
University of Bergen
Department of Informatics

A Case Study in Dependent Type Theory:

Extracting a Certified Program from the

Formal Proof of its Specification

Author: Andreas Salhus Bakseter

Supervisors: Marc Bezem, H̊akon Robbestad Gylterud

June, 2023

Abstract

Proofs are an important part of mathematics, but they are not without their flaws. Most

proofs are written by humans, and humans make mistakes. In this thesis, we explore

the use of proof assistants to construct formal versions of informal proofs, and to extract

certified and correct programs from these formal proofs. We study a specific case of

two problems from lattice theory, solved by Bezem and Coquand in [2]. Firstly, we ask

ourselves: are the results from [2] correct? The informal proofs posed in [2], used to justify

the correctness of the results, are complex enough that mistakes are possible. Using the

Coq proof assistant, we formalize parts of the proofs from [2], to gain more confidence

in the correctness of these informal proofs. Secondly, is the process of formalization a

feasible one? Transforming an informal proof into a formal proof is not necessarily an

easy or straightforward process, and there are several approaches to formalization of a

proof. Lastly, is the process of formalization worth the effort? A fully formalized proof

gives us almost complete confidence in the correctness of the proof, and hence the result.

Moreover, if the proof is constructive, we get the added bonus of extracting a certified

program from the proof. In our case, this program has some practical use cases in a

real-world setting, mostly as a prototype. Our formalization, done using Coq, can be

found in the GitHub repository at [1]. For convenience, the formal proof of the central

result has been reproduced in Listing A.1.

Acknowledgments

First and foremost, I would like to extend a massive thank you to my supervisor, Marc

Bezem. Without your excellent guidance and help, I would not have been able to complete

this project. Thank you for all the knowledge you have shared with me. I would also like

to thank all my friends at Jafu for always aiding in procrastination, and for all the fun

times. Lastly, I’d like to thank my family for their support and encouragement.

Andreas Salhus Bakseter

Thursday 1st June, 2023

Contents

1 Background 1

1.1 Proofs, verification & formalization . 1

1.2 Type theory . 2

1.2.1 Propositions as types . 2

1.2.2 Dependent types . 3

1.3 Proof assistants . 4

1.3.1 Coq . 5

1.3.2 Other proof assistants . 7

1.3.3 Extraction of programs from verified proofs 7

2 The Case in Question 8

2.1 Overview & research questions . 8

2.2 Relevant parts of the paper . 9

2.2.1 Lemmas and theorems . 11

3 Approach & Design Choices 12

3.1 Simplifications for the sake of time . 12

3.1.1 Incomplete formal proofs for some purely logical lemmas 12

3.1.2 Leaving out the formal proof of Lemma 3.3 13

3.1.3 Proof of minimality . 13

3.2 Modeling finite sets in Coq . 14

3.2.1 List & ListSet . 14

3.2.2 MSetWeakList . 18

3.2.3 Ensembles . 19

3.3 Choice of implementation of sets . 19

4 Implementation of Case-Specific Notions 20

4.1 Data types . 20

4.2 Semantic functions and predicates . 23

i

4.2.1 The function sub_model . 23

4.2.2 The functions sub_vars_improvable and sub_forward 24

4.2.3 The function geq . 25

4.2.4 The predicate ex_lfp_geq with Prop and Set 26

4.3 The main proofs . 27

4.3.1 The predicate pre_thm . 28

4.3.2 Lemma 3.3 . 28

4.3.3 Theorem 3.2 . 29

4.4 Extraction to Haskell . 31

5 Examples & Results 33

5.1 Examples using the extracted Haskell code 33

5.1.1 Defining examples for extraction in Coq 33

5.1.2 Necessary alterations to the extracted Haskell code 35

5.1.3 Example output . 35

5.1.4 Example of loop-checking . 36

5.2 Real world example . 37

5.2.1 Loose comparison to Coq’s universe consistency checker 39

5.3 Extension of Listing 5.3 that fails . 40

6 Evaluation 43

6.1 Correctness of results from [2] . 43

6.2 Feasibility of formalization . 43

6.3 Value of formalization & extracted algorithm 44

7 Related & Future Work 45

7.1 Related work: universe consistency checking in Coq 45

7.2 Future work . 45

7.2.1 Completing proof of remaining logical lemmas 45

7.2.2 Formal proof of Lemma 3.3 . 46

7.2.3 Proving minimality of model generated by Theorem 3.2 46

8 Conclusion 47

Bibliography 49

A Full proof of Theorem 3.2 in Coq 52

ii

Listings

1.1 vector in Coq, using dependent types . 4

1.2 Examples of vectors in Coq . 4

1.3 Example of Gallina syntax . 5

1.4 Example of Ltac syntax . 6

1.5 Gallina terms generated by Ltac example 6

3.1 Proposition for minimal model . 13

3.2 Inductive definition of the list type in Coq 14

3.3 Decidability proof for string equality in Coq 15

3.4 set_mem lemma in ListSet module . 16

3.5 Easy proof of lemma in ListSet module 16

3.6 Wrong lemma in ListSet module . 17

3.7 Tedious, but correct lemma in ListSet module using incl 17

3.8 Strict subset relation on lists using incl 17

3.9 Set of atoms in MSetWeakList module . 18

3.10 Union in Ensembles module . 19

4.1 Atom and Clause in Coq . 20

4.2 Ninfty and Frontier in Coq . 21

4.3 atom_true and clause_true in Coq . 22

4.4 shift_atom and shift_clause in Coq . 22

4.5 all_shifts_true in Coq . 23

4.6 The function sub_model in Coq . 24

4.7 The function sub_vars_improvable in Coq 25

4.8 The function sub_forward in Coq . 25

4.9 Point-wise comparing frontiers with geq in Coq 26

4.10 ex_lfp_geq in Coq, using both Prop and Set 26

4.11 A universe inconsistency in Coq . 27

4.12 pre_thm in Coq . 28

4.13 Lemma 3.3 in Coq . 29

4.14 Theorem 3.2 in Coq . 29

iii

4.15 Extraction of Coq definitions to Haskell 31

5.1 Type signature of thm_32 in Coq . 33

5.2 Type signature of pre_thm in Coq . 33

5.3 thm_32 example . 34

5.4 thm_32 example output . 36

5.5 Loop-checking example . 37

5.6 Loop-checking example output . 37

5.7 Universe hierarchy in Main.v . 38

5.8 Universe hierarchy as clauses . 38

5.9 Other forms of constraints translated to clauses 39

5.10 Real-world example benchmark . 40

5.11 thm_32 example extended . 40

5.12 Output of thm_32 example extended . 41

5.13 Output of thm_32 example extended, with debug 41

5.14 False claim in thm_32 proof . 41

A.1 Full proof of Theorem 3.2 in Coq . 52

iv

Chapter 1

Background

1.1 Proofs, verification & formalization

When solving mathematical problems, we often use proofs to either justify a claim or to

explain why the claim is true. We can distinguish between two types of proofs; informal

and formal proofs.

An informal proof is often written in a natural language, and the proof is adequate if most

readers are convinced by the proof [17, ch. 2]. Such proofs rely heavily on the reader’s

intuition and often omit logical steps to make them easier to understand for humans [10,

p. 1371]. As these proofs grow larger and more complex, they become harder for humans

to follow, which can ultimately lead to errors in the proofs’ logic. This might cause the

whole proof to be incorrect [11], and even the claim ”justified” by the proof might be

wrong.

A formal proof is written in a formal language, and can be compared to a computer

program written in a programming language. Writing a formal proof is more difficult

than writing an informal proof. Formal proofs include every logical step, and nothing is

left for the reader (often a computer) to assume. This can make formal proofs extremely

verbose, but the amount of logical errors is reduced [10, p. 1371]. The only possible errors

in formalized proofs are false assumptions and/or flawed verification software. When we

talk about formalization, we mean the process of translating an informal proof into a

formal proof.

1

1.2 Type theory

Type theory is a foundation of mathematics [5] in which every mathematical object is

viewed as being a member of a certain type. We can say that the object a is a member

of the type A, or, that a has type A, denoted by a : A. For any type A, we must know

how to construct an element a of that type [15, p. 76]. A simple example would be the

type of natural numbers, N. Any object n : N would be a natural number, which we can

easily provide by iterating a successor function on the constant O. Type theory gives us

a framework to work with and manipulate objects and types by providing us with rules

of inference for objects and their types. There are several different type theories, where

each one has their own rules. As mathematical objects can be a lot more complex than

just natural numbers, the types these objects belong to follow in complexity.

A related concept in computer programming is the notion of a data type. Akin to type

theory, these are often used to represent some object or structure, e.g. the data type

bool is usually used to represent a boolean value.

1.2.1 Propositions as types

The concept of proposition as types sees any proposition P as representing a type, and

every proof p of P is an element of the type P , or p : P . Thus, if we can construct

an element of the type P , we can prove P , and vice versa; if we can prove P , we can

construct an element of the type of P . For example, to prove a proposition P which

states ”all natural numbers are the sum of four squares”, we must construct a value of

the type P that shows that this is true for all natural numbers. Such a value is a function

that for any input n returns a proof that n is the sum of four squares, that is, return four

numbers a, b, c, d and a proof that n = a2 + b2 + c2 +d2. Proofs are mathematical objects;

thus a proposition can be viewed as having the type of all its proofs (if any!). We can use

this correspondence to model a proof as a typed computer program. The power of this

concept comes from the fact that we can use a type checker to verify that our program

is typed correctly, and thus that the corresponding proof is valid. Often, the proof can

be used to compute something, i.e., the numbers a, b, c, d mentioned above [27] [16].

2

1.2.2 Dependent types

Dependent types allow us to define more rigorously types that depend on values. We

again look at the proposition P from above. It states that for all natural numbers n,

there exists four other natural numbers a, b, c, d, such that P holds. Or, in mathematical

notation:

∀n∃a∃b∃c ∃d (n = a2 + b2 + c2 + d2) where n, a, b, c, d ∈ N

The proof of this proposition is, as stated previously, a function that takes an argument

n and returns a proof, or, evidence in the form of values for a, b, c, d that satisfy P . Since

propositions are just types, any function f : A → B will produce a proof of B given a

proof of A.

To represent the type of an universal quantified proposition, we use a Π-type, also called

a dependent function type. Given a function B that for any a : A maps to an element of

the type B(a), we denote
∏

a:A B(a). This type is the type of all functions that for any

element a : A maps to an element b : B(a) [15, p. 78]. In the case for P , the type A would

be N, and the element a would be a natural number, corresponding to the variable n in

P . A proof of
∏

n:N (∃a ∃b ∃c∃d (n = a2 + b2 + c2 + d2) is a function that for any n ∈ N
gives us a proof of ∃a∃b ∃c ∃d (n = a2 + b2 + c2 + d2). Thus, the type of the proposition

varies with n, modeling universal quantification.

To represent the type of an existentially quantified proposition, we use a Σ-type, also

called a dependent pair type. Given a function B that for any a : A maps to an element

of the type B(a), we denote
∑

a:A B(a). This type is the type of all pairs (x, y) where

x : A and y : B(a) [15, p. 79]. Again, in the case for P , A would be N, and the

element a would be a natural number, corresponding to the variable a in P . A proof of∏
n:N

∑
a:N (∃b∃c∃d (n = a2 + b2 + c2 +d2) is a pair (x, y), where x is evidence of P and y

is a proof of P . Hence, any evidence of P is provided with its proof, modeling existential

quantification. The other existential quantifiers are likewise replaced by Σ’s:∏
n:N

∑
a:N

∑
b:N

∑
c:N

∑
d:N

(n = a2 + b2 + c2 + d2)

The proposition n = a2 + b2 + c2 + d2 is a type dependent on the five values n, a, b, c, d.

