
Improving Stability of Tree-Based
Models

Morten Blørstad

June, 2023

Supervisors: Nello Blaser & Berent Lunde

Department of Informatics

Abstract

The insurance industry investigates tree-based models to improve their pric-
ing models compared to traditional generalized linear models (GLMs) but
has experienced tree-based methods being unstable. This may lead to large
changes in predictions when training data is modified slightly and increases
the risk of the premium portfolio being too small to cover the losses. This
thesis focuses on stabilizing the predictions when updating a model and ad-
dresses the instability challenge through three objectives: 1) provide stable
update methods for regression trees, 2) extend them to random forest and
gradient tree boosting (GTB), and 3) show that methods can also be used
for claims frequency estimation. Five stable update methods for regression
trees are proposed. The methods are also extended to random forest and
GTB. The methods are evaluated in terms of performance and stability and
assessed on a broad range of data characteristics before being evaluated on
claims data. The general results show that all methods applied to regression
trees are more stable than the baseline, with some methods achieving similar
or better performance. The methods extended to random forests and GTB
show similar results. The general results are transferable to claims frequency
estimation. The three-based update methods provide a more stable model
than their baselines and better performance than GLM. However, GLM is
still more stable than stable tree updates. Whether the stability improve-
ment is sufficient requires further analysis of the impact on the premium
portfolio.

Key words: stability, tree-based methods, Bayesian inference, information
theory, self-training, claim frequency estimation

i

Acknowledgements

I would like to thank my supervisors, Nello Blaser and Berent Lunde, for
their valuable guidance throughout this thesis. To Nello, I want to express
my gratitude for your helpfulness and availability to discuss minor and major
topics of my thesis and for your valuable input. I would also like to extend
my gratitude to Berent for all the intriguing discussions on the statistical
properties of tree-based methods at BKB; Those discussions have expanded
my knowledge and understanding significantly, and I am eager to learn more.

To my fellow students, I want to thank you for the time we shared together
over the past two years, filled with joy and memorable experiences. A spe-
cial mention goes to Audun Ljone Henriksen for his valuable feedback on
the thesis and the countless hours we spent together during our studies.

Finally, I would like to thank my fiancé, Tilde, for her incredible support
throughout a year of hard work. Your understanding and encouragement
have allowed me to immerse myself in deep thinking and coding for extended
periods, all while helping me maintain a balanced life. Your presence in my
life is truly invaluable, and I am eternally grateful.

Morten Blørstad

01 June, 2023

ii

Contents

1 Introduction 1

2 Background 2
2.1 Non-Life Insurance Pricing . 2
2.2 Supervised Learning . 3

2.2.1 The Supervised Learning Task 4
2.2.2 Maximum Likelihood Estimation and Link functions 4
2.2.3 The Loss Function . 5
2.2.4 Claim Frequency Estimation and Offset Variable 6
2.2.5 The Model and Learning Algorithm 6
2.2.6 Numerical Optimization in Function Space 6

2.3 Model Selection . 7
2.3.1 The Model Capacity . 7
2.3.2 The Bias-Variance Trade-off 8
2.3.3 Regularization . 9
2.3.4 Stability . 10
2.3.5 Model Selection and Evaluation 11

2.4 Model Updating . 12
2.4.1 Bayesian Updating . 12
2.4.2 Bootstrap . 13
2.4.3 Semi-Supervised Learning and Self-Training 14

2.5 Tree-Based Methods . 14
2.5.1 Regression Tree . 15

2.5.1.1 Stability of Trees 16
2.5.2 Random Forest . 17
2.5.3 Bumping . 18
2.5.4 Gradient Tree Boosting . 18
2.5.5 Statistical Implication of Greedy Splitting 20
2.5.6 Adaptive Tree Complexity 21

3 Methodology 23
3.1 Performance Measure . 23
3.2 Update Stability . 23
3.3 Performance-Stability Trade-off . 25
3.4 Modifications to CART . 25
3.5 Update methods for Regression Tree 26

3.5.1 Naive Update . 26
3.5.2 Tree Reevaluation . 27
3.5.3 Stable Loss . 29
3.5.4 Approximate Bayesian Update 30
3.5.5 Bumping Approximate Bayesian Update 32

3.6 Update Methods for Random Forest 33
3.7 Updating Gradient Tree Boosting 33
3.8 Implementation . 34

4 Data 34
4.1 Simulated Dataset . 34
4.2 ISLR Datasets . 35

iii

4.3 Claim Frequency Data . 36
4.3.1 Data Preprocessing . 37
4.3.2 Exploratory Data Analysis 38

5 Experiments 40
5.1 Experimental Setup . 40

5.1.1 The Base Setup . 40
5.1.2 Simulated Data . 41

5.1.2.1 Baseline . 41
5.1.2.2 Naive Update . 41
5.1.2.3 Tree Reevaluation 42
5.1.2.4 Stable Loss . 42
5.1.2.5 Approximately Bayesian Update 42
5.1.2.6 Bumping Approximately Bayesian Update 43
5.1.2.7 Tracking Model Updates Over Time 43

5.1.3 ISLR Datasets . 43
5.1.4 Claim Frequency Data . 44

5.2 Experimental Results . 44
5.2.1 Simulation Experiments . 44

5.2.1.1 Baseline . 44
5.2.1.2 Naive Update . 45
5.2.1.3 Tree Reevaluation 46
5.2.1.4 Stable Loss . 47
5.2.1.5 Approximately Bayesian Update 47
5.2.1.6 BABU . 49
5.2.1.7 Tracking Model Updates Over Time 49

5.2.2 ISLR Datasets . 50
5.2.2.1 Regression Tree . 51
5.2.2.2 Random Forest . 53
5.2.2.3 Gradient Tree Boosting 53

5.2.3 Claim Frequency Estimation 56

6 Discussion 58
6.1 Main Findings . 58

6.1.1 Regression Tree . 58
6.1.2 Random Forest and GTB 60
6.1.3 Claim Frequency Estimation 61

6.2 Strengths and Limitations . 62
6.3 Future Work . 63
6.4 Conclusion . 64

Appendices 68

iv

List of Figures

1 The functions space covered by a learning algorithm. 8
2 The bias-variance trade-off . 9
3 The bias-variance trade-off as a function space restriction. 10
4 The relation between stability and the bias-variance trade-off 11
5 The Classification and Regression Tree 15
6 The root and stump . 16
7 Tree regions and prediction surface 17
8 Adaptive tree complexity vs. grid search 22
9 Update stability . 24
10 Model updating using NU . 26
11 Model updating using TR . 28
12 Model updating using SL . 30
13 Poisson regression of the annualized frequency on DriverAge. . . . 37
14 The distribution of the number of claims, exposure in years, and

claim frequency per year . 38
15 The distribution of the features in the freMTPLfreq dataset. 39
16 The assumption of the naive update 46
17 The impact of SL’s hyperparameter 46
18 The impact of SL’s hyperparameter 47
19 Approximate posterior with ABU . 48
20 The adaptability of ABU . 48
21 The impact of BABU’s hyperparameter 49
22 Tracking model updates over time 50
23 Pareto frontier for regression tree on the ISLR datasets 52
24 Pareto frontier for random forest on the ISLR datasets 54
25 Pareto frontier for GTB on the ISLR datasets 55
26 Pareto frontier for the freMTPLfreq dataset 57

v

List of Tables

1 Summary of the feature variables in the simulated data. 34
2 Summary of the simulated datasets for the different cases. 35
3 Overview of the ISLR datasets. 36
4 The available variables in the freMTPLfreq dataset (Dutang and

Charpentier [2018]. 36
5 The feature engineered variables for GLM. 38
6 Setting for the tree-based methods for the ISLR datasets 44
7 Setting for the tree-based methods for the freMTPLfreq dataset . . 44
8 Baseline on Simulated Data . 45
9 Baseline comparison of the tree-based methods. 51

vi

1 Introduction

The fundamental role of insurance is to provide protection from financial loss by
transferring the risk from the insured to the insurer in exchange for a fee known
as an insurance premium. The insurer determines the premium before the ac-
tual value of the potential loss is known using a pricing model based on statis-
tical/machine learning techniques. Therefore, having a well-performing pricing
model is important for achieving the aim of collecting sufficient premiums to cover
the claims.

In addition to model predictability, the competitive market is an important aspect
of insurance. Every insured should be charged a fair premium based on the insureds
risk profile in order to minimize the risk of adverse selection (Dionne et al. [1998]).
If the price is too cheap, the insurer will not be able to cover the loss. Overpricing
is also problematic as the model assumes that these risks will also contribute to
the overall premium when, in reality, they will be lost to competition with more
fair premiums. If the pricing model’s learning algorithm is unstable, meaning the
predictions of the model are very sensitive to changes in the training examples,
it increases the probability that the predicted prices will be under- or overpriced,
highlighting the importance of stability when applying machine learning algorithms
to the insurance industry.

Pricing models are often built in two stages, where the frequency and severity
of the claims are considered separately. Traditionally, generalized linear models
(GLMs), introduced by Nelder and Wedderburn [1972], are used for non-life insur-
ance pricing models. These models are based on assumptions such as linearity and
specific probability distributions (e.g., Gaussian, Gamma, Poisson, etc). GLMs are
stable and their results are easy to interpret. If the model assumptions are correct,
GLMs provide high predictive capability. However, the data often contains non-
linear and interaction components. These non-linear and interaction components
need to be included manually through feature engineering when fitting a GLM and
are often a tedious analytical task.

Technological advancements have increased the interest in machine learning and
provided alternatives to GLMs. Especially, tree-based machine learning methods
have shown promising results for predictive modeling in non-life insurance (Guel-
man [2012];Liu et al. [2014];Henckaerts et al. [2020]) and have been utilized in
numerous winning solutions for Kaggle competitions for structured data. The use
of neural networks has also been proposed (Ferrario et al. [2018];Schelldorfer and
Wüthrich [2019]). Unlike GLMs, tree-based methods and neural networks can
model complex non-linear relationships between variables and can automatically
capture interaction effects. Due to these properties, they have higher variance and
can adapt more to the data and achieve very high performance. However, having
a higher variance increases the risk of adapting to noise in the data, potentially
making them less stable.

The use of predictive models in insurance or the finance industry, in general, is
heavily regulated. In 2018, the European Unions General Data Protection Reg-
ulation (GDPR) established the requirement of ”algorithmic accountability” of
decision-making algorithms. A data subject has a right to contest an individual
algorithm decision (Article 22) and to request access to meaningful information
about the logic involved (Article 15) (Kaminski and Malgieri [2021]). The require-

1

ment of ”algorithmic accountability” emphasizes the importance of being able to
”look under the hood” of the pricing models, making tree-based models more
appealing compared to neural networks.

A pricing model is often updated annually as new claim information from policy-
holders becomes available. The model is then retrained on previous data plus the
newly available data. If the machine learning algorithm used is very sensitive to
changes in the training examples, the model update will be unstable, increasing
the risk of the premium portfolio being too small to cover the loss. This thesis
aims to contribute to solving this issue through three objectives: 1) provide stable
update methods for regression trees, 2) show how these methods can be extended
to provide stable update methods for random forest and gradient tree boosting,
and 3) show that the stable update methods can provide more stable tree-based
models for claims frequency estimation. The proposed update strategies are com-
pared to the baseline strategy of retraining the models and are evaluated in terms
of performance and stability.

To the best of my knowledge, no other scientific work specifically investigates meth-
ods for improving the stability of updating tree-based methods, neither for general
regression tasks nor for claim frequency estimation. However, Last et al. [2002]
conducted a relevant study for classification tasks, which showed that Info-Fuzzy
Networks could be used to learn more compact and, what they call, semantically
stable decision trees while preserving a reasonable level of predictive accuracy. Al-
though their work focused on decision trees and classification, they showcase the
potential to improve the stability of tree-based methods.

The rest of the thesis proceeds as follows. In Section 2, I will introduce the funda-
mentals of non-life insurance, key concepts of supervised learning, and tree-based
methods. Section 3 defines the notion of update stability and describes the pro-
posed update methods for improving update stability. Section 4 reviews the data
used to conduct the experiment, while Section 5 presents the experimental setup
and provides the results. Finally, Section 6 discusses the results and concludes the
thesis.

2 Background

In this section, I will present the core concepts for the thesis. First, I will introduce
the basic concepts of non-life insurance and the stability problem. I then generalize
the problem to any supervised learning task and present essential concepts and
theories on which the methodology is based on. Examples of how the theory fits
the special case of claim frequency estimation will be provided throughout the
section.

2.1 Non-Life Insurance Pricing

The fundamental role of insurance is to provide protection from financial loss for
the customer (insured) when accidents occur. The insurance company (insurer)
takes on the risk of the insured in exchange for a fee known as an insurance
premium. The risk transfer is formulated as a contract called a non-life insurance
policy in which the insurer and insured agree upon what risks are covered and
the insurance premium. If an accident occurs that is covered by the policy, the

2

insured can file a request for payment to the insurer according to the terms of the
policy. Such a request is called a claim. Since the insurer determines the premium
before knowing the actual value of the loss, it is essential that the insurer properly
assesses the risks in its portfolio. The insurance portfolio consists of many policies,
meaning the loss of the entire portfolio is the sum of the loss of the individual
policies. Using the law of large numbers, the insurer can estimate the expected
loss of individual policies and, thus also the expected loss of the portfolio. Different
policies have different exposure to risk and, therefore, different expected loss. Due
to fairness and the competitive market, the premium of a policy should reflect the
policy’s expected loss. To this end, insurance companies use pricing models based
on statistical/machine learning methods. It is important that the heterogeneity
of risks is properly reflected in the pricing model in order to minimize the risk of
adverse selection (Dionne et al. [1998]). If heterogeneity of risks is not properly
reflected in the pricing model, the insurer risks that the overall premium is too
small to cover the losses. The customers will select the company with the lowest
price, and the insurer will therefore attract customers that it under-prices, leading
to eroding margins. The over-priced risks are equally problematic as the model is
calibrated on the assumption that those risks will also be included in the overall
premium but in reality, will be lost to competition with more fair premiums.

In order to price non-life insurance policies, the insurer develops a pricing model
that maps the observable characteristic of the insured to the loss cost (also known
as risk premium). The insurer then uses the model to predict the loss cost for each
insured based on observable characteristics. Commonly, the pricing model is built
using two separate models for the frequency and severity of claims,

Risk premium = Expected claim frequency× Expected claim severity.

How much the risk premium changes when the insurance data is slightly modified
is known as the model’s stability and will be covered in more detail in Section 2.3.4.
If a model is unstable, it indicates that the model fails to clearly distinguish persis-
tence patterns from random patterns (Last et al. [2002]). Meaning the instability
will most likely negatively affect the model’s ability to reflect the heterogeneity of
risks, increasing the risk of adverse selection. In this thesis, I only consider the
task of estimating the claim frequency. Claim frequency estimation is a regression
problem and falls under supervised learning.

2.2 Supervised Learning

Machine learning consists of understanding and building methods that ”learn”
from experience. ”Learning” is closely related to generalization, meaning the abil-
ity to apply knowledge from experiences to new situations. Machine learning
is traditionally divided into three broad learning categories, supervised learning,
unsupervised learning, and reinforcement learning. This thesis only addresses su-
pervised learning. In supervised learning, the experiences are input-response pairs
and the goal is to learn a function that maps inputs to responses. In this section,
I will present some core concept in supervised learning which is essential for the
thesis.

3

2.2.1 The Supervised Learning Task

Supervised learning is the task of learning a function f that maps the input vector
x ∈ Rm to the corresponding response variable y. When the response variable is
categorical it is a classification task, y ∈ C where C is the set of classes. Otherwise,
it is a regression task, y ∈ R. Learning is a search through space of candidate
functions F with the aim of finding the optimal function f ∗ which minimizes the
expected loss given a loss function L(·, ·),

f ∗ = argmin
f∈F

E[L(y, f(x))].

The loss function measures the discrepancy between the predicted response ŷ =
f(x) and true response y. The ultimate goal is to generalize as well as possible, i.e.
lowest possible expected loss. Since the expected loss is unknown, an empirical av-
erage is used as an estimation. Minimizing the empirical loss is known as empirical
risk minimization (ERM) (Vapnik [1991]) and finds an empirical approximation f̂
of the optimal function f ∗. The expected loss is estimated by using an empirical
average over a training dataset D = {xi, yi}ni=1,

f ∗ ≈ f̂ = argmin
f∈F

1

n

n∑
i=1

[L(yi, f(xi))].

In the case of claim frequency estimation, D is historical claims data where x is
the characteristics of the insured and y is the corresponding claim frequency. The
process of minimizing loss to find f̂ using a training dataset is called the training
phase.

2.2.2 Maximum Likelihood Estimation and Link functions

Before going into more detail about loss functions, I will briefly introduce max-
imum likelihood estimation, generalized linear models, and link functions. Maxi-
mum likelihood estimate (MLE) is a technique used for estimating the most likely
parameters of an assumed probability distribution based on observed data. Con-
sider an observed response variable y with the assumed parametric probability
distribution P (y, θ), where the θ is in the parameter space Θ. The MLE of θ is
the value that maximizes the likelihood or, equivalently, the value that minimizes
the negative log-likelihood,

θ̂ = argmin
θ

− logP (y, θ). (1)

Note that the objective of supervised learning is closely connected to MLE when
the function search is restricted to a parametric family of functions and the loss
function is defined as the negative log-likelihood, L = − logP .

The generalized linear model (GLM) (Nelder and Wedderburn [1972]) is an exam-
ple of a parametric family of functions. It is a generalization of the linear regression
model, which allows the model to handle non-normal response variables, e.g., count

4

data, by specifying a probability distribution that describes the behavior of the re-
sponse variable. GLMs also allow for the linear model to be related to the response
variable via a link function.

The purpose of a link function in GLMs is to ”link” the linear relations between
the input variables x to the mean, µ, of a distribution. The link function also
ensures that the predictions are within the correct range and have the appropriate
distributional properties. The link function Φ(·) must be monotonic and differen-
tiable such that µ = Φ−1(f(x)). In short, link functions are used to connect the
input to the expected mean of the response variable in a linear way, and its inverse
is used to make predictions in the original form. Link functions are also used in
generalized additive models (GAMs) (Hastie and Tibshirani [1986]) and gradient
tree boosting (Friedman [2001]). In gradient tree boosting, the link function maps
the predicted value from the trees to a scale that is appropriate for the specific
target variable and loss function.

2.2.3 The Loss Function

Section 2.2.1 introduced the idea of finding the best predictive function f̂ that
minimizes a loss function in the training phase. The choice of loss function for
a particular problem should reflect some discrepancy between the true response
variable and the predictions that one wants to minimize. Loss functions are often
likelihood-based and reflect the assumptions of the data-generating process. They
can be interpreted as negative log-likelihoods. The most common loss function for
regression is the squared error loss,

L(yi, f̂(xi)) =
n∑

i=1

(yi − f̂(xi))
2, (2)

The squared error assumes that the response variable conditioned on the input
has a normal distribution, y|x ∼ N (µ, σ). The likelihood-based loss function is
the negative log-likelihood of the normal distribution

L(yi, µ) =
n∑

i=1

1

2
log 2πσ2 +

1

2σ2
(yi − µ)2 . (3)

Here the link function for normal distribution is used, which is the identity link.
Meaning, the function is estimated on the original parameter scale f(x) = Φ(µ) =
µ. Assuming a constant σ2 that is of no interest of estimating, the expression
in Equation 3 can be simplified to be equivalent to the squared error loss. As
the squared error loss assumes a conditional normal distribution, it is suitable
for continuous distributions which are symmetrical around their means and have
a constant variance, i.e., elliptical distributions (Henckaerts et al. [2020]). How-
ever, claim frequency data does not have an elliptical distribution, thus another
loss function is required. Claim frequency is typically assumed to be Poisson dis-
tributed, y|x ∼ Pois(λ). Using this assumption, a likelihood-based loss can be
constructed using the negative log-likelihood of the Poisson distribution

L(yi, λ) =
n∑

i=1

λ− yi log(λ) + log(yi!). (4)

5

Here λ is the mean of the Poisson distribution. Using the link function for Poisson
distribution, which is the log link, the function can be estimated on the log scale,
f̂(x) = Φ(λ) = log(λ). The terms not containing λ can be removed and λ can be
rewritten in terms of f̂(x), resulting in the following expression

L(yi, f̂(xi)) =
n∑

i=1

ef̂(xi) − yif̂(xi). (5)

Hereafter the loss in Equation 5 is referred to as the Poisson loss.

