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Abstract

Purpose: "Looping Star" is a silent magnetic resonance imaging (MRI) sequence that
can be used for functional MRI (fMRI) examinations of patients using auditory stimuli
or with issues with auditory perception such as auditory verbal hallucinations in pa-
tients with schizophrenia. However, the 3D radial k-space sampling of this sequence
results in reduced image quality. In recent years, deep learning models for improved
image reconstruction have emerged. The purpose of this master’s thesis is to examine
the usability of deep learning image reconstruction methods for the Looping Star se-
quence with the goal of increasing image quality.

Methods: In this project, a resting-state fMRI (rs-fMRI) dataset from the Human Con-
nectome Project (HCP) was used as a basis for creating a dataset suitable for training
deep neural networks. The coordinates of an acquired Looping Star k-space trajec-
tory were used to downsample the fully sampled k-space of both an unprocessed and a
processed HCP dataset. The downsampled k-space samples were reconstructed using a
non-Cartesian reconstruction method to get pairs of downsampled Looping Star images
and ground truth HCP images. The unprocessed dataset was used to train a 2D-UNet
and a 3D-UNet deep learning model for image reconstruction. The two models were
compared, and the best of these was further trained on the processed dataset. The per-
formance of the final model was then evaluated using standard image quality metrics
as well as through an rs-fMRI analysis.

Results: The 3D-UNet outperforms the 2D-UNet for this image reconstruction task
and significantly reduces the error between the network input and the ground truth.
The 3D-UNet achieves a 97% reduction of the mean square error between the Looping
Star input and HCP ground truth on the processed dataset. The 3D-UNet also manages
to preserve enough of the voxel variations that rs-fMRI analysis shows correlated activ-
ity in the posterior cingulate cortex (PCC) while reducing noise in the voxel time-series.

Conclusion: In this project, a dataset consisting of downsampled Looping Star images
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was created, and artifacts resulting from the reconstruction of these images were suc-
cessfully removed using a deep learning reconstruction approach. The network com-
parisons suggested that using 3D convolutions is more valuable than a deeper network
of 2D convolutions for images with global artifacts. Furthermore, it has been demon-
strated that the trained neural network retains some BOLD signal variations despite the
pertruding image artifacts of the Looping Star images.
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Chapter 1

Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI), and especially functional MRI (fMRI), are sub-
ject to loud acoustic noise inside the scanners. The noise occurs due to rapid switching
of the encoding gradients in the imaging system that induce high-frequency vibrations
in the scanner hardware that fall within the acoustic spectrum [1]. The acoustic noise
can exceed 100 dB in some imaging sequences, even reaching close to the human au-
ditory pain level [2]. The loud acoustic noise can be unpleasant for many patients or
research participants, and it will limit the possibility of imaging certain patient groups,
such as small children, psychiatric patients or patients hypersensitive to sound [2]. The
impact of the noise can be even higher for fMRI. The acoustic noise interferes with
the auditory functional experiments by producing a direct cortical activation, making it
hard to disentangle activity patterns from the stimuli and the acoustic scanner noise [3]
[1]. It also interferes with non-auditory experiments by increasing the demands on at-
tention systems, which can be even worse for patients with neurodegenerative diseases
or psychiatric diseases who can have complications concerning attention to stimuli [3].
It has also been suggested that acoustic noise affects resting-state networks [2].

Different approaches to reducing acoustic noise have been proposed, such as active
noise canceling [4] and using scanning sequences that produce less acoustic noise [5].
A recently developed imaging sequence for silent imaging named "Looping Star" (LS)
has been demonstrated for T2*-imaging and T2* BOLD fMRI [6]. This sequence re-
duces the acoustic noise generated by the scanner by using smaller changes in gradient
amplitudes between RF-pulses. The Looping Star sequence achieves a 31 dB reduction
in sound level, which represents a 98% reduction in sound pressure compared with the
echo-planar imaging (EPI) sequence most commonly used for fMRI. The way Loop-
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ing Star uses the gradient coils results in a radial, non-Cartesian sampling that records
fewer data points in k-space, resulting in lower image quality, reduced blood oxygena-
tion level-dependent (BOLD) activation and larger variation between subjects [2]. With
increased image quality, sequences like Looping Star can be a powerful tool in the re-
search and diagnosis of neurodegenerative and psychiatric diseases, especially diseases
whose symptoms include issues with auditory perception such as schizophrenia.

The emergence of AI and machine learning in recent years has also led to the incorpo-
ration of such algorithms in many areas of medicine, including image reconstruction.
The large providers of MRI scanning equipment are now introducing new machine
learning-based reconstruction methods for their scanners, such as Siemens’ Deep Re-
solve [7], Phillips’ SmartSpeed [8] and AIR Recon DL from GE Healthcare [9]. For
newer, and less common sequences like Looping Star, there are no established AI tools
available for improved reconstructions, and there has been done little research on the
effect machine learning has on the BOLD signal in fMRI.

1.2 Objective

The purpose of this thesis is to explore the potential of leveraging deep learning recon-
struction in the Looping Star sequence, which has also been proposed as future work
by Wiesinger, Menini, and Solana [6] in the original Looping Star paper. The network
implementation in this project is a 2D network inspired by the one used by Han et al.
[10] for the reconstruction of radially undersampled MRI. This is also extended to a 3D
network to match the shape of the Looping Star k-space. The main objectives of this
thesis are:

(i) Prepare a trainable dataset by emulating the Looping Star acquisition on an fMRI
dataset to create image pairs of inputs and ground truth labels.

(ii) Train different deep neural networks for image reconstruction.

(iii) Compare the performance of the networks trained in (ii).

(iv) Evaluate the network performance on fMRI and its ability to preserve BOLD
signal variation.



Chapter 2

Background

2.1 MRI - Magnetic resonance imaging

Magnetic Resonance Imaging is one of the most advanced medical imaging tech-
niques. MRI is based on the physics phenomenon known as nuclear magnetic res-
onance (NMR). In this section, the basic principles of MRI are described alongside
principles of image reconstruction, functional MRI and the MRI sequence in focus in
this project, Looping Star.

2.1.1 MRI physics

Nuclear spin

MRI is based on the property of nuclei that atoms with an odd number of protons and
neutrons in the nuclei have a net nonzero nuclear spin [11]. This gives the nuclei a
magnetic property. Hydrogen (1H) is such a nucleus, with only one proton in the nu-
cleus it has a net nonzero spin. MRI utilizes this and the fact that human body tissue
contains a lot of water (up to 60 %), which consists of two hydrogen atoms. When
no external electromagnetic forces affect the protons in water, all spins are randomly
oriented at room temperature due to thermal motion. However, when an external mag-
netic field, B0 is applied, all proton spins are aligned with the direction of the magnetic
field. The protons can either align in a parallel or anti-parallel fashion [11]. Of these
two, the parallel orientation is a slightly lower energy state, and therefore a larger num-
ber of protons will align parallel than anti-parallel. This results in a net magnetization
in the sample (tissue) that is non-zero. This net magnetization vector is called M and,
considering a coordinate system with its z-axis along B0, this net magnetization is ap-
proximately entirely in the z-direction at rest, making M = Mz.
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Even under the influence of the strong external magnetic field B0, the spin of the hy-
drogen proton experiences a small precession around the direction of B0, giving each
spin a small magnetic component in the x-y direction (Mxy). The angular frequency
of this precession, ω0, depends on the magnitude of the magnetic field B0 and can be
explained by this equation [12]:

ω0 = γB0 (2.1)

The gyromagnetic ratio, γ , is a constant that is unique for each nuclear isotope possess-
ing a spin [12]. The angular frequency ω0 is called the Larmour frequency and is an
important concept in MRI. The precession of individual spins around the B0-field will
not be coherent with other spins, causing the Mxy components of the spins to cancel
each other out [12].

Bloch equation and excitation

To get a signal from the proton spins in MRI, it is necessary to change the direction
of the net magnetization vector M away from its equilibrium orientation parallel to B0.
In addition, M needs to oscillate in time in order to produce a signal in the form of an
induced current in a coil [12]. The behavior of the magnetization vector as a result of
magnetic interactions with an external magnetic field is described by the Bloch equation
[12]:

dM
dt

= γMxB (2.2)

Where B is the total experienced magnetic field in all directions on M. To get a signal,
the individual spin precession around the B0-field is taken advantage of. This is done by
applying a second magnetic field B1, that oscillates and is applied perpendicular to B0.
If the B1 field is applied with an oscillating frequency equal to the Larmour frequency,
the effective field on M is only B1 as B0 will be canceled out by the oscillations of the
B1-field [12]. The resulting movement of the M-vector can therefore be described by
the altered Bloch equation:

dM
dt

= γMxB1 (2.3)

Due to its oscillation, the B1-field is referred to as a radio frequency field (RF-field),
and when applied in a pulse, it is called a radio frequency (RF) - pulse. The effect of
applying an oscillating B1-field with the same frequency as the Larmour frequency is
a resonance effect. The precession of M around B0 in the z-direction will increase its
angle to the z-axis, and M gets a component in the xy-plane that is oscillating with
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the same angular frequency as the RF-pulse. The increased precession of the M-vector
results in reduced magnitude of M in the Mz direction and increased magnitude in the
Mxy direction [12]. This process of changing the direction of the M-vector to the xy-
plane is referred to as excitation. The strength of the applied B1-field and duration of
the applied RF-pulse decides the strength of the excitation. The strength of the B1-field
decides the speed at which the M-vector is excited from the z to xy direction. This
angular velocity is given by equation 2.4 [12]:

ω1 =−γB1 (2.4)

If the pulse is applied for a time tp, the angle of rotation is given by equation 2.5:

α = ω1tp (2.5)

This angle is called the "flip angle" of the RF-pulse [12].

Relaxation

As equation 2.5 describes, the magnetization vector M will be rotated an angle α away
from the direction of B0 when the RF-pulse is turned on. When the RF-pulse is sub-
sequently turned off, a process called relaxation starts, where the magnetization vector
precesses towards the equilibrium state. The total magnetization vector continues its
precession around the direction of the B0-field while the angle of the rotation (α) di-
minishes quickly. The macroscopic result of the relaxation is that the Mxy component
of M gradually disappears and Mz gradually recovers [12].

During the relaxation process, the MRI signal can be observed and measured. This
is due to the oscillating nature of the Mxy. Since Mxy is rotating around the z-axis it is
possible to detect this magnetic component through the induction of a current in a coil
placed in the oscillating field [12]. The signal detected from Mxy is called the Free In-
duction decay (FID). Mz is not directly detectable as it does not rotate and hence will
not induce a current [12]. In MRI, tissue contrast is achieved from two main types
of biological contrast that occur due to the relaxation process. These are T1 and T2
relaxation.

T1 relaxation

As described, the macroscopic effect of the relaxation results in a gradual recovery
of the longitudinal component of the magnetization vector, Mz. The longitudinal re-
laxation process is referred to as T1 relaxation [12]. T1 relaxation describes the rate
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of recovery of Mz through a time constant called the T1 relaxation time. The inverse
of the relaxation time, 1/T 1 is referred to as the relaxation rate, R1 [12]. The relax-
ation of the longitudinal magnetization component following an RF-pulse is explained
in equation 2.6:

Mz(t) = M0

[
1− exp

(
−t
T1

)]
+Mz(0)exp

(
−t
T1

)
(2.6)

As equation 2.6 shows, the time constant T1 describes the time it takes for the longitu-
dinal magnetization to regain approximately 63 % of its final value [13] (Fig 2.1).

Figure 2.1: Equation 2.6 for T1 relaxation (left) and 2.7 for T2 relaxation (right) for CSF, gray matter
and fat. CSF = Cerebrospinal Fluid

T2 relaxation

As well as recovery of the longitudinal component of the magnetization, the relax-
ation also leads to decay of the transversal magnetization Mxy. This decay is termed
T2 relaxation and, as with T1 relaxation, it is described by a time constant T2 and a
corresponding relaxation rate 1/T 2 = R2 [12]. The relaxation on the transversal mag-
netization component following an RF-pulse is explained in equation 2.7:

Mxy(t) = Mxy(0)exp
(
−t
T2

)
(2.7)

As equation 2.7 shows, the time constant T1 describes the time it takes for the transver-
sal magnetization to decay to approximately 37 % of its initial value [13]. One might
expect that the T1 and T2 relaxations are directly related such that Mz is recovered as
much as Mxy decay, but this is only the case in pure water [12] (Fig 2.1). In tissue
and other medium, there exist fluctuating magnetic field variations that occur because
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the proton spins are influenced by small magnetic fields from neighboring nuclei [13].
These fluctuations affect the spins, giving rise to variations in the Larmour frequency
of individual protons [13]. This will make the spins in a voxel de-phase, leading to a
more rapid decay of the transversal magnetization. This results in a T2 that is always
shorter than T1 in vivo [12].

Another cause of loss of phase coherence is bulk inhomogeneity in the B0 magnetic
field. This kind of inhomogeneity is always present, but unlike the random processes
of T2 relaxation, the de-phasing that occurs as a result of this is caused by a constant and
is potentially reversible [13]. The actual T2 relaxation is therefore commonly referred
to as T2* to include the bulk inhomogeneity effect [12]. This is described as such:

1
T 2∗

=
1

T 2
+ γΛB0 (2.8)

Here ΛB0 should be interpreted as the bulk inhomogeneity within a single voxel. An
important component of ΛB0 is generated by inhomogeneities due to susceptibility
differences between different tissue types and at interfaces between tissue and air [12].

2.1.2 Image formation

Several pieces of hardware components are used to separate and localize the MR signal
in three dimensions. In this section, an overview of these and their uses are presented.

MRI equipment

The part of the MR system that generates and receives the signal consists of a set of
magnets with different purposes. There are the main magnet coils, three gradient coils
and an integral RF-transmitter coil [13]. The main magnet coils are used to generate the
strong B0 magnetic field that primes the proton spins by directing them parallel or an-
tiparallel to itself. The three gradient coils are oriented such that each represents one of
the three orthogonal directions (x, y, and z) and they lie within the main magnet. Each
of these coils can generate a magnetic field with a strength that changes with position
along the orthogonal direction they represent [13]. These coils can then superimpose a
magnetic field on top of B0 that results in a main magnetic field that varies along the
direction of the applied gradient field [13]. The gradient coils are then used to spatially
encode the MR signal. The RF coils are mounted inside the gradient coils and can be
thought of as the "antenna" of the MRI system [13]. The RF-coils are used to gener-
ate the B1 field that transfers energy to the tissue, and later it is used to measure the
induced signal from the relaxation process.
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Slice selection

To spatially localize the signal it is necessary to excite only parts of the imaging object
at a time. To achieve this, the RF-pulse needs to be selective such that it only affects
protons in a defined plane in the object [12]. Applying a gradient field along one of the
directions (x, y, and z) can alter the main magnetic field such that its strength changes
with position [13]. Thus, considering equation 2.1, the Larmour frequency of protons
in different locations becomes different. It is then possible to excite only one slice as
only one slice will have a Larmour frequency corresponding with the RF-pulse.

Frequency and phase encoding

The remaining directional gradients after slice selection is used to separate the intra-
slice signal after the RF-pulse. Typically, the z-gradient will be used for slice selection
[12]. X and y gradients will then be used for processes called frequency encoding and
phase encoding. Frequency encoding is the application of a gradient in the x direction
following the RF-pulse. This applied gradient causes the spins in the slice to rotate at
different frequencies depending on their position along the gradient [13]. The differ-
ent frequencies permit differentiation of the signal along the plane of the gradient. The
frequency encoding gradient is applied for the entire duration of the readout, which is
important as the spins need to experience a different effective magnetic field strength
to precess at different speeds during the readout.

Phase encoding utilizes the final gradient in the y-direction to make the signal differen-
tiable in the y-direction. The phase encoding gradient is applied following an RF-pulse,
but is then turned off before the signal is recorded. All the spins in the phase encoding
plane are then precessing at the same frequency during readout. During the period the
gradient was applied, the spins would have been precessing with different frequencies
[13]. This means that when the gradient is turned off, spins along the phase encoding
direction will be out of phase with each other and a phase shift happens along the gra-
dient [12].

These two encoding steps are important to get the proper encoding of the MRI sig-
nal such that it can be properly sampled. MRI images are sampled in the frequency
domain in a matrix called the k-space. To understand how this works one first needs to
understand the Fourier transform, which is an important mathematical concept when it
comes to image reconstruction in MRI.
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Fourier transform

Fourier theory states that any function can be represented as a sum of sinusoid waves.
This gave rise to the Fourier transform. The Fourier transform is a mathematical opera-
tion that transforms a function f (t) in the temporal/spatial domain to a representation of
that function in the frequency domain, F(ω). F(ω) contains the amplitude and phase
of the frequency component ω in f (t). In 1D, the Fourier transform is computed as
such [14]:

F(ω) =
∫

f (t)e−i2πωt dt (2.9)

Equation 2.9 shows that F(ω) is computed by taking the integral of the function f (t)
multiplied by the complex exponential representing the sinusoid with frequency ω .
This is equivalent to finding the area under the curve of the product of function f (t)
and the sinusoid. The information in F(ω) is complex-valued, where the combination
of the real and imaginary components gives an understanding of the amplitude and
phase of the sinusoid at frequency ω . The Fourier transform is an inverse operation
[14], where the original function f (t) can be recovered from F(ω) using:

f (t) =
∫

F(ω)ei2πωt dω (2.10)

Equation 2.9 shows how the Fourier transform works on a continuous function and the
result will then become a continuous frequency spectrum. In practice, the recorded
signals will be represented with discrete samples. This means that the ideal Fourier
transform does not work on real-world data, instead, the Discrete Fourier Transform
(DFT) is used. When performing the DFT on a discrete set of samples, the resulting
frequency spectrum will also be discrete. Some important notes on the sampling tech-
nique of the signal can be made with respect to the DFT. The sampling resolution, i.e.
how closely spaced the data samples are, decides the maximum frequency that can be
measured as fewer data points will give a lower resolution in the signal. The dura-
tion, or the field of view (FOV) of the signal, decides the frequency resolution [14]. A
shorter FOV will make it harder to tell different frequencies in the signal apart. There-
fore more frequencies need to be binned together in the frequency domain. In a DFT,
the total number of detectable frequencies is equal to the number of samples in the
signal. The DFT is calculated using equation 2.11:
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Fωn =
N−1

∑
k=0

fke−i2πωnk/N (2.11)

The major issue with the DFT is that it requires a lot of calculations and will therefore
be slow. In almost all applications today, a variant of the Discrete Fourier Transform
algorithm called the Fast Fourier Transform (FFT) is used when the Fourier transform
needs to be computed [15]. FFT is based on the fact that sinusoidal waves with a pe-
riodic increment of one integer will overlap at certain points. Utilizing this predictable
manner of sinusoids, the number of calculations per sinusoid can be reduced, thus re-
ducing computational load.