As we have just shown by representing universal and existential quantification, the con-

cept of dependent types is important for propositions as types by providing us with more

expressivity. We can also look at a more practical example of dependent types, using

the Coq proof assistant, which has support for dependently typed programming. We

3

consider the type vector, which is a type polymorphic (the elements of the list can be

of any same type) finite list with a fixed length, which is the value on which the type

depends, a natural number.

(* brackets around ’A : Type’ indicate that its type should be inferred *)

Inductive vector {A : Type} : nat → Type :=

| Vnil : vector 0

(* ’forall’ is an instance of a dependent function type *)

| Vcons : forall (h : A) (n : nat), vector n → vector (S n).

Listing 1.1: vector in Coq, using dependent types

This definition gives us a type with two constructors:

• Vnil has the type of vector 0, and represents the empty vector.

• Vcons has type of forall (h : A) (n : nat) vector (S n), where h is the head of the

vector and n is the length of the vector, where both are given to the constructor as

arguments.

In this scenario, the length of an object of the type vector n is fixed by the argument

n : nat. Any definition of a vector must adhere to this term, and is checked at compile

time. An example of a valid and invalid definition is:

(* valid definition; (S 0) equal to 1 *)

Definition vec_valid : vector 2 :=

Vcons "b" 1 (Vcons "a" 0 (Vnil)).

(* invalid definition; (S 0) not equal to 2 *)

Fail Definition vec_invalid : vector 2 :=

Vcons "b" 2 (Vcons "a" 0 (Vnil)).

Listing 1.2: Examples of vectors in Coq

1.3 Proof assistants

Propositions as types allow us to bridge the gap between logic and computing, while

dependent types allow us to define more rigorously types which depend on values, thus

4

enhancing the expressivity of simple types. The former is a crucial aspect of proof as-

sistants, while the latter gives us more expressive power when constructing proofs using

a proof assistant, as we saw when modeling universal and existential quantifiers using

types. An example of the expressive power of dependent types is the fact that we can

define predicates that depend on the value of a term, e.g. a predicate that checks if a

number is even. The purpose of a proof assistant is to get computer support to construct

and verify a formal proof mechanically.

1.3.1 Coq

Coq is based on the higher-order type theory Calculus of Inductive Constructions (CIC),

and functions as both a proof assistant and a dependently typed functional program-

ming language. Coq also allow us to extract certified programs from the proofs of their

specification to the programming languages OCaml and Haskell [21]. Coq implements

a specification language called Gallina, which allows us to define logical objects within

Coq. These objects are each assigned a type to ensure they are correct, and the rules

used to assign these types come from CIC [19].

This is an example of the syntax of Gallina:

Inductive nat : Type :=

| O
| S : nat → nat.

Inductive le (n : nat) : nat → Prop :=

| le_n : n ≤ n

| le_S : forall m : nat, n ≤ m → n ≤ S m.

Definition lt_n_S_n :=

(fun n : nat ⇒ le_n (S n)) : forall n : nat, n < S n.

Listing 1.3: Example of Gallina syntax

Looking at the final definition in the example, we can see the concept of propositions as

types in action. lt_n_S_n defines a function which takes a natural number n as input,

and returns a value of the type forall n : nat, n < S n, denoted by the colon before the

type itself. The return value is therefore a proof of forall n : nat, n < S n, and since

5

the definition has been type-checked by Coq, we know that this proof is valid! In this

case, the function is fun : nat ⇒ le_s (S n), where le_n is a constructor of the type

forall n : nat, n ≤ n. By applying this constructor to S n, we get a value of the type

(and a proof) of forall n : nat, S n ≤ S n. By Coq’s definition of <, our initial theorem

can be rewritten as forall n : nat, S n ≤ S n. This matches the type of our function, and

the proof is complete.

Proving theorems like this is not really intuitive for a human prover, and that is why Coq

gives us the Ltac meta-language for writing proofs. Ltac provides us with tactics, which

are a kind of shorthand syntax for defining Gallina terms [7]. Using Ltac, we can rewrite

the proof from Listing 1.3 as such:

Theorem lt_n_S_n : forall n : nat, n < S n.

Proof.

intro n. destruct n.

− apply le_n.

− apply le_n_S. apply le_n.

Qed.

Listing 1.4: Example of Ltac syntax

If we check the Gallina terms generated by Ltac for this theorem using the Print com-

mand, we get essentially the same function as in Listing 1.3.

Print lt_n_S_n.

lt_n_S_n =

fun n : nat ⇒
match n as n0 return (n0 < S n0) with

| 0 ⇒ le_n 1

| S n0 ⇒ (fun n1 : nat ⇒ le_n_S (S n1) (S n1) (le_n (S n1))) n0

end

: forall n : nat, n < S n

Listing 1.5: Gallina terms generated by Ltac example

When developing proofs using Ltac, each tactic is executed or ”played” one by one, much

like an interpreter. The tactics are separated by punctuation marks. When the use of a

tactic causes the proof to depend on the solving of multiple sub-proofs (called ”goals”),

6

we can use symbols like ”-”, ”+”, and ”*” to branch into these sub-proofs and solve their

goals independently. Once a goal has been solved, we can move on to the next. When

there are no more goals, the proof is complete. Coq provides us with tooling that gives

us the ability to see our goals and the proof state to further simplify the process [20].

Ltac is not the only proof language, with another example being SSReflect [9].

1.3.2 Other proof assistants

Coq is a widely used proof assistant, but it is not the only one. There are also other

related tools that can be used for formalization and verification.

Agda

Agda is a dependently typed functional programming language based on Martin-Löf’s

intuitionistic type theory. Unlike Coq, Agda does not use tactics. However, by using

proposition as types, Agda can also function as a proof assistant [3].

Lean

Lean is dependently typed functional programming language and theorem prover. The

goal of Lean is to establish a connection between the automated and interactive processes

of proving theorems. Thus, Lean functions both as a proof assistant and as an automated

theorem prover. Like Coq, Lean is also based on the type theory of CIC [6].

1.3.3 Extraction of programs from verified proofs

By the notion of propositions as types, we can use a proof assistant to prove the correct-

ness of a program [17, Preface]. However, we can also extract a program from a proof of

its correctness. This type of program extraction is a common feature of proof assistants.

The extracted program is guaranteed to be correct by the type system of the proof assis-

tant, and the code for the program can be given as source code in several programming

languages, such as Haskell and OCaml (as is the case for Coq) [21].

7

Chapter 2

The Case in Question

2.1 Overview & research questions

Recall the three questions posed in the abstract. Firstly, we want to use the Coq proof

assistant to formalize parts of the proofs of the paper, Bezem and Coquand [2]. This

paper solves two problems that occur in dependent type systems where typings depend

on universe-level constraints, and the results can be summarized as follows:

1. The uniform word problem for an an equational theory of semilattices with one

inflationary endomorphism can be solved in polynomial time.

2. Loop-checking in a type system with universe-level constraints can be done in poly-

nomial time.

From [2], we get a definition of a uniform word problem for an equational theory T :

The uniform word problem for an equational theory T is to determine, given

a finite set E of relations between generators, whether a given relation is

provable from E in T .

8

In our case, the equational theory T is the theory of join-semilattices with one inflationary

endomorphism. This problem is shown in [2] to be solvable in polynomial time, and

provability in semilattice theory is shown to be equivalent to provability in Horn clauses.

We will explain in more detail in the next subsection what join-semilattices, inflationary

endomorphisms, and Horn clauses are. Loop-checking, in our case, means determining if

a set of constraints on some set of variables generate an infinite loop, that is, a term t

such that t ≥ t+ is provable from the constraints. This is important for algorithms such

as a type-checking algorithm where type universe levels have to be determined, and the

algorithm has to be decidable. We have focused on formalizing the proof of Theorem

3.2 from [2]. Since this proof is complex enough that mistakes are possible, it is a good

candidate for formalization. By formalizing the proof and then verifying it using Coq,

we can be sure that it is correct.

Secondly, we are also interested in finding out whether or not the process of formalizing

the proof can be completed in a reasonable amount of time, and with a reasonable amount

of effort. A formal proof of Theorem 3.2 is a sizable undertaking, and we want to know

if it is feasible to complete it.

Finally, we want to assess if our formalization effort will be worth it. By completing a

formal version of Theorem 3.2 we can be very confident in its correctness. We can also,

by using an advanced feature of Coq, extract an algorithm from the formal proof, where

this algorithm is certified to produce correct results. As an aside, this algorithm has

direct applications to the formalization and verification of the Coq proof assistant itself,

as the algorithm outlined by the proofs in [2] can be used to solve a similar problem that

Coq encounters when checking the consistency of universe levels during interpretation/-

compilation.

2.2 Relevant parts of the paper

We will paraphrase some key concepts from [2] that are needed to understand our imple-

mentation and formalization.

We will call join-semilattices with inflationary endomorphisms simply semilattices. A

join-semilattice is a partially ordered set in which any two elements have a least upper

bound, called their join. The join of a semilattice is a binary operation ∨ that is com-

mutative, associative and idempotent. An inflationary endomorphism, in our case, is a

9

function that maps an element to itself or to a greater element in the ordered set. We

denote the inflationary endomorphism as +, for every lattice element x, x+ is also called

the successor of x. The fact that x is an inflationary endomorphism means that we get

the following properties: (x∨ y)+ = x+ ∨ y+ and x∨ x+ = x+. The latter is also denoted

as x ≤ x+.

A semilattice presentation consists of a set V of generators (also called variables) and a

set C of relations (also called constraints). For a semilattice term t and k ∈ N, t + k

denotes the k-fold successor of t, thus making t+0 = t and t+1 = t+. A term over V has

the form x1 + k1 ∨ . . .∨ xm + km, where xi ∈ V and ki ∈ N. Every semilattice expression

is equal to a term over V .

Horn clauses are propositional clauses A→ b, with a non-empty body A and conclusion

b. The atoms are of the form x + k, where x ∈ V, k ∈ N. We call this special form of

Horn clauses simply clauses.

A constraint is an equation s = t, where s and t are terms over V . A constraint, like

a ∨ b = c+ (with a, b, c ∈ V), expresses a relation between the variables a, b, c. For each

constraint s = t, we generate clauses by replacing join by conjunction, denoted by ”,”,

and ≥ by implication. E.g. for the constraint a ∨ b = c+, we first derive a ∨ b ≥ c+ and

c+ ≥ a ∨ b. From a ∨ b ≥ c+, we generate the clause a, b → c+. From c+ ≥ a ∨ b, we

derive c+ ≥ a and c+ ≥ b. We then generate the clause c+ → a from the former, and the

clause c+ → b from the latter. This generated set of clauses is denoted by Ss=t, which

in our example makes it Sa∨b=c+ := {a, b → c+, c+ → a, c+ → b}. We define SC as the

union of all Ss=t, where s = t is a constraint in C. From the axiom x ∨ x+ = x+, we can

derive the following clauses: x, x+ → x+, x+ → x+ and x+ → x. Since the first two are

tautological, we are only interested in the last one, which we call a predecessor clause. A

predecessor clauses ensures that any atom x+k that is true in a model, also has x+k−1

true in that model.

