
UNIVERSITY OF BERGEN
DEPARTMENT OF INFORMATICS

Liquid Conductor: Animated Transitions
Across Dimensions

Author: Tines Valen

Supervisors: Stefan Bruckner

June, 2023

Abstract

This thesis explores the power of visualization in conveying complex data through intuitive
visual representations. It investigates the effectiveness of animated transitions in understanding
correlations between different visualizations of the same data. While volume is generally con-
sidered a less effective encoding of magnitude in visualization, 3D becomes crucial when shape
recognition is required. However, when comparing the volume of 3D objects, it is necessary
to incorporate the objects themselves in the visualization. The Liquid Conductor program is
introduced to address this challenge, which seamlessly transforms 3D objects into bar charts
using animated transitions. Leveraging fluid simulation, the program effectively communicates
volume differences by filling each object with liquid and pouring it into cylinders, acting as
bars within the bar chart visualization.

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Stefan Bruckner, and
also Dr. Thomas Trautner, for their invaluable guidance and unwavering support throughout
this research. Their expertise and insightful feedback have played a crucial role in shaping
this work. My heartfelt thanks go to my family, friends, and my girlfriend for their constant
encouragement and belief in my abilities.

Tines Valen

Monday 19th June, 2023

Contents

1 Introduction 1
1.1 Problem Description . 2

2 Background 4
2.1 Presentational and Communicative Visualization 5
2.2 Narrative Visualization and Storytelling with Data 6
2.3 Animation in Visualization and Animated Transitions 6
2.4 The Use of 3D in Visualization . 7
2.5 Fluid Simulation . 8

2.5.1 Smoothed Particle Hydrodynamics (SPH) 8
2.5.2 Position-Based Fluids (PBF) . 9
2.5.3 Fluid-Solid Interaction . 9

3 Related Work 11

4 Methodology 13
4.1 Initialization Pipeline . 14

4.1.1 From Volume to Point Cloud . 15
4.1.2 From Volume to Boundary . 16

4.2 Run Time . 18
4.2.1 Fluid Solver . 18
4.2.2 Death Plane . 19
4.2.3 Split Camera . 20

4.3 Component Recap . 22

5 Implementation 24
5.1 Unity . 26
5.2 Conductor . 26
5.3 Conductor Manager . 27
5.4 Fluid Solver . 27

i

5.5 Mesh Voxelization . 28
5.6 Filling the Volume With Fluid . 29

5.6.1 Alleviating Volume Estimation Discrepancy 30
5.7 Fluid Container . 31
5.8 Bar Chart . 32
5.9 Death Plane . 34
5.10 Split Camera . 35

5.10.1 Minimizing Seam . 36
5.11 Spill Prevention: Funnel . 38
5.12 Rendering . 39
5.13 Running the Liquid Conductor . 40

6 Results 42
6.1 Use Case: Platonic Solids . 42
6.2 Use Case: Comparing Earth to Its Neighboring Planets 44
6.3 Performance . 46

7 Discussion 47

8 Conclusions 48

Glossary 49

List of Acronyms and Abbreviations 50

Bibliography 51

ii

List of Figures

3.1 Example of where different combinations of metamorphers can lead to two
different transitions . 11

3.2 Example of Basch’s animated transition (p. 55) [2] 12

4.1 Flow diagram of how we go from a mesh representation to a fluid simulation . . 14
4.2 Cow 3D model before and after voxelization 15
4.3 Flow diagram of how we go from a mesh representation to a fluid simulation . . 15
4.4 Flow diagram of how we go from a mesh representation to a fluid container . . 16
4.5 Dilation of a red square by a circular structuring element, the blue rounded

square is the result of the dilation . 17
4.6 The problem of only creating a hole at the bottom-most point on the fluid con-

tainer, local minimum points will create fluid pools. 20
4.7 Deathplane (red box) cutting away the fluid container, allowing the blue fluid

to pour out of the model, leaving it empty . 20
4.8 3D models of a sphere and a cylinder, shown in perspective (left) and ortho-

graphic (right) projections . 21
4.9 The same arbitrary bar chart shown in perspective(left) and orthographic(right)

projections. 21
4.10 Left: perspective projection. Middle: Orthographic projection Right: How the

split camera view uses both . 22

5.1 UML Class Diagram showing the architecture of the solution 25
5.2 Calculation of 3D Volume [53] p.3 . 31
5.3 Deathplane (black line) cutting away the red boundary particles, allowing the

blue fluid particles to pour out of the model 35
5.4 Sphere using the Deathplane culling shader 35
5.5 The split camera seam, shown on centered cylinders placed at different dis-

tances from the alignment point, with 0 being placed at the alignment point . . 37

iii

5.6 The Camera is placed so the projection lines of the perspective (blue) and or-
thographic (red) intersect at the z-coordinate of the front face of the simulation
bounds . 38

5.7 Liquid Conductor being run on a sphere, showing how the fluid is poured . . . 41

6.1 All five platonic solids . 43
6.2 Result of the platonic solids being run, where r=2 43
6.3 Result of the Liquid Conductor being run on 3D models of Earth, Venus, and

Mars . 45

iv

List of Tables

6.1 Table of the platonic solid’s volume equations 43
6.2 Table comparing the equatorial radius and volume using the metric system, and

a comparative unit to earth’s radius and volume. (eq. radius data from [41]) . . 45
6.3 Table showing performance of the entire Liquid Conductor with different par-

ticle counts. (Program was run on a NVIDIA GeForce RTX 3060 Laptop GPU)

. 46

v

List of Algorithms

1 Modified Iterative Flood fill using a Stack . 32
2 Seed Bar Chart Particles . 33
3 Seed Funnel Particles . 38

vi

Chapter 1

Introduction

Creating informative and engaging data visualizations often requires complex techniques to ef-
fectively communicate data trends and patterns. One of the challenges in developing effective
data visualizations is ensuring that users can easily understand the relationships between dif-
ferent representations of the same data. Animated transitions between visualizations can be a
powerful tool in this regard.

Animated transitions between two visualizations can effectively convey complex information in
an easy-to-understand format. Animated transitions in 2D are well researched and shown to be
helpful and expressive [20]. They can help users retain their sense of context and understand
how the data has changed. By smoothly transitioning between two visualizations, users can
more easily identify changes and patterns in the data and better understand how different data
points are related. Additionally, animated transitions can highlight specific data features, such
as changes in magnitude or position, which can help users interpret the presented information
more effectively.

Overall, animated transitions can be a valuable technique for enhancing the usability and ef-
fectiveness of data visualizations by improving context retention and supporting more accurate
and insightful data analysis. Several reasonable solutions exist to create animated transitions,
such as D3.js [6], Tableau [48], etc. However, these products are intended to be used by pro-
fessionals and are often quite limited in their 3D visualization options.

Animated transitions in 2D already suffer from problems such as occlusion [20] but can be
prevented by techniques such as staggering [13, 25]. This problem becomes even more preva-
lent when we introduce the third dimension, this problem becomes even more prevalent, as 3D

1

visualizations introduce several inherent issues in 3D environments, such as occlusion, naviga-
tion, and illumination [14, 11]. Due to this, creating such transitions in 3D quickly becomes a
complex task and is often time-consuming, and is generally made on a per-dataset basis.

Traditional approaches to creating 3D animated transitions often require careful manipulation
of keyframes to achieve a smooth and convincing transition [45, 37]. This requires expertise in
3D computer graphics software with animation features, such as Blender [15] or Maya [23], in
addition to knowledge of the subject matter of the data set.

1.1 Problem Description

Comparing volumes of different objects is not easy. With physical objects, one can use
Archimedes’ principle [27], which states that when an object is immersed in a fluid, it ex-
periences an upward buoyant force equal to the weight of the fluid it displaces. This principle
allows us to easily compare volumes of irregular objects because the buoyant force is directly
related to the volume of the fluid displaced. By measuring the buoyant force and knowing the
density of the liquid, we can determine the object’s volume without needing complex calcula-
tions or measurements of its shape.

There are several ways to measure the volume of a 3D virtual object [53], with Computer
Assisted Drawing (CAD) and 3D modeling software often having features that calculate a
mesh’s volume and output the result. These are accurate and quick methods, but if one wants to
compare the relative volume differences of two or more 3D objects, being shown pure numbers
is not an engaging way to communicate this.

