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Abstract 
The objective of this thesis is to investigate a method for calibration of the two-way equivalent beam 

solid angle of scientific echosounders used on the research vessels used by IMR. These echosounders 

are used to estimate the abundance of fish in in the North-sea and having them be correctly calibrated 

is important. The echosounder properties obtained during calibration are directly involved in 

calculating the fish abundance estimations. Meaning any error or inaccuracy in echosounder 

properties will cause inaccuracies in the final estimation of fish stock. 

These estimations of fish stock abundance constitute a key part in national and international 

regulations regarding marine resources. Fish abundance measurements are based on echo integration 

and rely on power budget equations and calibrated echosounder systems. These power budget 

equations involve echosounder properties corresponding to the characteristics of the echosounders 

being used. These properties include the two-way equivalent beam solid angle, 𝜓, a measure of the 

directivity of the transducer. The volume backscattering coefficient, 𝑠𝑣, used to estimate fish stock 

abundance is directly, inversely proportional to 𝜓 [1]. Having an accurate value for 𝜓 is therefore of 

importance. 

The current value for the two-way beam solid angle is obtained from the transducer manufacturer [1]. 

The transducers used in scientific echosounders are all calibrated in a controlled environment, a 

freshwater pool, by the manufacturer. The characteristics of the transducers, like the beam pattern 

and 𝜓 are then measured using a hydrophone. These characteristics are recorded in the datasheet for 

the instrument. This is the value for 𝜓 currently in use when calculating abundance of fish stock. This 

value might not be accurate when the transducers are mounted on the research vessel. When 𝜓 is 

measured by the manufacturer the transducer is in free field, meaning it has no baffle. These 

calibrations are also done in fresh water at different temperatures than IMR operate them in. All these 

factors will affect the value of 𝜓 when the transducers are baffled on a keel and used in sea water. The 

severity of the change is not known and is part of why a method for determining the true value for 𝜓 

is desired. 

Throughout his thesis a methodology for 𝜓-estimation using triangulation with several transducers is 

proposed and its potential problems discussed, including a sensitivity analysis. Some phenomena 

observed along the way that may interfere with the estimation are also investigated. The method 

presented shows promise in its ability to accurately estimate 𝜓 for scientific echosounders. 
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1 Introduction 

1.1 Background and motivation 

Echosounder measurements are used in many fields of research and in the industry. The precision 

required may vary but getting the most accurate results possible is always a goal. Almost all 

echosounder measurements are indirect, meaning the direct measurements will be used to calculate 

the desired value via formulae, extrapolations, or other means. Such formulae often include 

properties of the echosounder such as its directivity or frequency. Knowing these echosounder 

properties for each transducer to achieve an accurate result is therefore important. This is the 

purpose of calibration. 

Acquiring these parameters are done in many different ways depending on the field in question. 

Some parameters may be measured on site while others require special equipment or set-ups to 

measure and are therefore only done occasionally. Many such parameters also change with 

environmental changes such as temperature and salinity. Other parameters might only be known 

theoretically, and the validity of its value may be hard to determine. Some parameters used are 

tabulated or found by the manufacturer of the equipment or part in question.  

Developing Reliable ways to calibrate the echosounder parameters under the conditions they are 

used in will help ensure the accuracy of any estimates calculated using echosounder measurements. 

1.2 Problem description 

This study aims to investigate the possibility of using triangulation methodology to calibrate the two-

way equivalent beam solid angle, 𝜓, for scientific echosounders as part of already routine calibrations. 

Using three of the transducers part of the echosounder on board a research vessel to triangulate the 

position and target strength of a calibration sphere suspended beneath the vessel, each transducer’s 

beam pattern can be mapped and used to estimate 𝜓. The potential problems and factors playing into 

the accuracy of the estimations will also be investigated. 

1.3 Related Work 

The background to the power budget equations used to estimate fish stock abundance is described by 

Lunde et al [1]. Finding a target’s direction via split-beam phase differential is described by Simmonds 

& MacLennan [2] its application in fish stock abundance is discussed in [3] and. Using several 

transducers to triangulate the position of fish was investigated by Skerritt at Newcastle university [4]. 

The procedures and methodology used in modern echosounder calibrations, which much of this thesis 

is based on, is described by ICES in their cooperative report [5]. 
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1.4 Objectives 

This thesis will mainly focus on the work done to develop and implement a method of target location 

detection via acoustic triangulation in a controlled environment as a basis for further implementation 

in the field of fisheries acoustics. The triangulation methodology is further used as a basis for 

transducer beam pattern estimation, which in turn is used to estimate the transducers two-way 

equivalent beam solid angle 𝜓. The viability and accuracy of the methodology will be discussed as well 

as potential problems with implementation in the field. 

On-ship calibrations of the echosounder systems are done regularly and developing a method for 

calibrating 𝜓 during these routine calibrations is the aim of this study. This would ensure the validity 

of the abundance estimations. The accuracy and viability of the method developed will also be 

investigated. Other challenges and potential difficulties with using such a method are discussed, as 

several unexpected phenomena occurred during the development of this study. 

To do this the beam pattern of the transducers involved needs to be found. This can be done by placing 

a hydrophone in various positions relative to the transducer, taking measurements and mapping the 

beam pattern one point at a time. Alternatively, one can use an object with known backscattering 

properties, placing it in various positions relative to the transducers and using the transducers 

themselves to record the echo from the object. For this method to work, the position of the object 

needs to be known at each measurement. Its position can be triangulated using the delay between the 

sending and the reception of the signals from three transducers. This way a hydrophone does not need 

to be used, and its position doesn’t need to be tracked. With the position of the object relative to the 

transducers, the beam patterns can be filled in by measuring the strength of the received signal at 

various angles relative to the transducer in question. By using a heavy metal ball, the strength of the 

returned signal should be consistent and simple to calculate. By knowing how much sound is expected 

to backscatter from such a ball, the strength of the signal sent by the transducer can be calculated, and 

with enough samples from different angles, the beam pattern of the transducer will emerge.  

This method has been used by IMR prior [5], however the method of locating the target object was 

done using the quadrants of a single split-beam transducer for triangulation, as opposed to using 

several individual transducers. The close proximity of the quadrants may affect the accuracy of the 

position of the object and therefore may affect the accuracy of the resulting beam pattern.  

1.5 Outline 

Chapter 2 covers the theory behind the work done in this thesis, with focus on the scattering of sound 

and the method for acoustic triangulation. Chapter 3 presents the experimental set-up, equipment as 

well as signal detection and positioning methods. In chapter 4 the results of the experiments done are 
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presented, including directivity, sound speed and system delay measurements. The results from the 

triangulation experiments with their resulting 𝜓-estimates are also presented here, as well as some 

other phenomena observed during this study. Chapter 5 contains the discussion of the results and the 

suggestions for further work. Finally, the appendices include the most important MATLAB-scripts used 

for acoustic measurements as well as for signal processing and simulations.  
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2 Theory 

This chapter will present the necessary theoretical background for the experiments, calculations and 

simulations in this thesis. Explanations of the various methods, variables and terminology will be 

included. 

2.1 Scattering of sound 

Acoustic measurements are common in the field of marine research as it provides a reliable method 

for object detection and identification. The fundamentals of the propagation of sound in water is well 

understood as well as the scattering of sound from objects. This knowledge makes it possible to decern 

properties of objects by reflecting sound off them. The reflected sound, or echo, can then be compared 

to the transmitted sound and the results can tell us about the objects size, shape, material and speed. 

Wave scattering occurs when a propagating wave encounters a change in acoustic impedance in the 

medium it is propagating in. The acoustic impedance is denominated 𝑍 = 𝜌𝑐, and is a product of the 

medium’s density and sound speed. Changes in acoustic impedance can happen gradually, like in the 

water column of the ocean, or instantly like at the boundary layer between water and an object like a 

fish, the sea floor or a piece of metal. 

2.1.1 Scattering 

The following theory is based on the work done by Clay, C. S. and Medwin [6]. Below is presented an 

equation describing the scattering of sound from an arbitrary object. The situation described by this 

equation contains some important assumptions. Both the scattering object and the sound transmitter 

is in each other’s far fields, the sound speed in the medium remains constant and any absorption is 

disregarded. The incoming wave is a plane wave while the scattered wave will be spherical with its 

centre at the scattering object. 

𝐼𝑠 =
𝐼𝑝
𝑟2
𝑆(𝜃𝑝, 𝜑𝑝, 𝜃, 𝜑, 𝑓)𝐴(𝜃𝑝, 𝜑𝑝) 

2.1 

Where 𝐼𝑠 is the acoustic intensity of the scattered wave and 𝐼𝑝 is the acoustic intensity of the incident 

plane wave. 𝑆(𝜃𝑝, 𝜑𝑝 , 𝜃, 𝜑, 𝑓) denotes a function known as the scattering function and is 

dimensionless. 𝑆(𝜃𝑝, 𝜑𝑝, 𝜃, 𝜑, 𝑓) describes how much intensity is scattered in any given direction 

(𝜃, 𝜑, ), scatter angle, from an incoming plane wave coming from any given direction (𝜃𝑝, 𝜑𝑝), incident 

angle. The amount of reflected intensity also depends on the incident wave’s frequency 𝑓. 𝐴(𝜃𝑝, 𝜑𝑝) 

is a measure of the cross-sectional area of the reflection object as seen from the direction of the 
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incoming wave. Since the scattered wave is spherical in this scenario, its intensity is dependent on the 

distance with the relationship 
1

𝑟2
. 

 

Figure 2.1: Single target backscattering sketch [1]. 

2.1.2 Backscattering 

When the scattered wave after a scattering incident is scattered back towards the angle of incidence, 

it is referred to as backscattering. This case is of interest in fisheries acoustics as it makes it possible to 

transmit and receive a signal at the same location, which is practical. Knowing the properties of the 

backscattered wave is therefore important. Looking at equation 2.1, a backscattering angle would 

mean 𝜃 = 𝜃𝑝 + 180° and 𝜑 =  𝜑𝑝. In this special case a new term is introduced, 𝜎𝑏𝑠, backscattering 

cross-section. This is an area describing the ratio between incident and reflected intensity by a given 

object in the direction of the transmitter. 

𝜎𝑏𝑠 = 𝑆𝑏𝑠𝐴 = 𝑟
2
𝐼𝑏𝑠
𝐼𝑝

 

2.2 

Where 𝑆𝑏𝑠 is the dimensionless scattering function given backscattering. The relationship between the 

intensity of the incident and backscattered wave can then be expressed as 

𝐼𝑏𝑠 =
𝐼𝑝
𝑟2
𝜎𝑏𝑠 

2.3 

2.1.2.1 Target strength 

In acoustics it is often practical to denote magnitudes in decibels. A decibel equivalent of the 

backscattering cross-section is therefore defined, known as target strength. 

𝑇𝑆 = 10 log10 (
𝜎𝑏𝑠
𝐴𝑟
) = 10 log10 (

𝐼𝑏𝑠𝑟
2

𝐼𝑝𝑟𝑟
2 ) = 20 log10 (

𝑃𝑏𝑠𝑟

𝑃𝑝𝑟𝑟
) 

2.4 
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Where 𝐴𝑟 is a reference area of 1 m2, making 𝑟𝑟 a reference distance and 𝑃 = √𝐼 is the pressure. 

2.1.2.2 Volume backscattering 

It is often the case that when measuring backscattering in fisheries acoustics, that not just one target 

is responsible for the measured echo. As the sound burst transmitted, known as a ping, will cover a 

volume in the water, within which all targets’ echoes may arrive at the same time. The combined 

intensity is then a measure of the total biomass in that volume [2]. This makes it practical to define a 

volume backscattering coefficient 

𝑠𝑉 =∑𝜎𝑏𝑠/𝑉 

2.5 

being the sum of the backscattering cross-section of all targets within a volume 𝑉. Similarly to target 

strength, volume backscattering can be given in decibels and is referred to as volume backscattering 

strength [2] 

𝑆𝑉 = 10 log10 (
𝑠𝑣

1 𝑚−1
) 

2.6 

2.1.3 Scattering from spheres 

In this section the scattering and backscattering of spheres will be discussed. This is especially relevant 

as IMR and others use spheres as a reference object when calibration echosounders. Knowing the 

properties of the scattering from spheres is there important. 

2.1.3.1 Rigid sphere 

One of the simplest cases of reflection is from a uniform, rigid sphere as it has no internal waves and 

no absorption of energy. All of the incident wave’s intensity is reflected and in predictable directions 

as the sphere’s geometry is simple. The pressure from a scattered wave off a rigid sphere is described 

by Morse & Ingard [7] and will not be included here. 

2.1.3.2 Elastic sphere 

In the real world, no such thing as a rigid sphere exists. Calibrations spheres used in fishery acoustics 

are often made from hard metals, like tungsten carbide, in order to achieve a rigidity as a high as 

possible. The effects of their elasticity do nevertheless need to be taken into account when calculating 

the expected scattering from such spheres. 

The assumptions and calculations needed to reach an expression for the backscattering from an elastic 

sphere has been done by McLennan [8] and involve knowing the frequencies, material properties of 

the medium and elastic sphere, as well as sphere size being used and will not be recalled here. 
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2.1.4 Power budget equations 

The power budget equations are a set of equations used in fisheries acoustics to determine both single 

target backscattering cross-section and multi-target volume backscattering. Using the values from the 

measurement of a target as well as echosounder properties found during calibration, the 

backscattering can be found. The equations are derived by Lunde et al – Fisken & Havet [1]. 

𝜎𝑏𝑠 =
16𝜋2 𝑟4 𝑒4𝛼𝑟 𝛱𝑅
𝐺2(𝜃, 𝜑) 𝜆2 𝐹𝛱 𝛱𝑇

 

2.7 

𝑠𝑣 =
32𝜋2 𝑟2 𝑒4𝛼𝑟 𝛱𝑅

𝐺0
2 𝜓 𝜆𝑐0 𝜏𝑝 𝐹𝛱 𝛱𝑇

 

2.8 

Where 𝛼 is the absorption coefficient in the water [Np/m], 𝛱 denotes the transmitted and received 

electric power. 𝐹𝛱 is the electric impedance factor and 𝜓 is the two-way equivalent beam solid angle. 

𝐺0 is the on-axis gain while 𝐺 is the angle dependant gain. 𝜏𝑝 is the ping time duration. 

Using these two equations, the abundance of fish stock can be estimated. It is therefore important 

that the calibrated parameters that go into the equations are accurate, this includes the value for 𝜓. 

2.2 Piston model 

The directivity of a circular disk transducer, such as the ones used in this study, can be approximated 

using the piston model. The piston model proposes a plane circular disc as the source of sound. If the 

disc moves uniformly back and forth, the pressure at any point in front of the disc can be found by 

dividing the disc into an infinite number of individual sound sources and adding up their contributions. 

As described by Kinsler & Frey [9], the pressure at any given point in front of is given as. 

𝑝(𝑟, 𝜃, 𝑡) = 𝑗𝜌0𝑐
𝑈0
𝜆
∫
1

𝑟′
𝑆

𝑒𝑗(𝜔𝑡−𝑘𝑟′)𝑑𝑆 

( 1 ) 

Where r is the distance from the centre of the disc to the target point, 𝜃 is the angle between the 

sound axis z and the vector stretching the distance r and t is the time. 𝜌0 is the equilibrium density of 

the medium, c is the sound speed in the medium and 𝑈0 is the top speed of the moving disc face. 𝜆 is 

the wavelength of the sound, 𝜔 is the angular frequency and k is the wavenumber. S is the surface of 

the disc and dS is an infinitesimally small area on the disc. 

A few assumptions can be made to simplify the equation for our use. We don’t care about the absolute 

value of the pressure, only the relative value compared to the pressure on the sound axis at the same 
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distance, as long as we are in the far field. Comparing the pressure to the axial pressure also leaves out 

the time dependency. The resulting pressure is then. 

|𝑝(𝑟, 𝜃)| = 𝑃𝑎𝑥(𝑟)𝐻(𝜃) 

2.9 

𝐻(𝜃) = |
2𝐽1(𝑣)

𝑣
|               𝑣 = 𝑘𝑎 𝑠𝑖𝑛𝜃 

2.10 

Where 𝑃𝑎𝑥 is the axial pressure and 𝐽1 is a Bessel function of the first kind, order 1. Since the we only 

care about the relative pressure, we can divide 𝑝 by 𝑃𝑎𝑥 to find the pressure as a function of the angle 

𝜃. 𝑝 would then be equal to 𝐻(𝜃). 

2.3 Echosounder calibration 

An integral part of the usage of any instrument is the procedure of instrument calibration. No 

measurement done via an instrument may be trusted unless the instrument has been properly 

calibrated. This is then also true for echosounders. This section describes some of the theory involved 

in echosounder calibration as well as methodology. 

2.3.1 Calibration theory 

The calibration of echosounders is described in depth in the research report “Calibration of acoustic 

instruments” by The International Council for Exploration of the Sea (ICES) [5]. 

When calibrating echosounders, many variables can be set. For the purposes of this work two are of 

interest, as they are involved in the power budget equations [10]. These being the gain 𝐺0,𝑒𝑓𝑓, and 𝜓. 

2.3.1.1 Gain 

Gain is defined as the acoustic intensity of a transmitter in a given direction divided by the acoustic 

intensity of a theoretical lossless omnidirectional transmitter. 

𝐺(𝜃, 𝜑) =  
𝐼(𝜃, 𝜑)

𝐼𝑜
= 𝐺0𝐵(𝜃, 𝜑) 

2.11 

Where 𝑔0 is the gain of the transmitter on the sound axis and 𝑏(𝜃, 𝜑) is the normalized directivity of 

the transmitter [1] 

𝐵(𝜃, 𝜑) =
𝑝(𝑟, 𝜃, 𝜑)

𝑝(𝑟, 0,0)
 

2.12 
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In calibration, 𝑔0 is found by measuring the backscattering cross-section of the calibration sphere and 

comparing it to the theoretical value of backscattering cross-section for the calibration sphere in 

question. This is then multiplied by the uncalibrated on axis gain 𝐺0. 

𝐺0 = 𝐺0√
𝜎𝑏𝑠

𝜎𝑏𝑠
𝑡  

2.13 

2.3.1.2 Two-way equivalent beam solid angle 

The two-way equivalent beam solid angle, 𝜓, is a 3-dimensional angle which is a function of a 

transducer’s beam pattern. The solid angle subtended by an ideal conical beam that would produce 

the same volume integral as the square of the normalized transducer directivity [5]. This angle will vary 

greatly as a function of transducer properties. From the piston model, the ka number of the transducer 

determines the width of the beam solid angle, the effects of which are be presented in section 4.1. 

The current value used for 𝜓 in the power budget equations is the value found by the manufacturer of 

the transmitters via directivity measurements using a hydrophone in a freshwater pool [10]. This is 

problematic as during calibration transmitter is not baffled, not operating in sea water and at a 

different temperature than when operating on a research vessel like G.O. Sars. This may change the 

value of 𝜓, which is why it is of interest to be able to calibrate it on ship. 

Finding 𝜓 is a question of integrating over the Normalized directivity of the transducer [2]. 

𝜓 = ∫ ∫ 𝑏4(𝜃, 𝜑) 𝑠𝑖𝑛(𝜑) 𝑑𝜃𝑑𝜑
2𝜋

0

𝜋

0

 

2.14 

 

Where 𝑑𝛺 is a small element of the total solid angle 𝛺 and 𝑏 is the beam pattern of the transducer. 𝜃 

is the azimuth angle and 𝜑 is the angle from the sound axis. Knowing the directivity of the transducer 

can then be used to calculate the two-way equivalent beam solid angle. 

2.3.2 Calibration sphere method 

Using calibration spheres for echosounder calibrations is common and its methodology well described 

[11]. The spheres used are often made from metals such as copper or tungsten carbide and range in 

sizes so to be able to accommodate several frequencies and measurement distances. The spheres have 

resonance frequencies around which their target strengths dip severely [5]. These frequencies vary 

from sphere material and size and must be avoided as the resulting readings will be affected. 
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Figure 2.2: Rigging of research vessel for calibration [11]. 

During the calibration procedure, the sphere is suspended by three suspension lines at three different 

locations on the ship making an inverted tripod, “Three-outrigger method” [5]. The suspension line is 

often chosen to be thin fishing line as it has a similar acoustic impedance as sea water and will 

therefore appear as “invisible” to the echosounder as possible, the degree of its “invisibility” is 

discussed in this thesis. Making sure the sphere and the echosounder are in each other’s far field is 

important as well as the spheres physical size being small compared to the width of the main lobe of 

the transducer [5]. The sphere being small compared to the main lobe makes sure the measurement 

of it target strength is as little affected by covering an area of the beam pattern and not just one point. 

The calibration sphere is then moved to different angles in the echosounder beam pattern by either 

pulling or releasing suspension line, or by its natural sway due to waves and current [5]. The angle to 

the calibration sphere is found by using a split beam transducer, discussed in section 2.5.1. The target 

strength of the calibration sphere at various angles from the sound axis can be found. The value can 

also be found without knowing the spheres location as it will be the highest value recorded, if the 

sphere location covers the sound axis at high enough resolution. Making sure to compensate for the 

distance of the sphere as it may change during the calibration procedure. 

Using broad band transducers, one more thing has to be taken into account. The sonar equations are 

frequency dependant and so is the target strength of calibration spheres [5]. Due to the material and 

size of the calibration spheres, they have resonance frequencies where their target strength drop 

significantly. Several spheres then may be used to cover a wide band of frequencies to avoid any 

minimums in target strength as the spheres can cover different parts of the band that don’t contain 

TS-minimums.  

If one then compares the target strengths of the calibration sphere with the theoretically expected 

value from such a sphere, 𝐺0 can be found via equation 2.13. 
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2.4 Beam solid angle 𝜓 

2.4.1 Estimating Psi 

The true value of 𝜓 can only be measured if the entire beam pattern of the transducer is mapped. 

However, this is challenging and time consuming. Therefore, it is desired to know how much of the 

beam pattern needs to be mapped before an estimate for the beam pattern can be determined. 

Assuming the beam pattern is measured from the sound axis and out in all directions, how many 

degrees, or equivalently, how many decibel drop in intensity needs to be mapped to reach a desired 

level of accuracy. 

In section 4.1, is presented the results of the calculations done to find an estimation for 𝜓 at 

different degrees of precision. The model used to calculate the beam patterns is the piston model, 

presented in section 2.2. These calculations give an idea of how wide the beam pattern of each 

echosounder transducers needs to be mapped in order to get a good estimation of the beam solid 

angle. The piston model is, of course, an estimation and is used here to give perspective and explain 

the concepts behind 𝜓 and the measurement of it. As well as giving an idea of the needed width of 

measurements that might be required. For more accurate results the measured beam patterns for 

the transducer may be used to find a better estimation of the required beam pattern mapping. 

2.5 Triangulation 

It is possible to find the location of an object, the target, by knowing it distance from other objects 

with knows positions, hereby referred to as locators. Doing this is known as triangulation and is used 

in technologies such as GPS to locate places or personnel on earth using several satellites. If the 

distances from four or more such locators to a target is known, the position of the target can be 

known precisely. If only three objects are used, then the location of the target can only be known to 

be either one of two locations in space, mirrored over the plane defined by the three locators. 

Finding these two locations involves solving the equations 

(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 + (𝑧 − 𝑧1)
2 = 𝑑1

2 

2.15 

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + (𝑧 − 𝑧2)
2 = 𝑑2

2 

2.16 

(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2 + (𝑧 − 𝑧3)
2 = 𝑑3

2 

2.17 
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where 𝑥, 𝑦 and 𝑧 are the coordinates of the target while 𝑥, 𝑦 and 𝑧 with subscripts are the 

coordinates of the three locators. 𝑑 denotes the distances from each known object to the target 

object. A physical interpretation of these equations is imagining a sphere of radius 𝑑 being located 

with its centre at each of the corresponding locators. Meaning a sphere of radius 𝑑1 is located at 

coordinates (𝑥1, 𝑦1, 𝑧1) and so on. These three spheres will intersect at two points in space. These 

points correspond to the solutions to the set of equations. 

 

Figure 2.3: 2D triangulation example showing the two possible answers. 

Figure 2.3 shows an example of triangulation in 2D-space. Intersections of the circles centred at the 

points T1 and T2, are the solutions to the set of 2 triangulation equations. The points labelled S are the 

solutions to these triangulation equations. 

When in 3d-space the solutions to these equations give two points where the target can be located. 

It may be possible to rule out one of these solutions depending on the situation, making triangulation 

with just three objects and not four, a viable option. This is possible in the case studied in this thesis. 

The plane defined by the three transducers in use for the triangulation calculations, both on ship and 

in the tank experiment, make it so that the two solutions to the equations equate to one point in 

front of the plane and one behind. In all cases the direction of the target relative to the transducer 

plane is known and ruling out the other solution is possible. In the case of measurements on ship, 

one of the solutions would project the target to be above sea level, which is known to be false. 

Solving these equations involve either simplifications or using a solving tool such as MATLAB, or both. 

To simplify the equations, some assumptions can be made. Since the positions of the locators are 

known and therefore only the position of the target relative to the transducers is desired, the 
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coordinate system can be chosen as seen fit. If the origin point of this new coordinate system is 

chosen to be at locator 1, and all three locators define the z-plane, the equations are simplified. 