In [2, Theorem 2.2, p. 3] it is proven that provability in the semilattice theory is equivalent

to Horn clause provability, making it so that we can continue with the latter in the rest

of this thesis. Downward closure of the set of atoms validates the predecessor clauses

coming from x ≤ x+.

We define closure under shifting upwards as follows: if A → b is in the set of clauses,

then so must A + 1→ b + 1 be. A + 1 denotes the set of atoms of the form a + 1, where

a ∈ A. Given a finite semilattice presentation (V,C), and a subset W ⊆ V , we denote

by SC the smallest subset of SC that is closed under shifting upwards, by SC | W the set

10

of clauses in SC mentioning only variables in W , and by SC ↓ W the set of clauses in SC

with conclusion over W . Closure under shifting upwards is the Horn clause equivalent of

(x ∨ y)+ = x+ ∨ y+.

A function f : V → N∞ specifies a downward closed set of atoms, namely {v + k | v ∈
V, k ∈ N, k ≤ f(v)}, where N∞ is the set of natural numbers extended with ∞. This set

contains all atoms v + k if f(v) =∞. The sets specified by such functions are models of

SC .

2.2.1 Lemmas and theorems

Lemma 3.1 ([2, p. 3]) Given f : V → N∞, and a clause A→ b, let P be the problem

whether or not A + k → b + k is satisfied by f for all k ∈ N. Then P is decidable.

The proof of Lemma 3.1 demonstrates that the problem P is decidable, meaning we

can indeed write an algorithm that determines whether or not the problem holds for all

k ∈ N . Lemma 3.1 is also crucial for making case distinctions in further proofs, since we

know that any SC is finite, whereas SC is not.

Theorem 3.2 ([2, p. 3]) Let (V,C) be a finite semilattice presentation. For any f :

V → N∞ we can compute the least g ≥ f that is a model of SC.

The proof of Theorem 3.2 has a special case that is solved by an additional lemma:

Lemma 3.3 ([2, p. 3]) Let (V,C) be a finite semilattice presentation. Let W be a strict

subset of V such that for any f : W → N∞ we can compute the least g ≥ f that is a

model of SC | W . Then for any f : V → N∞ with f(V −W) ⊆ N, we can compute the

least h ≥ f that is a model of SC ↓ W .

11

Chapter 3

Approach & Design Choices

When translating an informal proof or specification to a formal proof, one often has to

decide how to model certain mathematical objects and their properties, and which parts

of a proof that can be simplified or left out entirely. Our formalization effort has been

focused mostly on Theorem 3.2 and its proof. We have left aside two concepts from [2]:

• the relation between semilattices and Horn clauses

• complexity theoretic claims about the problems

These are sections 2 and 4 from [2], respectively. We have also made some simplifications

to various parts of our formalization, which we will explain in more detail in the next

subsection.

3.1 Simplifications for the sake of time

3.1.1 Incomplete formal proofs for some purely logical lemmas

We have chosen to not spend too much time fully completing the formal Coq proofs of

some purely logical lemmas, which are mainly used as intermediate steps in the proof

of Theorem 3.2. When we say ”purely logical”, we mean that they do not contribute

anything to the constructive part of the proof, and are not used in the extracted algorithm

in any way (we will expand on how most logical lemmas are removed by extraction

12

in Section 4.2.4). As long as these lemmas are true, the correctness of the extracted

algorithm is not in danger, even though not formally proved. As we will see later in this

section, this is mainly due to very complex or difficult-to-prove formal proofs of lemmas

in our set implementation being trivial when proving the same lemma informally. The

formal proofs of these lemmas are however not very interesting, which is why we have

not spent too much time on them.

3.1.2 Leaving out the formal proof of Lemma 3.3

Lemma 3.3 is not purely logical, and has computational content. We have included a

formulation of the statement of this lemma, but not a formal proof. When testing the

algorithm generated by our formalization of Theorem 3.2, we have manually edited the

code to use the identity function instead of crashing due to the lack of a proof of Lemma

3.3. This simplification is sufficient for a surprising large number of problems, but not

all; the limitations of this simplification will be explained in more detail in Section 5.3.

Thus, this clearly is a limitation to be completed in the future.

3.1.3 Proof of minimality

In our proof of Theorem 3.2, we have chosen to omit proving the minimality of the model

generated by the algorithm. Our algorithm does however generate a minimal model, but

we have not proven that it does.

To prove that the model generated by our algorithm is minimal, we would have had to

include the following proposition in our definition of Theorem 3.2:

forall h : Frontier, sub_model Cs V V h → geq h f.

Listing 3.1: Proposition for minimal model

We will explain the semantics of this proposition in more detail in Chapter 4.

13

3.2 Modeling finite sets in Coq

Sets in mathematics are seemingly simple structures; a set is a collection of elements. A

set cannot contain more than one of the same element (no duplicates), and the elements

are not arranged in any specific order (no order). This is the naive definition of a set, not

taking into account the complexity of this subtle notion, different set theories, powerful

axioms, and so on.

Sets are easy to work with when writing informal proofs. We do not care about how our

elements or sets are represented, we only care about their properties. This does not hold

for formal proofs though. In a formal proof, we need to specify exactly what happens

when you take the union of two sets, or how you determine whether or nor a set contains

an element.

One of the most important data structures in functional computer programming is the

list. Unlike a set, a list can contain more than one of the same element, and the elements

are arranged in a specific order. The inductive definition of the type of polymorphic lists

from Coq’s standard library is as follows [22]:

Inductive list (A : Type) : list A :=

| nil : list A

| cons : A → list A → list A.

Listing 3.2: Inductive definition of the list type in Coq

Using the cons constructor, we can easily define any list containing any elements of the

same type; we can even have lists of lists. The problem is of course that lists are not sets.

We want to find a way to take into account the two important properties of no duplicates

and no order into our definition of lists. In Coq, there are several ways to do this.

3.2.1 List & ListSet

As stated previously, Coq gives us a traditional definition of a list in the List module 1 of

the standard library [24]. Due to the nature of its definition, it is very easy to construct

1The definition of list is actually located in the module Init.Datatypes, while everything else
relating to lists is in the List module.

14

proofs using induction or case distinction on lists; we only need to check two cases. This

list implementation is type polymorphic, meaning any type can be used to construct a

list of that type. We do not need to give Coq any more information about the properties

of the underlying type of the list other than the type itself.

The List module also gives us a tool to combat the possibility of duplicates in a list,

with NoDup and nodup. NoDup is an inductively defined proposition that is true when a

list has no duplicates. nodup is a function that takes in a list and returns a list with

the same elements, but without duplicates. In other words, a list for which NoDup holds.

These two can be used to better represent finite sets as lists, since we gain additional

information about whether the list has duplicates or not. Coq does inherently not,

however, understand how to compare elements when checking a list for duplicates in

nodup. Hence we have to provide a proof that the equality of the underlying type of the

list is decidable. An example of such a proof for the string type would be:

Lemma string_eq_dec :

forall x y : string, {x = y} + {x <> y}.
Proof.

(* ... *)

Qed.

Listing 3.3: Decidability proof for string equality in Coq

We will omit showing the Ltac terms (i.e. the actual proof) for proofs that are longer

than a few lines in the rest of this thesis, which we will usually denote by (* ... *).

Proofs as in Listing 3.3 are often given for the standard types in Coq such as nat, bool

and string. As such, they can just be passed as arguments. This convention of always

passing the proof as an argument can be cumbersome and make the code hard to read,

but it is a necessary evil to get the properties we want.

Having only the implementation of the set structure is rarely enough; we also want to

do operations on the set, and reason about these. That is where the ListSet module

comes in, which defines a new type called set [25]. This type is just an alias for the list

type from the List module, but the module also contains some useful functions. Most

of these functions treat the input as a set in the traditional sense, meaning that they

try to preserve the properties of no duplicates and no order. Examples of some of these

functions are set_add, set_mem, set_diff, and set_union. We also get useful lemmas

that prove common properties about these functions. As with nodup, these functions all

15

require a proof of decidability of equality for the underlying type of the set. One thing

to note is that all these functions use bool instead of Prop, and all require a decidability

proof, which make the functions themselves decidable.

The module also gives us some lemmas to transform the boolean (type bool) set-operation

functions into propositions (type Prop), and vice versa. An example to illustrate this is

the following lemma on set_mem:

Lemma set_mem_correct1 {A : Type} (dec : forall x y : A, {x = y} + {x <> y}) :
forall (x : A) (l : set A), set_mem dec x l = true → set_In x l.

Proof.

(* ... *)

Qed.

Listing 3.4: set_mem lemma in ListSet module

set_In is just an alias for In from the List module, which is a proposition that is very

common in many lemmas from the standard library. Lemmas such as the example above

are very useful when reasoning about boolean functions such as set_mem in proofs, as

transforming them into propositions makes them easier to work with and often enables

us to use existing lemmas from the standard library.

Many of these boolean set functions, such as set_union, take in two sets as arguments

and pattern match on the structure of one of them. For example, set_union pattern

matches on the second set given as an argument. This makes proofs where we destruct

or use induction on the second argument easy, such as this example:

Lemma set_union_l_nil {A : Type} (dec : forall x y : A, {x = y} + {x <> y}) :
forall l : set A, set_union dec l [] = l.

Proof.

destruct l; reflexivity.

Qed.

Listing 3.5: Easy proof of lemma in ListSet module

The downside is that even easy and seemingly trivial proofs that reason about the other

argument are frustratingly hard (or impossible) to prove, for example:

16

Lemma set_union_nil_l {A : Type} (dec : forall x y : A, {x = y} + {x <> y}) :
forall l : set A, set_union dec [] l = l.

Abort.

Listing 3.6: Wrong lemma in ListSet module

What makes this proof impossible is that the order of elements in set_union dec [] l is

not the same as in l (due to how set_union is implemented), and since equality on lists

care about order, we cannot prove this lemma. However, there are ways to circumvent

this problem. Since we often reason about if an element is in a list, or if the list has a

certain length, we do not care about the order of the elements. We could for example use

incl, which is list inclusion, instead of equality. incl l1 l2 means that all elements in l1

are also in l2. We can alter the lemma in Listing 3.6 to use incl instead of equality:

Lemma incl_set_union_l_nil {A : Type} (dec : forall x y : A, {x = y} + {x <> y}) :
forall l, incl l (set_union dec l []) ∧ incl (set_union dec [] l) l.

Proof.

(* ... *)

Qed.

Listing 3.7: Tedious, but correct lemma in ListSet module using incl

Another example of a similar workaround is this definition of a strict subset relation on

lists:

Definition strict_subset {A : Type} (s1 s2 : set A) :=

incl s1 s2 ∧ ∼(incl s2 s1).

Listing 3.8: Strict subset relation on lists using incl

Instead of defining a strict subset as a list that is a subset of another list and where the

lists are not equal, we instead define it as a list that includes every element of another

list and where some element of the other list is not in the first list. If we use these kinds

of ”tricks” and construct our proofs carefully, ListSet is a viable implementation for our

purposes. There might however be cases where the order of the elements in the lists

come into play (e.g. such as in Listing 3.6), and that is where this implementation falls

short. Another thing to note is because of the polymorphic nature of the set type, any

additional lemmas proven about a set can be used for any decidable type. This is useful if

one needs sets with elements of different types, which is the case in our implementation;

we need sets of atoms, clauses, strings, etc.