K-space

K-space is an important concept in MRI as an MRI scanner collects its data in k-space.
As mentioned in the frequency and phase encoding section, the k-space is a matrix in
the frequency domain. Each pixel in this matrix contains information about the im-
age contribution of different 2D sinusoidals, or stripe patterns [16]. In k-space, the
position of data points in the matrix reveals the frequency and direction of that spe-
cific stripe pattern. If one imagines an arrow pointing from the center of k-space to a
data point, the length of the arrow is proportional to the frequency of the stripe pattern
(stripe density). The direction of the arrow is directly opposite the direction of the pat-
tern. Horizontal patterns are located on the Ky-axis that goes through the middle of
k-space, while vertical patterns are located on the Kx-axis [16] (Fig 2.2). The complex
content of the data point gives away its amplitude and phase. What this means is that
the matrix cells closest to the center of k-space contain information on low-frequency
variations in the image. In other words, these cells contain information about the gen-
eral shapes in the image. Cells further out in the k-space matrix will represent higher
frequencies and will contain information about high-resolution details.

Figure 2.2 shows that the Fourier transform operation is used to move from the image
domain to k-space, and the inverse Fourier transform is used when reconstructing the
image from k-space. The FFT is used to get from frequency space (k-space) to image
space as it is much faster. For a 2D k-space, a 2D FFT is needed for image reconstruc-
tion. For 3D k-space, 3D FFT is used.

In order to fill the data in the k-space matrix, spatial encoding by frequency and phase
encoding is used. These encoding gradients are used to generate spatial representations
of the stripe patterns that inhabit the data points in the k-space matrix. By applying a
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Figure 2.2: K-space example. Performing the FFT in the image of a brain (left) will result in the k-space
matrix (right). An inverse FFT will reconstruct the image from k-space.

phase encoding gradient, the signal location is moved up and down in k-space. The den-
sity of the stripe pattern depends on the strength and duration of the gradient [16]. The
frequency encoding gradient moves the signal location in the left and right direction
in k-space. Combinations of the phase and frequency encoding gradients will generate
oblique stripe patterns [16]. By applying combinations of phase and frequency encod-
ing gradients, stripe patterns that correspond to any point in k-space can be created.
The remaining information that needs to be recorded is the amplitude and phase of the
stripe pattern. This is done by measuring the signal arising from the rotating magne-
tization [16]. Two receiver coils are used to record the signal and allow for recording
both the amplitude and phase of the signal. The two coils are usually orthogonal to
each other and will thus record two different signals. Phase and amplitude information
can be retrieved by processing the signal from both coils.

2.1.3 Pulse sequences

Pulse sequences are combinations of RF-pulses and gradient encoding of the signal
to sample the k-space in the desired way. The gradients can be used to either sample
every pixel in the k-space matrix in a Cartesian way or use sequences that records non-
Cartesian samples. Two time constants are important when looking at pulse sequences.
The echo time (TE) is the time period between the RF pulse and the signal echo used
for recording. Repetition time (TR) is the time between two consecutive RF-pulses.
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Gradient echo sequence

One Cartesian pulse sequence that is widely used is the Gradient Echo sequence (GRE).
In the GRE, a slice selection gradient is applied during the RF-pulse. The slice selec-
tion gradient will generate an echo from the original FID. Then, the phase encoding
gradient, Gy, and a strong negative frequency encoding gradient, Gx, are applied be-
fore the echo arrives and the readout starts. Right before the echo, the Gx gradient is
switched to positive and is kept constant during the readout (Fig 2.3a). This combina-
tion of Gy and Gx allows for the sampling of a full row in k-space for each RF-pulse
(Fig 2.3b) [12]. The entire k-space is sampled by repeating the process with different
strengths of the phase encoding gradient.

Figure 2.3: Gradient Echo imaging sequence. a) Sequence diagram explaining the use of x, y and z
gradients in combination with RF-pulses. b) K-space trajectory from one RF-pulse using the black,
whole line phase encoding gradient. RF = Radio frequency, TE = Echo time, TR = Repetition time.
Figure inspired by Donald B. Plewes in [16]

Echo-planar imaging

Echo-planar Imaging (EPI) is a fast pulse sequence used for applications requiring
very fast imaging, such as fMRI. EPI uses fast switching of high amplitude gradients
to generate multiple echoes after one RF-pulse [13]. This gives EPI the opportunity to
sample several rows in k-space from a single RF-pulse. Short pulses of the phase and
frequency encoding gradients are used to maneuver up, down, left and right in k-space
[12].
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Non-Cartesian sampling sequences

The most common MRI sampling is a uniform collection of the data points in k-space,
known as Cartesian sampling. Many alternatives to this Cartesian sampling have been
proposed, such as spiral and radial scans. These non-Cartesian alternatives have ad-
vantages over Cartesian samplings, such as favorable robustness to motion [6], flow
performance, and SNR efficiency [17].

Radial pulse sequence

One example of a non-Cartesian pulse sequence is the radial scan. In many of the non-
Cartesian sampling methods, the notion of phase and frequency encoding gradients
does not apply as the gradients are used differently [16]. In a radial scan, both gradients
are applied simultaneously during readout with an incremental change in between RF-
pulses (Fig 2.4a). With two gradients applied simultaneously from the start of the signal
readout, the resulting k-space trajectory is a line starting at the center of k-space and
extending out into the matrix (Fig 2.4b). With the proper choice of gradients, the k-
space trajectory of the signal can be rotated in k-space from one RF-pulse to the next
[16]. Thus the total acquired k-space resembles a wheel where the spokes of the wheel
are the acquired k-space lines. This pulse sequence has the advantage that it samples
more densely in the center of k-space than in the edges. The image can then be acquired
using fewer RF-repetitions, without major effects on the image contrast [16].

Figure 2.4: Radial imaging sequence. a) Sequence diagram explaining the use of x, y and z gradients in
combination with RF-pulses. b) K-space trajectory from one RF-pulse using the fixed x and y gradients
during the echo. RF = Radio frequency, TE = Echo time, TR = Repetition time. Figure inspired by
Donald B. Plewes in [16]
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2.2 Non-Cartesian reconstruction

The main disadvantage of the non-Cartesian imaging methods is the difficulty of re-
constructing the resulting data [17]. One of the main advantages of Cartesian k-space
is that the reconstruction can be performed with a simple 2D FFT. This is not possi-
ble for Non-Cartesian sampling as the data points are not uniform. Instead, approaches
such as the conjugate phase reconstruction and gridding could be applied.

2.2.1 Conjugate phase reconstruction

One method for reconstructing non-Cartesian k-space samples is conjugate phase (CP)
reconstruction. For a conjugate phase reconstruction at some data point, the acquired
signal is multiplied by the conjugate of the phase at this point throughout the acquisi-
tion. Then the product is integrated over for the duration of the acquisition [17]. For a
data point x0, equation 2.12 describes the process.

m(x0) =
∫ T

0
s(t)e−i2πk(t)·x dx (2.12)

In equation 2.12, s(t) is the signal from an acquisition [17]. As the process in equation
2.12 needs to be performed for all data points, the conjugate phase reconstruction is a
slow process.

2.2.2 Density correction

One common issue with non-Cartesian sampling is that it is seldom uniform in k-space.
A radial k-space acquisition will for example have a more densely sampled center of k-
space, which is an issue as these samples will be overrepresented in the reconstruction.
To account for this it is necessary to perform some weighting to account for sampling
density [17].

2.2.3 K-Space resampling methods

A faster alternative to the conjugate phase reconstruction is to resample the k-space
data onto a Cartesian grid and then use a DFT to reconstruct the image.

Grid-driven interpolation

The idea of grid-driven interpolation is to estimate the value at each grid point based on
the immediately surrounding data. This approach is easy to implement if the location
of the neighboring data points can be determined analytically. One disadvantage is that
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it won’t use all the input data, and lose some SNR efficiency as a result. But as most
of the excess data is usually at low spatial frequencies where the SNR is already high,
the loss in SNR is not very significant [17]. This approach does not require a density
estimate.

Data-driven interpolation

Data-driven interpolation takes the data from each data point and adds their contribution
to the surrounding grid points. Each input sample is conceptually considered to be
convolved with a small kernel, which is wide enough to extend to the neighboring grid
points, and each data point is in this way "resampled" at the adjacent grid points. In
this approach, all data is used, as opposed to the grid-driven interpolation. That makes
data-driven interpolation more SNR efficient, however, it requires a density estimate to
correct for any non-uniformity in sample density [17].
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2.3 fMRI - Functional MRI

Functional Magnetic Resonance Imaging (fMRI) is developed in order to measure local
time-varying changes in oxygen consumption in the human brain at rest or in response
to a cognitive task [18]. MRI images are sensitive to local changes in magnetic suscep-
tibility which can occur when the oxygenation state of blood changes [19].

Previously, the decay of signal associated with local magnetic field inhomogeneities,
called T2* relaxation, was considered a nuisance for MRI [19]. But when it was discov-
ered that the presence of a paramagnetic substance in the bloodstream could provide
useful contrast, sequences that could pick up these inhomogeneities were developed
[19]. fMRI is a technique that utilizes this by measuring the changes in blood oxygena-
tion that occur as a result of neural activity. By acquiring several brain volumes in a
time-series, fMRI makes it possible to measure differences in blood oxygenation over
time. A high temporal resolution is necessary to monitor the brain in real-time. Fast
imaging techniques such as EPI are therefore often used for fMRI, which can achieve
a temporal resolution of 1-3 seconds [19]. A technique known as statistical parametric
mapping (SPM) is used to transform the time-series data into statistical maps of image
difference [19]. For functional MRI data, several preprocessing steps must also be per-
formed, such as removal of head movement effects, spatial smoothing, and statistical
interference [19].

2.3.1 Blood oxygenation level-dependent contrast imaging

In 1935, Linus Pauling and Charles D. Coryell studied the magnetic properties of un-
bound and bound hemoglobin. They discovered that the hemoglobin molecule with
oxygen bound to it (oxyhemoglobin) contains no unpaired electrons and the molecule
is found to have zero magnetic moment [20]. In contrast to oxyhemoglobin, deoxy-
hemoglobin (oxygen-free hemoglobin) contains unpaired electrons. The magnetic sus-
ceptibility of deoxyhemoglobin, therefore, shows a profound paramagnetic contribu-
tion [20].

The discovery made by Pauling and Coryell [20] was further built upon by Ogawa et al.
through several studies in 1990 [21], [22], [23]. They discovered that the difference in
magnetic susceptibility between oxyhemoglobin and deoxyhemoglobin induced a lo-
cal field change that is "felt" by both the water molecules in the blood and by those
in the surrounding tissue [23]. This causes dephasing of the water signal in voxels in
these regions [21]. This dephasing of the water signal was shown to give rise to an im-
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age contrast in magnetic resonance imaging of the brain when the blood oxygenation
level is lowered [22]. This contrast is known as the blood oxygenation level-dependent
(BOLD) contrast [23]. Since the BOLD contrast depends on the state of blood oxy-
genation, physiological events that change the concentration of oxy/deoxyhemoglobin
lend themselves to noninvasive detection through the accentuation of BOLD contrast.

Not much later, in 1992, Ogawa et al. investigated whether a local elevation in brain
venous-blood oxygenation accompanies an increase in neural activity after visual stim-
ulation [24]. They found that visual stimulation produces an easily detectable increase
in the intensity of water proton MRI signals of 5-20 % in the primary visual cortex in
the human brain [24]. This was consistent with the idea that neural activation increases
regional cerebral blood flow and simultaneously increases venous-blood oxygenation
and showed the possibility of using BOLD contrast to map human mental operations
[24].

Figure 2.5: Blood flow during normal state (top) and after neuron activation in the area (bottom).
Figure inspired by courses from SPM [25].

To explain why BOLD contrast imaging can be used to measure neural activation it is
necessary to look at the brain metabolism. All the processes involving neural signaling
in the brain require energy, which it gets in the form of adenosine triphosphate (ATP)
[18]. When the neurons in a brain region are activated by a cognitive task, the increased
neural activation is accompanied by increased ATP production via glucose consump-
tion [26]. The production of ATP results in increased usage of local oxygen by the
metabolic processes in the affected brain region [18]. As the local stores of oxygen are
consumed and waste products from the neural activation build up, signals are sent to
nearby blood vessels causing upstream arterial vessels to dilate. The dilation is accom-
panied by increased cerebral blood flow (CBF) to the area [26]. Increased CBF brings
more oxygen to the region to restore the local oxygen level. However, more oxygen is
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delivered than is needed to offset the increase in metabolic rate, resulting in an increase
in oxygen levels [26] (Fig 2.5). As a result, neural activation in a brain region initially
results in a build-up of deoxyhemoglobin and a decrease of oxyhemoglobin, followed
by a response that reverses the situation with an increase in oxygenated hemoglobin and
a decrease in deoxyhemoglobin above the levels of the resting condition [18]. This in-
crease happens a second or two after the neural activation. This makes BOLD contrast
imaging an indirect measure of neural activation. Since its discovery, BOLD contrast
imaging is used in virtually all conventional fMRI experiments [18].

2.3.2 Sources of signal and noise in fMRI

In fMRI, the analysis is performed by comparing signal variations in each voxel in
time in the imaged brain volumes. Several sources of signals play a role in the total
T2* signal variations. In phantoms, noise has been found to be both "white", mean-
ing it appears uniformly across the image, and appears as slow drifts in intensity that
may be caused by temperature changes in imaging hardware [19]. In the human brain,
low-frequency noise components that arise from head motion, slow global variations in
blood oxygenation or cardiac and respiratory pulsations are also found [19].

When all external noise sources are accounted for (e.g. motion, hardware, etc), the
remaining signal variation in the time-series data is caused by time-dependent changes
in the BOLD signal. This signal can be decomposed into several frequency compo-
nents. Each frequency component has a different source, and these sources can be
either noise arising from physiological rhythms (heartbeat and respiration) or signal re-
lated to functionally activated brain areas [19]. The standard approach is to denoise
the voxel time-series using band-pass filtering [27]. This removes low-frequency noise
(e.g. intensity drifts, heartbeat and respiration) and high-frequency noise.

2.3.3 Task fMRI

Task activation fMRI seeks to induce different neural states in the brain as visual, au-
ditory or other stimulus is manipulated during the scan [18], or mental tasks are per-
formed. Activation maps are obtained by comparing the signals recorded during the
different states. The stimuli is designed to induce two or more cognitive states in the
participant while collecting MRI volumes continuously.
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2.3.4 Resting state fMRI

A different class of fMRI to task-based functional imaging is resting-state fMRI (rs-
fMRI). rs-fMRI is acquired in the absence of a stimulus or task, while the brain is "at
rest" [28]. The data in rs-fMRI can be acquired with a dedicated resting-state scan
where participants are instructed to simply rest [28] and refrain from any cognitive lan-
guage or motor tasks as much as possible [29]. One of the advantages of rs-fMRI is
that it does not require a specific task to be performed by the subject, making it suit-
able for use with patients who may have difficulty following instructions, such as those
with neurological, neurosurgical or psychiatric conditions, as well as pediatric patients
[28].

There are several ways of performing analysis of rs-fMRI data, but common to all
is the need for large amounts of data. Several pre-processing steps are also necessary.
This includes realignment and removal of artifacts from head motion and CSF signal
[28], as well as slice timing, data normalization, smoothing and more.
Analysis of rs-fMRI data can reveal information on specific brain regions that show ac-
tivation in a resting brain, but the data can also give information on the functional con-
nectivity between different brain regions [28]. The analysis of rs-fMRI data can be sep-
arated into two subtypes: functional segregation and functional integration. Functional
segregation focuses on specific brain regions and relies on the analysis of rs-fMRI ac-
tivity while functional integration focuses on the relationships or connectivity between
different brain areas and assesses the brain as an integrated network [28]. Proper inter-
pretation of rs-fMRI data results and logical inferences of the results requires an under-
standing of anatomy, physiology and neuroscience [28]. Only the ROI-based functional
connectivity method is used in this project, the rest are included for completion.