We can not simply look at the 3D objects and intuit their volume relative to each other, as visual
volume estimation is quite difficult for human eyes. This is further pointed out in that 3D size
(volume) is often considered the least effective way to encode magnitude in data visualizations
[36]. Although volume is a physical attribute that can be easily quantified and visualized, it is
difficult for human eyes to read accurate values out of just volume. In addition, depth perception
can also be a contributing factor, as the perceived size of an object can change depending on its
position relative to the viewer. Therefore, other visual cues, such as color, position, or shape,
are often preferred for encoding magnitude in data visualizations.

This thesis uses visualization techniques such as animated transitions to better communicate
the relative volume differences in 3D objects. by transitioning from the mesh representation to
a representation using a more effective channel for encoding magnitude, such as a bar chart,

2

we can communicate the volume differences intuitively. As well as convey the relationship
between the representations. Bar charts use the Position on a common scale channel, considered
the best channel for encoding magnitude [36]. However, bar charts are boring and forgettable
[28].

To combat this, we experimented with fluid simulation as the transition method. By converting
the mesh volume into fluid particles in a fluid solver and pouring the fluid into a bar in a
bar chart, we make the entire visualization more memorable and engaging and give users an
intuitive and easily understood transition type.

With this thesis, we aim to find solutions to the following questions:

• How can we communicate relative volume differences expressively and engagingly using
animated transitions?

• How effective is a fluid simulation as a transition means?

• How can we transition from a 3D to a 2D representation without losing context?

In the next chapters, we first discuss the background work on visualization and some more spe-
cific topics, such as animation, communicative visualization, and fluid simulation. In chapter
3, we discuss the most relevant literature in more detail. Later, our solution is explained in
chapter 4. Key components of our solution are presented, with explanations of their role in the
entire system and a high-level description of how they work. Chapter 5 goes over our specific
implementation of the components presented in chapter 4. In chapter 6, we first present use
cases where the Liquid Conductor is applied. The last two chapters are the discussion and
conclusion.

3

Chapter 2

Background

The book Visualization Analysis & Design by Munzner [36], defines visualization the following
way:

Computer-based visualization systems provide visual representations of datasets de-
signed to help people carry out tasks more effectively. Visualization is suitable when
there is a need to augment human capabilities rather than replace people with computa-
tional decision-making methods. The design space of possible vis idioms is huge, and
includes the considerations of both how to create and how to interact with visual rep-
resentations. Vis design is full of trade-offs, and most possibilities in the design space
are ineffective for a particular task, so validating the effectiveness of a design is both
necessary and difficult. Vis designers must take into account three very different kinds
of resource limitations: those of computers, of humans, and of displays. Vis usage can
be analyzed in terms of why the user needs it, what data is shown, and how the idiom is
designed.

Visualization solutions are typically designed to address the specific needs of different data
types, user groups, and tasks. These require tailored visualizations to convey information effec-
tively. Visualization solutions aim to optimize the understanding, analysis, and interpretation
of data for users in their respective domains by targeting these specific aspects.

Researchers have developed abstractions that categorize visualization tasks based on their goals
and purposes to abstract from domain-specific tasks to more generalized visualization tasks.
Shneiderman [42] proposed one widely referenced taxonomy that categorizes visualization
tasks based on the data types involved, such as 1D, 2D, 3D, temporal, and multi-dimensional

4

data. This taxonomy emphasizes the importance of understanding the specific characteristics
of the visualized data and tailoring the visualization techniques accordingly.

In her book, Munzner [36] defined a task abstraction that introduces three levels of actions that
define user goals: Analyze, Search, and Query. The analysis level is separated into goals of
data consumption and production, meaning whether the user wants to use existing data or create
new data. This thesis seeks to focus on the presentation and enjoyment parts of visualization.
Within the data consumption goal, Munzner identified three different goals: Discovering new
knowledge within the data, Presenting the data to communicate the information within, and
visualizing the data for Enjoyment purposes.

2.1 Presentational and Communicative Visualization

Presentational visualization tasks emphasize the visual design and aesthetics of the visualiza-
tions to create visually compelling and engaging representations. Communicative visualization
tasks focus on conveying complex information clearly and understandably, making it accessible
to a broader audience.

Kosara [28] states the importance of memorability and engagement when presenting data. The
goal when presenting data is to create a visualization that viewers remember. He states that
simple charts, such as bar charts, scatter plots, etc., while good for analysis and exploratory
settings, are generally not memorable enough for presentation.

Moere and Purchase [32] state that, in visualization, the three important aspects are utility,
soundness, and aesthetics. Utility refers to the efficacy and efficiency of a visualization tech-
nique. Soundness refers to how generalizable the technique is, meaning how easily it is adapted
to different data sets and tasks. Moere and Purchase emphasize the significance of the third
aspect, which is traditionally focused less on. They argue that more focus on aesthetically
pleasing visualizations can increase engagement, leading to better communication.

In the context of this thesis, we aim to enhance bar charts by utilizing fluid simulation to
hopefully create a memorable visualization of volume differences in 3D objects.

5

2.2 Narrative Visualization and Storytelling with Data

Narrative visualization is a specialized approach within the visualization field that uses sto-
rytelling techniques to convey insights and meaning through data. It combines the power of
visual representations with narrative structures to create compelling and engaging data-driven
stories.

Segel et al. [40] conducted a design-space analysis of storytelling narrative visualizations from
online journalism, comics, art, etc. They differentiate between author-driven and reader-driven
narratives and state that most visualizations lie on a spectrum with these two extremes. An
author-driven narrative refers to a linear path through the story. This approach focuses on
communication and storytelling rather than interactivity and exploration. On the other hand,
reader-driven narratives focus on interactivity and exploration on the reader’s part, with less
focus on linearity and storytelling.

Like author-driven narratives, Hullman et al. [22] conducted a user study to deepen understand-
ing of the various forms and reactions associated with sequencing in narrative visualization.
Their approach identifies potential transitions between visualizations based on an objective
function that minimizes transition costs from the audience’s perspective. The cost refers to
what they call transformation cost, which amounts to the visual difference between each vi-
sualization. A high transformation cost leads to a high visual difference, which puts a further
cognitive load on the user to understand the connection between the two visualizations. They
question whether animated transitions can aid in overcoming the effects of transitions with a
high cost.

2.3 Animation in Visualization and Animated Transitions

Animation has been widely employed in visualization to enhance information understanding,
engagement, and retention. Animated transitions, in particular, offer a powerful tool for con-
veying changes, comparisons, and relationships between visualizations. By smoothly animat-
ing from one representation to another, animated transitions provide a visual continuity that
facilitates the tracking of data changes and supports the viewer’s mental model of the data.

Heer and Robertson [20] conducted a study on animated transitions in visualization, highlight-
ing their effectiveness in aiding perception, supporting smooth transitions between visual repre-
sentations, and improving user understanding. Various approaches and techniques for creating

6

animated transitions have been explored, ranging from keyframe manipulation to physics-based
simulations. These techniques offer opportunities to dynamically convey data transformations
and facilitate the storytelling aspects of visualization by guiding the viewer through a series of
visual states.

In their user study, Kim et al. [26] explored the use of animation to help subjects understand
aggregate operations applied on different graphs. They compare subject reactions to staged
animation, interpolation, and static transitions that convey an aggregation of some data. The
staged animations split in two, elaborate and basic staged animation. The elaborate staging is
intended to show the operation performed entirely, focusing on giving the users a complete im-
pression of the operation. The basic staging is similar but omits some stages from the elaborate
staging to focus on simplicity. Interpolation animation refers to simply interpolating between
the start and end states linearly. Static transitions refer to not animating the transition at all.
Their results show that the subjects greatly preferred animation over static transitions across all
aggregate operations. Subjects also tend to prefer the staged animations over interpolation, and
preference over elaborate vs. basic staging seemed to vary based on the operation performed.

The speed at which an animation does not have to be constant. A non-constant speed tran-
sition can help make the transition easier to follow, as pointed out by Dragicevic et al. [13].
They evaluated object-tracking accuracy on animated transitions on point-based graphs, such
as scatterplots. They found that a slow-in/slow-out approach resulted in the highest accuracy,
meaning slowing down the animation speed at the start and end of the transition.

2.4 The Use of 3D in Visualization

When to use 3D and the benefits of 3D in visualization is a widely discussed topic [43, 31, 29].
In the early days of 3D visualization, the benefits of 3D over 2D visualization were overesti-
mated, but in later years many of these perceived benefits were overturned [9, 10, 11].