17

3.2.2 MSetWeakList

The Coq standard library also gives us another implementation of sets, MSetWeakList [26].

This implementation is a bit more complicated than the previous one, but gives us more

guarantees about the properties of the set. The module is expressed as a functor, which

in this case is a ”function” that takes in a module as an argument, and again returns a

module. The module we give to the functor must satisfy some basic properties about the

type we want to create a set of, namely an equality relation, decidability of this relation

and the fact that this relation is an equivalence relation. The ”output” from the functor

is a new module containing functions and lemmas about set operations, with our input

type being the type of the elements of the set. An example definition for a module of a

set of atoms would be as follows:

Module AtomEq : DecidableType.

(* what is our base type? *)

Definition t := Atom.

Definition eq := (* ... *)

Lemma eq_equiv :

Equivalence eq.

Proof.

(* proof that eq is an equivalence relation *)

Qed.

Lemma eq_dec :

forall x y : t, {eq x y} + {∼ eq x y}.
Proof.

(* proof that eq is decidable *)

Qed.

End AtomEq.

(* apply functor Make to module AtomEq *)

Module AtomSet := Make AtomEq.

Listing 3.9: Set of atoms in MSetWeakList module

18

The proofs of both lemmas above are trivial, but require a substantial amount of boiler-

plate code. For every type we want to use as an element in a set, we have to go through

this entire process. In List and ListSet, we just had to pass in the proof of the decidabil-

ity of equality of the type as an argument to the set functions and lemmas. The structure

of the sets in MSetWeakList is also a lot more complicated than the simple and intuitive

definitions given in List. This makes it harder to reason about the sets in proofs, given

limited knowledge of Coq.

3.2.3 Ensembles

Yet another implementation of sets is given by the Ensembles module which defines the

structure of a set as inductive propositions [23]. These inductive propositions assert

some fact about if an element is in the set or not. An example that illustrates this is the

definition of Union:

Inductive Union (B C:Ensemble) : Ensemble :=

| Union_introl : forall x:U, In B x → In (Union B C) x

| Union_intror : forall x:U, In C x → In (Union B C) x.

Listing 3.10: Union in Ensembles module

We see that the first constructor of Union asserts that if an element is in B, then it is in

the union of B and C. Ensembles uses Prop instead of bool, making Ensembles useful for

proofs where we do not care about decidability, and when the sets can be infinite. The

biggest downside to this implementation is that we cannot reason about the size of the

set. We can only determine if an element is in the set, not how big the set is. In our case,

this makes the Ensembles module useless, since the theorem we are formalizing requires

us to reason about the size of the set.

3.3 Choice of implementation of sets

The simplest set (or set-like) implementation in Coq are the List and ListSet modules.

These require minimal knowledge of advanced Coq syntax and behave like lists, making

proofs by induction easy. They are also polymorphic, meaning ease of use when making

sets of different or self-defined types. Because of these reasons, we chose to go with List

and ListSet.

19

Chapter 4

Implementation of Case-Specific

Notions

We will now explain how we have formalized the concepts discussed in Chapter 2 using

Coq. We will only go over the most important parts of the formalization. As mentioned

previously in the abstract, the full Coq code can be found in the GitHub repository at

[1].

4.1 Data types

As discussed in Chapter 2, we want to represent clauses as a set of atoms as premises

and a single atom as a conclusion. We implement this in Coq using two types, Atom and

Clause.

Inductive Atom : Type :=

| atom : string → nat → Atom.

Notation "x & k" := (atom x k) (at level 80).

Inductive Clause : Type :=

| clause : set Atom → Atom → Clause.

Notation "ps ∼> c" := (clause ps c) (at level 81).

Listing 4.1: Atom and Clause in Coq

20

Note also the Notation-syntax, which allow us to define a custom notation, making the

code easier to read. The expression on the left-hand side of the := in quotation marks

is definitionally equal to the expression on the right-hand side in parentheses. The level

determines which notation should take precedence, with a higher level equaling a higher

precedence.

We also want to represent functions of the form f : V → N∞, which as we saw in

Section 2.2 are functions that are models of a set of clauses. We implement this in Coq

using two types, Ninfty and Frontier. Ninfty has two constructors; infty represents∞,

and fin n represents a natural number n. Frontier is a function from strings (variables)

to Ninfty. In the context of our formalization, we will refer to a function of this type as

a frontier.

Inductive Ninfty : Type :=

| infty : Ninfty

| fin : nat → Ninfty.

Definition Frontier := string → Ninfty.

Listing 4.2: Ninfty and Frontier in Coq

Using these definitions of Atom, Clause and Frontier, we can define functions that check

whether any given atom or clause is satisfied a given frontier.

21

Definition atom_true (a : Atom) (f : Frontier) : bool :=

match a with

| (x & k) ⇒
match f x with

| infty ⇒ true

(* see explanation for ≤ ? below *)

| fin n ⇒ k ≤ ? n

end

end.

Definition clause_true (c : Clause) (f : Frontier) : bool :=

match c with

| (conds ∼> conc) ⇒
(* every atom in conds is true *)

if fold_right andb true (map (fun a ⇒ atom_true a f) conds)

then (atom_true conc f)

else true

end.

Listing 4.3: atom_true and clause_true in Coq

The infix function ≤ ? is the boolean (and hence decidable) version of the Coq function

≤ , which uses Prop and is not inherently decidable without additional lemmas.

We can also define functions that ”shift” the number value of atoms or whole clauses by

some amount n : nat.

Definition shift_atom (n : nat) (a : Atom) : Atom :=

match a with

| (x & k) ⇒ (x & (n + k))

end.

Definition shift_clause (n : nat) (c : Clause) : Clause :=

match c with

| conds ∼> conc ⇒
(map (shift_atom n) conds) ∼> (shift_atom n conc)

end.

Listing 4.4: shift_atom and shift_clause in Coq

22

Using these definitions, we can now define an important property that is possible by

Lemma 3.1 [2, p. 3], since this lemma enables us to check whether or not a clause is

satisfied by a frontier for any shift of k : nat. We will use this property later to determine

if a frontier is a valid model for a set of clauses.

Definition all_shifts_true (c : Clause) (f : Frontier) : bool :=

match c with

| (conds ∼> conc) ⇒
match conc with

| (x & k) ⇒
match f x with

| infty ⇒ true

| fin n ⇒ clause_true (shift_clause (n + 1 − k) c) f

end

end

end.

Listing 4.5: all_shifts_true in Coq

The idea is to shift the clause up by the smallest shift that makes the conclusion false

and then to check that this shifted clause is still true (because one of the atoms in the

condition also has become false).

4.2 Semantic functions and predicates

4.2.1 The function sub_model

Given any set of clauses and a frontier (function assigning values to the variables), we

can determine if the frontier is a model of the set of clauses, i.e. whether all shifts of all

clauses are satisfied by the frontier.

We translate this property to Coq as the recursive function sub_model. As we saw in Sec-

tion 2.2, we distinguish between three different sets of clauses when talking about fron-

tiers as models; SC , SC | W and SC ↓ W . These are represented by sub_model Cs V V f,

sub_model Cs W W f and sub_model Cs V W f, respectively, where V is the set of all variables.

23

We have two additional arguments V and W: V is the the set of variables (strings) from

the set of clauses Cs, and W is a subset of V such that for each variable there is a clause

in Cs that can be used to generate a new atom. The function vars_set_atom used below

simply returns all the variables used in a set of atoms, as a set of strings.

Fixpoint sub_model (Cs : set Clause) (V W : set string) (f : Frontier) : bool :=

match Cs with

| [] ⇒ true

| (l ∼> (x & k)) :: t ⇒
(* conclusion not in W *)

(negb (set_mem string_dec x W) ||
(* some premise not in V *)

negb (

fold_right andb true

(map (fun x ⇒ set_mem string_dec x V) (vars_set_atom l))

) ||
all_shifts_true (l ∼> (x & k)) f

) && sub_model t V W f

end.

Listing 4.6: The function sub_model in Coq

4.2.2 The functions sub_vars_improvable and sub_forward

The three conditions of the disjunction in Listing 4.6 are what determines if a clause is

satisfied by a frontier. If these conditions are not met, we want to repeatedly increment

the value of the variable, and check again if the clause is satisfied. We start by first

determining such ”improvable” variables with the function sub_vars_improvable:

24

Fixpoint sub_vars_improvable (Cs : set Clause) (V W : set string) (f : Frontier)

: set string :=

match Cs with

| [] ⇒ []

| (l ∼> (x & k)) :: t ⇒
if negb (set_mem string_dec x W) ||

negb (

fold_right andb true

(map (fun x ⇒ set_mem string_dec x V) (vars_set_atom l))

) ||
all_shifts_true (l ∼> (x & k)) f

then sub_vars_improvable t V W f

else set_add string_dec x (sub_vars_improvable t V W f)

end.

Listing 4.7: The function sub_vars_improvable in Coq

We then define a new function sub_forward that takes these improvable variables and a

frontier f, and defines a new frontier f’ that increments the value that f assigns to each

variable. The return type of sub_forward is a pair of a set of strings and a frontier, where

the set of strings is the set of improvable variables.

Definition sub_forward (Cs : set Clause) (V W : set string) (f : Frontier)

: set string ∗ Frontier :=

let X := sub_vars_improvable Cs V W f in

(* Sinfty increases a Fin value by 1, and leaves Infty unchanged *)

let f’ := fun v ⇒ if set_mem string_dec v X then Sinfty (f v) else f v

in (X, f’).

Listing 4.8: The function sub_forward in Coq

4.2.3 The function geq

We want to determine whether all the values assigned to a set of variables from one

frontier are greater than or equal to all the values assigned to a set of variables from

another frontier. The values are of the type Ninfty, and the function only returns true if

all the values from the first frontier are greater than the values from the second frontier.

25

Fixpoint geq (V : set string) (g f : Frontier) : bool :=

match V with

| [] ⇒ true

| h :: t ⇒
match g h with

| infty ⇒ geq t g f

| fin n ⇒
match f h with

| infty ⇒ false

| fin k ⇒ (k ≤ ? n) && geq t g f

end

end

end.

Listing 4.9: Point-wise comparing frontiers with geq in Coq

4.2.4 The predicate ex_lfp_geq with Prop and Set

We can now combine sub_model and geq to construct a predicate stating that there exists

a frontier g that is a model of the set of clauses Cs and is greater than or equal to another

frontier f.

Definition ex_lfp_geq_P (Cs : set Clause) (V W : set string) (f : Frontier) : Prop :=

exists g : Frontier, geq V g f = true ∧ sub_model Cs V W g = true.

Definition ex_lfp_geq_S (Cs : set Clause) (V W : set string) (f : Frontier) : Set :=

sig (fun g : Frontier ⇒ prod (geq V g f = true) (sub_model Cs V W g = true)).

Listing 4.10: ex_lfp_geq in Coq, using both Prop and Set

One thing to note here is that we can define this predicate either with Prop or with Set.