These simplifications give the new locator coordinates  

𝐿1 = (0,0,0), 𝐿2 = (𝑥1, 𝑦1, 0), 𝐿3 = (𝑥3, 𝑦3, 0) 

2.18 

Which reduces the set of equations to: 

𝑥2 + 𝑦2 + 𝑧2 = 𝑑1
2 

2.19 

(𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 + 𝑧2 = 𝑑2
2 

2.20 

(𝑥 − 𝑥3)
2 + (𝑦 − 𝑦3)

2 + 𝑧2 = 𝑑3
2 

2.21 

Solving this set of equations gives symbolic expressions for the solution to the coordinates of the target 

(𝑥, 𝑦, 𝑧) and can be written as 

𝑥 =
𝑥2
2𝑦3 − 𝑥3

2𝑦2 + 𝑦2
2𝑦3 − 𝑦2𝑦3

2 − 𝑦2𝑑1
2 + 𝑦2𝑑3

2 + 𝑦3𝑑1
2 − 𝑦3𝑑2

2

2(𝑥2𝑦3 − 𝑥3𝑦2)
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𝑦 =
𝑥2𝑥3

2 − 𝑥2
2𝑥3 + 𝑥2𝑦3

2 + 𝑥2𝑑1
2 − 𝑥2𝑑3

2 − 𝑥3𝑦2
2 − 𝑥3𝑑1

2 + 𝑥3𝑑2
2

2(𝑥2𝑦3 − 𝑥3𝑦2)
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𝑧 = ±√𝑑1
2 − 𝑥2 − 𝑦2 

2.24 

These simplifications might not always be needed. As is the case on research vessels like G.O. Sars, the 

positions of the transducers on board are already defined through the ships coordinate system, as can 

be seen in Figure 2.4. As one can calculate the target coordinates in any coordinate system by using 

the set of simplified equations without the need for any coordinate system change. Although 

simplifying the equations this way might be beneficial in regard to computation time, as doing them 

reduces the size of the expressions for the target coordinates significantly. The symbolic expressions 

for the solutions to these equation without any simplification, as they stand in equations 2.15 - 2.17, 

is so expansive it will not be presented here. These six symbolic expressions, two sets of three 

coordinates, may be calculated exactly using the MATLAB-script in appendix A.5. 
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Figure 2.4: Discontinued echosounder set-up on G.O. Sars with coordinates for the transducers [12]. 

The same principle applies when the distance is measured acoustically, with for instance transducers. 

By sending a sound signal at a scattering object and recording the time delay before receiving the echo, 

the distance to the object can be known if the sound speed in the medium is known. From there the 

equations presented above can be used to find the location of the target. 

2.5.1 Split beam triangulation 

Split-beam transducers are split into quadrants which can detect signals separately. This can be used 

to calculate a targets direction by comparing the phase differences of the returning signal on the four 

sections of the transducer [2]. This is currently how the beam pattern of scientific echosounder at IMR 

are measured, by using split-beam transducers to find the angle to the target and plotting the 

measured target strength at that angle [5].  

Knowing the propagation time then also gives the distance to the target from each quadrant, which 

can be used in equations 2.15 - 2.17 to determine the targets exact position in space. A problem with 

this approach is the potential inaccuracy from having the locators’ placed so close together. The effects 

of the distance between locators is explored in section 4.6.1.2.1. 

 

Figure 2.5: Principles of a split-beam echosounder [2] 
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3 Experimental set-up and methods 
This section described the experimental set-up and methodologies used during this study. The 

Experiment tank and its functionality is presented, a list of equipment is given in Table 3.1, the 

algorithms used in the signal processing is described, as well as the methods for detecting transducer 

positioning in the tank and the signal amplitude measurement method. 

3.1 Laboratory 

All experiments performed in this study were conducted at the acoustics laboratory at The Department 

of Physics and Technology at UiB. 

3.1.1 Experimental tank set-up 

The laboratory has a tank of water designed for acoustic experiments. The tank has an internal length 

of 4 meters while it has a height and width of 1 meter with an open top, containing about 4000 litres 

of fresh water. A panoramic view of the tank is shown in Figure 3.1. All axis directions in this study 

will is based on the axis defined on the experiment tank. Figure 3.2 shows the defined axis-directions. 

The defined directions are, the X-direction is down into the water column, Y is parallel with the 

shorter end walls of the tank and Z in parallel with the longer side walls of the tank. These directions 

will be referred to throughout the thesis and were chosen to emulate the directions on board 

research vessels, were z is the direction of transducer transmission. 

 

Figure 3.1: Panoramic view of the experiment tank and its translation system. 
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Figure 3.2: x, y and z-directions defined in the tank. 

3.1.1.1 Translation system 

The experiment tank is fitted with a precise translation system that is capable of holding, moving and 

rotating objects above or inside the tank. The system has several parts making for the different 

movements. Figure 3.3 presents the parts as viewed from above the tank and each part is explained 

below. 
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Figure 3.3: The tank’s translation system. 

The translation system is mounted on two gantries, referred to as “stages”, labelled A and B in Figure 

3.3. These stages are mounted to railings which are attached to the metal “skeleton” surrounding the 

tank, making it possible for them to easily slide up and down the length of the tank. This makes it 

possible to adjust the distance between any to objects mounted to the stages.  All parts of the 

translation system is controlled by the user on the PC via MATLAB and all current positions of all 

assemblies is known. 

The numbered labels on Figure 3.3 are explained here: 

(1) Refers to the stage A’s rotation system, controlled by a stepper motor which can rotate an 

object mounted through its 16 mm diameter mounting hole. In Figure 3.3, a transducer 

mounting plate is seen mounted to the assembly and could be rotated about the x-axis. The 

direction and amount of rotation is controlled by the user and the current absolute position of 

rotation is known and has a range of [0, 360°] 

(2) Is a stepper motor-controlled translation assembly, in the Z-direction of the tank and has a 

range of 800 mm. By mounting a metal rod in both the mounts labelled (6), the two stages A 
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and B are now connected and the distance between them can be changed by moving the 

assembly. Moving the assembly 400 mm results in a change in distance between the two 

stages of 400 mm. When such translation is performed, one of the stages is fastened to the 

railing such that only one of the stages moves when the translation assembly is being used. 

(3) Is stage B’s translation assembly in the tanks y-direction. Similarly, to (2) this assembly is 

controlled by a stepper motor and has a range of 800 mm and can move an attached object in 

the tank’s y-direction. 

(4) On top of assembly (3) is mounted a translation assembly in the x-direction, for moving objects 

through the water column. The range of movement is 800 mm. 

(5) Mounted to assembly (4) is stage B’s rotation assembly, letting the user control the rotation 

of the mounted object about the x-axis in the range [0, 360°]. 

(6) Are the mounting points for a metal rod used when translating one of the stages in the z-

direction. 

Through these assemblies, controlled relative movement in space between two objects is possible, as 

well as rotation about the x-axis. This is the basis for all movement done in the experiment tank in this 

thesis and all positions will be expressed in the coordinate system defined by the tanks translation 

system, unless otherwise specified. Meaning assembly (3) defines the y-axis and its dimensions. Same 

principle applies for assembly (2) & (4), making the possible positions for the object mounted to stage 

B 

𝑥 = [0, 0.8], 𝑦 = [0, 0.8], 𝑧 = [0, 0.8]. 

With this set-up it is possible to mount a transmitter, such as a transducer, and a target, such as a 

hydrophone or calibration sphere, to each of the two stages in the tank. The current position of any 

given stepper motor is known at any given time. Making it possible to know the position of the target 

with high precision. The current angle of the transducer is also known. The directivity of the 

transducers used can then be found, as well as determining the sound speed in the medium and 

verifying the accuracy of the triangulation calculations. 

 

3.1.1.2 Acoustic measurement set-up 

While doing experiments in the tank either of two acoustic measurement set-ups were in use. Either 

the target was a hydrophone or a calibrations sphere making it necessary to adjust the setup 

accordingly. For both set-ups, the signal generator sends a burst to both the transducer for 

transmission and the oscilloscope for comparing with the received signal during cross-correlation. The 

transmitted signal from the transducer is then either picked up by a hydrophone or scattered off a 

calibration sphere and then received by the transducer again. In both cases the received signal is sent 
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to an analogue filter to improve the signal to noise ratio before arriving at the oscilloscope for 

observation. Any information gather via the oscilloscope can be saved to the PC via ethernet. The signal 

generator can also be controlled from the PC or manually. 

 

Figure 3.4: Acoustic measurement set-up for hydrophone experiments. 

 

Figure 3.5: Acoustic measurement set-up for calibration sphere experiments. 

As can be seen in Figure 3.5, the calibration sphere setup uses a component labelled “splitter”, this in 

an in-house component built to be ample to both send and receive signals from a transducer with the 

help of diodes. The splitter and its circuit-schematic can be seen in Figure 3.6. The low-noise amplifier 

used to amplify the signal before reaching the analogue filter is shown in Figure 3.7. 

 

Figure 3.6: Signal splitter. 

 

Figure 3.7: Low-noise amplifier. 
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3.1.1.2.1 Amplification 

Before reaching the oscilloscope, the received signal gets amplified by several different sources, 

including the analogue filter and low-noise amplifier. The exact amount of amplification will not be 

kept track of for the purpose of this study as all signal amplitudes will only be compared to the other 

signal amplitudes measured using the same setup, meaning the amount of amplification cancels out, 

meaning all amplitude comparison in this study are relative and not absolute. 

During the hydrophone tests, a 10 V peak-to-peak signal was transmitted by the signal generator. The 

power amplifier was used during the calibration sphere setup to increase signal to noise ratio as the 

echo received from certain angles was too weak to discern from the background noise without 

amplifying the input signal to the transducer. A 222 mV signal was then amplified to 92 V peak-to-peak 

signal before reaching the transducer. 

Checking for non-linear effects during this setup reveals no issues. The signal shown in Figure 3.8 is the 

received echo from a calibration sphere at 2 meters with a 92 V peak-to-peak input signal on the 

transducer. The echo shows no signs of non-linear effects as its shape is almost identical to a sine wave 

with the same amplitude and frequency. 

 

Figure 3.8: Echo from calibration sphere when using power amplifier compared to a sine wave with the same amplitude and 
frequency showing no non-linear effects. 
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3.2 Equipment 

The list of equipment used for the experiments done in this thesis is given in the table below: 

Brand/name Equipment type Serial number 

Tektronix TBS 2000B Digital oscilloscope C020387 

KROHN-HITE MODEL 3940 Analogue filter S.N:LR2721R 

 Signal generator MY59001919 

22 mm Tungsten carbide 

sphere 
Calibration Sphere IMR 070 

20 mm Steel sphere Calibration Sphere - 

16 mm Copper sphere Calibration Sphere - 

Olympus V301-SU 25mm 500 kHz Transducer α 654055 

Olympus V301-SU 25mm 500 kHz Transducer β 654220 

Olympus V301-SU 25mm 500 kHz Transducer γ 1380089 

Olympus V302-SU 25mm 1 MHz transducer 653462 

Precision acoustics Ultrasonic Hydrophone 2705 

SMC-hydro Translation system 7160-9-605 

Electronics and innovation 

2100L 
RF Power amplifier 1048 

Femto HVA-10M-60-B Low-noise amplifier 05-03-340 

Pico PT104 data logger Data logger JY892/154 

Pico SE012 PT100 resistance thermometer - 

Table 3.1: Equipment 
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Figure 3.9: The three calibration spheres used, 22 mm tungsten carbide (left), 16 mm copper (centre) & 20 mm steel (right). 

 

Figure 3.10: The four transducers used in this study, 500 kHz (left) & 1 MHz (right), all with a 25mm face diameter. 

3.2.1 Machined parts 

Before and during the experiment stage it was realized that it would be desirable to have parts 

produced to help in the experiment process. Some of these pieces were planned out before any 

experiments were conducted, while some were found to be useful while doing testing and were 

commissioned then. The work in this study was done at the UiB Department of Physics and Technology, 

where there is a machining workshop where parts needed by employees or students at the faculty can 

be commissioned and made quickly and to specifications. All the parts discussed in this segment were 

produced in this workshop. 

3.2.1.1 Transducer mounting plate 

In order to mimic the relative placements of the transducers used by the Institute of Marine Research 

on the research ship G.O. Sars, a mounting plate was needed. Firstly, the positions of the transducers 

composing the echosounder were acquired from IMR and their positions relative to each other found. 

The exact positions of the transducers were known for an earlier transducer configuration on the keel, 

no longer in place on G.O. Sars, but the current set-up’s transducer positions were not acquired, but 

some of the transducers on the keel are still positioned as they were and since the distances between 

them stayed the same, they could therefore be known by the schematics for the previously used set-

up. The rest of the transducers’ positions could then be found by using an updated image of the current 

set-up configurations and measured the distances between them using an image editing software, 

shown in Feil! Fant ikke referansekilden.. The number of pixels could then be multiplied by the ratio 



29 

 

between the known distance between two unmoved transducers and the number of pixels over that 

known distance. The bottom part of the Figure shows the old configuration with the old coordinates 

for each transducer, while the top shows the new configuration with the measured distances. 

 

Figure 3.11: New and old schematic of transducer set-up on keel on G.O. Sars [12]. 
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Figure 3.12: Transducer mounting plate. 

 

 Figure 3.13: Transducer mounting plate during 
experimentation. 

 

 

When the positions were found, a cad model of the mounting plate was designed. It was decided that 

the plate would be made of aluminium and be 1 cm thick and contain the seven holes necessary to 

emulate all combinations of transducers possible on G.O. Sars. For the experiment tank set-up to be 

able to hold the plate underwater, the plate needed a rod of diameter 1.6 cm so that it could be 

secured to the rotation motor mounted on one of the stages through its mounting hole.  

The transducers then needed to be secured in their mounting holes without interfering with the signal 

and still be flush with the plate surface. This was achieved by taking advantage of the existing lip 

present on all the transducers being used in the experimenting. A schematic is shown in Figure 3.14: 

Transducer mounting cross-section and pictures of the mounting hole is shown in Figure 3.15. All the 

transducers used has a lip giving the transducer a larger diameter at certain heights, making it possible 

to cut a hole through the plate in the desired location with the smallest diameter of the transducer as 

well as a larger diameter hole going about halfway through the plate. The transducers would then fit 

in the hole, including the lip, while sitting flush with the plate on the front of the transducer. On the 

back of the plate a plastic ring with an identical hole shape to the mounting hole in the plate was placed 

around the back of the transducer enclosing the lip and keeping the transducer from moving. This 

plastic piece will then be able to be fastened to the plate securing the transducer by screwing some 

bolts through the plastic ring and into the plate. 
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Figure 3.14: Transducer mounting cross-section. 

  

Figure 3.15: Transducer mounting hole close-up. 

  

Figure 3.16: Mounted transducer side-view. 

 

3.2.1.2 Free field transducer mount 

In order to test a transducer in controlled conditions, it needs to be placed in a free field with no baffle 

and no object close which can interfere with its signals. This is especially important when the directivity 

of a transducer is measured. To do this a mount which can hold a transducer without any of its parts 

being in front of, next to or even close to the face of the transducers was needed. One of these mounts 

already existed in the laboratory and had already been machined at the workshop, this could then be 

copied and machined again. It is very important that the rod that is mounted to the rotation motor 

points straight at and is parallel to the face of the transducer such that the position of the centre of 

the transducer face does not move as the whole mount is rotated while doing experiments. This is to 

prevent the distances from the transducer and the target to change during directivity measurements 

which relies on the amplitude of the signal, which changes as a function of distance. Other precautions 

were also taken to reduce interference, such as shaping the vertical rod as a right angle as opposed to 

being circular in order to reflect sound away more effectively. 
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Figure 3.17: Free field transducer mount. 

 

  

Figure 3.18: Free field transducer mount during 
experimentation. 

 

 

3.2.1.3 Baffles 

To investigate the effects of bafflement on transducer directivity it was desirable to have a controlled 

way to measure the directivity pattern with and without a baffle. Three baffles designed in the same 

way as the mounting plate, were made in different sizes. All the baffles are square plates of aluminium 

with a transducer fastened to and flush with the plate. The sizes of the plates produced were 8, 12 and 

30 cm along each side. The fastening mechanism is the same as shown in Figure 3.14. The baffle can 

then be mounted around a transducer which can then be mounted on the free field mount. The same 

directivity measurements can then be done with and without a baffle. The 8 cm baffle was later 

scrapped and not used in experimentation. 
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Figure 3.19: Transducer mounting on the drop keel of research vessel G.O.Sars [13]. 

 

Figure 3.20: The two machined baffles. 

 

3.2.1.4 Echo dampening rubber panels 

When performing measurements using a calibration sphere at larger angles relative to the sound axis 

of the transducer, the echo received may be so weak that it cannot be discerned from the background 

noise. In order to increase the signal to noise ratio, a higher voltage input can be applied to the 

transducer, producing higher amplitude waves, making the echo also stronger. An unwanted side 

effect of this is that the echoes coming from the walls of the tank will now last much longer, meaning 

the time between bursts needs to be extended so that echoes from previous burst have time to die 

out and not interfere with the current measurement. Under conditions where these old echoes die 

away quickly, a burst delay of around 10 ms can be used. Not all echoes will have disappeared by then, 

but it will be possible to find timespans of silence between these old echoes, making it possible to do 
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accurate measurements without wall echo interference at a high burst frequency. It is desirable to 

have a low time delay between signal bursts, as while averaging over many such bursts may take a 

long time if this delay is long. Taking the average of 512 samples for instance, with a 100 ms time delay 

between bursts would take, at least 51.2 seconds to perform and needs to be done many times in 

order to remove as much noise as possible during all measurements. Having to wait up to 100 ms in 

order to find a quiet enough span of time free from “rogue” echoes so that a new burst can be sent, 

and then averaging over 512 bursts and doing this at 1000 different positions takes a long time. Cutting 

down on the time delay between burst is therefore important, so that more experiments can be done 

in a reasonable timeframe. The solution to this problem was to dampen the echoes coming from the 

walls of the tank. This has been done on one of the smaller tanks in the laboratory by hanging panels 

of rubber over the walls that are normal to the sound axis. This was also done on the larger tank. 

Reduction in echo duration was substantial, and the delay could now be set much lower, saving time 

and generally improving signal to noise ratio for all measurements in the tank. 

 

Figure 3.21: Rubber panel for echo dampening in tank. 
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3.3 Experiments, measurements and methodology 

This section presents the methods used for signal detection, amplitude determination and other 

general methods and settings used when performing experiments in this study. 

3.3.1 Signal Detection Method 

Several methods for signal detection were used during this study, for signal arrival detection as well as 

signal amplitude measurements. This section presents and describes the methods used and their 

advantages and disadvantages. 

3.3.1.1 Cursor method 

The cursor method involves using the built-in cursors functionality on the oscilloscope and manually 

selecting a time window where one thinks the steady state of the signal starts and ends. This method 

gives a lot of freedom to choose what counts as the signal, making the user the signal detection 

algorithm. It is also therefore very subjective and detecting the same point on two different signals will 

be virtually impossible. This method was primarily used when doing directivity measurments as the 

distance form transducer to target, and therefore arrival time of the received signal did not change 

throughout the experiment, making the cursor method viable. 

Using the cursors to detect a signal with an arbitrary arrival time however cannot be done with this 

method. If the distance from transmitter to receiver is not known, a different method needs to be 

used. 

3.3.1.2 Threshold method 

Using an amplitude threshold to detect a signal can be a simple and consistent method of detecting 

both the beginning of a signal and its stable part. Detecting the start of a signal this way was done by 

finding the maximum amplitude of the signal and then finding the first instance where the received 

voltage exceeds a certain percentage of the maximum voltage. The chose percentage varies from case 

to case to avoid noise breaching the threshold. This method is simple and easy to implement but works 

best at high signal to noise ratios as it is not very robust. 

 

3.3.1.3 Envelope method 

This method is similar to the threshold method but instead of using the raw voltage measured, one 

can use the envelope of the voltage. The envelope function of the signal will behave more regularly 

even at lower signal to noise ratios, making it easier to detect the signal of interest. Using the same 

principle as the threshold method but using the envelope as the detection function instead gives better 

results, especially at detecting the end of the signal which the threshold method was poor at. The 

envelope of a function was be found using MATLAB’s built-in envelope function. The function can take 
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in parameters such as the length of the Hilbert filter used which will alter the envelope. These 

parameters were changed depending on the experiment conditions.  

The envelope detection MATLAB-script is available in appendix A.6. 

 

3.3.1.4 Cross-correlation Method 

Using the correlation between the transmitted signal and the received signal is a consistent method 

for detecting the start and end of a signal. The received signal is cross correlated with the signal 

transmitted by the signal generator to the transducer, giving a cross-correlation function. The 

maximum value of which corresponds to the largest overlay of the two signal. This timestamp was 

selected as the start of the received signal. The same can be done to find the end of the signal by 

comparing the reversed received signal with the transmitted one. 

The cross-correlation detection MATLAB-script is available in appendix A.2. 

3.3.2 Finding transducer positions in experiment tank 

In order to verify the results from the triangulation experiments as well as knowing the sound 

measurement experiment is valid, one needs to be able to know the location of one or more of the 

transducers used in the experiment. The mounting plate that hosts the transducers does have known 

measurements between mounting holes, but the angle of the plate in the x, y and z directions are 

unknown during experimentation. It is therefore useful to be able to find the exact positions of all 

transducers via a different method.  

The chosen method involves measuring the delays between signal sending and reception by a 

hydrophone or reception of the echo from a calibration sphere by the sending transducer. The 

experimental set-up in the tank allows for the movement of a target in the XY-plane, and by measuring 

the time delays at several points on this plane, which is proportional to the distance, the closest point 

to the sound source on this plane can be found. This point will be referred to as the centre point. Each 

transducer has a centre point on the XY-plane in which the target can move. Using this plane as the 

reference for our coordinate system, the X and Y coordinates of the target when located at the centre 

point will then necessarily be the same X and Y coordinates as the transducer has. Finding the X 

coordinate is then only a question of finding the distances from the centre point to the transducer in 

question. Doing this only requires that the target is placed at the centre point and the propagation 

time between transducer and target is measured and multiplied by the sound speed in the water. A 

signal detection algorithm can be used, together with a measured sound speed, to find the distance 

which also gives the transducer’s Z-coordinate. 
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Figure 3.22: Schematic of transducer location method. 

This can be done for all three transducers, finding their position in space relative to the ZY plane of the 

target. This coordinate system can then be shifted so that any point is the origin. Using one of the 

transducers as the origin is often preferable as discussed in section 2.5. 

3.3.3 Signal amplitude determination 

In order to determine the strength of a signal and by extension the target strength of any object the 

amplitude of a detected signal needs to be determined. For this study all amplitude measurements 

were done through a Fourier transform with the built-in MATLAB function fft, Fast Fourier Transform. 

After detecting and isolating the steady-state part of the received signal, the amplitude of the signal is 

given as 

𝑊(𝑡) → 𝐹𝐹𝑇 → 𝑊(𝑓) 

3.1 

𝑊𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 2 ×
𝑊(𝑓𝑖𝑛𝑝𝑢𝑡)

𝑛
 

3.2 

where  𝑊 is the steady-state part of the received signal, 𝑓𝑖𝑛𝑝𝑢𝑡 is the frequency of the transmitted 

signal and n is the number of samples in 𝑊. In this study 𝑊 was zero-padded to increase its length by 

a factor of 64 which is then compensated for in 𝑛. 

As only half the energy in a signal in the time domain is contained in the positive frequencies [14], the 

value of 
𝑊(𝑓𝑖𝑛𝑝𝑢𝑡)

𝑛
 is only half the story as the amplitude spectrum is mirrored for the negative 

frequencies. 
𝑊(𝑓𝑖𝑛𝑝𝑢𝑡)

𝑛
 is then doubled to account for the equal amount of energy present in the 

frequency −𝑓𝑖𝑛𝑝𝑢𝑡.  

For the plots of amplitude spectrums shown in this study, the value of 𝑊𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 as a function of 

frequency is displayed giving a direct reading of the voltage amplitude of every frequency present in 

the 𝑊. 
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Figure 3.23: Example amplitude spectrum. 

In Figure 3.3 a signal containing a 0.13 Volt amplitude, 500 kHz frequency has been fourier transformed 

and its amplitude spectrum is shown. The plot gives a direct reading of the amplitude as the calculation 

in equation 3.2 have already been done. 

3.3.4 Signal averaging 

Throughout this study the importance of signal to noise ratio is stated. One method used to increase 

signal to noise ratio is by signal averaging. By performing the same transmission and reception process 

several times and taking the average of all the measured signal, the noise will be averaged away. It is 

assumed that the unwanted noise is random and has a mean value of zero, meaning that if averaged 

long enough will become zero, leaving just the signal of interest. Doing this process can increase signal 

to noise ratio greatly and make it possible to detect signals otherwise berried in noise. 

Noise bilde? 

The oscilloscope used in this study, Tektronix TBS 2000B, has an in-built automatic averaging function. 

The user can choose how many replicant signal, or samples, to average over, from 2 to 512, denoted 

N. The oscilloscope then average n number of samples until it reached the desired value N [15]. Until 

this happens the signal are averaged using a stable averaging algorithm, which can be expressed as 

𝐴𝑛 = 𝐴𝑛−1 +
𝑋𝑛 − 𝐴𝑛−1

𝑛
 

3.3 

where 𝐴𝑛 is the average of n samples and 𝑋 is is the next sample to be part of the average. When the 

number of samples averaged reaches the desired number N, an exponential averaging algorithm takes 

over from there: 

𝐴𝑛 = 𝐴𝑛−1 +
𝑋𝑛 − 𝐴𝑛−1

𝑁
 

3.4 
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As can be seen in the equation above, the average value 𝐴𝑛 keeps improving after N has been reached, 

meaning that even after N signals have been averaged, waiting even longer will still improve the signal 

to noise ratio. Due to this fact during this study, all measurements will be taken with N set to 512 and 

a total of 60 seconds will elapse before the averaged signal is saved in order to reach a the highest 

signal to noise ratio practical. 

3.3.5 General measurement setup settings 

Here is stated the settings used under all experiment done in this thesis. During all experiments the 

signal generator is used to generate the input signal to the transducer, while using a hydrophone the 

amplitude of the signal is set to 10 V peak-to-peak, while when using a calibration sphere the power 

amplifier is used to amplify the 222 mV signal from the generator in achieve 92 V peak-to-peak. The 

time delay between burst is dynamic throughout the study as finding a time window free from “old” 

echoes is crucial. Each set-up requires a slightly different burst delay as not to interfere with the next 

measurement as its echo is still present in the tank. The burst delay is set between 10 and 50 ms 

depending on the set-up.  The dampening rubber panel is also always used to dampen any echo 

reflected off the back wall. The number of cycles used also depends on the experiment and is either 

set at around 20 or 45 cycles in order to achieve a long steady state part of the signal. All received 

signals are filtered through the analogue filter. During all experiments using 500 kHz signal the filter is 

set to a band-pass filter with cut-off frequencies of 144 kHz and 1 MHz and during experiments with 

the 1 MHz transducer the filter was set to band-pass with cut-offs at 500 kHz and 2MHz, which was 

experienced to give the best signal to noise ratio. 