2.2.4 Claim Frequency Estimation and Offset Variable

Claims frequency estimation is based on count data and assumes the number of
claims is Poisson distributed. Let Ni be the annualized claim frequency for insured
i where Ni ∼ Pois(λi) and λi is a function of the insured’s characteristics (xi).
Let Ei (exposure) be the time period the insured i was observed and Yi be the
number of claims during the time period. Insurance companies are interested in
the annualized claim frequency Ni. Unfortunately, Ni cannot be observable, but
the number of claims Yi over the period Ei can. Ni ∼ Pois(λi) can equivalently
be written as Yi ∼ Pois(λi · Ei). By using a log link function, λi = ef(xi) one
gets,

Yi ∼ Pois(ef(xi)+logEi),

where logEi is an offset variable (Charpentier [2014]). This ensures that the
expected number of claims is directly proportional to the exposure. With less
mathematical notation, the goal of claim frequency estimation is to provide an
accurate prediction of the number of claims that a policyholder is likely to report
during a 1-year period based on their exposure and relevant risk factors. The
inclusion of the offset variable ensures that the model accounts for the impact of
exposure on the frequency of claims.

2.2.5 The Model and Learning Algorithm

The function space F is also known as the hypothesis space and refers to the set
of possible functions/models that a learning algorithm can learn. It represents the
set of functions the algorithm can choose from to model the data. For instance, the
hypothesis space for linear regression is all the possible linear functions that can be
used to model the data. Recall from 2.2.1 that the aim is to find f̂ by minimizing
the empirical average over a training dataset which is essentially an optimization
problem. The learning algorithm determines how the optimization problem is
solved. The learning algorithm uses the training data D as input and outputs a
fitted model f̂ . Different choices of loss functions and learning algorithms will lead
to different solutions. As implied by the No Free Lunch theorem (Wolpert and
Macready [1997]), no single learning algorithm is universally superior for all types
of tasks or dataset. The theorem highlights the importance of understanding the
characteristics of the data, and how they may affect the performance of different
machine learning algorithms when building a predictive model.

2.2.6 Numerical Optimization in Function Space

With the exception of the simplest cases, the maximum likelihood objective and su-
pervised learning objective are not straightforward and require numerical methods

6

to be solved. The numerical methods are often iterative and involve updating the
parameters in each iteration until a convergence criterion is met. Local quadratic
approximations are a common iterative optimization method that approximates a
function locally around the current point of interest using a quadratic function,
which is much simpler to optimize than the original function. The term ”local
quadratic approximation” is also known as the second-order Taylor approximation
and is used to approximate a function f(x) around a specific point x0. For exam-
ple, the second-order Taylor approximation of the loss function L around a value
of θk can be expressed as

L(yi, f(xi; θ)) ≈ L(yi, f(xi; θk)) +∇θL(yi, f(xi; θk))(θ − θk)

+
1

2
(θ − θk)

T∇2
θL(yi, f(xi; θk))(θ − θk).

The right-hand side of the expression above can be used to construct the update
rule for the parameters in the Newton-Raphson method,

θk+1 = θk −
∇θL(θk)
∇2

θL(θk)
.

Example - Generalized linear models Consider a generalized linear model
parameterized by θ

f(xi; θ) = θ0 +
m∑
j=1

θjxi,j.

One want to estimate a parameter vector θ = (θ0, . . . , θm) that minimizes a nega-
tive log-likelihood loss from an exponential family

L(θ) =
n∑

i=1

ℓ(yi, f(xi; θ)),

where ℓ is the negative log-probability of y|x. The MLE θ̂ in Equation 1 often
requires numerical methods to be found, since the score equation, ∇θL(θ) = 0,
cannot be solved analytically. The iteratively reweighted least squares method is
typically used to optimize the parameters of GLMs and is essentially a Newton-
Raphson method.

2.3 Model Selection

Since there is no single best learning algorithm and different learning algorithms
lead to different solutions, it is common to train several models using different
learning algorithms. These models are called candidate models. The process of
choosing the best model from a set of candidate models for a given dataset is
known as model selection. In this subsection, I discuss the different aspects of
model selection.

2.3.1 The Model Capacity

The goal is to learn a model that generalizes well, i.e., performs well on new un-
seen data and not just the data the model is trained on. How well a learning

7

algorithm performs is determined by two factors, its ability to make the training
loss small and its ability to make the difference between training loss and expected
loss small (Goodfellow et al. [2016]). These factors correspond to the two central
challenges in machine learning, namely underfitting and overfitting. Underfitting
refers to the model’s inability to obtain a sufficiently low training loss, whereas
overfitting refers to the model’s inability to make the difference between training
loss and expected loss sufficiently small. Overfitting and underfitting are highly
impacted by a learning algorithm’s capacity. The capacity refers to the learning
algorithm’s ability to represent complex functions (i.e. the size of the function
space F) and is often also referred to as model complexity. Learning algorithms
with low capacity may not be able to fit the training data (i.e. underfit). Learning
algorithms with high capacity may overfit the training data by learning the noise
in the training data, resulting in poor generalization. Different learning algorithms
have different capacities and their capacity can also be adjusted through hyper-
parameters. Hyperparameters are parameters that control the learning process of
learning algorithms. Different learning algorithms and hyperparameters can be
seen as different restrictions or preferences in the function space as illustrated by
Figure 1.

F F|a

(a) A learning algorithm a.

F F|a′

(b) A more restricted learning
algorithm a′.

Figure 1: The functions space covered by a learning algorithm.
The figure shows the function space F and the function space covered by a learning algorithm
a, F|a. F|a is the model capacity of a. a′ represents a more restricted learning algorithm either
due to regularization, choice of hyperparameters, or use of different learning algorithms with
less variance. The learning algorithm a, (a), has a larger search space (model capacity)
compared to the restricted learning algorithm a′, (b).

2.3.2 The Bias-Variance Trade-off

The capacity of a model and its ability to generalize can be described with the
bias-variance trade-off. The bias-variance trade-off describes the trade-off between
the model’s ability to fit the training data and its generalization performance. In
order to make a prediction on new unseen data based on training data, the learning
algorithm needs to use some assumptions (or prior knowledge) of the underlying
data structure. These assumptions or prior knowledge are referred to as inductive

8

bias. For example, linear regression assumes that there is a linear relationship
between the input and the response variable. Bias is the error due to false model
assumptions, whereas variance is the error due to sensitivity to small fluctuations
in the training dataset. Bias and variance are connected to under- and overfitting.
Underfitting is associated with high bias and low variance, whilst overfitting is
associated with low bias and high variance. One can reduce a models variance
by increasing its bias and vice versa, hence the name bias-variance trade-off. The
aim is to strike a balance between bias and variance in order to minimize the total
error as illustrated by Figure 2.

generalization
error

variance

bias

underfitting overfitting

Model capacity

E
rr
or

Figure 2: The bias-variance trade-off
The figure illustrates the bias-variance trade-off and how bias and variance vary in opposite
ways with respect to model capacity. As model capacity increases, bias decreases while variance
increases and vice versa. The generalization error is the sum of bias squared and variance. The
optimal learning algorithm minimizes the generalization error, highlighted by the dotted line,
avoiding underfitting and overfitting.

The trade-off can also be thought of in the sense of function space restriction as
Figure 3 shows. Bias can be represented as the distance from the optimal function
f ∗ to the optimal function f ∗|a in restricted function space F|a. Variance is the
distance from f ∗|a to the function found by minimizing training loss f̂ |a.

2.3.3 Regularization

Regularization is a technique to deal with the high-variance problem (i.e. overfit-
ting) by explicitly or implicitly limiting the learning process. Both explicit and
implicit regularization techniques are used to control the flexibility of the learning
process in order to improve the generalization performance of a model.

Explicit regularization refers to the use of a penalty term added to the loss function
to encourage simpler solutions. The penalty term is a measure of the model’s com-
plexity. As there exists no universal complexity measure, the choice of complexity
measure has to come from a priori knowledge about the task at hand (Bousquet
et al. [2003]). For example, in linear regression, the L1 or L2 norm of the coef-
ficients are common complexity measures, whereas in gradient tree boosting the
L1 or L2 of the leaf values are used. When the L1 or L2 norm of the parame-
ters are used as the penalty term, they are known as L1 and L2 regularization,
respectively. A penalized loss can be generalized as

9

F

F|a

f̂ |a

f ∗|a
f ∗

bias

variance

generalization
error

Figure 3: The bias-variance trade-off as a function space restriction.
The figure shows how the bias-variance trade-off can be conceptualized as a restriction of
function space. Here, bias is the distance from the optimal function f∗ to the optimal function
f∗|a in the restricted function space F|a. If f∗ is in F|a then the bias is zero. Variance is the

distance from f∗|a to the function found by minimizing training loss f̂ |a. Bias and variance
make up the generalization error. By increasing the restriction of the function space, bias
increases while variance decreases and vice versa.

L(·, ·) + γΩ, (6)

where Ω is the complexity measure and γ is a hyperparameter determining the
strength of complexity penalty. By penalizing complexity one insert a bias toward
the simpler models, i.e. trading variance for bias.

Implicitly regularization refers to regularization techniques that do not explicitly
use a regularization penalty term. Certain learning algorithms inherently handle
high variance by design such as bagging algorithms (Hastie et al. [2001]) whilst
other algorithms, such as stochastic gradient descent, inherently promote simpler
models that generalize well (Smith et al. [2021]). Other examples of implicit reg-
ularization are early stopping, data augmentation, dropout, etc.

2.3.4 Stability

Stability is a concept in computational learning theory and refers to the ability of a
machine learning algorithm to produce consistent and reliable predictions on new,
unseen data. It is connected to generalization and the bias-variance trade-off and
has an inverse relation to variance (Bousquet and Elisseeff [2002]). Stability aims
to determine how the variance of a learning algorithm affects its generalization
error with respect to changes in the training set (Bousquet and Elisseeff [2002]).
Different notions of stability have been used to set a bound on the generalization er-
ror of certain learning algorithms such as Hypothesis Stability, Error Stability, and
Uniform Stability (Devroye and Wagner [1979]; Kearns and Ron [1999]; Bousquet
and Elisseeff [2002]). Uniform stability is the strongest notion since it implies both
Hypothesis Stability and Error Stability (Bousquet and Elisseeff [2002]).

Figure 4 aims to illustrate how stability is related to the bias-variance trade-off.
The aim is to find the supremum of the training loss fluctuation, β, which is the
maximum difference between the original training loss and the loss after removing
any one data point. Since β is a bound on variance, it is also a bound on the

10

generalization error since the generalization error is the sum of bias squared and
variance.

F

F|a

f̂ |a

f ∗|a
f ∗

bias

variance

generalization
error

β

Figure 4: The relation between stability and the bias-variance trade-off
The figure shows the relationship between stability and the bias-variance trade-off and how it
can be used as a bound on generalization error. The green area demonstrates how the function
f∗|a, obtained by minimizing the training loss, can vary when a data point is removed from the
training data. The orange circle represents the bound on this variation. The circle’s diameter,
β, is the maximum change of f∗|a caused by the removal of a single data point i.e., the impact
of one data point on the loss is less than or equal to β. Note the circular bound is used to
simplify the illustration.

Stability in the traditional sense refers to how much predictions change due to the
removal or replacement of a data point and aims to put a bound on the gener-
alization error. There is another notion of stability different from the traditional
notions called semantic stability (Turney [1995]). Semantic stability is specific to
classification algorithms and refers to how often two models fitted on random sam-
ples from the same data-generating process assign examples to the same class. It is
a performance measure to determine how stable a classification algorithm is.

2.3.5 Model Selection and Evaluation

In model selection, several candidate models are trained. The aim is to select
one of the candidate models that performs/generalizes best. Traditionally, model
selection and evaluation use the holdout method where the data is divided into
three parts, training, validation, and test sets. The training set is used to train
the models, whereas validation and test set are used for model selection and evalu-
ation. A single model can be evaluated by comparing performance on the training
and validation dataset. High model performance on the training but not on the
validation dataset indicates high variance (i.e., overfitting). Low performance on
both the training and validation dataset indicates high bias (i.e., underfitting).
Multiple models can be evaluated by comparing the models’ performance on the
validation dataset. The model with the best performance on the validation dataset
is considered the best. The performance estimate from the validation set is biased
in the sense that is used for model selection. The test set is data the selected model
has not used nor seen and represents new unseen data. Thus, the test data can
be used to get an unbiased estimate of the selected model’s ability to generalize
to unseen data.

A disadvantage of the holdout method is it may result in a performance estimate

11

with high variance. Cross-Validation is an alternative method that provides a
performance estimate with less variance. It involves dividing the data into training
and test set rather than training, validation, and test set. The training data is
divided into k-folds. The models are trained on the k−1 folds and evaluated on the
remaining fold. This process is repeated k times, with each fold being used as the
validation set ones. The performance estimates from each of the folds are averaged
to get the final validation score which is used for model selection. The test set is
used to obtain the unbiased performance estimate of the selected model.

2.4 Model Updating

Over time as more data is obtained, the learned model may need to be updated.
Either due to concept drift (i.e., changes in the data-generating process over time)
or simply the fact that more training data (more information) is expected to re-
duce the gap between training loss and the true expected loss, leading to a model
that generalizes better. Model updating is the process of adjusting a model to new
information. Traditionally models are learned using batch learning, which means
every time new data becomes available, the entire model has to be retrained from
scratch using all data. New information cannot be added to the model without
retraining the model. Batch training can be memory expensive for large data
amounts as it uses all available data when training. Batch learning is suitable
for tasks where the model updating is infrequent and memory and computation
resources are not an issue. Incremental learning, in contrast to batch training,
trains a model and updates the model incrementally as new data becomes avail-
able instead of retraining from scratch. Incremental learning can adjust knowledge
learned from previous data and add knowledge obtained from the new data. It can
also adapt to concept drift. Incremental learning is less memory expensive since it
only works with smaller chunks of data. The choice between using batch or incre-
mental learning is determined by the task at hand, i.e., update frequency, memory,
and computation expense (Schlimmer and Fisher [1986];Utgoff [1989]).

2.4.1 Bayesian Updating

Updating a model can be viewed from the Bayesian perspective. Using Bayesian
inference for model updating allows the model to learn from new data and update
its belief in its parameters. Here the model’s parameters are treated as random
variables and updated using Bayes’ theorem (Bayes [1763]),

P (θ|D) =
P (D|θ)P (θ)

P (D)
.

The prior distribution P (θ) represents the model’s prior beliefs about the parame-
ters before observing any new data. The likelihood P (D|θ) represents how well the
model’s parameters explain the data. The product of the prior and the likelihood
normalized by the probability of observing the data P (D) results in a posterior
distribution P (θ|D). The posterior represents the updated belief or likelihood in
the parameters given the observed data. In model updating, only the relative
likelihood of the parameters is needed and P (D) can be excluded resulting in the
simpler expression,

12

P (θ|D)︸ ︷︷ ︸
posterior

∝ P (D|θ)︸ ︷︷ ︸
likelihood

×P (θ)︸︷︷︸
prior

. (7)

The posterior becomes the new prior that again can be used to update the belief
in the parameters when even more data becomes available. In a Bayesian setting,
the maximum a posteriori (MAP) is used to estimate the most probable parameter
values by maximizing the combined likelihood of data and the prior distribution.
MAP is similar to MLE but unlike MLE, MAP also incorporates prior knowledge
into the estimation process.

Regularization can also be viewed from the Bayesian perspective. If the loss func-
tion is likelihood-based, then L1 regularization imposes a Laplacian prior to the
model’s parameter, whereas L2 regularization imposes a Gaussian prior. Thus, reg-
ularization has a Bayesian interpretation, where the Ω in Equation 6 is the prior
belief that the model should be simple, and γ is the strength of the belief.

Example - Model update of GLMs Consider a GLM model, f̂ , already trained
on dataset D(t) with the parameter vector θ̂(t). Let D(t+1) be a new dataset one
wants to include in f̂ . Using Bayes theorem with negative log-likelihoods, the
model’s updated parameters, θ̂(t+1), can be found by minimizing negative log pos-
terior,

− logP
(
θ̂(t+1)|D(t),D(t+1)

)
︸ ︷︷ ︸

posterior

∝

− logP
(
D(t+1)|θ̂(t+1),D(t)

)
︸ ︷︷ ︸

likelihood

+
− logP

(
θ̂(t)|D(t)

)
︸ ︷︷ ︸

prior

 .

Assuming a Gaussian prior results in the following update loss,

Lt+1
(
y, f̂

(
x; θ(t)

)
, f̂
(
x; θ(t+1)

))
∝ L

(
y, f̂

(
x; θ(t+1)

))
+ γ

(
f̂
(
x; θ(t)

)
− f̂

(
x; θ(t+1)

))2
,

which imposes a belief (bias) that the updated model should be similar to the
current model.

2.4.2 Bootstrap

Bootstrap is a statistical resampling method first introduced by Efron [1979]. The
basic idea of bootstrapping is to estimate the characteristics of a population using
only the information from a sample. Rather than making assumptions about the
underlying population distribution, the sample is treated as the population. This
allows for new samples to be generated from the empirical distribution by resam-
pling with replacement from the original sample. These resamples can then be
used to make inferences about the population. This makes bootstrap particularly
useful in situations where the population distribution is unknown or difficult to
model.

Bootstrap is widely used in machine learning as one can treat the training set
as the data-generating process and resample with replacement from the original

13

training set D to generate B new bootstrap training sets, {Db}b=1,...,B. This is for
example used in model averaging, which I will come back to in section 2.5.2 when
introducing bagging and random forest. Bootstrapping plays an important part
in this thesis as two of the proposed methods rely on it.

2.4.3 Semi-Supervised Learning and Self-Training

Semi-supervised learning is a learning process that combines supervised learning
and unsupervised learning (van Engelen and Hoos [2020]). Supervised learning is
used to train a predictive model using labeled data, whereas unsupervised learning
is used to uncover patterns and structures in unlabeled data. Semi-supervised
learning algorithms use a combination of labeled and unlabeled data to improve
model performance. Self-training and co-training are examples of semi-supervised
learning algorithms (Amini et al. [2022]). With an initial model trained on labeled
training data, self-training iteratively improves the model by generating pseudo-
labels to unlabeled training samples, which are used to enrich the labeled training
data. The model is then retrained/updated using the enriched training data. Co-
training uses multiple models trained on different subsets of the data to improve
performance. The models predict the labels of the unlabeled data as the majority
(classification) or average (regression), and the predictions are used as pseudo-
labels. The pseudo-labeled data is added to the training data and the models
are retrained/updated. The predictive model at a current iteration is learned by
minimizing the empirical loss,

1

n

∑
(x,y)∈D

L(f(x), y) + γ

ñ

∑
(x,ỹ)∈D̃

L(f(x), ỹ),

where D̃ñ
i=1 = {x, ỹ} is the unlabeled data that have been pseudo-labeled, and

γ is hyperparameter controlling the impact of the pseudo-labeled data on the
learning.

It is worth noting that using unlabeled data does not always improve model perfor-
mance, and there is no guarantee that introducing unlabeled data will not reduce
performance (van Engelen and Hoos [2020]). For example, Chapelle et al. [2006]
compared eleven semi-supervised learning algorithms using supervised support vec-
tor machines and k-nearest neighbors as baselines. They found that no algorithm
consistently outperformed the others, with varying performance across datasets.
Some algorithms substantially improved performance compared to the baselines for
some datasets while reducing performance on others. Therefore, semi-supervised
learning should be viewed as one of the possible learning algorithms to consider
when searching for the best model for a specific task.

2.5 Tree-Based Methods

In this section, I introduce the necessary details for understanding the tree-based
models used in this thesis, which is mainly based on the book by Hastie et al.
[2001]. I start by describing the Regression Tree (Breiman et al. [1984]), followed
by its extensions, Random Forest (Breiman [2001]) and Gradient Tree Boosting
(Friedman [2001]). Section 3 describes the proposed updating methods for each of
the tree-based models.

