
2.7. It works by assigning each pixel in an image to a label where all the pixels with
the same label get assigned to the same object or element. For medical purposes, this
could be to detect boundaries or outline and fill a region of interest (ROI), such as a
tumor or an MS lesion [30].

2.3.2 Transfer learning

Large amounts of data are essential for most ML training algorithms to perform well
[33]. This commonly causes complications for medical studies in this field because
of small participant groups and lack of expert-annotated datasets [34]. One approach
to this problem is applying transfer learning (TL), a method that aims to improve the
performance of a model by using previously learned knowledge from similar tasks. TL
can therefore aid in situations with data scarcity and save time and hardware resources
[34].

2.3.3 Dataset splitting

ML algorithms are prone to overfitting (Figure 2.8) when they are trained on a par-
ticular dataset [35] [36]. Overfitting occurs when a model becomes too focused on the
training data and performs poorly on new, unseen data. This happens because the model
becomes overly complex and memorizes the training examples instead of learning gen-
eral patterns. One way to counteract this is to split the data into smaller groups, one for
training and one for testing. This ensures a way to test that the model generalizes well
enough to get adequate results beyond the training sample [35]. Each segment receives
a random proportion of features and their corresponding outcome from the original data
to ensure variability within the sets. The training sample is usually the largest; the size
of each set depends on the amount of data available. Another common way of splitting
is to include a validation set [37] [38]. Validation sets are used to fine-tune model pa-
rameters and work as a testing ground for different values and approaches. This is to
be able to select the model with the best performance and get a better idea of how the
models work on unseen data. Not all algorithms need a validation set, but it can be a
valuable tool for optimizing a model [37].

2.3 Machine learning 15

Overfitting Balanced fitting

v

..

v v ...
vi iv vv

v v v ..
v v

v v
v v

v
-

v v

Figure 2.8: Image of an overfitted model to the left and a balanced one to the right. The overfitted
model has learned all the nuances of the training set, while the balanced model is able to generalize.

2.3.4 Data augmentation

Data augmentation is another method to address the problems related to a lack of data.
The technique can be applied to increase the size and diversity of a dataset and therefore
works to reduce the generalization error of a model. Data augmentation applies modi-
fications to the images in the training set to generate additional representative samples
that simulate changes in patients’ acquisition and anatomical variation. This additional
data helps the model avoid learning features that are too specific to the original training
data, leading to improved generalization and, ultimately, better performance on the test
set. Another common issue when training such a model is a class imbalance, where
one or more classes are under-represented in the dataset, leading to a bias towards the
over-represented class. Data augmentation can thus overcome this issue by augmenting
additional data from the under-represented class [39].

2.3.5 Logistic regression model

Logistic regression (LR) analysis has become an increasingly used tool for statistics in
medical research in recent years [40]. LR is a machine learning classification algorithm
that is used when wanting to predict the probability of different classes based on the
input. The output is always between 0 and 1, where a higher value indicates a higher
probability for the input as being class 1 and vice versa. This makes it a good fit for
medical research as it is an appropriate model to use involving disease state (disease
or healthy) and decision-making (yes or no). More complex forms of LR that can
predict more than two classes are referred to as multinomial logistic regression [41].
In logistic regression, each predictor is assigned a number that represents its unique

16 Background

impact on the variability of the response variable, Y. The predicted probabilities in this
model are represented as the natural logarithm (ln) of the odds ratio (Equation 2.12).
Here, ln

h
P(Y)

1�P(Y)

i
is the logarithm of the outcomes, Y is either of the two outcomes,

X1,X2, ...,Xk are predictor variables, b0,b1,b2, ...,bk are regression model coefficients,
and b0 is the intercept [42]. The intercept b0 is the expected value for the logarithmic
odds of the response variable occurring when all predictor variables are equal to zero.

ln


P(Y)
1�P(Y)

�
= b0 +b1X1 +b2X2 + ...+bkXk (2.12)

Predicting the unknown parameters in b is achieved through maximum likelihood es-
timation, which involves identifying the set of parameters for which the probability of
the observed data is greatest. The regression coefficients indicate the strength of asso-
ciation between each independent variable and the outcome, reflecting the amount of
change that would be expected in the response variable with a one-unit change in the
predictor variable.

The ultimate objective of LR is to accurately predict the outcome class for individual
cases, utilizing the most optimal model. To achieve this goal, a model is constructed
that includes all the predictor variables that are relevant in predicting the response vari-
able. LR calculates the odds of success versus the odds of failure, and the results of the
analysis are presented in the form of an odds ratio [42].

2.4 Deep learning

Deep learning (DL) is considered a subcategory of ML. It differs from other ML algo-
rithms in that it strives to mimic the human brain through a combination of weights,
biases, and data inputs. Working together, these elements manage to recognize, de-
scribe and classify entities within the data accurately. DL models are often referred to
as deep neural networks (DNNs) as they utilize neural network architectures that con-
sist of several nodes and layers (Figure 2.9). While traditional neural networks contain
2-3 hidden layers, a DNN can have as many as 150. These layers help to learn the fea-
tures from the data without the need for manual extraction [43]. DL can be superior to
classical ML in that it often continues to improve as the size of the dataset increases.
This contrasts with some ML methods that plateau at a certain level of performance
when adding more training data to the network [43].

2.4 Deep learning 17

Figure 2.9: Image showing the different layers making up a neural network.

2.4.1 Convolutional neural networks

Convolutional neural networks (CNNs) are one of the most used deep neural networks,
and it has made great success in medical image analysis [44] [45]. CNNs have the ex-
plicit assumption that the inputs given are image matrices and can assign significance
to the different features present. To do this, the CNN architecture comprises several
layers that aim to identify, extract or predict features to create new characteristics with-
out losing features that are critical for getting a good prediction. By doing so, the
model achieves feature generalization and enhances the network’s ability to recognize
extracted features [46].

One of the main reasons for CNNs popularity is its weight-sharing ability. This means
that instead of having to train each individual parameter in the network, certain param-
eters are shared between different parts of the network. This reduces the total number
of parameters that need to be trained, which in turn helps the network to generalize
better and avoid overfitting. Another advantage of CNNs is that they are able to learn
both feature extraction and classification simultaneously. This means that the model
output is highly organized and efficient, as it is reliant on the extracted features. CNNs
are also easier to implement on a large scale than other neural networks, which makes
them more accessible and user-friendly [44].

18 Background

Feature extraction Classification

Input
Convolution Pooling

Fully connected

Output

*⑤
Figure 2.10: Image showing the building blocks of a classic CNN architecture made for classification.
It consists of convolutional layers, pooling layers, and fully connected layers. The figure is inspired by
an image in [47].

CNN architecture

The CNN architecture is made up of three different types of layers (Figure 2.10). The
first layer is a convolutional layer and is used to extract features from the input. A
filter of size MxM, also called a kernel (Figure 2.11), is used to traverse the input
and perform the elementwise multiplication and summation between the kernel and the
corresponding parts of the input based on the filter’s dimensions. The output from the
multiplication is a feature map that gives information, including the edges and corners
at each spatial position on the image. The size of each step for the kernel is called a
stride. The map is later fed forward to the other layers to learn other features of the
image. Doing this also ensures that the spatial relationship between the pixels is intact.

Figure 2.11: Image showing how a kernel of size 2x2 and stride of 1 is used to calculate the convolution
of an input.

Following a convolutional layer is usually a pooling layer. This layer intends to re-
duce the computational cost by decreasing the size of the feature map. To do this, it

2.4 Deep learning 19

summarises the features produced by the convolutional layer. There are two main pool-
ing methods, max pooling, and average pooling. The former (Figure 2.12) extracts
the maximum value from the portion of the image that is covered by the kernel, while
the latter returns the average value. Max pooling usually performs better than average
pooling as it also works as a noise suppressant.

Figure 2.12: Image showing the max pooling operation with size 2x2 and stride 2.

A fully connected (FC) layer is added to learn non-linear combinations of the higher-
level features from the output of the convolutional layer. The output is first flattened
with a flattening layer. The flattened information is then used to predict the best label
to describe the image. It consists of neurons connected to all preceding and succeeding
neurons, helping it make a good mapping between input and output. Because all the
features are connected to the FC layer, it can be susceptible to overfitting. To counteract
this, a Dropout layer [48] can be added to drop an arbitrary number of neurons to reduce
the size of the model. If dropout is set to p = 0.5, then 50% of the neurons in the network
are dropped randomly.

Since images mostly contain non-linearity, activation functions are often applied to
the output of a neuron to introduce non-linearity. It is a mathematical function and
is critical for the ability of neural networks to model complex patterns in data. In
other words, an activation function decides whether a neuron should be activated or not
based on its input and in doing so, enables the network to perform more advanced and
sophisticated computations. Some popular activation functions are sigmoid, tanh and
ReLu. The sigmoid function maps the real value into a number between 0 and 1, tanh
maps the real value into a number between -1 and 1, and ReLu maps the value based
on f(x) = max(0,x).

20 Background

2.4.2 Epochs

In deep learning, an epoch refers to a complete pass through the entire training dataset
during the training phase of a neural network. In other words, during an epoch, the
neural network processes each training example in the dataset once, adjusts its parame-
ters based on the loss function and updates the model’s weights. The number of epochs
is an important hyperparameter that can affect the accuracy of the model. Generally, a
higher number of epochs can lead to better accuracy, but too many epochs can cause
the model to overfit to the training data, and too few can lead to underfitting. Therefore,
the number of epochs can have a substantial effect on a model’s performance [49].

2.4.3 Loss functions

A loss function is a mathematical function that can be used to measure the difference
between the predicted output of a neural network and the actual output. The goal of the
loss function is to provide feedback to the optimizer so that it can update the weights
and biases of the neural network in a way that minimizes the difference between the
predicted and actual output. There are various types of loss functions, each suitable for
different types of problems and applications. For example, in classification tasks, the
cross-entropy loss function is commonly used to measure the difference between the
predicted and actual class labels. In regression tasks, the mean squared error (MSE) loss
function is commonly used to measure the difference between the predicted and actual
continuous values. Choosing an appropriate loss function is important for training a
neural network that achieves good performance on the desired task. The selection of
the loss function should be based on the specific characteristics of the problem and the
type of data being used [50][51].

2.4.4 Optimizers

An optimizer is an algorithm that updates the parameters (weights and biases) of a neu-
ral network during the training process. The objective of the optimizer is to minimize
the loss function, which represents the difference between the predicted output and the
true output of the model. The optimizer computes the gradients of the loss function
with respect to the parameters of the model. It uses them to update the parameters in
a way that minimizes the loss. There are various optimization algorithms available,
each with their own advantages and disadvantages, such as stochastic gradient descent
(SGD), Adam, Adagrad, and RMSprop. The choice of optimizer can often have a sig-
nificant impact on the training process, and the final performance of the model [52].

2.5 Algorithms and neural networks 21

2.4.5 Learning rate

The learning rate is a hyperparameter that controls the step size or rate at which the op-
timizer updates the weights and biases of a neural network during the training process.
A high learning rate can cause the optimizer to overshoot the optimal point, leading to
instability and divergence of the training process, while a low learning rate can slow
down the convergence of the model and increase the time required for training. There-
fore, choosing an appropriate learning rate is important for achieving good performance
in deep learning models. Generally, the learning rate is set through a process of trial and
error, starting with a relatively high value and decreasing it gradually until the model
converges to the optimal solution [53].

2.5 Algorithms and neural networks

This section aims to provide an explanation of the theory behind the various algorithms
and neural networks utilized in this thesis to automatically segment multiple sclerosis
lesions.

2.5.1 Lesion segmentation tool

The Lesion Segmentation Tool (LST) is an open-source toolbox for the Statistical Para-
metric Mapping (SPM) software [54], that is able to segment T2 hyperintense lesions
in FLAIR images. Currently, there are two algorithms implemented for lesion segmen-
tation. The first, a lesion growth algorithm [55], requires a T1 image in addition to
the FLAIR image. The second algorithm, a lesion prediction algorithm [56], requires a
FLAIR image only. The toolbox was developed in cooperation with multiple organiza-
tions and is maintained by Paul Schmidt [55][56].

2.5.2 Lesions growth algorithm

Lesion segmentation by the lesion growth algorithm (LGA) [55] is implemented in the
LST toolbox version 3.0.0 for SPM. It is an unsupervised lesion segmentation algorithm
and consists of three major steps (Figure 2.13).

Preprocessing

The algorithms perform preprocessing through SPM8/SPM12 and its voxel-based mor-
phometry toolbox (VBM8). To prevent smoothing of the images, the algorithm operates
in the space of the original T1-weighted image, also called native space, exclusively.

22 Background

For tissue classification, the program uses T1-weighted images to estimate a partial vol-
ume estimate (PVE) label in native space. Every voxel in this image is then attributed
to one of the three integers 1, 2, and 3, representing CSF, grey matter (GM), and white
matter (WM), respectively. Numbers in between indicate a partial volume effect, where
more than one tissue type occurs in a voxel [57].

Before being coregistered to the T1-weighted image, the FLAIR image is bias-
corrected for MRI field inhomogeneity. Because the probability of each voxel belong-
ing to WM, which is where lesions are commonly found, is important for identifying
lesions later on, the SPM tissue probability map of white matter (TPMWM) is adjusted
to match the T1-weighted image space. The algorithm does this by applying the inverse
deformation matrix from the PVE label estimation [55].

Lesion belief maps

After preprocessing, the algorithm calculates the FLAIR intensity distributions for each
of the three tissue classes. The distribution is found using the PVE image. This is
achieved to detect any FLAIR-hyperintense outliers, which would be considered a le-
sion voxel. Each voxel, i, is attributed a label zi based on the estimated PVE label xi

(Equation 2.13). This is done to obtain lesion belief maps of the three different tissues
[55].

zi =

8
>>><

>>>:

CSF, if xi < 1.5

GM, if 1.5  xi < 2.5

WM, if xi � 2.5

(2.13)

The generation of belief maps to aid in lesion identification involves combining voxel
values that provide evidence for the presence of white matter lesions. The lesion be-
lief maps are obtained for each tissue class. The BGM map generates voxel values that
increase if there is a high probability of the voxel belonging to WM based on spatial
location, medium T1 intensity, and high FLAIR intensity. Higher BGM values indicate
stronger evidence for the presence of a WM lesion. Similarly, the BCSF map generates
voxel values that increase if there is a high probability of the voxel belonging to WM
based on spatial location, low T1 intensity, and high FLAIR intensity. Higher BCSF val-
ues support the assumption of the presence of "black hole" lesions. Finally, the BWM

map generates voxel values that increase if there is a high probability of the voxel be-
longing to WM based on spatial location, high T1 intensity, and high FLAIR intensity.
Higher BWM values suggest the presence of WM lesions [55].

The lesion belief maps are then summed together into the image B to input into the

2.5 Algorithms and neural networks 23

lesion growth model later. The BGM after application of a threshold k (Linit) is chosen
to initialize the lesion growth model as it requires a seed for the lesions to expand. This
is done because the creators of the algorithm [55] found through extensive preliminary
experiments that the PVE label would not yield lesions without any part assigned to
GM.

Figure 2.13: Image showing the lesions growth algorithms methodology to produce lesion segmentation
maps. Figure reprinted from [55]

Lesion growth model

The growth of lesions is modeled by expanding Linit towards the lesion belief map
(B). The model achieves this by iteratively analyzing neighboring voxels and assigning

24 Background

them to lesions based on specific conditions, i.e., a voxel that shares a common border
with a lesion voxel is considered to be a lesion, or that a lesion could only grow along
those voxels which have a positive lesion belief value. The iteration continues until no
further voxels are eligible for lesion assignment. During this process, the probability of
belonging to WM or GM is compared to the probability of belonging to lesions [55].

2.5.3 Lesion prediction algorithm

Lesion segmentation by the lesion prediction algorithm (LPA) [56] is implemented
in the LST toolbox version 3.0.0 for SPM. The algorithm is a supervised classifica-
tion algorithm and consists of a binary classifier in the form of a logistic regression
model. It is trained on the data of 53 MS patients with severe lesion patterns obtained
at the Department of Neurology, Technische Universität München, Munich, Germany.
As covariates for this model, a similar lesion belief map was used as for the lesion
growth algorithm [55] and a spatial covariate considering voxel-specific changes in le-
sion probability. Parameters of this model are used to segment lesions in new images
by providing an estimate of the lesion probability for each voxel.