When defined with Prop, we define it as a logical predicate, using standard first-order logic

syntax. When defined with Set, we define it as a type, using the sig type constructor in

place of exists. sig denotes the Σ-type, which we explained in Section 1.2.2.

The reason for defining ex_lfp_geq with Set, is that we then can use Coq’s extraction

feature to generate Haskell code from the Coq definitions. As briefly mentioned in Sec-

tion 1.2.1, a proof can often be used to compute something. In this case, we want to

26

compute the actual frontier g that satisfies the above predicate. Coq distinguishes be-

tween logical objects (objects in Prop) and informative objects (objects in Set) [13, p. 1-2].

When extracting, Coq will remove as many logical objects as possible, meaning a propo-

sition defined in Prop would simply be collapsed to ”()” (the unit type) when extracted to

Haskell [14, p. 8]. Logical objects are only used to ensure correctness when constructing a

proof in Coq, and are not needed when actually computing something using the extracted

code. Informative objects, on the other hand, are kept when extracting, and can be used

to compute something. This is why we define ex_lfp_geq with Set.

An important thing we also need to keep in mind is to avoid universe inconsistencies.

These can occur by unwise use of Type. We will not elaborate much on what type universes

are, but we will give a brief explanation of how they work in Coq. In Coq, all objects

of type Prop also live in the universe Set, and all objects of type Set also live in the

universe Type. Moreover, Prop : Set and Set : Type. The cumulative universe hierarchy

extends infinitely past Type, but we will not need to go further than that. When defining

a type, we can only refer to objects in universes lower than the universe of the type we

are defining. Here is an example to illustrate this:

(* type signature of sig *)

sig : forall A : Type, (A → Prop) → Type

(* Set ≤ Set, OK *)

Definition valid_def (A : Set) : Set :=

sig (fun x : A ⇒ x = x).

(* Set > Prop, universe inconsistency! *)

Fail Definition invalid_def (A : Set) : Prop :=

sig (fun x : A ⇒ x = x).

Listing 4.11: A universe inconsistency in Coq

4.3 The main proofs

We have now laid the groundwork for the formalization of Theorem 3.2. We precede

the definition of Theorem 3.2 with two additional definitions, which helps us simplify its

definition and the proof of the theorem itself.

27

4.3.1 The predicate pre_thm

Since our formal definitions of Lemma 3.3, which will be expanded on shortly, and The-

orem 3.2 share some structure, we define (with Set) a predicate pre_thm:

Definition pre_thm (n m : nat) (Cs : set Clause) (V W : set string) (f : Frontier)

: Set :=

incl W V →
Datatypes.length (nodup string_dec V) ≤ n →
Datatypes.length

(set_diff string_dec

(nodup string_dec V)

(nodup string_dec W)

) ≤ m ≤ n →
ex_lfp_geq Cs (nodup string_dec W) (nodup string_dec W) f →
ex_lfp_geq Cs (nodup string_dec V) (nodup string_dec V) f.

Listing 4.12: pre_thm in Coq

4.3.2 Lemma 3.3

Lemma 3.3 is used in the proof of Theorem 3.2 to solve a special case, as we saw in

Section 2.2. We also need this lemma to be able to prove Theorem 3.2 in Coq. As

explained in Section 3.1.2, we will only give a formal definition of the lemma in Coq, but

leave out the actual proof. By using the Coq command Admitted, we can leave out a

full proof of a lemma, but still be able to use the lemma in other Coq proofs. We define

Lemma 3.3 in Coq using pre_thm, as follows:

28

Lemma lem_33 :

forall Cs : set Clause,

forall V W : set string,

forall f : Frontier,

(forall Cs’ : set Clause,

forall V’ W’ : set string,

forall f’ : Frontier,

forall m : nat,

pre_thm (Datatypes.length (nodup string_dec V) − 1) m Cs’ V’ W’ f’

) →
incl W V →
ex_lfp_geq Cs (nodup string_dec W) (nodup string_dec W) f →
ex_lfp_geq Cs (nodup string_dec V) (nodup string_dec W) f.

Admitted.

Listing 4.13: Lemma 3.3 in Coq

One thing to note is that when applying Lemma 3.3 in the formal proof of Theorem

3.2, the first assumption of the lemma is solved immediately by applying the primary

induction hypothesis (the induction on n, also called IHn in Coq).

4.3.3 Theorem 3.2

We can now formulate Theorem 3.2 using pre_thm:

Theorem thm_32 :

forall n m : nat,

forall Cs : set Clause,

forall V W : set string,

forall f : Frontier,

pre_thm n m Cs V W f.

Proof.

(* ... *)

Qed.

Listing 4.14: Theorem 3.2 in Coq

The proof of Theorem 3.2 is by primary induction on n and secondary induction on m.

29

Base case of n

The first base case is simple. We directly prove the conclusion of pre_thm:

(1) ex_lfp_geq Cs (nodup string_dec V) (nodup string_dec V) f.

Since n = 0, we get that the length of V is 0, and hence we get a new goal ex_lfp_geq Cs [] [] f.

This is proven by the lemma ex_lfp_geq_empty, which states that forall Cs f, ex_lfp_geq Cs [] [] f.

Inductive case of n

We start the inductive case of n by doing a new induction on m.

Base case of m

The base case of m is similar to the base case of n. We again want to prove

ex_lfp_geq Cs (nodup string_dec V) (nodup string_dec V) f.

But now we have as assumption this same statement with W, and incl V W since m = 0.

We now apply the lemma ex_lfp_geq_incl, which states that

forall Cs V W f, incl V W → forall f, ex_lfp_geq Cs W W f → ex_lfp_geq Cs V V f.

We give this lemma the arguments of Cs, nodup string_dec V and nodup string_dec W.

This generates two new goals:

(1) incl (nodup string_dec V) (nodup string_dec W)

(2) ex_lfp_geq Cs (nodup string_dec W) (nodup string_dec W) f

The goal (1) is proven by using a hypothesis that states that

Datatypes.length (set_diff string_dec (nodup string_dec V) (nodup string_dec W)) ≤ m ≤ n.

Since m = 0, this means that the set difference of V and W is empty. We can now apply

the lemma set_diff_nil_incl on this hypothesis, which states that

forall dec V W, set_diff dec V W = [] ↔ incl V W.

This gives us a hypothesis identical to our goal (1), and therefore proves it.

The goal (2) is proven by an existing hypothesis.

30

Inductive case of m

The inductive case of m is by far the largest part of the proof (see lines 17-199 of List-

ing A.1). As it is very complex and does not follow the informal proof in [2] too closely, we

will go through a more ”high-level” explanation of the reasoning we followed when con-

structing the formalized proof. We will sometimes use mathematical notation to explain

the proof instead of Coq code, for the sake of being terse and clear.

Assume W ⊆ V , |V | ≤ n + 1, |V − W | ≤ m + 1 ≤ n + 1. If |V − W | ≤ m then

we can apply the secondary induction hypothesis, and we are done. Hence, we can

assume |V −W | = m + 1, implying |W | ≤ n. To prove ex_lfp_geq Cs V V f, we assert

(W, g) = sub_forward Cs V V f. This gives us three cases to consider:

1. W = ∅, and we are done.

2. W = V , meaning all variables in V map to ∞, and we are done.

3. ∅ ⊂ W ⊂ V . Then |W | ≤ n and |V − W | ≤ m. So by the primary induction

hypothesis, we get ex_lfp_geq Cs W W f (line 31 of Listing A.1). Then by the second

induction hypothesis and the application of Lemma 3.3 (line 40 of Listing A.1), we

get ex_lfp_geq Cs V V f, and we are done.

A complete formal proof of Theorem 3.2 can be found in Listing A.1.

4.4 Extraction to Haskell

Using Coq’s code extraction feature, we can extract Haskell code from our Coq definitions.

Extraction Language Haskell.

Extract Constant map ⇒ "Prelude.map".

Extract Constant fold_right ⇒ "Prelude.foldr".

Extraction "/home/user/path/to/code/ex.hs"

thm_32

lem_33.

Listing 4.15: Extraction of Coq definitions to Haskell

31

Coq will automatically determine definitions which depend on one another when doing

extraction. In the example above, we would not have needed to specify lem_33 to be

extracted, since thm_32 already depends on it.

By default, Coq will give its own implementation of any functions used, instead of using

Haskell’s native implementations. If we want, we can specify what native Haskell func-

tions should be used when extracting a Coq function. In the example code above, we

specify that when extracting, Haskell’s Prelude.map and Prelude.foldr should be used for

the Coq functions map and fold_right.

In the next chapter we will go more into detail about the results of the extraction, and

the results of the Haskell code ran on some example input.

32

Chapter 5

Examples & Results

5.1 Examples using the extracted Haskell code

5.1.1 Defining examples for extraction in Coq

It is easiest to define as much of the example as possible in Coq and then extract it to

Haskell, since Coq heavily prioritizes code correctness over readability when extracting.

This makes much of the Haskell code hard to read due to unconventional syntax, e.g.

using a recursion operator instead of calling a function recursively. First, we can look at

the type of thm_32 in Coq to see what arguments we need to provide it with. We do this

by using the Coq command Check.

thm_32

: forall (n m : nat) (Cs : set Clause) (V W : set string) (f : Frontier),

pre_thm n m Cs V W f

Listing 5.1: Type signature of thm_32 in Coq

We see that the type of thm_32 is a proof of pre_thm, with the quantified variables

n, m, Cs, V, W, f. We can now look at the type signature of pre_thm.

pre_thm

: nat →
nat → set Clause → set string → set string → Frontier → Set

Listing 5.2: Type signature of pre_thm in Coq

33

We see that pre_thm returns an object in Set. This object is the proposition 1 defined

in Listing 4.12, where all the variables are the arguments given to pre_thm, i.e. the

variables quantified in thm_32. This proposition states some logical assumptions, and

concludes with a definition of ex_lfp_geq. By the notion of propositions as types, this

proposition is a function that transforms a proof of the assumptions into a proof of

the conclusion. Since the conclusion is a definition of ex_lfp_geq instantiated with some

variables, we get a proof of ex_lfp_geq for these same variables. Looking at the definition

of ex_lfp_geq, it defines a proposition stating that there exists a g : Frontier such that

the proposition holds. If such a g exists, then the g itself is evidence (proof) that the

proposition holds. Hence, a proof of ex_lfp_geq is simply a Frontier that satisfies the

conditions in ex_lfp_geq.

With all this information, we can now define an example of thm_32 in Coq.

(* represents the clauses: a → b + 1, b + 1 → c + 2 *)

Example Cs := [

["a" & 0] ∼> "b" & 1;

["b" & 1] ∼> "c" & 2

].

(* all-zero frontier *)

Example thesis_ex_1_f := frontier_fin_0.

(* extract only variables from clauses *)

Example vars’ := nodup string_dec (vars Cs).

(* (partially) apply arguments to thm_32 *)

Example thesis_ex_1 :=

thm_32

(Datatypes.length vars’)

(Datatypes.length vars’)

Cs

vars’

[]

thesis_ex_1_f.

Listing 5.3: thm_32 example

1When we use the term ”proposition”, we refer to the colloquial usage of a true or false statement,
not necessarily the Coq notion of a proposition, i.e. an object in Prop. We will therefore sometimes
refer to an object in Set as a proposition, since it is still a proposition in the colloquial sense.