 

Figure 3.24: Direct echo from calibration sphere next to echo from back wall from previous burst. 
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Figure 3.25: Direct echo from calibration sphere next to echo from back wall from previous burst with dampening rubber 
panel installed. 

When using a calibration sphere, the sphere’s resonance frequency was investigated to ensure the 

transducers used did not operate close to those frequencies to avoid dips in sphere’s target strength 

interfering with the measurements. The discussion of which is in section 4.7.1. 

All experiments were conducted in the far field of the transducers in use. The Rayleigh distance was 

used to estimate start of the far field [9]. Using the area of the transducer face and the wavelength of 

the transmitted signal, the Rayleigh distance is 

𝑑𝑟 =
𝜋𝑎2

𝜆
= 0.165 𝑚 

3.5 

For the 500 kHz transducer, and 2𝑑𝑟 for the 1 MHz transducer. 

When using the transducer mounting plate for triangulation the positions of the transducers on the 

plate refer to the positions shown in Figure 3.26. 

 

Figure 3.26: Positions on transducer mounting plate. 
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4 Results and discussion 

This section presents the experiments done, their results and discussions on their meaning, 

significance to the objective and accuracy. 

4.1 Simulated 𝜓-estimates 

To get an idea of some expected values of 𝜓 and how the beam pattern affects it, some simulations 

using MATLAB were done. The code used can be found in appendix A.3. All calculations done in this 

section will be based on the piston model for transducer beam patterns. Firstly, some beam patterns 

of transducers with different characteristics were calculated. As seen in equation 4.1, the parameter 

affecting a transducer’s beam pattern is, using the piston model, the 𝑘𝑎-number. Some beam 

patterns resulting from different 𝑘𝑎-numbers are plotted in Figure 4.1 using the equations acquired 

from the piston model presented in section 2.2. From the piston model we have 

𝐻(𝛼) = |
2𝐽1(𝑣)

𝑣
|               𝑣 = 𝑘𝑎 𝑠𝑖𝑛(𝛼) 

4.1 

where H is the transducers beam pattern and 𝛼 is the angle from the sound axis. 

 

Figure 4.1: Beam pattern with different ka-numbers using piston model. 
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Figure 4.2: Full beam pattern from piston model, ka = 25. 

Calculating the two-way equivalent beam solid angle is then a matter of integrating the beam pattern 

over all angles. Figure 4.1 & Figure 4.2 only shows a cross sections of the true beam patterns as it is 3-

dimentional, and will, in this thesis, be assumed to be independent of the azimuth angle. Meaning the 

function H is effectively rotated about the sound axis at 0° to form the 3-dimensional beam pattern. 

Under the assumptions of the piston model, the beam pattern of a transducer is equal in opposite 

directions, shown in Figure 4.2. This is usually not the case with immersion transducers such as the 

ones used in this study as well as the ones used in fisheries acoustics [5]. As the piezoelectric element 

in these transducers are encased, almost all of the energy in the beam pattern is directed forward. The 

piston model doesn’t give a good representation of the beam pattern of transducers used in practice 

outside of 90°. For this thesis it is assumed that almost all the energy and therefore contribution to 𝜓, 

lies within the first 90° of the beam patterns. Any further contribution can be compensated for as seen 

fit, depending on the circumstances. This “half-integrated” estimated value for 𝜓 will be denoted 𝜓ℎ. 

Based on equation 2.14, the expression for the estimation of 𝜓ℎ can be written as 

𝜓ℎ = ∫ ∫ 𝐻4(𝜃, 𝜑) 𝑠𝑖𝑛(𝜑) 𝑑𝜃𝑑𝜑
2𝜋

0

𝜋/2

0

 

4.2 

where 𝜓ℎ is the two-way equivalent beam solid angle integrated over the hemisphere 

cantered at the sound axis, which is assumed to contain close to all acoustic energy coming 

transmitted by the transducer. 𝜓ℎ is a function of the transducers 𝑘𝑎-number and is plotted 

as a function of the 𝑘𝑎-number in Figure 4.3. 
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Figure 4.3: 𝜓ℎ as a function of the ka-number of the transducer, using piston model. 

4.1.1 Cumulative 𝜓 

As seen in equation 4.2, 𝜓ℎ is a function of both the azimuth angle 𝜃 and the angle from the sound 

axis 𝜑. In order to get the true value for 𝜓ℎ, all angles need to be integrated over, meaning 𝜃 = [0, 2𝜋] 

and 𝜑 = [0, 𝜋]. As discussed in the section above, 𝜓 ≅ 𝜓ℎ, is assumed. The cumulated value of 𝜓ℎ, 

referred to as 𝜓𝑐 can then be plotted as a function of the angles integrated over, 𝜃 = [0, 𝜃] and more 

interestingly 𝜑 = [0, �̂�]. The relationship between 𝜓𝑐, as a percentage of 𝜓ℎ, as a function of �̂� is 

plotted in Figure 4.4. The wave number and face radius is chosen to be the same as for the 500 kHz 

transducers used in this study with a sound speed of 𝑐 = 1485 𝑚/𝑠, 

𝑘𝑎 =
𝑓 × 2𝜋

𝑐
𝑎 = 26.44 

4.3 

 

Figure 4.4: Cumulative value of 𝜓 as a function of angle integrated over. 

As �̂� goes to 90°, the cumulated value 𝜓𝑐 approaches 𝜓ℎ. When 𝑘𝑎 = 26.44 most of the value of 𝜓ℎ 

has been cumulated when only integrating over the main lobe, around 8°. In fact, 99.8 % of 𝜓ℎ has 

been reached once �̂� is equal to the first zero. The first side lobe then contributes a further 0.018 % 
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and the second side lobe contributes 0.00015 % and so on. This growth of 𝜓𝑐 depends on the 𝑘𝑎-

number. The value of 𝜓𝑐 is plotted with several other values for 𝑘𝑎 in Figure 4.5-Figure 4.9. 

 

Figure 4.5: 𝜓𝑐 as a function of angle integrated over, piston model, ka = 100. 

 

Figure 4.6: 𝜓𝑐 as a function of angle integrated over, piston model, ka = 30. 

 

Figure 4.7: 𝜓𝑐 as a function of angle integrated over, piston model, ka = 10. 



45 

 

 

Figure 4.8: 𝜓𝑐 as a function of angle integrated over, piston model, ka = 5. 

 

Figure 4.9: 𝜓𝑐 as a function of angle integrated over, piston model, ka = 100, 30, 10 & 5. 

In the Figures above, the cumulative 𝜓𝑐 is plotted besides the corresponding beam pattern both found 

via the piston model. All plots of 𝜓𝑐 plateau when reaching the angle �̂� where the first zero of the 

beam pattern is located, this makes sense as when the beam pattern is close to zero, the contribution 

towards 𝜓𝑐 is also close to zero. Every following side lobe then contributes less and less toward 𝜓𝑐. As 

can be seen in Figure 4.9, the percentage value of 𝜓ℎ when the main lobe in integrated over stays 

almost the same for all 𝑘𝑎-numbers. Meaning the main lobe’s contribution towards 𝜓ℎ is about the 

same regardless of the 𝑘𝑎-number, any discrepancy may only be due to the limited resolution when 

integrating using MATLABs “trapz” function. The angle required to integrate over does however 

become smaller as 𝑘𝑎 increases. A similar plot Is shown in Figure 4.10, the x-axis represents the decibel 

drop in the beam pattern integrated over. As you move to higher angles �̂�, the amplitude of the beam 

pattern drops and the plot shows how many dB drop needs to be integrated over to achieve a certain 

percentage of 𝜓ℎ. Since every lobe contributes the same percentage towards the total 𝜓ℎ regardless 

of 𝑘𝑎-number, the plot is the same regardless of 𝑘𝑎-number. 
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Figure 4.10: dB drop in beam pattern reached when integrating over 𝜑 to achieve desired 𝜓-accuracy. 

Each asymptote represents the zero-points between lobes in the beam pattern and the percentage of 

𝜓ℎ achieved by integrating to that angel. As seen on the plot, if 99.9 % of 𝜓ℎ is desired, 𝜓𝑐 needs to 

be integrated from 0 to just past the angle of the peak of the first side lobe, at 18 dB drop in amplitude. 

If 99 % is desired Integrating to when the beam pattern has dropped by 9.6 dB is sufficient, and if only 

the angle corresponding to a 3 dB is integrated over then the resulting 𝜓𝑐 will only be 78.8 % of 𝜓ℎ. 

As suspected, when using the piston model to calculate 𝜓ℎ, almost the entire contribution comes from 

the main lobe and the amount of contribution does not seem to be affected by the 𝑘𝑎-number of the 

transducer in question. Integrating over the entire beam patterns may not be necessary, as one can 

just as easily add the missing amount after integrating over just the main lobe to compensate. 

 

4.2 Boundary reflection consideration 

The possibility of reflections from the side walls or water surface interfering with the desired direct 

echo when using a calibration sphere is here investigated. If the burst is long enough and the delay 

between the direct path and the surface reflection path is short enough the two signals may overlap 

upon arrival back at the transducer again. Assuming a single burst of frequency 500 kHz, specular 

reflection off all surfaces, a water sound speed of 1485 m/s and omnidirectional scattering from the 

target sphere, the time delay between a direct echo and an echo reflected of a single surface was 

found. A short program was written to calculate the delay and the results are shown in Figure 4.11. 
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Figure 4.11: Simulated ray reflected of calibration sphere in experiment tank to calculate delay between direct echo of 
surface reflected echoes. 

The white rectangle represents the experiment tank seen from above, the side or underneath. The 

blue line is the transducer plane, place 1 meter from the end wall and the white circle is a calibration 

sphere also placed 1 meter from the end wall, leaving 2 meters between them. The red line is a 

sound ray traveling from the transducer plane to the sphere and being reflected back, with one 

reflection of the wall, either on its way to the sphere or back. This is the shortest path involving 

surface reflections and therefore gives a lower limit to the time between direct and reflected echoes. 

At an angle of attack of 26.7°, the ray strikes the sphere and reflects back to the transducer, taking 

𝑡𝑟 = 2.82 𝑚𝑠 to do so. The direct path takes the sound wave 

𝑡𝑑 =
4 𝑚

𝑐
= 2.69 𝑚𝑠 

to traverse, making the delay between the two arrivals 

∆𝑡 = 𝑡𝑟 − 𝑡𝑑 = 2.82 𝑚𝑠 − 2.69 𝑚𝑠 = 0.13 𝑚𝑠. 

This delay gives room to send a burst containing  

𝑛 = 0.00013 𝑠 × 500 000 𝐻𝑧 = 65 𝑐𝑦𝑐𝑙𝑒𝑠 

before any surface reflected echo might interfere with the direct echo. Closing the distance between 

the transducer and sphere results in a larger time delay. Since no experiment in this study is 

performed at a distance much further than 2 meters, 65 cycles will not be exceeded as a burst 

length. Any side wall or water surface reflected wave will also be subject to the transducers 

directivity at making the signal significantly weaker than the direct signal. 

 

4.3 Directivity 

Before conducting experiments, it is important to know the characteristics of the equipment used. In 

this work, one hydrophone and four transducers are used during various experiments. Knowing the 

directivity of these is crucial as it will serve as a reference to compare the results of the experiments 
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to. The hydrophone used is omnidirectional and therefore has no bias in its directivity. This is practical 

as it is therefore not necessary to account for its directivity in the experimentation. The transducers, 

however, do have directivity in both sending and receiving of acoustical signals. For this work it is 

assumed that the directivity function is the same for both of these operations. 

4.3.1 Theoretical directivity 

Using the principles of the piston model, presented in section 2.2, the theoretical directivities of 

various transducers can be calculated. In this section the theoretical beam patterns for the transducers 

used in this study will be presented and compared to the measured beam patterns. 

Using the radius of the transducers used in this study, their operating frequency of 500 kHz, as well as 

an estimation of the sound speed in water of 1485 m/s, the value for 𝑘𝑎 =
2𝜋
1485

500000

0.025

2
= 26.44 𝑚−1 

and plotting H. The same can be done for the 1MHz transducer which is of the same size. Then, 𝑘𝑎 =

52.88 𝑚−1. 

 

Figure 4.12: Piston model directivity estimating 1 MHz and 500 kHz transducers beam pattern. 

 

Figure 4.13: Piston model directivity estimating 1 MHz and 500 kHz transducers beam pattern in decibel. 
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An estimate for the directivity of the two transducers used in this study has now been found. Keeping 

in mind that this represents the one-way directivity. It is still of interest to measure the directivity of 

all four transducers to see how well the piston model fits, as well as comparing the transducers to each 

other. Any difference or anomaly in the directivity of any of the transducers should be noted. 

4.3.2 Measuring transducer directivity 

In order to measure the directivity, the transducers need to be placed in the tank without any baffle 

or other scattering objects near it. The transducers also need to be rotatable about the middle of its 

front face, such that only the angle to the target is changed and not the distance. This was achieved 

with the machined free field mount described in section 3.1.3.2. 

The transducer is attached to the bottom of the free field mount, facing in the z-direction, while the 

mount itself is mounted to one of the stages which is able to rotate the free field mount, and therefore 

also the transducer, in the horizontal plane. If the transducer is rotated to a known angle while emitting 

a signal through the water at a target, such as a hydrophone, the strength of this signal can be 

measured. This can be done a range of angles. The strength of the signal received by the hydrophone 

can then be plotted against the angle measured at. If all the amplitudes are then divided by the 

maximum amplitude measured, the directivity of the transducer can be found. This method finds the 

directivity of the transducer on a plane and not the complete 3-dimensional directivity. It is, during this 

part of the study, assumed that the 2-dimensional directivity measured on with this method is 

representative of the complete directivity. During all directivity measurements the hydrophone in 

placed at 1 meter from the transducer. 

Since the temporal position of the received signal does not change as the angle changes, the part of 

the signal chosen as the steady state can be the same for all signal measured at all angles. Meaning 

that a constant window in time was chosen as the part of the signal used to extract the amplitude 

from, using the cursor method. In these experiments, the signal supplied to the transducer was 500 

kHz, 10 V peak to peak, and 22 cycles. The window used to find the amplitude is chosen manually 

before running the experiment. Below is plotted the signal measured at the top of the main lobe, on 

the sound axis of the transducer, and the signal received at one on the zero-points between lobes 

(here at 8.3°). Both signals have been normalized to make it easier to see where the window cuts the 

signal. The signal at the zero-point is much weaker than the one on the sound axis. 
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Figure 4.14: Signals recorded by hydrophone during directivity measurement at 1 meter using 500 kHz. 

4.3.3 Free Field 

All three directivities of the 500 kHz transducers used in the study were measured and are plotted 

below, as well as a comparison between transducer 𝛽 and the theoretical piston model. This is plotted 

both in relative amplitude and in decibel. All this is also done for the one 1 MHz transducer. 

 

Figure 4.15: Directivity of the three 500 kHz transducers as measured by hydrophone. 
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Figure 4.16: Directivity of the three 500 kHz transducers as measured by hydrophone in decibel. 

 

Figure 4.17: Directivity of transducer 𝛽 compared to piston model. 

 

Figure 4.18: Directivity of transducer 𝛽 compared to piston model in decibel. 
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Figure 4.19: Directivity of 1 MHz transducer compared to piston model. 

 

Figure 4.20: Directivity of 1 MHz transducer compared to piston model in decibel. 

All the measured directivities have been centred around their maximum measured value, choosing it 

as the sound axis. Aliasing at the top of the main lobe may shift the directivity slightly to one side as 

the true peak might not be captured due to it being between measurement angles. 

The conclusion to these measurements is that the transducers in use in this study have directivities 

that closely resemble the one derived by the piston method. They also have symmetrical directivities 

with even heights for both side lobes. The -3 dB angles as well as the zero-points line up with the 

expected values as well as being equal on both sides and between transducers of the same frequency. 

These statements are true for all but one of the transducers. The transducer labelled “Transducer 𝛾” 

seems somewhat of an anomaly. Having both higher peaks and lower troughs around at the side lobes, 

and even having a significant difference in amplitude between the two side lobes on either side of the 

sound axis, and both being higher than that of the other transducers with the same frequency. The 

reason for this discrepancy is not known. The only known difference between the three transducers is 
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that transducer 𝛾 is completely new and was bought for this study, while the two other transducers 

were already present at the laboratory and had seen some use in previous projects. The first two 

transducers were also measured with the exact same set-up over the span of a few days, the 1 MHz 

transducer was also measured at this time. While the newer transducer, 𝛾, was measured later on a 

set-up made to mimic the set-up used for the other transducers. Although nothing apparent was 

different between the two set-ups, this might be part of the explanation for the discrepancy in 

directivity between the transducers.  

A quick check to see if the signal from the two side lobes of transducer 𝛾 really have such different 

amplitudes was performed, to see if there was no fault in the amplitude calculation method. The 

signals received by the hydrophone when placed at the two angles corresponding to the peaks of the 

side lobes are plotted in Figure 4.21. The two signals do indeed have different amplitudes and the 

reason why remains unknown. 

 

Figure 4.21: Signal recorded at both sides of the first side lobe of transducer 𝛾.  

4.3.4 Baffled 

Since the transducers used by IMR have their value for 𝜓 measured by the manufacturer in free field, 

meaning the transducer is not baffled, the resulting value may be different to what it is in reality when 

the same transducer is placed in a keel and baffled. A short investigation into the effects of bafflement 

on transducers were conducted in order to see if the directivity and therefore the value for 𝜓 changes 

when a transducer is baffled. Three parts where machined for use in this experiment, these are 

described in section 3.1.3.3. The two baffles where mounted to Transducers 𝛽 and the resulting 

directivity measured using the free field mount. The resulting directivities as well as a free field control 

directivity of the same transducer at the same distance is plotted below. Only one side of the directivity 
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was measured for the sake of time. All Measurements were done at a distance of 1 meter, using a 

signal of 500 kHz, 10 Volts peak to peak and with 22 cycles. 

 

Figure 4.22: Directivity of transducer 𝛽 with and without a baffle, 500 kHz. 

 

Figure 4.23: Directivity of transducer 𝛽 with and without a baffle in decibel, 500 kHz. 

The results seem to indicate that the amplitude of the main lobe is not affected much, at least not with 

a baffle as small as 12 cm. The 32 cm baffle seems to have lowered the amplitude at the sound axis 

somewhat. The main lobe has been widened by using a baffle, the first zero-point has moved from 

occurring at around 8.3 degrees for free field to being at around 8.8 degrees for the 12 cm baffle and 
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9 degrees for the 32 cm baffle. The amplitude of the signals in the first side lobe have been dampened, 

somewhat when using the 12 cm baffle and more so using the 32 cm baffle. More of the energy seems 

to be placed in its main lobe, widening it, while dampening the side lobes. 

Below is plotted the amplitude spectrum for all three cases at both the sound axis and at the first zero-

points, 8.3°, 8.8° and 9°. 

 

Figure 4.24: Amplitude spectrum of signal received by transducer 𝛽 at the sound with different sizes of baffle. 

 

Figure 4.25: Amplitude spectrum of signal received by transducer 𝛽 at first “zero” with different sizes of baffle. 

4.4 Sound speed 

In acoustic experimentation, knowing the sound speed in the medium used is crucial. In the case of 

this study, the accuracy triangulation method heavily relies on the accuracy of the sound speed in the 

medium, as it directly affects the distances used for calculating the target position. If the sound speed, 

and therefore the distances used, are faulty, the results of the triangulation calculation will be faulty. 

Using faulty target positions will result in an inaccurate or wrong directivity estimate for the 

transducers and the estimate for the two-way beam solid angle will then be faulty. Measuring the 

sound speed in the medium used is therefore of high importance. In the case of this study, the medium 
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used is fresh water in room temperature. The water is presumed to be clean and free from bubbles. 

Some build-up of algae has been experienced over time, however. It is unknown if this will affect the 

sound speed. Both a theoretical and a measured value for the sound speed is found in this study. These 

values can be compared to see if perhaps algae or other factors may affect the speed. Calculating a 

theoretical sound speed involves measuring some of the water’s properties. 

4.4.1 Water temperature 

Water temperature is not as easy to calculate from known factors and also affects the sound speed 

much more. Using a temperature that is off by only one degree Celsius will change the outcome by 

almost 3 m/s at normal room temperatures. For this reason, it is important to measure the water 

temperature directly. This was done using a Pico SE012 PT100 resistance thermometer, which has an 

accuracy of ±0.03 °C @ 0 °C [16]. The Thermometer was first used in the air while testing, then placed 

in the water, behind the transducers to prevent interference. Measurements were taken and saved 

every 10 minutes. 

After configuring the PT100 Resistance thermometer it was placed on the desk in the laboratory on 

the 10th of March to see the value and the fluctuations of the air temperature. The thermometer was 

left over the weekend. The same weekend a set of long-lasting acoustic experiments were conducted 

in the tank. These experiments required the power amplifier to be turned on throughout the 

experiment’s duration. This amplifier, along with the signal generator, analogue filter, computer and 

monitor all produce low to moderate amounts of heat. Since the thermometer was placed on the same 

desk as all these instruments, the change in temperature can be seen. The weekend of the experiment, 

when the temperature was high, as well as the following days where temperatures went back to 

normal, as well as some spikes from short uses of the amplifier at certain times during the week. 

 

Figure 4.26: Temperature measured by PT100 resistance  thermometer 
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After almost a week of air temperature measurements the sensor was placed in the water. The 

moments this happened can be seen on the graph in Figure 19, as the temperature suddenly drops 

almost three degrees Celsius. As expected, the temperature of the water stays a lot more constant 

than in the air due to the waters higher specific heat capacity as well as lack of circulation. The average 

of the temperature in the water was 22.39 °C and had a standard deviation of 0.36 °C. The small peaks 

in the temperature seen throughout the measurements under water, are exactly 24 hours apart, 

showing the temperature swings over this period. Temperature difference over course of a day seems 

to be about 0.2 °C or less. There seems to be larger fluctuations that last over much larger periods of 

time. It is worth noting that the measurement instrument was moved slightly on day 36, to a shallower 

depth in the tank. The temperature seems to have risen slightly due to this, indicating a temperature 

gradient in the water column. 

 

4.4.2 Theoretical sound speed 

In this case we will compare the experimental results to the sound speed model for distilled water 

found in Kinsler and Frey [9]: 

𝐶(𝑡) = 1402.7 +  488𝑡 −  482𝑡2 +  135𝑡3 + (15.9 +  2.8𝑡 +  2.4𝑡2)(℘𝐺/100) 

4.4 

where 𝑡 =  𝑇/100, 𝑇 being temperature in Celsius, and ℘𝐺is the Gauge pressure in bar. The model is 

accurate to within 0.05 % for temperatures between 0 and 100 degrees Celsius [9]. The gauge pressure 

can be approximated sufficiently by subtracting normal atmospheric pressure from the absolute 

pressure at the measurement depth. This will be sufficient as a change in calculated sound speed from 

using surface pressure, and using 1 meter water depth is less than 0.02 m/s. Since the tank is only 1 

meter deep and the measurements were taken at about halfway deep, measuring as apos to 

calculating the gauge pressure won’t affect the end result in any meaningful way. The gauge pressure 

℘𝐺 is set to that of the middle of the experiment tank, that is, about 50 cm below the water surface. 

At this depth the gauge pressure is 

℘𝐺 =  𝜌𝑔ℎ 

4.5 

Using a water density of 𝜌 = 1000 
𝑘𝑔

𝑚3, gravitational acceleration of 𝑔 = 9.81 
𝑚

𝑠2
 and a height of ℎ =

0.5 𝑚. The resulting gauge pressure is 4905 pascals, or 0.04905 bar. The sound speed can then be 

plotted using the temperature in the water as the variable. 
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Figure 4.27: Theoretical sound speed in water as a function of temperature. 

The calculated sound velocities at minimum and maximum measured temperatures in the water are 

labelled on the plot. These being 21.55 and 23.18 degrees Celsius. The calculated sound speed for in 

the water lies somewhere between 1486.84 and 1491.61 m/s, depending on the temperature of the 

water. The average value of the water temperature of 22.39 degrees gives a sound speed value of 

1489.32 m/s. 

4.4.3 Measured sound speed 

The method used to find the sound speed in the water was to measure the time delay between sending 

and receiving at two different distances. Taking the Difference between these two delays eliminates 

any other factor than the actual propagation time, which then can be used to find the sound speed. 

The set-up involves using a transducer to send a signal and a hydrophone to receive it, as well as the 

tanks translation system so that an exact distance difference can be known. 
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4.4.3.1 Set-up 

 

Figure 4.28: Sound speed experimental set-up. 

The time delay in the two cases can be written as. 

𝑡1 =
𝐿1

𝑐
+ 𝑡𝑠                     𝑡2 =

𝐿2

𝑐
+ 𝑡𝑠 

4.6 

𝑡2 − 𝑡1 =
𝐿2 − 𝐿1

𝑐
                     𝑐 =  

∆𝐿

∆𝑡
 

4.7 

Where 𝑡1 and 𝑡2 are the time delays measured in set-up 1 and 2 respectively. L1 and L2 are the 

distances in these two set-ups, 𝑐 is the sound speed and 𝑡𝑠 is the system delay. Doing this at two known 

distances, the system delay cancels out and the sound speed can be calculated. 

These set-ups can be achieved by using the translation system present on the experimental tank. This 

translation system allows for translation between the two stages on the tank in the direction parallel 

to the side walls of the tank, the same way as sound propagation in this experiment. This is the x-

direction in the tank.  