There are, however, situations where 3D can perform better than 2D. Brath [7] documented
several applications where the 3D interfaces showed benefits beyond 2D. He states that 3D vi-
sualization can benefit from several of the intrinsic properties of 3D vis, such as: using lighting
models to reveal shapes in the data and utilizing the extra dimension to separate marks which
normally overlap if rendered in 2D.

Stasko et al. [47] presented a categorization of 3D visualization tasks:

7

1. Augmented 2D views This category includes visualization techniques typically rendered in
two dimensions, adding a third dimension for presentation or aesthetic purposes.

2. Inherent 3D application domain views Includes visualizations that deal with data inher-
ently in three dimensions: volume rendering and 3D flow visualization.

3. Adapted 2D views Includes visualizations, usually rendered in 2D, using the third dimen-
sion to encode additional features or information.

In their user study, St. John et al. [46] exposed subjects to tasks that required shape recognition
and tasks that required judging objects’ relative positions. They found that 3D visualizations
outperformed 2D in tasks requiring shape recognition but performed worse in tasks requiring
relative position judging.

2.5 Fluid Simulation

This section will discuss some key work on fluid simulation, focusing primarily on particle-
based methods. Firstly, two popular techniques for simulating fluids are presented, followed
by a discussion of how fluid-solid interactions are represented computationally in these fluid
solvers.

2.5.1 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics (SPH) [33] is a Lagrangian particle-based method com-
monly used for simulating fluid flows. SPH represents the fluid as a set of particles that interact
with each other through pairwise forces. Each particle carries various attributes, such as posi-
tion, velocity, density, and pressure. The key idea behind SPH is to estimate fluid properties
at each particle location by interpolating values from neighboring particles using a smoothing
kernel. This interpolation allows SPH to capture complex fluid behaviors, including surface
tension, viscosity, and turbulence. SPH has been widely adopted in computer graphics and fluid
simulation due to its versatility and ability to handle free surface flows. However, SPH can be
computationally expensive, especially when dealing with large-scale simulations or complex
fluid interactions.

Incompressibility refers to the characteristic property of some fluids that exhibit minimal vol-
ume changes when subjected to external pressures. For instance, water is a prominent example
of an incompressible fluid, as its volume remains virtually unchanged even when subjected to

8

substantial pressure. In contrast, compressible fluids like air and other gases can be significantly
compressed or expanded under varying pressures.

Enforcing incompressibility in sph is the most computationally costly part of the simulation
process. with methods that enforce incompressibility, such as Weakly-compressible sph [4],
being too expensive for real-time purposes on larger fluid simulations. Later work, such as by
Solenthaler et al. [44], improves this computational cost by an order of magnitude by creating
a prediction-correction scheme to determine particle pressures.

2.5.2 Position-Based Fluids (PBF)

Position-Based Fluid (PBF) by Macklin et al. [30] is another popular method for simulating
fluid behavior. PBF is a particle-based method representing the fluid as a set of particles, where
each particle carries attributes such as position, velocity, and density. PBF is an extension to
the Position-Based Dynamics (PBD) system [35], which is used for cloth simulation. PBF
employs a position-based constraint framework to enforce incompressibility, boundary condi-
tions, and other fluid dynamics principles. The simulation proceeds by iteratively satisfying
these constraints to achieve stable and physically plausible fluid behavior. PBF is known for its
computational efficiency and stability, making it suitable for real-time simulations and interac-
tive applications. It handles complex fluid phenomena such as splashing, swirling, and surface
tension while controlling fluid viscosity and other material properties.

2.5.3 Fluid-Solid Interaction

Fluid-solid interaction in fluid dynamics refers to the constraints applied to the fluid by forces
from solid objects. In a fluid simulation, proper fluid-solid interactions, in addition to other
boundary conditions, are essential for accurately modeling the behavior of the fluid, as they
help to ensure that the simulation is consistent with physical reality.

There are two different approaches to fluid-solid collisions: no-slip and no-stick [8], which
dictate the behavior of fluid particles near solid boundaries. No-slip conditions assume the
fluid particles stick to the solid surface and have zero velocity. In contrast, free-slip conditions
allow fluid particles to slide along the boundary with a velocity that matches the tangential
component of the fluid flow. In the context of the Liquid Conductor, it is most beneficial to use
a free-slip approach. A no-slip approach would result in fluid sticking to the bar chart’s sides,
likely confusing users. The following subsections will introduce different methods to represent
solid objects.

9

Signed Distance Fields

Signed distance fields are a volumetric approach that can concisely and efficiently represent
solid geometry [17]. A distance function assigns a signed distance value to each point in space,
indicating the distance from that point to the nearest surface of the solid. Positive distances
indicate points outside the solid, while negative distances indicate points inside the solid. This
representation allows for efficient collision detection and boundary handling in fluid simula-
tions.

Boundary Particles

Boundary particles [34] are a common technique used in fluid simulation to enforce boundary
conditions at the surface of an object. The basic idea is to define a set of particles that sit
on the object’s surface and interact with the fluid to mimic the behavior of a solid boundary.
These particles are typically initialized with a high density and a strong repulsive force that
prevents fluid particles from penetrating the boundary. Additionally, boundary particles may
have a fixed velocity or be constrained to move along with the object they represent. Including
boundary particles in a fluid simulation makes it possible to accurately model fluid behavior
around complex shapes and provide a more realistic representation of fluid-solid interactions.

Ghost Particles

Ghost particles [12] are a common technique used in fluid simulation to enforce boundary
conditions at the surface of an object. Similar to boundary particles, ghost particles are used
to define a virtual boundary that interacts with the fluid in a way that mimics the behavior of a
solid boundary. However, unlike boundary particles, ghost particles are not explicitly present
in the simulation and do not take up physical space. Instead, they are used to compute an
effective boundary force applied to the fluid particles near the object’s surface. Ghost particles
are typically placed a small distance from the object’s surface and initialized with a low density
and a weak repulsive force. By using ghost particles, it is possible to avoid the computational
overhead of explicitly simulating the boundary particles while still accurately modeling fluid
behavior around complex shapes and providing a more realistic representation of fluid-solid
interactions.

10

Chapter 3

Related Work

This chapter will discuss two solutions that solve similar problems or use similar techniques to
solve different problems.

Sorger et al. [45] created Metamorphers, a solution for creating reusable animated transitions
for molecular data sets. Their method allows users to make these transitions using and com-
bining pre-made templates, which they call Metamorphers. Figure 3.1 shows two examples of
different combinations of metamorphers that can result in widely visually differing transitions.
This gives users high levels of control to create their desired transitions. Similarly to our goal,
their work seeks to automate the creation of animated transitions in three-dimensional space.
However, their solution still requires some amount of work from the user. Their work is similar
to our goal, but their method is limited to molecular data only.

In Basch’s thesis [2], he delved into the realm of animated transitions by utilizing it to transition
between a volumetric representation and a histogram representation, as seen in figure 3.2. This
was done so users could examine the correlation between volumetric representations and his-
tograms as an alternative to Linking and Brushing [5], which is commonly used. By leveraging

Figure 3.1: Example of where different combinations of metamorphers can lead to two different
transitions

11

Figure 3.2: Example of Basch’s animated transition (p. 55) [2]

animated transitions, Basch aimed to highlight the relationships and patterns within the data
by smoothly transforming from a complex volumetric representation to a simplified histogram.
This approach provided a bridge between the intricate three-dimensional space and the concise
two-dimensional visualization, allowing viewers to observe correlations and variations in the
data dimensions. Basch’s research emphasized the significance of animated transitions in en-
hancing the understanding and communication of data relationships, offering valuable insights
into how these transitions can be effectively applied. Inspired by this work, our thesis builds
upon this concept by employing fluid simulation to create animated transitions from 3D models
to 2D bar charts. We hope to show that using a fluid as a transition method is more intuitive
and easily understood for most humans.

12

Chapter 4

Methodology

The Liquid Conductor aims to facilitate the creation of animated transitions that effectively
communicate the volume differences in 3D models. It does so by transitioning from a 3D
model’s mesh representation to a bar chart representation using fluid simulation. It provides a
user-friendly interface where users can input their 3D models and quickly start the visualization
with very little setup required.

The application takes the user-inputted mesh, then applies a voxelization process to discretize
the 3D space, creating a volumetric representation of the models. This new transformed data
representation is further used to create a fluid container around the object’s surface area, as
well as seeding fluid particles inside its volume. The fluid simulation algorithms automatically
generate realistic and visually appealing transitions between the 3D and 2D representations
by utilizing fluid mechanics to transition. By leveraging the power of fluid simulation, the
application enables users to convey complex information visually, engagingly, and intuitively,
facilitating effective data communication and presentation.