Preprocessing and feature extraction

The algorithm extracts two features from the available MR images, beginning with the
position of each brain voxel in standard space (MNI) [58]. Then FLAIR images that
have been coregistered to a T1-weighted image are normalized to MNI space using the
“Normalize” function implemented in SPM. This creates an inverse deformation field
that can map MNI coordinates into the subject-specific native space [56].

The second feature is a lesion belief map. To produce this image, the algorithm roughly
segments the FLAIR image into three main tissue classes GM, WM, and CSF. Subse-
quently, FLAIR intensities are standardized by dividing each voxel by the mean of
the segmented GM. The mean of the standardized GM voxels is then subtracted from
all FLAIR intensities, only keeping the positive differences by setting negative ones to
zero. Furthermore, the remaining differences are multiplied by a tissue probability map
for WM, which is obtained by applying the inverse deformation field from above to the
tissue probability maps included in SPM. The resulting lesion belief map shows vox-
els that appear hyperintense in the FLAIR image and are likely part of WM in healthy
subjects, making them possible lesion candidates [56].

2.5 Algorithms and neural networks 25

Training

When training the algorithm, the features extracted during preprocessing are combined
using a voxel-wise logistic regression model with a spatially varying intercept. The
model equation (Equation 2.14) uses yi j as the reference lesion map for the jth voxel
and the ith subject. The linear predictor Equation 2.15 has b0 as the overall intercept,
xi j as the value of the lesion belief map for the jth voxel and the ith subject and b1 as
the corresponding effect of the lesion belief map [56].

yi j ⇠ B(pi j) with pi j =
exp(hi j)

1+ exp(hi j)
(2.14)

hi j = b0 +b1xi j + g j (2.15)

Lesion segmentation

In contrast to training, the algorithm does not need a T1-weighted image for segmen-
tation, as this was only necessary to obtain reference lesion maps using the LGA. To
extract the relevant features for lesion segmentation, the algorithm first uses estimated
inverse deformation fields to map the mean image of the spatially varying intercept
from MNI space into the subject-specific native space (ŷ). Intensities of the FLAIR
image are then corrected for bias field inhomogeneity with the "Segment" function in
SPM. The lesion segmentation is performed by computing the lesion probability for
each voxel using Equation 2.17 with the linear predictor seen in Equation 2.16 [56].

ĥ j = b̂0 + b̂1x j + ĝ j (2.16)

p̂ j =
exp(ĥ j)

1+ exp(ĥ j)
(2.17)

2.5.4 NicMSlesions

NicMSlesions is an MS lesion segmentation algorithm published in 2018 and was one
of the top algorithms to complete the Medical Image Computing and Computer As-
sisted Intervention (MICCAI) challenge on MS lesion segmentation in 2016. The al-
gorithm utilizes a CNN architecture and MS databases from MICCAI to accurately
segment white matter (WM) lesions on T1 and FLAIR images [59]. As MS lesions
only make up about ⇠ 1.7% of the total brain volume of a patient, this reduces the
number of positive training samples from the available voxels in the image [60]. This
negatively affects CNNs as they often suffer from overfitting when insufficient data is

26 Background

available for training [61]. NicMSlesions tries to solve this issue by optimizing the
cascade of two identical CNNs, where the first network (CNN1) is trained to be more
sensitive to revealing possible candidate lesion voxels. In contrast, the second network
(CNN2) is trained to reduce the number of false positive outcomes [59][62].

Architecture

The nicMSlesions algorithm uses a 7-layer architecture for both CNN1 and CNN2.
Each network comprises two stacks of convolution and max-pooling layers with 32
and 64 filters, respectively. Convolutional layers are followed by a fully-connected
layer of size 256 and a soft-max FC layer of size 2 that returns the probability of each
voxel belonging to the positive and negative class [62].

Training

The data used for training is acquired by extracting a balanced set of 11×11×11 patches
from the FLAIR and T1-weighted input images. This set also includes a random se-
lection of normal-appearing tissue voxels. The training data is then split into training
and validation sets to optimize the neural network weights. The training set adjusts the
weights, while the validation set measures how well the trained CNN performs after
an epoch. Both CNNs are trained individually without parameter sharing, with ReLU
[63] applied to all layers. The adaptive learning rate method (ADADELTA) proposed
by Zeiler [64] is used to learn the network parameters, with a batch size of 128 and
categorical cross-entropy as loss function. To reduce over-fitting, batch-normalization
regularization [65] and Dropout with p=0.5 is used after both convolutional layers and
before the first fully-connected layer, respectively. Additionally, the CNN model im-
plements early stopping to prevent over-fitting by stopping training after several epochs
without a decrease in the validation error. The final network parameters are taken from
the epoch with the lowest error before stopping [62].

Data augmentation

The nicMSlesions algorithm performs data augmentation at batch time by multiplying
the number of training samples by four. For each mini-batch, all patches are first ro-
tated at 180 degrees in the axial plane. New versions of the patches are generated by
horizontally flipping both the original and rotated versions. Other rotations than 180
degrees are avoided to roughly maintain the symmetry of the brain and avoid artificial
rotations of brain structures. Valverde et al. found through empirical evaluations that
rotated patches increased the segmentation accuracy of the proposed method in ⇠ 1.5%
when compared to non-rotated patches [62].

2.5 Algorithms and neural networks 27

Testing

To test the trained model, the algorithm makes the new unseen images undergo the same
CNN cascade architecture. Feature patches are obtained for all brain voxels in the input
of each new subject and evaluated using the first trained CNN to discard voxels with
a low probability of being a lesion. The algorithm then uses the remaining voxels to
evaluate using the second CNN to acquire the final probabilistic lesion mask, which is
then linearly thresholded to obtain binary output masks. The resulting binary masks are
further refined by discarding regions with lesion size below the automatically optimized
parameter lmin, computed once after training and applied to the unseen testing images.
This is done to reduce the number of false positives [62].

2.5.5 U-Net

The 2D U-Net architecture (Figure 2.14) was proposed for biomedical image segmen-
tation at the 2015 MICCAI conference [8]. It is based on a modified CNN architecture
to be able to produce more precise segmentations with fewer training images. The
name of the network comes from its symmetrical shape that forms a "U" with its down-
ward contracting path and upward expanding path. These paths are also known as the
encoder and decoder. The encoder works similarly to CNN in that it aggregates the
semantic information at the expense of spatial information. To recover this missing
spatial information, the decoder receives information from the deep layers of the U-Net
and recombines it with the information saved in previous layers.

The architecture of the network includes operations such as up-convolutions and skip
connections [8]. Up-convolution is a trainable technique used to upsample or expand
an image, unlike the downsampling max-pooling operation. The upsampled feature
mapping is concatenated with the previous feature mapping from the corresponding
layer in the contracting path, facilitated through a skip-connection. This allows the
concatenated feature maps from the opposite layer to be reused, recovering informa-
tion from previous layers before downsampling, and preserving feature maps even in
a deep network. This approach mitigates the issue of vanishing gradients caused by
backpropagation in deeper networks [44]. Many newer networks designed for segmen-
tation tasks have utilized the U-Net architecture as a base, and a 3D U-Net architecture
was introduced in [66] by replacing all 2D operations with their 3D counterparts, such
as 3D convolutions, 3D max pooling, and 3D up-convolutions.

28 Background

Figure 2.14: Image of the 2D U-Net architecture. It includes blue boxes that represent multi-channel
feature maps, with the number of channels indicated at the top of each box. The lower left corner of
each box displays the x-y-size. Additionally, white boxes are utilized to depict copied feature maps. The
arrows indicate the various operations taking place. Figure is reprinted from Ronneberger et al. [8]

2.5.6 fastMONAI

fastMONAI is a low-code Python-based open-source deep learning library. It is built
upon fastAI, MONAI, and TorchIO [10]. The library is created for the use of advanced
deep learning techniques in 3D medical image analysis for solving regression, segmen-
tation, and classification tasks. fastMONAI provides functionalities to step through
data loading, preprocessing, training, and result interpretations [10].

2.5.7 nnU-Net

The nnU-Net, which is an abbreviation of no-new-UNet, is a deep learning-based seg-
mentation method that automatically configures itself, including preprocessing, net-
work architecture, training, and post-processing for any new task. It was published in
2020 by Isensee et al [9]. Their implementation was developed and validated on the
datasets provided by the Medical Segmentation Decathlon and yields a segmentation
method that performs the automated configuration for arbitrary new datasets. The con-
figuration is made to be holistic, meaning it covers the entire segmentation pipeline
without the need for manual intervention [9].

2.6 Performance evaluation 29

Architecture

The 3D nnU-Net has an architecture that is similar to that of the U-Net. Two plain
convolutional layers are used between pooling layers in the encoder and transposed
convolution operations in the decoder. Isensee et al. deviate from the original U-Net
architecture in that they have replaced the ReLU activation function with leaky ReLU
and use instance normalization instead of batch normalization [67].

Training

The nnU-Net is set to train for 1000 epochs using stochastic gradient descent (SGD) as
an optimizer, a momentum of 0.99, and a learning rate of 0.01. The learning rate has
been set to decay using (1� epoch

epochmax
)0.9, and the loss function used is a combination of

cross-entropy and dice loss. Isensee et al. use downsampled ground truth segmentation
masks to compute the loss for each output of the model. The training objective is to
minimize the sum of the losses at all resolutions, so the weights for each resolution
are halved from the previous one and are normalized to sum to 1. To prevent class
imbalances from affecting the training, the algorithm uses oversampling by randomly
selecting 66.7% of the samples from random locations within the training case and
guaranteeing that 33.3% of patches contain foreground classes present in the training
sample. Data augmentation techniques are also used during training, such as rotations,
scaling, noise and brightness simulations, and mirroring [9].

Inference

To predict images, nnU-Net uses a sliding window approach where the window size
equals the patch size used during training. The adjacent predictions overlap by half of
the size of the window as the segmentation accuracy decreases toward the borders of
the window. To suppress stitching artifacts and reduce the influence of positions close
to borders, nnU-Net applies a Gaussian importance weighting, increasing the weight of
the center voxels in the softmax aggregation [9].

2.6 Performance evaluation

Being able to compare images to evaluate the quality of image segmentation is an
important part of measuring processes in this field of research [68]. Evaluation of
semantic segmentation can be a complex process because it is required to measure
classification accuracy as well as localization correctness. The aim is to quantify the
similarity between the predicted segmentation and the annotated ground truth [69].

30 Background

2.6.1 Dice score

A simple spatial overlap index is the Dice similarity coefficient (DSC) (Figure 2.15),
which was first proposed by Lee R. Dice in 1945 [70] and has been adopted to validate
the segmentation of white matter lesions in MRIs [71]. DSC is a spatial overlap index
between two segmentations, A and B (Equation 2.18) The value of the DSC can have
any value between 0 and 1. A value of 1 indicates complete spatial overlap between
two sets of binary segmentation results, and 0 indicates no overlap.

DSC(A,B) =
2(A\B)
(A+B)

(2.18)

2 x

Area of overlap

+

*

Figure 2.15: Image of how the dice score coefficient (DSC) between two images is calculated. The two
images are represented with the green and blue squares.

2.6.2 Sensitivity and specificity

In machine learning, sensitivity, and specificity are commonly used metrics for evaluat-
ing the performance of a classification or segmentation model [72]. Sensitivity (Equa-
tion 2.19), also known as recall or true positive rate, measures the proportion of actual
positive cases that the model correctly identifies as positive. It is calculated as the
number of true positives (TP) divided by the sum of true positives and false negatives
(FN). Specificity (Equation 2.20) measures the proportion of actual negative cases that
the model correctly identifies as negative. It is calculated as the number of true (TN)
negatives divided by the sum of true negatives and false positives (FP) [73][72].

Sensitivity =
T P

T P+FN
(2.19)

2.7 Recent advances 31

Speci f icity =
T N

T N +FP
(2.20)

Both sensitivity and specificity can be important tools for evaluating a model’s perfor-
mance. A high sensitivity indicates that the model is good at identifying positive cases,
while a high specificity indicates that the model is good at identifying negative cases
and has few false positives.

2.7 Recent advances

The early stages of multiple sclerosis (MS) can be challenging to diagnose due to its di-
verse clinical presentation. However, MR images are able to show brain lesions which
are effective imaging biomarkers for the disease. This makes MRI crucial to diagnose,
estimate disease stage and predict the future outcomes for the patient [74]. Since the
detection of these lesions is time-consuming and susceptible to manual errors, image
processing methods grounded in machine learning techniques are used to apply au-
tomatic segmentation to MR images. Within this field, the computer-aided diagnosis
systems (CADS) used can be split into two categories: conventional machine learning
methods and techniques that focus on deep learning [6].

Conventional machine learning methods have predominantly been used for MS diag-
nosis using MRI or clinical data. However, this approach is complex, requiring exper-
tise in multiple fields of AI. Conventional machine learning CADS suffers from several
limitations, including high computational costs associated with multiple algorithms and
inefficient performance when dealing with large amounts of MRI input data [6].

Deep learning methods have gained popularity in diagnosing diseases using medical
data, particularly in the field of MRI data analysis. One of the strengths is their ability
to automatically extract latent feature representations, eliminating the need for manual
feature extraction. DL also allows for consistent integration of feature extraction and
classification [6]. A common problem of some neural networks is that tuning a large
number of parameters and initializing the weights are complex processes. Additionally,
these networks also often require large amounts of data to perform well [75].

Since 2016, research has focused on the application of DL models using MRI modal-
ities to aid in different cases regarding MS. A large number of studies have been per-
formed, and between the years 2016–2021, 92 articles were published in various jour-
nals on the topic of deep learning and MS [6] [75]. These studies are not restricted to

32 Background

lesion segmentation but also include lesion identification, disease progression predic-
tion, disease classification, and segmentation of other regions of interest (ROIs), such
as the spinal cord. Most of this research has utilized convolutional neural networks or
other types of neural networks. The performance of models primarily focused on MS
lesion segmentation typically ranges between dice scores of 0.50-0.80, sensitivity of
0.50-0.90, and specificity of 0.60-0.90 [6].

When looking specifically into small lesion segmentation, a similar study to this project
uses a U-Net architecture that focuses on the segmentation of new MS lesions. The
network achieved a DSC of 40.3% [76]. Another similar study has been carried out by
Battaglini et al. [77], whose work includes the automatic identification of new lesions
in MS. There is also the work of Basaran et al. [5], who proposed a pipeline built upon
the nnU-Net framework to segment MRI images containing both new and non-new
lesion cases. Because new lesions often appear small, these topics resemble that of this
thesis.

A limitation of these studies is that they focus on lesion segmentation in general and not
small lesion specifically. It is already known that small lesions are particularly impor-
tant predictors of disease progression and may provide information on effect of treat-
ment. Furthermore, the studies do not compare different machine learning approaches
and how these perform on small lesion segmentation. In the current work, small le-
sions are a particular target of investigation and several machine learning approaches,
both classical approaches and deep learning approaches, are evaluated and compared.
As such, the results from the current thesis can provide important novel information in
the field of lesion segmentation in MS.

Chapter 3

Methods

This chapter provides an overview of the patient data utilized in this study and discusses
the pre-processing steps taken. Additionally, the process of acquiring segmentations
from all models is also described, as well as the methodology employed to evaluate the
different models on the project data.

3.1 Study population

The longitudinal data used in the thesis include de-identified image data from 54 partic-
ipants from a completed clinical study in MS at Haukeland University Hospital (HUH).
The group of participants included 19 males and 35 females who were diagnosed with
RRMS per the McDonald criteria guidelines from 2017 [24]. All participants were be-
tween the ages of 23-64 years, with the onset of MS symptoms no more than three years
prior to diagnosis. The patients underwent clinical, neuropsychological, and MRI as-
sessments for two years, but only image data were included in the current evaluations.
The dataset contains images collected from MRI scans at baseline in the years between
2014-2016 and images acquired after 12 months. Each participant dataset contains the
T2-FLAIR and T1-weighted images and masks for the brain and the present lesions.
The overall clinical study was approved by the Regional Ethics Committee of Western
Norway (registration number 2016/31/REK vest), and inclusion was based on written
informed consent [78].