In order to be able to use the translation system for this experiment, the hydrophone needs to be 

placed at the closest point to the transducer on the XY-plane. The reason this is important is that the 

distance difference L2-L1 can only be known if the translation happens in the same direction as the 

line between the transducer and the hydrophone. If this line is not parallel to the translation direction, 
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or z-axis, then the difference in distance will not be equal to the distance translated by the translation 

system. 

 

Figure 4.29: Importance of translation direction. The difference between L1 and L2 is not the same distance as the translated 
distance, which could cause faulty measurements. 

In Figure 4.29 the distance L1 and L2 are labelled, these will be the two distances we measure. 

However, the translation distance, which is in the z-direction, is not the same distance as the difference 

between L2 and L1. Since we don’t know the distances L1 and L2 and only know the translated distance, 

they need to be the same value in order to be able to calculate the sound speed. The x- and y-

coordinates of the hydrophone therefore need to be the same as the transducer. 

The method used to find the start of the received signal is important to mention as this value is directly 

involved in calculating the sound speed and can also be found via many methods resulting in different 

values. For this experiment the only important thing is the difference between the starts of the two 

signals received at the two measurement distances. This means that the start of the signal is not 

necessarily the part needed to be timestamped. As long as the same part of both the signals is the 

detected with accuracy, the relative difference will be the same. The method chosen to detect the 

signals was the cross-correlation method, described in section 3.3.1.4. This was chosen for its 

consistency in signal start detection time. The same part of the signal was detected every time with 

very little variation. 
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Figure 4.30: Signal start detection at position 1. 

 

Figure 4.31: Signal start detection at position 2. 

4.4.3.2 Stage offset 

Since the Translation system is fastened to the two stages with a metal rod and placed over one of the 

rails on the side of the tank, the force pushing or pulling the stages apart or closer will be concentrated 

on only one of the railings. This results in stage being moved to be slightly offset as its railed “legs” are 

being pushed while the other lags behind. 

 

Figure 4.32: Stage 1 lag during translation. 
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Because the hydrophone is mounted to stage 1 and the transducer is mounted to stage 2, both in the 

centre, the distance between them might not be the same as the distance moved by the translation 

system. This is because the part of stage 1 close to the translation system mounting point will be 

moved smoothly on the rails, while the opposing part will only start moving when the stiffness of the 

stage itself forces it to move, causing hysteresis when translating. This can be prevented by always 

approaching a desired position from the same side, always cause the same amount of lag and 

therefore cancelling it out. This is why during the experimentation the stages were moved only 700 

mm when the translation system is capable of 800 mm. In order to approach from the same side, the 

translation first needed to overshoot the desired position and come back. The order of positions and 

measurements were then, move to 0 mm and measure the delay, then move to 800 mm, then back 

to 700 mm and measure the second delay. Repeating this pattern makes it possible to take several 

measurements while ensuring the amount of lag stays the same. The exact magnitude of the lag was 

not measured but was noticeable by eye and probably on the order of magnitude of a few 

millimetres. 

4.4.3.3 Experiment and results 

The closest point to the transducer in the XY-Plane of the hydrophone was found using the method 

described in section 3.3.2. The delay was measured, the hydrophone translated 700 mm and measured 

again. This was done 10 times to see if the set-up was consistent and to get a better estimate of the 

speed by averaging.  

 

Figure 4.33: Signal received by hydrophone at two distances. 

Above in Figure 4.33 is shown one of two of the measurements done by hydrophone. These were done 

with a translation of 700 mm apart. Using cross-correlation to find the start of each signal the 
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difference can then be found. The average timestamp for the first position and second positions are 

labelled and were 0.763476 × 10−3 and 1.23531 × 10−3 seconds respectively. Finding the sound 

speed is then only a matter of dividing the known translated distance by the difference in in signal 

arrival times. 

𝑐 ≈
0.7 𝑚

(1.23531 − 0.763476) × 10−3 𝑠
≈ 1483.57 𝑚/𝑠 

4.8 

4.4.3.4 Diffraction correction 

When describing the factors involved in the delay between sending and receiving in formulae 12 and 

13, a detail was left out. Other factors than the system delay may influence the measured time delay. 

A time correction term 𝑡𝑐 is therefore introduced. 

𝑡 =
𝐿

𝑐
+ 𝑡𝑠 + 𝑡

𝑐 

4.9 

This time correction factor includes effects of internal transducer reflections 𝑡𝑖𝑛𝑡, thermal and viscous 

boundary layers at reflection surface 𝑡𝑡𝑣 and delay effects due to diffraction 𝑡𝑑𝑖𝑓𝑓. For the purposes of 

this study, 𝑡𝑖𝑛𝑡 and 𝑡𝑡𝑣 will be assumed to be negligible. The effects of 𝑡𝑑𝑖𝑓𝑓 will however be 

investigated and is based on the work done in [17]. 

In the case of this experiment, diffraction of the sound wave in water results in a phase shift between 

the actual sound wave and a hypothetical plane wave. This shift in phase may result in a short time 

delay independent of the propagation time. If an accurate value for the sound speed is to be found, 

this needs to be corrected for. The adjusted formulae for the sound speed including the delay caused 

by diffraction is then: 

𝑡1 =
𝐿1

𝑐
+ 𝑡𝑠 + 𝑡1

𝑑𝑖𝑓𝑓
                  𝑡2 =

𝐿2

𝑐
+ 𝑡𝑠 + 𝑡2

𝑑𝑖𝑓𝑓
 

4.10 

𝑡2 − 𝑡1 =
𝐿2 − 𝐿1

𝑐
+ (𝑡2

𝑑𝑖𝑓𝑓
− 𝑡1

𝑑𝑖𝑓𝑓
)                    𝑐 =  

∆𝐿

∆𝑡 − ∆𝑡𝑑𝑖𝑓𝑓
 

4.11 

 

The diffraction correction as defined by Khimunin [18] as 

𝐻𝑑𝑖𝑓𝑓 =
〈𝑝〉

𝑝𝑝𝑙𝑎𝑛𝑒
 

4.12 
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Where 〈𝑝〉 is the average pressure over the measurement are at a distance z in absence of the receiver, 

and 𝑝𝑝𝑙𝑎𝑛𝑒 is the plane wave pressure at the same distance. This is a complex quantity with an 

amplitude and a phase. The phase of this quantity corresponds to the diffraction time shift, 𝑡𝑑𝑖𝑓𝑓. 

Calculating this time shift will make it possible to correct for it in the sound speed calculations to get a 

more accurate measurement of the sound speed. The differential time shift is given by 

𝑡𝑑𝑖𝑓𝑓 =
∠𝐻𝑑𝑖𝑓𝑓

𝜔
 

4.13 

Where ∠𝐻𝑑𝑖𝑓𝑓is the phase of the diffraction correction and 𝜔 = 2𝜋𝑓 is the angular frequency of the 

sound wave. 

Several models exist for calculating the diffraction correction. For this study the on-axis point receiver 

(piston model) [9] will be used, as it assumes a small measurement area such as a needle hydrophone 

on the sound axis, which is what this study uses. The expression can be written as 

𝐻𝑑𝑖𝑓𝑓(𝑘𝑎, 𝑆) = 2𝑠𝑖𝑛 [
(𝑘𝑎)2𝑆

4𝜋
(√1 + (

4𝜋

𝑆𝑘𝑎
)
2

− 1)] × 𝑒𝑥𝑝 [𝑖

(

 
𝜋

2
−
(𝑘𝑎)2𝑆

4𝜋
(√1 + (

4𝜋

𝑆𝑘𝑎
)
2

− 1)

)

 ] 

4.14 

Where 𝑘𝑎 =
𝜔

𝑐
𝑎, 𝑎 is the radius of the transmitter and 𝑐 is the speed of speed. 𝑆 =

𝑧𝜆

𝑎2
, is a 

dimensionless quantity dependent on 𝜆 =  
2𝜋

𝑘
, the radius 𝑎 and the distance between the transmitter 

and he receiver. Since the diffraction time shift is only dependant on the phase of 𝐻𝑑𝑖𝑓𝑓, the rest of 

the equation will not be considered in this study. The time shift is then expressed as 

𝑡𝑑𝑖𝑓𝑓 =

𝜋
2 −

(𝑘𝑎)2𝑆
4𝜋 (√1 + (

4𝜋
𝑆𝑘𝑎

)
2

− 1)

𝜔
 

4.15 

The phase shift, ∠𝐻𝑑𝑖𝑓𝑓, is plotted below up to 4 meters, the length of the tank. The values for the 

variables used in this study were, 𝑎 = 12.5 𝑚𝑚 , 𝑓 = 500 𝑘𝐻𝑧, 𝑐 = 1483.57 𝑚/𝑠. 
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Figure 4.34: Diffraction correction phase shift. 

 

Figure 4.35: Diffraction time shift. 

 

The phase shift close to the transmitter is more than ± 90°, making it wrap around. Both the phase and 

the time shift flatten out as the distance increases and go towards a final value. These values being 90° 

and 5 × 10−7 seconds respectively. 

An issue arises when considering the fact that the value for the time shift found is used to estimate the 

value of the sound speed in the medium, when one of the values need to calculate the time shift was 

the sound speed in the medium, 𝑐. This can be taken into account, but the contribution of 𝑐 to the 

magnitude of the time shift is very small. Changing 𝑐 from 1485 to 1500 m/s, changes the time shift at 

1 meter from 3.948 × 10−7 to 3.958 × 10−7 seconds. a 0.35 % relative difference and a negligible 

absolute difference. Doing a hypothetical scenario where the sound speed is assumed to be of 1500 

m/s and used to calculate the time shifts and having measuring points at z = 1 meter and z = 1.7 meters, 

the final value for 𝑐 after correcting for the newly calculated time shifts would be 0.0014 m/s lower 
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than if 1485 m/s was used instead. The magnitude of 𝑐 in the calculation of the time shift for the 

purposes of correcting the value of 𝑐 is negligible. 

Finding ∆𝑡𝑑𝑖𝑓𝑓 is now only a question of finding the time shift at the two distances the sound speed 

was measured at. Again, using 𝑐 to find an estimate for the absolute distance of the measuring points. 

Using 𝑐 = 1483.57 𝑚/𝑠, and the average timestamps found in section 4.3.2.2, the distances measured 

at were approximately: 

𝑧2 ≈ 𝑐𝑡1 = 1.1327 𝑚          𝑧2 ≈ 𝑐𝑡2 = 1.8327 𝑚 

The respective time shifts are therefore: 

𝑡1
𝑑𝑖𝑓𝑓

= 3.947 × 10−7 𝑠         𝑡1
𝑑𝑖𝑓𝑓

= 4.3805 × 10−7 𝑠       

And the final diffraction corrected value for the sound speed is: 

 𝑐 =  
∆𝐿

∆𝑡 − ∆𝑡𝑑𝑖𝑓𝑓
=

0.7 𝑚

(4.7183 − 0.00043354) × 10−4𝑠
= 1483.71 𝑚/𝑠 

4.16 

4.4.3.5 Discussion of sound speed 

Comparing the final value of the measured sound speed for the water in the experimental tank shows 

a significant difference in their values. The theoretical value being 1489.32 m/s at the average 

measured temperature of the water, and the measured value, after correcting for diffraction being 

1483.71 m/s. The difference between them being 5.61 m/s or 0.38 %. The discrepancy may have 

several explanations, some are discussed here. In the calculation of the theoretical sound speed, a few 

assumptions were made. Their possible effects on the value of 𝑐 are investigated. All values connected 

to the gauge pressure ℘𝐺, those being the gravitational acceleration g, the depth under water h and 

the density of the water ρ, play a very little part in the end result for c. Omitting ℘𝐺 entirely from 

equation  only changes the final value by 0.01 m/s. Investigating the possible effect of using the true 

density of water at 22.39 degrees Celsius, instead of 1000 kg/m3 , using a more accurate value for g at 

the experiments longitude and latitude, instead of 9.81 m/s and measuring the exact depth of the 

hydrophone in the water column is not necessary as the changes are negligible. The other assumption 

made was that the water was distilled, which the water in the experiment tank is not. The water is 

fresh water from the buildings water supply. The water also accumulates algae, dust, rust and other 

particles over time. The algae in particular become visually noticeable after a few months. The water 

is therefore changed once a year or so. The algae may play a large role in making the sound speed 

slower than theoretically expected. It is also worth noting that the sound speed experiments were 

done in February, shortly before the water temperature was monitored. The temperature of the water 

might have been slightly lower at this point due to the time of year. A water temperature of around 

20.5 degrees Celsius would result in a theoretical sound speed comparable to the measured one. 
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Although the laboratory’s temperature should be kept stable by the buildings temperature regulation 

systems. No clear indication of a rising temperature in the water can be seen by the measurements 

done in the time after the sound speed experiment. There may also have been oversight regarding the 

translation system, or the offset mentioned in section 4.3.3.2, making the actual distance travelled not 

the same as the value used in the calculations. This however is not likely an explanation, as any fault 

in the system or the offset is likely to make the distance shorter than the desired one, resulting in a 

calculated sound speed further from the theoretical one. 

4.4.3.6 Uncertainty 

Some assumptions must be made in order to find a value for the uncertainty of c. Assuming a working 

translation system and considering the offset discussed in section 4.3.3.2, the deviation is assumed to 

be no more than 1 mm to each side, giving a standard deviation of 0.5 mm. For the timing ∆𝑡, the 

largest error probably comes from the cross-correlation algorithm detecting the start of each signal. 

Considering the consistency in its detection seen in Figure 4.30 and Figure 4.31, estimating a deviation 

of no more than 10% of one wavelength. The uncertainty of ∆𝑡𝑑𝑖𝑓𝑓 is difficult to guess, however the 

impact of the value towards 𝑐 is small, meaning overestimating the uncertainty will have little effect 

on the uncertainty of c. Considering the measurements took place outside the transducers Rayleigh 

distance but closer than infinitely far away, the value of ∆𝑡𝑑𝑖𝑓𝑓 lies somewhere between 0 and 

5 × 10−7 seconds. This gives a maximum value for the uncertainty of ∆𝑡𝑑𝑖𝑓𝑓 at  
5×10−7

2
 seconds. 

𝑢∆𝐿 = 5 × 10−4  𝑚       𝑢∆𝑡 =
0.1

500 000 𝐻𝑧
= 2 × 10−7 𝑠       𝑢∆𝑡𝑑𝑖𝑓𝑓 = 2.5 × 10−7 𝑠 

 

𝑢𝑐 =  √(
𝛿𝑐

𝛿∆𝐿
𝑢∆𝐿)

2

+ (
𝛿𝑐

𝛿∆𝑡
𝑢∆𝑡)

2

+ (
𝛿𝑐

𝛿∆𝑡𝑑𝑖𝑓𝑓
𝑢∆𝑡𝑑𝑖𝑓𝑓)

2

 

4.17 

𝑢𝑐 = 1.4618 𝑚/𝑠 

The estimate for the uncertainty of the sound speed is based on many estimates but gives idea of the 

magnitude of the variations in the measured sound speed. Most of the uncertainty in the current 

estimate comes from the uncertainty in ∆𝐿. This makes sense as it is linked to the physical set-up of 

the experiment and only small error in its accuracy results in relatively large changes in c. Doubling the 

estimate for the uncertainty in the set-up, and therefore in ∆𝐿, practically doubles the value of 𝑢𝑐. 

4.5 System delay 

In order to know the precise distances between a transducer and its target, a few things are needed, 

the time delay between transmitting and receiving of the signal, as well as the sound speed of the 
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medium. Using these two to calculate the actual distance however may give a faulty answer, as the 

time measured between transmitting a signal and receiving it may involve delays in the equipment 

used. This means that the time measured includes both the actual travel time of the sound wave, as 

well as a small delay caused by the transducer, filter, amplifier, or other parts of the set-up the electric 

signal travels through on its way from the signal generator to the oscilloscope. The timing on the 

oscilloscope starts from zero and is based on the sync signal from the signal generator. This is a 

separate signal sent by the signal generator such that other equipment can know when the bursts are 

sent, to the transducer in this case. See section 3.2 to see the equipment involved. The combined delay 

from signal being sent by the signal generator to a sound wave starts to propagate through the water, 

and the delay between the sound wave being registered by a hydrophone or transducer and being 

registered on the oscilloscope, is the system delay. Although the contributions to this delay from the 

different sources are hard to quantify individually, the combined delay can be measured. 

4.5.1 Delay measurement method 

Finding the system delay involves taking several measurements at different distances between 

transducer and target. The measured time delays plotted against the distances will be a linear function 

with an offset at 0. The physical interpretation of this offset is the delay between signal sending and 

receiving when the distance travelled by the propagating sound wave is 0. This will be the system delay. 

To perform this measurement, the absolute distance from transducer to target needs to be known. 

The experimental set-up has no mechanism to measure the absolute distance between the stages or 

any other objects. Only the relative distance can be changes using the translation stage. This was used 

to find the sound speed, however the absolute distance needs to be measured manually in order to 

find the system delay. 
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Figure 4.36: Finding absolute distance from transducer face to determine system delay using a ruler. 

Using a ruler placed along the sound axis of the transducer in use, a starting distance of 31 cm in the 

case of the calibration sphere and 9 cm in the case of the hydrophone, was measured. 

 

4.5.2 Measuring system delay 

When measuring distances acoustically, it is important to isolate the propagation time of the sound in 

the medium.  If other delays between signal transmission and reception are included, the calculated 

distance will be faulty. When sending a sinusoidal pulse from a signal generator to a transducer, there 

will be a slight time delay between the signal being sent from the generator to the soundwave starting 

to propagate through the medium in front of the transducer. There will also be a similar delay when 

using a hydrophone to receive the sound produced by the transducer. A delay between signal 

reception, detection, processing, and presentation. When using a calibration sphere, the delay from 

the transducer end will be doubled as it will now function as both the sender and the receiver. In 

addition, an analogue filter is used to increase signal to noise ratio. This will also delay the signal 

slightly. 

 

In this work it is important to know this delay as it will directly affect the triangulation calculation 

where acoustically measured distances are the inputs. Not factoring in the delay will result in too large 
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distances and the final position of the target will be off. Finding the delays contributions from individual 

components in the system chain is difficult, but also unnecessary. The entire delay can be simply 

measured via two experiments. Firstly, the sound speed in the medium needs to be determined. This 

was done in section 4.4. Secondly, the time between signal sending and reception needs to be 

measured at several known distances from the sound source. 

Finding the distance between two points in the experiment tank can be done by translating the stages 

by a known distance. However, this will only give the relative distance between the two chosen points. 

To determine the system delay, the absolute distance from the source is needed. This was done by 

moving the stage holding the transducer and the stage holding the target as close to each other as 

possible and then manually measuring the distance between the source and target with a ruler, seen 

in Figure 4.36: Finding absolute distance from transducer face to determine system delay using a ruler.. 

This method is not ideal and lends itself to many sources of measurement error but was determined 

to be the best option with the resources available. The distance was measured from the source to both 

a hydrophone and a calibration sphere in order to find the system delay in both cases. The distance 

from transducer to hydrophone was found to be 90 mm, and 310 mm for the tungsten carbide 

calibration sphere. These distances will be added to the relative distances measured using the 

translation of the stages to give the total absolute distance. 

The second experiment was then performed at several distances with both types of targets. Time 

between sending and reception was measured, then the target was moved 10 cm further from the 

source. In case of the hydrophone, the total absolute distance would then be 9 cm plus n times 10 cm 

of relative translation. Making sure not to measure within the transducers near field. When knowing 

the time, distance and speed, the system delay can be extracted by comparing the time sound would 

have taken to cover the known distance, using the previously measured sound speed, and the actual 

measured time taken. The difference between the two is the system delay. Doing it as several distances 

ensures the experiment was done correctly as well as providing more data points for higher certainty 

of accuracy. 
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Figure 4.37: Signals received by hydrophone from different distances. 

Finding the system delay is then only a matter of plotting the measured times against the absolute 

distances the times were measured at, then finding a linear line of best fit and finding where it crosses 

the y-axis. This represents the delay between signal sending and reception, with zero distance of sound 

propagation, also known as the system delay. This was done using MATLABs curve fitting tool and two 

different delays were found. 

 

Figure 4.38: Time vs distance for hydrophone. 

 

Figure 4.39: Time vs distance for calibration sphere. 
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The line of best fit was modelled with the formula 𝑎𝑥 + 𝑏, the b then representing the system delay. 

When using a hydrophone, the system delay was measured to be: 

𝑡ℎ = 3.68 𝜇𝑠             𝑡𝑠 = 6.82 𝜇𝑠 

with an uncertainty of: 

𝑢𝑡ℎ = 0.24 𝜇𝑠          𝑢𝑡𝑠 = 0.43 𝜇𝑠 

where 𝑡ℎ is the system delay when measured with a hydrophone, and 𝑡𝑠 is the system delay when 

measured with a calibration sphere. The delay nearly doubles when using a calibration sphere instead 

of the hydrophone, which makes sense when assuming that most of the delay in such a system comes 

from the delay between converting between material vibrations and electric signal within the 

transducer. This happens twice when using a calibration sphere, as the signal is both sent and received 

by the transducer. In the case of the hydrophone, the transducer is only used for sending the signal. 

It is also worth noting that the “a” in the modelled formula for line of best fit represents a value with 

the unit s/m, taking the reciprocal of this value will then give the sound speed in the medium. When 

this is done the resulting values for 𝑐 are: 

𝑐ℎ =
1

0.0006723 𝑠/𝑚
= 1487.43 𝑚/𝑠           𝑐𝑠 =

2

0.001343 𝑠/𝑚
= 1489.20 𝑚/𝑠 

It is hard to say if these values are any more or less accurate than the one found in section 4.4, but 

they do better align with the expected value for 𝑐 found using the theoretical model for distilled water. 

These experiments where also done about a month later than the sound speed measurement, and the 

temperature in the water may have changed in that time. 
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4.6 Triangulation and 𝜓-estimation 

This section presents different methods of estimating the value of 𝜓 and what factors may affect it, 

with emphasis on the triangulation methods. For all experiments, the “origin” transducer will be 

transducer β, meaning, during this section, all experiments use transducer β when measuring, 

estimating and calculating anything related to beam pattern or 𝜓. This is done to ensure all results are 

comparable. A theoretical uncertainty and sensitivity analysis for the triangulation method is also 

performed via monte Carlo simulations. 

4.6.1 Monte Carlo simulation 

This section presents some simulations of the triangulation methodology by calculating a theoretical 

targets position with simulated uncertainties for many iterations. The following histogram for the 

results of the targets coordinates will tend toward the true uncertainty and distribution given the input 

parameters. A sensitivity analysis to explore the effect of each input parameter is also performed. 

4.6.1.1 Simulated uncertainty 

When triangulating a target point, as discussed in section 2.5, it is necessary to know 12 input values 

the 3 locators’ x, y and z-coordinates and their distances to the target. All of which have some level of 

uncertainty. For this analysis, the positions of the locators will be chosen using the echosounder 

schematic for G.O. Sars, choosing three of the in total 7 transducer locations. In section 4.6.1.2 other 

combinations of positions will be used to investigate the effects on uncertainty of having a larger area 

between the locators. The positions chosen for this simulation is shown in Figure 4.40. As mentioned 

in section 2.5, doing a coordinate shift will decrease computation time significantly and will make large 

amounts of simulated iterations possible. The coordinates are therefore shifted to make T1 be placed 

in the origin and all three locators are on the XY-plane. 

 

Figure 4.40: Positions of echosounder transducers on G.O. Sars' drop keel. 
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The transducers labelled ES200-7C, ES70-7C and ES38-7 are chosen as the locators for this simulation. 

Using their on-ship position and shifting the coordinate system making ES200-7C the origin transducer, 

the coordinates can then be written as 

𝑇1 = 𝐸𝑆2007𝐶 − 𝐸𝑆2007𝐶 = (0, 0, 0) 

𝑇2 = 𝐸𝑆707𝐶 − 𝐸𝑆2007𝐶 = (0.035, 0.524 , 0) 

𝑇3 = 𝐸𝑆387 − 𝐸𝑆2007𝐶 = (−1.138, 0.327, 0) 

with all coordinates in meters. The position of the target is chosen to be directly underneath 𝑇1, at 20 

meters, a typical calibration depth [5]. The coordinates of the target are then, 

𝑆 = (0, 0, 20). 

The uncertainties involved were then chosen, these are not known values and their values were chosen 

for this simulation. The uncertainty in the position of all locators in all directions was set to be the 

same, 𝑢𝑇, and the uncertainty in the distances, 𝑢𝑑, was separated into an uncertainty in propagation 

time measurement and sound speed, 𝑢𝑡 and 𝑢𝑐. 

𝑢𝑇 = 1 𝑚𝑚 

𝑢𝑡 = 1 𝜇𝑠 

𝑢𝑐 = 1 𝑚/𝑠 

The position of the target 𝑆 was then calculated with each input parameter, locator position and 

distance to target, having a random variation chosen from a normal distribution with the standard 

deviation equal to the parameters chosen uncertainty, 𝑢𝑇, 𝑢𝑡 and 𝑢𝑐. This process was repeated 

100 000 times with each iteration having a different random variation in the input parameter. The 

resulting histograms are shown in Figure 4.41. 

 

Figure 4.41: Histogram of simulated target coordinates. 

The resulting histograms are also overlayed with a distribution function and the mean and standard 

deviation is written in the annotation. All three coordinates seem to have a gaussian distribution, 

assuming this, the resulting means and standard deviations are 

𝑢𝑆𝑥 = 0 ± 0.032 𝑚 

𝑢𝑆𝑦 = 0 ± 0.081 𝑚 
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𝑢𝑆𝑧 = 20 ± 0.013 𝑚. 

The uncertainty in the z-direction is smaller than in the x or y-direction and is a result of the geometry. 