34

Since Coq eliminates many of the logical parts of the proof when extracting, [14, p.

8], we can avoid the tedious task of proving all the assumptions of pre_thm by simply

using the extracted Haskell function for thesis_ex_1. The final assumption of pre_thm,

namely ex_lfp_geq Cs (nodup string_dec W) (nodup string_dec W) f, will however not be

removed by Coq, since it is an object in Set. This assumption is trivially true for any

f, since W is an empty list in our example. Since Coq simplifies the type of ex_lfp_geq

to Frontier, we can just include the same frontier f as in thesis_ex_1 to the extracted

Haskell version of thesis_ex_1, as a replacement for a proof of the above trivially true

assumption. We then receive a Frontier as output, which is the result of the theorem;

the frontier that is a model of a set of clauses Cs. This frontier can then be applied to

any string representing a variable to get the value of that variable in the model, which

should be either a natural number or infinity.

5.1.2 Necessary alterations to the extracted Haskell code

Since we have not given a proof of Lemma 3.3, Coq will include a ”placeholder” definition

of the lemma in the extracted code. This definition will simply call the error function,

which will crash the program when called. We circumvent this by replacing the extracted

definition of lem_33 with the identity function for any frontier. We will look at some

examples where this workaround is not sufficient in Section 5.3.

If we want to actually read the output from the extracted functions, we also need to

derive a Show instance for Ninfty. What this means is that we need to define a function

show :: Ninfty → String, which will be used by Haskell to convert a Ninfty to a String.

This can be done by simply adding the line deriving Prelude.Show to the definition of

Ninfty, which will make Haskell just print the constructors of Ninfty, which will be either

Fin n for some natural number n, or Infty for infinity.

5.1.3 Example output

We can now run the example from Listing 5.3 using GHCi, which is an interactive Haskell

interpreter that is included with GHC, the standard Haskell compiler.

35

ghci> (thesis_ex_1 thesis_ex_1_f) "a"

Fin 0

ghci> (thesis_ex_1 thesis_ex_1_f) "b"

Fin 1

ghci> (thesis_ex_1 thesis_ex_1_f) "c"

Fin 2

ghci> (thesis_ex_1 thesis_ex_1_f) "x"

Fin 0

Listing 5.4: thm_32 example output

The expression (thesis_ex_1 thesis_ex_1_f) produces a function that is the minimal

model of Cs. When given a string value (variable) from the set of clauses, the function

will compute the value of that variable. When given any other variable, the function will

return the value that the original frontier given as input would return for that variable,

which is always Fin 0 in this case (since in our example the frontier is frontier_fin_0,

which is a constant function that always returns Fin 0).

5.1.4 Example of loop-checking

In the previous example, the algorithm found a minimal model for the set of clauses Cs.

We can also use the algorithm to check for loops in a set of clauses. As mentioned in

Section 2.1, a loop is a term t such that t ≥ t+ can be provable from the set of constraints.

We give the simplest example, which is just the above definition of a loop translated to

our Coq notation:

36

Example Cs := [

["a" & 0] ∼> "a" & 1

].

Example thesis_ex_2_f := frontier_fin_0.

Example vars’ := nodup string_dec (vars Cs).

Example thesis_ex_2 :=

thm_32

(Datatypes.length vars’)

(Datatypes.length vars’)

Cs

vars’

[]

thesis_ex_2_f.

Listing 5.5: Loop-checking example

ghci> (thesis_ex_2 thesis_ex_2_f) "a"

Infty

ghci> (thesis_ex_2 thesis_ex_2_f) "x"

Fin 0

Listing 5.6: Loop-checking example output

For a model defined by a frontier f, any variable that maps to Infty part of a loop. For

any other variable we get the usual result of Fin 0, since the given frontier is constant.

5.2 Real world example

As stated previously, the algorithm described Theorem 3.2 is being tested for use in

checking loops and determining type universe levels in the type system of Coq. We

briefly explained type universes in the case of Coq in Section 4.2.4. The error that

occurred in the example of a universe inconsistency in Listing 4.11 was detected by Coq’s

own universe-constraint checking algorithm; we can also use our algorithm to detect these

universe inconsistencies.

37

Using the Coq command Print Universes we can see the current state of the universe

hierarchy for any Coq file. Doing this at the bottom of our file Main.v (which is where

the main proofs are located), after the formal proof of Theorem 3.2, we get the following

output:

DefaultRelation.u0 ≤ Coq.Relations.Relation_Definitions.1 ;

default_relation.u0 ≤ DefaultRelation.u0 ;

...

Coq.Structures.Equalities.1 ≤ Morphisms.proper_sym_impl_iff_2.u1 ;

Listing 5.7: Universe hierarchy in Main.v

This output has over 5000 lines, so we have truncated it to only show the first and last

few lines. We can translate these constraints into a set of clauses Cs as such:

Definition Cs := [

["Coq.Relations.Relation_Definitions.1" & 0]

∼> "DefaultRelation.u0" & 0;

["DefaultRelation.u0" & 0]

∼> "default_relation.u0" & 0;

...

["Morphisms.proper_sym_impl_iff_2.u1" & 0]

∼> "Coq.Structures.Equalities.1" & 0

].

Listing 5.8: Universe hierarchy as clauses

Not shown above are constraints of the form x < y and x = y, which are translated like

this:

38

(* x < y *)

Example Cs1 := [

["y" & 0] ∼> "x" & 1;

];

(* x = y *)

Example Cs2 := [

["y" & 0] ∼> "x" & 0;

["x" & 0] ∼> "y" & 0;

];

Listing 5.9: Other forms of constraints translated to clauses

We can then run our algorithm on these clauses to get a minimal model of Cs. This

minimal model is a function that assigns to each type universe a natural number, which

corresponds to its universe level. It is minimal in the sense that no other mapping from

type universes to universe levels that satisfies the constraints in Cs has a lower universe

level for any given type universe. If the algorithm had detected a loop, it would constitute

a universe inconsistency. Even though we have not given a formal proof of Lemma 3.3, this

”real world” example still gives a correct minimal model for the type universe constraints

from Coq.

5.2.1 Loose comparison to Coq’s universe consistency checker

To give the reader an idea of how our extracted algorithm compares to some of the work

done by the Coq compiler on a similar problem, we can loosely compare the run time

of our algorithm to the run time of a full Coq compilation of our Coq project, which

includes all lemmas and theorems needed for Theorem 3.2, and the proof itself. It is

important to note that this is not a one-to-one comparison, since Coq does a lot more

when compiling than simply checking universe constraints. We give this comparison only

to give the reader an idea of the order of magnitude of the run time of our algorithm in

a real world setting.

We compile our Haskell algorithm using the Stack build tool, which is more efficient than

using an interpreter such as GHCi. Using the time command, we can check how long any

command takes. For our Haskell algorithm we run the command stack run, and for the

Coq example we run the command make −f CoqMakefile.

39

stack run 18.47s user 0.94s system 100% cpu 19.369 total

make −f CoqMakefile 3.25s user 0.76s system 99% cpu 4.045 total

Listing 5.10: Real-world example benchmark

As we can see, our algorithm takes around 18 seconds, while a full Coq compilation takes

around 3 seconds. Again, keep in mind that Coq does a lot more than just checking

universe constraints when compiling. But, as we can see from these results, our extracted

algorithm is not too slow to be used as a prototype.

5.3 Extension of Listing 5.3 that fails

There are some cases where the extracted Haskell code will crash. To show this, we can

extend the set of clauses from Listing 5.3 as such:

Example Cs := [

["a" & 0] ∼> "b" & 1;

["b" & 1] ∼> "c" & 2;

(* add new clause *)

["c" & 2] ∼> "d" & 3

].

Example thesis_ex_3_f := frontier_fin_0.

Example vars’ := nodup string_dec (vars Cs).

Example thesis_ex_3 :=

thm_32

(Datatypes.length vars’)

(Datatypes.length vars’)

Cs

vars’

[]

thesis_ex_3_f.

Listing 5.11: thm_32 example extended

If we try to run the extracted Haskell code for this example, we will always encounter a

runtime exception:

40

ghci> (thesis_ex_3 thesis_ex_3_f) "a"

∗∗∗ Exception: absurd case

CallStack (from HasCallStack):

error, called at ex.hs:13:3 in main:Ex

Listing 5.12: Output of thm_32 example extended

The exception ”absurd case” is what happens when a logical assumption in the proof

is not correct, which is the case here. To see why this happens, we can do some minor

alterations to the extracted Haskell code, and print out the values of some variables during

the execution of the algorithm. What we want to show is every primary and secondary

induction call (IHn and IHm respectively), and the values of the variables n, m, V and W at

the time of those calls. Doing so, we get the following output (truncated for brevity):

ghci> (thesis_ex_3 thesis_ex_3_f) "a"

IHn: n = 3, m = 4, V = ["a","b","c","d"], W = []

...

IHn: n = 0, m = 1, V = ["a","b","c","d"], W = []

IHm: n = 1, m = 0, V = [], W = []

IHm: n = 3, m = 0, V = ["b","c","d"], W = ["d"]

∗∗∗ Exception: absurd case

CallStack (from HasCallStack):

error, called at ex.hs:13:3 in main:Ex

Listing 5.13: Output of thm_32 example extended, with debug

The debug line we are most interested in is the last one, which is the last secondary

induction call before the exception. If we refer to lines 133-137 of Listing A.1, we see

that the proof asserts (and proves) the following claim:

Datatypes.length

(set_diff string_dec V (set_union string_dec (nodup string_dec W) U)) <

Datatypes.length

(set_diff string_dec V (nodup string_dec W)) ≤ S m.

Listing 5.14: False claim in thm_32 proof

41

This claim is false, as we can see by looking at the values of V, W and m at the time of the

last induction call. We replace the variables in the claim with their values, and reduce

(parts of) the claim to the following:

Datatypes.length (set_diff string_dec V (nodup string_dec W)) ≤ S m

⇒ Datatypes.length (set_diff string_dec ["b","c","d"] ["d"]) ≤ S 0.

⇒ Datatypes.length ["c","b"] ≤ S 0.

⇒ 2 ≤ 1.

The final claim is obviously not true, hence why the Haskell code crashes with ”absurd

case”. But why does this happen at all? Shouldn’t the Coq proof have failed at the point

where the claim was asserted? This error is due to the fact that we have not given a

formal proof of Lemma 3.3. Since we do not use Lemma 3.3 to calculate a new frontier

in the algorithm but instead just redefine Lemma 3.3 as the identity function, this has

consequences for later steps in the algorithm. This example in particular is ”constructed

to fail”; as we saw in the previous section, the algorithm does work for many cases even

without a formal proof of Lemma 3.3.

42

Chapter 6

Evaluation

6.1 Correctness of results from [2]

As we have shown in our formalization and by the results of the extraction, the results

from [2] that we have formalized, appear to be correct. As mentioned in Section 3.1,

we have not fully formalized nor verified the entirety of the informal proofs, and as such

we cannot be 100% sure that the informal proof of Theorem 3.2 (and related results)

is correct. However, we have verified the most important parts of Theorem 3.2 without

encountering any problems, and we can thus be very confident that the informal proofs

from [2] are correct.

6.2 Feasibility of formalization

The formalization of the proof of Theorem 3.2 from [2] took us about 12 months of work.