Functional segregation methods

Functional segregation methods divide the brain into regions according to their specific
functions. ALFF (Amplitude of Low-Frequency Fluctuations) and ReHo (Regional
Homogeneity) are functional segregation methods. ALFF measures the power of the
BOLD signal within the low-frequency range, which only gives a measure of brain ac-
tivity, and no connectivity information [28]. The ReHo analysis is a voxel-based mea-
sure of the similarity between the time-series of a given voxel and its nearest neighbors,
measuring the synchrony of adjacent regions.



20 Background

Functional integration methods

Functional integration focuses on the functional connectivity between regions of the
brain and measures the synchrony of the BOLD time-series between different brain re-
gions. The networks and pathways that are revealed by the integration methods may
be a result of a direct anatomical connection or an indirect path. This makes it seldom
useful to visualize the connections, but rather the brain regions that are presumably
connected by these paths [28]. Common computational methods of functional inte-
gration include functional connectivity density (FCD) analysis, ROI-based functional
connectivity analysis, independent component analysis (ICA) and graph analysis [28].

FCD is the most basic measurement of connectivity. It calculates the correlation of
the BOLD time-series between each voxel and all other voxels in the brain, thus reveal-
ing how connected a voxel is, but not to which regions it is connected [28].

ROI-based functional connectivity analysis uses predefined regions-of-interest (ROI) to
find other brain regions that are correlated to this ROI. Coupling of activation between
different brain regions suggests that they are functionally connected and involved with
the same underlying processes [28]. This method enables visualization of connections
to the ROI and the strength of the connections. As ROI-based analysis requires a pre-
definition of the seeds (ROIs) the results will depend on the seed selection, making it
vulnerable to bias. The selection is often based on prior results or can be derived from
ALFF or ReHo calculations.

ICA uses multivariate decomposition to separate the BOLD signal into several inde-
pendent functional networks that are temporally correlated [28]. ICA is data-driven,
which means that it can be performed without any prior assumptions, except the num-
ber of independent components to identify [28]. While ROI-analysis only extract the
regions connected to the ROI, ICA extracts all detectable networks [28]. Some draw-
backs of ICA are that the underlying cause of the synchrony in the networks may be
non-neural in origin (such as breathing or heartbeat), and ICA only presents the net-
works one by one with no communications between different brain networks [28].
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2.4 Looping Star

Looping Star (LS) is an MRI pulse sequence based on the 3D radial Rotating Ultra-Fast
Imaging Sequence (RUFIS) [6]. RUFIS uses a rapid succession of low flip angle RF
pulses to acquire the FIDs [30]. RUFIS is a radial pulse sequence where small steps in
the gradient fields between pulses rotate the acquiring trajectory in increments. In ad-
dition to the fast property of this sequence, the small steps in gradient fields also come
with the benefits of reduction in acoustic noise. The loud acoustic noise generated
in the MR scanner arises from interactions between the gradient coils and the magnet
when switching of the gradient coils induce Lorentz forces and eddy currents that act
on the coils and connecting elements [2]. This produces mechanical vibrations in the
hardware. By using small gradient steps, as in RUFIS, the acoustic noise in the MR
scanner can be mitigated and this results in quiet scanning. The Looping Star sequence
extends RUFIS by adding a gradient-refocusing mechanism and full 3D spatial encod-
ing [6]. The acquisition scheme, as well as prior results of the Looping Star sequence,
will be explored in the following sections.

2.4.1 Looping Star pulse sequence

The Looping Star sequence is organized into segments, loops and spokes for captur-
ing a FID image and subsequent echo images (Fig 2.6). The sequence starts with short
RF-pulses that are used to excite the FID as 3D radial spokes [2]. These radial spokes
are organized in segments. One segment exists in one plane in k-space and consists of
several spokes, forming a radial k-space trajectory [6]. Several RF-pulses are needed
to excite all the spokes in the segment, as one spoke is excited per RF-pulse.

The trajectory of the signal for one segment is decided by keeping the magnitude of
the readout gradient constant for the entire segment, but its direction increment by an
in-plane rotation from one spoke to the next to get the radial sampling [6]. The ro-
tation is performed using incremental changes in the Gx and Gy gradients (Fig 2.6A).
The trajectory of each spoke in the segment is considered a pathway that will be refo-
cused towards the center of k-space in a loop that exceeds the k-space limit (Fig 2.6B)
[6]. The encoding gradients perform the refocusing of the spoke signal, making the se-
quence a self-refocusing sequence.

The excitation and consequent refocusing of the k-space trajectory for the spokes is
called a loop. The first loop records the initial FID of the segment at zero echo time
(TE = 0) and the following loops form equidistant echoes of the FID [6]. For the second
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loop onward, during the gradient refocusing, the signal from the current spoke (dephas-
ing outwards) gets contaminated by the signal from the next spoke (refocusing inwards)
[6]. Separating the dephasing (echo-out) and rephasing (echo-in) signal contributions
is favorable as the signal mixing increases image noise. Separation methods tend to ei-
ther sacrifice high spatial frequency information or increase scan time [6]. To further
reduce acoustic noise during the scanning, the gradient waveforms can be smoothed.
This results in slightly bent radial spokes (An example of this can be seen in the real
Looping Star k-space in figure 3.1).

Figure 2.6: Diagram of the Looping Star sequence for one segment with 8 spokes per loop. A) shows
the pulse diagram of the sequence for one segment with two loops: the FID and one echo. B) shows the
k-space trajectory of the dephasing and refocusing for the first (blue) and second (green) spokes. FID
= Free induction decay, RF = Radiofrequency. Figure inspired by Wiesinger, Menini, and Solana [6].

To ensure 3D spatial encoding, the planar k-space trajectory of the segments needs to
be rotated. This can be done analytically in a specific manner or randomly [6]. As
the k-space trajectory of the Looping Star sequence consists of many radial disks, the
k-space is non-Cartesian. This means that non-Cartesian image reconstruction methods
must be used, such as conjugate phase reconstruction or gridding to Cartesian k-space
followed by Fourier transformation.

Looping Star can also be used to capture BOLD-weighted images for fMRI. To do
this, one echo with echo time close to the T2* of gray matter should be obtained, a
spatial resolution of at least 2-4 mm and a volume repetition time of no more than 2-4
seconds should be achieved [2].
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2.4.2 The need for silent imaging: LS in practice

Some studies have looked at the effects of the Looping Star sequence on the acoustic
noise levels in the MRI scanner [6] [2] [1]. Loud acoustic noise inside the scanner dur-
ing acquisition remains a major concern as it causes discomfort and anxiety in patients
[2]. Quiet imaging can improve scanning comfort and address anxious patient groups,
such as pediatric, geriatric, and non-cooperative patients. In the context of fMRI, Loop-
ing Star might resolve acoustic noise concerns, such as in resting-state examinations,
auditory processing, and sleep studies [6]. The Looping Star sequence has achieved re-
ductions of 31 dB in A-weighted noise level and 20 dB reduction in peak noise level.
This represents more than a 98% reduction in sound pressure compared with EPI [2].

The Looping Star sequence has been used to capture T2*-weighted images of the head
both from the FID and later echoes. The FID covers the full head while the later echo
primarily depicts the brain due to shorter T2* signal, live time or destructive signal in-
terferences due to off-resonance effects in combination with 3D radial sampling [6].
In fMRI, the BOLD activation from the Looping Star sequence has been measured to
be ≈ 5% and matching the expected motor brain areas in a finger tapping motor ex-
periment [6]. The Looping Star sequence has also been demonstrated as sensitive to
the BOLD response in an auditory oddball paradigm [1], and a resting-state experi-
ment [2] with some limitations such as reduced image quality, reduced tSNR and lower
test-retest reliability compared to an EPI acquisition.
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2.5 Machine learning

In classical computer science, programs are programmed according to a rigid set of
rules specifying how the program should behave [31]. Machine learning is a relatively
modern family of computer science algorithms that aim to solve some of the complex
problems that are not easily solved using rigid rules. Machine learning algorithms learn
from experience by adapting to observational data or other environmental interactions
it encounters [31]. There are many types of machine learning models that behave in
different ways, but most of them share some core components: The models need data
they can learn from, an initial model of how to transform the data, an objective func-
tion (often called loss function) that quantifies how well the model is performing and
they need an algorithm that adjust the model parameters based on its performance [31].

There are several different kinds of machine learning problems. Supervised learning
describes tasks where the goal of the models is to predict labels from a set of input
features. Supervised learning uses datasets that contain both input features and labels
corresponding to the input features that act as a ground truth. For datasets that don’t
have clear labels for their input features, unsupervised learning algorithms can be used.
Contrary to supervised learning, where the model has a clear objective, the task of
unsupervised learning is to discover some kind of pattern in the dataset that can be
interesting, e.g. finding data clusters or principal components. [31]

2.5.1 Generalization

The goal of machine learning is to discover underlying patterns in the data that will
generalize and give good performance when solving problems on unseen data. This
task is difficult as it can be difficult to tell if the model has discovered a general pattern,
or just memorized the training data. When a model fits perfectly to its training data, but
fails to generalize to unseen data, the model is overfitting [31].

Splitting the available data into training, validation and testing sets gives the opportu-
nity to test the generalization of a model and detect overfitting. The model performance
on the training set alone does not say much of the model’s performance on unseen data,
but by holding out parts of the data, the model can be tested on previously unseen data
in the validation and test sets. The difference between the performance on unseen data
and training data can give an indication of whether the model is overfitting or not [31].
The validation set is normally used for selecting the best model during model selection
schemes or during training. The testing set is used for the final evaluation of the model
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performance on unseen data.

There are several ways to reduce overfitting during training. One of these is early
stopping, where the training is stopped if the model fails to improve the performance
on the validation data. Another is to introduce data augmentations to the training data.
This will increase the data diversity which is an effective way of increasing the model
generalization [32].

2.6 Deep learning

Deep learning is a subset of machine learning models that focus on using many layers
of neural networks inspired by the neuron connections in the brain. The goal of these
layers is to learn patterns in the input structures by updating its model parameters dur-
ing training. Deep learning models are termed deep because the models are represented
by many subsequent layers of data transformation where each layer transforms the fea-
tures extracted by the previous layer [31]. One of the key advantages of deep learning
compared with other machine learning algorithms is that it replaces labor-intensive fea-
ture engineering that is often needed to preprocess the data correctly. In deep learning,
feature extraction is done automatically, allowing many more feature choices than what
is possible for a human [31].

Figure 2.7: Multilayer perceptron with two hidden layers with 5 neurons each. This network has 4
inputs and 3 outputs. Each neuron in the hidden layers receives information from all neurons/inputs in
the previous layer.
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2.6.1 Multilayer perceptron

The multilayer perceptron (MLP) was the first neural network that uses deep layers and
can be called a deep neural network [31]. A standard MLP consists of neurons orga-
nized in several layers where all neurons are fully connected to the neurons in neigh-
boring layers (Fig 2.7). The neurons then receive input from the neurons in the previous
layer through the connections. The connections between the neurons are weighted so
the output from one layer will be multiplied by a weight before being inputted to the
next neuron. Each neuron also contains a bias, which is a fixed value that is added to
the inputs to the neuron. The connection weights and neuron biases are the trainable
parameters of the network.

A plain MLP can be considered a linear model [31]. When the weighting and addition
of the bias in the layers are the only effects the network has on the input, any increased
value in the network input will result in an increased network output. To change the
linearity of the multilayer perceptron, each neuron will also have an activation function.
Activation functions decide whether the neuron should be activated or not based on the
input value to the neuron. A very popular activation function is the rectified linear unit
(ReLU) [31]:

ReLU(x) = max(0,x) (2.13)

The ReLU activation function provides a very simple nonlinear transformation. ReLU
will only keep the positive input it receives as all negative input will be set to zero. The
derivative of the ReLU function is also simple as it is zero below an input value of zero
or less and one with positive input.

2.6.2 Forward propagation

Forward propagation is the operation that takes all the inputs, passes them through the
network, and results in the outputs. In this operation, all inputs are multiplied by the
weights of the first layer, and the bias is added (Eq. 2.14). Then the output from this
layer is calculated by passing all neuron values through the activation function of the
layer (Eq. 2.15). This process is then repeated for all layers (Eq. 2.16 and 2.17):

Z1 = w1X+b1 (2.14)

A1 = σ(Z1) (2.15)

Zl = wlA(l−1)+bl (2.16)



2.6 Deep learning 27

Al = σ(Zl) (2.17)

Here X is the input to the network, wl are the weights in layer l, bl are the biases in
layer l, Zl are the result from weights and biases in layer l, σ is the activation function
and Al is the output from the activation function and the input to the next layer. The
forward propagation stores all intermediate variables [31], such as the hidden layer
outputs. Storing the intermediate variables is important when the network is trained.

2.6.3 Network training

In order to achieve good results from a neural network, it is important to optimize
the parameters of the network to the task at hand. To do this, the network needs to
be trained. Training a neural network involves passing large amounts of data through
the network using forward propagation before updating the network parameters based
on some error between the predicted network output and the expected output based
on the ground truth labels. The error between the network output and ground truth is
calculated using a loss function. The mean square error (MSE) is an example of a loss
function often used in deep learning regression tasks [33]:

L(ys, ŷs) =
1
m

m

∑
s=1

(ys − ŷs)
2 (2.18)

L is the loss function, m is the number of batches, y is the expected result, and ŷ is the
predicted output. In deep learning, the loss function is used to calculate gradients for
all the trainable parameters in the network. This is done in a process called backpropa-
gation.

Backpropagation

Backpropagation refers to the process of traversing the network in reverse order to
calculate the gradients of the network parameters [31]. The goal of backpropagation
is to calculate the partial derivative ∂L/∂w of the loss function with respect to every
weight w in the network (or bias b) [34]. This partial derivative reveals how quickly the
loss function changes when a change in the parameter happens. These partial derivative
terms then becomes the gradient of the loss function, as changing the parameters in the
opposite direction of the partial derivatives would result in reduced loss. To calculate
the partial derivatives, backpropagation uses the chain rule of derivatives to propagate
the network backward to find the partial derivatives of the loss function with respect to
each parameter. The chain rule is as follows [33]:
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∂ z
∂x

=
∂ z
∂y

∂y
∂x

(2.19)

By propagating the error backwards through the network using the chain rule, all the
partial derivatives for the weights, ∂L

∂w , and the biases, ∂L
∂b , can be calculated. The chain

rule shows why it is important to store the intermediate values from the forward pass
when training a neural network, as the intermediate values are necessary to calculate
the partial derivatives throughout the network.

Gradient descent

After backpropagation through the network is performed and all the gradients are cal-
culated, the network parameters need to be updated. To do this, the computed gradi-
ents are used in a process called gradient descent. In gradient descent, all the network
weights and biases are updated by moving them in their negative gradient. To avoid
changing the parameters too much, the gradients are multiplied by a small magnitude
called the learning rate [34]:

θt = θt−1 −α∇L(θt−1) (2.20)

Here θ are all the trainable parameters in the network, t is the training iteration, α is
the learning rate, and ∇L(θ) is the gradient of the loss function L with respect to all
the parameters. By subtracting the gradients, multiplied by the learning rate, from the
parameter value, the parameters are moved in the direction that will reduce the value
of the loss function [31]. Backpropagation and gradient descent are repeated for each
batch passed through the network during training, updating the network parameters
each time until they converge or the training budget runs out. The full training process
is then subsequent operations of forward propagation, backpropagation and gradient
descent to update the network weights and biases with the goal of minimizing the loss
from the loss function (Fig 2.8a). This is a time-consuming process, and the training
data often needs to be passed through the network several times to achieve a good
result. In deep learning, one pass of the entire set of training data through the network
is called an epoch [31].

Adam

Adaptive movement estimation (Adam) is an optimization algorithm that combines gra-
dient descent and several other optimization techniques into one efficient learning al-
gorithm. It combined stochastic gradient descent, momentum, adagrad and RMSprop
into one learning algorithm [31]. Stochastic gradient descent reduces the computational
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Figure 2.8: Visualization of gradient descent of a network with two parameters. a) gradient descent
using a learning rate of 0.0037 without momentum. The solutions oscillate between the "ridges" of the
solution space. The solution does not reach the optimum during training. b) Addition of a momentum of
0.84 reduce the oscillations and reach the optimum during training. Figures are generated from [35].

cost of gradient descent by computing the gradients of a random set of samples from
the data instead of the full data [31]. Momentum replaces the computation of the in-
stantaneous gradient for each iteration with one that has been averaged over multiple
past gradients, giving the gradients a momentum [31] (Fig 2.8b). Momentum can lead
to faster optimization as it can dampen oscillations in parameter space. Adagrad is a
learning rate optimization method that uses the variance of past gradients to compute
individual learning rates for every gradient coordinate [31]. RMSprop is an extension
of the Adagrad that solves one issue with the Adagrad which is that the learning rate
decreased at a predefined schedule. RMSprop helps Adam compute individual adaptive
learning rates for different parameters [36]. By combining all these optimization tech-
niques, Adam becomes a robust and efficient optimization algorithm that has become
very popular in deep learning [31]
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2.6.4 Hyperparameters

Hyperparameters in deep learning are the parameters that control the learning algorithm
and the structure of the underlying model. They are called "hyperparameters" because
they are set before the training process begins, and they are not learned by the model
during training as the model parameters are [31]. Examples of hyperparameters in
deep learning include the learning rate, batch size, number of hidden layers, number
of neurons in each layer, activation functions, regularization parameters, and weight
initialization schemes.