14

2

1

3

4 5 6 7

10 11

V = {4, 6, 7, 10, 11}
Vc = {1, 2, 3, 5}

w1 = 1.1

q(x) = w4; x ∈ R4

q(x) = w3; x ∈ R3

q(x) = w1; x ∈ R1

R1

R3R2

R4 R5

Figure 5: The Classification and Regression Tree
An example of a Classification and Regression Tree (CART) with five leaf nodes (V) and four
internal nodes (Vc). The vector w = (w1, w2, w3, w4, w5) is the possible predictions the tree can
make. The feature mapping q(x) is a function that maps inputs to their corresponding region
R.

2.5.1 Regression Tree

Decision or regression trees partition the feature space into a set of rectangles
based on yes-no questions and fit a simple model (like a constant or linear model)
in each one (Hastie et al. [2001]). A widely used approach to building tree models
is the Classification And Regression Tree (CART) algorithm by Breiman et al.
[1984] (see Figure 5). Let D = {xi, yi}ni=1 be a dataset of size n that consists of
a response, yi, and m features, xi = (xi,1, . . . , xi,m), for each observation i. The
CART algorithm partitions the feature space R = Rm into T non-overlapping
regions, R1, . . . , Rt, . . . , RT (see Figure 7a). In each region, the fitted response, wt,
is the average of the response observations within that region. The model maps
input x to y as wt of the region Rt the input belongs to

f̂(x) =
T∑
t=1

wtI(x ∈ Rt).

The CART algorithm uses a top-down greedy approach as it is computationally
infeasible to consider every possible partition of the feature space R. Starting
with a single root node containing all the data, the algorithm considers a splitting
variable j ∈ {1, . . . ,m} and split value s that creates the half-planes Rl(j, s) =
{x|xj ≤ s} and Rr(j, s) = {x|xj > s}. The algorithm seeks the splitting variable
j and split value s that maximizes the loss reduction R,

R(j, s) =
∑

i:xi∈Rroot

L(yi, ŵroot)︸ ︷︷ ︸
Lroot

−

 ∑
i:xi∈Rl(j,s)

L(yi, ŵl) +
∑

i:xi∈Rr(j,s)

L(yi, ŵr)

︸ ︷︷ ︸

Lstump

. (8)

Here stump refers to the root node and its two resulting regions, Rl and Rr as
illustrated by Figure 6.

15

wl wr

wroot

root

l r

root

Lstump =
∑

i:xi∈Rl

L(yi, wl) +
∑

i:xi∈Rr

L(yi, wr)

Lroot =
∑

i:xi∈Rroot

L(yi, wroot)

R = Lroot − Lstump

stump

Figure 6: The root and stump
The figure shows how the loss reduction R of a split is calculated. Lroot is the loss before the
split and Lstump is the loss after splitting the data by a splitting variable j ∈ {1, . . . ,m} and a
split value s. The loss reduction is the difference in the loss before and after splitting,
R = Lroot − Lstump. After finding the split, the splitting procedure repeats on the resulting
nodes l and r, where l and r become ”roots”. The splitting procedure stops when a stopping
criterion is reached.

After finding the partition that results in the largest loss reduction, the CART
algorithm recursively repeats the splitting process on the resulting regions un-
til a stopping criterion (or multiple) is satisfied (e.g., a maximum tree depth
(max depth) or a minimum number of observations in a leaf node (min sample
leaf)).

2.5.1.1 Stability of Trees
Trees are known to have high variance. Due to the high variance, small changes
in data can often lead to very different splits which again can lead to inconsis-
tent predictions on new unseen data, i.e., instability. Trees are unstable because
changes in the top split affect all splits below it due to the hierarchical nature of
the learning process, i.e., greedy splitting. The use of a more stable split criterion
can alleviate this instability to some extent, though it cannot entirely eliminate it
(Hastie et al. [2001]). Evolutionary trees can also be used to address the hierarchi-
cal instability as it finds the tree structure based on a global criterion rather than a
local criterion (Jankowski and Jackowski [2014]). Another limitation of regression
trees is the lack of smoothness of the predictions, which limits their performance
where the underlying function is expected to be smooth, as illustrated by Figure
7b (Hastie et al. [2001]). One way of dealing with the high variance problem is
to use regularization and/or ensemble methods such as random forest and gra-
dient tree boosting. The ensemble methods also address the lack of smoothness
problem.

16

(a) Tree regions (b) Lack of smoothness

Figure 7: Tree regions and prediction surface
The figure shows (a) how a tree splits the feature space into non-overlapping regions, and (b)
the prediction surface of the same tree. The step-like function illustrates the lack of smoothness
of regression trees. The tree is trained on simulated data with two features, x1,x2 ∼ U(0, 4)
and y ∼ N (x1 + x2, 1).

2.5.2 Random Forest

Bagging or bootstrap aggregation (Breiman [1996]) is an ensemble technique that
reduces the variance of an estimated model by training multiple models on boot-
strapped samples of the training data to create an ensemble of models and then
aggregating their predictions. The variance reduction of this model averaging sta-
bilizes the predictions and improves the predictive performance compared to using
a single model. Bagging works well for high-variance, low-bias models like trees.
More formalized, bagging involves training B trees independently by taking boot-
strap samples {Db}b=1,...,B from a training dataset D. After B trees are trained,
the bagging predictions are given by

fbagg(x) =
1

B

B∑
b=1

f b(x|Db),

where the conditional (·|Db) means that the tree was trained on the bootstrap
sample Db. In bagging, the trees generated are identically distributed, meaning
that the expected value of the average of the trees is equal to the expectation of
any of the individual trees. Any performance improvement can only be achieved
through variance reduction (Hastie et al. [2001]). The variance of bagging is

ρσ2 +
1− ρ

B
σ2,

where ρ is the positive pairwise correlation between the bagged trees. As B in-
creases, the second term disappears, but not the first. Therefore, the benefit of
averaging is limited by the correlation between bagged trees. The random forest
algorithm, developed by Breiman [2001], improves upon bagging by introducing
additional randomization, which reduces the correlation between trees and further

17

enhances variance reduction. This involves randomly selecting a subset of features
for each split in the tree. Putting it all together results in Algorithm 1.

Algorithm 1: Random Forest (Hastie et al. [2001])

Input : Training data D = {Xi, yi}ni=1

Number of trees B
Output: The model, fB

rf

1 for b = 1 to B do
(a) Draw a bootstrap sample Db of size n from training data.

(b) Fit a random forest tree Tb to the bootstrapped data, by recursively repeating steps
for each terminal node of the tree until the stop criterion is reached.

i. Select m′ variables at random from m variables.

ii. Pick the best variables/split-point among the m′.

iii. Split the node into two child nodes.

2 Output the ensemble model return fB
rf

The number of variables to randomly sample as candidates at each split, m′, is a
hyperparameter and is in many implementations called mtry. Hastie et al. [2001]
recommends mtry = ⌊m/3⌋ and min sample leaf = 5 as default hyperparameters
for random forests. The number of trees in the forest is also a hyperparameter
and is often set to 100 as the default value (Pedregosa et al. [2012]). Segal [2003]
demonstrates that controlling the depths of individual trees in random forests can
result in a small gain in performance. However, Hastie et al. [2001] recommends
the used the use of fully-grown trees as they experience the performance gain of
controlling the tree depths to be too modest to be worth the additional hyperpa-
rameter.

2.5.3 Bumping

Breiman [1996] showed how bootstrap and averaging could improve the predictive
performance compared to a single tree. Tibshirani and Knight [1999] proposed a
different use of bootstrapping, called bumping, that does not involve averaging or
combining trees but rather finding a better single tree. It involves using bootstrap
samples of the training data to provide candidate models. Due to the greedy
splitting procedure, CART tends to find local minima. Bumping can prevent the
learning algorithm from getting stuck in suboptimal solutions (Hastie et al. [2001]).
Similar to bagging, bootstrap samples are drawn, and a tree is fitted to each one.
However, instead of averaging the predictions, one selects the tree fitted on a
bootstrap sample that minimizes the loss on the original training data. That is, B
bootstrap samples, Db where b = 1, . . . , B, are drawn from the original training set
D. A tree is fitted to each bootstrap sample, and the tree with the lowest loss on
the original training set is selected. Bumping aims to improve function search by
perturbing the data in order to move the search around to good areas of function
space. For instance, if a few data points lead to a suboptimal solution, removing
those points in a bootstrap sample can result in a better solution (Hastie et al.
[2001]).

2.5.4 Gradient Tree Boosting

Gradient tree boosting (GTB), introduced by Friedman [2001], is another ensemble
learning algorithm that uses trees. Unlike random forests that build multiple trees

18

in parallel and aggregate their predictions, GTB builds trees sequentially, where
each tree tries to improve the errors made by the previous ones. The derivation is
based on previous literature on gradient boosting, specifically on the second-order
Taylor approximation method first introduced by Friedman et al. [2000] and later
implemented for CARTs (Chen and Guestrin [2016]; Lunde et al. [2020]). The
concept is similar to the Newton-Raphson algorithm described in section 2.2.6.
Let f (k−1) = f0 + . . . + fk−1 be a GTB model with k − 1 already fitted trees.
To sequentially improve the predictions, one wants to add a new tree fk that
minimizes

f̂k = argmin
fk

∑
L(yi, f (k−1)(xi) + fk(xi)),

approximately to the second order. The second-order approximation of the loss
can be computed by using the current model, f (k−1), to get the current predictions
ŷ
(k−1)
i = f0(xi) + . . . + fk−1(xi), which again is used to get the first and second
derivatives,

gi,k =
∂

∂ŷi
L(yi, ŷk−1

i), hi,k =
∂2

∂ŷ2i
L(yi, ŷk−1

i). (9)

The derivatives are used to compute a second-order Taylor approximation of the
original loss,

L̃
(
y, ŷ

(k−1)
i + fk(xi)

)
=

n∑
i=1

[
L(yi, ŷ(k−1)

i) + gi,kfk(xi) +
1

2
hi,kfk(xi)

2

]
.

For a given feature mapping qk, the prediction ŵt for a leaf node t is given by

ŵtk = −Gtk

Htk

, Gtk =
∑

i:xi∈Rtk

gik, Htk =
∑

i:xi∈Rtk

hik, (10)

and results in the following improvement of the current model’s training loss

L̃(t)(qk) = −1

2

T∑
t=1

G2

H
. (11)

Using Equation 11, a loss reduction similar to Equation 8 can be established,

R̃(s, j) =
1

2

[
(
∑

i:xi∈Rl
gi)

2∑
i:xi∈Rl

hi

+
(
∑

i:xi∈Rr
gi)

2∑
i:xi∈Rr

hi

−
(
∑

i:xi∈Rroot
gi)

2∑
i:xi∈Rroot

hi

]
. (12)

Using the CART algorithm together with this formula for evaluating the split
candidates, trees can be built sequentially, where each new tree aims to improve
the errors made by the previous trees. Algorithm 2 sums up the full second-order
GTB procedure.

19

Algorithm 2: Second order gradient tree boosting. (Hastie et al. [2001]; Chen
and Guestrin [2016]; Lunde et al. [2020])

Input : Training data D = {Xi, yi}ni=1

Differentiable loss function L(·, ·)
Learning rate η ∈ (0, 1]
Number of boosting iterations K

Output: The model, f (K)

1 f (0) = ŵ = argminw
∑n

i=1 L(yi, w)
2 for k = 1 to K do

i. Compute derivatives (9)

ii. Determine the tree structure qk by the recursively selecting the binary split j and s
that maximizes (12) until stopping criterion is reached

iii. Compute the leaf predictions (10), given qk

iv. Scale the tree with the learning rate, fk(x) = η
∑T

t=1 wtkI(x ∈ Rtk)

v. Update the model f (k)(x) = f (k−1)(x) + fk(x)

3 Output the model: return f (K)

The hyperparameter ”learning rate” η ∈ (0, 1] in Algorithm 2 is also known as
shrinkage (Friedman [2002]), and is used to shrink the effect of each new tree
on the ensemble by a constant factor. The shrinking of trees leaves space for
future trees to improve the model. Note for squared error loss the second-order
approximation is exact. Furthermore, the special case of η = 1 and K = 1 results
in a single tree. By letting the f (0) be a constant model predicting the mean of the
response variable, f (0)(x) = ȳ, then f (0)(x)+f1(x) will be equivalent to a standard
CART model. However, for Poisson loss, the second-order approximation is just
that, an approximation. As a result, the f (0)(x)+f1(x) will only be approximately
a standard CART model.

2.5.5 Statistical Implication of Greedy Splitting

Statistical inference using greedy splitting differs from fixed splitting, e.g., splitting
at a position independent of the training loss. The latter can rely on the central
limit theorem (CLT), while the former cannot, as it is a multiple comparison
procedure with different statistical properties that require adjustment (Jensen and
Cohen [2000]). For simplicity, consider the fitted response w of a node with squared
error loss, which is the average of the response variable in that node. Consider
a greedy splitting of a (local) root node. Let wl(π), π ∈ [0, 1], be a function of
the fitted response in the left node given the proportion of the data going from
the root node to the left node, where π = 0 and π = 1 correspond to none and
all of the data, respectively. With fixed splitting (i.e., π being fixed), CLT asserts
that the wl converges to a normal distribution, but not for greedy splitting. The
asymptotic behavior of wl(π) when moving more and more data from the root node
to the left node by moving the split point from left (π = 0) to the right (π = 1)
can be described by Donsker’s invariance principle (Donsker [1951]). Donsker’s
invariance principle states that function wl(π) converges to a Brownian bridge.
The same applies to the right node wr(π). Since the squared error loss of wl and
wr is quadratic, then the squared error loss of wl(π) and wr(π) is quadratic over
a Brownian motion (a bivariate Gaussian process). The statistical implication
of greedy splitting is important for the next subsection, where an information
theoretic approach for determining the tree’s complexity is introduced.

20

2.5.6 Adaptive Tree Complexity

Typically the tree complexity is determined through a hyperparameter search of
the stopping criterion (max depth or min sample leaf) or by first building a very
large tree and then pruning it using cost-complexity pruning (Hastie et al. [2001],
p. 308). Lunde et al. [2020] introduce an information theoretic approach for de-
termining the tree complexity without the need for hyperparameter tuning. The
theory behind the approach involves a significant amount of statistical and math-
ematical theory. I will provide a simplified description of the approach, but I
encourage readers to read the paper of Lunde et al. [2020] for a more detailed ex-
planation. Lunde et al. [2020] show (under assumptions typical for a H0 hypothesis
and a feature x) how the GTB’s optimism C (test loss minus training loss) of the
greedy splitting process converges to a specific Cox-Ingersoll-Ross (CIR) process
(Cox et al. [1985]). This convergence is established by using the fact that the
second-order approximation of the loss is quadratic in wl(π) and wr(π) and using
the bivariate Gaussian process obtained via Donsker’s invariance principle (Section
2.5.5).

The approximation of the generalization loss reduction R̃0 for a node is the training
loss reduction R plus the difference in the approximation of optimism in (local)
root and stump,

R̃0 = R+ C̃root − C̃stump.

The splitting process of a branch is stopped when R̃0 < 0. The great advantage
of the adaptive tree complexity is that it alleviates the need for hyperparameter
tuning and pruning. The optimism in the root node can be approximated by

C̃root ≈
∑

i∈I(gi + hiŵt)
2

n
∑

i∈I hi

, (13)

where g = ∂L(yi, f(xi)) and h = ∂2L(yi, f(xi)) are the first and second order gra-
dient of the loss function, which corresponds to the Takeuchi Information Criterion
(TIC) (Takeuchi [1976]).

The tree optimism cannot be handled directly by TIC when a variant of greedy
splitting is involved in learning q(x). Therefore, Lunde et al. [2020] employ the
Donsker invariance principle from Section 2.5.5 and show that locally for the model
selection choice between a split (resulting in a stump model) and no-split (only a
single root node), the loss reduction optimism C̃R = C̃root−C̃stump can be estimated
as

C̃R = −C̃rootπE
[
max

j
Bj

]
. (14)

Here Bj = maxτ Sj (τ), where Sj is a CIR process, and π is the fraction of training
data passed to the node. C̃root is calculated as Equation 13. Estimating E [maxj Bj]
is complicated. Following Lunde et al. [2020], Sj is found to be a specification
of the CIR process with parameters α = 2, β = 1, and σ = 2

√
2. Using the

specification of the CIR process, extreme value theory can be used to approximate

21

maxτ Sj (τ). Since the CIR process has a gamma stationary distribution, the
maximum of a large number of CIR-generated variables converges to the Gumbel
distribution (i.e., the CIR process is in the maximum domain of attraction of the
Gumbel distribution), Bj ∼ Gumbel. An asymptotic approximation of Bj can
be obtained by fitting the CIR to the Gumbel distribution. For more than one
feature, the features are assumed to be independent, and the expectation can be
approximated as

E
[
max

j
Bj

]
=

∫ ∞

0

1−
m∏
j=1

P (Bj ≤ z)dz. (15)

With the approximate expectation from Equation 15, the loss-reduction optimism
C̃R can be computed and used to calculate the approximation of the generalization
loss reduction R̃0. Figure 8 compares the complexity of a tree using the adaptive
method to a tree using hyperparameter search through grid search and cross-
validation.

Figure 8: Adaptive tree complexity vs. grid search
The figure compares the predictions of a regression tree using adaptive tree complexity to a
regression tree using a grid search with 5-fold cross-validation to find tree complexity. Each
step on the function corresponds to a region (i.e., more regions means a more complex tree
structure). The figure shows the adaptive tree complexity method adaptive increase the
complexity as the data size increases from n = 100 (left plot) to n = 1000 (right plot). The grid
search used hyperparameters and values max depth = [5, 10,∞], min sample leaf = [1, 5], and
cost complexity alpha = [0, 0.01].

In addition to adaptively determining the complexity of trees, the information
criterion of Lunde et al. [2020] can also be used to automatically determine when to
stop the iterative boosting procedure of the GTB algorithm by stopping when

η(2− η)R+ ηC̃R < 0.

Based on the theory above, Lunde et al. [2020] developed a fast gradient tree boost-
ing algorithm called aGTBoost in which the complexity of trees and the number of
boosting iterations are adaptively determined.

22

3 Methodology

In this section, I define the notion of stability used in the thesis. I also introduce
the two conflicting objectives of optimizing both performance and stability and
present various update strategies aimed at optimizing both objectives. The update
strategies require some modifications to the original CART algorithm which also
will be presented in this section.

3.1 Performance Measure

To evaluate and compare models’ performances, a performance measure is needed.
This thesis uses the mean squared error (mse)

1

n

n∑
i=1

(yi − f̂(xi))
2, (16)

and mean Poisson deviance,

2

n

n∑
i=1

[
yi log

(
yi

ef̂(xi)

)
− {yi − ef̂(xi)}

]
, (17)

as performance measures. The mean Poisson deviance is based on the Poisson
likelihood and loss. It is a common performance measure for measuring the overall
discrepancy between observed and predicted counts in a Poisson regression model.
The mse is used when the learning algorithm aims to minimize the squared error
loss (2), whereas mean Poisson deviance is used when minimizing the Poisson loss
(5).

3.2 Update Stability

To recap from Section 2.3.4, stability is traditionally defined as how much a model’s
predictions change due to changes in the training data, such as the replacement
or removal of a data point. It reflects the impact of each data point on the
learning process and is often used to establish a bound on the generalization error.
However, this thesis is concerned with how much a model’s predictions change due
to updating the model when more data becomes available, which I named update
stability. Update stability is a performance measurement to determine how stable
a model update is, rather than a bound on the generalization error.