When the target is placed far away compared to the distances between the locators, not any one 

parameter change will affect the z-coordinate much, but the x and y-coordinates become more 

sensitive to input-variations. This also plays into why the distribution of the z-coordinate does not seem 

gaussian. Any change in any one parameter will, almost always move the triangulated point closer to 

the locator plane and laterally in the x and/or y-direction. Only a combination of random increases in 

more than one distance parameter will change the estimated z-coordinate in the positive direction, 

making it less likely to be overestimated. 

The uncertainty in the x-coordinate is also noticeably smaller than in the y-direction this is due to the 

area between the locators spans further in the x-direction than the y-direction giving better accuracy 

in the x-direction. This is shown in section 4.6.1.2. 

With the chosen uncertainties of 1 mm, 10 μs and 0.1 m/s, the resulting coordinates have standard 

deviations of up to 0.8 meters, resulting in an equivalent of 2.3 degrees from the z-axis, which could 

prove significant when estimating the transducers beam patterns. In the y-direction alone, 5 % of the 

estimates were of by an equivalent of 4.65 degrees or more.  

4.6.1.2 Sensitivity analysis 

By simulating the triangulation process while changing the uncertainties of the input parameters, the 

outcome’s sensitivity to each input uncertainty can be found. For this study the uncertainties remain 

the same as in previous section above, but two of them will be set to 0, to see the effects of only one 

of the uncertainty parameters. All three cases are presented in Figure 4.42-Figure 4.44, each simulation 

with 10 000 iterations.  

 

Figure 4.42: Resulting histograms from monte Carlo simulated triangulation ut = 1 μs. 
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Figure 4.43: Resulting histograms from monte Carlo simulated triangulation uc= 1 m/s. 

 

Figure 4.44: Resulting histograms from monte Carlo simulated triangulation uT= 1 mm. 

The majority of uncertainty in the targets x and y-position in the case presented in 4.6.1.1  seems to 

come from its uncertainty in the propagation time 𝑢𝑡, as seen in Figure 4.42-Figure 4.44. 𝑢𝑐 contributes 

to most of the uncertainty in the targets z-position, as it affects all distance estimates equally, while 

𝑢𝑡 affects each distance estimate individually. @ 

The distribution of the simulated z-coordinate has a normal distribution when 𝑢𝑇 = 0, and while 𝑢𝑇 ≠

0 and 𝑢𝑡 = 𝑢𝑐 = 0, the distribution becomes a reverse exponential distribution. While the target point 

is directly below one of the locators, no change in either locator position results in a higher z-

coordinate for the triangulated target, hence the cut off distribution. In certain combinations of input 

uncertainties where 𝑢𝑇 is large enough compared to the other uncertainties involved, the distribution 

of the z-coordinates starts to take this skewed shape. This was simulated and is shown in Figure 4.45, 

using the input uncertainties set at 

𝑢𝑇 = 10 𝑚𝑚,    𝑢𝑡 = 10 𝜇𝑠,    𝑢𝑐 = 1 𝑚/𝑠 
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Figure 4.45: Skewed histogram of simulated z-coordinate. 

4.6.1.2.1 Locator positioning 

By changing which three transducers used to triangulate the area between them will change, and this 

affects the accuracy of the coordinates of the triangulated target point. Using the same uncertainties 

as transducer positions as in as in section, and only changing locator 𝑇3 from ES38-7 to ES18-11 as 

seen in Figure 4.40, the area between the three locators is now smaller in the x-direction and is now 

similar to the extension in the y-directions. The resulting simulated uncertainties are presented in 

Figure 4.46 with 10 000 iterations, with the locator positions 

𝑇1 = 𝐸𝑆2007𝐶 − 𝐸𝑆2007𝐶 = (0, 0, 0) 

𝑇2 = 𝐸𝑆707𝐶 − 𝐸𝑆2007𝐶 = (0.035, 0.524 , 0) 

𝑇3 = 𝐸𝑆1811 − 𝐸𝑆2007𝐶 = (−0.441, 0.327, 0). 

 

Figure 4.46: Simulated uncertainties when decreasing area between transducers. 

With a more similar extension in both the x and y-direction, the uncertainties for the x and y-

coordinates of the target are almost equal, while both the uncertainties of the y and z-coordinates 

remain the same as the previous case. Choosing locators as far apart as possible decreases 

inaccuracy dramatically in the case studied here. This is one important reason split beam 

triangulation is highly sensitive to uncertainties and may give faulty results. 
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The MATLAB code used for the monte Carlo simulations can be found in appendix A.4. 

 

4.6.2 Single target triangulation testing 

To test out the accuracy of the triangulation method using three transducers and one target, an 

experimental set-up was made. Two 500 kHz and one 1 MHz transducer were mounted to the 

transducer mounting plate in the positions 2, 5 and 7, see Figure 3.26. A 22 mm tungsten carbide 

calibration sphere was then suspended in the water some distance from the transducers, using fishing 

line in the IMR octant configuration. The three transducers were then supplied with a 500 kHz, 10 Volt 

peak to peak, 25 cycle signal, one at a time. The echoes received from the sphere were recorded and 

saved. Using the positions of the transducers and the distances measured from each transducer to the 

calibrations sphere, the exact position of the sphere could be calculated using the triangulation 

method. 

4.6.2.1 Finding the transducer positions 

Using the triangulation method requires knowledge of the positions of the transducers. The mounting 

plate has known dimensions, and this could be used to find the distances between the transducers, 

however it is desirable to define coordinate system to be parallel with the positioning system in the 

experiment tank. This will make it easy to know the position of the sphere for reference. For this 

reason, the positions of the transducers were found acoustically by moving the calibration sphere on 

a plane using the translation system.  
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Figure 4.47: Calibration sphere on one side of the tank, movable by the translation system and three transducers in the 
mounting plate at the other side. 

Using the methodology described in section 3.3.2. The point directly in front of each transducer, along 

the defines z axis, can be found by moving the sphere around and measuring the distances. Since the 

relative positions of the sphere are known via the positioning system, the positions of the transducers 

can also be found. Each transducer’s position is the same as the sphere when it is at its closest point, 

minus the distance measured in the z-axis. 

𝑇𝑝 = 𝑆𝑝 + 𝑑𝑧 = (𝑥, 𝑦, 𝑧 − 𝑑𝑧) 

4.18 

Where 𝑇𝑝 and 𝑆𝑝 are the positions of the transducer in question and the calibration sphere 

respectively, and 𝑑𝑧 is the distance between them on the z-axis. The sphere’s x and y- positions are 

known because of the position system, the z-coordinate, however, must be defined. XY-plane defined 

by the translation system, meaning the plane the sphere is placed on, is defined as z = 0. This makes it 

so that the sphere will have coordinates (𝑥, 𝑦, 0). The x and y position can then also be defined as 

being zero at this point and the sphere is now defined as being at the origin. The three transducers will 

then have measured positions in relation to the origin and the exact position of the calibration sphere 

can now also be known for reference when triangulating. 
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4.6.2.2 Finding the distances 

Finding the distance between transducer and sphere is a matter of signal detection. An algorithm 

needs to be used to find the signal, or echo, received by the transducer, from the calibration sphere. 

A cursor method cannot be used as the timing window is unknown as the position of the sphere is 

unknown. For this experiment the cross-correlation method described in section 3.3.1.4 was used. The 

position in time where the received signal best resembles the signal sent will be the time delay 

between signal sent and signal received. The system delay found in section 4.5 also used the same 

signal detection algorithm. The system delay will be part of the measured time delay and must be 

accounted for, so that the calculated distance used for triangulation is accurate. 

4.6.2.3 Knowing the sphere position 

In order to know if the triangulated position for the sphere is correct, we need to already know the 

spheres position via some other method. As described in section 4.4.1, if the transducers positions are 

defined using the tanks positioning system, then the position of the sphere can also be known. When 

both the triangulated position and the actual position of the sphere is known, the two can be 

compared. For this experiment, the origin was chosen to be the origin of the tanks translation system. 

This was chosen as these coordinates are the ones operating with when using the system and therefore 

no coordinate system conversion needs to be done. This means the origin is on the plane on which the 

calibration sphere can move, giving it a z-coordinate of 0. The exact physical position of the origin is 

not important as all the coordinates are only for comparison. The position of the sphere can then be 

chosen to be anywhere within the coordinates (0, 0.15, 0) and (0.5, 0.65, 0). The sphere shouldn’t be 

placed outside these coordinates as it will then be placed too close to, or inside, the walls, surface or 

bottom of the tank. 

4.6.2.4 Finding the transducers’ coordinates 

The positions of the three transducers were first measured via the method described in section 4.6.2.1 

The value “b” in Figure 4.48-Figure 4.53 represent the coordinate of the transducer in question. The 

“a” represents its distance from the XY-plane where the calibration sphere is located. 

 

Figure 4.48: Finding transducer 1 x-coordinate. 
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Figure 4.49: Finding transducer 1 y-coordinate. 

 

Figure 4.50: Finding transducer 2 x-coordinate. 

 

Figure 4.51: Finding transducer 2 y-coordinate. 

 

Figure 4.52: Finding transducer 3 x-coordinate. 
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Figure 4.53: Finding transducer 3 y-coordinate. 

The estimated positions of the three transducers are then: 

𝑇1 = (0.2424, 0.3088,−2.014)  𝑇2 = (0.2279, 0.4879,−2.0133)  𝑇3 = (0.3839, 0.4191,−2.0138) 

4.6.2.4.1 Comparing the results 

The calibration sphere was then placed, via the translation system, at the coordinates: 

𝑆 = (0.34, 0.43. 0) 𝑚 

The distances between the three transducers were measured acoustically being sure to compensate 

for the system delay present when using a calibration sphere: 

𝑑1 = 2.02 𝑚 − 𝑡𝑠𝑐 = 2.0099 𝑚 

𝑑2 = 2.0169 𝑚 − 𝑡𝑠𝑐 = 2.0068 𝑚 

𝑑3 = 2.0143 𝑚 − 𝑡𝑠𝑐 = 2.0042 𝑚 

The positions and distances found above can then be used in equations 2.15-2.17 to get a triangulated 

answer for the position of the calibration sphere. The equation gives two answers for the position. The 

answer containing a z-coordinate close to zero was selected, the other answer for the z-coordinate 

being ~ -4 m, and as we know the sphere is in front of the transducers. The result then becomes: 

𝑆𝑡 = (0.337, 0.433, 0.01) 

Comparing to the known position of the sphere, both the x and y-coordinates are off by 3 mm, while 

the z-coordinate is off by only 1 mm despite being the larger distance. This shows promise for the 

triangulation method as is its accuracy in this test was high. 

4.6.2.5 Uncertainty 

Before finding the uncertainty of the coordinates for the calibration sphere, 𝑆𝑡  , the uncertainties for 

the all the variables used to find 𝑆𝑡 need to be determined, starting with the distances 𝑑1, 𝑑2 and 𝑑3. 

These are based on the equation: 

𝑑 = 𝑐(𝑡 − 𝑡𝑠) 

4.19 
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Where 𝑐 is the sound speed, 𝑡 is the measured time delay between signal transmission and reception 

and 𝑡𝑠 is the system delay. Combining this formula with the uncertainties for 𝑐, 𝑡 and 𝑡𝑠 found in section 

4.4 and 4.5, the uncertainty for 𝑑 can be found. 

𝑢𝑑 =  √(
𝛿𝑑

𝛿𝑐
𝑢𝑐)

2

+ (
𝛿𝑑

𝛿𝑡
𝑢𝑡)

2

+ (
𝛿𝑑

𝛿𝑡𝑠
𝑢𝑡𝑠)

2

 

4.20 

The same equation can also be used for finding 𝑢𝑇𝑧, being the uncertainty of the z-coordinate for any 

given transducer, since this value is also based on a distance found with equation 4.19. 

𝑢𝑇𝑧 = √(
𝛿𝑑

𝛿𝑐
𝑢𝑐)

2

+ (
𝛿𝑑

𝛿𝑡
𝑢𝑡)

2

+ (
𝛿𝑑

𝛿𝑡𝑠
𝑢𝑡𝑠)

2
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Uncertainties for the remaining variables 𝑇𝑥 and 𝑇𝑦, are not as straight forward to estimate, as they 

involve the uncertainty of the translation system as well as regression analysis. Using the same 

uncertainty for the translation system as used in section 4.4.3.6 and adding on the uncertainties for 

the regression analysis shown in Figure 4.48-Figure 4.53, a combined value for 𝑢𝑇𝑥 and 𝑢𝑇𝑦 can be 

found. 

𝑢𝑇𝑥 = 𝑢𝑇𝑥 = 𝑢∆𝐿 + 𝑢𝑅𝑎 

4.22 

Where 𝑢∆𝐿 is the uncertainty in the positioning of the translation system, found in section 4.4.3.6, and 

𝑢𝑅𝑎 is the uncertainty in the regression analysis, being one quarter of the 95% confidence interval, as 

it corresponds to two standard deviations in each direction. 

The uncertainties doe all the variable involved in calculating 𝑆𝑡 are calculated to be: 

𝑢𝑑1 = 0.00209 𝑚      𝑢𝑑2 = 0.00208 𝑚      𝑢𝑑3 = 0.00208 𝑚 

𝑢𝑇1
𝑥 = 0.00095 𝑚      𝑢𝑇1

𝑦
= 0.00065 𝑚      𝑢𝑇1

𝑧 = 0.0021 𝑚 

𝑢𝑇2
𝑥 = 0.0008 𝑚        𝑢𝑇2

𝑦
= 0.0008 𝑚       𝑢𝑇3

𝑧 = 0.0021 𝑚 

𝑢𝑇3
𝑥 = 0.00065 𝑚        𝑢𝑇3

𝑦
= 0.00075 𝑚       𝑢𝑇3

𝑧 = 0.0021 𝑚 

Combining the uncertainties to find the uncertainty in the triangulated coordinates of 𝑆𝑡 gives: 

𝑢𝑆𝑡
𝑥 = √(

𝛿𝑆𝑡
𝑥

𝛿𝑑1
𝑢𝑑1)

2

+ (
𝛿𝑆𝑡

𝑥

𝛿𝑑2
𝑢𝑑2)

2

+ (
𝛿𝑆𝑡

𝑥

𝛿𝑑3
𝑢𝑑3)

2

+ (
𝛿𝑆𝑡

𝑥

𝛿𝑇1
𝑥 𝑢𝑇1

𝑥)

2

+⋯(
𝛿𝑆𝑡

𝑥

𝛿𝑇3
𝑧 𝑢𝑇3

𝑧)

2

 

4.23 
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𝑢𝑆𝑡
𝑦
= √(

𝛿𝑆𝑡
𝑦

𝛿𝑑1
𝑢𝑑1)

2

+ (
𝛿𝑆𝑡

𝑦

𝛿𝑑2
𝑢𝑑2)

2

+ (
𝛿𝑆𝑡

𝑦

𝛿𝑑3
𝑢𝑑3)

2

+ (
𝛿𝑆𝑡

𝑦

𝛿𝑇1
𝑥 𝑢𝑇1

𝑥)

2

+⋯(
𝛿𝑆𝑡

𝑦

𝛿𝑇3
𝑧 𝑢𝑇3

𝑧)

2

 

4.24 

𝑢𝑆𝑡
𝑧 = √(

𝛿𝑆𝑡
𝑧

𝛿𝑑1
𝑢𝑑1)

2

+ (
𝛿𝑆𝑡

𝑧

𝛿𝑑2
𝑢𝑑2)

2

+ (
𝛿𝑆𝑡

𝑧

𝛿𝑑3
𝑢𝑑3)

2

+ (
𝛿𝑆𝑡

𝑧

𝛿𝑇1
𝑥 𝑢𝑇1

𝑥)

2

+⋯(
𝛿𝑆𝑡

𝑧

𝛿𝑇3
𝑧 𝑢𝑇3

𝑧)

2
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𝑢𝑆𝑡
𝑥 = 0.0485 𝑚     𝑢𝑆𝑡

𝑦
= 0.0463 𝑚     𝑢𝑆𝑡

𝑧 = 0.00222 𝑚 

It is worth noting the significant difference in the magnitude of 𝑢𝑆𝑡
𝑧 compared to 𝑢𝑆𝑡

𝑥 and 𝑢𝑆𝑡
𝑦

. This is 

likely because the any small variation in the distances 𝑑1, 𝑑2 and 𝑑3 will change the position of 𝑆𝑡 in 

the XY-plane by a comparatively large amount, while the z-coordinate will remain almost constant as 

it is denoting the distance from transducer to target. If the target change position by a few cm in the 

XY-plane the change in the distance from transducer to target is miniscule. From the perspective of 

transducer 3, is the target directly in front of the transducer and is then moved in the Y-direction by 

10 cm, the resulting change in the distance from transducer to target only changes by 2.5 mm. The 

configuration of the transducers compared to the relative distance of the target makes it more 

sensitive to changes in the z-direction then in the XY-plane. If the area between the transducers was 

increased compared to the distance of the target. The three uncertainties would be lower and closer 

to each other in magnitude. This is discussed in section 4.6.1.2.1. 

The uncertainties of the x and y-coordinates for the target are comparatively large considering the size 

of the main lobe at that distance for instance. Using the piston model, the main lobe of the transducers 

used at a distance of 2 meters has a radius of tan(8.32°) × 2 𝑚 = 0.292 𝑚. Trying to measure an area 

of that size with an uncertainty that large is not ideal, as an amplitude measurement at any point of 

the beam pattern may be falsely attributed to a different part of the beam pattern, making the 

estimate of 𝜓 potentially inaccurate. 

Perhaps the assumptions made in the uncertainties were higher than in reality. Comparing the 

calculated uncertainty to the result in section 4.6.2.4.1, comparing 𝑆 to the triangulated position 𝑆𝑡, 

the results were much closer than the uncertainties predict. This may of course be by chance, doing a 

larger scale experiment might reveal more. 

4.6.3 Choosing a curve fitting equation for transducer beam pattern estimation 

In order to be able to integrate over the beam pattern to find a value for 𝜓, an estimate for the 

transducers beam pattern is found via MATLABs curve fitting tool, using a custom fitting equation. This 

equation was chosen based in the piston model approximation of a transducers beam pattern as well 

as the observations done during the bafflement testing in section 4.3.4 and can be expressed as 
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𝐵𝑒(𝜑) = |
2𝐽1(𝑣)

𝑣
|

𝛾

              𝑣 = 𝑘𝑎 𝑠𝑖𝑛(𝜑) 

4.26 

where 𝜑 is the angle from the sound axis and is the function variable, while 𝑘𝑎 is a parameter. The 

Curve Fitting Tool will change these parameters in the given equation numerically until a curve of best 

fit is found.  

The other parameter introduced is 𝛾, used to compensate for the lowered side lobe levels observed 

when baffling transducers. If 𝛾 is above 1 the resulting beam pattern will have lower amplitudes at all 

points other than the sound axis. The curve fitting algorithm will combine a value for 𝛾 with a new 𝑘𝑎-

number to fit the beam pattern of the transducer. 𝑘𝑎 is then no longer a representation of the 

wavenumber multiplied by the face radius but is used as an otherwise nameless variable used to find 

the best fit for the beam pattern. 

 

Figure 4.54: Estimation of beam pattern of baffled transducer with and without γ-parameter, based on piston model. 

Figure 4.54 shows the improved estimate for the beam pattern of a baffled transducer by introduction 

of the 𝛾-paramter, in this case using the 12 cm baffle. The unaltered estimation derived from the piston 

model fails to account for the lowered side lobes and altered shape of the main lobe. The 𝛾-paramter 

will be used to get a better estimate of the beam pattern of the transducers in this study. 

In the ICES report [5], a model of the beam pattern is proposed and is expressed as 

b(α, β)2  =  10
0.60206((

2α
α−3 dB

  )
2

 +(
2β

β−3 dB 
)
2

 −0.18(
2α

α−3 dB
  )
2

 (
2β

β−3 dB
  )
2

 )
, 

4.27 
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where α and β are the angles in the alongship and athwartship directions and 𝛼−3 𝑑𝐵 and 𝛽−3 𝑑𝐵 are 

the -3 dB beamwidths in the α and β directions. This model will not be used during this study as the 

model only models part of the main lobe, while this study aims to model side lobes as well for better 

𝜓-estimation. Figure 4.55 shows the cross section of the beam pattern estimated using equation 4.27 

in the α direction using 𝛼−3 𝑑𝐵 = 𝛽−3 𝑑𝐵 = 7° compared with the piston model’s beam pattern 

estimate using the same beamwidth. 

 

Figure 4.55: Comparison of beam pattern estimate b and piston model. 

The figure above shows the discrepancy in equation 4.27 compared to the beam pattern estimated by 

the piston model, for angles higher than a few degrees. 

4.6.4 Multi target triangulation testing with hydrophone 

The same experiment as described in section 4.6.2 was performed using a hydrophone and recording 

the signal from the transducer at several locations. A hydrophone was used to better be able to test 

the triangulation method by removing some variables and also achieving a higher signal to noise ratio, 

therefore being able to record over a large area as more of the signals further from the sound axis 

could be detected over the noise. One of the transducers were also swapped for a 1 MHz transducer, 

this was done as only two 500 kHz transducers were available at the time, as well as being an 

opportunity to test the methodology for several frequencies and beam patterns. 

Using the same coordinate system definitions as in section 4.6.2. The hydrophone was moved between 

the Y-coordinates 0.15 and 0.645, and between the depths of 0 and 0.48, with 0.015 m between the 

positions. This makes for an array of dimensions 33x34, containing all together 1122 positions, all with 

measured distances and amplitudes from the three transducers, which are still placed in the positions 
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2, 5 and 7, see Figure 3.26, on the mounting plate. The experiment was done in three phases, each 

phase having one of the transducers transmitting a 25 cycle, 10 Vpp electric signal every 10 ms. The 

hydrophone is placed in each position and averages the sound signal it receives over a time of 60 

seconds to achieve the best signal to noise ratio before being moved by the translation system to its 

next location. After having cycled through all 1122 positions and recording the signals from the 

transducer, the transducer in use is then changed to one of the other transducers placed in one of the 

other sockets on the mounting plate. The whole procedure is then done again for this transducer. This 

is done three times, once for each transducer. Then the amplitude of the signal and distance from each 

transducer at each location has been recorded. This information can then be used to triangulate the 

hydrophones position and map each transducers beam pattern. 

 

Figure 4.56: Amplitude of signal picked up by hydrophone from the three transducers at all positions. 

 

Figure 4.57: Amplitude of signal picked up by hydrophone from the three transducers at all positions added together. 

In Figure 4.56 and Figure 4.57, the amplitudes of the signals coming from the three transducers in the 

1122 positions have been plotted, showing the effects of the beam patterns of the three transducers. 

Since the hydrophone is not equidistant from the transducer at all measurement points, therefore, 

Figure 4.56 doesn’t show the beam patterns exactly. 
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Figure 4.58: Measured distance from Transducer 1 to hydrophone. 

 

Figure 4.59: Measured distance from Transducer 2 to hydrophone. 

 

Figure 4.60: Measured distance from Transducer 3 to hydrophone. 

In Figure 4.58, Figure 4.59 and Figure 4.60 the distances between the hydrophone and the three 

transducers are shown. Note the outliers with higher or lower values than expected. These occur at 

the edges of the measurement area, either because of low signal to noise ratio, making it difficult to 

find the exact distance or interference from wall reflection altering the apparent arrival time. These 

outliers will be excluded further in the study as any point triangulated by using only one faulty distance 

will also faulty. Using the measured distances with the x, y and z-coordinates of the transducers, the 
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position of the hydrophone at all points can be found. The positions of the transducers are chosen as 

the coordinates of their locations on the mounting plate, see section 3.2.1.1. The CAD-model has the 

coordinates for each mounting hole which is then used as the transducer’s positions. By defining one 

of the transducers as being the origin the others get their coordinates from there. 

𝑇1 = (0, 0, 0)    𝑇2 = ( 0.38,−0.112,0)      𝑇3 = (−0.392, 0.069, 0) 

Proceeding to use the triangulation method discussed in section 2.5 the result is a field of triangulated 

points in space with each having an 𝑥, 𝑦 and 𝑧-coordinate as well as a corresponding amplitude as 

measured by the hydrophone and found by Fourier-transformation via the method discussed in section 

3.3.3. With this the field of points is plotted in Figure 4.61. 

 

Figure 4.61: All triangulated points at their x and y-coordinates [m]. 

Figure 4.61 presents a 2-dimensional view of the points as their x and y positions were triangulated. 

Some of the points have been excluded as discussed earlier. Bad signal to noise ratios can make it 

impossible to detect the true arrival times of the echo to just one of the transducers, making the 

resulting triangulated position faulty. Since the measurement area in which the hydrophone was 

moved is known, any point outside this area is excluded for analysis purposes. A phenomenon worth 

noting is the apparent ripples or waves the points seem to group around. The ripples seem to have 

their origin at the position of transducer 1, the 1 MHz transducer. The reason for this is unknown but 

perhaps has something to do with the points being far outside transducer 1’s main lobe and the signal 

from it has a low signal to noise ratio, as the ripples seems to contour around the beam pattern of 

transducer 1. If this is the case, it may be that the points that should have been detected around the 

dips in transducer 1’s beam pattern have had too low signal to noise ratios and therefore been falsely 

positioned elsewhere by the triangulation. The excluded point in Figure 4.61, may be the falsely 

positioned points around the dips in transducers 1’s beam pattern. 
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Figure 4.62: All triangulated points at their x, y, and z-coordinates [m]. 

The same points are, in Figure 4.62, plotted in 3D-space with a plane of best fit also plotted. The 

excluded points are more clearly faulty in this Figure as they z- coordinates are much lower than 

expected as well as being outside the measurement area. The extrapolated plane is not parallel with 

the XY-plane, meaning that the measurement plane the hydrophone was moved in was not parallel 

with the plane defined by the three transducers. The non-parallelity of the planes was expected and 

the difference is only minor and should not affect any results. The two planes were not aligned in the 

set-up process, partly to test the robustness of the experiment and see if a misalignment could be 

detected. 