2.6.5 Hyperparameter optimization

The performance of every machine learning model depends on its hyperparameters.
The hyperparameters control the training algorithm and the structure of the neural
model, and no hyperparameter choice is best for every machine learning case. The
choice of hyperparameters is often set in a trial-and-error manner or left to their de-
fault values [31]. Deciding on hyperparameters in a trial-and-error manner can be
time-consuming, especially with large models and large datasets. Automation of the
hyperparameter selection procedure is therefore favorable. Hyperparameter optimiza-
tion (HPO) algorithms are designed to do this. HPO algorithms aim to reduce the error
on a hold-out validation set by attempting different sets of hyperparameters. These al-
gorithms are often also constrained by additional objectives such as training time or
other budgets that limit the total running time [31]. Bayesian Optimization and Hy-
perband (BOHB) is an HPO that attempts to find good hyperparameters on a limited
budget.

Bayesian optimization and hyperband

Bayesian Optimization and Hyperband (BOHB) is an HPO that combines two differ-
ent hyperparameter optimization methods with different strengths to achieve better and
faster hyperparameter optimization.

Bayesian optimization (BO) is an optimization algorithm that is used to select the next
set of hyperparameters to try. Each machine learning algorithm can be modeled as an
objective function of its hyperparameters, where the goal of the HPO is to find the com-
bination of hyperparameters that optimize the objective function [37] (e.g. to maximize
test set performance). In machine learning, the objective function is often a black-box
function that can only be observed at tested data points. Bayesian optimization uses a
probabilistic surrogate model of the objective function that maps from the hyperparam-
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eter space to the performance of the objective function. At each step of the algorithm,
BO uses the surrogate model and an acquisition function to find the next data point
(set of hyperparameters) to test (Fig 2.9). The acquisition function is based on the
probabilistic surrogate model and uses a trade-off of exploration of new areas in the
hyperparameter space and utilization of areas close to good sets of hyperparameters to
find the next set to test [37]. A common choice of acquisition function is the expected
improvement over the currently best observed value [37].

Figure 2.9: Illustration of Bayesian Optimization on a 1-d function. The dashed line represents the
objective function to optimize. The surrogate model is represented by a prediction (whole black line) and
an uncertainty (blue band). The acquisition function (yellow) is used to choose a new observation based
on its maximum value. The acquisition function is a trade-off between the value and the uncertainty
of the surrogate function. The acquisition max is a point where the value of the predicted value of the
surrogate model is low and its uncertainty is high. The figure is retrieved from [38]

Hyperband is an optimization strategy that extends the successive halving (SH) algo-
rithm [39]. Successive halving is an approach that attempts to optimize its budget
(e.g. total training time) by dropping poorly performing models. In SH, the budget is
uniformly allocated to a number of models with different hyperparameter configura-
tions, then the performance of all models is evaluated, and the worst half is dropped.
This process is then repeated until only one model remains [39]. One issue with the
SH algorithm is that it requires manual input of how many different hyperparameter
configurations to run. Hyperband extends SH by not using a predefined number of con-



32 Background

figurations, but rather considering several different numbers of configurations [39]. In
this way, the hyperband algorithm attempts to both allocate a small portion of the bud-
get to many configurations leading to aggressive halving and giving a few models a
large budget.

2.6.6 Convolutional neural networks

Convolutional neural networks (CNNs) are a special kind of neural network that is de-
veloped for processing data that has a grid-like structure [33]. An MLP ignores the
structure of grid-based data and treats all input pixels on the same footing. A more
preferable approach would be to use the prior knowledge that nearby pixels are typi-
cally related to each other [31]. CNNs have been designed especially for this purpose.
As the name implies, CNNs are centered around the mathematical operation called con-
volution [33]. Convolutions are used to create the intermediate output values between
convolutional layers, called feature maps. CNNs often also use pooling layers to reduce
the number of features in the network.

Convolutions

CNNs use convolutional kernels to create feature maps from the input data [33]. In-
stead of weights and biases connecting every input feature to every neuron, as in the
MLP, the convolutional kernels are used to stride over the input and create the feature
map (Fig 2.10). The feature map is filled by performing an elementwise multiplication
between the convolutional kernel and a portion of the input that has the same size as
the kernel (e.g. 3x3). The resulting matrix values are summed together to one pixel
value in the feature map. The first feature map value is the result of the multiplication
by the kernel in the top left corner portion of the input, and by striding the kernel over
the input, all feature map pixels can be covered. One kernel is used to create one map,
and by applying several kernels, several different feature maps can be created from the
input.

In a CNN, it is the kernel values that are optimized during training. Since every kernel
is used for the entire input image, the CNN layers will have a lot fewer trainable param-
eters than a fully connected layer. This is because the features in the feature map are
calculated as a result of kernel weights and biases that are shared across the entire input.

The size of the output feature map from a convolution will depend on the size of the
input features and some kernel parameters. The size of the kernel and the number
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Figure 2.10: Example of convolution of an image using a convolutional kernel of size 3x3. This example
shows a horizontal edge detection kernel.

of pixels it is moved between calculations (stride) will change the feature map size.
Padding the input features can increase the size of the feature map [31].

Pooling

A typical layer in a CNN consists of the convolutional kernels described above, an
activation function applied to the feature space to avoid linearity, and finally, a process
called pooling [33]. In many deep learning applications, it is desirable that the output
features are sensitive to the entire input to the network. An MLP does this by fully
connecting all neurons in neighboring layers to each other. However, for a CNN with
only convolutional kernels in its layers, this will be done gradually by aggregating the
information with the kernels [31]. Pooling will accelerate this process by reducing
the spatial resolution of the input features. Like the convolutional layers, the pooling
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operator consists of a fixed window that slides over its input, and for each iteration,
it will reduce the portion of the input it is currently operating on to one value. This
can either be the average of all the feature values it is currently operating on (average
pooling) or the maximum of these values (maximum pooling). Figure 2.11 shows an
example of the pooling procedure of a 2x2 pooling kernel with a stride of 2.

Figure 2.11: Example of the maximum and average pooling procedures with a pooling kernel of 2x2
and a stride of 2. This will halve the number of features in each dimension

UNet

The UNet is a CNN architecture introduced by Ronneberger, Fischer, and Brox [40] in
2015 (Fig 2.12). The UNet is a fully convolutional neural network that uses an encoder-
decoder structure. The encoder functions as an analysis path where the network dis-
covers essential features in the input, while the decoder is a synthesis path where the
output from the encoder is interpreted to produce the final output [41]. The encoding
and decoding are performed in layers. One layer consists of one encoder block and one
decoder block. In the encoder blocks, the number of feature maps is increased while
the size of each feature map is decreased. The decoding blocks reverse this process
by increasing the size of each feature map while reducing the number of feature maps.
Each block in the encoder consists of a set of two convolution procedures that increase
the number of feature maps, each followed by an activation function, and, at the end
of the block, a max pooling operation that reduces the size of the feature maps. The
blocks in the decoder consist of an upsampling that increases the feature maps’ size and
two convolutions that reduce the number of feature maps, each followed by an activa-
tion function [40] [41]. As the encoder applies pooling to reduce the redundancy in the
features, much high-resolution information is lost and cannot be recovered by the de-
coder [42]. To mitigate this, the UNet employs skip connections between the encoder
and decoder block in the same layer. In a skip connection, the feature maps from the
last set of convolutions in the encoder block are concatenated to the output from the up-
sampling in the previous decoder block. The name, UNet, stems from the U-shape of
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the network that results from the pooling and upsampling between the layers (Fig 2.12).

The original UNet [40] and its 3D-version [41] were designed for image segmenta-
tion tasks, using a final activation of either a softmax or sigmoid activation function.
But its encoder-decoder structure makes it applicable to several image-to-image tasks,
such as regression, denoising and image reconstruction [42].

Figure 2.12: The original UNet as proposed by O. Ronneberger et al. in 2015. Reprint from [40]
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Chapter 3

Methods

This chapter presents the methodology of this project. One thing to keep in mind is
that during the project, a conscious choice was made to switch between an unprocessed
and a processed dataset. Many steps in the methodology were the same for these two
datasets, and the methodology is thus presented as one.

3.1 Data acquisition

3.1.1 Image data collection

The data used in this project was resting-state fMRI data, provided by the Human Con-
nectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and
Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that
support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center
for Systems Neuroscience at Washington University. The data was downloaded from
https://db.humanconnectome.org. The HCP data contained images from 181 partici-
pants imaged on a 7T MR system. The HCP rs-fMRI images are imaged using EPI
for high temporal resolution. EPI is quite sensitive to specific image artifacts [43]. In
the first parts of this project, an unprocessed dataset is used. As many of the artifacts
present in the unprocessed HCP images occur due to the EPI sequence, the same arti-
facts would not appear in a Looping Star scan.

To avoid the EPI artifacts, a dataset consisting of processed rs-fMRI images was also
used as a more accurate representation of Looping Star images. This dataset was used
in the later parts of this project. This dataset has been processed according to the HCP
functional processing pipeline that includes processes described in Glasser et al. [44].
The functional preprocessing pipeline is separated into the fMRIVolume and the fM-
RISurface pipelines. fMRIVolume removes spatial distortions, realigns volumes, nor-
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malizes the 4D image and masks the data with the final brain mask [44]. fMRIVolume
ensures that no overt volume smoothing is performed. fMRISurface is used to bring
the time-series from the volume into the CIFTI grayordiante standard space [44]. Data
from this preprocessing step was not used. The preprocessing change the image param-
eters of the unprocessed data (Tab 3.1).

Table 3.1: Image data information of the unprocessed and processed 7T rs-fMRI datasets from the HCP.
FOV = Field of View

Image reconstruction parameters Unprocessed image data Processed image data
Initial image matrix size 130 x 130 x 85 113 x 136 x 113
Voxel size [mm3] 1.6 x 1.6 x 1.6 1.6 x 1.6 x 1.6
FOV [mm3] 208 x 208 x 136 180.8 x 217.6 x 180.8
Number of slices 85 113
Number of volumes 900 900
Temporal resolution [s] 1 1

3.1.2 Looping Star trajectory

The k-space trajectory that was used was acquired using a Looping Star fMRI protocol
that records the FID and one echo. Due to the nature of the Looping star acquisi-
tion, the echo k-space signal consists of both the echo-out signal from the echo and the
echo-in signal from the previous FID signal (Fig 3.1). In this acquisition, these two
signals have been separated to dampen signal noise. Separation of the signal results
in more data samples per spoke, as each spoke contains both the echo-in and echo-out
signal. Table 3.2 contains information on the Looping Star protocol. As the Loop-
ing Star trajectory consists of rotated disks of radial samplings, k-space will be more
densely sampled at the center. Therefore, in addition to the k-space trajectory, den-
sity correction factors (DCF) corresponding to the k-space samples were provided to
avoid over-representation of the densely sampled center. These were used during the
reconstruction of the Looping Star images, which are described in the next subsection.

Table 3.2: Information on the imaging parameters and k-space sampling details from the Looping Star
protocol. FOV = Field of View, FA = Flip Angle

Imaging parameters
FOV [cm] 19.2
Slice thickness [mm] 3
FA 3°
Looping Star sampling details (Fig 3.1)
Number of segments 21
Number of spokes per loop 24
Number of samples per spoke 128
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Figure 3.1: Looping Star k-space. a) shows the echo-in (red) and echo-out (blue) trajectories in a
single radial segment. b) shows the full Looping star echo k-space trajectory consisting of 21 segments.
Black lines show the outline of each segment of a radial trajectory.

3.1.3 Looping Star acquisition emulation

To create the Looping Star images, the rs-fMRI data from the Human Connectome
Project was resampled as if it was acquired with the Looping Star k-space trajectory.
As the non-Cartesian Looping Star k-space contains fewer k-space samples than the
Cartesian sampling of the original HCP data, the resampling will hereby be referred to
as downsampling. The downsampling was performed using the Michigan Image Re-
construction Toolbox (MIRT) by Jeffrey A Fessler [45] in MATLAB, (2022b), Natick,
Massachusetts: The MathWorks Inc. [46]. MIRT enables the use of a permutable math-
ematical operator with an inverse that is useful for problems that require reconstruction
of a function from nonuniform Fourier samples, such as non-Cartesian MRI. The op-
erator takes k-space coordinates as input, which enables the operator to emulate MRI
signal acquisition based on the k-space coordinates [45]. This is done in the forward
operation of the operator. In the adjoint operation, the operator performs nonuniform
FFT by conjugate phase reconstruction for the reconstruction of a set of k-space sam-
ples that correspond to the coordinates that built the object.

By using the acquired Looping Star k-space coordinates to build the operator, the for-
ward operation of the mathematical operator emulated the Looping Star acquisition on
any volume, while the adjoint operation reconstructed the emulated k-space samples
by conjugate phase reconstruction. The mathematical operator was used by creating k-
space samples corresponding to the Looping Star k-space coordinates using the forward
operation. Then, density correction factors were multiplied with the corresponding k-
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space samples before the image was reconstructed using the adjoint operation of the
mathematical operator.

Due to the spherical shape of the Looping Star trajectory, the best reconstruction by
the mathematical operator from MIRT was achieved when the samples are sampled
from a square volume and the volume was reconstructed with a square matrix shape.
Therefore, the matrix size of the input HCP data was increased by adding zero-padded
slices before downsampling, and the reconstruction was performed with a square log-
ical mask as a template. One issue with the reconstruction using the mathematical
operator was that it produced image artifacts when reconstructing the image from the
downsampled k-space. At small image matrix sizes, this artifact affected the image by
shading areas of the brain in the image. Increasing the image size before reconstruction
pushed this artifact outside of the brain volume, minimizing its disturbance on the brain.

The downsampling process was the same for both the unprocessed and processed
datasets. The only variation was the size of the image matrix and reconstruction masks
that were necessary to push the artifacts outside the brain.

3.2 Dataset preparation

Increasing the matrix size by concatenation of zero-padded slices did not increase the
size of the brain in the images. The entire increased matrix size was therefore not
needed for training the convolutional neural networks. After the emulated Looping
Star images were acquired, the matrix size of the images was reduced before training.
The final image matrix size was decided by the number of slices necessary to cover the
entire brain. For the unprocessed dataset, the final matrix size was 128x128x90 while
the final matrix size was 128x128x113 for the processed dataset. The downsampling
process results in pairs of images with one HCP rs-fMRI time-series and one Looping
Star time-series per participant.

3.2.1 Dataset splitting

The data was separated into training, validation, and testing sets for training. 15 random
participants were selected as the testing set. From the remaining 166 participants, 10
were selected as a validation set used for model selection and evaluation during train-
ing. For the training and validation set, 50 consecutive volumes were downsampled.
Several volumes per participant were downsampled to let the models train on volumes
with rs-fMRI BOLD variations. For the testing set, all 900 time-series volumes were
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downsampled for all the participants. This was necessary as the full sequence was
needed to perform fMRI analyses on the participants. Dataset information is displayed
in table 3.3. All datasets consisted of LS reconstructions and corresponding original
HCP image data. Data augmentations were added to training and validation sets to in-
crease the dataset size and diversity. The augmentations consisted of flipped and rotated
image volumes from all the participant’s data. The dataset splitting and augmentation
were identical for the unprocessed and processed data, and the testing participant IDs
were also the same for both datasets.

Table 3.3: Number of participants and number of volumes per participants for the training, validation
and testing datasets

Number of participants Volumes per participants
Training set 156 50
Validation set 10 50
Testing set 15 900

3.2.2 Data loading

Two separate data loaders were employed when loading the data for training. Two
loaders were used because of the substantial amount of training data and the large file
sizes of the images. The first loader was responsible for loading participant data into
the computer memory, while the second loader facilitated the transfer of data from the
computer memory to the models.

Throughout the training process, the first data loader fetched the data in batches of four
participants. All the volumes for these four participants were loaded into the computer
memory and fed to the second loader. The second loader performed image augmenta-
tions and created training batches by randomly selecting data from the batch stored in
the computer memory. The network was then trained on all volumes, including aug-
mentations, for the four participants in one batch before proceeding to load a new batch
into the computer memory. Utilizing two data loaders was done to circumvent the
time-consuming task of repeatedly loading the large image files into computer memory
during training. By loading batches consisting of four participants, the loaders ensured
that the network was not trained solely on data from one participant at a time, thereby
promoting a more balanced training.
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3.3 Network training

Two deep-learning models were explored to attempt to improve the quality of Looping
Star images for both the processed and unprocessed datasets. PyTorch version 1.13.0
was used for network modeling and training [47]. PyTorch is an open-source opti-
mized tensor library for deep learning using GPU and CPU. Ray Tune was used for
hyperparameter tuning and model selection for the processed dataset [48]. Tune is a li-
brary in Ray for hyperparameter tuning that employs a wide range of search algorithms
and hyperparameter optimization tools. Ray version 1.6.0 was used in this project. An
NVIDIA GeForce RTX 3080 Ti graphics card with CUDA version 11.7 was used for
GPU training. PyTorch was used within Python version 3.9.13 [49]. In this project,
a 2D-UNet and a 3D-UNet were trained for unprocessed data. A 3D-Unet was also
trained for processed HCP data. Mean square error (MSE) between model output and
ground truth images was used as the loss function for training and was also used in
validation during training.

3.3.1 Network training on unprocessed data

Both a 2D-UNet and a 3D-UNet were trained on the unprocessed dataset. The use of a
2D-UNet for deep learning image reconstruction of a radial sampling in MRI was in-
spired by Han et al. [10]. They managed to improve the image quality and reduce the
image artifacts that were a result of the non-Cartesian sampling. The Looping Star se-
quence use rotated radial samplings to get its 3D-sampling, which is different from the
sampling used by Han et al. They used one radial sampling per image slice. The noise
and artifacts resulting from such a k-space sampling are expected to be uniform across
the slices. This is not the case for Looping Star data. The application of a 3D-UNet,
typically used for image segmentation, for this project was done to attempt to improve
the network performance by allowing the network to see global artifacts across the en-
tire volume through 3D convolutions.