A model f1 is trained at time t1 with the training data D1. At t2 more data
becomes available. The model is updated using all available data D2 to get the
updated model, f2 (see Figure 9 for notation). Update stability is the discrepancy
between the predictions of f1 and f2. Similar to the choice of loss, how to measure
the discrepancy depends on the data. When y|x ∼ N (µ, σ) is assumed, then mean
squared error is a natural measurement,

Smse =
1

n

n∑
i=1

(f1(x)− f2(x))
2. (18)

The Smse measures the average squared distance between the predictions. For
claims frequency estimation, which assumes y|x ∼ Pois(λ), squared distance is

23

f1

D1

ŷ1

f2

D2

ŷ2

t

predict predict

learn update

new data D∆t

S = (ŷ1 − ŷ2)
2

Figure 9: Update stability
The figure explains the notion of update stability. Let D1 be the training data at time t = 1.
With D1, a model f1 is learned and outputs the predictions ŷ1 = f1(xval) on a validation set.
At the time t2 more data is available D∆t, where ∆t = t2 − t1. The model is updated using
data D2 = D1 ∪ D∆t to get the updated model, f2. The updated model outputs the predictions
ŷ2 = f2(xval) on the same validation set. The update stability is the discrepancy between ŷ1
and ŷ2. Here represented as the squared error.

not appropriate as it will have a larger emphasis on high-frequency predictions
than low-frequency predictions. Hence, a different stability measure is needed.
After discussing with a domain expert, a new stability measure was defined for
claims frequency estimation,

Ssdlr =

√√√√ 1

n

n∑
i=1

(¯̂ϵ− ϵ̂i)2 , where ϵ̂i = log

(
f2(xi)

f1(xi)

)
, (19)

where ¯̂ϵ is the average log ratio of the predictions. Ssdlr is the standard deviation
of the log ratio of the predictions from f1 and f2. The ratios measure the relative
change in the predictions and are in the range [0,∞]. The log transformation
makes the ratios symmetrical around zero in the range [−∞,∞]. Ssdlr can be used
to produce a standard deviation-based confidence interval for the change from f1
to f2:

−Ssdlr < log

(
f2(xi)

f1(xi)

)
< Ssdlr

e−Ssdlr × f1(xi) <f2(xi) < f1(xi)× eSsdlr

For example if Ssdlr = 0.3, then 68% of data satisfy 74% × f1(xi) < f2(xi) <
135% × f1(xi). If the log-deviation is normally distributed, approximately 32%
of the predictions will have a deviation outside this interval. For small values, ex

is a close approximation of 1 + x and Ssdlr can therefore be interpreted directly
as a rough estimate of a kind of coefficient of variation of the given prediction.
For both Smse and Ssdlv, low values indicate stability and large values indicate
instability.

Note that stability in the traditional sense refers to how much predictions change
due to the removal or replacement of a data point and the order of the removal or
replacement of a data point does not matter. For update stability, the order does
matter. For instance, the discrepancy between f1 and f2 may differ if f1 is trained

24

on D∆t rather than D1. Throughout the rest of the thesis, the term stability will
refer to update stability.

3.3 Performance-Stability Trade-off

The changes in the predictions from t1 to t2 can be attributed to two main fac-
tors: noise in the datasets or the additional information gained from more data.
Ideally, a learning algorithm would be able to adapt to new information, ignore
the noise in data, and remain close to f1. However, achieving such a system is
challenging since allowing the algorithm to adapt to new information often comes
at the expense of increased risk of adapting to noise, reducing stability. Similarly,
prioritizing stability reduces the risk of adapting to noise but can limit the algo-
rithm’s ability to adapt to new information, reducing performance. The goal is to
have a learning algorithm that is Pareto-efficient, meaning there is no change in
the current performance-stability trade-off that will lead to improvement of per-
formance or stability without compromising the other. There may exist multiple
Pareto-efficient situations. The set of Pareto-efficient solutions is called the Pareto
frontier.

3.4 Modifications to CART

This thesis modifies the CART algorithm by using the second-order approximation
of loss reduction R̃ rather than the exact loss reductionR, i.e., the modified CART
uses the GTB procedure with K = 1 and η = 1. Remember from Section 2.5.4
that the GTB procedure with K = 1 and η = 1 results in a CART tree and, for
squared error loss, this tree will be identical to a CART tree built using exact loss
reduction. The benefit of using the second-order approximation of loss reduction
is that it allows for the use of the adaptive tree complexity method from Section
2.5.6. This alleviates the need for multiple hyperparameters, which are commonly
utilized to optimize tree complexities. Another benefit is that it is easy to add
custom loss functions as long as the loss function is twice differentiable. This
comes in handy as several of the proposed update methods involve modification
of the original loss function used to train the model.

It is worth mentioning a challenge with using the second-order approximation for
Poisson loss. For high-frequency observations that are substantially larger than the
initial constant prediction, the Newton-Raphson algorithm might take too large
steps leading to larger predictions than expected due to approximation errors from
the Equation 10. The same issue occurs for low-frequency observations, in this
case, Newton-Raphson takes too small steps, also leading to larger predictions
than expected. In gradient boosting, the inaccuracy in step size, w, is handled by
shrinkage and sequentially adding trees to correct for the errors of the previous tree.
For the modified CART, the inaccuracy in w needs to be addressed. One possible
but complex solution might be the use of Adaptive Damping, which can adaptively
adjust the inaccuracy of the step size (Grosse [2021]). However, since experiments
show (Appendix A) that regions based on the second-order approximation of the
loss reduction used in this thesis result in similar regions as the exact loss reduction,
a simpler solution would be to use the exact MLE of w instead approximate MLE
(Equation 10).

To summarize, the modified CART algorithm involves using the second-order ap-

25

proximation of loss reduction instead of the exact loss reduction to find the tree
splits. But due to inaccuracy in the second-order approximation of the leaf pre-
diction w for Poisson loss, the algorithm uses the exact MLE of w,

wMLE = Φ

(
1

n

n∑
i

yi

)
,

where Φ(·) is the link function.

3.5 Update methods for Regression Tree

With the modified CART algorithm established, the proposed method of updating
it can be introduced. This thesis proposes five methods for updating regression
trees using the modified CART algorithm. The proposed methods are based on
the use of a node data structure containing the node’s split information (j and s),
prediction w, and pointers to its children (l and r).

3.5.1 Naive Update

Clearly, not updating the tree will be the most stable solution, but then the new
information is not utilized. Expanding on that thought, the most stable update
method will be to leave the current tree structure, q, as is and only update the tree’s
predictions wt for t ∈ [1, T] to fit with all the available data. Since the naive update
method (NU) only updates the leaf node predictions, it makes the assumption that
the tree structure of f1 is sufficiently good and does not need updating. Thus,
the NU method heavily focuses on stability, and any improvement in performance
is due to variance reduction of the leaf predictions. The other update methods,
presented in the upcoming subsections, consider finding a better balance between
performance and stability. The NU method is presented in Algorithm 3. Figure 10
shows how the model change from t1 to t2 using NU.

(a) Tree at time t1. (b) Tree at time t2.

Figure 10: Model updating using NU
The figure shows how the tree changes from t1 (a) to t2 (b) using NU using the Carseats
dataset. The tree structure and splits of (b) are the same as (a), but the predictions in the
leaves are updated. Details about the Carseats dataset are provided in Appendix C.

26

Algorithm 3: Naive update
input : Training data D = {Xi, yi}ni=1 at time t2

node, the root node of a tree.
output: updated root node node

1 Function update(D, node):
2 if node is a leaf then
3 Set the node’s prediction to 1

n

∑n
i=1 yi

4 return node

5 Let l and r be the node’s left and right child
6 Let Dl and Dr be the left and right partition of D given the node’s split information j

and s
7 l = update(Dl, l)
8 r = update(Dr, r)
9 return node

3.5.2 Tree Reevaluation

The Tree Reevaluation (TR) is an extension of the NU. Similar to NU, the prediction
in the tree is updated, but TR also allows for parts of the tree structure to change
if one is confident that it will lead to a better tree structure. TR uses a top-down
reevaluation of the tree’s nodes. The idea is that as more data is available the
current tree structure may no longer be the best and some parts of the tree may
need to be updated. The method is based on Hoeffding Trees and Hoeffding bound
(Manapragada et al. [2018]). Hoeffding bound states that given n independent
random variables v1, . . . , vn with range R and mean v̄, the true mean is at least
v̄ − ϵ with probability 1− δ where ϵ is

ϵ =

√
R2 ln 1/δ

2n
. (20)

Using the idea of Hoeffding bound, TR can check for each node whether the ratio

of loss reduction of the current split {j, s}a and best split, {j, s}b, ϘR =
R{j,s}b
R{j,s}a

,

is likely to be greater than 1. If so, the best split can be selected with a degree
of confidence. For a given tolerance δ, if ϘR > 1 + ϵ then one can assert with
confidence 1− δ that the split {j, s}b is better. By adding a small value, say α, to
1+ ϵ then one can require {j, s}b to be at least α×100 percent better than {j, s}a.
Here δ and α are hyperparameters, where δ determines the confidence in the new
split is better and α determines how much better the new split is required to be.
The tree is updated by using a top-down reevaluation of the nodes in the tree. For
each node the reduction ratio ϘR is computed, if the ratio is above the threshold
(1 + α) + ϵ, the current node and all of its descendants are replaced with a new
subtree, where the new subtree is built using the CART process with the part of
the data that ends up in the node. Otherwise, the current node is kept. For leaf
nodes, they are replaced with internal nodes if it is possible to expand them using
the CART process. The TR method is presented in Algorithm 4. Figure 11 shows
how the model change from t1 to t2 using the TR method. The updated tree is
identical to the updated tree using the NU except for the subtree highlighted in
orange. Here TR found, with a confidence 95%, that the split Advertising ≤ 6.5
is 5% better than the previous split Price < 131.5 and replaces the subtree with
a new subtree.

27

(a) Tree at time t1. (b) Tree at time t2.

Figure 11: Model updating using TR
The figure shows how the tree changes from t1 to t2 using TR with a δ = 0.05 and α = 0.05
using the Carseats dataset. The orange nodes highlight the subtree that has changed. Details
about the Carseats dataset are provided in Appendix C.

Algorithm 4: Tree Reevaluation
input : Training data at t2, D = {xi, yi}ni=1

δ, the acceptance probability of choosing the wrong split at a given node
node, the root node of a tree.

output: updated root node node
1 Function update(node ,D, δ):
2 if node has no children then
3 return attemptSplit(node, D)
4 else
5 node, changed = reevaluateSplit(node, D, δ)
6 if !changed then
7 Let l and r be the nodes left and right child
8 Let Dl and Dr be the left and right partition of D given the nodes split

information
9 l = update(l, Dleft, δ)

10 r = update(r, Dr, δ)

11 return node

12 Function reevaluateSplit(node ,D, δ):
13 Compute the loss reduction ratio ϘR
14 Compute ϵ using Equation 20
15 changed = False
16 if ϘR > (1 + α) + ϵ then
17 Build new subtree using CART
18 Replace node and descendants with new subtree
19 changed = True

20 return node, changed

21 Function attemptSplit(node ,D):
22 if cannot split then
23 return node
24 Replace node with a new internal node using CART
25 return node

28

3.5.3 Stable Loss

Both NU and TR use implicit stability regularization. The following methods use
explicit stability regularization, starting with what this thesis refers to as Stable
Loss (SL) update. The SL method adds a stability regularization term to the loss.
The updated tree, f2 is built using the modified CART algorithm with the stable
loss. The method consists of using the predictions of the current tree f1 on data
D2 = {x(2), y(2)} to regularize the loss function and prevent the predictions of
f2 from deviating too much from the predictions of f1. Therefore the stable loss
requires three inputs, the response variable y(2), the predictions from f1, and the
predictions from f2,

LSL

(
y(2), f1(x

(2)), f2(x
(2))
)
=

n∑
i=1

L(y(2)i , f2(x
(2)
i))︸ ︷︷ ︸

loss

+ γL(f1(x(2)
i), f2(x

(2)
i))︸ ︷︷ ︸

regularization

 .

where γ is a hyperparameter that determines the strength of the regularization (be-
lief in f1). Here the regularization term uses the same loss function as the loss term,
i.e., if squared/Poisson loss then the regularization term is the squared/Poisson
loss between the predictions of f1 and f2. By using the same loss function for
the regularization term, the stable loss has an explicit solution for MLE of a leaf
prediction,

wMLE = Φ

(
1

(1 + γ)n

n∑
i

y
(2)
i + γf1(x

(2)
i)

)
,

where Φ(·) is the link function. The predictions f1(x
(2)) together with D2 are

recursively split and passed to the nodes as the new tree is built and are used to
compute the leaf prediction. Figure 12 shows how the model change from t1 to t2
using the SL method.

29

(a) Tree at time t1. (b) Tree at time t2.

Figure 12: Model updating using SL
The figure shows how the tree changes from t1 (a) to t2 (b) using SL with γ = 0.25 using the
Carseats dataset. From (a) to (b) the split variables remain the same, but the split value is
slightly adjusted for one of the nodes. It is worth noting that although the split variables
remain the same in this particular illustration, they may also change. Details about the
Carseats dataset are provided in Appendix C.

3.5.4 Approximate Bayesian Update

The fourth method is named Approximate Bayesian Update (ABU) and expands
on the idea of regularizing the splitting process, but instead of having the strength
of regularization γ as a hyperparameter it is found analytically using a Bayesian
approach. In SL γ is a scaler, whereas for ABU γ is an array of weights.1 Section
2.4.1 introduced the Bayesian perspective of model updating and that L1 and L2
regularization has a Bayesian interpretation. Using Bayes theorem from Equation
7, a Bayesian belief system can be established. The idea of ABU is rooted in an
incremental learning perspective, which is why D1 and D∆t are used to illustrate
the concept. The concept of ABU can also be applied when using D2 instead of
D∆t . Therefore, once the concept has been explained, ABU uses D2 rather than

D∆t , to be consistent with the rest of the thesis. Let D1 = {x(1)
i , y

(1)
i }n1

i be the

datasets at time t1 and D∆t = {x(∆t)
i , y

(∆t)
i }n∆t

i be new available data at time t2,
respectively. The aim is to minimize the regularized loss

min

n∆t∑
i=1

L
(
y
(∆t)
i , f2(x

(∆t)
i)

)
+ γ

n1∑
i=1

L
(
f1(x

(1)
i), f2(x

(1)
i)
)
.

Let f ∗(x(2), ŵ∗) be the belief in the model predictions if it had been trained on D1

and D∆t combined, D2 = D1∪D∆t = {x(2)
i , y

(2)
i }n2

i . The belief update is then,

P (w|D2)︸ ︷︷ ︸
posterior

∝ P (D∆t |w)︸ ︷︷ ︸
likelihood

×P (w(1)|D1)︸ ︷︷ ︸
prior

.

1Another difference between ABU and SL is that SL regularizes based on similar prediction on
x(2), whereas ABU regularizes based on similar prediction on x(1).

30

For squared error loss, the posterior, prior, and likelihood are all normal-based,
which results in the following negative log normal posterior,

− logP (w|D2) ∝
1

σ2
y|x︸︷︷︸

likelihood

precision

(
y(∆t) − f2(x

(∆t))
)2

+
1

σ2
w(1)︸ ︷︷ ︸
prior

precision

(
f1(x

(1))− f2(x
(1))
)2

=
1

σ2
y|x︸︷︷︸

likelihood

precision

L
(
y(∆t), f2(x

(∆t))
)
+

1

σ2
w(1)︸ ︷︷ ︸
prior

precision

L
(
f1(x

(1)), f2(x
(1))
)

∝ L
(
y(∆t), f2(x

(∆t))
)
+

σ2
y|x

σ2
w(1)

L
(
f1(x

(1), w1), f2(x
(1))
)
,

where σ2
y|x is the variance of the response variable and σ2

w(1) is the variance of

the predictions. The response and prediction variance ratio γ =
σ2
y|x

σ2

w(1)

reflects the

belief in f1. A larger ratio suggests a stronger belief in f1, whereas a smaller ratio
suggests a weaker belief. Both σ2

y|x and σ2
w(1) can be estimated by drawing boot-

strap samples {xb
i}

n1
i=1 from the empirical distribution function (EDF) of x(∆t) with

the assumption that D1 and D∆t are from the same distribution. The bootstrap
samples are passed to f1 and the estimated σ̂2

y|x and σ̂2
w(1) are the response and

prediction variance of the leaf nodes the bootstrap samples belong to. The belief
system uses bootstrap estimates from x(∆t) to approximate statistics of x(1), hence
the name Approximate Bayesian Update. The response variance is straightfor-
ward to calculate. It is the variance of the response variable in each node. If the
split process had been random or fixed, the prediction variance could have been
calculated with the standard formula from the central limit theorem. However,
the splitting process is greedy, making the prediction variance more difficult to
calculate. In Section 2.5.6, I showed, based on the work of Lunde et al. [2020],
how the root optimism C̃root and stump optimism C̃stump can be used to find the
tree complexity. Lunde et al. [2020] shows that a node’s optimism can be written
as

C̃root = Ex,y

[
1

n

n∑
i=1

hi

]
σ2
w. (21)

By solving the equation with respect to σ2
w the prediction variance can be calcu-

lated as

σ2
w =

C̃root

1
n

∑n
i=1 hi

=
nC̃root∑n

i=1 hi

,

where C̃root is calculated as per Equation 13. The maximum a posteriori (MAP)
for a leaf node using the posterior squared error loss is

wMAP = Φ

(
1∑n1

i γi + n∆t

[n∆t∑
i

y
(∆t)
i +

n1∑
i

γiw
(1)
i

])
. (22)

A similar posterior loss can be established for Poisson loss by swapping the normal

31

negative log-likelihood of data to a negative log-Poisson likelihood (Equation 5).
This is equivalent to Poisson loss with L2 regularization,

− logP (w|D2) ∝ ef2(x
(∆t)) − y(∆t)f2(x

(∆t)) +
1

σ2
w(1)

(f1(x
(1))− f2(x

(1)))2

= L(y(∆t), f2(x
(∆t))) +

1

σ2
w(1)

(f1(x
(1))− f2(x

(1)))2.

The Poisson posterior loss does not contain the response variance σ2
y|x and γ be-

comes simply the prior precision, 1
σ2

w(1)

. However, experimental testing shows that

better results are obtained using γ =
σ2
y|x

σ2

w(1)

and are therefore used for both squared

error and Poisson loss. The posterior Poisson loss does not have a closed-form solu-
tion for the MAP of w and is approximated by using Equation 22. The concept of
ABU can be applied when using D2 instead of D∆t . In this case, ABU approximates
P (w|D1∪D2) rather than P (w|D2). To be consistent with the other methods, ABU
uses D2 except for in Section 5.2.1.5 where the properties of ABU are demonstrated.
The ABU method is summarized in Algorithm 5.

Algorithm 5: Approximate Bayesian Update.

input : Previous tree f1
Training set at time t1 D1 = {x(1)

i , y
(1)
i }n1

i=1

Training set at time t2 D2 = {x(2)
i , y

(2)
i }n2

i=1

Loss function L : Rm → R
output: updated tree f2

1 Function update(D2,f1):
2 sample {xb

i}
n1
i=1 from EDF (x(2))

3 get σ2
w(1)

b
i and σ2

y|x
b
i from f1 using {xb

i}
n1
i=1

4 train f2 using loss L
(
y(2), f2(x

(2))
)
+
∑n1

i=1

σ2
y|x

b
i

σ2

w(1)
b
i
(f1(x

b
i)− f2(x

b
i))

2

5 return f2

Note, an important detail is that the bootstrap procedure of D1 from ABU is
partially non-parametric and partially parametric. The bootstrap of x is non-
parametric whereas the bootstrap of y|x comes from the model (i.e., parametric),
meaning Db

1 = {xb
i , f(x

b
i)}.

3.5.5 Bumping Approximate Bayesian Update

Bumping Approximate Bayesian Update (BABU) is based on the principle of bump-
ing and ideas from semi-supervised learning to improve the function search. Bump-
ing was introduced in Section 2.5.3 and is a stochastic search that aims to improve
the function search by perturbing the data in order to move the search to more
promising areas of model space. With an initial model trained on the D1 (prior),
BABU uses ideas from bumping and self-training to induce an updated model (pos-
terior) that guides the stochastic search iteratively toward a more promising CART
model. In more detail, the ABU method approximates the posterior P (w|D1 ∪ D2)
with P (w|Db

1 ∪ D2) where Db
1 is sampled from D2. BABU utilizes this property by

first learning an initial tree using D1 to obtain the prior P (w(1)|D1). By treat-
ing D1 as a ”new” dataset, and applying the update method of ABU one gets a

32

posterior P (w|Db
1 ∪ D1) where Db

1 = {xb
i , f(x

b
i)} is sampled from D1. From a self-

training perspective, xb
i can be viewed as an unlabeled example and f(xb

i) as a
pseudo-label. The posterior P (w|Db

1 ∪D1) is an approximation of the posterior of
a model if D1 was of twice the size. By letting the posterior be the new prior one
can iterate the learning process B times to approximate a posterior of a model if
D1 was of B times the size. Here B is a hyperparameter that determines the num-
ber of self-learning iterations. Larger values of B should, in theory, lead to more
stable models due to the prediction variance decreasing as the size of the training
data increases, which makes the regularization term more dominant. Addition-
ally, for large values of B, the dataset will mainly consist of pseudo-labeled data,
also contributing smaller prediction variance. In terms of bias-variance trade-off,
larger training data leads to less model variance. Since model variance has an
inverse relationship with stability, larger training data increases stability. BABU

uses bumping and self-training to find a better initial model and ABU to update
the model. Whereas the other methods only stabilize the updating of a model (f1
to f2), BABU also stabilizes the learning of a model (searching for a stable initial
model f1).