Table 3.1 shows how the data is divided into three sets. For each of these three sets,
the mean age, number of participants of both genders, total lesions volume, and total
number of lesions are shown. The total lesion volume and the number of lesions are
both presented as a mean value calculated from the images in the three sets.

34 Methods

Table 3.1: Table showing the mean age, with standard deviation (SD) of the participants within each
dataset. It also shows the number of males (m) and females (f) as well as the mean total lesion volume
in mm3 extracted from the images. The table also includes the mean number of lesions in each set.

Age, mean (± SD) Gender m/f Total lesion volume, mean (mm3) Number of lesions, mean
Training set 36 ± 9 15/23 2412 17

Validation set 39 ± 14 3/5 2873 20
Test set 49 ± 14 1/7 2632 25

3.2 MRI acquisition

MRI was conducted on a 3T Magnetom Prisma MR scanner (Siemens Healthineers,
Erlangen, Germany). The detailed MRI acquisition protocol, which shows the image
sequence parameters used for acquiring the images, can be seen in Table 3.2.

Table 3.2: Information about the detailed magnetic resonance imaging acquisition protocol. The se-
quence parameters are shown for the acquisition of both anatomical T1-weighted volumes and T2-
FLAIR volumes.

Sequence parameters Anatomical T1-weighted volumes T2-FLAIR volumes
Sequence name MPRAGE 3D T1-weighted sagittal volume SPACE 3D T2-weighted sagittal volume

TE/TR/TI 2.28 ms/1.8 s/900 ms 386 ms/5 s/1600 ms
Acquisition matrix 256 x 256 x 192 256 x 256 x 192
Field of view (FOV) 256 x 256 mm2 256 x 256 mm2

Slice thickness 1 mm 1 mm
Readout bandwidth 200 Hz/px 751 Hz/px

Total acquisition duration 7.40 min 6.17 min

The images were also processed by Icometrix (Leuven, Belgium) for supervised digital
image analyses yielding cross-sectional data on global and regional brain volumes and
lesion assessment. Icometrix also made the gold standard reference lesion masks that
are used as the ground truth when looking into performance evaluation. The T1 and
FLAIR volumes, as well as the reference lesion mask from each participant scan, were
saved in folders only recognizable by the number assigned to them by Icometrix.

3.3 Image processing pipelines

3.3.1 Data splitting

The whole dataset consisted of 102 volumes from 54 participants. There are more
volumes than participants as most participants were scanned two times with 12 months
in between. For the purpose of training and testing, the dataset has been split into
training, validation, and testing sets. Instead of splitting randomly, the volumes chosen

3.3 Image processing pipelines 35

for the validation and testing sets were chosen based on if they contained smaller lesions
or not. To be able to present the results from the models more accurately, all volumes
were checked in order to see which of them contained smaller lesions. A script written
in MATLAB (MATLAB V9.12 (R2022a), The Mathworks Inc., Massachusetts, United
States) was used on the binary lesion masks in the dataset to ascertain the number of
voxels in each lesion. The result from this corresponded well with what was shown
when viewing the lesion masks with FSLeyes (FMRIB v6.0, Analysis Group, Oxford,
UK). Sixteen volumes containing small lesions were then put in the validation and
testing sets, eight in each. The corresponding sixteen volumes coming from the same
participants were not used in the validation or test set as they had no small lesions.
To avoid the models getting any biases they were also excluded from being put in
the training set and were therefore not used for the project. The remaining 70 volumes
were then used for training, maximizing the amount of data used for the project without
using the same participants in different datasets. The training set was made sure to also
contain small lesions, but not exclusively.

3.3.2 Localization of small lesions

The function bwconncomp() in MATLAB was used for locating the volumes that con-
tain the small lesions. The function used a binary image to find and count the number
of connected components. As the lesion masks are binary, all the lesions in the image
are numbered as 1 and will therefore become a connected component when using this
method. Since the images used as input have three dimensions, 26-connectivity is used
in order to locate all the lesions in the mask as well as see how many voxels are in-
volved in each of the connected components (Figure 3.1). For this project, the small
lesions were considered to consist of ten voxels or fewer. The bwconncomp() function
outputs the number of objects in the image as well as a list made up of all the voxels for
each component. The length of this list is used to check the number of voxels in each
lesion and thereby ascertain if they were small or not.

Figure 3.1: Image showing how connectivity looks in three dimensions. Figure inspired by [79].

36 Methods

3.4 Obtaining lesion segmentations

This section explains how the different algorithms and neural networks were utilized in
order to output lesion segmentations to use for evaluation. In total, five different models
were used to produce comparable segmentations. Two computers were used during this
part. A DELL Precision 7250 with Ubuntu 20.04.1 LTS and Intel Core i7-6820HQ CPU
@ 2.70Ghz x 8 processor was used to train and test the nicMSlesions algorithm. The
rest of the training and testing was performed on an Alienware Area-51 R4 computer
with Ubuntu 20.04.5 LST and Ryzen threadripper 1050x 16-core processor.

3.4.1 Lesion segmentation tool

LST is accessed through MATLAB and the SPM12 academic software toolkit (SPM12
revision 7771, Functional Imaging Laboratory, London, UK).

Lesion growth algorithm

The LGA requires a T1 and a FLAIR image in order to produce lesion segmentations.
For both the validation and test datasets, the corresponding T1 and FLAIR NIfTI im-
ages were chosen as input. As stated in the documentation, different values for the
initial threshold k should be tested before requiring the final segmentation. To do this,
the built-in tool Determination of optimal initial threshold (DOIT) was used following
an original run-through of the algorithm. After obtaining the optimal initial threshold,
the LGA was run on the T1 and FLAIR images from the test set. k was set to the value
acquired by DOIT. The rest of the values, such as the Markov random field parameter
and the maximum number of iterations, was chosen to stay at their standard values, 1
and 50, respectively. All the resulting segmentations were saved in their corresponding
folders and were summarised in an HTML report for viewing of the results.

Determination of optimal initial threshold

In order to use DOIT, the first run-through of the LGA was done on the images from
the validation test set with k values between 0.05 and 1 and an increment of 0.05, as
suggested by the LST documentation. Each probability map is saved within each pa-
tient folder in the validation set as ples_lga_[k]_rm[FLAIR].nii where k is the number
chosen between 0.05 and 1.

The determination of the optimal initial threshold tool requires real binary segmenta-
tions to use as a reference image as well as probability maps obtained by LGA. The
binarised ground true lesion masks from the validation set were chosen as input, while

3.4 Obtaining lesion segmentations 37

the LGA probability maps inside each patient folder were automatically searched for
when running the algorithm. Furthermore, a threshold value for the LGA probabil-
ity maps also needs to be specified. Here the standard value of 0.5 was chosen as it
was suggested by the toolbox. After running DOIT, a CSV file is returned. The CSV
file contains columns for the folder of the reference images, the name of the FLAIR
images, the value of k , the corresponding DSC, as well as values for sensitivity and
specificity. The optimal k was chosen based on which k-value yielded the best dice
score for all the images inputted.

Lesion prediction algorithm

The LPA only needs FLAIR images to produce lesion segmentation probability maps.
However, it is possible to choose an additional image that is used during co-registration
before the main lesion segmentation. For each participant in the test set the FLAIR and
corresponding T1 NIfTI images were chosen. The algorithm was run two times, one
for the validation set and one for the test set. The output from LPA is a probability
map saved in each of the folders as ples_lpa_m[r][FLAIR].nii, and an HTML report to
review the results.

3.4.2 NicMSlesions

The program was accessed from a public repository made by the authors of the algo-
rithm. The functionalities of the program were enabled through its GUI, this is where
all the images and options were inputted.

Training

For training, the method requires FLAIR and T1-weighted NIfTI images as inputs, as
well as lesions as binary masks. The folder containing the training set is chosen and the
identification tags for the two images were inputted, "FLAIR" and "T1", respectively.
For the MASK tag, binarised lesion masks obtained from Icometrix were chosen since
they were used as the gold standard for segmentation during this project. The "use
pre-trained" button is also toggled, as this could help to improve the performance of
the model after training. For our study, the pre-trained model "baseline_2ch" from the
publication was used. Because changes to the other settings led to the nicMSlesions
algorithm not producing any results, all parameters remained as suggested by the pub-
lication.

38 Methods

Inference

The beginning steps of the inference task were similar to when training. It was run
two times in total, one for the validation set and one time for the test set. The same
identification tags were used for the FLAIR and T1 images when training, as well as the
same parameter options. The model outputted from the training algorithm was chosen
before running the inference. Once completed, a new folder named after the trained
model is created within each participant’s directory, containing both the probabilistic
and final hard segmentations.

3.4.3 U-Net employed trough fastMONAI

The implementation of U-Net through fastMONAI (fastMONAI v0.3.0) was done us-
ing the "Binary semantic segmentation" tutorial from the fastMONAI website, as base-
line [80]. The data was read into a data frame using a CSV file containing the paths
to the FLAIR image and lesion mask. As the training and testing set was already de-
cided, the train_test_split() function in the tutorial is not used. The data is passed to
the MedDataset() function as a way to extract and present information about the data.
Multiple data augmentations were added such as normalization, random flipping, and
affine rotations set to five degrees. To get the training data in the correct format to use in
the learner function, the training data frame was inputted into the fastMONAI function
MedDataBlock.dataloaders().

Training

The network used for training was 3D U-Net supplied by MONAI (MONAI v1.1.0).
The number of in_channels is set to one, as only the FLAIR NIfTI images were used
for training. The learning rate was decided based on the plot resulting from the function
lr_find(). The learning rate was thereafter set to a value that corresponded to one of the
areas on the plot close to a steep decline. To train the model the fastai (fastai v2.2.0)
function fit_flat_cos() is utilized, and it was set to run for 400 epochs with a batch size of
four. The loss function and optimizer used were dice loss and Ranger21, respectively.
Both were accessed through fastMONAI.

Inference

Inference was performed using the fastMONAI function inference() with the model
trained in the previous step as input. The path to where the test images were located
was also inputted, as well as the path to where the predictions were going to be saved.

3.4 Obtaining lesion segmentations 39

3.4.4 nnU-Net

nnU-Net (nnU-Net V1) and its functionalities were downloaded from the public repos-
itory of Isensee et al [9]. This algorithm requires the data to be presented in another
format than used for the other algorithms. To convert the data, Python code (Python
3.8.10, Microsoft (VSCode), Washington, USA) was written to copy images to the cor-
rect nnU-Net folder as well as rename them to fit the format. Once this was done, all the
files were compressed using the gzip terminal command on Linux, as this is required
for running the algorithm.

Training

The nnU-Net performs training using 5-fold cross-validation. The training command,
therefore, had to be run five times in order to acquire all the folds needed before infer-
ence. The configuration chosen for training was the 3D full resolution U-Net, including
the –npz command to save the lesion probabilities for use during inference. Because
the other trained models were set to train for a maximum number of 400 epochs, the
training class nnUnetTrainerV2 that was included in the download was changed to also
fit this requirement.

Inference

Inference was performed using the nnUNet_predict command on the trained 3D full-
resolution U-Net using all 5 folds. The –save_npz was specified as well to save the
softmax probabilities alongside the predicted segmentation masks. The command
nnUNet_find_best_configuration was omitted ahead of inference as only one config-
uration was used for training.

Conversion

Because the lesion probabilites from the nnU-Net were outputted as numpy arrays as
well as a pickle file containing the information to reconstruct the image, a function was
made to convert the data from these files into images. The SimpleITK (SimpleITK
v2.2.1, Apache License) interface was imported together with the pickle module in
Python. Applying the information stored in the pickle file together with the numpy
arrays stored in the .npz file the segmentations containing the lesion probabilities were
reconstructed and saved as NIfTI images.

40 Methods

3.5 Postprocessing

3.5.1 Validation pipeline

To calculate the performance metrics for each model, the probability maps first had
to be binarised so as to compare them to the reference lesion masks (Figure 3.1). A
validation pipeline was therefore made to ascertain what value the probability maps
should be thresholded at to make the comparable segmentations. To do this, the FSL
terminal command fslmaths -thr was used. The command uses the inputted thr value to
turn all the values alike or above the threshold input into ones and the values below to
zero. The data from the validation dataset was used during this process. This is to make
sure that the data that is to be used for testing remained untouched until it was time for
performance evaluation. This allows for the evaluation to be unbiased and therefore
provides a result that is representative of how well the models perform on unseen data.

To ensure a fair comparison between the segmentations produced by different models,
the probability maps were initially thresholded at 0.5. The resulting binary lesion masks
were then evaluated using the dice score metric to identify the model with the highest
score. Once the model with the highest dice score was determined, the other models
were thresholded again at various values until their dice score was as close as viable to
the highest score. This was done to ensure that the resulting binary lesion masks were
as similar as possible before proceeding to evaluate the models. Ultimately, the binary
lesion masks generated by this procedure were used to evaluate the performance of the
different models. This approach allowed for a standardized and objective comparison
of the models based on their ability to accurately segment the lesions of interest.

(a) T1-weighted image with binary lesion mask

3.5 Postprocessing 41

(b) Binary lesion mask

Figure 3.1: Image (a) shows how a binary lesion mask looks on top of its corresponding T1-weighted
image, it shows the same image from three different perspectives. Image (b) shows the same binary
lesion mask, without the T1 image. These images were used as the ground truth lesion masks. Here all
the black areas are annotated with 0, while the lesion masks are annotated with 1. This image is also
shown from three different perspectives, corresponding to the ones in (a). The images were generated
through FSLeyes.

3.5.2 Extraction of small lesion predictions

All the models were trained to output a probability map for lesions of all sizes. How-
ever, to focus the evaluation specifically on small lesions, additional steps were incor-
porated into the process. This involved utilizing a MATLAB script that made use of
the function bwconncomp() to identify and remove larger lesions from the final binary
segmentations. A for-loop was implemented to iterate through each of the binary seg-
mentations generated from the test set of each model. The length of the pixelIdList,
obtained from the bwconncomp() function, was used to determine the size of each le-
sion in the segmentation. Any lesions larger than the specified size were removed by
setting the corresponding list values to 0, effectively erasing them from the binary im-
age. Once all the lesions in the image were checked, a binary image containing only
small lesions remained. This image was saved using the niftiwrite() function and added
to a new folder for later evaluation.

During the dice score calculation, the segmentations of each model were compared to
the reference lesion masks from the test set that had undergone the same procedure to
remove larger lesions. This allowed for a direct comparison of the model’s ability to
accurately segment small lesions.

42 Methods

3.6 Evaluation

3.6.1 Metrics

Three different performance metrics were used to evaluate the segmentations of
the different models; DSC, sensitivity, and specificity. All the metrics were im-
plemented in Python. As the segmentations are NIfTI images, NiBabel (Nibabel
V5.0.0, Zenodo, Switzerland) was downloaded and imported into the code. Im-
age loading was done using the function nibabel.load(nifti_image).getfdata(), which
was used to turn the NIfTI image data into binary NumPy arrays. The function
calculate_dice_score(true_label, predicted_label) was made to calculate the DSC
between the two binary arrays representing the true and predicted lesion masks.
The Numpy functions NumPy.logical_and() and NumPy.logical_or() imported from
NumPy (Numpy v1.24, Numpy, Texas, United States) were used to calculate the ar-
rays’ intersection and union, respectively. The DSC was then found using Equation
2.18.

The same procedure of turning NIfTI image data into binary NumPy arrays was used
before calculating the sensitivity and specificity of the predictions. Then the values TP,
TN, FP, and FN from section 2.6.2 were computed using the function NumPy.where()
to find where the values coincide and where they differ from each other. The metrics
were then calculated using the Equations 2.19 and 2.20.

3.6.2 Visualizations

Three types of plots were made for easier comparison of the models and to better visu-
alize the results of the different evaluation metrics.

Segmentations

The first type of plot made was a plot containing the T1 images for all eight patients
in the test set, with the true lesion mask and predicted lesion mask on top. The two
different masks are shown in different colors, and a third color is added to indicate the
overlap between them. As the images are three-dimensional, in order to visualize the
segmentations in a reasonable way, only two-dimensional slices from the z-direction
were used in the plot. The slices chosen for each image are the slices that contain the
highest number of true lesion masks. For each segmentation of the eight participants,
the three metrics are shown above each image. The values shown are the results of the
whole segmentation, not just the results from the specific slice shown. The matplotlib

3.6 Evaluation 43

(matplotlib V3.6.0, Michael Droettboom, et al.) functions imshow() and show() were
utilized to produce the side-by-side segmentation plots.