The application also includes features for adjusting parameters such as particle density and
viscosity. Users can also control the pacing of the transition, using the Death Plane component
to control the fluid flow out of the container. This chapter will explain the main initialization
pipeline, presenting components we identified required to create the Liquid Conductor. Later,
we will present the components which are run during run-time.

13

Figure 4.1: Flow diagram of how we go from a mesh representation to a fluid simulation

4.1 Initialization Pipeline

This section will explain the pipeline in which the Liquid Conductor takes a mesh represen-
tation of some 3D object and, through several transformation steps, results in a ready fluid
simulation. This pipeline is part of the initialization process and runs on each user-inputted
mesh. We will explain each step in the pipeline and how the data has been transformed along
each step. Figure 4.1 shows what this pipeline looks like, with blue parallelograms showing
the data transformation and red squares showing each component.

The pipeline takes one or more polygon meshes as input by the user. A Polygon mesh is a
set of vertices and triangles, widely used for representing 3D objects [50]. This representation
only contains surface information about the object. Before we can put fluid inside the mesh,
we require some method that enables traversal of the mesh’s volume. To do this, we need to
quantize the space within the mesh. Therefore we call this component the Space Quantizer. A
popular method for this is mesh voxelization [21].

Space Quantizer

Mesh voxelization converts a 3D mesh (a collection of triangles in 3D space) into a 3D grid of
smaller cubes called voxels. Each voxel in the grid represents a small volume of space and has a
value (such as empty or filled) corresponding to whether or not the original mesh occupies that
volume. It enables us to identify voxels that intersect with the mesh boundaries, ensuring that
fluid particles are placed within the confines of the mesh. Figure 4.2 shows mesh voxelization
on an example model.

14

Figure 4.2: Cow 3D model before and after voxelization

After we have quantized the mesh volume, we now have a volumetric representation of the
original mesh. This is where the pipeline fork in two, as seen in figure 4.1 by red fork-line. The
next subsections will explain each branch.

4.1.1 From Volume to Point Cloud

This branch focuses on the non-greyed-out branch of the main pipelines, as shown in figure 4.3.
This branch goes from the volumetric representation to a point cloud, which will eventually be
given as input to the fluid solver

Figure 4.3: Flow diagram of how we go from a mesh representation to a fluid simulation

15

Particle Seeder

An essential step in the initialization process is seeding fluid particles within the mesh. This
seeding method is crucial in defining the fluid particles’ initial distribution and behavior, af-
fecting the overall accuracy and realism of the simulation results. This section discusses the
significance of a robust particle seeding method and highlights its key considerations.

To ensure an accurate representation of the fluid volume, the particle seeder needs to traverse
the entire volume of the mesh. This traversal process involves systematically sampling points
within the mesh, considering both its interior and surface regions.

One critical aspect of the particle seeding method is the appropriate spacing between the parti-
cles. Incorrect spacing between particles can result in under/over-sampling of the fluid volume,
leading to inaccuracies in the volume estimation. Therefore, it is crucial to determine an appro-
priate spacing that strikes a balance between capturing the fine details of the fluid domain and
maintaining computational efficiency.

After seeding fluid particles, the data has been transformed into a point cloud, each point being
a point where our last component, the fluid solver, will place a fluid particle. The fluid solver
contains the logic for fluid mechanics. The fluid simulation is nearly ready after all the fluid
particles are placed.

4.1.2 From Volume to Boundary

This pipeline branch deals with creating boundary conditions for the fluid solver. Figure 4.4
shows what part of the main pipeline we focus on in this section.

Figure 4.4: Flow diagram of how we go from a mesh representation to a fluid container

16

Fluid Container

We require a method that converts the surface of the mesh into a boundary condition for the
fluid. This is so that the fluid is contained within the mesh at the start of the simulation,
which will let us control the pacing of the transition. Doing so will also help users better
understand the transition by letting them look at the liquid-filled 3D model. We can perform
a morphological dilation step with the volumetric representation from the space quantization
step to calculate the exact boundary needed to ensure a tight seal. We do not want to use the
original mesh representation for this step because quantization methods such as voxelization
approximating the volume will give some inaccuracies. Using the volumetric representation
instead will be completely accurate, as the particle seeder uses the same data representation.

Morphological dilation [18] is a mathematical operation commonly used in image processing
and computer vision to expand or grow the boundaries of objects in an image. The dilation
operation works by expanding the boundaries of the voxels in the image according to some
structuring element. For example, if the structuring element is a sphere of radius r, then each
cell within a distance of r from the surface of the mesh will be included in the dilation, as
shown in figure 4.5.

Figure 4.5: Dilation of a red square by a circular structuring element, the blue rounded square
is the result of the dilation

17

Chart Boundary

In addition to the fluid container around the mesh, we need a boundary condition representing
the chart we want to pour our liquid into. In our case, we focus solely on bar charts, which
can be represented using cylinders. Creating boundary conditions for cylinders in 3D is quite
simple. Using a Signed Distance Function/Field (SDF) as our boundary technique, we can use
a capped cylinder distance function [38], with a small alteration to remove the top cap to let
in fluids. When using boundary particles as the technique, we can seed boundary particles in
vertically stacked circles, with a filled circle at the bottom to act as the bottom cap.

4.2 Run Time

This section will go over the components which run during the simulation. Firstly, we will
review the fluid solver, which runs at initialization and run-time. Secondly, we will present our
solutions for letting liquid pour into the bar chart, and lastly, we will present our solution on
what projection to use in both 3D and 2D applications.

4.2.1 Fluid Solver

Fluid solvers are computational algorithms used to simulate the behavior and dynamics of fluid
substances. These solvers enable the realistic modeling and animation of fluid motion.

The fluid solver takes the point cloud from the particle seeder and the boundary conditions
from the chart and fluid container as input. The solver then utilizes these particles to simulate
the fluid dynamics, interactions, and transformations over time. The boundary conditions act
as solids, which the fluid collides and interacts with.

In the Liquid Conductor, we want our fluid simulation to mimic water, as it is the fluid humans
are most familiar with. The solver must therefore enforce incompressibility, as a compressible
fluid would have a varying volume depending on external forces.

18

4.2.2 Death Plane

The Fluid Container (as explained in section 4.1.2) ensures that the fluid stays within the space
of the original mesh’s volume at the start of the simulation. We now require a method that lets
us slowly let out a controlled amount of fluid, which will pour directly into the bar. Simply
releasing all the liquid at once would result in splashing and fluid particles possibly missing the
bar entirely.

One solution is to ”pierce” a hole at the bottom of the container, meaning to remove a small
part of the boundary on the fluid container, which will let the fluid particles out. The ability to
control the size of the hole would also allow us to control the fluid flow out of the container,
speeding up or slowing down the transition effectively.

One issue with this method is that local minimum points of the mesh will form pools of water,
as shown in figure 4.6. One solution is to create a hole for every local and global minimum
point on the mesh. Although this is simple to calculate, we found the effect to be visually
confusing to look at.

Our alternate solution was to create a cube, which culls part of the Fluid Container within the
cube’s volume. Our solution goes as follows:

Step 1: Generate a cube with equal X and Z size as the mesh’s bounding box but with a
Y size of 0.

Step 2: Position the cube underneath the mesh’s bounding box.

Step 3: Slowly increase the Y size of the cube

Step 4: Cull parts of the fluid boundary within the cube’s volume

We call this solution the Death Plane, named after the plane placed in some video games to
kill the player character if they ”fall” out of bounds. The Death Plane is a cube and not a plane.
However, visually, it looks like a plane that cuts away fluid boundary conditions. Figure 4.7
shows how this works, with the Death Plane cutting the boundary.

19

Figure 4.6: The problem of only creating a hole at the bottom-most point on the fluid container,
local minimum points will create fluid pools.

Figure 4.7: Deathplane (red box) cutting away the fluid container, allowing the blue fluid to
pour out of the model, leaving it empty

4.2.3 Split Camera

This component is the least crucial, as it is not needed for the entire Liquid Conductor to work.
However, this component enables users to read values off the final bar chart more accurately.
This section will explain how cameras are used in 3D visualization, what camera projections
are, and the two most common projections used for visualization: Perspective and Orthographic
projection. Then an explanation of our split camera solution, which combines both projections.