3.6 Update Methods for Random Forest

All the update methods presented for a regression tree can be applied to random
forests using Algorithm 1, as the individual trees can be learned independently of
each other. However, some additional implementation is needed in order for the
methods to work. Since the random forest randomly selects a subset of features
for each split in a tree, each node needs to keep track of its feature subset to ensure
that the updated tree uses the same feature subsets. Additionally, any seeds or
random states are reset before updating, ensuring the same randomness in both
the learning and updating. This also includes the baseline strategy.

Furthermore, there is an option of keeping track of the individual tree’s bootstrap
sample using a n × B matrix of bootstrapped indices, where the b’th column
vector represents indices of the bootstrap samples of b’th tree in the forest. The
number of rows expands as more data becomes available. The purpose of this is
to ensure that the trees in the forest are receiving the same bootstrap sample of
D1 when updated, potentially increasing stability. Since one uses the indices to
keep track of the bootstrapped samples, the order of the training data must not
change. Specifically, this option requires that data points from D1 are before new
data points and in the same order. Keeping track of this indices matrix quickly
becomes memory expensive with large forests and large datasets.

This thesis uses random forest implementation without the option of keeping track
of the bootstrap indices, but some testing was done where bootstrap indices are
kept track of.

3.7 Updating Gradient Tree Boosting

In GTB, the trees are learned sequentially and the current tree depends on the
error of the previous trees. Due to the sequential dependencies between trees, one
needs to stabilize the predictions of the ensemble and not the predictions of the
individual trees. Since each new tree added to GTB aims to improve the training
loss of the previous trees, one can build upon the ideas of SL and ABU, i.e., the

33

use of a stability regularization term to the loss. SL is the simplest to implement
and is almost identical to SL with a single regression tree. Given a GTB model f1
trained on D1 an updated GTB model f2 can be learned with the GTB learning
algorithm using the stable loss and the ensemble predictions f1(x

(2)).

Making ABU work for GTB is significantly more complex than SL due to the task

of computing the weights of the prior, γ =
σ2
y|x
σ2
w
. Since the trees are sequentially

dependent in GTB, statistical challenges arise due to cross-correlation between
trees. Solving this issue would be a step towards making a Bayesian approach
to GTB (or BGTB if you like). However, due to time-constrained, this is left as
future work.

This thesis uses the aGTBoost algorithm of Lunde et al. [2020] as the baseline GTB
and is also extended to include the option of using the SL update method.

3.8 Implementation

Based on the theory presented in this section, I have developed a Python li-
brary for tree-based methods called StableTrees that includes the proposed up-
date methods for regression trees, random forests, and GTB. To optimize per-
formance, the update methods have been implemented in C++ and exposed
to Python through C++ bindings. The Python package is available at https:

//github.com/MortenBlorstad/StableTrees or https://pypi.org/project/

stabletrees/.

4 Data

In this section, the datasets used for the experiment are presented, providing an
overview of their source, size, and included variables. Moreover, this section also
provides information on any data preprocessing or cleaning to prepare the data
for the experiment.

4.1 Simulated Dataset

Simulated data were used when developing the proposed update methods. This
subsection presents how the datasets were simulated. Four features are simulated,
two continuous, one nominal, and one ordinal. Table 1 shows how x is simu-
lated.

Feature Unit simulation
x·,1 interval x ∼ U(0, 4)
x·,2 interval x ∼ U(0, 4)
x·,3 nominal x ∼ U(0, 1)
x·,4 ordinal x ∼ U(0, 4)

Table 1: Summary of the feature variables in the simulated data.
The continuous features (x·,1 and x·,2) were drawn from a continuous uniform distribution,
whereas the nominal (x·,3) and ordinal (x·,4) were drawn from a discrete uniform distribution.

The simulated features were used to create 3 different datasets with different re-
lationships to y. Let ϕ(x) be a polynomial function defining the relationship of

34

https://github.com/MortenBlorstad/StableTrees
https://github.com/MortenBlorstad/StableTrees
https://pypi.org/project/stabletrees/
https://pypi.org/project/stabletrees/

x to y. The data-generating process is yi ∼ N (ϕ(xi), σ), where i = 1, . . . , n and
n = 1000. Tree different polynomials are used to create 3 different cases (datasets).
The first polynomial is a linear polynomial,

ϕ1(xi) = xi,1,

and defines the first and simplest case, with only feature x·,1, (x ∈ R1). The second
polynomial is a quadratic polynomial,

ϕ2(xi) = x2
i,1 + 0.75xi,2,

and defines the second case, increasing the function complexity by using both
feature x·,1 and feature x·,2, (x ∈ R2). The third polynomial is also a quadratic
polynomial,

ϕ3(xi) = x2
i,1 + 0.75xi,2 − 0.25xi,4 + 0.1xi,3 × xi,1 − 0.05xi,4 × xi,2,

and defines the third and final case. Here all four features (x ∈ R4) are used
to define the relationship to y and are therefore the most complex case of the
three. Note also the interaction effects. The simulation of the three case datasets
is summarized in Table 2.

Dataset n×m Data-generating process
Case 1 1000× 1 y ∼ N (ϕ1(x), 1)
Case 2 1000× 2 y ∼ N (ϕ2(x), 3)
Case 3 1000× 4 y ∼ N (ϕ3(x), 3)

Table 2: Summary of the simulated datasets for the different cases.

4.2 ISLR Datasets

The proposed methods are evaluated using various benchmark datasets for regres-
sion from the book ”Introduction to Statistical Learning”(ISLR) by Gareth James
et al. [2013]. The datasets are diverse and cover areas such as finance, marketing,
and sports, as summarized in Table 3. This diversity allows for a comprehensive
assessment of the performance and stability of the proposed methods across a
broad range of data characteristics.

The datasets contain a mix of continuous and categorical features. Categori-
cal features that are nominal are one-hot encoded, whereas ordinal categorical
features are converted to ordinal integers. For the datasets College, Hitters,
and Wage the response variable is log-transformed as they are skewed due to a
small number of very large values. The squared error loss is sensitive to out-
liers and the log-transformation reduces the influence of these small numbers
of large numbers on the loss, which may lead to increased performance. The
Hitters dataset contains 59 data points where the response variable has missing
values. These data points are removed. The datasets are available at https:

//www.statlearning.com/.

35

https://www.statlearning.com/
https://www.statlearning.com/

Dataset n×m Description
Boston 506× 13 A dataset containing housing values in 506 suburbs of

Boston.
Carseats 400× 11 A simulated dataset containing sales of child car seats

at 400 different stores.
College 777× 18 Statistics for a large number of US Colleges from the

1995 issue of US News and World Report.
Hitters 263× 20 Major League Baseball Data from the 1986 and 1987

seasons.
Wage 3000× 16 Wage and other data for a group of 3000 male workers

in the Mid-Atlantic region.

Table 3: Overview of the ISLR datasets.
This table gives an overview of the ISLR datasets. The dimensions are after data preprocessing,
i.e., one-hot encoding and removal of missing values. (James et al. [2022])

An overview of the available variables for each of the ISLR datasets is provided in
Appendix B to F.

4.3 Claim Frequency Data

To evaluate how the proposed update methods perform for claim frequency esti-
mation, a motor third-party liability (MTPL) insurance portfolio from the French
insurance industry is used. The dataset, named freMTPLfreq, contains 413 169
unique policyholders with 10 variables. An overview of the available variables is
listed in Table 4.

Variable Description
PolicyID The policy ID.
ClaimNb The number of claims during the exposure period.
Exposure The period of exposure for a policy, in years.
Power The power of the car (ordered categorical).
CarAge The vehicle age, in years.
DriverAge The driver age, in years (in France, people can drive a

car at 18).
Brand The car brand divided in the following groups:

A - Renaut, Nissan and Citroen
B - Volkswagen, Audi, Skoda, and Seat,
C - Opel, General Motors, and Ford,
D - Fiat,
E - Mercedes, Chrysler, and BMW,
F - Japanese (except Nissan) and Korean,
G - Other.

Gas The car gas, diesel or regular.
Region The policy region in France (based on the 1970-2015

classification).
Density The density of inhabitants (number of inhabitants per

km2) in the city the driver of the car lives in.

Table 4: The available variables in the freMTPLfreq dataset (Dutang and
Charpentier [2018].

36

The freMTPLfreq dataset is available through the R library CASdatasets (Dutang
and Charpentier [2018]).

4.3.1 Data Preprocessing

As mentioned in the introduction, GLMs assume a linear relationship between fea-
tures and response variables which might be too restrictive as it is common that
the data contains non-linear and interaction components. By binning continuous
features (i.e., constructing categorical features from continuous features) it is pos-
sible to capture potential non-linearities in the relationship between a feature and
the response variable which Figure 13 illustrates.

Figure 13: Poisson regression of the annualized frequency on DriverAge.
Poisson regression of the annualized frequency on the age of the driver, with a linear model, and
when the age of the driver is a categorical variable (adapted from Charpentier [2014] p. 488).

The book ”Computational Actuarial Science with R” by Charpentier [2014] pro-
vides a detailed description of how to build predictive models for claim frequency
estimation with GLMs using the freMTPLfreq dataset, including feature engineer-
ing such as binning of continuous features. Table 5 shows the feature engineering
of the variables. These variables, plus Gas, are one-hot encoded and used to build a
predictive model with GLM. Binning is not necessary for tree-based models as they
can capture non-linear relationships without the need for binning. The tree-based
models use the variables from Table 4 (except PolicyID) and nominal categori-
cal features are one-hot encoded and ordinal categorical features are converted to
ordinal integers.2

2GLM uses the features engineered variables plus Gas to predict the annualized frequency.
The tree-based methods use Power, CarAge, DriverAge, Brand, Gas, and Density. All models
use log Exposure as an offset.

37

Variable Bins
Power [”DEF”, ”GH”, ”other”]
CarAge [0, 15,∞]
DriverAge [17, 22, 26, 42, 74,∞]
Brand [”F”, ”other”]
Density [0, 40, 200, 500, 4500,∞]

Table 5: The feature engineered variables for GLM.

4.3.2 Exploratory Data Analysis

Figure 14 shows how ClaimNb and Exposure are distributed. The portfolio’s claim
frequency (ratio of the total number of claims to the total exposure in years) is
6.93%. The majority of policyholders (95.3%) are claim-free during their insured
period. Only 4.5% of the policyholders file a single claim, whereas the remaining
0.2% of the policyholders file two, three, or four claims during their insurance
period. Almost a third of policyholders (29.4%) have an exposure equal to one,
meaning they are covered by the insurance for a year. Most policyholders (70.5%)
have an exposure below a year and only a few (0.1%) have an exposure greater
than a year.

Figure 14: The distribution of the number of claims, exposure in years,
and claim frequency per year

Figure 15 shows how the features from Table 4 are distributed. The freMTPLfreq
dataset contains three categorical features, Power, Brand, and Gas. The Power

is ordered categorical. Most policyholders (58.3%) have low-power cars (d-f),
whereas 28.5% have medium-power cars (g-h). Only 13.2% have high-power (i-
o). The Brand is divided into 7 groups (A-G, see Table 4). Most policyholders
have cars belonging to either group A (52.8%) or F (19.1%). Only 28.1% of the
policyholders have cars belonging to the other groups. The Gas informs about
what type of fuel the cars use. There are two types of fuel, diesel (49.8%) and
regular/gasoline (50.2%).

38

Figure 15: The distribution of the features in the freMTPLfreq dataset.

The freMTPLfreq dataset contains three continuous features, CarAge, DriverAge,
and Density. Most cars are less than 20 years old (97.8%) and 90.2% of the
policyholders are aged between 25 and 75. Most policyholders (91.6%) live in
cities with less than 5000 inhabitants per km2.

39

5 Experiments

In this section, the proposed update methods are evaluated on different regression
tasks. The section begins by describing the experimental setup, followed by a
presentation of the results. The experiments are structured into three parts. The
first part provides an in-depth presentation of the individual methods for regression
trees on simulated data used for developing them. Next, the ISLR datasets are used
to evaluate the proposed methods for regression trees, random forests, and GTB
across a broad range of data characteristics. Finally, the freMTPLfreq dataset is
used to evaluate the methods for claim frequency estimation.

5.1 Experimental Setup

This subsection provides a detailed description of the experimental setup for the
three parts of the experiments, starting with the setup for the simulated experi-
ments, followed by the setup for experiments on ISLR datasets and claim frequency
estimation.

5.1.1 The Base Setup

All three parts of the experiment use to some degree the same setup and this setup
will be referred to as the base setup. In this thesis, I am concerned with how the
output of a model changes when more data becomes available and how to reduce
this change without reducing performance. The base setup aims to reflect how
the insurance industry needs to adapt its pricing models to new information and
consists of a start time t1 and an update time t2. At t1 a model is initialized
and trained on the currently available data D1. At time t2 new information is
available that is added to D1 to obtain D2. The model is then updated using
one of the proposed update methods. The performance and stability measures are
computed using hold-out test data. To reduce variance in the performance and
stability measures, a repeated cross-validation method is used. For each dataset,
the dataset is divided into k-folds, where k− 1 of the folds represents D2 and half
of D2 represents D1. The last fold is used as test data. This process is repeated
r times and the average of the performance and stability estimates from test data
is used to obtain the final performance and stability measures. The values of r
and k are specified for each experiment in the following subsections. Algorithm 6
summarizes the base setup.

40

Algorithm 6: The base setup
input : Dataset D = {xi, yi}ni=1

Model f
output: Averaged performance and stability measures

1 Function setup(D):
2 for i ∈ 1, . . . , r do
3 Shuffle D
4 Create k-folds
5 for j ∈ 1, . . . , k do
6 Let Dtest be the jth fold
7 Let D2 be the other folds
8 Let D1 be half of D2

9 Train f on D1 to obtain f1
10 Use update method on D2 to obtain f2
11 Compute and store performance score of f2 on Dtest using mse (16) or mean

Poisson deviance (17)
12 Compute and store stability score of f2 on Dtest using Smse (18) or Ssdlr (19)

13 return Averaged performance and stability measures

5.1.2 Simulated Data

The simulated datasets from Section 4 are used to give an in-depth presenta-
tion of the individual methods, highlighting method assumptions and showing
how different hyperparameters affect the performance-stability trade-off. The
baseline and the update methods use the adaptive tree complexity method, and
min sample leaf = 5, unless otherwise specified in the individual setup descrip-
tions.3

5.1.2.1 Baseline
The baseline update strategy retrains the model from scratch using the modi-
fied CART. As a sanity check, I compare the baseline strategy to a regression
tree from the popular open-source machine learning library, Scikit-learn (also
known as Sklearn) (Pedregosa et al. [2012]). Here the baseline is compared to
Sklearn’s implementation of the regression tree using the base setup with r = 1
and k = 10 (i.e., 10-fold cross-validation). Since the baseline uses the adap-
tive tree complexity method, which does not exist for Sklearn’s implementation,
the baseline is compared to Sklearn when both use the same fixed set of hy-
perparameters, max depth = 5 and min sample leaf = 5. Additionally, I com-
pare the baseline to Sklearn when the baseline uses adaptive tree complexity
and min sample leaf = 5, while Sklearn uses a grid search with a 5-fold cross-
validation to highlight any differences in performance. The hyperparameters and
values for the grid search is max depth = [5, 10,∞], min sample leaf = [1, 5], and
cost complexity alpha = [0, 0.01, 0.1, 0.3].

5.1.2.2 Naive Update
The experiment aims to illustrate how the performance of NU depends on the size of
D1 as it assumes the initial tree structure learned using D1 is sufficiently good. The

3A minimum requirement of five observations in a node is set for regression trees to ensure
enough observation to compute response variance and leaf prediction variance in each leaf node.
The response variances and leaf prediction variances node are essential for the proper functioning
of both ABU and BABU.

41

experiment involves executing the base setup (r = 10 and k = 5) multiple times
on increasing data size using the data-generating processes described in Table 2.
Each iteration involves increasing the data size n. The data size starts at n = 1000
(i.e, n1 = 400, n2 = 800 and ntest = 200) and increases by 1000 until n = 10000.
As the tree structure for NU only is determined by D1, one should expect that as
the size of D1 increases, so should the performance as the tree structure should
approach the optimal structure.

5.1.2.3 Tree Reevaluation
TR has two hyperparameters δ and α. The experiment for TR entails using the base
setup with r = 10 and k = 5 to compare how different hyperparameter settings
of TR affect the performance-stability trade-off. The hyperparameter settings
consist of the 9 different combination of α = [0, 0.05, 0.1] and δ = [0.05, 0.1, 0.25].
TRα,δ refers to TR using the hyperparameters α and δ, expressed as percentages.
For example TR0,5 means a TR update using the hyperparameters α = 0 and δ =
0.05. TR extends NU by allowing (parts of) the tree structure to change if one
can with confidence 1 − δ say that the change results in a greater loss reduction.
The hyperparameter δ determines the confidence level, while α determines the
minimum improvement of the change (Section 3.5.2).

5.1.2.4 Stable Loss
The SL method has one hyperparameter γ, which determines the strength of the
explicit stability regularization. The base setup with r = 10 and k = 5 is used
to compare how different values of γ affect the performance-stability trade-off.
The different values are γ = [0.1, 0.25, 0.5, 0.75, 0.9]. SLγ refers to SL using that
particular value of γ. For example SL0.1 means a SL update using γ = 0.1.

5.1.2.5 Approximately Bayesian Update
ABU is based on the idea of approximating the posterior of a model trained on
D1 and D∆t combined using only D∆t . The ABU experiment aims to assess the
accuracy of this approximation and showcase the properties of ABU. To this end,
a different setup than the base setup is used. The experiment consists of two
parts. Both parts use 1000 Monte Carlo simulations from the data-generating
process for Case 2. For each Monte Carlo simulation, the size of the entire dataset,
D2 = D1 ∪ D∆t , is n2 = 1000. D1 and D∆t are non-overlapping and of equal size,
i.e., n1 = n∆t = 500. Also, a separate test set of size ntest = 1000 is simulated
from the same data-generating process. The first part assesses the accuracy of the
approximation. Here, for each Monte Carlo simulation, the mean squared error on
the test set is calculated and used to compute the kernel density estimation (KDE)
for a tree trained on D1 (prior), a tree trained on D∆t (second tree), a tree trained
on D2 (posterior), and a tree using ABU. ABU involves training an initial tree on D1

and using ABU on D∆t to approximate the tree trained on D2. Additionally, for
each Monte Carlo simulation, the change between the prior’s predictions and the
predictions of the other trees on the test set are calculated and used to compute
the stability KDEs for the second tree, ABU, and the posterior tree.

The second part aims to showcase ABU’s adaptability. Here the same Monte Carlo
simulations as the first part is conducted, but the performance and stability KDEs
are computed for a tree trained on D1 (prior), a tree trained on D2 (baseline tree),
a tree trained on D1∪D2 (posterior), and a tree using ABU. ABU involves training an

42

initial tree on D1 and using ABU on D2. The posterior tree, D1∪D2, represents the
posterior tree ABU would approximate without adaptively adjusting the individual
γ values.

5.1.2.6 Bumping Approximately Bayesian Update
BABU has a hyperparameter B which determines the number of bumping (self-
learning) iterations. The base setup with r = 10 and k = 5 is used to compare
how the value of B affects the performance-stability trade-off. The different values
of B in the experiment are B = [1, 3, 5, 7, 10, 20]. BABUB refers to BABU using
that particular value of B. For example BABU1 refers to BABU using B = 1.

5.1.2.7 Tracking Model Updates Over Time
In the base setup, different update methods are evaluated for a single update.
However, in this experiment, the different update methods are evaluated over
multiple update periods to illustrate their long-term behavior. The experiment
involves simulating a training and a test set, D and Dtest, both of size 1000.
Each update method is trained on D, and for each update period, 1000 new data
points are added to D, and the models are updated. For each updated model, the
performance and stability scores are calculated using the Dtest. The experiment
evaluates the methods over ten update periods and is repeated 50 times, and the
average is used to reduce variance in the estimates. The datasets use the same
data-generating process as the Case 1 dataset. The hyperparameters for TR are
α = 0 and δ = 0.05. SL uses γ = 0.75, while BABU uses B = 5.