Bar plots

For easier comparison of the different segmentations, bar plots were made for the three
different metrics showing the result from each model side by side. Each bar represents
one of the models, and the height of each bar is the mean value of the eight participants
for the specified metric shown. Because it is a mean value that is shown, it also includes
the standard deviation represented by an error bar. To produce the plots the matplotlib
function bar() was used.

Line charts

Line charts were made to visualize how the scores of the segmentations vary with dif-
ferent lesion sizes. Three line charts were made, one for each of the performance
metrics. Although it is the mean value that is shown, the standard deviations for each
data point were left out to not obscure the different lines. The charts were made using
the plot() function from matplotlib, with each of the models being represented with a
specific marker and color.

44 Methods

Chapter 4

Results

This section will present the results of the automatically segmented multiple sclerosis
lesions using the different approaches described in the previous chapters. The results
will be presented with dice scores, sensitivity scores, and specificity scores for the
distinct segmentations. The first two are presented with three decimals as the uncer-
tainties occasionally get very small, and this will make way for a better comparison of
the models. The specificity is shown with four decimals as this score is rather high for
all models and to express the small differences between them. Both segmentations of
the whole brain and segmentations which are only directed at the small lesions are in-
cluded. Even though the thesis mainly focuses on lesions smaller than or equal to 10
voxels ( 10 mm3), lesion sizes between 100 mm3 - 10 mm3 have been included to
see how the decreasing lesion sizes affect the performance of the models. When look-
ing at the image segmentations, the figures will be shown using two-dimensional slices,
despite the fact that the real segmentations are three-dimensional.

4.1 Lesion growth algorithm

The first results were acquired by running the T1 and FLAIR images from each sub-
ject in the test set through LGA. This yielded segmentations of lesions of all sizes. The
k value determined through the DOIT function was 0.2, which was used when acquir-
ing the segmentations. Large lesions were removed when looking at the small lesion
results.

4.1.1 Segmentation of all lesions

Table 4.1 shows the dice score, sensitivity, and specificity of all the lesions resulting
from the LGA. Individually the automatic segmentation varies, having a dice score of
anything between 0.048 and 0.781 giving the mean dice 0.479 ± 0.232. The dice score

46 Results

and sensitivity seem to be positively correlated, while the specificity stays similar.

Table 4.1: Table showing the results from using the lesion growth algorithm (LGA) to predict segmenta-
tions of the eight subjects in the test set. The table shows individual results as well as the mean scores.

Individual scores for LGA
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Dice Score 0.408 0.632 0.582 0.781 0.530 0.195 0.652 0.048
Sensitivity 0.275 0.704 0.516 0.823 0.581 0.148 0.709 0.030
Specificity 0.9999 0.9997 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Overall scores
Mean Dice Score 0.479 ± 0.232
Mean Sensitivity 0.473 ± 0.271
Mean Specificity 0.9999 ± 0.0001

Figure 4.1 shows the segmentations of the eight subjects in the test set. The slice chosen
for each subject is the slice containing the most ground true lesions. LGA performs the
best on subjects S2, S4, and S7, where there are large areas of overlap, seen in purple.
Subjects S6 and S8 show low dice and sensitivity scores corresponding with the little
overlap seen in these images.

Figure 4.1: Image showing the lesion segmentations from the lesion growth algorithm (LGA) of the
eight subjects in the test set. The figures are labeled between S1-S8, corresponding to the subjects 1-
8. Above each subject are the associated dice score, sensitivity, and specificity. The ground true lesion
masks are shown in blue, the predicted masks from LGA are shown in red, and their overlap is in purple.

4.2 Lesion prediction algorithm 47

4.1.2 Segmentation of small lesions

Table 4.2 shows the mean dice score, mean sensitivity and mean specificity of different
lesion sizes. For each of the sizes, 100 mm3 down to 10 mm3, all lesions larger than
the specified size were removed from both the predicted segmentation and the ground
true one before calculating the results. Table 4.2 shows the dice score and sensitivity
decreases with the smaller lesion sizes while the specificity stays the same up until
lesions smaller than 10 mm3, where there are no overlapping segmentations.

Table 4.2: Table showing the results from using the lesion growth algorithm (LGA) to predict segmen-
tations of the eight subjects in the test set. The results shown are after larger lesions are removed from
both the ground truth and predicted lesions. For each of the lesion sizes shown, all lesions above the
mentioned volume are removed. The table shows the mean dice score, mean sensitivity, and mean speci-
ficity for lesion sizes smaller than 100mm3 to 10mm3 with 10 mm3 increment.

Mean scores for LGA on decreasing lesion sizes
Mean dice score Mean sensitivity Mean specificity

100 mm3 0.233 ± 0.152 0.195 ± 0.131 0.9999 ± 0.0001
90 mm3 0.228 ± 0.147 0.197 ± 0.125 0.9999 ± 0.0001
80 mm3 0.180 ± 0.168 0.152 ± 0.142 0.9999 ± 0.0001
70 mm3 0.182 ± 0.162 0.152 ± 0.137 0.9999 ± 0.0001
60 mm3 0.161 ± 0.141 0.138 ± 0.120 0.9999 ± 0.0001
50 mm3 0.155 ± 0.135 0.130 ± 0.110 0.9999 ± 0.0001
40 mm3 0.188 ± 0.119 0.099 ± 0.090 0.9999 ± 0.0001
30 mm3 0.089 ± 0.120 0.074 ± 0.093 0.9999 ± 0.0001
20 mm3 0.089 ± 0.104 0.071 ± 0.078 0.9999 ± 0.0001
10mm3 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

4.2 Lesion prediction algorithm

The predicted segmentations from LPA were acquired by running the FLAIR and T1
NIfTI images from each subject in the test set through the LPA algorithm in MATLAB.
The results on the smaller lesions were calculated after larger lesions were stripped
from the segmentations.

4.2.1 Segmentation of all lesions

Table 4.3 shows the dice score, sensitivity, and specificity scores of all the lesions in
the segmentations predicted by LPA. The dice scores of the eight subjects vary between
0.384 and 0.789 giving a mean dice score of 0.562 ± 0.117. The same trend can be
seen for sensitivity that varies between 0.402 to 0.825 giving a mean sensitivity of 0.605
± 0.123. The specificity stays a similar value lying between the numbers 0.9996 and
0.9999 giving a mean of 0.9998 ± 0.0001.

48 Results

Table 4.3: Table showing the results from using the lesion prediction algorithm (LPA) to predict seg-
mentations of the eight subjects in the test set. The table shows individual results as well as the mean
scores.

Individual scores for LPA
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Dice Score 0.458 0.607 0.578 0.789 0.580 0.384 0.630 0.470
Sensitivity 0.402 0.697 0.575 0.825 0.602 0.525 0.698 0.518
Specificity 0.9999 0.9996 0.9999 0.9999 0.9999 0.9999 0.9998 0.9999

Overall scores
Mean Dice Score 0.562 ± 0.117
Mean Sensitivity 0.605 ± 0.123
Mean Specificity 0.9998 ± 0.0001

The individual segmentations and their corresponding scores can be seen in Figure
4.2. LPA achieves a greater mean dice and sensitivity score than the LGA on the
segmentations. This corresponds to the individual images S1-S8, which show fewer
blue areas than the LGA for most subjects. It has a similar trend to LGA, with the
greatest scores belonging to S2, S4, and S7, and the lowest scores belonging to S6 and
S1.

Figure 4.2: Image showing the lesion segmentations from the lesion prediction algorithm (LPA) of the
eight subjects in the test set. The figures are labeled between S1-S8, corresponding to the subjects 1-
8. Above each subject are the associated dice score, sensitivity, and specificity. The ground true lesion
masks are shown in blue, the predicted masks from LPA are shown in red, and their overlap is in purple.

4.3 NicMSlesions 49

4.2.2 Segmentation of small lesions

Table 4.4 shows the mean dice score, mean sensitivity and mean specificity of seg-
mentations with decreasing lesion sizes. Looking at lesions smaller than 100 mm3, the
mean dice score is 0.281 ± 0.144, and the mean sensitivity is 0.278 ± 0.143. At le-
sions  30 mm3, the scores diminish below 0.200 and become 0.0 at lesions  10 mm3.
The specificity stays the same at 0.9999 ± 0.0001 up until lesions  10 mm3 where it
becomes 1.0 ± 0.0 as there are no overlapping predictions here.

Table 4.4: Table showing the results from using the lesion prediction algorithm (LPA) to predict seg-
mentations of the eight subjects in the test set. The results shown are after larger lesions are removed
from both the ground truth and predicted lesions. For each of the lesion sizes shown, all lesions above
the mentioned volume are removed. The table shows the mean dice score, mean sensitivity, and mean
specificity for lesion sizes smaller than 100mm3 to 10mm3 with 10 mm3 increment.

Mean scores for LPA on decreasing lesion sizes
Mean dice score Mean sensitivity Mean specificity

100 mm3 0.281 ± 0.144 0.278 ± 0.143 0.9999 ± 0.0001
90 mm3 0.289 ± 0.139 0.279 ± 0.134 0.9999 ± 0.0001
80 mm3 0.267 ± 0.148 0.254 ± 0.129 0.9999 ± 0.0001
70 mm3 0.280 ± 0.134 0.276 ± 0.115 0.9999 ± 0.0001
60 mm3 0.271 ± 0.145 0.246 ± 0.126 0.9999 ± 0.0001
50 mm3 0.247 ± 0.097 0.244 ± 0.083 0.9999 ± 0.0001
40 mm3 0.215 ± 0.075 0.215 ± 0.063 0.9999 ± 0.0001
30 mm3 0.158 ± 0.112 0.149 ± 0.104 0.9999 ± 0.0001
20 mm3 0.135 ± 0.126 0.104 ± 0.095 0.9999 ± 0.0001
10mm3 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0

4.3 NicMSlesions

The segmentations from the nicMSlesions algorithm were acquired by running the
FLAIR and T1 NIfTI images from each subject in the test set through the downloaded
nicMSlesions program. No options in the program were changed before acquiring the
test results. The results on the smaller lesions were calculated after larger lesions were
removed from the segmentations.

4.3.1 Segmentation of all lesions

Table 4.5 shows the dice sore, sensitivity, and specificity scores of the segmentations
made by the nicMSlesions algorithm. The dice scores vary between 0.0 and 0.526,
giving a mean dice score of 0.337 ± 0.146. The sensitivity varies between 0.0 and
0.439, leading to a mean sensitivity of 0.258 ± 0.123. The specificity lies between
0.9998 and 1.0, having a mean score of 0.9999 ± 0.0001.

50 Results

Table 4.5: Table showing the results from using the nicMSlesions algorithm to predict segmentations of
the eight subjects in the test set. The table shows individual results as well as the mean scores for each
performance measure.

Individual scores for nicMSlesions
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Dice Score 0.291 0.443 0.526 0.396 0.0 0.306 0.385 0.353
Sensitivity 0.185 0.379 0.439 0.277 0.0 0.227 0.263 0.293
Specificity 0.9999 0.9998 0.9999 0.9999 1.0 0.9999 0.9999 0.9999

Overall scores
Mean Dice Score 0.337 ± 0.146
Mean Sensitivity 0.258 ± 0.123
Mean Specificity 0.9999 ± 0.0001

Figure 4.3 shows the lesion segmentations made by the nicMSlesions algorithm on the
eight subjects in the test set. Most notable is the segmentation for S5, where there is
no overlap present throughout the brain. This can also be seen in Table 4.5, where
the dice and sensitivity scores are 0 for subject 5. Additionally, nicMSlesions struggle
when segmenting lesions across various brain regions, as evident from the presence of
substantial blue patches observed in nearly all subjects S1-S8.

Figure 4.3: Image showing the lesion segmentations from the nicMSlesions algorithm of the eight
subjects in the test set. The figures are labeled between S1-S8, corresponding to subjects 1-8. Above
each subject are the associated dice score, sensitivity, and specificity. The ground true lesion masks are
shown in blue, the predicted masks from the algorithm are shown in red, and their overlap is in purple.

4.4 U-Net employed through fastMONAI 51

4.3.2 Segmentation of small lesions

Table 4.6 presents the mean dice score, sensitivity, and specificity for segmentations of
decreasing lesion sizes. The segmentations containing lesions  100 mm3 got a mean
dice score of 0.190 ± 0.136, mean sensitivity of 0.155 ± 0.107, and mean specificity
of 0.9999 ± 0.0001. The mean dice score and sensitivity decrease with the decreasing
lesion sizes. For segmentations with lesions  10 mm3, the dice score is 0.015 ±
0.032, the sensitivity is 0.013 ± 0.028, and the specificity is 1.0 ± 0.0. An example of
a nicMSlesions prediction on small lesions can be seen in supplementary Figure B.1.

Table 4.6: Table showing the results from using the nicMSlesions algorithm to predict segmentations of
the eight subjects in the test set. The results shown are after larger lesions are removed from both the
ground truth and predicted lesions. For each of the lesion sizes shown, all lesions above the mentioned
volume are removed. The table shows the mean dice score, mean sensitivity, and mean specificity for
lesion sizes smaller than 100mm3 to 10mm3 with 10 mm3 increment.

Mean scores for nicMSlesions on decreasing lesion sizes
Mean dice score Mean sensitivity Mean specificity

100 mm3 0.190 ± 0.136 0.155 ± 0.107 0.9999 ± 0.0001
90 mm3 0.182 ± 0.126 0.149 ± 0.100 0.9999 ± 0.0001
80 mm3 0.131 ± 0.114 0.104 ± 0.085 0.9999 ± 0.0001
70 mm3 0.123 ± 0.086 0.099 ± 0.070 0.9999 ± 0.0001
60 mm3 0.089 ± 0.082 0.070 ± 0.065 0.9999 ± 0.0001
50 mm3 0.072 ± 0.082 0.055 ± 0.062 0.9999 ± 0.0001
40 mm3 0.064 ± 0.071 0.049 ± 0.054 0.9999 ± 0.0001
30 mm3 0.057 ± 0.084 0.046 ± 0.065 0.9999 ± 0.0001
20 mm3 0.051 ± 0.082 0.040 ± 0.064 0.9999 ± 0.0001
10mm3 0.015 ± 0.032 0.013 ± 0.028 1.0 ± 0.0

4.4 U-Net employed through fastMONAI

The U-Net segmentations were acquired from running a Python pipeline using func-
tions from the fastMONAI library. The model used to predict the segmentations were
trained on FLAIR NIfTI images. The results on the smaller lesions were calculated
after the larger lesions were stripped from the segmentation.

4.4.1 Segmentation of all lesions

Table 4.7 shows the dice score, sensitivity, and specificity for the segmentations made
by the fastMONAI U-Net. The dice scores for each of the subjects in the test set vary
between 0.708 and 0.805, giving a mean score of 0.764 ± 0.039. The sensitivity values
among the subjects range from 0.620 to 0.777, getting a mean score of 0.708 ± 0.047.
The specificity has a mean score of 0.9999 ± 0.0001.

52 Results

Table 4.7: Table showing the results from using the U-net architecture from fastMONAI in order to
predict segmentations of the eight subjects in the test set. The table shows individual results as well as
the mean scores for each performance measure.

Individual scores for U-Net
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Dice Score 0.722 0.756 0.785 0.805 0.816 0.708 0.724 0.795
Sensitivity 0.657 0.712 0.731 0.719 0.777 0.697 0.620 0.748
Specificity 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Overall scores
Mean Dice Score 0.764 ± 0.039
Mean Sensitivity 0.708 ± 0.047
Mean Specificity 0.9999 ± 0.0001

Figure 4.4 shows the lesion segmentations made by U-Net on the eight subjects in the
test set. Notably, the U-Net outperforms the previously mentioned models, as evident
by its high mean dice and sensitivity scores reported in Table 4.7. It seems to perform
well across various brain regions, as indicated by the significant overlap observed in all
subjects S1-S8. The network’s lowest score can be seen in subject 1, where there are
multiple smaller lesions present.