The x and y-coordinate of any given triangulated point can be translated into the angle between the z-

axis and the vector between the point and the transducer in the origin, in the x and y-direction. The 

expression for these angles can be written as 

𝜃𝑥 = tan
−1
𝑥

𝑧
         &         𝜃𝑦 = tan

−1
𝑦

𝑧
 

4.28 

where 𝑥, 𝑦 and 𝑧 are the x, y and z-coordinates of the point. This being relative to the transducer, 

which in this case is in the origin, making no need for a correction. The amplitude measured at each 

point can then be plotted as a function of these angles. 

Using the angles 𝜃𝑥, 𝜃𝑦 and their corresponding amplitudes, the beam pattern of the transducer can 

be plotted and estimated. However, the points are all not the same distance from the targets and the 

amplitudes need to be adjusted accordingly [1]. The amplitude connected to each point is then 

𝑝𝑎 = 𝑝𝑚 𝑟, 

4.29 

where 𝑝𝑎 is the distance adjusted pressure amplitude, 𝑝𝑚 is the measured pressure amplitude at the 

point in question and r is the distance from transducer to this point. Doing this for all points will ensure 
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the pressure amplitudes are no longer distance dependant and they can now be compared and be 

used to plot the beam pattern. 

 

Figure 4.63: All triangulated points at their angle in the x and y direction with the measured relative amplitude as the z-
coordinate. 

 

Figure 4.64: All triangulated points at their angle in the x and y direction with the measured relative amplitude as the z-
coordinate, with an extrapolated beam pattern. 

In Figure 4.63 and Figure 4.64 each point has been plotted at their 𝜃𝑥 and 𝜃𝑥-positions as well as a z-

coordinate corresponding to the corrected amplitude measured at that point found via equation 4.29. 

In the latter Figure 4.64 a curve has been fitted to the points. This was done using MATLABs Curve 

Fitting Tool and the custom equation function was used. 

Doing the curve fitting analysis using equation 4.26, the resulting curve as seen in Figure 4.64 is 

𝐵𝑒(𝜃𝑥, 𝜃𝑦) = |
2𝐽1(𝑣)

𝑣
|

1.053

              𝑣 = 26.37 𝑠𝑖𝑛 ((𝜃𝑥 + 0.384)
2 + (𝜃𝑦 − 0.123)

2
) 

with an R-squared of 0.871. 

The value for 𝑘𝑎 found to give the best fit was 26.37 and 𝛾 = 1.053. This estimated beam pattern can 

then be integrated over in order to find a value for the two-way beam solid angle, 𝜓. The interpretation 

of the introduced variables 𝑛 and 𝑚 is as a correction factor for the angle of the sound axis. Without 

them the sound axis would be assumed to be parallel with the z-axis, which is not necessarily the case, 
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making the resulting estimation for the beam pattern inaccurate. Knowing the offset of the sound axis 

of the transducer may also be of interest. 

A different way of estimating the beam pattern is by converting the triangulated coordinates of every 

point into spherical coordinates 𝜃, 𝜑 and 𝑟. 

𝜃 = tan−1
𝑦

𝑥
       𝜑 = cos−1

𝑧

𝑟
         𝑟 = √𝑥2 + 𝑦2 + 𝑧2 

4.30 

The angle between the z-axis and the vector from the origin transducer to any given point will then be 

𝛼 = 2𝜋 − 𝜑 

4.31 

as 𝜑 is the elevation angle from the XY-plane. 

 

Figure 4.65: spherical coordinates. 

The amplitude at every point can then be plotted as a function of the directivity angle 𝛼 and an 

estimate of the directivity can be found. 

 

Figure 4.66: all amplitudes plotted as a function of angle 𝛼. 

Figure 4.66 shows the relationship between the angle from the z-axis and the amplitude of the signal 

picked up by the hydrophone at each location, showing the effects of the beam pattern. A curve has 
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been fitted to the dataset as an estimate of the beam pattern. Equation 4.26 is also used for the basis 

of this analysis as the curve of best fit is expressed as 

𝐵𝑒(𝛼) = |
2𝐽1(𝑣)

𝑣
|

𝛾

              𝑣 = 𝑘𝑎 𝑠𝑖𝑛(𝛼) 

4.32 

The curve fitting results in a 𝑘𝑎-number of 26.38, 𝛾 = 1.085  with a R-square of 0.8666. This method 

does not in its current state however compensate for the sound axis not being parallel with the z-axis, 

as the 𝑛 and 𝑚 parameters did for the 3-dimensional method and will not be used to estimate 𝜓 in 

this thesis. It does however give a good visual representation of the beam pattern estimate. 

Since this experiment was done under controlled conditions, the actual position of the hydrophone 

was known. Therefore, the real, as opposed to triangulated, directivity angle 𝛼 can be used when 

plotted against the measured amplitude at each point. The resulting plot is shown in the plot below. 

 

Figure 4.67: All amplitudes plotted as a function of angle α at known locations. 

Figure 4.67 shows the amplitudes measured at each hydrophone location against that positions angle 

from the sound axis 𝛼. The curve fitting results in a 𝑘𝑎-number of 26.5, 𝛾 =  1.063 and with a R-square 

of 0.987. The positions in the Figure 4.67are the positions of the hydrophone as known via the tanks 

translation system. This method doesn’t compensate for the fact that the plane defined by the 

transducers and the plane the hydrophone is moved through are not parallel, as seen in Figure 4.62, 

meaning the estimating is not entirely accurate. 

4.6.5 Multi target triangulation testing with calibration sphere 

The same methodology used in section 4.6.4 can be applied using a calibration sphere as the target as 

opposed to a hydrophone. The transducers themselves will then serve as both transmitter and 

receiver. Only a few changes were done when doing the experiment again with the 22 mm tungsten 

carbide calibration sphere. The distance from the transducer plane to target plane was changed from 

1 meter to 2 meters. This was done to make the main lobes of the transducers cover more of the 

measurement area since it now takes up a smaller angle. The goal was to achieve a higher signal to 
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noise ratio and avoid points being too far outside the transducers main lobe as to be renders “invisible” 

by that transducer as the signal would drown in noise and not be detected, rendering the triangulation 

of the point faulty. For further improved signal to noise ratio, an amplifier was used between the signal 

generator and the transducer, amplifying the signal by 26 dB. Since the amplification was set at 26 dB 

and to not damage any equipment, the signal generator was set to deliver 222 mV peak to peak, 

resulting in a 92 V peak to peak 500 kHz, 45 cycle burst signal being supplied to the transducer every 

10 ms. The 1 MHz transducer was swapped for the newest transducer, number 3, and the transducers 

were moved to the configuration 2, 3 and 6, see Figure 3.26 

The new transducer locations result in the transducer coordinates 

𝑇1 = (0, 0, 0)    𝑇2 = ( −0.0127,−0.181, 0)     𝑇3 = (0.148,−0.112, 0). 

The method used to produce Figure 4.56 can be done here by plotting the measured amplitude against 

the known location of the calibration sphere. The results are shown in Figure 4.68-Figure 4.70. The 

distances measured from each transducer to the calibration sphere is also shown, in Figure 4.71-Figure 

4.73. Some points far enough from the transducers sound axis have distance estimates that don’t align 

with its neighbouring points, this is due to low signal to noise ratio in those areas making signal 

detection tough. For an example of this see Figure 4.75. 

 

Figure 4.68: Amplitude of calibration sphere echo over the measurement area measured by T1. 
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Figure 4.69:Amplitude of calibration sphere echo over the measurement area measured by T2. 

 

Figure 4.70: Amplitude of calibration sphere echo over the measurement area measured by T3. 

 

Figure 4.71: Measured distance from Transducer 1 to calibration sphere. 
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Figure 4.72: Measured distance from Transducer 2 to calibration sphere. 

 

Figure 4.73: Measured distance from Transducer 3 to calibration sphere. 

The Figures above show the distances measured from transducer to calibration sphere and show the 

curving distance as the sphere is moved through the measurement plane. The differences between 

these plots and the ones shown in Figure 4.58-Figure 4.60, corresponding to the distances measured 

in the hydrophone experiment, are less curvature due to the doubling in distance from transmitter to 

target, as well as a lot more faulty readings as the echo returning from the calibration sphere is much 

weaker than the direct signal picked up by the hydrophone, even after amplification and being closer 

to the sound axis. 

Figure 4.68-Figure 4.70 show the effects of the transducers’ directivities on the amplitude of the echo 

returning from the calibration sphere as a function of the spheres position. The positions of the sphere 

in these plots are from the translation system of the tank. The measurement area being [0, 500] mm 

in depth and [150, 650] mm in the y direction. The plots show an unexpected effect, an oscillating 

amplitude as a function of depth that only seems to appear at a depth lower than the transducer 

measuring it. This is consistent for all three transducers and the pattern is similar for all three. This 

phenomenon is further discussed in section 4.7.3. 

4.6.5.1 Triangulation 

Making sure to compensate for the two-way wave propagation, both by halving the measured travel 

time to find the distance, and when considering the directivity, which will now be measured as the 
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square of the beam pattern. The system delay found for calibration spheres in section 4.5 was 

compensated for when calculating the distances. The resulting points after triangulation are shown in 

the below. 

 

Figure 4.74: Triangulated sphere positions. 

Figure 4.74 shows several points far away from their expected locations. Looking into these cases, the 

reason for the faulty triangulation seems to be low signal to noise ratio due to the calibration sphere 

being far from the main lobe of one of the transducers. An example of the signal received by the three 

transducers at one of the points is shown in Figure 4.75-Figure 4.77. 

 

Figure 4.75: Echo received by T1. 
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Figure 4.76: Echo received by T2. 

 

Figure 4.77: Echo received by T3. 

 

Figure 4.78: Heatmap of amplitude of echo from all transducers. 

The echoes received by the three transducers shown in the Figures above, were recorded while the 

calibration sphere was positioned at the point labelled “S” in Figure 4.78. The signal to noise ratio is 
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good for T2 and T3, but the signal arrival time is undetectable for T1 due to bad STR. The signal 

detection algorithm then faulters and the resulting triangulated point is placed at the “wrong” location. 

After Removing all points deemed to have too low of a signal to noise ratio for any one transducer, the 

resulting triangulated plane is shown in Figure 4.79, along with a plane of best fit. 

 

Figure 4.79: Triangulated points on a plane. 

The resulting plane formed by the points is, as also seen in section 4.6.4, not parallel with the XY-plane 

defined by the transducer locations. This is again expected. 

In Figure 4.80, all amplitudes recorded by T1 at each point is plotted against the angle between the 

vector from T1 to that point and the z-axis, which is very close to the sound axis of T1. The angle was 

found by using equation 4.28. 

 

Figure 4.80: Amplitude of echo from calibration sphere as measured by T1 as a function of angle. 
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Figure 4.81: Beam pattern curve of best fit using triangulated points. 

Figure 4.81 shows the estimate for the beam pattern using the points triangulated by calibration 

sphere plotted with the relative amplitude measured by the transducer at T1. The points deemed to 

have a too low signal to noise ratio has been excluded from the analysis. The resulting fit is not good, 

with a R-square of 0.806. The reason for this is thought to be the phenomenon seen in Figure 4.68-

Figure 4.70 and further discussed in section 4.7.3, dubbed oscillating target strength.  Due to the 

seemingly irregular amplitude of the echo coming from depths below T1, the estimated beam pattern 

fit is lacking and an estimate of 𝜓 is bound to be inaccurate. The estimate shown in the Figure above 

calculates to an estimated value for the two-way equivalent beam solid angle of 𝜓 = 0.006377 which 

is far lower than expected. 

The solution to avoid interference from this phenomenon used in this thesis will be to exclude all 

measurement points triangulated to be at a depth coordinate x below that of T1, which in this case is 

0. This means all points with a x-coordinate above 0 will be excluded as the x-axis is defined as being 

to the floor. This solution is non-optimal for many reasons. The number of sampled points will be 

almost halved as well as all being from only one side of the beam pattern, making for a poorer beam 

pattern estimate and therefore poorer 𝜓-estimate. The effects causing the oscillating target strength 

may also not be exclusive to this area even if it may seem so. 

Doing this exclusion and running the curve fitting with the fitting equation 

𝐵𝑒(𝜃) = (|
2𝐽1(𝑣)

𝑣
|

𝛾

)

2

              𝑣 = 𝑘𝑎 𝑠𝑖𝑛 ((𝜃𝑥 + 𝑛)
2 + (𝜃𝑦 +𝑚)

2
) 

4.33 
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Which is the same equation as 4.32 but squared as the beam pattern is now two-way. The resulting 

parameters of best fit are 

𝑘𝑎 = 26     &    𝛾 = 1.051 

with an improved R-square of 0.9577. The resulting curve is shown in Figure 4.83. 

 

Figure 4.82: The x and y-positions of the points remaining after exclusion. 

 

Figure 4.83: Curve of best fit for the beam pattern of T1 after exclusion. 
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4.6.6 𝛹-estimation 

The two-way equivalent beam solid angle is calculated by integrating the beam pattern over all angles, 

as seen in equation 4.2. In this section 𝜓ℎ is calculated through different methods and the results are 

compared. The limitation and accuracy of the estimates of 𝜓ℎ are also discussed. 

4.6.6.1 Simplified formula 

Since over 99% of the transmitted energy is found within the main lobe of the beam pattern [2], 𝜓 can 

be estimated using the transducers beamwidth [19], 

𝜓 ≅
𝛼−3 𝑑𝐵 × 𝛽−3 𝑑𝐵

5800
 

4.34 

using a beamwidth of 𝛼−3 𝑑𝐵 = 𝛽−3 𝑑𝐵 = 7°, which is the piston model estimated beamwidth of the 

500 kHz transducers used in this study as well as the beam width of most the transducers used on in 

the scientific echosounder aboard research vessels for fisheries acoustics [20], gives the estimate 

𝜓ℎ
𝑠 = 0.0084483 𝑠𝑟 

4.6.6.2 Piston model estimation 

By using the theoretical beam pattern found for a 500 kHz transducer with a face diameter of 25 mm 

in the conditions of the experiment tank, found with the piston model in section 4.3.1, it is possible to 

calculate the two-way equivalent beam solid angle. Using the piston model beam pattern and the 

equation for best fit used 4.32, the parameters are 𝑘𝑎 = 26.47 and 𝛾 = 1, and integrating over the 

angles 𝜃 = [0,360] and 𝜑 = [0,90] gives an estimate for 𝜓. 

𝜓ℎ
𝑝𝑚
= 0.0082381 𝑠𝑟 

4.6.6.3 Estimation through hydrophone measured directivity 

In section 4.3.2, the directivity of the transducers as measured by a hydrophone was presented. The 

500 kHz transducer referred to as transducer β was then baffled with a 12 cm and a 32 cm baffle, and 

the directivities were again measured by hydrophone. This is the same transducer which directivity is 

estimated via triangulation in sections 4.6.4 & 4.6.5. The results from directivity measurements is then 

compared by calculating the corresponding two-way equivalent beam solid angle using equation 4.26. 

The estimate of the beam pattern for transducer β when in free field as well as baffled by the 12 cm 

and 32 cm baffles was found using MATLABs Curve Fitting Tool and used equation 4.26 and the best 

fit was found. The results are presented below. 
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Figure 4.84: Estimate of beam pattern in free field. 

 

Figure 4.85: Estimate of beam pattern when baffled 12 cm. 

 

Figure 4.86: Estimate of beam pattern when baffled 32 cm. 

The Figures above show the best fitting estimate of the beam pattern when the transducer is in free 

field and baffled. Below are presented the parameters for each estimate as well as the goodness of fit. 
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 Figure 𝒌𝒂 𝒄 R-square 

Free field Figure 4.84 26.36 1.025 0.9992 

12 cm baffle Figure 4.85 24.26 1.113 0.9996 

32 cm baffle Figure 4.86 24.35 1.141 0.9994 

Table 4.1: Beam pattern regression from free field and baffled directivity measurements. 

Using these parameters, it is possible to estimate a value for the two-way equivalent beam solid angle 

by rotating the estimate about the y-axis and integrating over all angles using equation 4.26. As 

discussed in 4.1, in this analysis only the elevation angles [0-90°] will be used, as almost all energy in 

the beam pattern is found in this interval [2]. The expression for 𝜓ℎ can be written as 

𝜓 ≈ 𝜓ℎ = ∫ ∫ 𝐵𝑒
4(𝜃, 𝜑) 𝑠𝑖𝑛(𝜑) 𝑑𝜃𝑑𝜑

2𝜋

0

𝜋/2

0

 

4.35 

where 𝐵𝑒 is the estimated beam pattern. 

The resulting estimates of 𝜓ℎ are: 

𝜓ℎ
𝐹𝐹 ≈ 0.0081166 𝑠𝑟 

𝜓ℎ
12𝑐𝑚 ≈ 0.0088795 𝑠𝑟 

𝜓ℎ
32𝑐𝑚 ≈ 0.0086121 𝑠𝑟.  

4.6.6.4 Estimate through triangulation 

By using the curves found via the methodologies described in section 4.6.4 & 4.6.5, 𝜓ℎ can be 

estimated by integrating over the estimated beam pattern. Equation 4.26 is then used together with 

MATLABs “trapz” function to calculate the value for 𝜓ℎ based on the estimate for the beam pattern 

found via triangulation with a hydrophone, using 𝑘𝑎 = 26.37 and 𝛾 = 1.053 as found in section 4.6.4, 

the resulting curve is shown in the Figure below. 

 

Figure 4.87: Beam pattern estimate via hydrophone triangulation. 
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Integrating the beam pattern estimate, 𝐵𝑒 , for transducer β, shown in Figure 4.87, over the angles 𝜃 =

[0,360] and 𝜑 = [0,90] gives an estimate for 𝜓ℎ. 

𝜓ℎ ≈ ∫ ∫ 𝐵𝑒
4(𝜃, 𝜑) 𝑠𝑖𝑛(𝜑) 𝑑𝜃𝑑𝜑

2𝜋

0

𝜋/2

0

 

4.36 

𝜓ℎ
ℎ𝑡 ≈ 0.0079193 𝑠𝑟 

Further, the beam pattern estimate for transducer β found by triangulation using a calibration sphere 

in section 4.6.5 is used to estimate 𝜓. The parameters for the curve of best fit are 𝑘𝑎 = 26 and 𝑐 =

1.051 and the resulting curve is shown in the Figure below. 

 

Figure 4.88: Beam pattern estimate via calibration sphere  triangulation. 

In Figure 4.88 the curve of best fit for the beam pattern of transducer β (T1) as found by triangulation 

of the calibration sphere is shown. If this curve is integrated over the angles 𝜃 = [0,360] and 𝜑 =

[0,90], an estimate for 𝜓 is found. 

𝜓ℎ ≈ ∫ ∫ 𝐵𝑒
4(𝜃, 𝜑) 𝑠𝑖𝑛(𝜑) 𝑑𝜃𝑑𝜑

2𝜋

0

𝜋/2

0

 

4.37 

𝜓𝑠
𝑠𝑡 ≈ 0.0081494 𝑠𝑟. 
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4.6.6.5 Results and discussion 

The different estimates for the values of the two-way equivalent beam solid angle 𝜓 are presented in 

the following table and will be discussed in this section. 

Case 𝜳𝒉-estimate [sr] 

Simplified formula 0.0084483 

Piston model estimation 0.0082381 

Free field hydrophone measurement 0.0081166 

12 cm baffle hydrophone measurement 0.0088795 

32 cm baffle hydrophone measurement 0.0086121 

Hydrophone triangulation 0.0079193 

Calibration sphere triangulation 0.0081494 

Table 4.2: Value of 𝜓ℎ as estimated in different cases. 

For ease of comparison the cross-section of the estimated beam pattern for all estimation methods 

are plotted in the Figures below. 

 

Figure 4.89: All estimates of beam pattern through different methods. 
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Figure 4.90: All estimates of beam pattern through different methods in decibel. 

The two beam patterns corresponding to the measurements of the baffled transducers stand out from 

the rest, both in shape and estimate of 𝜓ℎ. As seen in section 4.3.4 the baffle seems to widen the main 

lobe, this would in turn result in a higher value of 𝜓ℎ as more of the energy in the beam is now beam 

directed at a wider angle making the equivalent solid angle also wider. The introduction of a baffle also 

seems to lower the amplitude of the first side lobe, something that would narrow the equivalent beam 

solid angle as less energy is directed at these wider angles. The effect of this van be seen in the estimate 

of 𝜓ℎ for the case of the 32 cm baffle as the width of the main lobe is the same as for the 12 cm baffle, 

but the first side lobe has a lower amplitude, making the estimate for 𝜓ℎ narrower in the case of the 

32cm baffle than for the 12cm baffle. This indicates that bafflement may both widen and narrow the 

two-way equivalent beam solid angle by both widening the main lobe and lowering the side lobes. 

The estimates derived from triangulation would, in comparison, suggest a slight effect from bafflement 

but not as severe as observed with the 12 and 32 cm baffles. This is indicated by the parameter 𝛾, 

which represents a weakening of the side lobes compared to the main lobe. Theoretically the value 

should be 𝛾 = 1, but choosing a parameter of slightly more than one fits the measured beam pattern 

better, and bafflement seems to increase the value of 𝛾, and therefore, as seen in section 4.6.6.3, 

weaken the side lobes. Table 4.3 presents the parameter 𝛾 in all considered cases. 

Case 𝜸 

Piston model 1 

Free field 1.025 

Triangulation mount 1.052 

12 cm baffle 1.113 

32 cm baffle 1.141 
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Table 4.3: Value of regression 𝛾-parameter for different cases. 

Table 4.3 shows an increase in parameter 𝛾 as bafflement increases. Even the “free field” transducer 

has some bafflement in its casing. The 𝛾-parameter seems to indicate the triangulation mount is 

between the 12 cm baffle and the “free field” case. The 𝛾-parameter, of course, was introduced in this 

study and holds little weight as predictor. 

The estimates of the beam pattern labelled “Free field”, ”Hydrophone triangulation” and “Calibration 

sphere triangulation”, shown in Figure 4.89 & Figure 4.90, stay close to the theoretical beam pattern 

found via the piston model. Only the calibration sphere estimate is slightly different. The lack of good 

signal to noise ratio as well as the unexpected phenomenon, discussed in section 4.7.3, excluding most 

measurement points, made for a non-ideal size and distribution of the dataset for estimating the beam 

pattern. The estimate found through triangulation using the hydrophone may be a better 

representation of the methodology as it lacks most of the aforementioned problems with using the 

calibration sphere on the set-up used in this thesis. 

If the measurement of the free field beam pattern is assumed to be the “true” beam pattern of 

transducer β, then value for 𝜓 derived from it can be compared with the estimates found via the 

triangulation methods. The percentage of the  

Estimation method % of “true” 𝝍 

Free field 100.00 % 

Hydrophone triangulation 97.57 % 

Calibration sphere triangulation 100.40 % 

Table 4.4: 𝜓 estimates from triangulation methods compared to free field directivity measurement. 

Table 4.4 shows accuracy of the estimation of the two-way equivalent beam solid angle 𝜓 by the two 

triangulation experiments performed in this study. This is assuming the free field estimate is the true 

value which is not the case as the triangulation mount will have changes the beam pattern of the 

transducers, if only slightly. 

4.6.6.6 Suggestions for on-ship estimation 

When doing on ship calibrations with suspended spheres under the ships keel, measuring the entire 

beam pattern is not practical or feasible. Often only the main lobe, or part of it can be measured [5]. 

A method for estimating 𝜓 from measurements of only parts of the beam pattern is needed, a way of 

extrapolating the full value of 𝜓 from the measurement of the main lobe. Most of the energy in the 

beam pattern is focused on the main lobe and therefore most of the value for 𝜓 is found by integrating 

over only the main lobe [2]. An analysis of the accumulative value 𝜓𝑐 as equation 4.26 is integrated 

over the angles 𝜃 = [0,360] and 𝜑 = [0,90], is shown in the Figure below. 
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Figure 4.91: Cumulative psi comparison between piston model and estimated beam pattern. 

In Figure 4.91, the cumulative value for 𝜓𝑐 is plotted as a function of the angle from the sound axis, 

integrated over, as well as the beam pattern used to find 𝜓ℎ. Meaning integrating to the first zero 

points results in an estimated 𝜓 of around 99.985 % of the “full” value being, in this case, integrated 

out to 90°. The x-axis shows the value of the cumulative 𝜓𝑐 as a percentage of the “fully” integrated 

𝜓ℎ, which is listed in Table 4.2. The piston model and the estimate of the beam pattern found through 

the calibration sphere triangulation method are both plotted. 

Both by using the theoretical piston model and by the triangulation method, over 99.8 % of the value 

of 𝜓ℎ has been reached once the main lobe has been integrated over. This means that only about 0.2 

% of the value of 𝜓ℎ is found by integrating further. A final estimate for 𝜓ℎ can be found with high 

accuracy by integrating a model that fits the main lobe only out to the first zero and then adding a 

small amount to compensate. 

All the 𝜓 estimation methods shown in Table 4.2, are again shown in Table 4.5 below with the 

percentage of fully integrated 𝜓 when only considering the main lobe. 

Case % of 𝝍𝒉 cumulated from main lobe 

Piston model 99.81 % 

Free field 99.81 % 

12 cm baffle 99.90 % 

32 cm baffle 99.92 % 

Hydrophone triangulation 99.84 % 

Calibration sphere triangulation 99.84 % 

Table 4.5: Percentage of 𝜓 cumulated from integrating over main lobe in different cases. 
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As shown in the table above all models and estimation reach above 99.8 % of the “true” value for 𝜓ℎ 

once only the main lobe has been considered. Measuring only the main lobe will then give a highly 

accurate measurement of the two-way equivalent beam solid angle for the transducers used in this 

study and can be made more accurate by adding a small amount to compensate. These numbers are 

also relevant to the echosounders used by IMR as the ka numbers of the transducers are the same as 

the once in this study. 