In 3D visualization, virtual cameras determine how the three-dimensional scene is projected
onto the screen. Camera projection is mapping the 3D points in the scene onto a 2D plane
to create the final image. This projection is based on the type of projection chosen, such as
perspective or orthographic projection.

The inherent traits of 3D visualization, such as depth perception and perspective distortion,
make viewing such charts less effective. Therefore we need a method to alleviate or prevent
these issues. One could use an orthographic projection of the entire view to solve both prob-
lems. Figure 4.9 shows how the same bar chart in 3D can be considerably more challenging to
read when rendered in perspective projection than orthographic projection.

Orthographic projection impairs human shape recognition and understanding as it does not
encode depth. Perspective projection is better suited for shape recognition, as it both shows
depth cues and projects images the same way our eyes do, making it much more visually

20

Figure 4.8: 3D models of a sphere and a cylinder, shown in perspective (left) and orthographic
(right) projections

Figure 4.9: The same arbitrary bar chart shown in perspective(left) and orthographic(right)
projections.

intuitive. Figure 4.8 shows the same two 3D models rendered in the two projection methods,
and we can see how the orthographic projection does not let us interpret the object to the right
as a cylinder. The shading alone is the only reason we can differentiate between the sphere and
the cylinder.

Our solution is to split our view horizontally, with the top view showing the 3D model and
using perspective projection. This ensures the best projection for the 3D model and the bar
chart. The bottom view shows the bar chart in orthographic projection, as shown in Figure
4.10.

21

Figure 4.10: Left: perspective projection. Middle: Orthographic projection Right: How the
split camera view uses both

4.3 Component Recap

This section serves as a quick recap of each component, briefly describing their role in the
entire system and how they work.

Space Quantizer:
Transforms the mesh representation into a volumetric representation.

Particle Seeder:
Traverses the volumetric representation and calculates fluid particle positions. Converts
the volumetric representation into a point cloud.

Fluid Container:
Ensures the fluid stays contained within the original mesh at the simulation start by cre-
ating a boundary along the surface area of the volumetric representation.

Chart Boundary:
It represents the bar that the fluid will eventually be poured into and acts as a container
for the fluid, similar to the fluid container.

Fluid Solver:
It contains all the fluid mechanic logic and controls the fluid during the simulation.

Death Plane:
A plane which ”cuts” open the fluid container to let out the liquid in a controlled manner.

22

Split Camera:
Splits the view horizontally and uses both perspective and orthographic projection to
ensure the best projection type for the chart and the 3D mesh.

23

Chapter 5

Implementation

This chapter reviews how the Liquid Conductor was implemented, including class diagrams,
technologies, and algorithms. Firstly Additionally, we introduce solutions to issues not men-
tioned in chapter 4, such as spilling and volume estimation error. Figure 5.1 shows the liquid
conductor’s somewhat simplified Unified Modeling Language (UML) class diagram.

24

25

Figure 5.1: UML Class Diagram showing the architecture of the solution

5.1 Unity

To implement the software, I utilized the Unity Engine [49], a popular game engine widely
used in the industry for game development and other interactive 3D applications. Unity offers
a comprehensive set of tools and features, such as a powerful editor, physics engine, and script-
ing support, which allowed me to focus on the core functionality of my software, rather than
spending time on low-level details of rendering, input handling, and other low-level systems.

One of the main advantages of using Unity for my project is that it provided a pre-built ren-
dering engine with a variety of rendering pipelines and shading models, including the High
Definition Render Pipeline (HDRP) and the Universal Render Pipeline (URP), which allowed
me to choose the best option for my project’s specific requirements. Additionally, Unity has
built-in support for various file formats and asset types, such as 3D models, textures, and ani-
mations. This greatly streamlined the development process and reduced the amount of custom
code needed.

Another major advantage of using Unity is its vast and active community of developers and
users, which provides a wealth of resources, tutorials, and support. This community also offers
a wide range of third-party plugins and assets, which can significantly extend the capabilities
of Unity and provide additional functionality, such as AI, networking, and physics simulation.

Compared to developing my rendering engine from scratch, using Unity saved significant time
and effort while achieving a high-quality result. Furthermore, by utilizing Unity, I was able to
leverage the knowledge and expertise of the existing Unity community, as well as take advan-
tage of the numerous features and tools provided by the engine, which helped me to focus on
the specific requirements of my project and achieve my goals efficiently and effectively.

5.2 Conductor

The Conductor is the component that controls everything within a single simulation, i.e. if the
user inputs three 3D models to compare, then three Conductor instances will each handle one
model.

The main tasks of the Conductor are as follows:

1. Call factory methods for the Death Plane, Bar Chart, and Funnel

26

2. Call all particle source instances’ method to seed particles

3. Initialize the Fluid Solver

4. Call the fluid solver’s step function every frame

5. Dispose all unneeded ComputeBuffers, when stimulation is stopped

5.3 Conductor Manager

The manager is the user-visible component that lets users control each simulation. This is a
component not discussed in the previous chapter. The Liquid Conductor Manager is a compo-
nent that serves as a factory class [16], producing a Conductor instance per 3D model input by
the user. It also controls each simulation, handling starting and stopping them individually.

We create separate simulations for each 3D model, mostly due to performance. Each simulation
is also run sequentially, meaning a simulation is not started until the previous one is complete.
This allows us to dispose of nearly all buffers after a simulation completes, significantly saving
on memory usage and performance. A stopped conductor will preserve the last known position
of each fluid particle, so the now-static fluid can still be rendered.

The Conductor Manager is the communication interface between the user interface and each
conductor, passing messages from the UI to the appropriate Conductor.

5.4 Fluid Solver

To implement the fluid simulation component of my software, I chose to use the position-based
fluid (PBF) method. PBF is a relatively recent technique for simulating fluid dynamics in
real-time applications [30]. It has become increasingly popular in the game development and
graphics communities due to its robustness and efficiency.

We used a GitHub repository by user Scrawk [39] as the starting point of our implementation,
as it contained an implementation of position-based fluids in Unity. Several parts of the code
had to be heavily altered to fit our purposes.

One of the main advantages of PBF is that it provides a stable and accurate fluid dynamics
simulation, even at high resolutions and under complex scenarios, such as interacting with

27

solid objects or other fluids. This is achieved by using a position-based approach to simulate
the fluid particles’ motion, which allows for better handling of collisions and interactions and
more efficient parallelization of the computation.

Another advantage of PBF is that it is computationally efficient and scalable, even on modern
hardware with multiple cores or GPUs. This is achieved using a highly parallelizable algorithm
that can distribute the computation across multiple threads or devices and using techniques such
as spatial hashing and neighbor lists to optimize the simulation’s performance.

Compared to smoothed particle hydrodynamics (SPH), another popular technique for simu-
lating fluids, PBF, has several advantages. SPH can be more challenging to implement and
optimize due to its reliance on kernel functions and interpolation, which can lead to numerical
instability and require careful tuning of parameters. Additionally, SPH can be computationally
expensive, especially at high resolutions or scenarios with high particle counts.

By using PBF for my fluid simulation component, I achieved a stable and efficient simulation of
fluid dynamics while benefiting from its scalability and ease of implementation. Additionally,
PBF allowed me to focus on the higher-level aspects of the simulation, such as the interaction
with other components of the application, without having to spend significant amounts of time
on low-level details of the fluid simulation algorithm.

A crucial part of a fluid solver’s efficiency is finding neighboring particles quickly. Accessing
neighboring particles is used in the solver’s density, viscosity, and pressure calculations. The
grid needs to be re-sorted every frame; it is, therefore, preferable to perform the sorting on the
Graphics Processing Unit (GPU). Sorting algorithms need to be parallel to run on the GPU.
Bitonic sort [3] was one of the earliest examples of a parallel sorting algorithm [24]. Scrawk’s
implementation of Position-Based Fluid uses Bitonic sort to sort a grid hash to find neighboring
particles easily.

5.5 Mesh Voxelization

To implement my software, I used mesh voxelization to quantize the mesh volume, allowing
me to seed fluid and boundary particles within the mesh. Voxelization converts a continuous
object, such as a mesh, into a discrete representation of voxels (volumetric pixels) arranged in
a regular grid.

One of the main advantages of using mesh voxelization is that it provides a flexible and effi-
cient way to represent the geometry of a mesh, especially for tasks that require fast and accurate

28

computation of volumetric properties, such as ray tracing or collision detection. Additionally,
voxelization allows for efficient parallelization of computation and storage of the data in mem-
ory, which can be critical for real-time applications or large-scale simulations.