Figure 4.4: Image showing the lesion segmentations from the U-Net neural network of the eight subjects
in the test set. The figures are labeled between S1-S8, corresponding to subjects 1-8. Above each subject
are the associated dice score, sensitivity, and specificity. The ground true lesion masks are shown in
blue, the predicted masks from the algorithm are shown in red, and their overlap is in purple.

4.5 nnU-Net 53

4.4.2 Segmentation of small lesions

Table 4.8 shows the mean dice score, mean sensitivity and mean specificity of segmen-
tations of decreasing lesion sizes. The segmentations containing lesions up to 100 mm3

got a mean dice score of 0.579 ± 0.084, mean sensitivity of 0.532 ± 0.078, and mean
specificity of 0.9999 ± 0.0001. The mean dice score and mean sensitivity decrease
for all segmentations containing decreasing lesion sizes. Looking at the segmentations
having lesions up to a size of 10 mm3, the mean dice score is 0.129 ± 0.116, the mean
sensitivity is 0.122 ± 0.109, and the mean specificity is 1.0 ± 0.0. An example of a
U-Net prediction on small lesions can be seen in supplementary Figure B.2.

Table 4.8: Table showing the results from using the U-Net to predict segmentations of the eight subjects
in the test set. The results shown are after larger lesions are removed from both the ground truth
and predicted lesions. For each of the lesion sizes shown, all lesions above the mentioned volume are
removed. The table shows the mean dice score, mean sensitivity, and mean specificity for lesion sizes
smaller than 100mm3 to 10mm3 with 10 mm3 increment.

Mean scores for U-Net on decreasing lesion sizes
Mean dice score Mean sensitivity Mean specificity

100 mm3 0.579 ± 0.084 0.531 ± 0.078 0.9999 ± 0.0001
90 mm3 0.570 ± 0.109 0.532 ± 0.087 0.9999 ± 0.0001
80 mm3 0.516 ± 0.153 0.495 ± 0.135 0.9999 ± 0.0001
70 mm3 0.512 ± 0.125 0.503 ± 0.106 0.9999 ± 0.0001
60 mm3 0.477 ± 0.123 0.477 ± 0.098 0.9999 ± 0.0001
50 mm3 0.432 ± 0.169 0.446 ± 0.174 0.9999 ± 0.0001
40 mm3 0.444 ± 0.158 0.433 ± 0.162 0.9999 ± 0.0001
30 mm3 0.353 ± 0.155 0.342 ± 0.158 0.9999 ± 0.0001
20 mm3 0.348 ± 0.144 0.281 ± 0.125 1.0 ± 0.0
10 mm3 0.129 ± 0.116 0.122 ± 0.109 1.0 ± 0.0

4.5 nnU-Net

The nnU-Net segmentations were acquired by running the nnU-Net predict terminal
command. The model used to predict the segmentations was trained on both T1 and
FLAIR NIfTI images. The results on the smaller lesions were calculated after the larger
lesions were removed from the segmentation.

4.5.1 Segmentation of all lesions

Table 4.9 shows the dice score, sensitivity, and specificity scores of the segmentations
made by the nnU-Net algorithm. The dice scores vary between 0.567 and 0.916, having
a mean score of 0.817 ± 0.099. The sensitivity varies between 0.545 and 0.949 giving
the mean sensitivity 0.822 ± 0.114. Specificity has a constant value of 0.9999.

54 Results

Table 4.9: Table showing the results from using the nnU-Net in order to predict segmentations of the
eight subjects in the test set. The table shows individual results as well as the mean scores for each
performance measure.

Individual scores for nnU-Net
Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8

Dice Score 0.567 0.842 0.850 0.916 0.832 0.821 0.870 0.841
Sensitivity 0.545 0.888 0.882 0.949 0.828 0.859 0.826 0.795
Specificity 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

Overall scores
Mean Dice Score 0.817 ± 0.099
Mean Sensitivity 0.822 ± 0.114
Mean Specificity 0.9999 ± 0.0001

Figure 4.5 shows the lesion segmentations made by nnU-Net on the eight subjects in
the test set. The nnU-Net achieves its lowest score on subject S1, similar to that of
the U-Net. For all the other subjects, there are large areas of overlap seen in purple.
Subject S2 shows areas around the ventricles that are red, which means the model has
predicted lesions where there are none. The opposite can be seen for subject 7, where
the right ventricle is blue, meaning the model was not able to predict this lesion.

Figure 4.5: Image showing the lesion segmentations from the nnU-Net neural network of the eight
subjects in the test set. The figures are labeled between S1-S8, corresponding to the subjects 1-8. Above
each subject are the associated dice score, sensitivity, and specificity. The ground true lesion masks are
shown in blue, the predicted masks from the algorithm are shown in red, and their overlap is in purple.

4.6 All model segmentations 55

4.5.2 Segmentation of small lesions

Table 4.10 shows the mean dice, mean sensitivity, and mean specificity for decreasing
lesion sizes. For the segmentations containing lesions up to 100 mm3, the mean dice
score is 0.686 ± 0.127, the mean sensitivity is 0.710 ± 0.143, and the mean specificity
is 0.9999 ± 0.0001. For the decreasing lesion sizes, the different scores follow a de-
creasing trend as well. When looking at the segmentations containing lesions up to 10
mm3, the mean dice score is 0.389 ± 0.153, the mean sensitivity is 0.395 ± 0.176, and
the mean specificity is 1.0 ± 0.0. An example of a nnU-Net prediction on small lesions
can be seen in supplementary Figure B.3.

Table 4.10: Table showing the results from using the nnU-Net to predict segmentations of the eight
subjects in the test set. The results shown are after larger lesions are removed from both the ground
truth and predicted lesions. For each of the lesion sizes shown, all lesions above the mentioned volume
are removed. The table shows the mean dice score, mean sensitivity, and mean specificity for lesion
sizes smaller than 100mm3 to 10mm3 with 10 mm3 increment.

Mean scores for nnUnet on decreasing lesion sizes
Mean dice score Mean sensitivity Mean specificity

100 mm3 0.686 ± 0.127 0.710 ± 0.143 0.9999 ± 0.0001
90 mm3 0.666 ± 0.154 0.668 ± 0.157 0.9999 ± 0.0001
80 mm3 0.667 ± 0.142 0.682 ± 0.156 0.9999 ± 0.0001
70 mm3 0.663 ± 0.153 0.671 ± 0.184 0.9999 ± 0.0001
60 mm3 0.609 ± 0.188 0.605 ± 0.230 0.9999 ± 0.0001
50 mm3 0.586 ± 0.200 0.611 ± 0.253 0.9999 ± 0.0001
40 mm3 0.565 ± 0.198 0.572 ± 0.240 0.9999 ± 0.0001
30 mm3 0.548 ± 0.204 0.564 ± 0.223 0.9999 ± 0.0001
20 mm3 0.494 ± 0.230 0.511 ± 0.275 0.9999 ± 0.0001
10 mm3 0.389 ± 0.153 0.395 ± 0.176 1.0 ± 0.0

4.6 All model segmentations

This section will present the results of all the models side by side in order to compare
them. Both results from the segmentations containing all lesions and the segmentations
where larger lesions were removed will be shown.

4.6.1 Segmentation of all lesions

The results showing the segmentations containing all lesions are visualized by bar plots
seen in Figure 4.6. One bar plot was made for each of the evaluation metrics dice score,
sensitivity, and specificity. The slanted lines on the bars of LPA and U-Net have been
added for easier separation of the colored bars.

56 Results

(a) Mean dice score (b) Mean sensitivity

(c) Mean specificity

Figure 4.6: Figure containing three bar plots. Figure (a) shows the mean dice scores, Figure (b) shows
the mean sensitivity, and Figure (c) shows the mean specificity of all five models used for producing
image segmentations. The height of each bar represents the model’s mean score and the error bar
is the standard deviation. The lesion growth algorithm (LGA) is shown in blue, the lesion prediction
algorithm (LPA) is shown in orange, the nicMSlesions algorithm is in green, the U-Net in red, and the
nnU-Net in purple. The slanted lines seen in two of the bars is for better separation of the colors.

4.6 All model segmentations 57

Dice score

The mean dice score of the five different models is displayed in Figure 4.6a. From the
figure, it is evident that nicMSlesions has the lowest mean dice score of 0.337 ± 0.146
compared to the other model segmentations. It is also noteworthy that nicMSlesions
has the second-largest error bar. LGA achieves a mean dice score of 0.479 ± 0.232,
exhibiting the largest error bar among the models. LPA got a mean dice score of 0.562
± 0.117, making it the model with the third-highest dice score. The U-Net model
demonstrates the second-highest mean dice score of 0.764 ± 0.039, accompanied by
the lowest standard deviation. The model with the highest mean dice score is nnU-Net,
scoring 0.817 ± 0.099.

Sensitivity

The mean sensitivity of the five models can be seen in Figure 4.6b. The sensitivity
bar plot follows the same trend and pattern as the DSC bar plot in Figure 4.6a. The
nicMSlesions model has the lowest mean sensitivity of 0.258 ± 0.123. Next is LGA
with a mean sensitivity of 0.473 ± 0.271, followed by LPA with a mean score of 0.605
± 0.123. The U-Net has the second-highest mean sensitivity 0.708 ± 0.047, while the
nnU-Net has the highest mean score of 0.822 ± 0.114.

Specificity

The mean specificities of the five models are depicted in Figure 4.6c. LGA, nicMSle-
sions, nnU-net, and U-Net all achieve a mean specificity of 0.9999, indicating a high
level of specificity. On the other hand, LPA exhibits a slightly lower mean specificity
of 0.9998, but has a large error bar falling within the range of the other models. U-Net
has the lowest error bar of the five models, meaning it has the least variability in its
results.

4.6.2 Segmentation of small lesions

This section presents the results from the segmentations on the small lesions. To get a
better understanding of how the performance of the models changes when the size of
the lesions in the segmentations decreases, the corresponding scores are shown in line
plots.

Dice score

Figure 4.7a illustrates the mean dice scores computed for each model based on the de-
creasing lesion sizes. The figure demonstrates the impact of diminishing lesion sizes

58 Results

on the evaluation metric. Notably, nnU-Net consistently achieves the highest dice score
across all lesion sizes. U-Net attains the second-highest score and, alongside nnU-Net,
is the only model that manages to have a prediction above 0.1 when looking at the
segmentations containing lesions up to 10 mm3. The models LGA, LPA, and nicMSle-
sions also have a general decrease with the decreasing lesion sizes, but when reaching
the segmentations containing only small lesions, the dice score is ⇡ 0.

(a) Mean dice score (b) Mean sensitivity

(c) Mean specificity

Figure 4.7: Plot showing the mean performance measures calculated for the lesion sizes 100 mm3 to
10 mm3 with 10 mm3 increment. Figure (a) shows the mean dice score, Figure (b) shows the mean
sensitivity, and Figure (c) shows the mean specificity. The metrics were calculated for each of the five
models and the result can be seen as the five lines in the plot. The result from LGA is shown in blue
circles, the LPA is shown in yellow triangles, nicMSlesions are shown in green squares, U-Net is shown
in red diamonds and nnU-Net is shown in purple pentagons.

Sensitivity

Figure 4.7b shows the sensitivity calculated for each model for each of the segmen-
tations containing lesions of decreasing sizes. The sensitivity for each of the models

4.6 All model segmentations 59

can be seen decreasing as the lesion sizes in the segmentations decrease as well. nnU-
Net has the largest sensitivity across all lesion sizes, together with the U-Net, they are
the only models that get a larger score for the segmentations containing lesions  10
mm3. The LGA, LPA, and nicMSlesions show a gradual decrease in performance with
respect to the decreasing lesion sizes and get a score of ⇡ 0 for segmentations with
lesions  10 mm3.

Specificity

The mean specificity of the five models for each of the lesion sizes can be seen in
Figure 4.7c. The figure shows that the performance of the models stays the same across
the different lesion sizes. The U-Net gets a specificity of 1.0 when the segmentations
contain lesions up to 20 mm3, while this happens for the nnU-Net, LGA, LPA, and
nicMSlesion models at 10 mm3.

4.6.3 U-Net optimization

The plot produced in order to determine the learning rate to use for training the U-
Net can be seen in Figure 4.8. The figure shows how the loss varies with the learning
rate. The valley shown as an orange circle in the image indicates an area on the graph
that includes a steep decline, and its corresponding value could therefore be used as a
learning rate. This plot was produced before initiating training of the U-Net.

Figure 4.8: Plot visualizing how the loss depends on the learning rate. The orange circle indicates an
area of steep decline on the graph. Since the plot was produced by an

Figure 4.9 shows how the training and validation loss for the U-Net drops as the number
of epochs increases. Even though there seems to be more noise in the validation loss,

60 Results

both losses follow the same trend, which is an indicator of the absence of over- and
underfitting. The plot was produced after training as a way to indicate how well the
training went.

Figure 4.9: Plot showing how the training and validation loss changes as the number of epochs in-
creases. The training loss is shown in blue, while the validation loss is in orange.

4.6.4 Training duration

The models that were trained on the project data all took different amounts of training
time. This includes the nicMSlesions, U-Net, and nnU-Net and can be seen in Table
4.11. The times shown are in seconds per epoch and are knowledgeable estimates. As
all models were trained for 400 epochs, the total amount in seconds is also shown.

Table 4.11: Table shows how long each of the trainable models used per epoch as well as total training
time. Time per epoch is in seconds, while the total training time is in hours. Both measures are estimates
as the exact time per epoch has some variation. The nnU-Net total training time is multiplied by 5 as
the model had to be trained five times.

Model training times
Time / epoch (s) Total training time (h)

nicMSlesions 229 25
U-Net 26 3

nnU-Net 440 49 x 5

Chapter 5

Discussion

The primary objective of this project was to employ machine learning techniques for
the automatic segmentation of brain lesions in patients with multiple sclerosis. Specif-
ically, the focus was to assess the performance of these methods when dealing with
small multiple sclerosis lesions. To achieve this, differently established algorithms
and neural networks were utilized, namely LGA, LPA, nicMSlesions, and nnU-Net.
Additionally, the U-Net architecture was employed using fastMONAI to train the seg-
mentation model. The main findings reveal that both nnU-Net and U-Net demonstrated
the ability to effectively segment small multiple sclerosis lesions, and highlight the po-
tential of these models in identifying and delineating such lesions. In this chapter, the
results obtained from Chapter 4 are examined, along with a discussion on potential
sources of error or limitations in the methodology.

5.1 Small lesions

In the current thesis, small lesions were defined as those with a volume less than or
equal to 10 mm3. The primary emphasis of the thesis was to assess the performance of
different models in segmenting such lesions. As demonstrated in the preceding chapter,
not all models were capable of accurately segmenting these small lesions. Therefore,
the evaluation of lesions ranging in size from 10 mm3 to 100 mm3 was added to reveal
how the size of the lesions affects model performance.

It is also important to note that when dealing with lesion segmentations, the affected
areas in the image are relatively small compared to the rest of the image. This is es-
pecially true for the small lesions. Consequently, any overlap in the segmentations
carries significant weight in determining the performance. Random overlap can lead
to misleading indications of a model’s performance, necessitating visual inspection of
the results to assess whether a model accurately predicts the correct lesion locations or

62 Discussion

appears more random.

5.2 Model comparison

When working on getting the segmentations from each of the aforementioned models,
an important focus was to try to make the process as equal as possible to have a fair
comparison of the models. However, it is important to acknowledge that each method
has its limitations in terms of customization. For instance, not all models were able to
be trained on the specific data acquired for this project, and some did not accommodate
the preferred input or yield the desired output. Nevertheless, all models successfully
produced segmentations of MS lesions that could be utilized for calculating the perfor-
mance measures.

5.2.1 Lesion growth algortihm

The LGA was one of the algorithms where training on the project data was impos-
sible before running inference. This could be one of the reasons for its overall poor
performance in segmenting lesions of all sizes, including small lesions (Table 4.1 and
4.2). Additionally, the LGA model was trained on images obtained from a different
MRI scanner. Although both scanners were 3T, the specific sequence parameters, such
as TE, TR, TI, and field of view, differed between the Philips scanner used for LGA
and the Siemens Healthineers scanner used in this project. Consequently, the T1 and
FLAIR images utilized for training and inference were dissimilar, impacting the algo-
rithm’s performance. The LGA algorithm was trained to recognize voxel patterns in a
specific set of images, which may not generalize well with other image sets.