5.1.3 ISLR Datasets

The ISLR datasets from Section 4 are used to evaluate the update methods on a
broad range of data characteristics using the squared error loss. The experiment is
divided into three parts, one for each tree-based method: regression trees, random
forests, and GTB. For each part, the base setup is used to obtain performance and
stability estimates for the methods. The result is presented as a scatter plot with
stability and performance as the axes, where the Pareto frontier is highlighted in
bold. The Pareto frontier represents the boundary of the best possible models
achievable when optimizing performance and stability simultaneously. The part
for regression trees uses the base setup with r = 5 and k = 10 (i.e., 5 repeated
10-fold cross-validation), whereas random forest and gradient tree boosting use the
base setup with r = 1 and k = 10 (i.e., 10-fold cross-validation).4

For regression trees, each tree uses the adaptive tree complexity method, and
min sample leaf = 5. The random forests use the default hyperparameter settings
from Section 2.5.2, i.e., 100 trees with min sample leaf = 5 and mtry = ⌊m/3⌋.
A hyperparameter search is performed to determine whether controlling for the
individual trees’ complexity using the adaptive tree complexity method improves
performance. For each iteration in the base setup with r = 1 and k = 10, D1 is

4Due to the performance and stability estimates for regression trees being based on repeated
cross-validation, it is necessary to adjust their standard error estimates. The adjustment is
required because repeated cross-validation does not introduce any new independent test cases,
meaning all data points have already been included once in the initial k-fold validation. The
adjustment is based on a heuristic where

√
k is used in the denominator of the standard error

calculation rather than
√
rk (https://stats.stackexchange.com/q/448784).

43

https://stats.stackexchange.com/q/448784

divided into a training (70%) and a validation set (30%). The baseline forest is
trained on the training set and evaluated on the validation set with and without
adaptive tree complexity. The setting with the lowest average loss is selected
and used for the baseline and the update methods. The GTBs use the aGTBoost

algorithm of Lunde et al. [2020], which adaptively determines the number of trees
in the ensemble and the tree complexity of each individual tree. The learning rate
is set to η = 0.1 for the GTBs. Table 6 summarizes the settings used for the
different tree-based methods.

number of trees min sample leaf mtry adaptive tree complexity η
regression tree 1 5 NA yes NA
random forest 100 5 ⌊m/3⌋ hyperparameter search NA
GTB adaptive 1 NA yes 0.1

Table 6: Setting for the tree-based methods for the ISLR datasets

5.1.4 Claim Frequency Data

The freMTPLfreq dataset from Section 4 is used to evaluate the update method
for the task of claim frequency estimation using the Poisson loss. Here the update
methods for regression tree, random forest, and GTB are evaluated and compared
to the traditional method of estimating claim frequency, namely the GLM. The
base setup with r = 1 and k = 6 (i.e., 6-fold cross-validation) is used to obtain
performance and stability estimates. The result is presented by plotting the perfor-
mance against stability estimates and highlighting the Pareto frontier. Here 6-fold
cross-validation is used to be consistent with other papers that investigate the use
of tree-based methods in the insurance industry (Henckaerts et al. [2020]).

Regression tree, random forest, and GTB use the same settings as described in
Section 5.1.3. and is summarized in Table 7.

number of trees min sample leaf mtry adaptive tree complexity η
regression tree 1 5 NA yes NA
random forest 100 5 ⌊m/3⌋ hyperparameter search NA
GTB adaptive 1 NA yes 0.1

Table 7: Setting for the tree-based methods for the freMTPLfreq dataset

5.2 Experimental Results

The experiment results are presented in the same order as the setup of the exper-
iments was introduced.

5.2.1 Simulation Experiments

The preceding subsections present the results of the simulated experiments for the
individual methods, highlighting method assumptions and showing how different
hyperparameters affect the performance-stability trade-off.

5.2.1.1 Baseline
Here, a comparison of the baseline tree to Sklearn’s implementation of a regression
tree is presented. Table 8 presents the performance and stability of the models

44

using the base setup r = 1 and k = 10. Panel A shows when the baseline and
Sklearn use the same hyperparameters, whereas panel B shows when the models
aim to optimize the tree structure. With fixed hyperparameters, the baseline and
Sklearn give the same performance and stability but differ when optimizing the
tree structure.

For optimized trees, the baseline uses the adaptive tree complexity, whereas Sklearn
uses a grid search. The performance is very similar across all cases, with Sklearn
having a slightly better performance for Case 1. For stability, the difference be-
tween the optimized trees is larger, with the baseline tree being more stable across
all cases. The difference in stability between the models is particularly large for
Case 3. The big advantage of the baseline over Sklearn is that the adaptive tree
complexity removes the need for hyperparameter tuning to determine the tree
complexity.

Case 1 Case 2 Case 3
performance stability performance stability performance stability

Panel A: Fixed
Baseline 1.00± 0.01 1.00± 0.03 1.00± 0.01 1.00± 0.03 1.00± 0.01 1.00± 0.03
Sklearn 1.00± 0.01 1.00± 0.03 1.00± 0.01 1.00± 0.03 1.00± 0.01 1.00± 0.03
Panel B: Optimized
Baseline (adaptive tree complexity) 1.00± 0.05 1.00± 0.14 1.00± 0.04 1.00± 0.12 1.00± 0.05 1.00± 0.15
Sklearn (grid search) 0.99± 0.05 1.20± 0.13 1.00± 0.04 1.06± 0.12 1.00± 0.05 2.20± 0.38

Table 8: Baseline on Simulated Data
The table compares the performance (mse) and stability (Smse) of the baseline model to
Sklearn’s regression tree using the base setup with r = 1 and k = 10. Panel A compares the
models when the tree structure is fixed to max depth = 5 and min sample leaf = 5. Panel B
compares the trees when searching for the optimal tree structure. The baseline uses the
adaptive tree complexity, whereas Sklearn uses a grid search (5-fold cross-validation) over the
hyperparameters max depth = [5, 10,∞], min sample leaf = [1, 5], and
cost complexity alpha = [0, 0.01, 0.1, 0.3].

5.2.1.2 Naive Update
Figure 16 shows the performance and stability of NU as a function of the data size,
n, for the different simulated datasets. NU is more stable but performs worse than
the baseline across all cases and data sizes. NU’s performance and stability improve
as n increases. As the figure shows, the improvement of increasing n is largest for
smaller values of n, and diminishes as n becomes larger.

The rate of improvement also depends on the complexity of the data, where Case
1 is the simplest and Case 3 is the most complex dataset. The difference in
performance between NU and the baseline is the smallest for Case 1 and has the
smallest stability improvement. For Case 3, it is the opposite: a bigger difference
in performance but a larger stability improvement. For all datasets and data
sizes, the stability values are in the range [0.05− 0.13], meaning that NU increases
stability by 87% to 95%. The figure highlights that the NU method drastically
improves stability, and the performance reduction of NU decreases with increased
n. However, as the complexity of the data increases, the performance difference
between NU and the baseline also tends to increase.

45

Figure 16: The assumption of the naive update
This figure plots a) the performance (mse) and b) the stability (Smse) as a function of the size
of the dataset, n. Each dataset of size n use the base setup. The performance and stability
values are normalized relative to the baseline values.

5.2.1.3 Tree Reevaluation
Figure 17 shows how the hyperparameters impact both performance and stability.
Larger values of α lead to decreased performance and increased stability and vice
versa. The figure shows that the value of α has a larger impact on performance and
stability than the value δ as it seems like α sets the location and δ adds variation
around the location.

Figure 17: The impact of SL’s hyperparameter
The figure shows TR’s hyperparameters’ impact on performance (mse) and stability (Smse) on
the three simulated datasets. Both axes are normalized such that the baseline values are 1.
TRα,δ refers to TR using the hyperparameters α and δ, expressed as percentages. For each
dataset, the base setup with r = 10 and k = 5 is used.

46

The value of δ determines the confidence level and thus also the trade-off between
Type I (larger values of δ) and Type II (lower values of δ) error when decid-
ing whether or not to update parts of the tree. TR leads to a better performance
compared to NU (Figure 16 when n = 1000), but NU leads to better stability. By al-
lowing for changes in the tree structure, one trades stability for performance.

5.2.1.4 Stable Loss
Figure 18 shows the performance and stability estimates using the SL method with
different regularization strengths determined by the hyperparameter γ. For Case
1, increasing the value of γ leads to increased stability at the cost of decreased per-
formance. Interestingly, for Case 2 and 3, increasing γ improves both performance
and stability up to a certain threshold value (γ < 0.25 for Case 2 and γ < 0.5 for
Case 3).

Figure 18: The impact of SL’s hyperparameter
The figure shows how SL’s hyperparameter γ impacts the performance (mse) and stability
(Smse) on the three simulated datasets. Both axes are normalized such that the baseline values
are 1. SLγ refers to SL using that particular value of γ. For each dataset, the base setup with
r = 10 and k = 5 is used.

5.2.1.5 Approximately Bayesian Update
Figure 19 compares the kernel density estimation (KDE) of the performance (left)
and stability (right) obtained by ABU to the prior (initial) tree, a (second) tree
trained only on D∆t , and the posterior tree it approximates. The posterior tree
has the highest performance, followed by ABU. The prior tree trained and the
second tree have similar performances and are the lowest. The posterior tree has
the highest performance as it is trained on D2 = D1∪D∆t . The stability KDEs are
the change in predictions of the different trees from the prior tree. The posterior
tree is the most stable, followed by ABU and the second tree. The posterior tree is
more stable than the other as it is trained on D2, which contains D1. Both ABU and
the second tree are given D∆t as input, but the ABU is more stable than the second
tree. Note that ABU uses an approximation of D1 to regularize the updating of the
tree. The figure illustrates the idea behind ABU by showing how ABU using only

47

D∆t can give a performance and stability closer to a tree trained on D2, showcasing
that ABU approximates the posterior tree.

Figure 19: Approximate posterior with ABU
The figure illustrates the property of ABU by comparing the kernel density estimation (KDE) of
the mean squared error (left) and stability (right) of ABU to the posterior tree it approximates.
The blue line is the prior tree trained on D1, the orange line is a tree trained only on D∆t ,
whereas the green line is the posterior tree trained on D2 = D1 ∪ D∆t . ABU (yellow line)
approximate P (w|D2) with P (w|Db

1 ∪D∆t
) where Db

1 is sampled from D∆t
. The stability KDEs

are the change in predictions of the different trees using the prior tree as the initial tree. The
Kernel density estimates were computed based on 1000 Monte Carlo simulations using the
same data-generating process used for Case 2. The size of entire dataset, D2, is n = 1000 and
D1 and D∆t are of equal size, i.e., n1 = n∆t = 500.

Figure 20: The adaptability of ABU
The figure illustrates the adaptability of ABU by comparing the kernel density estimation
(KDE) of the mean squared error (left) and stability (right) of ABU to baseline tree and the
posterior tree. The blue line is the prior (initial) tree trained on D1, the orange line is the
initial tree retrained on D2 (baseline tree), whereas the green line is the posterior tree and is
the initial retrained on both D1 and D2. ABU (yellow line) approximate P (w|D1 ∪ D2) with
P (w|Db

1 ∪ D2) where Db
1 is sampled from D2. The stability KDEs are the change in predictions

of the different trees from the prior tree. The Kernel density estimates were computed based on
1000 Monte Carlo simulations using the same data-generating process used for Case 2. The size
of D1 and D2 are n1 = 500 and n2 = 1000 where D2 contains D1.

Figure 20 compares the KDE of the performance (left) and stability (right) ob-
tained by ABU to the prior tree, the baseline tree, and the posterior tree. Here,
the baseline tree and ABU are trained on D2. The posterior tree, P (w|D1 ∪ D2),
represents the posterior tree ABU would approximate without adaptively adjusting
the individual γ values. The figure shows that ABU has the highest performance,
followed by the baseline tree, the posterior tree, and the prior tree. Also, ABU is the

48

most stable model, followed by the posterior tree and the baseline tree. Due to the
posterior tree being trained on D1∪D2, it is biased towards the prior tree as D1 is
included twice (i.e., D2 contains D1). ABU can adaptively adjust the regularization
strength, γ, for each of the data points in Db

1. This adaptability allows ABU to have
less restrictions on the predictions it is less certain about while having greater re-
strictions on predictions it is more confident in. ABU’s adaptability is highlighted
by ABU being the most stable while also having the highest performance.

5.2.1.6 BABU
The BABUmethod has a hyperparameter B that determines the number of bumping
(or self-learning) iterations. Figure 21 shows how the value of B impacts the
performance and stability. It shows similar patterns as Figure 18 showed for SL.
For Case 1, increasing the value of B leads to greater improvement in stability at
the cost of decreased performance. For Case 2 and 3, increasing B improves both
performance and stability up to a certain value of B (B < 7 for Case 2 and γ < 5
for Case 3).

Figure 21: The impact of BABU’s hyperparameter
The figure shows how BABU’s hyperparameter B impacts the performance (mse) and stability
(Smse) using the three simulated datasets. Both axes are normalized such that the baseline
values are 1. BABUB refers to BABU using that particular value of B, e.g., BABU1 means BABU
with B = 1. For each dataset, the base setup with r = 10 and k = 5 is used.

5.2.1.7 Tracking Model Updates Over Time
Figure 22 shows the different update methods evaluated over multiple update
periods on the Case 1 dataset. Each update method provides a more stable update
than the baseline across all update periods. The NU is consistent across all updates
being very stable but with poor performance. TR seems to be the poorest method as
the other methods have better performance and/or are more stable. For instance,
for the first update t = 1, swapping TR with NU will result in a more stable update,
and swapping for ABU will lead to better performance. Swapping for SL or BABU
will result in both improved performance and a more stable model than TR. BABU
is dominated by SL in the first four updates before providing a slightly more stable

49

update but with a slightly worse performance. ABU is closest to the baseline but
always provides a more stable update than the baseline and often with a better
performance. As t increases, the number of data points also increases, and the
difference between SL, ABU, and BABU becomes smaller and smaller. The difference
between the baseline and SL, ABU, and BABU also becomes smaller as t increases,
which might indicate that they are converging towards the same (or equivalent)
predictive function. NU and TR also trend in the same direction, but at a much
slower rate, with NU being the slowest.5

Figure 22: Tracking model updates over time
The figure tracks the performance-stability trade-off of the different model update strategies
over ten update periods. Starting with a dataset of 1000 points, 1000 new data points are
added to the dataset each update period using the data-generating process of Case 1. The
x-axis shows the mean squared error (mse), whereas the y-axis shows the stability measure
associated with mse (Equation (18)). Each dot on the lines represents a model update, starting
from the first update marked by the dots labeled t = 1. Absolute values of performance and
stability are reported.

5.2.2 ISLR Datasets

This subsection presents the results of the update methods on the ISLR datasets.
The presentation of the results is divided into three parts, one for regression tree,
random forest, and GTB, respectively. Each part compares the proposed methods
relative to the performance and stability scores of their baseline. Table 9 reports
the absolute values of the performance and stability scores, along with their cor-
responding standard error estimates for the baselines. The random forests do not
use adaptive tree complexity for the individual trees as the hyperparameter search
showed that the best average performance (i.e., loss) across 10-fold validation is
achieved without the use of adaptive tree complexity for all the ISLR datasets. The
table shows that the baseline for the regression tree has the worst performance and
is less stable than the baseline for the random forest and GTB across all datasets.
Notably, the baseline tree’s stability score for the Boston dataset is significantly
higher (15.843) compared to the random forest (1.206) and GTB (1.809). Among
the baseline models, the random forest performs the best for three of the five
datasets. The random forest tends also to be the most stable as it achieves the

5The same experiment was also conducted using simulated Poisson data, and the result can
be found in Appendix G.

50

lowest stability score for four of the five datasets. The baseline GTB model per-
forms the best for the College and Wage datasets. For the Wage dataset, the GTB
is also the most stable model of the baselines.

Regression tree Random forest GTB
dataset performance stability performance stability performance stability
Boston 20.786± 3.563 15.843± 3.138 13.838± 2.899 1.144± 0.156 14.515± 2.199 1.809± 0.228
Carseats 6.115± 0.365 2.450± 0.313 5.203± 0.485 0.295± 0.034 5.361± 0.456 0.397± 0.036
College 0.055± 0.004 0.041± 0.004 0.049± 0.004 0.007± 0.000 0.036± 0.003 0.008± 0.001
Hitters 0.283± 0.041 0.132± 0.02 0.209± 0.040 0.017± 0.003 0.219± 0.038 0.041± 0.021
Wage 0.088± 0.004 0.007± 0.001 0.084± 0.004 0.002± 0.000 0.084± 0.004 0.001± 0.000

Table 9: Baseline comparison of the tree-based methods.
The table reports performance (mse) and stability (Smse) scores, along with their standard
errors, for the baseline model for each of the tree-based methods on the ISLR datasets. A
10-fold cross-validation is used to compute the scores (i.e., the base setup with r = 1 and
k = 10). The values are reported in absolute values. The methods with the best performance
and/or stability are highlighted bold.

The proceeding subsection reports the performance and stability scores relative to
the scores in Table 9, providing insights into the performance and stability of the
update methods compared to their respective baselines.

5.2.2.1 Regression Tree
The proposed update methods applied to regression trees are evaluated and com-
pared relative to the baseline tree by plotting their performance and stability
estimates and highlighting the Pareto frontier. Figure 23 presents the results for
each of the ISLR datasets. On all datasets, the proposed methods are more stable
than the baseline. Out of the five datasets, the baseline tree is only included in
the Pareto frontier once, specifically in the case of the College dataset, where it
achieves the best performance. The best models tend to be NU, SL, and BABU, as
these methods are included on the Pareto frontier for all the datasets. NU is the
most stable on four of the five datasets but with the worst performance. Different
Pareto efficient solutions can be achieved with SL and BABU by tuning their respec-
tive hyperparameters γ and B. For instance, SL are heavily represented on the
Pareto frontier for the Carseats, College, and Wage dataset, whereas the BABU

models work particularly well on the Boston and Hitters dataset. ABU is included
in the Pareto frontier once (Carseats dataset), where it achieves the best perfor-
mance. ABU achieve similar performance and stability scores as SL0.1 and BABU1
but is often dominated by one of them. The TR method is always inferior to the
other methods.

The results show that both NU and TR improve stability compared to the baseline
but that the stability improvement comes at the cost of worse performance. In con-
trast, SL, ABU, and BABU can achieve similar or better performance compared to the
baseline while improving stability. Any performance improvement of SL and ABU is
typically small (0.5% to 2%), whereas the performance improvement of BABU can
be rather large. For instance, on Boston dataset, BABU5 improved performance by
approximately 20% while being 40% more stable than the baseline. Similarly, for
Hitters dataset where BABU3 improved performance by approximately 10% while
also improving stability by roughly 35%. Furthermore, one observes that typically
increasing γ and B leads to increased stability and decreased performance, but in
many cases, increasing γ and B also improves performance up to a certain value.

51

This is similar to patterns observed for SL (Figure 18) and BABU (Figure 21) on
the simulated data.

Figure 23: Pareto frontier for regression tree on the ISLR datasets
The figure plots the performance (mse) and stability (Smse) of the proposed models relative to
the baseline and highlights the models that form the Pareto frontier in Bold.

52

5.2.2.2 Random Forest
Figure 24 shows the performance and stability scores of the proposed update meth-
ods applied to random forests relative to the baseline random forest using the ISLR
datasets. Across the datasets, all the proposed update methods are more stable
compared to the baseline, except for TR0,5 on the Boston dataset. The baseline
is included in the Pareto frontier twice, for the Carseats and College where it
achieves the best performance. One or two of the five SL models are on the Pareto
frontier for three of the five datasets, which makes SL less representative compared
to the method applied to regression trees. The best models are mainly BABU with
different values of B. One or more of the three BABU models are on the Pareto
frontier for all five datasets, with BABU5 always being represented. Interestingly,
NU is on the Pareto frontier only once (College dataset), as other methods tend
to be more stable, which deviates from the observations for regression trees. ABU

is also included on the Pareto frontier once (Hitters dataset). ABU is essentially
BABU with B = 0 and is dominated by the other BABU models with B > 0 for three
of the five datasets. The TR methods applied to regression trees are consistently
inferior to the other methods. This is not the case for random forests as TR10,5 is
on the Pareto frontier for the Carseats and College dataset.