Another advantage of mesh voxelization is that it enables various algorithms and techniques
designed to work with volumetric data, such as Marching Cubes or Signed Distance Fields,
which can be used for mesh reconstruction or surface extraction tasks. Additionally, voxeliza-
tion can provide a more accurate representation of the geometry of a mesh than traditional mesh
representations, especially for complex shapes or sharp features.

Compared to using other methods to quantize the volume of a mesh, such as tetrahedralization
or irregular hexahedralization, mesh voxelization has several advantages. Voxelization is rela-
tively simple and can be performed efficiently on modern hardware, even for large and complex
meshes. Additionally, voxelization can be performed on non-manifold meshes, which can be
challenging to handle with other methods.

By using mesh voxelization for my software, I achieved an efficient and accurate representa-
tion of the mesh volume, which allowed me to perform various operations, such as collision
detection and ray tracing, quickly and accurately. Additionally, voxelization allowed me to take
advantage of various algorithms and techniques designed to work with volumetric data, which
helped me achieve my goals more efficiently and effectively.

During the development of the Liquid Conductor, we originally implemented the mesh vox-
elization to run on a single thread on the Central Processing Unit (CPU), as the voxelization
is only done once for each 3D object on startup. However, this resulted in long startup times.
Changing the implementation to a parallel solution, run in a compute shader on the GPU, im-
proved these startup times drastically.

5.6 Filling the Volume With Fluid

The seeding method plays a crucial role in determining the initial distribution and behavior of
the fluid particles, which directly impacts the accuracy and realism of the simulation results.
To accurately represent the fluid volume, the particle seeder must traverse the entire volume of
the mesh. This involves systematically sampling points within the mesh’s interior and surface
regions.

One key consideration in the particle seeding method is determining the appropriate spacing
between the particles. The spacing should be carefully chosen to balance capturing the fine

29

details of the fluid domain and maintaining computational efficiency. Incorrect spacing can
lead to under or over-sampling of the fluid volume, introducing inaccuracies in the volume
estimation.

Once the fluid particles are seeded, the data is transformed into a point cloud, where each point
represents a location for a fluid particle. The fluid solver’s final component contains the logic
for simulating fluid mechanics. The fluid simulation is nearly ready to proceed with all the fluid
particles in place.

The mesh voxelization process gives us the volumetric representation to seed particles appro-
priately within the mesh volume. We can seed particles with proper spacing within each voxel
to get a somewhat accurate amount of particles representing the mesh volume. The voxel size
is an important aspect, which can widely vary the accuracy of this volume estimation.

To simplify this, we set the voxel size to equal the size of a single fluid particle. This somewhat
alleviates the accuracy variation resulting from using some other voxel size. This also simplifies
the seeding process, as now we only need to seed a single particle in the center of each voxel.
However, the volume estimation from mesh voxelization is not completely removed. The next
subsection will explain this further and present our solution to this problem.

5.6.1 Alleviating Volume Estimation Discrepancy

When working with voxelized meshes in fluid simulations, it is important to acknowledge that
the voxelized representation may not perfectly preserve the volume of the original mesh. Vox-
elization, which discretizes the mesh into a regular grid of voxels, can introduce small inaccura-
cies and deviations from the precise geometry of the original object. As a result, the voxelized
mesh may have a slightly different volume than the original mesh.

To address this volume discrepancy, a method is needed to accurately calculate the volume
of the original mesh and use that value to compensate for the volume error during the seeding
process in the fluid simulation. By determining the precise volume of the original mesh, adjust-
ments can be made in the number and distribution of fluid particles to ensure a more accurate
representation of the fluid-solid interaction.

To calculate the volume of a 3D mesh, we implemented the method described by Cha Zhang
and Tsuhan Chen in their paper [53]. Their method calculates the signed volume of a tetra-
hedron formed by a mesh triangle and origin (see figure 5.2). The mesh volume is simply the

30

Figure 5.2: Calculation of 3D Volume [53] p.3

sum of the signed volume of each tetrahedron formed by each triangle in the mesh. This can
be calculated with this formula:

V = ∑
i

1
6
(−xi3yi2zi1 + xi2yi3zi1 + xi3yi1zi2

−xi1yi3zi2− xi2yi1zi3 + xi1yi2zi3)

(5.1)

This method of calculating mesh volume does not assume the mesh is convex. Using this
calculated volume, we can add extra fluid particles to compensate for the volume loss due to
voxelization. The error margin is now the volume of a single fluid particle, thus significantly
increasing the accuracy of our volume estimation.

5.7 Fluid Container

As discussed in the previous chapter, we discussed the need for a method to convert the surface
of a mesh into a boundary condition for the fluid. This conversion is necessary to ensure that
the fluid remains within the mesh during the simulation, allowing for better transition control
and providing a visual representation of the liquid-filled 3D model.

We use the volumetric representation obtained from mesh voxelization instead of the original
mesh representation. This representation is preferred over the original mesh representation
because quantization methods like voxelization, which approximate the volume, introduce in-
accuracies. Using the volumetric representation, a morphological dilation step can calculate the
exact boundary required for a tight seal. Morphological dilation is a mathematical operation
commonly used in image processing and computer vision. It involves expanding or growing

31

the boundaries of objects in an image using a structuring element. In this case, the structuring
element is the 26 neighboring voxels of a given voxel. By applying morphological dilation to
the volumetric representation, the boundaries of the voxels within a certain distance from the
surface of the mesh can be expanded, ensuring a tight seal for the fluid simulation.

To implement this, we implemented a Flood fill algorithm with a modification that traverses the
volume one extra step after hitting the border, marking them as boundary voxels. This ensures
that our algorithm finds every cell outside the mesh, which neighbors a voxel within the mesh.
The flood fill is implemented as follows:

Algorithm 1 Modified Iterative Flood fill using a Stack
procedure FLOODFILL(start)

boundaryVoxels← Empty List
S← Empty Stack
S.push(start)
while S is not empty do

v← S.pop()
mark v as visited

if not INSIDE(v) then
add v to boundaryVoxels
continue

end if

for all w ∈ NEIGHBORS(v) do
if w is not visited then

S.push(w)
end if

end for
end while
return boundaryVoxels

end procedure

The function INSIDE(v) returns a Boolean value representing whether the voxel v is inside the
voxelized mesh, and the function NEIGHBORS(v) returns the 26 neighboring voxels of v. The
returned value, boundaryVoxels, contains all the voxels in the dilation.

5.8 Bar Chart

We chose to use boundary particles to represent all solids in the fluid simulation, both due to
the fluid solver already supporting them and due to boundary particles enabling us to easily
create representations of complex shapes, which was needed for the fluid container.

32

We used boundary particles to represent the bar chart and the funnel presented in section 5.11
instead of a solution that uses both signed distance functions and boundary particles. The
reason for this was to avoid overcomplicating the implementation. However, using such a
hybrid solution could possibly improve performance.

We implemented the method of seeding boundary particles in a cylinder with a bottom cap
to create a boundary condition for the cylindrical bar chart. The cylinder shape is made by
seeding boundary particles in vertically stacked circles. The bottom cap is made by seeding
concentric circles at the bottom of the cylinder. This is seen in algorithm 2, where the function
SEEDCYLINDER is the method for creating the cylindrical bar chart.

Algorithm 2 Seed Bar Chart Particles
procedure SEEDCYLINDER(h, r, s)

particles← empty list
SEEDFILLEDCIRCLE(0, r, s)
for y← 0,h do

SEEDCIRCLE(particles, r, s, y)
end for
return particles

end procedure

procedure SEEDFILLEDCIRCLE(particles, r, s, y)
while r ≥ s do

SEEDCIRCLE(particles, r ,y)
r−= s

end while
end procedure

procedure SEEDCIRCLE(particles, r, s, y)
n← ⌊2∗π ∗ r/s⌋
θ ← 2π/n
for i← 0,n do

v← (r ∗ cos(θ ∗ i),y,r ∗ sin(θ ∗ i))
add v to particles

end for
end procedure

The parameters in SEEDCYLINDER in algorithm 2 h and r refer to the cylinder’s height and
radius, respectively, while the parameter s is the desired spacing between each particle.

33

5.9 Death Plane

We created the Death Plane to let the fluid out of the container. Which is a plane that effectively
removes the boundary particles below it, as shown in Figure 5.3. As the simulation runs, the
user can drag a GUI slider to move the death plane up, thus removing more boundary particles.
This allows the user to control how much liquid is poured from the mesh.