This includes the time spent on learning Coq and the time spent on the formalization

of the proof and related lemmas/definitions. We have shown that a formalization of the

proof of Theorem 3.2 is feasible, and that it is possible to complete such a formalization

in a reasonable amount of time. It is important to remember that we did not have any

prior knowledge of Coq or any other proof assistants, and that we had to learn Coq from

scratch. The project was also not a full-time effort, and other work and studies have

been done in parallel. Given more extensive knowledge of Coq (or another other proof

assistant), and possibly more effort or man-power devoted to the project, we believe that

a formalization of a proof of a similar complexity would be a feasible task.

43

6.3 Value of formalization & extracted algorithm

Type theory has started the transition from research to development in the software

industry, e.g. in the project CompCert [12], which aims to produce verified compilers

for mission-critical computer systems. A case in point of the impact of type theory on

software development is the project Deep Spec [4] that focuses on the specification and

verification of full functional correctness of software and hardware. The paper [8] in this

project uses Coq to certify high-level code for cryptographic arithmetic and yields the

fastest-known elliptic-curve library in C. This library is deployed on an industrial scale

for Chrome and Android.

All these examples show that formalization has provided great value for mission-critical

systems where correctness is of utmost importance. If we imagine our correct algorithm

as a starting point for further development and for eventual use in the Coq proof assistant

for checking universe constraints, one could argue about whether or not our case is as

mission-critical as these. However, any fault in Coq as a proof assistant would taint the

correctness of anything proven using it.

As seen in Section 5.2, the extracted algorithm is useful in practice, however, the efficiency

is not very good. There are also cases where the extracted algorithm crashes, as seen in

Section 5.3. However, it should not be a surprise that not every case is handled by the

algorithm, as we have not given a formal proof of Lemma 3.3. We can better think of

this algorithm as a prototype or proof-of-concept, rather than a practical algorithm.

44

Chapter 7

Related & Future Work

7.1 Related work: universe consistency checking in

Coq

There is an ongoing effort [18] to implement a version of the algorithm from [2] for use in

universe consistency checking in Coq. This version of the algorithm is graph-based, does

not include joins, and only support constraints (clauses) of the form x + k >= y with

k ∈ {0, 1}. The main focus is on speed, which explains the limited expressivity. There

are plans to extend the current implementation with more expressivity later on.

7.2 Future work

7.2.1 Completing proof of remaining logical lemmas

As mentioned in Section 3.1.1, we have not fully completed some of the intermediate

lemmas used directly in the proof of Theorem 3.2. We have done some work on making

sure these are purely logical steps, and that they should have no effect on the final result.

Solving these fully would however strengthen the argument for the correctness of the

formal, and hence informal, proof of Theorem 3.2.

45

7.2.2 Formal proof of Lemma 3.3

As mentioned in Section 3.1.2, we have not given a full formal proof of Lemma 3.3. As

we also saw in Section 5.3, constructing a formal proof of this lemma would fix some

cases where the extracted algorithm fails with an exception. Further work on a complete

formalization of Theorem 3.2 would certainly benefit from a formal proof of Lemma 3.3.

7.2.3 Proving minimality of model generated by Theorem 3.2

As mentioned in Section 3.1.3, our proof of Theorem 3.2 does not include a claim that

the model generated is minimal. As later explained in the same subsection, we would

only need to include one additional assumption in our proof of Theorem 3.2 to be able to

correctly claim that the model generated is minimal. We chose not to do this as it had no

effect on the results produced by the extracted algorithm, only the claim for correctness.

46

Chapter 8

Conclusion

We started this thesis by introducing relevant theoretical concepts, including propositions

as types and dependent types. We then used these concepts to explore the Coq proof

assistant, and compared it to other related tools.

The case presented in Chapter 2 provided an opportunity in using Coq to apply these

theoretical concepts in a more practical setting. Simplifications were made to fit the time

constraints of the project. Since reasoning about sets was a sizable part of the theorem

we formalized, a good implementation of sets was important. Various implementations

were considered, and we made a choice that best fit our needs. We then presented

the ”building blocks” of our formalization, in the form of various data types, functions,

predicates, lemmas and theorems.

The relevance of our project was demonstrated through the extraction of our Coq proofs

into a certified Haskell program. We gave an example of how the program could be run

to solve a simple case, but also discussed the limitations of the algorithm. We then gave

a more sizable ”real-world” example, which would determine if our extracted algorithm

could function as a prototype.

We then assessed how through our formalization effort, we gained more confidence in

the correctness of the original informal proofs posed in [2]. Furthermore, the extracted

algorithm was evaluated for its usefulness as a prototype, and we discussed what useful

value is provided with a formal proof and resulting extraction.

We then explained how our work could be extended in the future, namely by completing

the proofs of remaining logical lemmas, providing a formal proof of Lemma 3.3, and

proving the minimality of the model generated by Theorem 3.2.

47

In conclusion, we have in this thesis presented a detailed exploration into formalizing the

proofs from two problems in lattice theory, and extracting a certified program from their

verified formal proofs using Coq. We have investigated the utility of proof assistants and

dependent type theory in providing a structured approach to proofs and formalization,

which ultimately led to a practical application, in the form of a certified correct program

usable as a prototype.

48

Bibliography

[1] Andreas Salhus Bakseter. bakseter/thesis, 2023.

URL: https://github.com/bakseter/thesis. Accessed: 2023-06-01.

[2] Marc Bezem and Thierry Coquand. Loop-checking and the uniform word problem for

join-semilattices with an inflationary endomorphism. Theoretical Computer Science,

2022. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2022.01.017.

URL: https://www.sciencedirect.com/science/article/pii/S0304397522000317.

[3] Ana Bove, Peter Dybjer, and Ulf Norell. A Brief Overview of Agda – A Functional

Language with Dependent Types. In Stefan Berghofer, Tobias Nipkow, Christian

Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics,

pages 73–78, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN 978-3-642-

03359-9.

[4] The DeepSpec consortium. The Science of Deep Specification.

URL: https://deepspec.org/main. Accessed: 2023-05-26.

[5] Thierry Coquand. Type Theory. In Edward N. Zalta and Uri Nodelman, editors,

The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford Uni-

versity, Fall 2022 edition, 2022.

[6] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob

von Raumer. The Lean Theorem Prover (system description). In 25th International

Conference on Automated Deduction (CADE-25), Berlin, Germany, 2015.

URL: https://leanprover.github.io/papers/system.pdf.

[7] D. Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic for

Programming and Automated Reasoning (LPAR), Reunion Island, volume 1955 of

Lecture Notes in Computer Science, pages 85–95. Springer-Verlag, November 2000.

URL: https://www.lirmm.fr/%7Edelahaye/papers/ltac%20(LPAR%2700).pdf.

49

https://github.com/bakseter/thesis
https://www.sciencedirect.com/science/article/pii/S0304397522000317
https://deepspec.org/main
https://leanprover.github.io/papers/system.pdf
https://www.lirmm.fr/%7Edelahaye/papers/ltac%20(LPAR%2700).pdf

[8] Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala.

Simple High-Level Code For Cryptographic Arithmetic: With Proofs, Without

Compromises. ACM SIGOPS Operating Systems Review, 54:23–30, 08 2020. doi:

10.1145/3421473.3421477.

[9] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. The SSREFLECT proof lan-

guage.

URL: https://coq.inria.fr/refman/proof-engine/ssreflect-proof-language.html. Ac-

cessed: 2023-03-21.

[10] Thomas C. Hales. Formal Proof. Notices of the American Mathematical Society, 55

(11):1370–1380, 2008.

URL: https://www.ams.org/notices/200811/200811FullIssue.pdf.

[11] Roxanne Khamsi. Mathematical proofs are getting harder to verify, 2006.

URL: https://www.newscientist.com/article/dn8743-mathematical-proofs-getting-

harder-to-verify. Accessed: 2023-01-08.

[12] Xavier Leroy. CompCert - Main page, November 2022.

URL: https://compcert.org. Accessed: 2023-05-26.

[13] Pierre Letouzey. A New Extraction for Coq. In Herman Geuvers and Freek Wiedijk,

editors, Types for Proofs and Programs, Second International Workshop, TYPES

2002, Berg en Dal, The Netherlands, April 24-28, 2002, volume 2646 of Lecture

Notes in Computer Science. Springer-Verlag, 2003.

URL: https://hal.science/hal-00150914/document.

[14] Pierre Letouzey. Coq Extraction, an Overview. In A. Beckman, C. Dimitracopoulos,

and B. Löwe, editors, Logic and Theory of Algorithms, Fourth Conference on Com-

putability in Europe, CiE 2008, volume 5028 of Lecture Notes in Computer Science.

Springer-Verlag, 2008.

URL: https://www.irif.fr/~letouzey/download/letouzey extr cie08.pdf.

[15] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H.E.

Rose and J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies

in Logic and the Foundations of Mathematics, pages 73–118. Elsevier, 1975. doi:

https://doi.org/10.1016/S0049-237X(08)71945-1.

URL: https://www.sciencedirect.com/science/article/pii/S0049237X08719451.

[16] Per Martin-Löf. Constructive Mathematics and Computer Programming. In

L. Jonathan Cohen, Jerzy Loś, Helmut Pfeiffer, and Klaus-Peter Podewski, edi-

tors, Logic, Methodology and Philosophy of Science VI, volume 104 of Studies in

50

https://coq.inria.fr/refman/proof-engine/ssreflect-proof-language.html
https://www.ams.org/notices/200811/200811FullIssue.pdf
https://www.newscientist.com/article/dn8743-mathematical-proofs-getting-harder-to-verify
https://www.newscientist.com/article/dn8743-mathematical-proofs-getting-harder-to-verify
https://compcert.org
https://hal.science/hal-00150914/document
https://www.irif.fr/~letouzey/download/letouzey_extr_cie08.pdf
https://www.sciencedirect.com/science/article/pii/S0049237X08719451

Logic and the Foundations of Mathematics, pages 153–175. Elsevier, 1982. doi:

https://doi.org/10.1016/S0049-237X(09)70189-2.

URL: https://www.sciencedirect.com/science/article/pii/S0049237X09701892.

[17] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco

Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, and Brent Yorgey.

Logical Foundations, volume 1 of Software Foundations. Electronic textbook, 2022.

URL: https://softwarefoundations.cis.upenn.edu/lf-current/index.html. Version 6.2.

[18] Matthieu Sozeau. Universes loop checking with clauses.

URL: https://github.com/coq/coq/pull/16022. Accessed: 2023-05-01.

[19] The Coq Team. Calculus of Inductive Constructions, .

URL: https://coq.github.io/doc/v8.9/refman/language/cic.html#calculusofinductiveconstructions.

Accessed: 2023-05-01.

[20] The Coq Team. CoqIDE, .

URL: https://coq.inria.fr/refman/practical-tools/coqide.html. Accessed: 2023-03-

21.

[21] The Coq Team. A short introduction to Coq, .

URL: https://coq.inria.fr/a-short-introduction-to-coq. Accessed: 2023-01-18.

[22] The Coq Team. Library Coq.Init.Datatypes, .

URL: https://coq.inria.fr/library/Coq.Init.Datatypes.html. Accessed: 2023-05-11.

[23] The Coq Team. Library Coq.Sets.Ensembles, .

URL: https://coq.inria.fr/library/Coq.Sets.Ensembles.html. Accessed: 2023-05-11.