An important aspect of the LGA algorithm is the choice of the initial threshold value,
denoted as k , which enables adjustment for different image protocols. As different k
values yield different segmentation results, it becomes clear that the choice has much to
say about the algorithm’s performance. The Determination of optimal initial Threshold
function was used to determine this value, and the k chosen resulted in the highest
dice score for each participant in the validation set. Because the k was chosen based
on what value had the highest frequency to give the best dice score on validation data
only, it is still possible that another k value could be best for the test set. Despite this,
the k was reasonably chosen with the approach recommended by the authors. The test
set was not used for this process as it should remain unseen until the model inference
phase to get a realistic performance measure.

5.2 Model comparison 63

The LGA could not find any small lesions in the segmentations containing lesions up to
10 mm3, it also has the highest standard deviation meaning it is very inconsistent with
its predictions (Table 4.2). The reasoning behind the lack of small lesion predictions
could be a consequence of the LGA not being trained on the preferred data and there
not being any certainty that the MRI images it was trained on contained small lesions.
It is also possible that the algorithm used is unsuitable when wanting to detect smaller
lesions, as the authors of the algorithm point out that they got lower DSC in patients
with lower lesion volume [55].

The LGA was thresholded at a value of 0.1. Since the thresholded image was a proba-
bility map, the value is a number of how confident the algorithm is that there is a lesion
present in the specified voxel. The range for these numbers is between zero and one,
making 0.1 relatively low. It is an interesting observation that to get the highest dice
score possible for the algorithm, voxels considered to have a low probability of being a
lesion had to be included.

5.2.2 Lesion prediction algorithm

LPA is the other algorithm that was not readily trainable, which could have affected
its performance on the data provided for the project. Correspondence with the author
made it clear that it is possible to have the model be trained on other datasets. Because
this required the data to be sent to the author, it was decided against on account of
the General Data Protection Regulation (GDPR) [81]. There is also the possibility that
training on new data won’t change that much about the models’ performance because
the author has included a wide range of images for model training [56].

The machine and sequence used for the MRI image acquisition were the same as for
the LGA. Still, it performs better than the LGA both when looking at all lesions and
the small lesions (Figure 4.6 and 4.7). One reason for this can be that the LPA is a
newer algorithm made by the same authors and build upon the knowledge acquired
from working on their first algorithm. It also does not require an initial threshold that
could be a source of error. LPA does have the lowest specificity, something that could
be correlated to its possibility to overestimate lesion sizes [82]. A lot of overestimation
would have a significant impact on the specificity value, so it could not have made that
much of a difference as the standard deviation falls in between the mean specificities
of the other models. Still, it is something to take notice of.

LPA also got a dice score and sensitivity of zero when looking for lesions  10 mm3

(Table 4.4). One reason for this poor quality could be that the set used for training

64 Discussion

only consists of images corresponding to patients with high total lesion volume (TLV),
which the author has defined as TLV > 10 ml [56]. This further suggests that the train-
ing data may not have included an adequate number of small lesions. Additionally,
the authors acknowledge that their segmentations may miss smaller lesions in the area
between white matter and cortical gray matter [56]. In comparison to the other mod-
els, LGA and LPA were trained on fewer participants (52 and 53 patients) compared to
nicMSlesions, nnU-Net, and U-Net, which were trained on at least 70 patients, indicat-
ing a difference of ⇡ 26% in training sample size.

5.2.3 nicMSlesions

The nicMSlesions algorithm was trained on top of their pre-trained model called base-
line2ch. Doing this was expected to yield better performance of the model since the
model used for inference would have been trained on more images, resulting in more
lesions to learn from (Section 2.3.2). However, from Table 4.5, it can be seen that this
was not the case, Figures 4.6a and 4.6b also show that the nicMSlesions algorithm has
both the lowest DSC and the lowest sensitivity of the models tested during this project.
One reason for this large difference could be that the algorithm was unable to train us-
ing different settings than the default on the computer available. This means that the
setting that assumes the training data contains images of both healthy and sick brains
was left unchanged. Because the model assumed the test set contained both healthy
and sick MRI images, one of the images in the test set was considered healthy and was
therefore not segmented. This can be seen in Table 4.5 for subject 5, where the dice
score and sensitivity are zero. Visual inspection also showed that the probability map
for this participant contained no segmentations. Since it was the mean scores of the
eight participants that were used when plotting the Figures 4.6a and 4.6b, it is possible
that this outlier value had an effect on the mean scores and likely portraits nicMSle-
sions worse than it would if all segmentations contained probabilities. This probably
also had an effect on the large error bar.

For the small lesions, it can be seen from Table 4.6 that the algorithm has some overlap-
ping voxels even for the  10 mm3 segmentations. This was rather surprising as one of
the default settings that could not be changed was the value deciding the smallest lesion
output size, which was set to 10. Through visual inspection, it was shown that most of
the  10 mm3 segmentations contain no overlap, but since even the slightest overlap is
enough to generate a score, the segmentations where this happens are enough to give
a higher mean score. Even though there is an overlapping prediction there, it seems
through visual inspection that this score is a result of two voxels randomly overlapping

5.2 Model comparison 65

instead of the algorithm actually predicting where the small lesions are located.

For a more fair comparison of the models, it would have been optimal to be able to train
nicMSlesions on only the project data. It would also have been preferable to reduce the
minimum lesion output size and to train the model to assume that all input images
consist of MS lesions. Despite the inability to implement the necessary adjustments
to customize the algorithm for the project’s specific needs, it was still fascinating to
observe how this widely recognized algorithm would perform.

5.2.4 U-Net

Tables 4.7 and 4.8 show the U-Net utilized through fastMONAI has good results for
both segmentations containing all lesion sizes and for the small. It can also be seen from
Figures 4.6a, 4.6b, and 4.6c that it has the smallest error bar. U-Net was possible to
train on the project data, but could only be trained on either T1 or FLAIR images. The
FLAIR images were chosen to use for training the U-Net because of their sensitivity
for detecting white matter lesions (Section 2.1.4). Despite the model only being trained
on one type of image, it still performed well on unseen data.

There were several values that had to be set, like the batch size, learning rate, loss
function, and the number of epochs. As hyperparameters can affect a model’s perfor-
mance [83], it would have been interesting to do a hyperparameter search in order to
find which assembly of hyperparameters would give the best score for this particular
task. This was omitted as it would be a time-consuming and performance-heavy task.
The hyperparameters were therefore selected manually with the knowledge available in
order to produce the best possible result without the hyperparameter search. The learn-
ing rate was found using a function to plot the learning rate curve. The most optimal
choice is to pick a value from where the curve has a steep decline. Figure 4.8 shows
how the plot can be used to choose what learning rate to use for training. Even though
there are several steep areas on the graph that could work as potential learning rates, the
functions valley point, which is highlighted by an orange circle in the plot, was used as
the developers found this to generally yield good results.

The other hyperparameters that were not as easily visualized as the learning rate, were
chosen based on similar research within the field. A batch size of 4 was used as this
was implemented for a similar task performed in the tutorial that the U-Net was built
upon [10]. The loss function applied was dice loss because it is widely used in medical
image segmentation [84] [85]. Dice loss also corresponds well the DSC evaluation
metric, and it addresses the data imbalance problem which can occur when the voxels

66 Discussion

that are supposed to be segmented constitute a small percentage of all the voxels in
the image. This is especially useful for the small lesions, as they only make up a few
voxels per image. Nonetheless, there is one type of imbalance that the dice loss does not
consider, the imbalance between easy and hard samples [85]. Since the images used for
the project contain varying amounts of lesions, and the size of the lesions varies greatly
as well, it is difficult to make sure that the model is able to weigh the importance of
the small lesions the same as the larger ones. Here it could have been interesting to test
other loss functions such as focal dice loss which is supposed to counteract this issue
[85] or Tversky loss which was shown to perform better than dice loss in this research
article by Shruti Jadon [86]. Still, the U-Net performed relatively well on the small
lesions (Table 4.8), meaning that the possible imbalance has not had a too negative
impact.

The optimizer used for training was the ranger optimizer from fastAI. This optimizer
was used in the fastMONAI tutorial [80]. It was kept in because of its ability to both
accelerate the learning and to achieve a high validation accuracy without compromising
generalization [87]. It also builds upon the Adam optimizer, which is among the most
used optimizers in deep learning [88]. Here it would have been interesting to also try
the Adadelta optimizer, as this was used for training the nicMSlesions model.

The U-Net was trained for 400 epochs in order for the trainable models to have been
given the same foundation with regard to training time. Even though this was done, 400
is not necessarily a number that is going to fit all the models tested during this project.
Since fastMONAI allows for customization of the code, the losses found during the
training of the model were easily accessed. Figure 4.9 shows that both the training
loss and validation loss decrease when the number of epochs increases. There is not a
large gap between them and they don’t show an increasing trend, they also flatten out
after a number of epochs. This indicates that the model generalizes well and is neither
overfitted nor underfitted [89], which is a good sign that the model is able to make good
predictions on unseen data.

This method did not allow for probability maps as output. Because of this, the resulting
segmentations did not go through the same validation pipeline as the rest. Being able
to do this would most likely have altered the U-Net result for the better as all the other
models except nnU-Net were thresholded at the values that gave the largest dice score.

Ashtari et al. [76] proposed a U-Net pipeline to perform the task of segmenting new
MS lesions. Comparing the results from the small lesion segmentations made by the
U-Net trained for this project to the one in the publication is difficult as they have not

5.2 Model comparison 67

defined a size for their new lesion segmentations. Ashtari et al. received an average dice
score of 0.403 on lesions that developed between two time points. The U-Net trained
for this project produces a similar mean dice score of 0.348 ± 0.144 when looking at
the segmentation containing lesions  20 mm3 (Table 4.8).

5.2.5 nnU-Net

The nnU-Net was the model that got the highest dice score and sensitivity, both when
looking at all lesion sizes and only the small ones. This can be seen in Figure 4.6a,
4.6b, 4.7a, and 4.7b. The method is closely related to that of the U-Net, but because the
whole process of training and testing is automated, it is less susceptible to user error.
The pipeline also automates pre-processing, such as re-sampling and normalization,
which can have a large effect on a model’s performance. These are some of the reasons
why the nnU-Net performed better than its predecessor as well as the other algorithms.

When looking at similar research regarding the nnU-Net and lesion segmentation it
seems to perform better than expected. Looking at McKinley et al. [7] who got a
mean dice score of 0.562, it was surprising to have the same network get such a larger
score for the same task. Some reasons for this discrepancy could be that McKinley
et al. [7] has trained and tested their model using images acquired from three different
scanners. Their datasets are also split differently, with the training set containing 50
participants and 30 in the test set, as opposed to 70 and 8, which is used for this project.
There is also no information given on if McKinley et al. [7] used the segmentations
from thresholding the resulting probability maps or if they used the hard segmentation
outputted from the model. This has an impact on performance as it decides what lesions
are kept in when ultimately testing the model. Basaral et al. [5] who proposed a pipeline
including the nnU-Net to segment new MS lesions, got an average dice score of 0.510.
The only specification mentioned about size is that lesions below 3 mm3 were excluded
from the dataset used. This score is similar to how the nnU-Net trained for this project
performed when looking at the segmentations containing lesions  20 mm3 where the
nnU-Net got a dice score of 0.494 ± 0.230 (Table 4.10).

When reviewing the results from the author of the nnU-Net, it seems that a large dice
score is to be expected [9]. It is ranked high for all the segmentation challenges men-
tioned in the paper and gets a large dice score segmenting all types of organs. Looking
specifically into the brain the nnU-Net got mean dice scores above 0.8 when segment-
ing brain tumors [90]. For MS lesion segmentation Isensee et al. [9] got a large score
though it is not clear from the article what performance method was used or what com-
petition this result is from.

68 Discussion

One thing that sets the nnU-Net aside from the other models is the fact that it had to be
trained for five folds to perform cross-validation. This could be a reason why the nnU-
Net outperforms the other models. Cross-validation can be used to better generalize
a model, and hence have an effect on the model’s performance [91]. However, for
this particular method, it seems that the nnU-Net performs cross-validation to carry out
model selection between the possible configurations to use for model training [9]. Since
the nnU-Net for this project was only trained with one configuration, this nullifies the
need for model selection and therefore acts as a reason why the cross-validation could,
in fact, not have had a large effect on the nnU-Nets performance.

The nnU-Net was the model that required the most time to train (Table 4.11), and
training five folds for 400 epochs took slightly above two days each. Originally the
nnU-Net was set to train for 1000 epochs as this is the default value recommended
by the authors. Training the nnU-Net for 1000 epochs was estimated to take around
25 days in total, and was changed both with respect to time and to train the models
for the same amount of epochs. The long training time is most likely an outcome
due to the whole process being automated, which is dissimilar from the other models.
The nicMSlesions also perform some automated pre-processing before training, which
explains why the time per epoch was larger when compared to the U-Net.

5.3 Dataset

The dataset is what sets the foundation of what the trained models learn and how it
interprets which features are important and not in each image. It also directly affects
the performance as it is the images from the dataset that is used to evaluate, even for
the models that were not trained for this specific project. The number of images, type
of images, and content of these images are all factors that have a large effect on how
the five models perform.

The main concern with this is that most models were not able to predict small lesions.
Even though not all the evaluated models were made for this task in particular, it is pos-
sible that the poor performance was due to the dataset as well. Although all the images
in the test and validation set were made sure to include small lesions, the ratio and num-
ber of these vary within each set. The images in the training set are also set to include
small lesions, but not all of them. This could contribute to the trained model not con-
sidering the small lesions favorably, and training on another dataset specifically made
to include small lesions could possibly skew this the other way. In spite of this, the
necessary steps were taken to utilize the data in the best way possible for this project.

5.4 Validation pipeline 69

Steps such as having no participants appear in multiple datasets to avoid biased mod-
els, and having different variations of small lesions in the test and validation set means
that the models were tested on a realistic variety of cases. Regardless of the fact that
the dataset was not put together in a way that promotes getting a large score on small
lesions, it is one that is representative of the MS disease and was used thereafter.

5.4 Validation pipeline

The validation pipeline was made as a way to comparatively threshold the probability
maps outputted from most of the models. It was also a way to be more comprehensive
about what lesions were included in the final segmentations. This was meant to hope-
fully also keep more small lesions in the model’s predictions. This led to some of the
probability maps being thresholded at low values, such as LPA, which was thresholded
at 0.05. Working within the field of medicine, it is possible that it would have been
more interesting to look at the segmentations that included more certain predictions.
It would also have been fascinating to use the same threshold value across the models
instead of optimizing them to better see the difference between the performances. A
similar study [92], which compares LGA, LPA, and nicMSlesions among other mod-
els, used both optimization of threshold and the model’s suggested default thresholds
when comparing. This could have been a possible approach for this project as well, but
with the focus being on small lesions, the choice of optimizing was, in the end, the one
that seemed the best for this particular case.

5.5 Performance measure

5.5.1 Specificity

When looking at the specificity in Figures 4.6c and 4.7c, it is apparent that the speci-
ficity among the models had little variation despite the fact that the other scores showed
larger differences. Since specificity describes the rate of true negatives divided by both
true negatives and false positives (Equation 2.20), it can be misleading if the range
between these numbers is large. The images used for calculating the performance mea-
sures are binary, meaning they only consist of zeros where there are no lesions and ones
where there are. Because each segmentation image consists of a much larger quantity
of zeros compared to ones, this contributes to a more skewed perception of how many
false positives appear in the model predictions, from Figures 4.1, 4.2, 4.3, 4.4 and 4.5
there are some of the colored areas that are red. This signifies the presence of false pos-
itives, and from looking at these figures, it should constitute a larger difference when

70 Discussion

compared to the actual specificity scores.

More interesting and less misleading performance measures could, in this case, be the
negative predictive value (NPV), the false discovery rate (FDR), or the false omission
rate (FOR). The NPV and FOR both indicate the rate between true negatives and false
negatives, while the FDR shows how a large portion of both true and false positives are
actually false.