Training of the 2D-UNet and 3D-UNet used similar optimization schemes. The Adam
optimizer was used for updating the network weights during training. Adam performs
faster weight optimization compared to e.g. SGD. The only difference in the optimiza-
tion schemes was the learning rates used to train the models. An initial learning rate
of 1x10−3 was used for the 2D-UNet and a learning rate of 5x10−5 was used for the
3D-UNet. Due to the large amount of data, which included several volumes per partic-
ipant, the networks were trained for 20 epochs. The final model for both networks was
saved as the instance where it performed best on the validation set, even if that point
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was reached before the 20 epochs had passed.

3.3.2 2D-UNet specifics

Figure 3.2: 2D-UNet architecture. Blue blocks are feature maps. The height and width show the size
of the maps, while the length indicates the number of channels. Green blocks are feature maps from
the encoder in the same layer. Stacks of three feature maps make up one encoder/decoder block, where
2D convolution, 2D batch normalization and ReLU activation are performed between the feature maps
in each block. The numbers below the cubes indicate the number of channels for each block. Figure
inspired by Han et al. [10].

For the 2D-UNet, the implementation by Milesial was applied [50]. This implementa-
tion was chosen due to its similarity with the 2D-UNet used by Han et al. [10]. The
2D-UNet took 1 input channel and returned 1 output channel (1 slice). The architecture
consisted of an initial double convolution, an encoder-decoder structure with 5 layers
and a final convolution with kernel size 1 (Fig 3.2). Each encoder block consisted of
two sets of convolutions in the following order: 2D convolution, 2D batch normaliza-
tion, followed by an activation function. The convolutions in the encoders increased
the number of channels. The two sets of convolution were followed by a max pooling
operation.

The decoder blocks started with a bilinear upsampling of the output features from the
previous layer. Bilinear upsampling scaled the feature map size by a factor of two and
filled in the blank features using linear interpolation. Skip connections concatenated
the upsampled features with the output from the last convolution in the encoder block
in the same layer. At the end of the decoder, a set of convolutions similar to the ones in
the encoder was used to create the output from the decoder block. The convolutions in
the decoders reduced the number of channels.

The 2D-UNet was altered to fit a regression task by dropping the final softmax activa-
tion before output. Convolutional kernel size, pooling kernel size, activation function
and padding was kept constant for all encoder/decoder blocks (Tab 3.4). For training
of the 2D-UNet, the second data loader created training batches of 90 random slices
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Table 3.4: Hyperparameters of 2D-UNet network.

2D-UNet Hyperparameters
Convolutional kernel size 3x3
Number of trainable parameters 31 036 481
Pooling kernel size 2x2
Padding 1
Activation Function ReLU
Upsampling Algorithm Bilinear
Number of channels per layer 64, 128, 256, 512, 1024

from the participant data in the computer memory. The size of 90 was set due to GPU
memory limitations.

3.3.3 3D-UNet specifics

For the 3D-UNet, the implementation by Adrian Wolny was used (pytorch-3dunet ver-
sion 1.3.9) [51]. This implementation facilitated regression tasks by giving the oppor-
tunity to skip the final sigmoid/softmax activation layers commonly used for segmen-
tation tasks. The 3D-Unet architecture that was used took 1 input channel and returned
1 output channel (1 volume). The encoder-decoder structure of the architecture con-
sisted of 4 layers (Fig 3.3). The encoder blocks in each layer consisted of two sets of
convolutions using the following order for each convolution: group normalization, 3D
convolution, followed by an activation function. The two sets of convolutions were fol-
lowed by max pooling between the encoding layers. Each convolution in the encoder
increased the number of channels.

The decoder blocks started with upsampling of the output feature maps from the pre-
vious layer. Skip connections concatenated the upsampled feature maps and the output
maps from the encoder block on the same layer. The decoder blocs also used two sets
of convolutions of the total concatenated features. The two sets of convolutions in the
decoder blocks followed the same order as in the encoder blocks. Each convolution in
the decoder reduced the number of channels. Convolutional kernel size, pooling kernel
size and padding was kept constant for all layers (Tab 3.5).

The increase and decrease of the feature maps between the encoders and decoders were
performed in steps in the double convolution blocks (Fig 3.3). The size of the feature
maps was increased by half of the output size in the first of the two convolutions and
further increased to the correct output size in the last convolution. The number of
layers, feature maps and kernel sizes were chosen to be kept as the implementation
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Table 3.5: Hyperparameters of 3D-UNet network.

3D-UNet Hyperparameters
Convolutional kernel size 3x3x3
Number of trainable parameters 16 318 691
Pooling kernel size 2x2x2
Padding 1
Activation Function ReLU
Upsampling Algorithm Nearest Neighbor
Number of channels per layer 64, 128, 256, 512

Figure 3.3: 3D-UNet architecture. Blue cubes are one feature map and stacked feature maps represent
feature channels. Green blocks are feature maps from the encoder in the same layer. Groups of feature
channels make up one encoder/decoder block. Group normalization, 3D convolution and ReLU activa-
tion are performed between each block’s feature channels. The numbers beneath the stacks of blocks
indicate the number of channels.

default and not increased due to limitations of GPU memory. For training of the 3D-
UNet, the second data loader created training batches consisting of 1 volume from
the participant data in the computer memory. This size was set due to GPU memory
limitations.

3.3.4 Model selection for processed data

For training of the model on processed data, the 3D-UNet was initialized with the
best weights from the training on unprocessed data. This was done to avoid starting
from scratch with randomly initiated weights in the model training. A model selection
scheme was performed to select a good set of model hyperparameters for this training,
as the starting point differed from the training on unprocessed data.

6 different models with different model/optimization hyperparameters were tested on
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a subset of the training data consisting of 5 volumes per participant in the training set.
Group normalization size of the network, learning rate and weight decay of the opti-
mizer were the tested hyperparameters. As the amount of data and model architecture
were large, a Bayesian Optimization and Hyperband (BOHB) hyperparameter search
algorithm was used [37]. BOHB chooses hyperparameters from an input space of pos-
sible choices (Tab 3.6). All models were trained with the Adam optimizer and with the
3D-UNet hyperparameters in table 3.5.

Table 3.6: Hyperparameters ranges available for BOHB search algorithm

Hyperparameter Hyperparameter space Variable type
Group normalization size 2, 4, 8 Discrete choice
Learning rate 1x10−6 → 1x10−4 Loguniform choice
Weight decay 0.0 → 1x10−3 Loguniform choice

From the hyperparameter ranges (Tab 3.6), the BOHB chose 6 sets of hyperparameters
(Tab 3.7). The search algorithm included early stopping of poorly performing mod-
els. This meant that models that performed poorly on the validation set were dropped
during the model selection process. The model selection process ran with a maximum
number of epochs of 22 for one model. Based on this total number of epochs, the search
algorithm dropped two models at appropriate times during the selection process. After
dropping two models, the BOHB algorithm restarted training for the remaining models.
The algorithm chose epoch number two and six as appropriate times to drop models.
The two worst-performing models at these intermediate epochs were then dropped.
After the 6th epoch, the final two remaining models were then trained for the last 14
epochs and the model that performed best on the validation set after this was chosen
for training on the complete dataset.

Table 3.7: Hyperparameters of models attempted in model selection. GN = Group Normalization

Model GN size Learning rate Weight decay
1 2 2.1714e-05 0.0004888
2 4 1.9387e-06 0.0005063
3 8 3.5720e-06 0.0008863
4 8 3.3545e-05 0.0004613
5 4 6.8463e-06 0.0002887
6 8 2.0852e-06 0.0003865

3.3.5 Network training on processed data

The model that performed best in the model selection scheme was trained using the
same number of epochs and volumes per participant as for the unprocessed data. This
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model was then trained for 20 epochs on the complete training set of 50 volumes per
participant for 156 participants. The model was saved after each epoch if the validation
loss had improved from the previous epoch. The final model was then saved when it
reached its best performance on the validation set.
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3.4 Model evaluation on test set

Several image quality metrics were used to evaluate the performance of the different
models and to examine which model performed best on unseen data. The metrics were
used to compare the 2D-UNet and 3D-UNet for the unprocessed data. The metrics that
were used were: Mean square error (MSE), structural similarity (SSIM), peak signal-
to-noise ratio (PSNR) and signal-to-noise ratio (SNR).

3.4.1 Mean square error

MSE was calculated between ground truth and the different model outputs, as well as
the Looping Star reconstruction. MSE was calculated over all volumes per participant
in the test set. The models were then evaluated on their ability to reduce the MSE of the
Looping Star reconstruction. The MSE calculation was performed using the immse()-
function in MatLab using the following equation [46]:

MSE(x,y) =
1
N

N

∑
n=1

(xn − yn)
2 (3.1)

Here x and y are the corresponding data points in the ground truth and reconstructed
image.

3.4.2 Structural similarity

SSIM was calculated between the first ground truth volume and the first volume from
the different model outputs, as well as from the Looping Star reconstruction. SSIM
gives a value between 0 and 1 based on how structurally similar the two inputs are.
SSIM was calculated in MatLab using the ssim()-function. Equation 3.2 shows the
SSIM equation [52].

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x +µ2

y + c1)(σ2
x +σ2

y + c2)
(3.2)

Here µx is an average of x, σ2
x is a variance of x and σxy is a covariance of x and y. c1

and c2 are small constraints given by: c1 = (k1L)2,c2 = (k2L)2, where L is the dynamic
range of the pixel values. k1 and k2 are constants: k1 = 0.01 and k2 = 0.03 [52].

3.4.3 Peak signal-to-noise ratio

PSNR was calculated between ground truth and the different model outputs, as well
as the Looping Star reconstruction. PSNR was calculated over all volumes for the
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participants in the test set. PSNR was calculated using the psnr()-function in MatLab
as such:

PSNR(x,y) = 10log10

(
PEAK2

MSE(x,y)

)
(3.3)

Here peak is the maximum value possible for the data type of x and y, and MSE is the
mean square error between x and y (Eq. 3.1).

3.4.4 Signal-to-noise ratio

SNR was calculated for the ground truth HCP data, Looping Star reconstruction and
the model outputs. The SNR is the only one of these four image quality metrics that do
not compare the different reconstructions to the ground truth HCP data. The SNR was
calculated for one volume per participant by finding the standard deviation of noise in
four regions of the image with only air (no signal from the brain) and finding the mean
of the signal in an area of the brain. the SNR was then calculated according to equation
3.4.

SNR =
S

SD(N)
(3.4)

Here S is the mean signal while SD(N) denotes the standard deviation of the noise.
SNR was calculated for the first volume in all participants.
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3.5 fMRI analysis

As Looping Star can be a powerful tool in fMRI due to the low acoustic noise, any
evaluation of LS reconstruction methods needs to include an evaluation of the BOLD
signal preservation and the images’ usability in an fMRI analysis. In this project, the
BOLD signal preservation was evaluated by comparing the time-series of individual
voxels in the original HCP data and the LS and 3D-UNet reconstruction. As the net-
works were trained on resting state fMRI data, a seed-based resting-state analysis of
the posterior cingulate cortex (PCC) was performed for all image reconstructions and
compared. The PCC was chosen as it is a part of the default mode network (DMN). the
DMN is a well-known brain network known for showing strongly correlated activity at
rest [53].

3.5.1 Voxel variation correlation

Correlations between the time-series of individual voxels were calculated to look at how
the network performed on time-series data. The correlation between the original HCP
time-series and Looping Star reconstruction time-series as well as the correlation be-
tween original HCP and 3D-UNet reconstruction time-series were calculated for all the
voxels in the brain. The network’s ability to preserve and enhance the voxel variation
was evaluated by comparing the correlation between the time-series of the individual
voxels. The correlation was calculated using the Pearson correlation coefficient, which
measures the linear dependence of two variables:

ρ(A.B) =
1

N −1

N

∑
i=1

(
Ai −µA

σA

)(
Bi −µB

σB

)
(3.5)

Here A and B are the different variables, µ is the variable mean and σ is the standard
deviation of the variable. Before calculating the correlation coefficients, each time-
series was denoised using a simple bandpass filter that removed the contributions of
low frequencies below 0.008 Hz and high frequencies above 0.09 Hz. This was per-
formed in MatLab by removing the contributions of the frequency bins below 0.008 Hz
and above 0.09 Hz.

The voxel variations were displayed for eight voxels in two different example regions
of the brain, one in the PCC and one in the frontal lobe. The region in the frontal
lobe was chosen as this was an area where the deep learning reconstruction performed
worse in the resting state fMRI analysis and thus it could demonstrate weaknesses of
the 3D-UNet reconstruction.
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The number of improved voxel correlations was calculated for all the participants in
the testing set to get a more complete view of network performance across all the par-
ticipants. Correlation maps for four example participants were also displayed to look
for patterns or areas where the 3D-UNet performed well. The correlation maps were
calculated by subtracting the correlation coefficient between Looping Star reconstruc-
tion and original HCP data from the correlation coefficient between 3D-UNet recon-
struction and original HCP data for every voxel in the brain.

3.5.2 Resting state fMRI analyses

The resting state fMRI preprocessing and analyses were performed using the functional
connectivity toolbox CONN [54] (RRID:SCR_009550) release 22.a [55] and SPM [25]
(RRID:SCR_007037) release 12.7771. The following descriptions have been retrieved
from the process log in CONN.

Preprocessing

Functional and anatomical data were preprocessed using a flexible preprocessing
pipeline [27]. Functional and anatomical data were normalized into standard MNI
space, segmented into grey matter, white matter, and CSF tissue classes, and resampled
to 1.6 mm isotropic voxels. This was done using SPM unified segmentation and nor-
malization algorithm [56][57] with the default tissue probability map template. Last,
functional data were smoothed using spatial convolution with a Gaussian kernel of 8
mm full-width half maximum (FWHM).

Denoising

In addition, functional data were denoised using a standard denoising pipeline [27],
followed by bandpass frequency filtering of the BOLD time-series between 0.008 Hz
and 0.09 Hz.

First-level analysis

Seed-based connectivity maps (SBC) were estimated characterizing the spatial pattern
of functional connectivity with a seed area. Seed regions included 164 HPC-ICA net-
works [55] and Harvard-Oxford atlas ROIs [58], but only the connectivity map of the
PCC is included in this thesis. Functional connectivity strength was represented by
Fisher-transformed bivariate correlation coefficients from a weighted general linear
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model (weighted-GLM [27]), estimated separately for each seed area and target voxel,
modeling the association between their BOLD signal time-series.

Group-level analyses

Group-level analyses were performed using a General Linear Model (GLM [27]) for
five participants in the testing set. For each individual voxel, a separate GLM was esti-
mated, with first-level connectivity measures at this voxel as dependent variables, and
groups or other subject-level identifiers as independent variables. Voxel-level hypothe-
ses were evaluated using multivariate parametric statistics with random-effects across
participants and sample covariance estimation across multiple measurements. Infer-
ences were performed at the level of individual clusters (groups of contiguous voxels).
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Results

4.1 K-space downsampling

The dataset of 181 participants from the Human Connectome Project was downsampled
according to the dataset preparation mentioned in section 3.1. The downsampling pro-
cess (described in 3.1.3) results in pairs of images with one HCP rs-fMRI time-series
and one Looping Star time series per participant. Figure 4.1 shows the downsampling
result from one volume from the testing dataset of both the unprocessed and processed
images.

Figure 4.1: Example of one downsampled volume for one test set participant from both the unprocessed
(left) and processed (right) datasets. HCP) Original HCP rs-fMRI data. LS) Image reconstructed from
downsampled k-space according to Looping Star k-space trajectory. The two rows show different image
slices from one volume.

Different reconstruction parameters were attempted to improve the image quality of
the downsampled dataset. The parameter with the most effect on image quality was
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the matrix size of the image and of the reconstruction mask. Reconstructing the im-
age using the original matrix size results in image artifacts that disturbed the imaged
object. Squaring and increasing the image matrix with zero-padded slices pushed this
artifact further out of the FOV. Testing revealed that increasing the image matrix size
to 150x150x150 pushed the artifact adequately outside the brain in the unprocessed
HCP data (Fig 4.2). For processed data, the volume matrix size was increased to
170x170x170 to push the artifact out (Fig 4.3).

Figure 4.2: Reconstruction of emulated Looping Star images using different matrix sizes (Unprocessed
HCP dataset). A) Original matrix size: 130x130x85. B) Squared reconstruction matrix to largest
original dimension: 130x130x130. C) Increased square reconstruction matrix: 140x140x140. D)
Reconstruction matrix further increased to push artifacts out: 150x150x150. All images are cropped
for visualization.

Figure 4.3: Reconstruction of emulated Looping Star images using different matrix sizes (Processed
HCP dataset). A) Original matrix size: 113x136x113. B) Squared reconstruction matrix to largest
original dimension: 136x136x136. C) Increased square reconstruction matrix: 150x150x150. D)
Reconstruction matrix further increased to push artifact out: 170x170x170. All images are cropped for
visualization.

Figure 4.1 shows that the Looping Star reconstructions have a larger general image in-
tensity compared to the HCP data, as the brain in the images looks brighter. However,
this results in less visible contrast between tissues, and the images appear blurred. Re-
construction artifacts and noise also plague the images. It appears that areas in the
Looping Star images with a high signal intensity have a tendency to bleed into neigh-
boring voxels, giving less contrast between voxels.
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4.2 Network training on unprocessed data

Figure 4.4: Training and validation loss during training of 2D-UNet and 3D-UNet. Validation loss is
blue while training loss is yellow. The 2D-UNet losses are represented by dashed lines and triangle
markers. The 3D-UNet losses are represented by solid lines and star markers. MSE = Mean square
error.