4.6.6.6.1 Example 

As an example, by simulating a high-quality triangulated dataset by using only the points known to be 

within 5° of the sound axis during the hydrophone triangulation experiment, an estimate of the main 

beam pattern based only on measurements of the main lobe can be made. All points outside 5° have 

been excluded from the estimation and the curve fitting analysis is done again. Since none of the side 

lobes are measured, the value for 𝑐 needs to be set beforehand as to not widen the main lobe too 

much. If 𝑐 is left as a free parameter, the resulting best fit will lack side lobes and will result in a faulty 

estimate of 𝜓. An example is shown in the Figure below. 

 

Figure 4.92: Beam pattern estimate based on main lobe, 𝛾 = 208. 

As Shown in Figure 4.92, leaving 𝑐 unfixed when basing the beam pattern estimate off the main lobe 

only will result in faulty estimate beyond 5°. A value for 𝛾 is therefor set based in prior experience. 

For this study 𝛾 was set to 1.025 as it was the value found to fit best during the free field directivity 

measurements shown in section 4.6.6.3. A natural choice would be setting 𝛾 to 1 as is calculated from 

the piston model, both possibilities are explored in this study.  
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Figure 4.93: Beam pattern estimate based on main lobe, 𝛾 = 1. 

 

Figure 4.94: Beam pattern estimate based on main lobe, 𝛾 = 1.025. 

Further, the resulting estimates for 𝜓ℎ are presented in the table Table 4.6: Results from main lobe 𝜓 

estimation.. Both values for 𝑐 are included and also two methods for achieving 𝜓ℎ, estimating over the 

full 90° or estimating to the first zero and adding a small amount to compensate. Based on the previous 

Figures for percentage of 𝜓ℎ found be integrating over the main lobe, presented in Table 4.5, the 

compensation used is dividing by 0.998, thereby assuming 99.8 % of the value for 𝜓ℎ has been found 

while integrating over the main lobe.  

𝜓𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑 =
𝜓𝑚𝑎𝑖𝑛 𝑙𝑜𝑏𝑒
0.998

 

4.38 

 𝒄 𝒌𝒂  𝝍𝒉 𝝍𝐜𝐨𝐦𝐩𝐞𝐧𝐬𝐚𝐭𝐞𝐝 % of “true” 𝝍𝒉 

Method 1, 

Figure 4.93 
1 26.79 0.0080403 sr 0.0080375 sr 99.03 % 

Method 2, 

Figure 4.94 
1.025 26.5 0.0080309 sr 0.0080311 sr 99.94 % 
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Table 4.6: Results from main lobe 𝜓 estimation. 

“True” 𝜓ℎ is the same as used in Table 4.4. Both methods resulted in estimates of  𝜓ℎ very close to 

those of the other methods discussed. 

 

4.7  Potentially interfering phenomena 

4.7.1 Calibration sphere resonance 

This phenomenon was noted while working on finding good parameters to using during experiments 

involving calibration spheres such as number of cycles, delay between burst and signal frequency. It 

was discovered that for certain frequencies, the echo received from the sphere had been severely 

altered and extended. After further investigation it was discovered that this phenomenon repeats itself 

every 60 kHz. If the signal frequency is set too far from the resonance frequency of the transducer 

however, the phenomenon is drowned out by other effects. It is therefore most clear closest to the 

transducer’s optimal frequency, in this case 500 kHz. The phenomenon is observed at the frequencies 

(480 ±  𝑛60) 𝑘𝐻𝑧         𝑛 =  1, 2, 3… 

4.39 

The echo received from the sphere at these frequencies is normal for the first few cycles and is then 

gradually dampened to be almost completely silent. Then, at the time the normal echo would be 

expected to end, an almost identical echo is received again. 

Figure 4.14 shows the echoes received from the tungsten carbide calibration at a distance of 88 cm, 

when ensonified by a 50-cycle burst at different frequencies using the one of the 500 kHz transducers. 

The Figure shows the effects is apparent at 420 kHz, 480 kHz and somewhat at 540 kHz. The 

frequencies in between were scanned through to check for any other occurrences, but none were 

found in the frequency band [420-580]. 
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Figure 4.95: Echo from tungsten carbide sphere at various frequencies 

A hypothesis for the origin shapes of the echoes around certain frequencies is presented here. This 

effect may be from hitting the resonance frequencies of the calibration sphere. The very start of the 

signal transmitted from the transducer contains several frequencies other than the signals main 

frequency, which may be the reason it is reflected by the sphere. While when the signal has become 

stable and only contains the resonance frequency of the sphere, the waves are absorbed by the sphere 

as it starts to vibrate. The same thing happens as the sent signal ends. The signal now contains several 

different frequencies that are reflected by the sphere. After this the sphere will by vibrating at its 

resonance frequency and therefore produce sound that is detected by the transducer for a short time 

after the sphere is no longer ensonified by the signal sent by the transducer. This sound is seen as the 

tails after the peaks in the echoes. 
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Figure 4.96: Target strength of 22 mm tungsten carbide calibration sphere as a function of frequency as measured by IMR. 

The measured target strength of the same 22 mm tungsten carbide calibration sphere has been 

measured by IMR and is plotted in Figure 4.96. Continuing the trend, the next expected resonances 

should be around somewhere around 420, 480 and 540 kHz, as observed in Figure 4.14. 

Similar effects were observed using the steel and copper calibration spheres. Non-of the spheres 

displayed resonance effects at 500 kHz. 

4.7.2 Calibration sphere circumferential waves 

After placing the tungsten carbide calibration sphere in the experiment tank for initial testing, an 

unexpected phenomenon was observed. When sending a sufficiently strong signal containing just a 

few cycles, the initial direct echo from the sphere was followed up by several similar echoes with 

exponentially lower amplitudes. Sphere was placed 64 cm from the transducer, while transmitting 3 

cycle, 500 kHz, 10 V peak-to-peak signal from a transducer and the echo was recorded with the same 

transducer, using the calibration sphere set-up described in section 3.1.1.2. The resulting echo is 

shown in Figure 4.97. 
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Figure 4.97: Echo from 22 mm tungsten carbide calibration sphere for 500 kHz. 

The initial echo is as expected, but following it is a series of weaker, equally spaced out “echoes”. It is 

thought that this phenomenon might be the cause of the irregular shape of the echo received from 

calibration spheres while using longer bursts. Figure 4.98 shows a signal shape consistently seen when 

receiving echoes from calibration spheres using long bursts. 

 

Figure 4.98: Echo from calibration sphere transmitting 45 cycle burst showing unexpected pattern. 

The plot above shows a similar echo trailing after the main echo after the initial burst has been fully 

reflected at around 2.8 ms, with a similar drop in amplitude and delay as shown in Figure 4.97. The 

ending of the main direct echo seems to be followed by a weaker echo lagging about 1.65 μs behind. 

This is then also followed by an even weaker echo delayed by the same amount. In addition, the start 

of the direct echo is weaker than the rest, lasting for also around 1.65 μs. This suggests a continues 

second echo interfering with the direct echo lagging slightly behind. 1.65 μs is the same delay observed 

when transmitting 3 cycles, suggesting it is cause by the same phenomenon. 
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4.7.2.1 Measuring circumferential echo delay 

In order to find a possible explanation for this phenomenon, the exact delay between the periodic 

echoes needs to be measures. This was done in the experiment tank for all three calibration spheres. 

A transducer was pointed at the spheres, being supplied with a 10 Volt peak to peak 500 kHz signal 

every 10 milliseconds. The sinusoidal signal sent was only 3 cycles long in order to be able to see the 

periodic echoes individually. 3 cycles struck a good balance between signal strength and shortness. 

The echoes received were then averaged for 60 seconds to get the best possible signal to noise ratio. 

The averaged signal was then saved, and its envelope found using the MATLAB’s envelope function. A 

moving mean was then also performed on the envelope function to get a smooth curve with a distinct 

maximum for each periodic echo. The absolute value of the averaged received signal for the three 

calibration spheres with labelled time delays between periodic echoes can be seen below in Figure 

4.99 - Figure 4.101. 

 

Figure 4.99: Echo from 22 mm tungsten carbide calibration sphere with envelope. 
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Figure 4.100: Echo from 20 mm steel calibration sphere with envelope. 

 

Figure 4.101: Echo from 16 mm copper calibration sphere with envelope. 

By only using the delay between the distinguishable peaks, an average for the periodic time delay was 

found. For the sake of consistency only the first three peaks were considered for all three spheres 

when finding the average delay. These were found to be 16.98 μs for the tungsten carbide sphere, 

20.61 μs for the copper sphere and 19.12 μs for the steel sphere. 

4.7.2.2 Investigating possible explanations 

4.7.2.2.1 Creeping waves 

The phenomenon was first thought to be linked to creeping waves. Where the wave front hitting a 

curved surface like a sphere, following the surface and radiates out from the surface while traveling 

along it. If on a sphere the creeping wave will eventually also radiate back towards the source of the 

incoming wave, registering as a delayed echo [21]. While some of energy in the creeping wave is 
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radiated away while traveling around the circumference, the wave may travel several circumstances 

before dying out. This could explain why there are several observed echoes with a constant delay and 

diminishing amplitudes coming from the calibration spheres.  

 

Figure 4.102: Creeping waves [22, 23]. 

To investigate if this could be the case, the delay between the circumferential echoes for the three 

different spheres was compared to the expected time delay caused by a creeping wave. Knowing the 

speed of sound in the water, the expected time delay between creeping echoes could be compared 

with the actual delays recorded in practice. The delay between any given creeping wave will be equal 

to the time sound takes to travel the radius of the sphere twice plus half the circumference, and can 

expressed like this 

∆𝑡𝑐𝑤 =
2𝑎 + 𝜋𝑎

𝑐
 

4.40 

where 𝑎 is the radius of the sphere and 𝑐 is the sound speed in the medium surrounding the sphere. 

( 2 ) 

 

Figure 4.103: Creeping wave propagation path. 
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Sphere Material Diameter ∆𝒕𝒄𝒘 Measured delay 

1 Tungsten Carbide 22 mm 38.1 μs 16.98 μs  

2 Copper 16 mm 27.7 μs 20.61 μs 

3 Steel 20 mm 34.6 μs 19.12 μs 

Table 4.7: Creeping wave delay compared to measured delay. 

The table above presents the calculated delays between creeping waves per equation 4.40, compared 

to the measured delays observed using calibration spheres. The expected delay between creeping 

wave does not line up with the actual delay that is observed. This means that there is probably another 

explanation behind these echoes.  

4.7.2.2.2 Surface waves 

Another explanation involving surface waves in the sphere will now be proposed. The circumferential 

wave may not be moving through the water but rather through the surface of the calibration sphere 

and radiating into the surrounding water in a similar way to creeping waves. This would explain the 

observation that seems to indicate the observed circumferential waves being faster than normal 

creeping waves. It was first observed that the shear wave speed of the sphere’s material fit much 

better with the measured results. Rayleigh waves, a type of surface wave, have a similar speed to shear 

waves in materials with a high Poisson Ratio such as the materials used in the calibration spheres. 

Although many types of surface waves exist, for the purpose of this study, the proposed surface waves 

in the calibration spheres are assumed to be Rayleigh waves. 

 

Figure 4.104: Longitudinal, shear and Rayleigh wave speeds as a function of Poisson ratio [24]. 

The Rayleigh wave speed can be approximated using the following formula, proposed by Malischewsky 

[25]. 
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𝑐𝑅 = 𝑐𝑆( 0.874 +  0.196𝑣 −  0.043𝑣² −  0.055𝑣³) 

4.41 

Where 𝑐𝑆 is the shear wave speed and 𝑣 is Poisson Ratio. The shear wave speed in a medium can be 

calculated with the following formula. 

𝑐𝑆 = √
𝜇

𝜌
 

4.42 

Where 𝜇 is the shear modulus, and 𝜌 is the density of the material. Using known values for these 

material constants, one can estimate the Rayleigh wave speed in each of the calibration spheres. 

Material Poisson 

ratio 

Density 

[kg/m3] 

Shear modulus 

[GPa] 

Shear wave 

speed [m/s] 

Rayleigh wave speed 

[m/s] 

Tungsten 

Carbide 

0.31 15 630 kg/m3 274 GPa 4 187 m/s 3 890 m/s 

Copper 0.343 8 960 kg/m3 48 GPa 2 315 m/s 2 162 m/s 

304 Steel 0.285 7 900 kg/m3 80 GPa 3 223 m/s 2 982 m/s 

Table 4.8: Calculated shear and Rayleigh wave speeds from calibration sphere materials [26]. 

It is worth noting that steel does not satisfy the criteria of having a Poisson ratio of more than 0.3. 

However, his exercise is only to see if this might be an explanation and the number calculated for the 

Rayleigh wave speed does not need to be highly accurate. For two of the sphere materials, formula 13 

needs to be changed slightly to calculate the expected delay between direct reflection and the first 

circumferential wave. The reason the formula needs to be altered is that the Rayleigh wave moves 

faster than the longitudinal wave in the water. The Rayleigh wave propagating from point b will arrive 

at point c earlier than the wave traveling through the water. This was not the case when considering 

creeping waves, as the velocities of the two waves were the same and the wave propagating from 

point b has further to travel. 
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Figure 4.105: Path travelled by Rayleigh wave alone sphere surface. 

This is true for the calibration spheres made from Steel and tungsten carbide. For this formula to be 

accurate. The material needs to have Rayleigh wave speed higher than 
𝜋

2
 times that of speed of sound 

in water. This comes out to around 2 333 m/s. This means that for copper, formula 13 is used as is. 

𝑎

𝑐𝑤
 >

𝜋
2
𝑎

𝑐𝑅
 

4.43 

Where a is the radius of the sphere, 𝑐𝑤 is the longitudinal wave speed in water and 𝑐𝑅 is the Rayleigh 

wave speed for the material of the sphere. Meaning the first echo detected will be the one coming 

from the Rayleigh wave propagation from point b. The same argument can be used to argue that the 

earliest echo will also emanate from point b. The new formula for the expected time delay between 

direct echo and first circumferential echo is then this. 

∆𝑡𝑅𝑤 =
2𝜋𝑎

𝑐𝑅
 

4.44 

A table can then be set up so compare the estimate for time delay due to Rayleigh waves and the 

measured delays. 

Material Diameter 𝒄𝑹 ∆𝒕𝑹𝒘 Measured delay 

Tungsten 22 mm 3 890 m/s 17.77 μs 16.98 μs 

Copper 16 mm 2 162 m/s 22.41 μs 20.61 μs 

Steel 20 mm 2 982 m/s 21.07 μs 19.12 μs 
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Table 4.9: Calculated Rayleigh wave delay compared to measured delay. 

The calculated delays between peaks are now much closer to the observed delays. Although the 

measured delays are consistently slightly shorter that the calculations suggest they should be. This 

might be due to a slight oversimplification done previously, where the shortest delay was found via 

assuming that the shortest path the wave could take starts at point b on Figure 30, since it was shown 

to be faster than from point c for two of the materials. This might not be the case, as a Rayleigh wave 

aminating from a point between b and c may arrive first. To investigate this, the function for delay 

between direct echo and circumferential was plotted for all three spheres. 

 

Figure 4.106: Adjusted path travelled by Rayleigh wave along sphere surface as a function of excitation location. 

Point b can now be moved and its position is indicated by the angle θ. The delay is then worked out 

similarly to formula 13. ℓ𝐿 needs to be covered by the longitudinal wave moving at c, the speed of 

sound in water. ℓ𝑅 will then be covered by the emerging Rayleigh wave. The Rayleigh wave will the 

propagate along the back half of the sphere and then the first scenario will occur again as the Rayleigh 

wave will produce a longitudinal wave propagating towards the transducer, the first of which will arrive 

from a point a similar position as point b, only on the opposite hemisphere. With these assumptions 

the final formula for the delay is as follows. 

∆𝑡𝑅𝑤2 = 
2𝑎(1 − cos (𝜃))

𝑐
+
2𝑎(𝜋 − 𝜃)

𝑐𝑅
 

4.45 

The first part of the equation represents the time taken for the longitudinal wave in the water to reach 

point b from the front of the sphere, which also happens on the way back. Where a is the diameter of 

the sphere and 𝜃 is the angle. The second part represents the time the resulting Rayleigh wave takes 

to travel the remaining distance around the sphere. The resulting time delay will be slightly shorter 

than previously found. It is important to find shortest path for the circumferential wave to take as that 

is the first echo we will receive and can time. We will not be able to determine the arrival times for any 
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other path than then the first one as the signals for these other paths will be somewhere in the echo, 

but we don’t know where. Same for the direct echo coming from the front of the sphere we know the 

first arrival must be from the front of the sphere, previously point b, as it is the shortest path and will 

therefore arrive first, this Is why we compare the arrival times of these two echoes and not any other. 

Even though they are present. 

 

Figure 4.107: Rayleigh wave delays as a function of excitation location for three calibration sphere materials. 

One more consideration needs to be made before these numbers can be compared to the ones 

measured. Not all angles of incidence can excite Rayleigh waves, meaning that not all angles on the 

plot will be valid as a starting location for Rayleigh waves. Rayleigh waves are only exited at or above 

a certain critical angle. Which means that the wave front hitting the front of the sphere won’t excite 

Rayleigh waves since it has an incident angle of 90°. The critical angle for Rayleigh waves is 

sin𝜃𝑅 =
𝐶𝑤

𝐶𝑅
 

4.46 

where 𝐶𝑤 is the longitudinal wave speed in water,  𝐶𝑅is the Rayleigh wave speed in the material. 

Solving this equation gives us a lower bound for where the Rayleigh waves can start. The table displays 

the critical angle for exiting Rayleigh waves as well as the optimal angle which was found to yield the 

shortest delay. 

Material 𝜽𝑹 𝑶𝒑𝒕𝒊𝒎𝒂𝒍 𝒂𝒏𝒈𝒍𝒆 

Tungsten carbide 22.42° 22.42° 

Copper 30.27° 30.27° 

Steel 29.84° 29.84° 

Table 4.10: Critical Rayleigh angle compared to angle of shortest delay. 
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As it turns out, solving these two equations gives the same answer. The critical angle and the optimal 

angle are the same for any sphere of any size and material. This also means that the results found can 

be used as the optimal angle is larger or equal to the critical angle. 

Material Diameter ∆𝒕𝑹𝒘𝟐 Measured delay 

Tungsten 

carbide 

22 mm 16.68 μs 16.98 μs 

Copper 16 mm 20.59 μs 20.61 μs 

Steel 20 mm 19.37 μs 19.12 μs 

Table 4.11: Adjusted Rayleigh wave delay compared to measured delay. 

From this table one can see that the delays measured between the direct echo and the first 

circumferential echo is close to the one estimated by Rayleigh waves. The estimation holds true even 

for spheres of different sizes and materials. With this result, the conclusion reached is that these 

recurring echoes likely come from surface waves in the sphere itself that radiates sound towards the 

transducer once every time the wave circumnavigates the sphere, making for a periodic but decaying 

echo coming from calibrations spheres ensonified by the frequencies used in these experiments, 500 

kHz. 

 

4.7.3 Calibration sphere oscillating target strength 

As seen during the triangulation experiments where the position of a calibration sphere was attempted 

to be found and its target strength used to characterize the directivity of the transducers. The target 

strength of the sphere at a depth lower that the one of the transducers being characterized would 

oscillate as a function of depth. This was first observed when the amplitudes of the echo returning 

from the target sphere in all its positions were plotted. The plot shows that the amplitude of the echo 

follows the expected values for position where 𝑧𝑠𝑝ℎ𝑒𝑟𝑒 < 𝑧𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟. Those values following the 

shape of the previously measured directivity of the transducer. However, as soon as 𝑧𝑠𝑝ℎ𝑒𝑟𝑒 >

𝑧𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑒𝑟, the amplitude of the echo has peaks and valleys while still being well within the 

transducer’s main lobe. This phenomenon was first attributed to a mistake in the amplitude calculation 

software, but after reviewing two signals of almost the same depth having wildly different amplitudes 

in their steady state, it was confirmed to be a real effect. 
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Figure 4.108: Amplitude of echo from tungsten carbide calibration sphere as a function of depth. 

 

Figure 4.109: Two echoes received from tungsten carbide calibration sphere from two different depths. 

After further investigation the same effect was observed at several different distances, signal 

amplitudes and frequencies. The phenomenon had not been observed earlier when testing with a 

hydrophone. To remove as many variables as possible, the calibration sphere was swapped for a 

hydrophone and large the transducer mount plate was swapped out for the free field transducer 

mount to exclude any effects coming from the sphere, its fishing line, or the baffle around the 

transducer. The hydrophone was then placed at the same y coordinate as the transducer moved from 

being above the transducer in depth to below it, in steps. The steps where of length 0.5 mm and the 

hydrophone travelled 600 mm. At every step a 60 second average of the signal was taken and saved. 

All the 1201 signals where then extracted, and their steady state amplitudes measured. The plot for 

these amplitudes as a function of depth is shown below. 
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Figure 4.110: Amplitude of signal received by hydrophone as a function of depth. 

 

Figure 4.111: Amplitude of signal received by hydrophone as a function of depth in decibel. 

The phenomenon could not be recreated under these circumstances and the variables could then be 

introduced. First, the calibration sphere was used as the target again. The same set-up was run as when 

using the hydrophone. The plot showing the amplitudes from the echoes received from the sphere is 

shown below. 
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Figure 4.112: Amplitude of echo received from tungsten carbide calibration sphere as a function of depth. 

 

Figure 4.113: Amplitude of echo received from tungsten carbide calibration sphere as a function of depth in decibel. 

The phenomenon could now be seen at a high level of detail. Knowing that the calibration sphere was 

the only new variable and the fact that the phenomenon is not symmetric, despite the transducer 

directivity being symmetric, points to one conclusion. The fishing line using to suspend the sphere in 

the water is not symmetrical and in fact has a knot and line coming of it on the top. This suspension 

method seems to greatly interfere with the echo returning to the transducer when the sphere is lower 

in depth than the transducer. This is also the point where the top of the sphere, as well as the knot 

and line, become directly visible to the transducer. 

Comparing the measured echo as a function of depth and compare it to the one observed when using 

a hydrophone, the effect is clear. The differences between the plots highlights any effects the 

calibration sphere may have on the signal sent by the transducer before returning it, which will in turn 

effect the apparent directivity one might be trying to decern by using such a sphere. In order to 

compare the two some compensation needs to be done. The amplitudes have been normalized to be 
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equal to one at their peaks. The tests were done at slightly different distances, 91 cm and 96 cm. The 

measurements taken at the closest distance were therefore stretched in the x direction to reflects the 

slightly narrower directivity observed at that distance. The experiment involving the calibration sphere 

is also subject to the two-way directivity of the transducer since the signal is both sent and received 

by the transducer. This is not the case while using a hydrophone. The signal received by the 

hydrophone has been squared before plotting in order to have comparable signals. This means that 

the plot effectively shows the two-way directivity of the transducer. The reason the signals from the 

calibration sphere were not square rooted instead is that then the amplitude of the echo coming from 

the fishing line would then have been elevated compared to the signal from the sphere. The echo from 

the fishing line alone can be seen at depths of around 250 mm and 500 mm, where the echo from the 

sphere is negligible due to being in troughs of the directivity, while the echo from the fishing line is at 

constant strength as it is always ensonified by the main lobe of the transducer. Squaring the directivity 

measured by the hydrophone ensures that the ratio between sphere echo strength and fishing line 

echo strength remain accurate. 

 

Figure 4.114: Amplitude of echo from tungsten carbide calibration sphere compared to hydrophone as a function of depth. 
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Figure 4.115: Amplitude of echo from tungsten carbide calibration sphere compared to hydrophone as a function of depth in 
decibel. 

4.7.3.1 Effect of calibration sphere suspension method 

In all the experiments done using calibration spheres in this study, the method used to suspend the 

sphere in water while influencing the measurements as little as possible, was using fishing line. All the 

calibrations spheres were tied up with, or in some cases glued to, a 0.25 mm thick fishing line. The idea 

is that the fishing lines thickness and material will make it so that any sound wave traveling through it 

will not reflect the sound and therefore not change the measurement by being present. The fishing 

line does of course reflect some sound, but not enough to significantly affect the results of the 

experiments. Other methods of calibration sphere suspension have been suggested and researched. 

In this work however, only the effects of the 0.25 mm fishing line used will be discussed. This is also 

the method used by the Centre for Marine Research when using these spheres to calibrate their 

echosounders on ship. The effects of the fishing line being present was first observed when doing the 

triangulation experiments described in section 4.6.5. When the lower half of the directivity showed 

some strange patterns, the first proposed explanation was that the knot of fishing line on top of the 

sphere was the culprit. No asymmetries, other than the fishing line were present during the 

measurements of the transducer’s directivity. After this some further experiments were conducted in 

order to find the effects of the fishing line suspension method, its severity as well as when it shows up. 

4.7.3.1.1 Fishing line direct echo interference 

If a taut fishing line gives of a significant echo when ensonified, this can interfere with any 

measurements taking using calibration spheres suspended using fishing line. To investigate, a 

calibration sphere was suspended by a fishing line and placed at the bottom of the experiment tank, 

such that the line was taut. A transducer was then placed about 40 cm below the water’s surface, 

pointing at the line. The distance between the taut line and the transducer face was 85 cm. The 
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calibration sphere at the bottom of the tank was far enough out on the transducers directivity to not 

register when measured. 

 

Figure 4.116: Echo received from taut fishing line. 

 

Figure 4.117: Echo received from taut fishing line compared to tungsten carbide calibration sphere. 

The reason the two signals do not align in time is because of the physical size of the calibration 

sphere, the sphere is slightly closer to the transducer than the fishing line is. The peaks of the fishing 

line echo were recorded at around 9 mV, while the echo from the calibration sphere peaks at around 

60 mV. Doing a quick comparison will reveal the impact interference between them can have. The 

echo from the fishing line has an amplitude 
9 𝑚𝑉

60 𝑚𝑉
= 0.15 times that of the echo from the sphere on 

the sound axis. This ratio will only grow as the sphere is moved further from the sound axis and its 

amplitudes weakens, while the amplitude from the fishing line remains constant. Since the 

frequencies are the same for both signals, during perfect destructive and constructive interference, 

the combined echo should then oscillate by as much as 9 mV in this set-up.  
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Figure 4.118: Jump in amplitude in echo from tungsten carbide calibration sphere. 