In the fluid density and pressure calculations, a fluid particle iterates through boundary particles
in neighboring grid cells to determine the fluid-solid forces on the fluid particle. Boundary
particles within the Death Plane’s volume are ignored in these calculations. We determine if a
boundary particle is within the Death Plane by a SDF on a box [38]:

1 float sdBox(vec3 p, vec3 b)

2 {

3 vec3 q = abs(p) - b;

4 return length(max(q,0.0)) + min(max(q.x,max(q.y,q.z)),0.0);

5 }

Where p is the position of the particle relative to the box center, and b is the box size. A
boundary particle is within the box if the return value of the signed distance function is negative.
Boundary particles with a negative signed distance to the Death Plane are ignored in density
calculations.

We do not delete boundary particles culled by the Death Plane because removing elements from
a ComputeBuffer requires re-initialized and re-filled, which will often hurt performance more
than gained from freeing the space.

To properly convey that the model is being ”cut” to the user, we created a special surface shader,
as shown in figure 5.4. The shader hides any part of the mesh within the Deathplane box and
creates a red ”cutting line” to communicate the actual cutting. Normally, the interior of 3D
models is not visible to the camera and therefore is not typically rendered. However, we would
expect to see the interior since we are cutting away some parts of the outer surfaces. Therefore
in our Death Plane culling shader, we render the interior and darken the interior slightly to
create the illusion of shade.

34

Figure 5.3: Deathplane (black line) cutting away the red boundary particles, allowing the blue
fluid particles to pour out of the model

Figure 5.4: Sphere using the Deathplane culling shader

5.10 Split Camera

Perspective projection is commonly used in 3D visualization to mimic how the human eye
perceives depth in the real world. It stimulates the convergence of parallel lines towards a van-
ishing point, creating a sense of depth and distance. In a perspective projection, objects closer
to the camera appear larger, while those farther away appear smaller. This projection technique
provides a more realistic representation of the scene, making it suitable for applications where
spatial relationships and depth perception are important, such as architectural visualization or
virtual reality experiences.

On the other hand, orthographic projection is a technique that preserves parallelism and does
not consider the depth or distance of objects in the scene. In orthographic projection, objects
maintain their size and shape regardless of their distance from the camera. This projection is
often used in technical drawings, engineering visualizations, or when a more flattened or geo-
metric representation is desired. Orthographic projection is useful when precise measurements
or accurate scaling of objects are critical, as it eliminates the distortion caused by perspective
projection.

35

3D visualization applications can create immersive and accurate representations of the virtual
environment by manipulating these camera parameters and selecting the appropriate projec-
tion type. Whether employing perspective projection to simulate realistic depth perception or
orthographic projection for precise scaling and measurement, understanding the principles of
camera projection is fundamental to achieving compelling visualizations in 3D visualization.

Unity supports both perspective and orthographic projections in its Camera component. We
use a combination of three cameras to implement our Split Camera component. Two of the
cameras are the perspective and orthographic cameras, and the third combines the results from
the other cameras and renders onto the screen.

The perspective and orthographic cameras each render into separate RenderTexture instances.
A third camera samples these textures based on the y coordinate of the screen pixel. The third
camera also samples the skybox and blends it in. This is implemented as follows:

1 fixed4 split_camera(float2 uv) {

2 const float frag_height = uv.y - _SplitHeight;

3 // Perspective Camera

4 if (frag_height > 0){

5 return tex2D(_PerspectiveTex, uv);

6 }

7 //Orthographic

8 return tex2D(_OrthographicTex, uv);

9 }

Where uv is the position of the screen pixel in texture space.

5.10.1 Minimizing Seam

Rendering two different camera projections on the screen shows an obvious seam at the split
point. This is due to the same screen pixel not always equating to the same position in the world
space in two different projections. However, there is a specific point at which orthographic
and perspective projection align. This alignment point is where the projection lines of the
orthographic and perspective cameras intersect. Figure 5.5 shows how the seam’s visibility
changes based on how far a cylinder is from the alignment point. The cylinders are all placed
directly in front of their cameras. The seam distortion is even more apparent when objects are

36

Figure 5.5: The split camera seam, shown on centered cylinders placed at different distances
from the alignment point, with 0 being placed at the alignment point

placed off-center. We place the camera to minimize the seam distortion so that the simulation
bound is on the alignment point. Ideally, we would place the simulation center on the alignment
point, but then some of the top parts of the simulation will not be in the frame. Figure 5.6 shows
how we place the camera for the least amount of seam distortion while still having the entire
simulation in the frame. We position the camera in the following way:

C =

x = Sx

y = Sy

z = Sz−Bz− O
tan θ

2

C = Camera Position

S = Simulation Center

B = Simulation Bounds Size

O = Vertical Orthographic View Size

θ = Vertical Perspective Projection Angle

(5.2)

This is when the center of the simulation bounds is on the same XZ-coordinate as the line-line-
intersection between the two camera projections. The camera is placed at the same Y-coordinate
as the center of the simulation bounds. The seam is now the least visible at the center of the
simulation bounds, which the pouring fluid often pours through.

37

Figure 5.6: The Camera is placed so the projection lines of the perspective (blue) and ortho-
graphic (red) intersect at the z-coordinate of the front face of the simulation bounds

5.11 Spill Prevention: Funnel

Due to the unknown size and shape of the mesh, we cannot guarantee that all fluid particles will
naturally fall into the cylindrical bar chart. To prevent this, we created a ”funnel” component
to guide fluid particles into the bar.

The funnel consists of boundary particles aligned in a conical shape placed at the top of the bar.
The smaller bottom radius of the funnel is set to equal the radius of the bar it sits upon. While
the larger top radius is set to the extent of the simulation bounds. The funnel height is set so
that the top is on the same y-coordinate as the bottom of the mesh.

Algorithm 3 Seed Funnel Particles
procedure SEEDFUNNEL(h, r0, r1, s)

particles← empty list
for y← 0,h do

r← lerp(r0,r1,y/h)
SEEDCIRCLE(particles, r, s, h)

end for
return particles

end procedure

In algorithm 3, the parameters h, r0, and r1 are the funnel’s height, lower radius, and upper
radius, respectively. The parameter s is the spacing between each particle. The called function,
SEEDCIRCLE, is the same as shown in algorithm 2 in section 5.8.

38

5.12 Rendering

For the isosurface reconstruction of the fluid in my application, sphere tracing is performed on a
signed distance field (SDF) representation of the fluid density. SDF is a method for representing
the distance to a surface from a point in space. They can be computed efficiently from various
sources, including meshes, point clouds, or volume data.

Sphere tracing [19] is a technique for traversing a volume to find isosurfaces. The algorithm
iteratively samples the SDF in a sphere until it reaches a zero-crossing in the SDF, meaning the
fluid surface is found. This approach allows for efficient computation of the surface and can
produce high-quality results, especially for smooth and well-behaved surfaces.

One advantage of using sphere tracing on SDFs for isosurface reconstruction is that it provides
a flexible and efficient way to represent the fluid volume and its surface in real time. Addition-
ally, sphere tracing allows for efficient parallelization of computation and can be performed on
modern hardware, even for large and complex volumes.

To calculate the lighting in the fluid surface rendering surface shader, we need to calculate
the surface normal for a point on the fluid surface. This is done by sampling the gradient
of the density field, which represents the direction of the steepest increase in density at each
point in the volume [19]. This approach allows for accurate surface orientation and shading
computation, critical for realistic rendering and visualization of the liquid surface.

Due to our mixed camera projection from the split camera component, the ray direction needs
to be changed based on what projection the camera currently rendering is using.

39

1 struct Ray {

2 float3 origin;

3 float3 dir;

4 };

5

6 Ray get_ray(float3 camera_world, float3 frag_world){

7 Ray r;

8 r.origin = frag_world;

9

10 if (unity_OrthoParams.w == 1.0){ // Orthographic projection

11 r.dir = UNITY_MATRIX_IT_MV[2].xyz;

12 }

13 else{ // Perspective projection

14 r.dir = normalize(frag_world - camera_world);

15 }

16 return r;

17 }

unity_OrthoParams.w is a float4 provided by the camera, where the w value is 1 when
the camera is in an orthographic projection, and 0 otherwise. UNITY_MATRIX_IT_MV is the
model*view matrix of the current camera. This means that UNITY_MATRIX_IT_MV[2].xyz
will give us the camera’s forward vector in world space.