2D-UNet

Training of the 2D-UNet on unprocessed data lasted for 38 hours. The training and
validation loss during training shows that the performance of the 2D-UNet converged
early for the training data, as the loss plateaus after only two epochs. The performance
on validation data still improved until the 15th epoch (Fig 4.4). Moving forward, the
instance of the model that performed best on validation data during training was used.
The best performance was achieved after the 15th epoch.

3D-UNet

Training of the 3D-UNet on unprocessed data lasted for 90 hours. The performance
metrics of the 3D-UNet show that the model performed best on validation data after
the 7th epoch (Fig 4.4). The model kept improving the training loss after this, but as
the validation loss did not improve, the model was saved at epoch number 7. Figure
4.4 shows that the distance between the validation and training loss is narrower for the
3D-UNet compared to the 2D-UNet. This suggests that the 3D-UNet model is less
overfitted to the training data compared to the 2D-UNet.
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Figure 4.5: Comparison of unprocessed HCP data to LS data and UNet reconstructions. The figure
shows three different slices from the first volume of one participant from the test set. HCP) Slices from
ground truth HCP volume, LS) Slices from Looping Star volume, 2D-UNet) Slices from 2D-UNet recon-
structed volume, 3D-UNet) Slices from 3D-UNet reconstructed volume. LS - Res) The residual between
the above Looping Star volume and the ground truth HCP, 2D-UNet - Res) The residual between the
above 2D-UNet reconstructed volume and the ground truth HCP, 3D-UNet - Res) The residual between
the above 3D-UNet reconstructed volume and the ground truth HCP.
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4.2.1 Reconstruction results on the test set

Visual inspection of the model reconstructions on the testing set show that both the 2D
and 3D-UNet reduce the image intensity from the Looping Star images, and by sub-
tracting the different reconstructions from the ground truth it is clear that both models
also reduce the error (Fig 4.5).

The performance on MSE, SSIM, PSNR and SNR for each reconstruction and all par-
ticipants in the testing set are presented in table 4.1. MSE, SSIM and PSNR were
calculated using the ground truth HCP data as a reference. This table shows that both
models manage to improve the quality of the Looping Star images on all metrics for all
participants.

Table 4.1: Performance metrics on unprocessed data for 15 testing participants reconstructed with LS,
2D-UNet and 3D-UNet. ↓ indicates that a lower value is better for this metric while ↑ indicates that a
higher value is better. MSE = Mean square error, SSIM = Structural similarity, PSNR = Peak signal-
to-noise ratio, SNR = Signal-to-noise ratio, LS = Looping Star, HCP = Human connectome project, Std
= Standard deviation.

MSE [×10−3] ↓ SSIM [×10−2] ↑ PSNR [dB] ↑ SNR ↑
Participant LS 2D-UNet 3D-UNet LS 2D-UNet 3D-UNet LS 2D-UNet 3D-UNet HCP LS 2D-UNet 3D-UNet
1 3.090 0.076 0.062 24.3 85.7 87.9 15.1 31.2 32.1 147 12 266 207
2 2.443 0.070 0.079 24.2 85.8 87.9 16.1 31.5 31.0 253 11 192 170
3 4.164 0.074 0.053 22.1 86.4 88.2 13.8 31.3 32.8 256 16 320 264
4 3.377 0.096 0.086 25.5 84.2 86.2 14.7 30.2 30.6 271 15 338 263
5 3.431 0.088 0.066 25.3 85.1 87.0 14.7 30.6 31.8 255 13 286 234
6 3.702 0.085 0.063 23.3 84.9 87.6 14.3 30.7 32.0 220 15 262 228
7 3.012 0.068 0.057 24.1 86.6 88.5 15.2 31.7 32.4 303 14 230 252
8 3.639 0.116 0.096 24.3 82.1 84.3 14.4 29.4 30.2 152 10 204 178
9 2.917 0.083 0.073 27.5 84.7 86.3 15.4 30.8 31.3 316 14 309 273
10 3.579 0.086 0.075 23.3 83.7 85.7 14.5 30.6 31.3 199 9 176 170
11 4.181 0.094 0.075 22.3 83.7 86.3 13.8 30.3 31.3 230 11 244 182
12 4.090 0.087 0.080 22.3 85.9 86.5 13.9 30.6 30.9 303 14 313 246
13 3.343 0.098 0.087 25.9 83.7 85.4 14.8 30.1 30.6 208 16 259 237
14 3.779 0.078 0.066 22.1 86.6 88.6 14.2 31.1 31.8 233 14 286 251
15 3.727 0.093 0.075 23.8 84.3 86.5 14.3 30.3 31.3 266 11 206 199
Mean 3.498 0.086 0.073 24.0 84.9 86.9 14.6 30.7 31.4 241 13 259 224
Std 0.490 0.012 0.012 1.6 1.3 1.2 0.64 0.60 0.72 51 2 50 36

Table 4.2: Reconstruction performance on the unprocessed test set. Bold numbers indicate the best
performance for each metric. MSE = Mean square error, SSIM = Structural similarity, PSNR = Peak
signal-to-noise ratio, SNR = Signal-to-noise ratio, HCP = Human connectome project

Reconstruction MSE [×10−3] ↓ SSIM [×10−2] ↑ PSNR [dB] ↑ SNR ↑
Ground truth HCP - - - 241±51
Looping Star 3.498±0.490 24±2 14.6±0.6 13±2
2D-UNet 0.086±0.012 85±1 30.7±0.6 259 ± 50
3D-UNet 0.073 ± 0.012 87 ± 1 31.4 ± 0.7 224±36

Table 4.2 is a summary view of table 4.1 with mean and standard deviation values.
This table shows that the 3D-UNet performs better on MSE, SSIM and PSNR, which
are all of the performance metrics that compare the reconstruction to the ground truth.
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This, along with the visual inspection of figure 4.5 and 4.6 suggest that the 3D-UNet
is better at reconstructing the Looping Star images. The 2D-UNet only performs better
on the SNR, which is the image quality metric that did not use a ground truth image as
reference.

Figure 4.6: Closer look at two examples (a and b) of image details from one example participant in the
test set. The images are from the same participant as figure 4.5. Red squares display the location of the
zoomed-in images 2nd and 4th rows. Green arrows highlight specific anatomical structures for a closer
look. HCP) Slices from ground truth HCP volume. LS) Slices from Looping Star volume, 2D-UNet)
Slices from 2D-UNet reconstructed volume, 3D-UNet) Slices from 3D-UNet reconstructed volume. * -
zoomed) Zoomed in sections of the image above.

The residual plots in figure 4.5 show that the residual from both models is largest at
sharp edges, such as between air and tissue. The residual plots also show that the 2D-
UNet has a more prominent error in large structures of the brain, such as the ventricles,
compared to the 3D-UNet. This is also shown in figure 4.6a, where the green arrows
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show that the 3D-UNet has managed to separate the two ventricles while the 2D-UNet
has not. Figure 4.6b also shows that the 3D-UNet is better at recreating the folds in
the brain. The green arrows point to a section where the 2D-UNet has not managed to
connect the folds while the 3D-UNet has.
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4.3 Network training on processed data

This section details the training and evaluation procedure for the processed dataset. The
SNR result from table 4.2 as well as the theoretical risk of the neural network to adapt
to the EPI artefacts and noise patterns was the motivation for the switch to training
on processed data. For this, the best network on the unprocessed data was used as a
pretrained network that is further optimized. The 3D-UNet was used since it performed
best on the unprocessed training set.

Figure 4.7: Validation loss over 14 epochs for 6 models tested in model selection. Poorly performing
models on the validation set are terminated after two and six training epochs. MSE = Mean square
error, gn = Group normalization, lr = Learning rate, wd = Weight decay

4.3.1 Model selection

The total model selection scheme lasted for 55 hours. Models 3 and 6 (from Tab 3.7)
were dropped after two epochs and models 2 and 4 were dropped after six epochs. The
models were dropped due to low performance on the validation set at the intermedi-
ate epochs (Fig 4.7). Models 1 and 5 were then evaluated after the last model selection
epoch, and model 5 achieved the best validation loss after the model selection scheme.
Based on this result, the best set of hyperparameters was found to be the hyperparame-
ters used by model 5 (Tab 4.3). These hyperparameters were then used to train the final
model on processed data.
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Table 4.3: Hyperparameters of the best-performing model in model selection scheme

Group normalization size 4
Learning rate 6.8463e-06
Weight decay 0.0002887

4.3.2 Training 3D-UNet with best hyperparameters

Training of the optimal model for 20 epochs lasted for 99 hours. The model performed
best on the validation set after epoch number 18 (Fig 4.8). This instance of the model
was then saved for use in image reconstruction. Figure 4.8 show that the validation loss
reaches its lowest point when the training loss has converged and stopped improving.
The graphs show that the training loss improves a lot during the first epochs while the
validation loss does not. This suggests some overfitting to the training data.

Figure 4.8: Training and validation loss of the model with the best-performing hyperparameters from
the model selection. MSE = Mean square error, gn = Group normalization, lr = Learning rate, wd =
Weight decay

4.3.3 Evaluation on test set

As for the unprocessed data, the model performance was evaluated using MSE, SSIM,
PSNR and SNR for all participants (Tab 4.4).
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Table 4.4: Performance metrics on the processed data for 15 testing participants for both LS recon-
struction and 3D-UNet reconstruction. ↓ indicates that a lower value is better for this metric while ↑
indicates that a higher value is better. MSE = Mean square error, SSIM = Structural similarity, PSNR
= Peak signal-to-noise ratio, SNR = Signal-to-noise ratio, LS = Looping Star, HCP = Human connec-
tome project, Std = Standard deviation.

MSE [×10−3] ↓ SSIM [×10−2] ↑ PSNR [dB] ↑ SNR ↑
Participant LS 3D-UNet LS 3D-UNet LS 3D-UNet LS 3D-UNet
1 3.717 0.097 11.6 90.6 14.1 30.1 25 569
2 5.857 0.162 9.0 89.5 12.1 27.9 24 566
3 3.072 0.087 12.5 90.4 15.0 30.6 23 525
4 4.289 0.096 11.7 89.6 13.5 30.2 22 412
5 3.322 0.090 12.0 90.3 14.6 30.5 22 525
6 3.133 0.084 12.0 90.3 14.8 30.7 22 599
7 4.570 0.078 11.4 89.5 13.3 31.1 23 531
8 4.474 0.090 10.4 90.3 13.3 30.5 21 547
9 3.076 0.086 12.9 89.7 15.0 30.7 25 499
10 3.889 0.102 11.2 90.1 13.9 29.9 21 533
11 7.373 0.579 5.6 81.7 11.2 22.4 21 568
12 4.103 0.078 11.0 91.6 13.7 31.1 23 585
13 3.673 0.101 12.1 89.6 14.3 29.9 25 538
14 3.573 0.078 12.0 91.0 14.3 31.1 23 532
15 3.727 0.097 11.5 89.8 14.1 30.1 24 619
Mean 4.123 0.127 11.1 89.6 13.8 29.8 23 543
Std 1.153 0.127 1.8 2.3 1.05 2.19 1 48

Table 4.5: Reconstruction performance on processed test set for the LS reconstruction and the 3D-UNet
reconstruction. MSE = Mean square error, SSIM = Structural similarity, PSNR = Peak signal-to-noise
ratio, SNR = Signal-to-noise ratio, HCP = Human connectome project.

Reconstruction MSE [×10−3] ↓ SSIM [×10−2] ↑ PSNR [dB] ↑ SNR ↑
Looping Star 4.12 ± 1.15 11 ± 2 13.8 ± 1.1 23 ± 1

3D - UNet 0.13 ± 0.13 90 ± 2 29.8 ± 2.1 543 ± 48

The summary view of the performance metrics (Tab 4.5) shows that the 3D-UNet re-
construction succeeds in reducing the reconstruction errors from the Looping Star re-
construction and performs better in every metric. The network reduces the MSE be-
tween the Looping Star images and the ground truth with 97%.

By comparing the SNR results on unprocessed (Tab 4.2) and processed data (Tab 4.5),
it is clear that the network trained on processed data reduced the image noise to a larger
extent. The noise reduction is also visible in figure 4.9 where the residual plots show
that the residuals outside the brain are close to zero. As for the unprocessed data, the
majority of the error in the 3D-UNet reconstruction appears in the edges of large struc-
tures, such as between the brain and air and the edges of the ventricles.
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Figure 4.9: Comparison of processed HCP data to LS data and 3D-UNet reconstruction. The figure
shows three different slices from the first volume of one participant from the test set. HCP) Slices
from ground truth HCP volume, LS) Slices from Looping Star volume, 3D-UNet) Slices from 3D-UNet
reconstructed volume. LS - Res) The residual between the above Looping Star volume and the ground
truth HCP. 3D-UNet - Res) The residual between the above 3D-UNet reconstructed volume and the
ground truth HCP.
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The residual plots for the Looping Star reconstruction in figure 4.9 show that the large
structure edges (e.g. the ventricles) are among the places where most of the information
is lost between ground truth and Looping Star reconstruction. This may suggest that
much of the information in these areas were blurred during the downsampling and
Looping Star reconstruction process, making it difficult for the network to accurately
reconstruct these areas.

Figure 4.10: Closer look at some image details from the image comparison in figure 4.9 that are im-
proved by the network. The images are from the same participant as figure 4.9. Red squares in the 1st
and 3rd rows display the location of the zoomed-in images (2nd and 4th rows). Green arrows point to
specific anatomical structures that are improved by the network. HCP) Slices from ground truth HCP
volume, LS) Slices from Looping Star volume, 3D-UNet) Slices from 3D-UNet reconstructed volume.

Figure 4.10 and 4.11 shows highlighted results from one participant in the testing set.
Figure 4.10 shows examples where the network accurately reconstructs detailed struc-
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tures. Figure 4.11 shows examples where the network is not able to reconstruct the
details, and the low-contrast details from the ground truth data are not recovered. All
the examples show that the network output is more smoothed than the ground truth.

Figure 4.11: Closer look at some image details from the image comparison in figure 4.9 that are not
completely recovered by the network. The images are from the same participant as figure 4.9. Red
squares in the 1st and 3rd rows display the location of the zoomed-in images (2nd and 4th rows). Red
arrows point to specific detail in the images that are not recovered by the network. HCP) Slices from the
ground truth HCP volume, LS) Slices from the Looping Star volume, 3D-UNet) Slices from the 3D-UNet
reconstructed volume.
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4.4 fMRI analysis

4.4.1 BOLD variance comparison

This section contains the result of the voxel time-series correlations for the three dif-
ferent image reconstructions: fully sampled HCP data, downsampled Looping Star
reconstruction and reconstruction by the 3D-UNet.

Figure 4.12: Voxel variations in four neighboring voxels located in the PCC. The visualization uses a
moving average over 10 data points. HCP) Human connectome project data, LS) Looping Star data,
3D-UNet) 3D-UNet reconstructed data.

Figure 4.12 shows the time-series variation in four neighboring voxels in a region in the
PCC that shows activation in all the different image reconstructions during the resting-
state fMRI analysis (section 4.4.2). These graphs show that all three reconstructions
have similar variation over time for all four voxels, and the graphs seem to correlate.
This is also expressed in table 4.6a. Table 4.6a shows that the Looping Star and UNet
reconstructions have some degree of correlation to the ground truth HCP variation,
but the LS reconstruction is more strongly correlated in these four voxels. Although
being less correlated in total, the UNet reconstruction does improve on some activation
peaks. The UNet reconstruction manage to retain a lot of the information from the LS
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reconstruction in these voxels, as is shown by the strong correlation between the UNet
and LS reconstructions.

Table 4.6: Pearson correlation coefficient between voxel variation graphs for 8 voxels from two different
regions in one subject from the testing set. Bold numbers indicate which reconstruction achieved the
strongest correlation to the original HCP data for each example voxel. PCC = Posterior cingulate
cortex, LS = Looping Star, HCP = Human connectome project

a) Figure 4.12 Pearson correlation coefficient

PCC voxels LS & HCP UNet & HCP UNet & LS

1 0.71 0.70 0.84
2 0.68 0.67 0.86
3 0.75 0.68 0.91
4 0.60 0.56 0.88

b) Figure 4.13 Pearson correlation coefficient

Frontal lobe voxels LS & HCP UNet & HCP UNet & LS

1 0.13 -0.02 0.14
2 0.15 0.11 -0.05
3 0.47 0.11 0.40
4 0.38 0.20 0.08

Figure 4.13: Voxel variations in four neighboring voxels located in the frontal lobe (right hemisphere).
The visualization uses a moving average over 10 data points. HCP) Human connectome project data,
LS) Looping Star data, 3D-UNet) 3D-UNet reconstructed data.
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Figure 4.13 shows the time-series variation in four neighboring voxels in a region in the
frontal lobe. Both figure 4.13 and table 4.6b demonstrate a low correlation between the
UNet reconstruction and the two other time-series, and the UNet reconstruction makes
no apparent improvements. Even correlations between UNet and LS are low, and the
variation in the UNet reconstruction seems to be somewhat random. Low correlation
between LS reconstruction and ground truth HCP may suggest that a lot of the BOLD
variation is lost in the downsampling and any remaining variation is seen as noise by
the neural network.