Like regression trees, SL, ABU, and BABU applied to random forests can achieve
similar or better performance compared to the baseline while improving stability.
However, achieving any performance improvement tends to be more difficult and
is rather modest (0-1%) compared to regression trees. Additionally, increasing γ
and B can improve stability and performance up to a certain threshold value as
observed for BABU and SL on the Boston and Wage datasets, respectively. For the
Wage dataset, this threshold value is notably large for SL where performance and
stability improve as γ increases up γ = 0.75. Beyond this threshold, increasing
γ further increases stability but decreases performance, as shown by SL0.9 being
more stable but with a slightly lower performance. Another notable observation
for Wage is the behavior of NU. Typically, NU tends to be very stable but with
lower performance than other methods. However, for Wage dataset, NU has higher
performance compared to other models while still maintaining a relatively high
level of stability.

5.2.2.3 Gradient Tree Boosting
Figure 25 displays the performance and stability scores of the SL update method
applied to GTB relative to the baseline GTB for the ISLR datasets. All the SL

models provide a more stable model than the baseline. The baseline is included
in the Pareto frontier for four of the five datasets, where it achieves the best
performance. Different Pareto efficient solutions can be achieved with SL by tuning
γ. SL applied to GTB show the same general trend as SL for regression trees and
random forests. With increasing γ, stability increases and is generally at the cost
of performance. For the Hitters dataset increasing γ from 0 (baseline) to 0.1
increases both stability and performance, which is consistent with SL0.1 applied to
regression tree and random forest for the same dataset. An anomaly is observed for
SL0.5 on the Boston dataset where increases γ from 0.25 to 0.5 leads to decreased
performance and stability. In general, SL0.1 improves stability by 5-15%, whereas
SL0.75 and SL0.9 improves stability by 30-60%. The rate of stability improvement
tends to diminish as γ increases. Like the observation for random forest, achieving
better performance with SL than the baseline GTB is difficult and is only achieved

53

once.

Figure 24: Pareto frontier for random forest on the ISLR datasets
The figure plots the performance (mse) and stability (Smse) of the proposed models relative to
the baseline and highlights the models that form the Pareto frontier in Bold.

54

Figure 25: Pareto frontier for GTB on the ISLR datasets
The figure plots the performance (mse) and stability (Smse) of the proposed models relative to
the baseline and highlights the models that form the Pareto frontier in Bold.

55

5.2.3 Claim Frequency Estimation

Figure 26 compares the performance and stability of the proposed updates methods
applied regression trees, random forest, and GTB for claim frequency estimation.
Random forests use adaptive tree complexity as the hyperparameter search showed
that the best average performance across 6-fold validation is achieved with the use
of adaptive tree complexity. The Pareto frontier consists of the GLM model, the
baseline GTB, and SL applied to GTB. The GLM is the most stable of the model
by a large margin, but it also has the poorest performance. The GTB models are
the top-performing models, with the baseline GTB having the best performance.
SL method applied to GTB trades stability at the cost of decreased performance.
The trade-off is larger for increasing γ. For instance, SL0.9 increases stability by
41.66% while reducing performance by 0.06% compared to the baseline GTB. An
anomaly is detected for γ = 0.75 and is the only SL applied to GTB that is not
on the Pareto frontier. This is similar to what was observed for SL0.5 applied to
GTB for the Boston dataset. A closer examination of the stability score at the
different folds reveals an extremely larger stability score for a single fold, almost
five times larger than the other fold scores. If this fold is excluded, the average
stability score becomes 0.0018, moving SL0.75 applied to GTB down to the rest of
GTB models.

Furthermore, Figure 26 shows increasing γ for SL leads to increased stability and
decreased performance for GTB. For regression trees and random forests, increas-
ing γ also improves performance up to γ = 0.25. This trend can also be observed
for BABU applied to regression trees. Here, increasing B improves stability and
performance up to B = 3. Surprisingly, BABU applied random forest deviates the
trend, as increasing B results in worse stability. This contradicts the previous
results for BABU where increased B results in improved stability and sometimes
also improved performance. Additionally, all the update method applied to trees
improves stability compared to the baseline tree, except for TR0,5, which performs
better but are less stable. The update methods applied to random forest improve
stability compared to the baseline forest except for BABU with B ≥ 3. Notably, TR
is inferior to the other methods for regression trees and when applied to random
forest. Additionally, one can observe that ABU and BABU applied to trees improve
stability more than SL compared to the results from the ISLR datasets. One also
observes that BABU20 and NU for trees are more stable than any of the random
forest methods, though with worse performance.

56

Figure 26: Pareto frontier for the freMTPLfreq dataset
The figure plots performance (mean Poisson deviance) and stability (Ssdlr) (in absolute values)
of the proposed models for regression tree, random forest, and gradient tree boosting (GTB).
The different proposed update methods are color-coded, with the method applied to the
regression tree marked with a circle. The methods applied to the random forest are marked
with a triangle, while the methods applied to the GTB are marked with a diamond. A GLM
model, marked with a cross, is also included as a reference model. The models highlighted in
bold represent the Pareto frontier.

57

6 Discussion

This section interprets and analyzes the results presented in the preceding section,
offering insights into the significance, implications, and limitations of the proposed
update methods. The remainder of this section is organized as follows: A discus-
sion of the main findings, followed by a reflection on the strengths and limitations
of the thesis. Next, potential future research directions are discussed, and finally,
the thesis is concluded.

6.1 Main Findings

6.1.1 Regression Tree

The first objective of this thesis was to provide stable update methods for regres-
sion trees. With that in mind, I developed five update methods for regression
trees, namely NU, TR, SL, ABU, and BABU. The methods for regression trees are
thoroughly tested using simulated data. The result of the simulated experiments
shows that all methods improve stability. NU drastically improves stability up to
between 87% and 95% but at the cost of decreased performance. The result of the
NU experiment shows that as the data size n increases, the performance reduction
decreases while stability increases or stays the same. The decreased performance
reduction suggests that the initial tree structure approaches the optimal tree struc-
ture, aligning with the expectation from the law of large numbers, lim

n→∞
f̂ → f ∗.

The same effect is expected to apply to the other methods, meaning that the base-
line and the update methods should converge to the same function, most likely
with different rates. The TR extends NU, allowing for parts of the tree to change if
one is confident that the change will improve performance, mitigating some of the
performance reduction of NU at the cost of a smaller stability improvement. The
result for TR shows that the performance-stability trade-off is mainly impacted by
its α and should be prioritized when tuning hyperparameters. Increasing α de-
creases performance and increases stability and vice versa. While both NU and TR

improve stability at the cost of decreased performance compared to the baseline,
SL, ABU, and BABU can achieve similar or better performance than the baseline
while also improving stability. SL and BABU each have a hyperparameter, γ and B,
respectively. The simulated data show that increasing γ and B increases stability
and generally decreases performance. However, there are cases where increasing
γ and B also improves performance up to a certain value. The result of the ABU

experiment highlights ABU’s properties as ABU can improve both performance and
stability compared to the baseline given the same dataset as input. This is achieved
by approximating D1 with Db

1 and adaptively adjusting the regularization strength
for each data point based on its confidence. An evaluation of the long-term behav-
ior of the methods shows that the difference between SL, ABU, and BABU becomes
smaller and smaller, which suggests that these methods converge towards the same
function as the number of data point increases. Furthermore, the difference be-
tween these methods and the baseline also becomes smaller, indicating that the
baseline converges towards the same function but at a slower rate. Both NU and
TR also trend in the same direction, but at a much slower rate, with NU being the
slowest. The observations are aligned with the expectation that the baseline and
the update methods should converge to the same function as n → ∞ but with
different rates.

58

Similar results were observed when the update methods were evaluated on the
ISLR datasets. All update methods improve stability compared to the baseline,
with NU, SL, and BABU being the best models. NU is on four of the five datasets the
most stable but has the poorest performance, whereas SL and BABU can achieve
similar or better performance as the baseline while being more stable by tuning
their respective hyperparameters γ and B. ABU also achieves similar or better
performance as the baseline while being more stable. These results are consistent
with the observation from the simulated data. However, for the ISLR datasets,
either SL or BABU often provides a better solution than ABU. The results of the
proposed methods on the ISLR datasets validate the observations from simulated
data, demonstrating their practical relevance across a broad range of data charac-
teristics. These results strongly support the achievement of the first objective of
providing stable update methods for regression trees.

Even though the methods can provide a more stable update, it is not obvious
which one to choose. The choice depends on the preference of the performance-
stability trade-off of the user or stakeholder. A conservative user might want a
more stable model and therefore opt for NU, or SL and BABU with high γ and B
values. On the other hand, a user primarily concerned with performance would
not opt for NU, but rather for SL and BABU with lower γ and B values, respectively.
In some cases, the baseline tree and ABU could be preferable. The hyperparameters
of SL and BABU allow the users to include their performance-stability preference by
decreasing or increasing γ and B. The choice of method (and hyperparameters)
may vary depending on the dataset, user preference, and application domain.
This means that the model selection and choice of performance measure that
balances performance and stability are crucial for the application of the stable
tree updates.

Since SL, ABU, and BABU can often achieve better performance compared to the
baseline, it suggests that these methods often are able to strike a better balance
between bias and variance than the baseline. The stability regularization of these
methods imposes an assumption that the model should not change much, which
increases bias and decreases variance. Since regression trees are known to have
high variance, variance reduction can often improve performance. NU and TR also
provide variance reduction. However, the decreased performance suggests that the
assumptions of these methods are too strict, reducing variance too much. Another
contributing factor is that SL, ABU, and BABU incorporate stability regularization
in the loss function (i.e., explicit regularization), whereas NU and TR do not (i.e.,
implicit regularization). The advantage of explicit stability regularization over
implicit regularization is that ensures that also stability is taken into account
when adaptively determining the tree’s complexity. From the ISLR datasets, one
observed that any performance improvement of SL and ABU is typically small,
whereas the performance improvement of BABU can be rather large, as shown for
the Boston and the Hitters dataset. This suggests for these datasets, the greedy
splitting procedure of CART finds a local minimum and that BABU is able to
improve the function search using the ideas from bumping and semi-supervised
learning. BABU were not able to improve performance for Carseats and College

datasets which is consistent with the observation of Chapelle et al. [2006] that there
is no guarantee that semi-supervised learning will improve performance.

59

6.1.2 Random Forest and GTB

Moving on to the second objective to show that these methods can be extended
to provide stable update methods for random forest and GTB. All the update
methods were extended to random forests, whereas only SL were extended to
GTB. The methods were evaluated on the ISLR datasets. The results of the
update methods applied to random forests are similar to the result for regression
trees. All update methods improve stability compared to the baseline (except
for TR0,5 on the Boston dataset). The best models can be achieved with SL and
BABU by tuning their respective hyperparameters γ and B. Notably, BABU tends
to provide better solutions compared to SL. Similar to regression trees, SL and
BABU applied to random forests also result in more stable models compared to
the baseline. Although SL and BABU for random forest also can achieve similar or
better performance as the baseline while being more stable, it tends to be more
difficult compared to regression trees. The difficulty of the update method to
improve performance in random forests compared to single regression trees is most
likely due to random forests having less variance, which reduces the impact of any
variance reduction provided by the stability regularization on performance.

Although the result of the methods applied to random forests show similar results
as regression trees, there are some notable differences. The first notable difference
is NU only appearing on the Pareto frontier once. Unlike regression trees, NU applied
to random forests often do not result in the most stable model.6 BABU or SL with
γ > 0.5 are often more stable than NU. BABU and SL incorporated stability into the
calculation of w which is not the case for NU. Also, NU keeps the structure fixed,
therefore the trees in the NU forest will be less complex compared to BABU and
SL. The result suggests that incorporating stability into the calculation of w and
aggregating more complex trees result in a more stable forest than keeping the
individual tree structures fixed and only updating their estimates. Moreover, NU
improves performance compared to the baseline for the Wage dataset. This may be
explained by NU keeping the structure fixed which is essentially a way of controlling
the tree depth when updating the forest. Controlling the tree depth has been shown
to result in a small gain in performance (Segal [2003]). For the Wage dataset, one
also observed that for SL, increasing γ improves both performance and stability up
to very large values of γ. The result of NU and SL suggest that the regularization
effect of the update methods that heavily prioritize stability in this case also leads
to the highest performance. However, this explanation is contradicted by the fact
that increasing B for BABU leads to increased stability but decreased performance.
It is worth noting that the spread of the relative performance between the methods
is very small, ranging from 0.9925 to 1.0025.

Regarding SL applied to GTB, it shows the same general trend as SL applied to
regression trees and random forests. Increasing the hyperparameter γ generally
increases stability at the expense of performance, but in some cases, it also im-
proves performance up to a certain value as illustrated by SL0.1 on the Hitters

dataset. This is consistent with SL0.1 applied to the regression tree and random
forest for the same dataset. Like random forest, achieving similar or better per-
formance with SL as the baseline GTB is harder as GTB can reduce both bias and

6This was initially hypothesized to be due to not tracking bootstrap indices, causing more
variation in the leaf predictions. However, tests showed similar results even when tracking
bootstrap indices, suggesting it has little impact on the behavior of NU.

60

variance, reducing the impact of any variance reduction provided by the stability
regularization on performance.

The methods applied to random forests and GTB show similar results as for re-
gression trees, confirming that these methods can be extended to provide stable
update methods for random forests and GTB. However, the observations for NU

for random forests indicate that the aggregation of trees may affect the properties
of the methods and should be investigated further. Additionally, an anomaly for
GTB was detected on the Boston dataset where increasing γ from 0.25 to 0.5 leads
to increased loss and less stability, which calls for a thorough examination of how
any modification of the loss function could affect the aGTBoost algorithm.

6.1.3 Claim Frequency Estimation

Proceeding to the third and last objective, the goal is to show that the stable
update methods can provide more stable tree-based models for claims frequency
estimation compared to the baseline strategy. The update methods applied to
regression trees, random forests, and GTB were evaluated for the task of claim
frequency estimations using the freMTPLfreq dataset. The results show that the
tree-based models achieve better performance compared to the GLM, with GTB
models being the best performing, followed by random forests and regression trees.
This is partially consistent with Henckaerts et al. [2020], which found that GTB
outperforms GLM but that GLM performs better than random forests and regres-
sion trees using a MTPL insurance portfolio from the Belgium insurance industry.
The results of the tree-based models outperforming GLM suggest that the tree-
based models are able to find interaction effects and non-linearities that are not
included in the GLM manually. However, the results show that the GLM is still
more stable than the tree-based models, confirming the stability issue the insur-
ance industry has experienced. The Pareto frontier consists of the GLM model,
the baseline GTB, and SL applied to GTB (except SL0.75). Baseline GTB performs
best but is the least stable model of the frontier models. Oppositely, GLM is the
most stable model but performs the worst. A more stable GTB can be achieved at
the cost of some performance by applying SL but not nearly the stability of GLM,
regardless of the value of γ. Notably, SL0.9 improves the stability of GTB by 41.66%
while only reducing the performance by 0.06%. This demonstrates a substantial
improvement in stability at a negligible cost in performance. Despite this stability
improvement, GLM is drastically more stable than SL0.9, with Ssdlv = 2.636×10−5

compared to Ssdlv = 1.986 × 10−3. Whether the performance boost justifies the
trade-off in stability when considering switching from GLM to one of the GTB
models is an open question that requires further extensive analysis beyond the
scope of this thesis and is up to the domain experts to determine.

The result of claim frequency estimation shows that the results using squared
error loss are transferable to Poisson loss. This demonstrates that the stable
update methods can be used to provide more stable tree-based models for claims
frequency estimation, achieving the third and last objectives. For Poisson loss,
one observes that ABU and BABU tend to be more stable than SL for regression
trees. This is most likely due to the use of different regularization terms in the
Poisson loss for SL and ABU/BABU. For squared error, all three methods use the
same regularization term, the squared error (i.e., L2 regularization). However,
for Poisson loss, SL uses the Poisson loss as the regularization term, whereas ABU

61

and BABU use L2 regularization. The methods applied to random forests and
GTB showed some irregularities for the ISLR datasets. These irregularities are
also found for the freMTPLfreq dataset. Furthermore, the behavior of BABU for
random forests on the freMTPLfreq dataset stands out, as increasing B decreases
stability, highlighting an additional irregularity. These irregularities further stress
the need for a thorough investigation of the properties of the methods applied to
random forests and GTB.

6.2 Strengths and Limitations

The thesis provides innovative and novel approaches for updating regression trees
in a stable manner by exploring the statistical properties of trees. To the best
of my knowledge, there is no other scientific work that specifically investigates
methods for improving the stability of updating tree-based methods for regres-
sion tasks, neither in general nor for claim frequency estimation. This highlights
the originality and novelty of this thesis. The thesis introduces a new notion of
stability, update stability, that differs from the traditional notions of stability as
defined by previous studies (Devroye and Wagner [1979]; Kearns and Ron [1999];
Bousquet and Elisseeff [2002]). Traditional stability measures the sensitivity of al-
gorithm predictions to the addition of a new data point and aims to determine how
the variance of a learning algorithm affects its generalization error. In contrast,
updated stability is a performance measure that determines how much predictions
change when updating the model using additional data. Update stability also dif-
fers from semantic stability by Turney [1995], as semantic stability is specific to
classification algorithms, measuring a classifier’s ability to assign examples to the
same class when trained on different subsets of the data. Regarding the use of tree-
based methods for claim frequency estimation, Guelman [2012], Liu et al. [2014],
and Henckaerts et al. [2020] all found GTB to outperform GLM, but none of them
considered the stability aspect. Last et al. [2002] improved the semantic stability
of decision trees while preserving a reasonable level of predictive accuracy using
an Info-Fuzzy Network approach. This is similar to the results of this thesis which
finds the update methods for regression trees to be more stable than the baseline,
with some methods achieving similar or better performance. However, the results
are not directly comparable as they use a different stability notion (semantic) and
focus on initial model learning rather than updating with additional data.

A major strength of the thesis is the extensive validation of the update methods
for regression trees. The methods were thoroughly tested on simulated data and
further validated across a broad range of data characteristics, including claim data.
The extensive validation strengthens the credibility of the results for the proposed
update methods applied to regression trees.

The methods are developed for regression trees but are also extended to random
forests and GTB under the assumption that they will work similarly. The prop-
erties of the proposed update methods applied to random forests and GTB are
not tested to the same degree as regression trees. The lack of extensive testing
on simulated data for random forests and GTB leaves a greater uncertainty about
the results of the proposed method extended to random forests and GTB. Irreg-
ularities found in the methods applied for random forests suggest that further
investigation of how the aggregation of trees may affect the properties of NU and
BABU is needed.

62

Another limitation of the thesis is the limited hyperparameter tuning for the ran-
dom forest. Random forest in this thesis uses only 100 trees and other default
hyperparameters. The only hyperparameter search conducted is to determine
whether or not the use of adaptive tree complexity for the individual trees in
the forest. The limited hyperparameter tuning for the random forest makes it
less competitive with GTB, which finds the tree complexity and the number of
trees adaptively. The GLM model used for claim frequency estimation is based
on the book of Charpentier [2014]. Perhaps further feature engineering and data
exploration could improve the performance of GLM.

6.3 Future Work

In light of the findings and limitations discussed, there are several directions in
which the thesis could be improved in feature research. As some irregularities are
found in the methods applied to random forests, further studies should investi-
gate these irregularities to improve the methods for random forests. Additionally,
various tailor-made methods for random forests, such as stacking, tree replace-
ment, and co-training, were considered but not included due to time constraints
and would be interesting to explore in future work. Stacking involves assigning
weights to individual trees in the forest using gradient descent and explicit stability
regularization, whereas tree replacement involves replacing a subset of trees in the
forest with new trees when new data becomes available. Co-training might improve
BABU for random forests. For the random forests, it might make more sense to use
the average predictions of all the trees in the forest as pseudo-labels (co-training)
rather than each tree creating its own pseudo-labels (self-training).