5.5.2 Mean

In this thesis, the mean was chosen as a way to present the results of the different mod-
els. However, it was observed in Chapter 4 that certain models, namely LGA (Table
4.1), nicMSlesions (Table 4.5), and nnU-Net (Table 4.9), produced outliers in their pre-
dictions. The mean and standard deviation metrics are strongly impacted by outliers,
and the smaller the sample size of the dataset, the more an outlier has the potential to
affect the mean. To counteract this, the median and median absolute deviation could
have been utilized to diminish the effect of the outliers on the performance of the mod-
els [93]. Nevertheless, the decision was made to use the mean, as it is a commonly
used metric for presenting the arithmetic average of a dataset, and incorporating the
standard deviation provides insight into the variability within the results. As presented
in the previous chapter, the outliers were not numerous nor extreme compared to the
other values. Although the median was evaluated, it did not significantly alter the re-
sults. Thus, the mean and standard deviation metrics were retained, as they effectively
represent the acquired results.

Chapter 6

Conclusions and future work

During this thesis, five different models were tested for their ability to segment MS
lesions automatically. While most of the focus has been on finding how well these
models perform when looking at small lesions ( 10 mm3), performance on larger
lesions has also been evaluated. Being able to detect small lesions is an important task
to look into as they are a marker of disease activity. In addition, new multiple sclerosis
lesions, which often appear small, are also the primary outcome measure for MS drug
trials. Because the size of these lesions can make them difficult to observe, having
models that automatically segment these types of lesions can greatly aid with both the
diagnosis and treatment of MS.

The results obtained from this project indicate that small lesion segmentation is possi-
ble. Of the five models that were tested, two of them successfully predicted some of the
lesions smaller than 10 mm3, both having the U-Net architecture. The nnU-Net per-
formed the best overall, showing the significance and effect of optimizing every aspect
of the training and testing procedure. The other models LPA, LGA, and nicMSlesions,
could not predict the small lesions and performed worse than U-Net and nnU-Net for
all sizes. Reasons for this possibly include LPA and LGA being trained on images from
different scanners and not being able to change the default settings of the nicMSlesions.

The study shows that the new and innovative methods within automatic segmentations
work just as competently as the more well-established ones. It is clear that not only is
the choice of algorithm or neural network important, but also the processes performed
in advance. This can be seen with the nnU-Net, which outperforms the other models.
Going forward, the focus should shift to not only optimizing the parameters of the
model but also optimizing the work done for pre-processing. It was also discussed how
the dataset is a factor in how well a model can perform, and how performance measures
can paint the wrong picture if not looked into correctly.

72 Conclusions and future work

For future work, one of the aspects that would be interesting to look more into would
be how a dataset made to contain a larger amount of small lesions could affect the
performance of the different models. It could also be interesting to include both healthy
and sick participants to see if the models are able to distinguish between them, and at
the same time, be able to predict small lesions. Additionally, it would be important to
correlate the findings of small lesions to clinical symptoms in order to fully map the
significance of finding the lesion load also of small lesions.

There is a trade-off with this sort of work, fully automated processes often take away
from the understanding and freedom to make changes to the procedure. When merging
the fields of artificial intelligence and medicine, a good algorithm can be brushed off
because of its inaccessibility and it being incomprehensible to the user. More advanced
technology should be usable, understandable, and open to change while still being
able to perform well. Going forward, the gap between making something accessible
and making something perform well ought to close. That way, people without much
programming experience can still benefit from technological discoveries.

Appendix A

Source code

The source code for the project is publicly available on GitHub:

https://github.com/MariaMathea/Masterthesis_ML_MS

The repository contains all the relevant code created during this project. The code is
made up of both Python code (.ipynb) and MATLAB scripts (.m). All code segments
are explained with comments, and the GitHub link also contains a README file to
further elaborate its contents. The repository has the following contents and structure:

• Validation pipeline

• Testing pipeline

• U-Net

• nnU-Net utils

convert: Converts project dataset into nnU-Net format

generate_json: Generates JSON file necessary for nnU-Net

reorient_images: Makes the header of two NIfTY images the same

save_npz_to_nifti: Generates a NIftI image from .npz and .pkl files

• MATLAB scripts

counting_small_lesions: Counts the small lesions in a binary image

iteration_lesion_removal: Removes lesions from a binary image

lesion_volume: Returns mean TLV and mean number of lesions in a dataset

• Visualizations

plot_scores: Produces barplot and lineplot

plot_slices: Produce segmentation plots that show overlap and scores

https://github.com/MariaMathea/Masterthesis_ML_MS

74 Appendix: Source code

Appendix B

Small lesion visualization

B.1 nicMSlesions

Figure B.1: Figure that shows the presence of overlap in one of the subjects in the test set. The green-
colored prediction represents the segmentations made by nicMSlesions for lesions  10 mm3. The
figure displays a T1-weighted image from a single subject, viewed from three different perspectives.
The first row presents the segmentation without any zoom, while the second row provides a closer view
to highlight the overlapping region. The ground truth mask is depicted in red, and the area of overlap
is represented with orange, which is also indicated with an arrow for clarity.

76 Appendix: Small lesion visualization

B.2 U-Net

Figure B.2: Figure that shows the presence of overlap in one of the subjects in the test set. The green-
colored prediction represents the segmentations made by U-Net for lesions  10 mm3. The figure
displays a T1-weighted image from a single subject, viewed from three different perspectives. The
first row presents the segmentation without any zoom, while the second row provides a closer view to
highlight the overlapping region. The ground truth mask is depicted in red, and the area of overlap is
represented with orange, which is also indicated with an arrow for clarity.

B.3 nnU-Net

Figure B.3: Figure that shows the presence of overlap in one of the subjects in the test set. The green-
colored prediction represents the segmentations made by nnU-Net for lesions  10 mm3. The figure
displays a T1-weighted image from a single subject, viewed from three different perspectives. The
first row presents the segmentation without any zoom, while the second row provides a closer view to
highlight the overlapping region. The ground truth mask is depicted in red, and the area of overlap is
represented with orange, which is also indicated with an arrow for clarity.

Bibliography

[1] N. Ghasemi, S. Razavi, and E. Nikzad, “Multiple sclerosis: Pathogenesis, symp-
toms, diagnoses and cell-based therapy.” Cell J, vol. 19, no. 1, pp. 1–10, Apr-Jun
2017. 1.1, 2.2, 2.2.1

[2] A. J. Thompson, S. E. Baranzini, J. Geurts, B. Hemmer, and O. Ciccarelli, “Mul-
tiple sclerosis,” The Lancet, vol. 391, no. 10130, pp. 1622–1636, 2018. 1.1

[3] C. C. Hemond and R. Bakshi, “Magnetic resonance imaging in multiple sclerosis.”
Cold Spring Harb Perspect Med, vol. 8, no. 5, May 2018. 1.1, 2.2

[4] A. J. Thompson, B. L. Banwell, F. Barkhof, W. M. Carroll, T. Coetzee, G. Comi,
J. Correale, F. Fazekas, M. Filippi, M. S. Freedman, K. Fujihara, S. L. Galetta,
H. P. Hartung, L. Kappos, F. D. Lublin, R. A. Marrie, A. E. Miller, D. H. Miller,
X. Montalban, E. M. Mowry, P. S. Sorensen, M. Tintoré, A. L. Traboulsee,
M. Trojano, B. M. Uitdehaag, S. Vukusic, E. Waubant, B. G. Weinshenker, S. C.
Reingold, and J. A. Cohen, “Diagnosis of multiple sclerosis: 2017 revisions of
the mcdonald criteria,” The Lancet. Neurology, vol. 17, pp. 162–173, 2 2018. 1.1

[5] B. D. Basaran, P. M. Matthews, and W. Bai, “New lesion segmentation for mul-
tiple sclerosis brain images with imaging and lesion-aware augmentation.” Front
Neurosci, vol. 16, p. 1007453, 2022. 1.1, 2.7, 5.2.5

[6] A. Shoeibi, M. Khodatars, M. Jafari, P. Moridian, M. Rezaei, R. Alizadehsani,
F. Khozeimeh, J. M. Gorriz, J. Heras, M. Panahiazar, S. Nahavandi, and U. R.
Acharya, “Applications of deep learning techniques for automated multiple scle-
rosis detection using magnetic resonance imaging: A review,” Computers in Biol-
ogy and Medicine, vol. 136, p. 104697, 2021. 1.1, 2.7

[7] R. McKinley, R. Wepfer, F. Aschwanden, L. Grunder, R. Muri, C. Rummel,
R. Verma, C. Weisstanner, M. Reyes, A. Salmen, A. Chan, F. Wagner, and
R. Wiest, “Simultaneous lesion and brain segmentation in multiple sclerosis using
deep neural networks,” Scientific Reports, vol. 11, p. 1087, 01 2021. 1.2, 5.2.5

78 BIBLIOGRAPHY

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015, N. Navab, J. Hornegger, W. M. Wells, and
A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 234–241.
1.2, 2.5.5, 2.14

[9] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnu-net:
a self-configuring method for deep learning-based biomedical image segmenta-
tion,” Nature Methods, vol. 18, no. 2, pp. 203–211, 2021. 1.2, 2.5.7, 2.5.7, 2.5.7,
3.4.4, 5.2.5

[10] S. Kaliyugarasan and A. S. Lundervold, “fastmonai: a low-code deep learning
library for medical image analysis,” 2022. 1.2, 2.5.6, 5.2.4

[11] F. Bloch, “Nuclear induction,” Phys. Rev., vol. 70, pp. 460–474, Oct 1946. 2.1

[12] E. M. Purcell, H. C. Torrey, and R. V. Pound, “Resonance absorption by nuclear
magnetic moments in a solid,” Phys. Rev., vol. 69, pp. 37–38, Jan 1946. 2.1

[13] F. W. Smith, J. M. Hutchison, J. R. Mallard, G. Johnson, T. W. Redpath, R. D. Sel-
bie, A. Reid, and C. C. Smith, “Oesophageal carcinoma demonstrated by whole-
body nuclear magnetic resonance imaging.” British Medical Journal (Clin Res
Ed), vol. 282, no. 6263, pp. 510–512, Feb 1981. 2.1

[14] V. P. B. Grover, J. M. Tognarelli, M. M. E. Crossey, I. J. Cox, S. D. Taylor-
Robinson, and M. J. W. McPhail, “Magnetic resonance imaging: Principles and
techniques: Lessons for clinicians.” J Clin Exp Hepatol, vol. 5, no. 3, pp. 246–
255, Sep 2015. 2.1, 2.1.1

[15] L. Loued-Khenissi, O. Döll, and K. Preuschoff, “An overview of functional mag-
netic resonance imaging techniques for organizational research,” Organizational
Research Methods, vol. 22, no. 1, pp. 17–45, 2019. 2.1.1

[16] E. R. Grüner, “Compendium phys212: Medical physics and technology, version
1.0,” 2012, department of Physics and Technology, University of Bergen. 2.1.1,
2.1.1, 2.1.3, 2.1.3, 2.1.3, 2.1.4

[17] C. Westbrook and C. Kaut, MRI in practice, 2nd ed. Blackwell Science, 1998.
2.1.1, 2.1.1, 2.1.1, 2.1.2, 2.1.3, 2.1.3, 2.1.3, 2.1.3, 2.1.4, 2.1.4, 2.1.4

[18] A. Bjørnerud, “The physics of magnetic resonance imaging,” 2006, department of
Physics, University of Oslo. 2.1.2

BIBLIOGRAPHY 79

[19] N. Ida, Faraday’s Law and Induction. New York, NY: Springer New York, 2000,
pp. 629–686. 2.1.2

[20] E. K. Lee, E. J. Lee, S. Kim, and Y. S. Lee, “Importance of contrast-enhanced
fluid-attenuated inversion recovery magnetic resonance imaging in various in-
tracranial pathologic conditions.” Korean J Radiol, vol. 17, no. 1, pp. 127–141,
Jan-Feb 2016. 2.1.4

[21] J. J. M. Zwanenburg, J. Hendrikse, F. Visser, T. Takahara, and P. R. Luijten, “Fluid
attenuated inversion recovery (flair) mri at 7.0 tesla: comparison with 1.5 and 3.0
tesla.” Eur Radiol, vol. 20, no. 4, pp. 915–922, Apr 2010. 2.1.4

[22] M. Brant-Zawadzki, D. Atkinson, M. Detrick, W. G. Bradley, and G. Scidmore,
“Fluid-attenuated inversion recovery (flair) for assessment of cerebral infarction,”
Stroke, vol. 27, no. 7, pp. 1187–1191, 1996. 2.1.4

[23] D. Preston, “Magnetic resonance imaging (mri) of the brain and spine:
Basics,” Apr 2016, accessed 18.05.23. [Online]. Available: https://case.edu/med/
neurology/NR/MRI%20Basics.htm 2.4

[24] A. Thompson, B. Banwell, F. Barkhof, W. Carroll, T. Coetzee, G. Comi, J. Cor-
reale, F. Fazekas, M. Filippi, M. Freedman, K. Fujihara, S. Galetta, H.-P. Hartung,
L. Kappos, F. Lublin, R. Marrie, A. Miller, D. Miller, X. Montalban, and J. Co-
hen, “Diagnosis of multiple sclerosis: 2017 revisions of the mcdonald criteria,”
The Lancet Neurology, vol. 17, 12 2017. 2.2.2, 3.1

[25] A. Rovira, M. Wattjes, M. Tintorè, C. Tur, T. Yousry, M. P. Sormani, N. De Ste-
fano, M. Filippi, C. Auger, M. Rocca, F. Barkhof, F. Fazekas, L. Kappos, C. Pol-
man, D. Miller, X. Montalban, and J. Frederiksen, “Evidence-based guidelines:
Magnims consensus guidelines on the use of mri in multiple sclerosis - clinical
implementation in the diagnostic process,” Nature reviews. Neurology, vol. 11, 07
2015. 2.2.2

[26] M. Filippi, P. Preziosa, B. L. Banwell, F. Barkhof, O. Ciccarelli, N. De Stefano,
J. J. G. Geurts, F. Paul, D. S. Reich, A. T. Toosy, A. Traboulsee, M. P. Wattjes,
T. A. Yousry, A. Gass, C. Lubetzki, B. G. Weinshenker, and M. A. Rocca, “As-
sessment of lesions on magnetic resonance imaging in multiple sclerosis: practical
guidelines,” Brain, vol. 142, no. 7, pp. 1858–1875, 06 2019. 2.2.2

[27] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical learning:
data mining, inference, and prediction. springer series in statistics,” Springer New
York, 2009. 2.3

https://case.edu/med/neurology/NR/MRI%20Basics.htm
https://case.edu/med/neurology/NR/MRI%20Basics.htm

80 BIBLIOGRAPHY

[28] R. C. Deo, “Machine learning in medicine,” Circulation, vol. 132, no. 20, pp.
1920–1930, 2015. 2.3

[29] R. Sathya and A. Abraham, “Comparison of supervised and unsupervised learning
algorithms for pattern classification,” International Journal of Advanced Research
in Artificial Intelligence, vol. 2, 02 2013. 2.3

[30] I. Despotovi, B. Goossens, and W. Philips, “Mri segmentation of the human brain:
challenges, methods, and applications.” Comput Math Methods Med, vol. 2015,
p. 450341, 2015. 2.3.1, 2.3.1

[31] A. Di Ieva, C. Russo, S. Liu, A. Jian, M. Bai, Y. Qian, and J. Magnussen, “Appli-
cation of deep learning for automatic segmentation of brain tumors on magnetic
resonance imaging: a heuristic approach in the clinical scenario,” Neuroradiology,
vol. 63, 08 2021. 2.7

[32] S. D. Olabarriaga and A. W. Smeulders, “Interaction in the segmentation of med-
ical images: a survey.” Med Image Anal, vol. 5, no. 2, pp. 127–142, Jun 2001.
2.3.1

[33] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. 2.3.2

[34] H. E. Kim, A. Cosa-Linan, N. Santhanam, M. Jannesari, M. E. Maros, and
T. Ganslandt, “Transfer learning for medical image classification: a literature re-
view,” BMC Medical Imaging, vol. 22, no. 1, p. 69, 2022. 2.3.2

[35] J. A. M. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine:
a practical introduction,” BMC Medical Research Methodology, vol. 19, no. 1,
p. 64, 2019. 2.3.3

[36] J. M. Kernbach and V. E. Staartjes, “Foundations of machine learning-based clin-
ical prediction modeling: Part ii—generalization and overfitting,” in Machine
Learning in Clinical Neuroscience, V. E. Staartjes, L. Regli, and C. Serra, Eds.
Cham: Springer International Publishing, 2022, pp. 15–21. 2.3.3