Figure 4.14: Percentage of voxel correlations improved by the 3D-UNet in the test set participants. LS
= Looping Star

Figure 4.14 shows the percentage of voxel time-series correlations that were improved
by the 3D-UNet. The correlations have only been calculated for the voxels that contain
signal from the brain in the original HCP data. This figure shows that the proportion of
voxel time-series correlations that are improved by the 3D-UNet for the test set is con-
sistent between participants and stays between 20% and 40%. However, these values
show that the 3D-UNet reconstruction fails to improve on the majority of the correla-
tions, as most time-series get reduced correlation after the deep learning reconstruction.

Figure 4.15 shows maps of the difference in correlation coefficient for the voxel time-
series in four participants from the test set. As figure 4.14, figure 4.15 also demonstrates
that the Looping Star reconstruction had a stronger correlation in the majority of the
voxels (blue areas in the maps). However, there are areas in the correlation maps that
display a stronger correlation for the 3D-UNet reconstruction. One visible pattern is
that the 3D-UNet reconstruction achieves a stronger correlation in the ventricles, as
they are visible as yellow or green in the correlation maps (Fig 4.15). Other areas in
the maps also show that the 3D-UNet achieved equal, and sometimes even stronger
correlation to the voxel time-series of the HCP data. But apart from the improved cor-
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relation in the ventricles, there are no apparent patterns in the figure on the strengths or
weaknesses of the 3D-UNet reconstruction.

Figure 4.15: Maps showing the difference in correlation between 3D-UNet reconstruction and LS re-
construction for four test set participants. P denotes the participant number from the testing set. The
maps are created by subtracting the correlation coefficient between LS time-series and original HCP
time-series from the correlation coefficient between 3D-UNet reconstructed time-series and HCP time-
series for every voxel. Which of the models that perform best on each individual voxel is displayed
using the color range from the color bar. The bar furthest to the right display which color range indi-
cate better performance for the 3D-UNet (3D-UNet > LS) or the LS (LS > 3D-UNet). LS = Looping
Star.

4.4.2 Resting state fMRI - Single participant analysis

This section contains the result of the seed-to-voxel analysis for one example partici-
pant in the testing set. The displayed results (Fig 4.16, 4.17 and 4.18) show the brain
voxels that are connected with the posterior cingulate cortex (PCC) of the default mode
network (DMN) through correlated BOLD fluctuations. This is also referred to as acti-
vation.
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Figure 4.16: Seed to voxel analysis of the posterior cingulate cortex (PCC) for one example participant
in the testing set for the original HCP data. The threshold for visualization is set to 0.4. z is the
slice number from the center slice. The bright colors (yellow and orange) show areas with a positive
correlation to the PCC. Dark colors (blue and purple) show areas with a negative correlation.

Figure 4.17: Seed to voxel analysis of the posterior cingulate cortex (PCC) for one example participant
in the testing set for the Looping Star reconstruction. The threshold for visualization is set to 0.4. z is
the slice number from the center slice. The bright colors (yellow and orange) show areas with a positive
correlation to the PCC. Dark colors (blue and purple) show areas with a negative correlation.

Figure 4.18: Seed to voxel analysis of the posterior cingulate cortex (PCC) for one example participant
in the testing set after 3D-UNet reconstruction. The threshold for visualization is set to 0.4. z is the
slice number from the center slice. The bright colors (yellow and orange) show areas with a positive
correlation to the PCC. Dark colors (blue and purple) show areas with a negative correlation.

Figure 4.16, 4.17 and 4.18 show that for all three datasets (original HCP data, LS re-
construction and 3D-UNet reconstruction respectively), the largest group of correlated
voxels were located in an area close to the PCC. The 3D-UNet reconstruction had fewer
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correlated voxels compared to the original HCP data and the Looping Star reconstruc-
tion.

Figure 4.17 shows that the Looping Star reconstruction of the example participant had
a larger area of correlated activity close to the PCC than the ground truth data. The
3D-UNet reconstruction reduced some of this activation from the Looping Star data
in areas where it was not present in the ground truth HCP data. This resulted in an
activation pattern from the 3D-UNet reconstruction that more closely resembled the
pattern in the ground truth HCP data in many slices. However, The 3D-UNet has also
suppressed some activation patterns from the Looping Star data that were accurate rep-
resentations of the ground truth data. This is visible in slice z = 50 in figure 4.16, 4.17
and 4.18 where the activated areas in both hemispheres in the frontal lobe are smaller
in the 3D-UNet reconstruction.

The 3D-UNet also managed to reduce some of the negative correlations introduced
in the Looping Star reconstructions. These negative correlations can be seen in figure
4.17 as blue and purple spots of activation. The 3D-UNet image in figure 4.18 show
fewer of these spots, and some are reduced to smaller sizes. Furthermore, the 3D-UNet
has managed to retrieve some of the correlations that were lost in the Looping Star
reconstruction. One example of this can be seen in the frontal lobe in slice z = 6.

4.4.3 Resting state fMRI - Group-level analysis

This section shows the result of the group-level seed-to-voxel analysis for five partici-
pants in the testing set. The displayed results (Fig 4.19, 4.20 and 4.21) show the brain
regions that have BOLD fluctuations that correlate with those of the posterior cingulate
cortex (PCC) of the default mode network (DMN) on a group level.
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Figure 4.19: Group-level Seed to voxel analysis of the posterior cingulate cortex (PCC) for 5 partici-
pants in the testing set for the original HCP data. z is the slice number from the center slice. The bright
colors (yellow and red) show areas with a positive correlation to the PCC. Dark colors (blue and pur-
ple) show areas with a negative correlation.

Figure 4.20: Group-level Seed to voxel analysis of the posterior cingulate cortex (PCC) for 5 partici-
pants in the testing set for the Looping Star reconstruction. z is the slice number from the center slice.
The bright colors (yellow and red) show areas with a positive correlation to the PCC. Dark colors (blue
and purple) show areas with a negative correlation.

Figure 4.21: Group-level Seed to voxel analysis of the posterior cingulate cortex (PCC) for 5 partici-
pants in the testing set after 3D-UNet reconstruction. z is the slice number from the center slice. The
bright colors (yellow and red) show areas with a positive correlation to the PCC. Dark colors (blue
and purple) show areas with a negative correlation.

As with the single participant analysis, the 3D-UNet reconstruction show reduced ac-
tivity correlation compared to the original HCP data and the LS reconstruction in the
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group-level analysis (Fig 4.19, 4.20 and 4.21). In this analysis, the increased area of ac-
tivation of the Looping Star (shown in figure 4.17) has been suppressed, implying that
it was the result of noise in the Looping Star data. Apart from the area closest to the
PCC, many areas of correlation in the HCP data (Fig 4.19) did not appear in the analy-
sis of Looping Star data (Fig 4.20).

The group-level analysis of the 3D-UNet reconstructions revealed that these correlated
regions have not been recovered by the deep learning reconstruction (Fig 4.21). The
analysis of the 3D-UNet reconstruction from figure 4.21 also shows reduced activa-
tion in the area close to the PCC compared to the Looping Star reconstruction. The
3D-UNet did produce some small spots of correlated activity that corresponded with
the analysis on HCP data, which the analysis on Looping Star data did not show. These
were two small areas visible in slice z = -14 and one area in the frontal lobe in slice
z = 2 (Fig 4.19, 4.20 and 4.21). However, the 3D-UNet has also produced spots of
activation that were not present in either of the two other datasets.
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Chapter 5

Discussion

The main motivation behind this master project was to explore the potential of lever-
aging deep learning reconstruction methods for the Looping Star sequence which have
an application to silent imaging. As the Looping Star sequence facilitates fMRI ac-
quisition, one of the objectives was also to examine what a DL reconstruction does
to the small signal variations in fMRI. The work included data preparation by emula-
tion of the Looping Star signal acquisition by the use of k-space resampling according
to a Looping Star k-space trajectory. The resampling was done for 7T rs-fMRI data
from the Human Connectome Project. The resampled data was then used to train deep
neural networks with the goal of removing noise and artifacts from the Looping Star
reconstruction. The neural networks were variations of the UNet [40] with both 2D and
3D convolutions and were trained using PyTorch [47]. The 2D and 3D networks were
tested on an unprocessed dataset from HCP and the best of these were then trained on
a processed dataset. The processed results were evaluated both with standard image
quality metrics and through fMRI analysis.

In summary, this project developed and evaluated a neural network for Looping Star
fMRI image reconstruction. The 3D-UNet outperformed the 2D-UNet in effectively
reducing global artifacts and noise in the Looping Star images. Furthermore, the deep
neural network demonstrated the potential to retain some BOLD signal variations, in-
dicating promise for deep learning reconstruction in fMRI analysis. In this chapter, the
results of the work in this project are discussed. The section will also discuss the lim-
itations and potential errors of the proposed methods and provide some comments on
future work.
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5.1 Evaluation of the methodology

5.1.1 Data and dataset preparation

7T resting-state fMRI data from the human connectome project was used for this
project. One of the motivations behind the project was to increase the usability of
the Looping Star sequence in fMRI, e.g. in resting state examinations of schizophrenic
patients without the presence of acoustic noise. This motivation was the reason why
deep learning reconstruction was attempted for fMRI data.

7T data provides a lot of information for the networks to train on, and this was the ma-
jor reason for choosing the 7T data for this project. By training on 7T data, the network
learns from the best data available from the HCP. This would allow the networks to
learn from the image detail present in the data. The HCP also has data from 3T ex-
periments. Including 3T data in the network training pipeline could be favorable to
training on one dataset only as the two datasets would increase data diversity, leading
to more generalizable networks. Many open datasets exist, and many dataset combi-
nations could be attempted during training to improve network performance. Training
networks on many combinations of large datasets require a lot of storage space and
computing power and is outside the scope of this project.

Unprocessed vs Processed data

The unprocessed data from the Human Connectome Project consist of images taken
using the EPI sequence without any processing. The EPI sequence introduces certain
artifacts like Nyquist ghosts, chemical shifts and image distortions [59]. Many of these
artifacts are created as a result of the heavy use of gradients through e.g. eddy currents,
and would not be present in sequences like Looping Star. These artifacts are removed in
processing pipelines like the one used by the HCP [44]. The main motivation for train-
ing on processed data was to avoid learning EPI artifacts that could later be added to
images acquired with different sequences. The switch from unprocessed to processed
data was made during the work in this project, but the results on unprocessed data have
still been included as they provide interesting results that have affected the choices of
methodology on processed data. The major finding that affected the work on processed
data was the discovery of the 3D-UNet as the better model for this reconstruction case.

One potential issue with the processed dataset is that the image-processing pipeline has
removed some of the heterogeneity of the processed dataset. The spatial distortions in
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the unprocessed dataset provide more data diversity. One result of the processing is
therefore a more homogeneous dataset. Despite this, it was decided that the processed
dataset is more representative of a Looping Star acquisition, which was the most impor-
tant criterion for this project. The inclusion of data augmentation also helps mitigate
the homogeneity of the processed dataset.

Image downsampling and Looping Star reconstruction

As mentioned above, the most important aspect of the choice of datasets was how rep-
resentative the data was of real Looping Star data. This was also the case when it came
to the downsampling of the HCP data and reconstruction of the downsampled k-space
samples. Reconstructing the downsampled k-space using small matrix sizes resulted in
image artifacts that affected the brain by shading large areas (Fig 4.2 and 4.3). These
reconstruction artifacts are not typical of a Looping Star reconstruction and are proba-
bly a result of the downsampling and reconstruction process. Therefore it was decided
that the best course of action was to attempt to decrease the impact of the artifact as
much as possible. Different reconstruction parameters in MIRT [45] was attempted, but
ultimately the best effect was achieved by increasing the image matrix by zero padding
to push the artifacts outside of the brain. The zero padding was not visible by the net-
works as the images were cropped to smaller sizes before training.

Due to the low number of k-space samples acquired by the Looping Star sequence, the
image quality of the reconstructed images is quite poor. The amount of image detail that
is visible in the images is lower than in most other deep learning reconstruction studies,
as these focus on slice-by-slice subsampling. This limitation on the image quality will
also put limitations on the performance of the neural networks. For this project, it was
decided that minimal image processing after the Looping Star reconstruction would
be performed to make the pipeline from k-space data to deep learning reconstruction
as short as possible. Future work with this methodology should explore different re-
construction techniques for 3D non-Cartesian k-space with the goal of improving the
image quality of input data. There are few established tools for reconstructing 3D
non-Cartesian MRI, and only MIRT [45] was used in this project. The RIESLING
toolbox [60] is also available for 3D non-Cartesian MRI and includes NUFFT by grid-
ding which is a good alternative to the conjugate phase reconstruction done in MIRT.
Gridding to a Cartesian k-space could also enable other deep learning reconstruction
techniques such as deep learning k-space interpolation [61].
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5.1.2 Network architectures

The main objective of this project was the implementation of a deep neural network for
the Looping Star sequence and a following examination of its usability. Studies have
shown that deep neural networks, specifically convolutional neural networks built on
the UNet have performed well in the reconstruction of accelerated MRI with both radial
and Cartesian subsampling [10][62][63], as well as for the removal of streaking artifacts
in CT [64]. The encoder-decoder structure of the UNet makes it good for extracting
large features in the input images. As the reconstruction artifacts from undersampled
k-space affect the entire image, it becomes more effective to use an encoder-decoder
structure instead of back-to-back convolutions without pooling and upsampling.

One common approach when training neural networks, and specifically CNNs for un-
dersampled data is to use 2D networks that consider each slice separately. This has
been shown to work well for the case where each slice is subsampled separately. E.g.
through subsampling each slice radially such that the full k-space becomes a cylinder of
radially undersampled disks, one per slice. As figure 3.1 shows, this is not the case for
the Looping Star sequence. In the Looping Star k-space, all the radial disks are rotated
in k-space so that the edge of k-space form a sphere rather than a cylinder. This will
result in reconstruction artifacts that, unlike the artifacts for a stack of radial disks, will
affect the entire volume. For cylinder-shaped k-space, the k-space trajectory for each
slice is uniform, making the reconstruction artifacts similar for each slice. This was
the motivation behind attempting a 3D-UNet as well as a 2D-UNet for this task. The
3D-UNet was a modified version of a network used for image segmentation. Not much
research has been done on the use of 3D models for image reconstruction. Some stud-
ies have been performed with the aim of scan acceleration from Cartesian subsampling
using 3D models [65][66]. Few studies look at 3D models for non-Cartesian subsam-
pling [61] and, to the best of available knowledge, no studies have been done with the
use of 3D models for whole-volume non-Cartesian sampling.

As mentioned in section 3.3.2, the 2D-UNet architecture by Milesial [50] was chosen
for its similarity to the one used by Han et al. [10]. As there are few articles detail-
ing a similar usage of a 3D-UNet for reconstruction tasks, the 3D network architecture
by Wolny et al. [51] was kept in its default state. This meant that the trained networks
had certain differences such as operation order, depth and number of feature maps per
encoder/decoder block. More extensive hyperparameter optimization can be run to de-
termine which configurations of the 3D-UNet perform best for an image reconstruction
case.
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Other image reconstruction tasks often use a residual path, that involves adding the
network input to the output [10][61][67]. This results in a network that only learns
the residuals between input and ground truth. This was not done for this project. The
reason for this is that the result of the non-Cartesian reconstruction of the Looping Star
data by conjugate phase reconstruction is very different from the fully sampled HCP
images. As a result, the residuals are large compared to those from the cited studies.

5.1.3 Network training

Unprocessed data

For training of the 2D-UNet, network architecture and hyperparameters were inspired
by Han et al. [10]. The initial idea for the project was to use the same hyperparame-
ters for the 3D-UNet for comparability. After a test run, it was clear that the 3D-UNet
did not converge over the 20 epochs with a learning rate of 1×10−3. The learning rate
was therefore decreased for the 3D-UNet on a second run which yielded better conver-
gence on the validation set and better reconstruction results. The new learning rate of
5× 10−5 was chosen as it was in the mid-range of the learning rate schedule used by
Han et al. The loss during training (Fig 4.4) showed that both models converged on
validation loss during training, but more extensive hyperparameter optimization could
be performed, as is done for the processed data. The Adam optimizer was used instead
of SGD as it performs individual learning rate optimization for the parameters.

The initial idea for data loading during training was to load volumes and slices ran-
domly from all the training set participants. This turned out to be impractical for train-
ing the 2D-UNet as the image data for each participant would need to be loaded each
time a single image slice was randomly chosen by the data loader. This meant that
every participant’s data would be loaded 450 times per epoch as each subject had 50
volumes with 90 slices in each volume. As the loading time for one participant’s data
was not insignificant this would drastically increase training time. Therefore it was
decided that the better approach was to load every participant’s data once per epoch
and train on batches of several random participants. This was also done when training
the 3D-UNet for similarity. The data augmentation was performed after the participant
data was loaded into computer memory. This meant that the training was performed
on a subset of participants whose data was randomly loaded to the network, includ-
ing augmented data. This was performed to avoid issues when splitting the dataset into
training and validation datasets, as adding augmentations before loading would not split
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the data by participant only, but by participant and participant augmentations. The two
datasets would then most likely contain data from the same participants, only with aug-
mentations.

Similar deep learning studies for image tasks usually train for more than 20 epochs, and
often the number of epochs is in the hundreds [10][61]. The number of training epochs
was chosen with the large amount of training data in mind. With 50 volumes per partic-
ipant, every participant’s data was seen by the network 1000 times over the 20 epochs.
The graphs in Figure 4.4 give a reduced view of the training process. The majority of
the loss reduction happens in the first epoch, and saving the loss per batch could give
a better view of the training process. Both the training graphs for the 2D-UNet and
the 3D-UNet show some degree of overfitting as the training loss improves where the
validation loss does not. By saving the instances of the models that perform best on
validation data, the degree of overfitting is as low as possible.