ABU for GTB was not implemented due to the statistical challenges caused by the
cross-correlation between trees. Solving this issue would be a step toward making
a Bayesian approach to GTB. An interesting extension of the update methods for
regression trees would be the use evolutionary algorithm to create evolutionary
trees. Evolutionary trees are an alternative to the greedy approach of CART
and enable the use of a global loss which can help avoid getting stuck in local
optimum.7

This thesis assumes no concept drift, a future extension could be to investigate how
the methods would handle concept drift. This exploration would provide valuable
insights into the applicability in real-world scenarios where the underlying data-
generating process can change over time.

Another direction could be to perform an extensive analysis of the impact of the
methods on the premium portfolio. Such an analysis would help determine whether
the stability improvement provided by the update methods can justify the choice
of replacing GLM with tree-based methods. A natural extension of the thesis is
to include zero-inflated Poisson loss, which is better suited to handle claims data
mainly consisting of non-claims observation (which is the case for the freMTLPfreq
dataset).

7An implementation of an evolutionary update approach was almost completely implemented
but put on hold as other methods were prioritized. A description of the work is provided in
Appendix H.

63

6.4 Conclusion

Motivated by the instability of tree-based methods experienced by the insurance
industry, this thesis provides innovative and novel methods for updating regres-
sion trees in a stable manner. All methods are shown to increase stability with
some methods increasing both stability and performance compared to the base-
line. These methods can be extended to random forests and GTB and show
similar results as for regression trees. However, some of the methods extended
to random forests show some irregularities, which should be investigated further.
Furthermore, this thesis demonstrates the potential of the stable update methods
in improving claims frequency estimation in the insurance industry but further
analysis is required to determine their impact on the premium portfolio.

64

References

Amini, M.-R., V. Feofanov, L. Pauletto, E. Devijver, and Y. Maximov (2022, 2).
Self-Training: A Survey.

Bayes, T. (1763, 1). LII. An essay towards solving a problem in the doctrine of
chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a
letter to John Canton, A. M. F. R. S. Philosophical Transactions of the Royal
Society of London 53, 370–418.

Bousquet, O., S. Boucheron, G. Lugosi, U. Luxburg, and G. Rätsch (2003, 1).
Introduction to Statistical Learning Theory. Advanced Lectures on Machine
Learning, 169-207 (2004).

Bousquet, O. and A. Elisseeff (2002, 3). Stability and Generalization. J. Mach.
Learn. Res. 2, 499–526.

Breiman, L. (1996). Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L. (2001). Random Forests. Machine Learning 45 (1), 5–32.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). Classification
and Regression Trees (1st Edition ed.). New York.

Chapelle, O., B. Scholkopf, and E. A. Zien (2006). Semi-Supervised Learning (1st
ed. ed.), Volume b. Cambridge: The MIT Press.

Charpentier, A. (2014). Computational Actuarial Science with R (1st Edition ed.).
New York: Chapman and Hall.

Chen, T. and C. Guestrin (2016, 3). XGBoost: A Scalable Tree Boosting System.
arXiv .

Cox, J. C., J. E. Ingersoll, and S. A. Ross (1985). A Theory of the Term Structure
of Interest Rates. Econometrica 53 (2), 385–407.

Devroye, L. and T. Wagner (1979). Distribution-free performance bounds for
potential function rules. IEEE Transactions on Information Theory 25 (5), 601–
604.

Dionne, G., C. Gourieroux, and C. Vanasse (1998, 2). Evidence of Adverse Selec-
tion in Automobile Insurance Markets. In Automobile Insurance: Road Safety,
New Drivers, Risks, Insurance Fraud and Regulation, pp. 13–46.

Donsker, M. D. (1951). An invariance principle for certain probability limit theo-
rems. Memoirs of the American Mathematical Society , 12–12.

Dutang, C. and A. Charpentier (2018). CASdatasets R package vignette. Reference
manual. Version 1.0-8. Technical report, packaged 2018-05-20.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals
of Statistics 7 (1), 1 26.

Ferrario, A., A. Noll, and M. V. Wüthrich (2018). Insights from Inside Neural
Networks. Technical report.

Friedman, J. (2002, 2). Stochastic Gradient Boosting. Computational Statistics &
Data Analysis 38, 367–378.

65

Friedman, J., T. Hastie, and R. Tibshirani (2000, 4). Additive Logistic Regression:
A Statistical View of Boosting. The Annals of Statistics 28, 337–407.

Friedman, J. H. (2001, 10). Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29 (5), 1189–1232.

Gareth James, Trevor Hastie Robert, Tibshirani, and Daniela Witten (2013). An
introduction to statistical learning with applications in R. NewYork: New York
: Springer, 2013.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.

Grosse, R. (2021). Chapter 4 Second-Order Optimization. Technical report, Uni-
versity of Toronto, Department of Computer Science, Toronto.

Guelman, L. (2012). Gradient boosting trees for auto insurance loss cost modeling
and prediction. Expert Systems with Applications 39 (3), 3659–3667.

Hastie, T. and R. Tibshirani (1986). Generalized Additive Models. Statistical
Science 1 (3), 297–310.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical
Learning. New York, NY: Springer New York.

Henckaerts, R., M.-P. Côté, K. Antonio, and R. Verbelen (2020). Boosting insights
in insurance tariff plans with tree-based machine learning methods. North Amer-
ican Actuarial Journal 25 (2), 255–285.

James, G., D. Witten, T. Hastie, R. Tibshirani, and B. Narasimhan (2022). ISLR2.
Technical report, packaged 2022-11-20.

Jankowski, D. and K. Jackowski (2014). Evolutionary Algorithm for Decision
Tree Induction. In Computer Information Systems and Industrial Management,
Berlin, Heidelberg, pp. 23–32. Springer Berlin Heidelberg.

Jensen, D. D. and P. R. Cohen (2000). Multiple Comparisons in Induction Algo-
rithms. Machine Learning 38 (3), 309–338.

Kaminski, M. E. and G. Malgieri (2021, 4). Algorithmic impact assessments under
the GDPR: producing multi-layered explanations. International Data Privacy
Law 11 (2), 125–144.

Kearns, M. and D. Ron (1999, 7). Algorithmic Stability and Sanity-Check Bounds
for Leave-One-Out Cross-Validation. Neural Computation 11 (6), 1427–1453.

Last, M., O. Maimon, and E. Minkov (2002). Improving Stability of Decision Trees.
International Journal of Pattern Recognition and Artificial Intelligence 16 (02),
145–159.

Liu, Y., B.-J. Wang, and S.-G. Lv (2014). Using Multi-class AdaBoost Tree for
Prediction Frequency of Auto Insurance. Journal of Applied Finance &
Banking 4 (5).

Lunde, B. . S., T. S. Kleppe, and H. J. Skaug (2020, 8). An information criterion
for automatic gradient tree boosting. arXiv .

Manapragada, C., G. I. Webb, and M. Salehi (2018). Extremely Fast Decision
Tree. In Proceedings of the 24th ACM SIGKDD International Conference on

66

Knowledge Discovery & Data Mining, KDD ’18, New York, NY, USA, pp. 1953–
1962. Association for Computing Machinery.

Nelder, J. A. and R. W. M. Wedderburn (1972). Generalized Linear Models.
Journal of the Royal Statistical Society. Series A (General) 135 (3), 370–384.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, A. Müller, J. Nothman, G. Louppe, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and . Duchesnay (2012, 1). Scikit-learn: Machine Learning in Python. arXiv .

Schelldorfer, J. and M. V. Wüthrich (2019). Nesting Classical Actuarial Models
into Neural Networks. Technical report.

Schlimmer, J. and D. Fisher (1986, 3). A Case Study of Incremental Concept
Induction. In Proceedings of the Fifth National Conference on Artificial Intelli-
gence, pp. 496–501.

Segal, M. (2003, 5). Machine Learning Benchmarks and Random Forest Regres-
sion. Technical Report, Center for Bioinformatics & Molecular Biostatistics,
University of California, San Francisco.

Smith, S. L., B. Dherin, D. G. T. Barrett, and S. De (2021, 1). On the Origin of
Implicit Regularization in Stochastic Gradient Descent. arXiv .

Takeuchi, K. (1976, 5). Distribution of information statistics and validity criteria
of models. Mathematical Science 153, 12–18.

Tibshirani, R. and K. Knight (1999). Model Search by Bootstrap ”Bumping”.
Journal of Computational and Graphical Statistics 8 (4), 671–686.

Turney, P. (1995, 7). Technical Note: Bias and the Quantification of Stability.
Machine Learning 20, 23–33.

Utgoff, P. E. (1989). Incremental Induction of Decision Trees. Machine Learn-
ing 4 (2), 161–186.

van Engelen, J. E. and H. H. Hoos (2020). A survey on semi-supervised learning.
Machine Learning 109 (2), 373–440.

Vapnik, V. (1991). Principles of Risk Minimization for Learning Theory. In
J. Moody, S. Hanson, and R. P. Lippmann (Eds.), Advances in Neural Informa-
tion Processing Systems, Volume 4. Morgan-Kaufmann.

Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation 1 (1), 67–82.

67

A Second-order Approximation vs. Exact for

Poisson Loss

Figure 27: Second-order approximation vs. Exact for Poisson loss
The figure compares the predictions of a regression tree using the second-order approximation
of loss reduction (and exact MLE of w) to a regression tree using exact loss reduction for
Poisson loss. The trees are trained on simulated data with one feature, x1 ∼ U(0, 4) and
y ∼ Pois(x1) Both trees use max depth = 3 and min sample leaf = 5. Each step on the function
corresponds to a region. Left plots for data size n = 100 whereas right plots for n = 1000.

68

B The Boston Dataset

Variable Description
crim per capita crime rate by town.
zn proportion of residential land zoned for lots over 25,000

sq.ft.
indus proportion of non-retail business acres per town.
chas Charles River dummy variable (=1 if tract bounds river;

0 otherwise).
nox nitrogen oxides concentration (parts per 10 million).
rm average number of rooms per dwelling.
age proportion of owner-occupied units built prior to 1940.
dis weighted mean of distances to five Boston employment

centres.
rad index of accessibility to radial highways.
tax full-value property-tax rate per $10,000.
ptratio pupil-teacher ratio by town.
lstat lower status of the population (percent).
medv median value of owner-occupied homes in $1000s.

Table 10: The available variables in the Boston data set. (James et al.
[2022])

69

C The Carseats Dataset

Variable Description
Sales Unit sales (in thousands) at each location.
CompPrice Price charged by competitors at each location.
Income Community income level (in thousands of dollars).
Advertising Local advertising budget for companies at each location

(in thousands of dollars).
Population Population size in region (in thousands).
Price Price company charges for car seats at each site.
ShelveLoc A factor with levels Bad, Good, and Medium indicating

the quality of the shelving location for the car seats at
each site.

Age Average age of the local population.
Education Education level at each location.
Urban A factor with levels No and Yes to indicate whether the

store is in an urban or rural location.
US A factor with levels No and Yes to indicate whether the

store is in the US or not.

Table 11: The available variables in the Carseats data set. (James et al.
[2022])

70

D The College Dataset

Variable Description
Private A factor with levels No and Yes indicating private or

public university.
Apps Number of applications received.
Accept Number of applications accepted.
Enroll Number of new students enrolled.
Top10perc Percentage new students from top 10% of H.S. class.
Top25perc Percentage new students from top 25% of H.S. class.
F.Undergrad Number of full-time undergraduates
P.Undergrad Number of part-time undergraduates.
Outstate Out-of-state tuition.
Room.Board Room and board costs.
Books Estimated book costs.
Personal Estimated personal spending.
PhD Percentage of faculty with Ph.D.s.
Terminal Percentage of faculty with a terminal degree.
S.F.Ratio Student/faculty ratio
perc.alumni Percentage of alumni who donate.
Expend Instructional expenditure per student.
Grad.Rate Graduation rate.

Table 12: The available variables in the College data set. (James et al.
[2022])

71

E Appendix E: The Hitters Dataset

Variable Description
AtBat Number of times at bat in 1986.
Hits Number of hits in 1986.
HmRun Number of home runs in 1986.
Runs Number of runs in 1986.
RBI Number of runs batted in 1986.
Walks Number of walks in 1986.
Years Number of years in the major leagues.
CAtBat Number of times at bat during his career.
CHits Number of hits during his career.
CHmRun Number of home runs during his career.
CRuns Number of home runs during his career.
CRBI Number of runs batted in during his career.
CWalks Number of walks during his career.
League A factor with levels A and N indicating players’ league

at the end of 1986.
Division A factor with levels E and W indicating players’ division

at the end of 1986.
PutOuts Number of put outs in 1986.
Assists Number of assists in 1986.
Errors Number of errors in 1986.
Salary 1987 annual salary on opening day in thousands of dol-

lars.
NewLeague A factor with levels A and N indicating players’ league

at the beginning of 1987.

Table 13: The available variables in the Hitters data set. (James et al.
[2022])

72

F The Wage Dataset

Variable Description
year Year that wage information was recorded.
age Age of worker.
maritl A factor with levels 1. Never Married 2. Married 3.

Widowed 4. Divorced, and 5. Separated indicating mar-
ital status.

race A factor with levels 1. White 2. Black 3. Asian, and 4.
Other indicating race.

education A factor with levels 1. ¡HSGrad 2. HSGrad 3. Some
College 4. College Grad, and 5. Advanced Degree indi-
cating the education level of a worker.

region Region of the country (mid-Atlantic only).
jobclass A factor with levels 1. Industrial and 2. Information

indicating type of job.
health A factor with levels 1. ¡=Good and 2. ¿=Very Good

indicating the health level of a worker.
health ins A factor with levels 1. Yes and 2. No indicating whether

a worker has health insurance.
wage Workers raw wage.

Table 14: The available variables in the Wage data set. (James et al.
[2022])

73

G Tracking Model Updates Over Time for Sim-

ulated Poisson Data

Figure 28 shows how the different update methods perform over multiple update
periods using simulated Poisson data. Here the models are learned using the
Poisson loss and result in similar results as the experiment using squared error
loss. Each update method provides a more stable update than the baseline across
all update periods. The NU is consistent across all updates being very stable but
with a larger loss. TR seems to perform the poorest as the other methods have lower
loss and/or are more stable. For instance, for the first update t = 1, swapping
TR with NU will result in a more stable update, and swapping for ABU will lead to
lower loss. Swapping for SL or BABU will result in both a lower Poisson deviance
and a more stable model than TR. BABU is dominated by SL in the first two updates
before providing a more stable update but with a higher Poisson deviance. ABU is
closest to the baseline in the first updates but provides a more stable update than
the baseline and often has a lower Poisson deviance.

Figure 28: Tracking Model Updates Over Time for Simulated Poisson
Data
The figure tracks the loss-stability objective of the different model update strategies over 10
update periods. Starting with a dataset of 1000 points, 1000 new data points are added to the
dataset each update period using the data-generating process Pois(ϕ1(x)) where ϕ1 is the
polynomial from Section 4.1 and x is simulated as showed in Table 1. The x-axis shows the
mean Poisson deviance, whereas the y-axis shows the stability measure associated with Poisson
data (Equation (19)). Each dot on the lines represents a model update, starting from the first
update marked by the dots labeled t = 1. Absolute values of loss and stability are reported.

As t increases the number of data points also increases and the difference between
ABU and BABU becomes smaller and smaller, i.e. converge towards the same func-
tion. This differs from the experiment using squared error loss, where SL, ABU,
and BABU converged towards the same function. The difference is most likely due
to the use of different regularization terms in Poisson loss for SL and ABU/BABU.
For squared error, all three methods use the same regularization term, the squared

74

error (i.e., L2 regularization). However, for Poisson loss, SL uses the Poisson loss
as the regularization term, whereas ABU and BABU uses L2 regularization.

75

H Evolutionary Update

The CART’s top-down greedy approach focuses on ”how” to induce a tree and has
a tendency to converge towards local optima. The evolutionary update method
(EVU) aims to find a global optimum by shifting the focus from ”how” to ”what
criteria a tree must satisfy”. Instead of building a tree top-down greedy, the algo-
rithm starts with a population of different trees and uses the concepts of crossover
and mutation to create new generations of trees. Which trees to be selected for
crossover and mutation is based on a global criterion known as a fitness function.
After a predefined number of generations, the final generation is evaluated using
the fitness function, and the best tree from the population is selected as the final
tree. Algorithm 7 shows the pseudocode of the Evolutionary update method and
is inspired by the work of Jankowski and Jackowski [2014].

Algorithm 7: Evolutionary update

input : A training set D2 = {xi, yi}ni=1

Population size Np

Number of generations Ng

output: updated tree f2
1 Function update(D,):
2 create a population of trees p of size Np

3 for i ∈ 1, . . . , Ng do
4 selected individuals based on fitness score
5 apply crossover and mutation to selected individuals
6 update population p

7 select best tree, f , from population based on fitness score
8 return f2

The initial population is created using the split process of CART, but instead of
selecting split greedily, the splits are sampled using the loss to assign a probability
to the splits. e.g., given a dataset with m features, the best split and the corre-
sponding loss for each of the features are computed. Then, each split is assigned
a probability based on its loss squared,

pi =

1
L2
i∑m

i=1
1
L2
i

. (23)

In addition to split sampling, the trees’ max depth and minimum number of obser-
vations to split, a node are uniformly sampled between (2, 11] and (5, 11], respec-
tively. The sampling of splits and hyperparameters ensures that the population is
diverse.

Each generation is given a fitness score using a fitness function. The fitness score is
used to rank the population. The fitness function used in the thesis is a weighted
sum of three components, performance, stability, and tree complexity,

fitness score = w1 × performance + w2 × stability + w3 × tree complexity.

The performance is the MSE or mean Poisson deviance between y and f2(x)
whereas stability is the MSE or mean Poisson deviance between f1(x) and f2(x).

76

The complexity is the tree’s depth. The lower the fitness score, the better the tree
is.

The algorithm uses the current population to create the next generation’s children
based on the fitness function. Individuals can be selected multiple times, spreading
their genes to more children. There exist multiple selection methods, but here
stochastic universal sampling is the used selection method.

Crossover involves swapping subtrees between two trees in the current population.
It starts by selecting two individuals using a selection algorithm. Next, a random
node is chosen from each parent. The identified subtrees in both parents are then
swapped, resulting in the creation of a new individual (offspring).

Mutations in the genetic algorithm introduce random changes to new individuals,
providing diversity and expanding the search space. The mutation proposed for
this method is simply randomly changing the splitting variable and split value of
randomly selected nodes.

77

	Introduction
	Background
	Non-Life Insurance Pricing
	Supervised Learning
	The Supervised Learning Task
	Maximum Likelihood Estimation and Link functions
	The Loss Function
	Claim Frequency Estimation and Offset Variable
	The Model and Learning Algorithm
	Numerical Optimization in Function Space

	Model Selection
	The Model Capacity
	The Bias-Variance Trade-off
	Regularization
	Stability
	Model Selection and Evaluation

	Model Updating
	Bayesian Updating
	Bootstrap
	Semi-Supervised Learning and Self-Training

	Tree-Based Methods
	Regression Tree
	Stability of Trees

	Random Forest
	Bumping
	Gradient Tree Boosting
	Statistical Implication of Greedy Splitting
	Adaptive Tree Complexity

	Methodology
	Performance Measure
	Update Stability
	Performance-Stability Trade-off
	Modifications to CART
	Update methods for Regression Tree
	Naive Update
	Tree Reevaluation
	Stable Loss
	Approximate Bayesian Update
	Bumping Approximate Bayesian Update

	Update Methods for Random Forest
	Updating Gradient Tree Boosting
	Implementation

	Data
	Simulated Dataset
	ISLR Datasets
	Claim Frequency Data
	Data Preprocessing
	Exploratory Data Analysis

	Experiments
	Experimental Setup
	The Base Setup
	Simulated Data
	Baseline
	Naive Update
	Tree Reevaluation
	Stable Loss
	Approximately Bayesian Update
	Bumping Approximately Bayesian Update
	Tracking Model Updates Over Time

	ISLR Datasets
	Claim Frequency Data

	Experimental Results
	Simulation Experiments
	Baseline
	Naive Update
	Tree Reevaluation
	Stable Loss
	Approximately Bayesian Update
	BABU
	Tracking Model Updates Over Time

	ISLR Datasets
	Regression Tree
	Random Forest
	Gradient Tree Boosting

	Claim Frequency Estimation

	Discussion
	Main Findings
	Regression Tree
	Random Forest and GTB
	Claim Frequency Estimation

	Strengths and Limitations
	Future Work
	Conclusion

	Appendices