During this jump the amplitude changes by 30.14 % of the peak amplitude measured, which was 

around 60 mV as discussed earlier. Meaning the signal increased and the decreased by around 

0.3014

2
60 𝑚𝑉 = 9.04 𝑚𝑉. Which is what was expected to be the maximum change in amplitude due 

to fishing line echo interference. It is true that points measured between are not at the same depth 

and the jump is therefore not as severe as this, but it is also true that aliasing has probably hidden 

some of the true peaks and troughs. 

If the interference between the echo from the calibration sphere and the echo from the fishing line I 

the true cause of the observed oscillations, then adding a fishing line echo to a directivity measured 

by hydrophone should show a similar phenomenon. Since the echo from the fishing line comes 

mostly from the part of the line on the sound axis, this echo can be added to signal measured by a 

hydrophone only when it is below the sound axis in depth. A hydrophone in this scenario, is 

simulating a calibration sphere without any fishing line suspending it. When adding the expected 

echo from a taut fishing line without a calibration sphere, the results should resemble the ones 

observed when suspending a sphere using the fishing line. 

The signal representing the fishing line alone was chosen to be the signal shown in Figure 41. This is 

the signal from the fishing line while suspending a tungsten carbide calibration sphere. The sphere 

was in this instance placed deep enough in the water column to not give off any distinguishable echo 

as it was far from the centre of the transducer’s directivity. This signal was then added to some of the 

signal received by the hydrophone during its testing done earlier in this section. All the signals 

received while the hydrophone was placed deeper than transducer, had the fishing line echo added 

to it, to simulate the fishing line coming into “view” of the transducer. The fishing line echo was also 

weight slightly such that its echo was weaker about 0 mm depth, relative to the transducer. This is to 

simulate the fact the fishing line does not yet cover the entire main lobe as this depth and is 
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therefore weaker than when the calibration sphere, or hydrophone, is at a lower depth, when more 

of the fishing line is hit by the transducers sound waves. 

 

Figure 4.119: Hydrophone signal ay 188 mm depth and fishing line echo. 

 

Figure 4.120: Hydrophone signal ay 188 mm depth plus fishing line echo. 

 

Figure 4.121: Amplitude of signal received by hydrophone with and wothout echo from a taut fishing line added. 
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Figure 4.122: Amplitude of echo from tungsten carbide calibration sphere compared to hydrophone as a function of depth. 

The results show a similar effect to the one observed when using a suspended calibration sphere, 

although the two are not directly comparable as the calibration sphere and fishing line are subject to 

the two-way directivity of the transducer whilst the signal received by the hydrophone is only subject 

to the one-way directivity. This is why the two scenarios are not in the same plot, as their values 

shouldn’t be compared, only their shapes and interference patterns. The interference pattern at the 

first side lobe has a higher amplitude in the theoretical case, this is due to the amplitude of the 

hydrophone signal in the side lobe is higher as it is only subject to the one-way directivity. While the 

amplitude of the echo from the calibration sphere is much smaller and therefore, so is the amplitude 

of the interference. This test gives strength to the hypothesis that the direct echo from the fishing 

line is what’s causing the oscillating echo amplitude measured when using a suspended calibration 

sphere. 

4.7.3.1.2 Calibration sphere rotation effects 

Using the 22 mm tungsten carbide sphere with the same fishing line configuration as used by IMR 

during their calibrations, the sphere was suspended in water and rotated while a transducer ensonified 

the sphere from a close distance. The strengths of the echoes were recorded and plotted as a function 

of the angle the sphere was rotated. The sphere was rotated 360 degrees and a measurement was 

taken every 1 degrees, making sure to wait a while before taking the measurements to ensure the 

sphere was completely stationary. 
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Figure 4.123: Schematic of IMR’s fishing line suspension method. 

 

Figure 4.124: Amplitude of echo from tungsten carbide calibration sphere as a function of its rotation. 

There is a clear pattern in the amplitudes of the echoes received from the sphere. The amplitude 

oscillates with a set frequency. With 38 peaks in 360 degrees. The average frequency of the oscillations 

is about 0.105 oscillations per degree or 9.5 degrees between oscillations. This seems strange as the 

configuration of the fishing line has 90-degree symmetries. No clear pattern in the amplitudes seem 

to repeat every 90 degrees. However, there is also a lower frequency present that seems to be around 

180 degrees between oscillations. At three of the angles the amplitude drops significantly and the 

reason for this is unknown but might be some destructive interference from various parts of the fishing 

line set-up. The reason why the amplitude at 0 degrees doesn’t match the amplitude at 360 degrees is 

not clear either. The Experiment was repeated, and a similar result was observed. Note that the three 

troughs are present in both experiments and are spaced about 90 degrees apart.  
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Figure 4.125: Amplitude of echo from tungsten carbide calibration sphere as a function of its rotation done twice. 

The locations of the peaks and troughs, as well as their periodicity is very similar between observations, 

meaning the somewhat strange patterns are repeatable and actual. 

The three troughs present in both experiments might be caused by the fishing line being at the front 

of the sphere as the wavefront sees the sphere, therefore dampening some of the direct echo and 

scattering some of the wave’s energy in other directions than straight back. The troughs are spaced 

apart as much as the vertical fishing lines are, by 90 degrees. It is unclear why these troughs show up 

on only two locations when there are four vertical lines of fishing line running down the sphere. 

Perhaps the horizontal fishing line interferes at some rotations but not others, as it does not 

circumnavigate the sphere in the same plane as the sphere rotates. That is to say that the horizontal 

fishing line does not run completely parallel to the direction of the incoming sound wave. 
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Figure 4.126: potential offset in fishing line configuration. 

Tracing the position of the point horizontal fishing line at the front of the sphere as it rotates would 

trace out a sine wave with a period of 360 degrees. This is perhaps part of the reason why there is a 

periodicity in the echoes which have this period halved. If only the fishing lines distance from the 

equator of the sphere affects the echo and not the direction of misalignment, then the periodicity of 

changes to be 180 degrees. The greatest amplitude in echo is perhaps when the horizontal fishing line 

is the farthest from the equator, this happens twice, and therefore gives two peaks to the amplitude 

of the echo over the 360 degrees rotation. The horizontal and vertical lines may also be misaligned in 

numerous other ways which can affect the strength of the echoes, as there are patterns in the target 

strength plot that don’t yet have any explanations. 

The result of the experiments show that the orientation of the sphere can change its target strength 

dramatically, by as much as 3-6 decibel. As little as 4 degrees of rotation can change the target strength 

of a tungsten carbide calibration sphere by as much as 3-5 decibel. This is a significant difference and 

is very hard to compensate for as the change in target strength is very sensitive to angle and the current 

rotation of the sphere will be unknown while being used for calibration on ship. 

4.7.3.1.3 Fishing line suspension method effects 

As seen in the previous section, the rotation of a tungsten carbide sphere suspended via fishing line 

can greatly affects its target strength. This was also investigated on other spheres, using different 

suspension methods. A steel sphere was suspended with a single loop of fishing line. Tied at the top. 

Some glue was used to prevent the sphere from slipping out of the loop. A copper sphere was 

suspended such that three lines wrapped around it. This arrangement did not use a knot at the top but 

did involve some glue at the bottom of the sphere. 
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Figure 4.127: Steel calibration sphere (left) and copper calibration sphere (right) using different suspension methods. 

 

 Figure 4.128: fishing line configuration used for steel 
sphere. 

 

 Figure 4.129: fishing line configuration used for copper 
sphere. 

 

A 10-Volt peak to peak signal of 3 cycles was sent through the 500 kHz transducer pointed at the 

spheres. An echo was recorded for both spheres at two different orientations, 180 degrees apart. For 

the steel sphere the two orientations were similar as orientation one had one of the hemispheres 

created by the fishing line pointed at the transducer. Rotating this by 180 degrees gives an almost 

identical positioning of the fishing line around the sphere. As such there was no difference between 

the echoes recoded at the two positions. For the copper sphere however, one of the orientations had 

the single vertical fishing line pointed towards the transducer while position two had the two closer 

vertical fishing lines pointed at the transducer. The Figures below show how the fishing line was 

oriented, with the face depicted is the one facing the transducer. The Figure shows the first 
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orientation while the second orientation is a 180 degrees rotation about the x-axis from orientation 

1, for both spheres. 

 

 Figure 4.130: suspended steel sphere viewed from 
transducer, orientation 1. 

 

 Figure 4.131: Suspended copper sphere viewed from 
transducer, orientation 1. 

 

 

Figure 4.132: Echo received from steel sphere orientation 1. 

 

Figure 4.133: Echo received from steel sphere orientation 2. 
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Figure 4.134: Echo received from copper sphere at orientation 1. 

 

Figure 4.135: Echo received from copper sphere at orientation 2. 

 

The echoes received by both spheres at both orientations are shown above in Figure 4.132-Figure 

4.135. The amplitude of the first echo, the direct reflection is heavily impacted by the positioning of 

the fishing line relative to the incoming sound wave. The rest of the peaks in the echo, hypothesised 

to come from surface circumferential waves, seems unaffected by the fishing line placement. This is 

perhaps expected as the wave travels in the surface of the sphere and not in the water, but nothing 

conclusive can be drawn about this from this short experiment. The echoes received from the steel 

sphere are as expected very similar as the two positions are practically identical. The timings and 

amplitudes of the periodic peaks seem unaffected by the fishing line. The line is not on the front face 

and then doesn’t seem to affect the direct echo. The fishing line also doesn’t seem to affect the rest 

of the peaks. Similar to what was observed using the copper sphere.  
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5 Conclusion and further work 

This chapter contains the conclusions drawn from the results of the calculations and experiments done 

in this thesis as well as suggestions for further work to be done on the subject. 

5.1 Conclusion 

In this thesis, a triangulation method for estimation of the echosounder two-way equivalent beam 

solid angle has been investigated and some its potential problems explored and discussed. The method 

shows promise in its ability to detect calibration sphere locations given a good set-up. The most 

important factors that play into the potential inaccuracy of the triangulation were found to be the area 

covered between the three transducers, meaning the further apart they are placed the lower the 

uncertainty of the targets position. Any uncertainty in the sound speed of the medium was seen to 

only affect the estimated distance to the target, the z-coordinate, and not the angle to the target, 

meaning its effect on the beam pattern and 𝜓-estimate should be minimal. The accuracy of the 

triangulation method was high under the conditions used in this study, only being of by a few mm at a 

range of 2 meters, high enough to achieve a good beam pattern and 𝜓-estimate. 

The effects of bafflements on immersion transducers’ directivity were seen to be a lowering of side 

lobe levels and a widening of the main lobe. To account for this when doing 𝜓-estimates, a parameter 

was introduced to the piston model estimate of the transducers beam pattern. This new parameter 

better models the beam pattern of baffled transducers helping to improve the estimate of 𝜓, 

compared to standard piston model beam pattern estimates. With enough high-accuracy triangulation 

measurements the target strengths of calibrations spheres at different locations can be found to map 

out the beam pattern of several transducers at once, not just the three used for triangulation. With 

these measurements it is possible to find a function to fit the transducers beam pattern and integrating 

over this function then gives an estimate of 𝜓 as shown in section 0. The estimated value for 𝜓 for the 

500 kHz 25 mm diameter transducers used in this study were found, via the triangulation method to 

be around 0.008 sr depending on the exact methodology chosen, with little variation. This value 

concurs with both the simplified formula by Urick [19] and used by ICES [5], equation 4.34, and the 

theoretical value estimated using the piston model and the estimated derived from measuring the 

transducers’ beam patterns via hydrophone. This suggest the method is accurate in the circumstances 

of this study and may be viable for scientific echosounder calibration. 

In section 4.7 it was observed that when using calibration spheres at 500 kHz the 0.25 mm fishing line 

suspension configuration can significantly interfere with the reading of the sphere’s target strength, 

interfering with any calibration hoped to be done. When the taut fishing line is suspended normal to 

the sound axis of the transducers used in this study the amplitude received from the fishing line is 
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significantly high compared to the signal received from the calibration sphere, making beam pattern 

and 𝜓-estimation using calibration spheres difficult due to severe and abrupt changes in the apparent 

target strength of the calibration spheres when suspended by fishing lines. This may also be an issue 

at lower frequencies, such as the ones used by scientific echosounders on research vessels, which 

include 333 kHz. Section 4.7 also includes the observed phenomenon of apparent circumferential 

surface waves around calibration spheres producing periodic echoes which could change the apparent 

target strength of the calibration sphere. 

5.2 Further work 

It is of interest to use data gathered by IMR during one of their routine calibrations to test out and 

further develop the triangulation methodology for two-way equivalent beam solid angle estimation, 

and investigate its practicality, viability and accuracy when implemented in situ. As well as test the 

methodology using other frequencies such as 18-333 kHz, as is used by IMR on their echosounders 

[20]. A good method for estimating the main lobe or the entire beam pattern from sphere calibrations 

in order to achieve an accurate estimate of 𝜓 is needed, as well as a framework for implementing 

triangulation and 𝜓-estimating into the on-ship calibrations. 

Further investigation of the potential interference from fishing line suspension methods on calibration 

sphere echoes is needed, as in this study the suspension method used in combination with the 

frequency became problematic. This may or may not be the case as the fishing line in not normal to 

the sound axis during routine calibration, as well as the frequencies used being lower, this however 

needs to be investigated. Checking if these effects may affect calibrations done with such sphere 

suspension methods in the lower frequency bands should be explored. The circumferential surface 

waves that appear to be present on calibration spheres under the circumstances found in this study 

may need to be studied further as they also may interfere in target strength measurements of 

calibration spheres as the resulting, periodic echoes can interfere with the direct echo from the sphere. 
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Appendices 

A. MATLAB-scripts 

 

1. FindSignalFFTAmplitude 

 

% FindSignalFFTAmplitude   31.10.22 
% Calculates and returns Amplitude of a given frequency in a signal 

  
function [SignalFFTAmplitude] = FindSignalFFTAmplitude(WaveForm, Freq, 

SampleRate) 

  

  
i = 64; 
L = i* length(WaveForm); 

  
Y = fft(WaveForm,L); 
f = SampleRate*(0:(L/2))/L; 

  
P2 = abs(Y/L); 
P1 = P2(1:L/2+1); 
P1(2:end-1) = i*2*P1(2:end-1); 
FreqIndex1 = find( f >= Freq, 1,  'First'); 
FreqIndex2 = find( f < Freq, 1,  'Last'); 
if abs(f(FreqIndex1)-Freq) < abs(f(FreqIndex2)-Freq) 
    FreqIndex = FreqIndex1; 
else 
    FreqIndex = FreqIndex2; 
end 
plotIndex = find( f > 2*Freq, 1,  'First'); 
SignalFFTAmplitude = P1(FreqIndex); 

  
end 

 

 
 

2. ExtractSignalxCorr 

 

% ExtractSignalxCorr 
% Extracts and returns the steady-state part of a received signal using 
% cross correlation with the transmitted signal 

  

  
function [Signal,wfLength] = ExtractSignalxCorr(wf,wf_Input) 

  
Samples = 200000; 

  
[CorrelationStart,lags] = xcorr(wf,wf_Input,Samples/2); 
[CorrelationEnd,lags] = xcorr(wf,flip(wf_Input),Samples/2); 
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maxCorrelationStart = find (abs(CorrelationStart) == 

max(abs(CorrelationStart)), 1, 'first'); 
maxCorrelationEnd = find(abs(CorrelationEnd) == 

max(abs(CorrelationEnd)), 1, 'first'); 

     
cut = 6500; 

  
wfstart = maxCorrelationStart; 
wfend = maxCorrelationEnd; 

  
if wfend-wfstart > 3*cut 
    wfstart = wfstart + cut; 
    wfend = wfend - cut; 
elseif wfend-wfstart < 0 
    temp = wfstart; 
    wfstart = wfend; 
    wfend = temp; 
elseif wfend-wfstart < cut 
    wfstart = wfstart - cut; 
    wfend = wfend + cut; 
end 

     
if length(wfend) == 0 
    wfend= length(wf); 
end 

  
interval = wfstart:wfend; 
WaveForm = wf(interval); 

  
Signal = WaveForm; 
wfLength = length(WaveForm); 
end 

 

3. PlotPistonModel 

 

%PlotPistonModel 
%Plots the beam pattern of a transducer by the ka-number and calculates the 
%Psi by integrating over the beam pattern 

 
clear H 
clear v 
clear thetaT 
clear phiT 

  
    ka = 26.44; 
    y = 1; 

     
     thetaT = [0:0.005:2*pi]; 
     phiT = [0.00000001:0.001:pi/2]; 

      
    %     Beam Pattern 
        for i = 1:length(thetaT) 
            for j = 1:length(phiT) 
               v(i,j) = ka.*sin(phiT(j)); 
            end 
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        end 

         
        H = abs(2*besselj(1, v)./v).^y; 

         
        plot(H) 

  
        Integrand = H.^4.*sin(phiT);                

  
        %     Beam Pattern 

 
        psi = trapz(thetaT,trapz(phiT,Integrand,2)) 
        plot(psi) 
        q = cumtrapz(thetaT,cumtrapz(phiT,Integrand,2)); 
        plot(q) 

          

4. MonteCarloSimulation 

 

% MonteCarloSimulation 
% Simulated the triangulation method and calculates its uncertainty via 
% monte Carlo simulations 

  
clear Px Py Pz 

  
syms T1x T1y T1z T2x T2y T2z T3x T3y T3z Bx By Bz d1 d2 d3 

  
tic 

  
ES200 = [8.144,-0.799, 0] 
EC150 = [8.579, -0.473, 0]-ES200 
ES333 = [8.331,-0.740, 0]-ES200 
ES120 = [8.177,-0.578, 0]-ES200 
ES70 = [8.179,-0.275, 0]-ES200 
ES18 = [7.703,-0.472, 0]-ES200 
ES38 = [7.006,-0.472, 0]-ES200 
ES200 = [8.144,-0.799, 0]-ES200 

  

  

  
eq1 =  Bx^2 + By^2 + Bz^2 - d1^2 == 0; 
eq2 = (Bx-T2x)^2 + (By-T2y)^2 + Bz^2 - d2^2 == 0; 
eq3 = (Bx-T3x)^2 + (By-T3y)^2 + Bz^2 - d3^2 == 0; 

  
S = solve(eq1,eq2,eq3,Bx,By,Bz); 

  
% MONTE CARLO SIMULATION % 

  
T1 = ES200; 
T2 = ES70; 
T3 = ES18; 
B = [0,0,20]; 

  
c = 1500; 

  
t1 = sqrt((T1(1)-B(1))^2+(T1(2)-B(2))^2+(T1(3)-B(3))^2)/c; 
t2 = sqrt((T2(1)-B(1))^2+(T2(2)-B(2))^2+(T2(3)-B(3))^2)/c; 
t3 = sqrt((T3(1)-B(1))^2+(T3(2)-B(2))^2+(T3(3)-B(3))^2)/c; 
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% Uncertainty % 

  
uT= 0.001; 
ut= 0.000001; 
uc= 1; 

  
StartTime = datetime 
n=10000; 
for i=1:n 
    T1xU= T1(1) +normrnd(0,uT); 
    T1yU= T1(2) +normrnd(0,uT); 
    T1zU= T1(3) +normrnd(0,uT); 

     
    T2xU= T2(1) +normrnd(0,uT); 
    T2yU= T2(2) +normrnd(0,uT); 
    T2zU= T2(3) +normrnd(0,uT); 

     
    T3xU= T3(1) +normrnd(0,uT); 
    T3yU= T3(2) +normrnd(0,uT); 
    T3zU= T3(3) +normrnd(0,uT); 

     
    t1U= t1 +normrnd(0,ut); 
    t2U= t2 +normrnd(0,ut); 
    t3U= t3 +normrnd(0,ut); 

     
    cU= c +normrnd(0,uc); 

     
    tempX = 

double(subs(S.Bx(2),{T1x,T1y,T1z,T2x,T2y,T2z,T3x,T3y,T3z,d1,d2,d3},{T1xU,T1

yU,T1zU,T2xU,T2yU,T2zU,T3xU,T3yU,T3zU,t1U*cU,t2U*cU,t3U*cU})); 
    tempY = 

double(subs(S.By(2),{T1x,T1y,T1z,T2x,T2y,T2z,T3x,T3y,T3z,d1,d2,d3},{T1xU,T1

yU,T1zU,T2xU,T2yU,T2zU,T3xU,T3yU,T3zU,t1U*cU,t2U*cU,t3U*cU})); 
    tempZ = 

double(subs(S.Bz(2),{T1x,T1y,T1z,T2x,T2y,T2z,T3x,T3y,T3z,d1,d2,d3},{T1xU,T1

yU,T1zU,T2xU,T2yU,T2zU,T3xU,T3yU,T3zU,t1U*cU,t2U*cU,t3U*cU})); 

     
    if isreal(tempX) & isreal(tempY) & isreal(tempZ) 
        Px(i) = tempX; 
        Py(i) = tempY; 
        Pz(i) = tempZ; 
    end 

     
    if mod(i,100) == 0 
        disp([num2str(100*i/n),' % processed'])         
        Duration = datetime - StartTime; 
        disp('Estimated finish time: ') 
        disp(StartTime + (Duration/i)*n) 
    end 
end 

  
%PLOTTING the result 
[muhat,sigmahat]=normfit(Px); 
Pxmin=muhat-2*sigmahat; 
Pxmax=muhat+2*sigmahat; 
text1=sprintf('%.4f +- %.4f\n',muhat,sigmahat); 
text2=sprintf('(%.4f,%.4f) \n95 percent interval',Pxmin,Pxmax); 
textTotal=sprintf('%s%s',text1,text2); 
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Figure; 
title("Bx") 
histfit(Px,50) 
text(Pxmax,n/15,textTotal,'HorizontalAlignment','center') 
xlabel('X'); 

  
%PLOTTING the result 
[muhat,sigmahat]=normfit(Py); 
Pymin=muhat-2*sigmahat; 
Pymax=muhat+2*sigmahat; 
text1=sprintf('%.4f +- %.4f\n',muhat,sigmahat); 
text2=sprintf('(%.4f,%.4f) \n95 percent interval',Pymin,Pymax); 
textTotal=sprintf('%s%s',text1,text2); 

  
Figure; 
title("By") 
histfit(Py,50) 
text(Pymax,n/15,textTotal,'HorizontalAlignment','center') 
xlabel('Y'); 

  
%PLOTTING the result 
[muhat,sigmahat]=normfit(Pz); 
Pzmin=muhat-2*sigmahat; 
Pzmax=muhat+2*sigmahat; 
text1=sprintf('%.4f +- %.4f\n',muhat,sigmahat); 
text2=sprintf('(%.4f,%.4f) \n95 percent interval',Pzmin,Pzmax); 
textTotal=sprintf('%s%s',text1,text2); 

  
Figure; 
title("Bz") 
histfit(abs(Pz),50) 
text(Pzmax,n/15,textTotal,'HorizontalAlignment','center') 
xlabel('Z'); 

 

 

5. Triangulation 

 

% Triangulation 
% triangulates the target position goven the locators and distaances 
syms T1x T1y T1z T2x T2y T2z T3x T3y T3z Bx By Bz d1 d2 d3 

  
T1x = 0; 
T1y = 0; 
T1z = 0; 
%  
% T2x = fittedmodelT2X.b; 
% T2y = fittedmodelT2Y.b; 
T2z = 0; 
%  
% T3x = fittedmodelT3X.b; 
% T3y = fittedmodelT3Y.b; 
T3z = 0; 

  

  
% d1 = T1DistancesSphere(x,y) - ts_sphere*C; 
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% d2 = T2DistancesSphere(x,y) - ts_sphere*C; 
% d3 = T3DistancesSphere(x,y) - ts_sphere*C; 

  
BT.x = PointsListZ(x); 
BT.y = PointsListY(y); 
BT.z = 0; 

  
eq1 = (Bx-T1x)^2+(By-T1y)^2+(Bz-T1z)^2-d1^2 == 0; 
eq2 = (Bx-T2x)^2+(By-T2y)^2+(Bz-T2z)^2-d2^2 == 0; 
eq3 = (Bx-T3x)^2+(By-T3y)^2+(Bz-T3z)^2-d3^2 == 0; 

  
S_simple = solve(eq1,eq2,eq3,Bx,By,Bz); 

  
 digits(5); 
 B.x = double(vpa(S.Bx(1))); 
 B.y = double(vpa(S.By(1))); 
 B.z = double(vpa(S.Bz(1))); 

 

6. EnvelopeMethod 

 

% EnvelopeMethod 
% Return detected start of signal by envelope method 
wf = wf - mean(wf); 

                 
startThreshold = 0.10; 
endThreshold = 0.10; 
peakThreshold = 0.75; 

  
wfmaxpeak = find( abs(wf) == max(abs(wf)), 1,  'First'); 

  
WavePartStart = find( x < x(wfmaxpeak)-1.5*(cycles*(1/freq)), 1,  'Last'); 
WavePartEnd = find( x < x(wfmaxpeak)+1.5*(cycles*(1/freq)), 1,  'Last'); 
WavePart =  wf(WavePartStart:WavePartEnd); 

  
[yupper,ylower] = envelope(WavePart,800,'rms'); 

  
wfpeak1 = find( abs(WavePart) > max(abs(WavePart))*peakThreshold, 1,  

'First'); 
wfpeak2 = find( abs(WavePart) > max(abs(WavePart))*peakThreshold, 1,  

'Last'); 

  
wfstart = find( yupper(1:wfpeak1) < max(abs(WavePart))*startThreshold, 1,  

'Last')+WavePartStart; 
wfend = find( yupper(wfpeak2:length(yupper)) < 

max(abs(WavePart))*endThreshold, 1,  'First')+wfpeak2+WavePartStart; 
if length(wfend) == 0 
    wfend= length(wf); 
end             
WaveForm = wf(wfstart:wfend); 

  
index = wfstart; 
Distance = x(index)*c 

 

 