[24] The Coq Team. Library Coq.Lists.ListSet, .

URL: https://coq.inria.fr/library/Coq.Lists.ListSet.html. Accessed: 2023-05-11.

[25] The Coq Team. Library Coq.Lists.List, .

URL: https://coq.inria.fr/library/Coq.Lists.List.html. Accessed: 2023-05-11.

[26] The Coq Team. Library Coq.MSets.MSetWeakList, .

URL: https://coq.inria.fr/library/Coq.MSets.MSetWeakList.html. Accessed: 2023-05-

11.

[27] Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, nov 2015. ISSN

0001-0782. doi: 10.1145/2699407.

URL: https://doi.org/10.1145/2699407.

51

https://www.sciencedirect.com/science/article/pii/S0049237X09701892
https://softwarefoundations.cis.upenn.edu/lf-current/index.html
https://github.com/coq/coq/pull/16022
https://coq.github.io/doc/v8.9/refman/language/cic.html#calculusofinductiveconstructions
https://coq.inria.fr/refman/practical-tools/coqide.html
https://coq.inria.fr/a-short-introduction-to-coq
https://coq.inria.fr/library/Coq.Init.Datatypes.html
https://coq.inria.fr/library/Coq.Sets.Ensembles.html
https://coq.inria.fr/library/Coq.Lists.ListSet.html
https://coq.inria.fr/library/Coq.Lists.List.html
https://coq.inria.fr/library/Coq.MSets.MSetWeakList.html
https://doi.org/10.1145/2699407

Appendix A

Full proof of Theorem 3.2 in Coq

1 Theorem thm_32 :

2 forall n m : nat,

3 forall Cs : set Clause,

4 forall V W : set string,

5 forall f : Frontier,

6 pre_thm n m Cs V W f.

7 Proof.

8 unfold pre_thm. induction n as [|n IHn].

9 − intros. apply le_0_r in H0.

10 apply length_zero_iff_nil in H0.

11 rewrite H0. apply ex_lfp_geq_empty.

12 − induction m as [|m IHm]; intros.

13 + apply (ex_lfp_geq_incl Cs (nodup string_dec V) (nodup string_dec W));

14 try assumption. destruct H1. apply le_0_r in H1.

15 apply length_zero_iff_nil in H1.

16 apply set_diff_nil_incl in H1. assumption.

17 + inversion H1.

18 apply le_lt_eq_dec in H3. destruct H3.

19 ∗ apply (IHm Cs V W f); try assumption. lia.

20 ∗ apply (ex_lfp_geq_nodup_iff) in H2.

21 assert (Datatypes.length (nodup string_dec W) ≤ n).

22 {
23 eapply (set_diff_succ string_dec) in H; try apply H3.

24 apply succ_le_mono. eapply le_trans.

25 apply H.

26 − eapply le_trans in H0. apply H0. apply le_refl.

27 − apply e.

28 }

52

29 assert (ex_lfp_geq Cs (nodup string_dec W) (nodup string_dec W) f).

30 {
31 apply (IHn n Cs W [] f);

32 try assumption; try apply incl_nil_l.

33 − eapply (set_diff_succ string_dec) in H; try apply H3.

34 simpl. rewrite set_diff_nil. apply conj; lia. apply e.

35 − unfold ex_lfp_geq. exists f. split.

36 apply geq_refl. apply sub_model_W_empty.

37 }
38 assert (H’: incl W V) by assumption.

39 apply (nodup_incl2 string_dec) in H.

40 apply (lem_33 Cs V (nodup string_dec W) f) in H;

41 try assumption. elim H. intros h [H8 H9].

42 destruct

43 (sub_forward

44 Cs

45 (nodup string_dec V)

46 (nodup string_dec V)

47 h) as [U h’] eqn:Hforward.

48 assert

49 (sub_forward

50 Cs

51 (nodup string_dec V)

52 (nodup string_dec V)

53 h = (U, h’)) by assumption.

54 assert

55 (sub_forward

56 Cs

57 (nodup string_dec V)

58 (nodup string_dec V)

59 h = (U, h’)) by assumption.

60 rewrite nodup_rm in H9.

61 apply

62 (sub_forward_incl_set_diff

63 Cs

64 h

65 h’

66 (nodup string_dec V)

67 (nodup string_dec W)

68 U) in H9;

53

69 try apply Hforward.

70 inversion Hforward. apply sub_forward_incl in Hforward.

71 destruct U as [|u U’] eqn:Hu.

72 - - apply sub_forward_empty in H7.

73 destruct H7. unfold ex_lfp_geq. exists h.

74 split; assumption.

75 - - destruct

76 (incl_dec

77 string_dec

78 V

79 (nodup

80 string_dec

81 (set_union string_dec (nodup string_dec W) U))).

82 ++ unfold ex_lfp_geq. exists (update_infty_V V f). split.

83 ∗∗ apply geq_nodup_true. apply geq_update_infty_V.

84 ∗∗ rewrite ← sub_model_nodup. apply sub_model_update_infty_V.

85 ++ assert (incl (nodup string_dec (set_union string_dec W U)) V).

86 {
87 apply nodup_incl2. eapply incl_set_union_trans.

88 assumption. apply nodup_incl in Hforward.

89 rewrite Hu. assumption.

90 }
91 assert

92 (Datatypes.length

93 (nodup string_dec (set_union string_dec W U)) <

94 Datatypes.length

95 (nodup string_dec V)).

96 {
97 assert (Datatypes.length

98 (nodup string_dec (set_union string_dec W U)) ≤
99 Datatypes.length

100 (nodup string_dec V)).

101 {
102 eapply NoDup_incl_length. apply NoDup_nodup.

103 apply nodup_incl. assumption.

104 }
105 apply le_lt_eq_dec in H13. destruct H13; try assumption.

106 assert

107 (strict_subset

108 (nodup string_dec (set_union string_dec W U))

54

109 (nodup string_dec V)).

110 {
111 unfold strict_subset. split.

112 − apply nodup_incl. assumption.

113 − unfold not. intros. apply n0.

114 apply nodup_incl2 in H13.

115 assert

116 (incl

117 (nodup string_dec (set_union string_dec W U))

118 (nodup string_dec V)).

119 {
120 apply nodup_incl. assumption.

121 }
122 rewrite (incl_set_union_nodup_l string_dec). assumption.

123 }
124 apply (strict_subset_lt_length string_dec).

125 unfold strict_subset in H13.

126 destruct H13. unfold strict_subset. split.

127 − apply nodup_incl in H13.

128 apply nodup_incl2 in H13. assumption.

129 − unfold not. intros. apply n0.

130 rewrite (incl_set_union_nodup_l string_dec).

131 apply nodup_incl. assumption.

132 }
133 assert

134 (Datatypes.length

135 (set_diff string_dec V (set_union string_dec (nodup string_dec W) U)) <

136 Datatypes.length

137 (set_diff string_dec V (nodup string_dec W)) ≤ S m).

138 {
139 apply conj.

140 − rewrite Hu. apply set_diff_incl_lt_length;

141 try assumption. apply nodup_incl2. assumption.

142 rewrite ← set_diff_nodup_l in H9. assumption.

143 − rewrite ← set_diff_nodup_r.

144 rewrite ← set_diff_nodup_eq. rewrite e. lia.

145 }
146 apply (ex_lfp_geq_monotone Cs (nodup string_dec V) h’ f).

147 eapply (IHm Cs V (nodup string_dec (set_union string_dec W U)) h’);

148 try assumption.

55

149 ∗∗ apply conj; try lia. inversion H14.

150 apply le_lt_eq_dec in H16. destruct H16;

151 rewrite nodup_rm; rewrite set_diff_nodup_eq in ∗;
152 rewrite ← length_set_diff_set_union_nodup_l;

153 lia.

154 ∗∗ apply (IHn n Cs (nodup string_dec (set_union string_dec W U)) [] h’);

155 try apply incl_nil_l.

156 - - - assert (Datatypes.length (nodup string_dec V) ≤ Datatypes.length V).

157 {
158 apply NoDup_incl_length. apply NoDup_nodup.

159 apply nodup_incl2. apply incl_refl.

160 }
161 rewrite nodup_rm. rewrite set_diff_nodup_eq in ∗;
162 try rewrite set_union_nodup_l in ∗; lia.
163 - - - apply conj; try lia.

164 assert

165 (Datatypes.length

166 (set_diff

167 string_dec

168 (nodup string_dec (set_union string_dec W U))

169 []) ≤
170 Datatypes.length

171 (nodup string_dec (set_union string_dec W U))).

172 apply (set_diff_nil_length string_dec).

173 eapply le_trans.

174 rewrite set_diff_nodup_eq. apply H15.

175 apply lt_le_pred in H13.

176 eapply le_trans. apply H13.

177 assert

178 (Datatypes.length (nodup string_dec V) ≤
179 Datatypes.length V).

180 {
181 apply NoDup_incl_length. apply NoDup_nodup.

182 apply nodup_incl2. apply incl_refl.

183 }
184 assert

185 (pred (Datatypes.length (nodup string_dec V)) ≤
186 pred (Datatypes.length V)).

187 {
188 apply Nat.pred_le_mono. assumption.

56

189 }
190 apply le_n_Sm_pred_n_m in H0. assumption.

191 - - - unfold ex_lfp_geq. exists h’.

192 split. apply geq_refl.

193 apply sub_model_W_empty.

194 ∗∗ eapply geq_trans with h; try assumption.

195 rewrite ← H12.

196 apply geq_Sinfty_f2.

197 - - unfold pre_thm. intros. apply (IHn m0 Cs’ V’ W’ f’);

198 try assumption; try lia.

199 - - rewrite nodup_rm. assumption.

200 Qed.

Listing A.1: Full proof of Theorem 3.2 in Coq

57

	Background
	Proofs, verification & formalization
	Type theory
	Propositions as types
	Dependent types

	Proof assistants
	Coq
	Other proof assistants
	Extraction of programs from verified proofs

	The Case in Question
	Overview & research questions
	Relevant parts of the paper
	Lemmas and theorems

	Approach & Design Choices
	Simplifications for the sake of time
	Incomplete formal proofs for some purely logical lemmas
	Leaving out the formal proof of lem:3.3
	Proof of minimality

	Modeling finite sets in Coq
	List & ListSet
	MSetWeakList
	Ensembles

	Choice of implementation of sets

	Implementation of Case-Specific Notions
	Data types
	Semantic functions and predicates
	The function submodel
	The functions subvarsimprovable and subforward
	The function geq
	The predicate exlfpgeq with Prop and Set

	The main proofs
	The predicate prethm
	lem:3.3
	thm:3.2

	Extraction to Haskell

	Examples & Results
	Examples using the extracted Haskell code
	Defining examples for extraction in Coq
	Necessary alterations to the extracted Haskell code
	Example output
	Example of loop-checking

	Real world example
	Loose comparison to Coq's universe consistency checker

	Extension of lst:thm32coqexample that fails

	Evaluation
	Correctness of results from mbezem
	Feasibility of formalization
	Value of formalization & extracted algorithm

	Related & Future Work
	Related work: universe consistency checking in Coq
	Future work
	Completing proof of remaining logical lemmas
	Formal proof of lem:3.3
	Proving minimality of model generated by thm:3.2

	Conclusion
	Bibliography
	Full proof of Theorem 3.2 in Coq