[37] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA,
USA: MIT Press, 2016. 2.3.3

[38] A. N. Henderson, S. K. Kauwe, and T. D. Sparks, “Benchmark datasets incorpo-
rating diverse tasks, sample sizes, material systems, and data heterogeneity for
materials informatics,” Data in Brief, vol. 37, p. 107262, 2021. 2.3.3

BIBLIOGRAPHY 81

[39] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, “A
review of medical image data augmentation techniques for deep learning applica-
tions,” Journal of Medical Imaging and Radiation Oncology, vol. 65, no. 5, pp.
545–563, 2021. 2.3.4

[40] T. Oommen, L. G. Baise, and R. M. Vogel, “Sampling bias and class imbalance
in maximum-likelihood logistic regression,” Mathematical Geosciences, vol. 43,
no. 1, pp. 99–120, 2011. 2.3.5

[41] E. Boateng and F. Oduro, “Predicting microfinance credit default: A study of
nsoatreman rural bank ghana,” Advances in Mathematics and Computer Science,
no. 26, pp. 1–9, 2018. 2.3.5

[42] E. Boateng and D. Abaye, “A review of the logistic regression model with em-
phasis on medical research,” Data analysis and Information Processing, no. 7,
pp. 190–207, 2019. 2.3.5, 2.3.5

[43] “What is deep learning?: How it works, techniques, applications,” May 2017,
accessed: 05.05.23 from https://se.mathworks.com/discovery/deep-learning.html.
[Online]. Available: https://se.mathworks.com/discovery/deep-learning.html 2.4

[44] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,
J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan, “Review of deep
learning: concepts, cnn architectures, challenges, applications, future directions,”
Journal of Big Data, vol. 8, no. 1, p. 53, 2021. 2.4.1, 2.5.5

[45] H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen, “Convolutional
neural networks for medical image analysis: State-of-the-art, comparisons, im-
provement and perspectives,” Neurocomputing, vol. 444, pp. 92–110, 2021. 2.4.1

[46] J.-G. Lee, S. Jun, Y.-W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim, “Deep
learning in medical imaging: General overview,” Korean Journal of Radiology,
vol. 18, no. 4, p. 570, May 2017. 2.4.1

[47] S. Balaji, “Binary image classifier cnn using tensorflow,” Aug 2020,
accessed: 01.02.23. [Online]. Available: https://medium.com/techiepedia/
binary-image-classifier-cnn-using-tensorflow-a3f5d6746697 2.10

[48] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal
of machine learning research, vol. 15, no. 1, pp. 1929–1958, 2014. 2.4.1

https://se.mathworks.com/discovery/deep-learning.html
https://medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-a3f5d6746697
https://medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-a3f5d6746697

82 BIBLIOGRAPHY

[49] S. Afaq and S. Rao, “Significance of epochs on training a neural network,” Inter-
national Journal of Scientific & Technology Research, vol. 9, pp. 485–488, 2020.
2.4.2

[50] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of loss functions
in machine learning,” Annals of Data Science, vol. 9, no. 2, pp. 187–212, 2022.
2.4.3

[51] Y. Tian, D. Su, S. Lauria, and X. Liu, “Recent advances on loss functions in deep
learning for computer vision,” Neurocomputing, vol. 497, pp. 129–158, 2022.
2.4.3

[52] R. Zaheer and H. Shaziya, “A study of the optimization algorithms in deep learn-
ing,” in 2019 Third International Conference on Inventive Systems and Control
(ICISC), 2019, pp. 536–539. 2.4.4

[53] D. Wilson and T. Martinez, “The need for small learning rates on large problems,”
in IJCNN’01. International Joint Conference on Neural Networks. Proceedings
(Cat. No.01CH37222), vol. 1, 2001, pp. 115–119 vol.1. 2.4.5

[54] “Spm12 software - statistical parametric mapping,” Jan 2020, accessed: 01.09.22.
[Online]. Available: https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 2.5.1

[55] P. Schmidt, “An automated tool for detection of flair-hyperintense white-matter
lesions in multiple sclerosis,” NeuroImage, vol. 59, pp. 3774–3783, 2 2012. 2.5.1,
2.5.2, 2.5.2, 2.5.2, 2.5.2, 2.13, 2.5.2, 2.5.3, 5.2.1

[56] ——, “Bayesian inference for structured additive regression models for large-
scale problems with applications to medical imaging,” Ph.D. dissertation,
Ludwig-Maximilians-Universität München, January 2017. 2.5.1, 2.5.3, 2.5.3,
2.5.3, 2.5.3, 5.2.2

[57] M. Á. González Ballester, A. P. Zisserman, and M. Brady, “Estimation of the
partial volume effect in mri,” Medical Image Analysis, vol. 6, no. 4, pp. 389–405,
2002. 2.5.2

[58] A. Evans, D. Collins, S. Mills, E. Brown, R. Kelly, and T. Peters, “3d statisti-
cal neuroanatomical models from 305 mri volumes,” in 1993 IEEE Conference
Record Nuclear Science Symposium and Medical Imaging Conference, 1993, pp.
1813–1817 vol.3. 2.5.3

[59] S. Valverde, M. Salem, M. Cabezas, D. Pareto, J. C. Vilanova, L. Ramió-Torrentà,
Àlex Rovira, J. Salvi, A. Oliver, and X. Lladó, “One-shot domain adaptation in

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

BIBLIOGRAPHY 83

multiple sclerosis lesion segmentation using convolutional neural networks,” Neu-
roImage: Clinical, p. 101638, 2018. 2.5.4

[60] M. L. Gawne-Cain, S. Webb, P. Tofts, and D. H. Miller, “Lesion volume measure-
ment in multiple sclerosis: How important is accurate repositioning?” Journal of
Magnetic Resonance Imaging, vol. 6, no. 5, pp. 705–713, 1996. 2.5.4

[61] L. Nanni, M. Paci, S. Brahnam, and A. Lumini, “Comparison of different image
data augmentation approaches.” J Imaging, vol. 7, no. 12, Nov 2021. 2.5.4

[62] S. Valverde, M. Cabezas, E. Roura, S. González-Villà, D. Pareto, J. C. Vilanova,
L. Ramió-Torrentà, À. Rovira, A. Oliver, and X. Lladó, “Improving automated
multiple sclerosis lesion segmentation with a cascaded 3d convolutional neural
network approach,” NeuroImage, vol. 155, pp. 159–168, 2017. 2.5.4, 2.5.4, 2.5.4,
2.5.4, 2.5.4

[63] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann ma-
chines,” in Proceedings of the 27th international conference on machine learning
(ICML-10), 2010, pp. 807–814. 2.5.4

[64] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” ArXiv, vol.
abs/1212.5701, 2012. 2.5.4

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ser.
ICML’15. JMLR.org, 2015, p. 448–456. 2.5.4

[66] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net:
Learning dense volumetric segmentation from sparse annotation,” in Medical Im-
age Computing and Computer-Assisted Intervention – MICCAI 2016, S. Ourselin,
L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, Eds. Cham: Springer In-
ternational Publishing, 2016, pp. 424–432. 2.5.5

[67] F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F. Jaeger, S. Kohl, J. Wasserthal,
G. Koehler, T. Norajitra, S. Wirkert, and K. H. Maier-Hein, “nnu-net: Self-
adapting framework for u-net-based medical image segmentation,” 2018. 2.5.7

[68] A. A. Taha and A. Hanbury, “Metrics for evaluating 3d medical image segmenta-
tion: analysis, selection, and tool.” BMC Med Imaging, vol. 15, p. 29, Aug 2015.
2.6

84 BIBLIOGRAPHY

[69] D. Müller, I. Soto-Rey, and F. Kramer, “Towards a guideline for evaluation metrics
in medical image segmentation.” BMC Res Notes, vol. 15, no. 1, p. 210, Jun 2022.
2.6

[70] L. R. Dice, “Measures of the amount of ecologic association between species,”
Ecology, vol. 26, no. 3, pp. 297–302, 1945. 2.6.1

[71] A. Zijdenbos, B. Dawant, R. Margolin, and A. Palmer, “Morphometric analysis
of white matter lesions in mr images: method and validation,” IEEE Transactions
on Medical Imaging, vol. 13, no. 4, pp. 716–724, 1994. 2.6.1

[72] K. M. Ting, Sensitivity and Specificity. Boston, MA: Springer US, 2010, pp.
901–902. 2.6.2

[73] R. Parikh, A. Mathai, S. Parikh, G. Chandra Sekhar, and R. Thomas, “Understand-
ing and using sensitivity, specificity and predictive values.” Indian J Ophthalmol,
vol. 56, no. 1, pp. 45–50, Jan-Feb 2008. 2.6.2

[74] N. Aslam, I. U. Khan, A. Bashamakh, F. A. Alghool, M. Aboulnour, N. M. Al-
suwayan, R. K. Alturaif, S. Brahimi, S. S. Aljameel, and K. Al Ghamdi, “Multiple
sclerosis diagnosis using machine learning and deep learning: Challenges and op-
portunities,” Sensors, vol. 22, no. 20, 2022. 2.7

[75] F. Moazami, A. Lefevre-Utile, C. Papaloukas, and V. Soumelis, “Machine learn-
ing approaches in study of multiple sclerosis disease through magnetic resonance
images,” Frontiers in Immunology, vol. 12, 2021. 2.7

[76] P. Ashtari, B. Barile, S. Van Huffel, and D. Sappey-Marinier, “New multiple scle-
rosis lesion segmentation and detection using pre-activation u-net,” Frontiers in
Neuroscience, vol. 16, 2022. 2.7, 5.2.4

[77] M. Battaglini, F. Rossi, R. A. Grove, M. L. Stromillo, B. Whitcher, P. M.
Matthews, and N. De Stefano, “Automated identification of brain new lesions
in multiple sclerosis using subtraction images,” Journal of Magnetic Resonance
Imaging, vol. 39, no. 6, pp. 1543–1549, 2014. 2.7

[78] E. Skorve, A. J. Lundervold, Ø. Torkildsen, F. Riemer, R. Grüner, and K.-M.
Myhr, “Brief international cognitive assessment for ms (bicams) and global brain
volumes in early stages of ms – a longitudinal correlation study,” Multiple Sclero-
sis and Related Disorders, vol. 69, p. 104398, 2023. 3.1

BIBLIOGRAPHY 85

[79] Neubias, “Connected component labeling,” 2023, accessed: 01.05.23. [Online].
Available: https://neubias.github.io/training-resources/connected_components/
index.html 3.1

[80] S. Kaliyugarasan and A. S. Lundervold, “Binary semantic segmentation,” 2022,
accessed: 02.11.22. [Online]. Available: https://fastmonai.no/tutorial_binary_
segmentation.html 3.4.3, 5.2.4

[81] European Parliament and Council of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council. [Online]. Available:
https://data.europa.eu/eli/reg/2016/679/oj 5.2.2

[82] J. M. Waymont, C. Petsa, C. J. McNeil, A. D. Murray, and G. D. Waiter, “Valida-
tion and comparison of two automated methods for quantifying brain white matter
hyperintensities of presumed vascular origin,” Journal of International Medical
Research, vol. 48, no. 2, p. 0300060519880053, 2020, pMID: 31612759. 5.2.2

[83] X. Jiang and C. Xu, “Deep learning and machine learning with grid search to
predict later occurrence of breast cancer metastasis using clinical data,” Journal
of Clinical Medicine, vol. 11, no. 19, 2022. 5.2.4

[84] J. Ma, J. Chen, M. Ng, R. Huang, Y. Li, C. Li, X. Yang, and A. L. Martel, “Loss
odyssey in medical image segmentation,” Medical Image Analysis, vol. 71, p.
102035, 2021. 5.2.4

[85] R. Zhao, B. Qian, X. Zhang, Y. Li, R. Wei, Y. Liu, and Y. Pan, “Rethinking dice
loss for medical image segmentation,” in 2020 IEEE International Conference on
Data Mining (ICDM), 2020, pp. 851–860. 5.2.4

[86] S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020 IEEE
Conference on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB), 2020, pp. 1–7. 5.2.4

[87] L. Wright and N. Demeure, “Ranger21: a synergistic deep learning optimizer,”
CoRR, vol. abs/2106.13731, 2021. 5.2.4

[88] R. M. Schmidt, F. Schneider, and P. Hennig, “Descending through a crowded
valley - benchmarking deep learning optimizers,” CoRR, vol. abs/2007.01547,
2020. 5.2.4

[89] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep learning,” CoRR,
vol. abs/2106.11342, 2021. 5.2.4

https://neubias.github.io/training-resources/connected_components/index.html
https://neubias.github.io/training-resources/connected_components/index.html
https://fastmonai.no/tutorial_binary_segmentation.html
https://fastmonai.no/tutorial_binary_segmentation.html
https://data.europa.eu/eli/reg/2016/679/oj

86 BIBLIOGRAPHY

[90] F. Isensee, P. F. Jäger, P. M. Full, P. Vollmuth, and K. H. Maier-Hein, “nnu-net
for brain tumor segmentation,” in Brainlesion: Glioma, Multiple Sclerosis, Stroke
and Traumatic Brain Injuries, A. Crimi and S. Bakas, Eds. Cham: Springer
International Publishing, 2021, pp. 118–132. 5.2.5

[91] D. Berrar, “Cross-validation,” in Encyclopedia of Bioinformatics and Computa-
tional Biology, S. Ranganathan, M. Gribskov, K. Nakai, and C. Schönbach, Eds.
Oxford: Academic Press, 2019, pp. 542–545. 5.2.5

[92] M. Weeda, I. Brouwer, M. Vos, M. Vries, F. Barkhof, P. Pouwels, and H. Vrenken,
“Comparing lesion segmentation methods in multiple sclerosis: Input from one
manually delineated subject is sufficient for accurate lesion segmentation,” Neu-
roImage: Clinical, vol. 24, p. 102074, 11 2019. 5.4

[93] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do
not use standard deviation around the mean, use absolute deviation around the
median,” Journal of Experimental Social Psychology, vol. 49, no. 4, pp. 764–766,
2013. 5.5.2

	Scientific environment
	Acknowledgements
	Abstract
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aims

	Background
	Magnetic resonance imaging
	MRI basics
	MR signal generation
	Relaxation
	Image formation

	Multiple sclerosis
	Subtypes of multiple sclerosis
	Multiple sclerosis diagnosis

	Machine learning
	Image segmentation
	Transfer learning
	Dataset splitting
	Data augmentation
	Logistic regression model

	Deep learning
	Convolutional neural networks
	Epochs
	Loss functions
	Optimizers
	Learning rate

	Algorithms and neural networks
	Lesion segmentation tool
	Lesions growth algorithm
	Lesion prediction algorithm
	NicMSlesions
	U-Net
	fastMONAI
	nnU-Net

	Performance evaluation
	Dice score
	Sensitivity and specificity

	Recent advances

	Methods
	Study population
	MRI acquisition
	Image processing pipelines
	Data splitting
	Localization of small lesions

	Obtaining lesion segmentations
	Lesion segmentation tool
	NicMSlesions
	U-Net employed trough fastMONAI
	nnU-Net

	Postprocessing
	Validation pipeline
	Extraction of small lesion predictions

	Evaluation
	Metrics
	Visualizations

	Results
	Lesion growth algorithm
	Segmentation of all lesions
	Segmentation of small lesions

	Lesion prediction algorithm
	Segmentation of all lesions
	Segmentation of small lesions

	NicMSlesions
	Segmentation of all lesions
	Segmentation of small lesions

	U-Net employed through fastMONAI
	Segmentation of all lesions
	Segmentation of small lesions

	nnU-Net
	Segmentation of all lesions
	Segmentation of small lesions

	All model segmentations
	Segmentation of all lesions
	Segmentation of small lesions
	U-Net optimization
	Training duration

	Discussion
	Small lesions
	Model comparison
	Lesion growth algortihm
	Lesion prediction algorithm
	nicMSlesions
	U-Net
	nnU-Net

	Dataset
	Validation pipeline
	Performance measure
	Specificity
	Mean

	Conclusions and future work
	Appendix: Source code
	Appendix: Small lesion visualization
	nicMSlesions
	U-Net
	nnU-Net