The number of volumes to downsample for every participant in the training set was a
topic of discussion before training. 50 volumes were chosen as a good compromise
between voxel variation and the number of epochs. Training on all 900 volumes per
participant would provide more variation, but it would make for impractical training.
With the batch loading process mentioned above, training on all 900 volumes would
reduce the batch size and the network would then train on only one or two participants
at a time. Passing 900 volumes from one participant to the network at a time would
likely result in overfitting. The number of epochs would also need to be reduced to
avoid training for weeks. The goal of training on more downsampled volumes per
participant was to let the network see similar volumes with different voxel variations
that would be the result of a varying BOLD signal. 50 consecutive volumes were chosen
to try to limit the volume variations to mainly voxel variations, and not variations as
a result of head motion. Choosing 50 evenly spaced volumes would give 18 seconds
between each volume, increasing the probability of motion between the volumes.

Processed data

The data loading process was kept unchanged when moving from training on unpro-
cessed to processed data. As the processed network would be the final network, a more
extensive hyperparameter optimization was run to avoid sacrificing model performance
due to poor hyperparameters. The hyperparameter ranges for learning rate and weight
decay was chosen based on other deep learning reconstruction studies [10][52][61].
The choices of group normalization rate were set between the default network value of
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8 and lower. The BOHB search algorithm was chosen as it was suggested by the Ray
Tune library for problems with large models and a small number of hyperparameters
[48]. BOHB would give good configurations after only a few trials and included early
stopping that would reduce the training time [48]. The searching process only used five
volumes per participant in an effort to reduce the extensive training time that would be
necessary to train all models on 50 volumes per participant. The best model was chosen
as the one that improved its validation score fastest.

5.1.4 fMRI analysis

For the fMRI analysis, it is worth discussing to what degree the downsampled Looping
Star data can accurately simulate a Looping Star acquisition. The temporal resolution
of the data from the HCP is one second per volume, while the temporal resolution that
has been achieved for Looping Star is just under three seconds [6].

Several approaches were considered to make the fMRI analysis comparison as accu-
rate as possible. Two of the proposed approaches attempt to artificially reduce the
temporal resolution of the Looping Star data by reducing the number of volumes in
the timeseries. One approach would be to only consider every third volume in order to
simulate a temporal resolution of approximately three seconds. The second approach
would combine three consecutive volumes by taking the mean value for each voxel
across the three volumes. Both of these approaches would reduce the number of vol-
umes and artificially reduce the temporal resolution. However, as the volume repetition
time is limited by the amount of time it takes to acquire the signal for one volume,
the second approach could be considered more realistic as it would combine the signal
from the three consecutive time points.

Other studies have looked at the differences between Looping Star and EPI in fMRI
acquisition [1][2] and therefore this was not of importance in this project. The main
purpose of the fMRI analysis in this project was to compare the Looping Star recon-
struction to the deep learning reconstruction. As the deep learning reconstruction is
applied after the reconstruction of the Looping Star images, the most important re-
quirement in the comparison of the two reconstructions is that they should have an
equal temporal resolution. Therefore it was ultimately decided that the time series of
the two reconstructions would not be changed to fit better into the actual temporal res-
olution of the Looping Star sequence. However, it should be noted that this can result
in a Looping Star fMRI analysis that performs better in comparison to the ground truth
data.
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5.2 Result evaluation

The main objective of this project was the implementation of a deep neural network
for the Looping Star sequence and a following examination of its usability. This is first
explored in Section 4.2. In this section, a 2D-UNet that reconstructs each slice in the
Looping Star volumes separately is compared to a 3D-UNet that reconstructs the entire
volume through 3D convolutions. In section 4.3, this is expanded upon by training a
3D-UNet for processed data which is evaluated in an fMRI setting in section 4.4.

5.2.1 Network training on unprocessed data

Figure 4.4 displays the training progress for both the 2D-UNet and the 3D-UNet mod-
els trained on unprocessed data. Notably, the 3D-UNet had lower validation loss than
the 2D-UNet throughout the entire training process. The 2D-UNet had a lower training
loss for all 20 epochs. An interesting observation is the substantial difference between
the training and validation loss of the 2D-UNet, suggesting a higher level of overfitting
to the training data when compared to the 3D-UNet, which displayed a smaller differ-
ence. This may suggest that the 2D-UNet has learned the expected appearance of a
brain instead of learning noise or artifact patterns.

Additionally, it is worth noting the large difference in training times between the two
models. The training time for the 3D-UNet was more than double the training time of
the 2D-UNet. Both networks were trained on the same dataset for an equal number of
epochs, indicating that the increased training time is likely attributed to the higher com-
putational load during backpropagation. Surprisingly, the 3D-UNet achieved its lowest
validation loss after only 7 epochs, despite training for an additional 13 epochs there-
after. Different hyperparameter configurations could yield further improvement during
the last epochs, leading to even better model performance. This consideration holds
true for both models, and future work could involve an even more extensive model
selection scheme to enhance the overall outcomes.

5.2.2 2D-UNet and 3D-UNet evaluation on unprocessed data

The findings presented in section 4.2 demonstrate that both the 2D-UNet and the 3D-
UNet managed to reduce the error and increase the similarity with the ground truth
(Tab 4.2). Notably, in this image reconstruction task, the 3D-UNet outperformed the
2D-UNet across all metrics that compared the network output to the ground truth. Sur-
prisingly, the 3D-UNet achieved superior performance despite having nearly half the
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number of trainable parameters compared to the 2D-UNet (Tab 3.4 and Tab 3.5). These
results suggest that leveraging information from neighboring slices and features is more
effective than extracting more features per slice when employing deep learning for
Looping Star image reconstruction. Furthermore, the utilization of 3D convolutions in
the network allowed for better learning and identification of global artifacts and noise
patterns that varied among image slices. One conclusion that can be drawn from this is
that the shape of the k-space trajectory and the artifacts it produces should be consid-
ered when deciding on a network architecture.

Visual inspection of the image reconstructions affirms the result from the image quality
metrics. The 3D-UNet was superior in accurately reconstructing anatomical structures
and effectively assembling signals into cohesive structures (Fig 4.6). Both networks
managed to reduce the overall noise in the images. Despite doing a good job of re-
moving much of the error in the images, none of the networks were perfect. Figure
4.5 demonstrate that both networks struggled the most with the edges between tissues
with different intensities. The figure shows that areas like the ventricles and folds have
large errors in the DL reconstructions. However, as before, the 3D-UNet was better
at reducing the error in large structures. This is visible in figure 4.5 where the error
in the ventricles is less visible in the residual plots from the 3D-UNet reconstruction.
Furthermore, a lot of the fine detail from the ground truth data was lost after k-space
downsampling and has not been recovered by the networks. The result of this is that the
images reconstructed by the networks have been smoothed. Both networks also strug-
gled to reconstruct low-contrast differences in the images, as much of this has been
conceived as noise and removed. These issues may be attributed to the poor quality of
the Looping Star images that make up the training set.

The 2D-UNet only performed better than the 3D-UNet on the SNR, which does not
compare the images to the ground truth data. On this metric, the 2D-UNet even per-
formed better than the ground truth data. The 3D-UNet had a performance that was
closer to the value of the ground truth. This may suggest that the 3D-UNet network
was more adapted to the noise in the image than the 2D-UNet. This was one of the
motivations for also training a 3D-UNet for processed data. A network trained on pro-
cessed data will not have learned EPI artifact patterns and the danger of adding artifacts
to the images is mitigated.
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5.2.3 Processed UNet evaluation

The 3D-UNet trained on the processed dataset performed similarly to the network
trained on unprocessed data. The major difference was the signal-to-noise ratio, where
the network trained on processed data performed significantly better (Tab 4.5). This
was likely due to the denoising that is performed during the processing of the dataset,
as the data used as ground truth during training has practically no noise in the areas
outside the brain. Thus the high SNR could be somewhat artificial as the real SNR of
the input data is not known, and the denoising performed during the dataset processing
may have more of an effect outside the brain.

Many of the same notes on the image quality of the deep learning reconstructions can
be made for the network trained on processed data as those trained on unprocessed.
Overall image quality was increased (Tab 4.5) and quite a lot of image detail were
recovered (Fig 4.9 and Fig 4.10). The residual plots in figure 4.9 demonstrate that the
largest reconstruction error was located in high-contrast areas, such as the edges around
the ventricles. The highlighted areas in figure 4.10 show that a surprising amount of
detail has been recovered. These details are not easily visible in the Looping Star
images, and it is difficult to say if these details are learned anatomical structures or
if they stem from image contrast that is not visible. The UNet output also appears
smoothed compared to the ground truth and some fine detail has been lost (Fig 4.11),
as for the unprocessed data.

5.2.4 fMRI evaluation

Very few studies have looked at the effect of deep learning reconstruction on the BOLD
variation in fMRI data. Keyword searching in PubMed on the keywords "deep learning
fMRI reconstruction" only reveals one study that has looked at using self-supervised
learning for accelerated fMRI [68]. PubMed is the largest database of medical research
publications. The BOLD signal in fMRI is very small, even <1% in some studies [18].
Therefore, one major worry with using neural networks for an image-to-image recon-
struction task was that the networks would remove any voxel variation between the
volumes. The mean square error between the original HCP data and Looping Star re-
construction was large (Tab 4.5), making the task of reducing unwanted noise, while
still preserving the BOLD variations, challenging. Despite this, the results in section
4.4 show that some BOLD signal has been preserved and even improved in some cases.

Table 4.14 shows that not much of the lost voxel variance information for individual
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voxels was recovered by the deep neural network and that the Looping Star reconstruc-
tion had a stronger correlation on the majority of the voxel time-series. Figure 4.14
shows that the performance across the testing set was stable, with few outliers in terms
of the number of improved voxel variance. Figure 4.15 shows that a lot of the improved
correlation was located in the ventricles of the test set participants. The ventricles con-
sist of CSF [67] and contribute nothing to the BOLD signal. Increased correlation in
this area can be a result of denoising performed by the 3D-UNet, which shows that the
network managed to reduce the noise that was introduced by the downsampling and
Looping Star reconstruction. No other clear performance patterns can be observed in
figure 4.15, which suggests that the network contained no significant bias toward cer-
tain anatomical structures.

The fMRI analysis of a seed in the default mode network (posterior cingulate cortex)
shows that the neural networks preserved enough of the BOLD variation to still show
activation in a single participant analysis (Fig 4.18). One interesting observation is that
for the Looping Star, the activated area close to the PCC shows correlated activity in
more voxels than the ground truth data (Fig 4.16 and 4.17). This is likely attributed to
an effect of the Looping Star reconstruction as the areas did not show a correlation in
the fully sampled ground truth data. As mentioned in section 4.1, the signal from high-
intensity voxels in the Looping Star images appears to bleed into neighboring voxels.
This may be the cause of the increased activation. The 3D-UNet managed to suppress
this effect, which is visible in the single participant analysis of the 3D-UNet recon-
struction in figure 4.18. It is difficult to say if this is attributed to the learned patterns
in the network or if it has resulted from the general smoothing of the 3D-UNet recon-
structed images. Either way, it can be considered a perk that the network manages to
reduce unwanted noise in the time-series.

Figure 4.16, 4.17 and 4.18 show that the 3D-UNet reconstruction produced a more
similar activation pattern to the HCP ground truth data compared to the Looping Star
reconstruction. This is mainly due to the reduction of the large activated area in the
Looping Star reconstruction. The 3D-UNet reconstruction also managed to reduce ac-
tivation in areas in the Looping Star reconstruction that were not activated in the ground
truth data. In a few cases, the 3D-UNet even managed to produce activations in areas
where it had been lost between ground truth data and Looping Star reconstruction.
These results suggest that the 3D-UNet manages to suppress some of the time-series
noise in the Looping Star reconstruction while still preserving the BOLD variations.
However, while it managed to recover some lost signal, the majority of the signal loss



86 Discussion

after downsampling is not improved by the network as it fails to recover many of the
activated areas.

The group-level analysis of the 5 participants in the test set show that the 3D-UNet
reconstructions detected fewer connected voxels across the test set participants. The
bleeding of voxel signal in the Looping Star reconstruction is suppressed in the group-
level analysis (Fig 4.20). This suggests that this effect is less of an issue for group-level
analyses as it manages to distinguish which voxels that are actually correlated on the
group level. The suppression of the increased activation in the Looping Star data was
the most prominent effect of the 3D-UNet reconstruction in the single-participant anal-
ysis. As this effect is mitigated in the group-level analysis, the 3D-UNet reconstruction
shows no clear advantages over the Looping Star reconstruction on the group level.

The networks in this project were trained with no reward for accurate reconstruction of
temporal voxel variations. The only temporal representation during training was the 50
different volumes per participant. These volumes were randomly loaded to the network
during training and the temporal variations of individual voxel values were therefore not
known to the network. The results from the fMRI analyses show that despite this, a lot
of the BOLD signals were conserved by the network. In addition, unwanted noise that
was introduced by the Looping Star reconstruction was suppressed. This is especially
visible for the seed-to-voxel analysis for a single participant. However, as the results
show, the network did not manage to improve upon the correlations in the group-level
analysis from the Looping Star reconstruction. This suggests that the methodology that
has been proposed in this project has limitations, and any potential users should be
aware of this. However, the fact that a lot of the BOLD variation is conserved suggests
that different methodologies that focus on rewarding the preservation of correct signal
variation could be implemented to improve performance.



Chapter 6

Conclusion and future work

In this thesis, a neural network for the reconstruction of Looping Star fMRI images was
developed and evaluated. The main findings of this study revealed that a 3D-UNet out-
performed a 2D-UNet despite having fewer model parameters. The utilization of 3D
convolutions in the 3D-UNet allowed for a better reduction of the global artifacts and
noise patterns that are produced by the reconstruction of a Looping Star k-space tra-
jectory. One conclusion that can be drawn from this is that the shape of the k-space
trajectory and the artifacts it produces should be considered when deciding on a net-
work architecture. fMRI analysis of the deep learning reconstructions also revealed
that the deep neural network managed to retain a lot of the fMRI BOLD variations
and remove unwanted noise despite the large error between network input and ground
truth data. The network managed this despite being trained with no reward for accurate
BOLD variation recovery. This shows promise for the use of deep learning reconstruc-
tion for fMRI data, which is an unexplored research field.

As the field of deep learning reconstruction for the Looping Star sequence has not
been explored before, the work presented in this thesis is of novelty and value on its
own. However, there is also potential for future work and improvements.

The work in this thesis has not involved testing and evaluation of the network perfor-
mance on real Looping Star images. The only data that has been tested was the images
created through emulation of the k-space acquisition. Testing and evaluating the net-
work on real Looping Star images are essential to assess its performance in reducing
noise and artifacts in an actual clinical setting. Comparing the network’s performance
on emulated and real data can uncover potential limitations in the methodology.

To further improve the reconstruction results and explore the field of deep learning
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reconstruction, other reconstruction methods could be explored. Using different non-
Cartesian reconstruction methods, such as gridding, can create new training datasets
that allow for deep learning k-space interpolation which has shown promise [61]. Ex-
ploring different datasets, or modifying the data preprocessing procedure, layer struc-
ture and network depth of the 3D-UNet, are potential avenues for improving model
performance. Additionally, increasing the network complexity through cascaded net-
works, which have gained popularity in image reconstruction, could offer even better
model performance [68][8]. These future endeavors will contribute to advancing the
field and unlocking the full potential of deep learning reconstruction for Looping Star
fMRI imaging.



Appendix A

Source code

The code used in this thesis is available on Github:
https://github.com/MariusRusaas/MasterThesis_LS_DeepLearning

This code contains both the MatLab code used for downsampling and calculation of
test metrics, Python and PyTorch code used for dataset preparation and training as well
as the code from Ray Tune used for hyperparameter selection. Test set metrics, train-
ing metrics and metrics from the hyperparameter optimization are saved in e.g. JSON
or MAT files.

A.1 Folders

A.1.1 DeepLearning

• dataset_management.py: Dataset classes used for generating the data loaders.

• 2D-UNet: Folder containing the utilities used for training a 2D-UNet model as
well as a notebook detailing the training process.

• 3D-UNet: Folder containing the utilities used for training a 3D-UNet model as
well as notebooks detailing the training process on both processed and unpro-
cessed data. This folder also contains the RayTune model selection experiment
on processed data.

A.1.2 LS_downsampling

• downsampling_wDCF.m: MATLAB script that demonstrates the usage of the
MIRT non-Uniform k-space tool to downsample a full dataset.

https://github.com/MariusRusaas/MasterThesis_LS_DeepLearning
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• downsampling_utils: Folder containing MATLAB functions used during the
downsampling, e.g. the image squaring, data saving and downsampling func-
tions.

• test_subj.mat: MATLAB file containing the subject IDs of the test set partici-
pants.

A.1.3 test_set_evaluation

• SnR.m: MATLAB function for calculating the signal-to-noise ratio in one vol-
ume.

• test_metrics.m / test_metrics_proc.m: MATLAB scripts that calculate the met-
rics for all the subjects in the test set.

• test_metrics_proc.mat / test_metrics_unproc.mat: MATLAB files with the
calculated metrics for all test set subjects.

• Voxel_evaluation: A folder containing the MatLab scripts used when calculating
the correlations between voxel time-series.
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