I rendered the fluid completely opaque, without any complex shading or transparency effects,
as shown in figure 5.7. Rendering it opaque was to make the edges of the fluid more distinct,
which was essential for users to read the value on the bar chart.

5.13 Running the Liquid Conductor

To be able to run the liquid conductor, the user will need to do a few tasks first. Firstly they
must input the 3D models they wish to run the program on. Then, the user has to input the size
of the simulation bounds and particle size. The bar height is set to be half the height of the
simulation bounds. This is to ensure that the seam created by the split camera is less obvious.
The radius of a bar is determined automatically so that the volume of the cylinder equals the

40

Figure 5.7: Liquid Conductor being run on a sphere, showing how the fluid is poured

volume of the mesh with the most volume. The result is that the most voluminous mesh will fill
its bar fully. This is done so that the fill height of the other meshes is then its volume compared
to the most voluminous mesh. If a mesh fills its bar halfway, this means that its volume is equal
to half of the largest mesh.

Users are given a vertical UI slider, which controls the Death plane, to directly control the fluid
flow out of the mesh boundary hull. The Deathplane could be controlled automatically, but
different meshes require wildly varying amounts of fluid flow to be as expressive as possible.
Therefore we decided to let users control the flow themselves. Also, we found the slider to
make the application more engaging.

Figure 5.7 shows the entire pouring process of the Liquid Conductor being run on an arbitrary
sphere, with the left-most image showing the first frame, where only the 3D model is shown.
The next image is when the user has started the simulation, but has not moved the Deathplane
yet, so all the liquid is held within the mesh boundary shell. The next two images show the
sphere being cut open by the Deathplane, letting out liquid to fill the bar. The last image shows
the final result showing the empty 3D model and the bar chart filled with all the liquid.

41

Chapter 6

Results

This chapter presents the results of implementing and evaluating the Liquid Conductor appli-
cation. In this chapter, we showcase two applications where the Liquid Conductor proves to
be valuable in the domain of data visualization. Furthermore, we delve into the application’s
performance, highlighting its efficiency and effectiveness in generating animated transitions
from 3D models to 2D bar charts. The results presented in this chapter validate the capabilities
of the Liquid Conductor and shed light on its potential for enhancing the presentational and
communicative aspects of data visualization.

6.1 Use Case: Platonic Solids

Platonic solids are a set of five regular polyhedra that have identical faces, edges, and vertices.
The Platonic solids include the tetrahedron, hexahedron, octahedron, dodecahedron, and icosa-

hedron (as shown in figure 6.1). Each Platonic solid has a unique set of geometric properties,
such as symmetry, regularity, and uniformity, Which makes them a study topic in mathematics,
geometry, and physics.

If we compare the volume of each polyhedron when they have the same circumradius, meaning
the radius of a sphere that touches each of the vertices of a polyhedron. Intuitively, one would
assume that the polyhedron most similar to a sphere (the polyhedron with the most vertices)
would have the greatest volume. This is not the case, as seen in table 6.1. One can see that given
the same circumradius, the dodecahedron has the greatest volume, rather than the icosahedron.

Figure 6.2 shows the result of running our program on all these five solids; the solids are sized
so their circumscribed sphere would be of equal size. This indicates that the dodecahedron has
the most significant volume of the five shapes.

42

43

Shape Faces Circumradius r Volume Volume (r=2)

Tetrahedron 4
√

6
4 a

√
2

12 a3 ≈ 4.11

Hexahedron 6
√

3
2 a a3 ≈ 12.32

Octahedron 8
√

2
2 a 1

3

√
2a3 ≈ 10.67

Dodecahedron 12
√

3
4 (1+

√
5)a 1

4(15+7
√

5)a3 ≈ 22.28

Icosahedron 20 sin 2π

5 a 5
12(3+

√
5)a3 ≈ 20.29

Table 6.1: Table of the platonic solid’s volume equations

Figure 6.1: All five platonic solids

Figure 6.2: Result of the platonic solids being run, where r=2

6.2 Use Case: Comparing Earth to Its Neighboring Planets

This section presents a specific use case to demonstrate the practical application of our pro-
posed visualization approach. We utilize our application to compare the volumes of 3D models
representing Earth, Mars, and Venus. By employing fluid simulation and animated transitions,
we aim to provide a visually engaging and intuitive representation of the variations in planetary
volumes.

It is commonly observed that people often hold preconceived assumptions about the relative
sizes of celestial bodies such as Earth, Mars, and Venus. However, these assumptions are
frequently inaccurate due to the vastness of planetary scales. People tend to underestimate
or overestimate the size differences, leading to misconceptions about the actual variations in
volume.

By utilizing our application to compare the volumes of 3D models of Earth, Mars, and Venus,
we aim to create an engaging and interactive way to rectify these misconceptions and provide
a more accurate representation of the size disparities. Our approach’s animated transitions and
fluid simulation techniques offer viewers a novel, immersive experience that vividly portrays
the true differences in planetary volumes. Through this visual exploration, we can help correct
misperceptions and foster a deeper understanding of the actual size relationships between these
celestial bodies.

Comparing planetary volumes is important to understanding celestial bodies’ physical charac-
teristics and scale. However, traditional methods of comparing volumes, such as numerical
measurements or static visualizations, often fail to effectively convey the true magnitude and
spatial relationships. Through our application, we seek to overcome these limitations and offer
a more immersive and informative experience.

The fluid simulation techniques employed in our approach enable the creation of a fluid con-
tainer that acts as a hull around each planetary model, providing a visual representation of
the volume. Through the animated transitions, viewers can observe and compare the relative
volumes of the three planets.

Our use case not only demonstrates the capability of our application in visualizing the volume
of 3D models but also showcases the potential for broader applications in the field of planetary
science, education, and public outreach. By providing an engaging and interactive platform,
we enable users to explore and comprehend complex scientific concepts in an intuitive and
accessible manner.

44

45

Planet
Equatorial Radius Volume

km earths km³ earths

Earth ≈ 6371 1 ≈ 1.0832∗1012 1

Venus ≈ 6051 0.949 ≈ 0.9280∗1012 0.857

Mars ≈ 3389 0.531 ≈ 0.1630∗1012 0.151

Table 6.2: Table comparing the equatorial radius and volume using the metric system, and a
comparative unit to earth’s radius and volume. (eq. radius data from [41])

Figure 6.3: Result of the Liquid Conductor being run on 3D models of Earth, Venus, and Mars

6.3 Performance

Our fluid surface reconstruction is straightforward due to not doing any reflection or refraction,
so it does not affect performance too much. Performance is highly dependent on the number of
particles in the simulation. So larger 3D models will perform significantly worse. Increasing
particle size will improve the performance of the simulation. However, larger particle sizes will
result in a visually lower quality simulation. Scaling down every model by the same amount
will produce fewer particles, resulting in better performance, but will also lower simulation
quality.

Using Unity’s profiler, we can see that the fluid solver’s simulation steps is the process that
affects the performance the most, but this was expected and can only be improved by optimizing
the solver algorithm further. The split camera also affects the performance significantly. This is
because the split camera makes the screen render thrice for every frame, once for the perspective
camera, once for the orthographic camera, and finally once for the third camera, combining the
two other cameras rendering.

The start-up time heavily depends on each 3D model’s size and vertex count. This is because
the voxelization must be run on each model at startup. Additionally, the volume discrepancy
alleviation discussed in section 5.6.1 is a much more significant factor in startup time and is
directly affected by vertex count. To fix this, we give users the option not to do this step, making
the volume estimation less accurate and the startup time much faster.

Fluid Particles Boundary Particles CPU time (ms)

15K 14K 16ms

36K 23K 28ms

71K 35K 45ms

122K 48K 75ms

Table 6.3: Table showing performance of the entire Liquid Conductor with different particle
counts. (Program was run on a NVIDIA GeForce RTX 3060 Laptop GPU)

46

Chapter 7

Discussion

Our application currently only supports using spacial volume as the encoding feature; further
work could be done to increase its feature options, such as surface area could be visualized
without much change to the source code. More work could be done to make the transitions
more narrative, such as showing the model better by zooming in and rotating the model so
users get a better mental reference of the 3D object. The application could include other 2D
representations, such as pie charts and stacked bar charts with different colored liquids.

Using PBF, which contains a relaxation parameter ε [30] in its fluid-fluid interaction calcula-
tions. This parameter is user-defined and stays constant during the entire simulation. Normally
one would tweak this parameter based on factors such as fluid particle count. However, changes
in the parameter are most noticeable in situations where many fluid particles are stacked ver-
tically, as in our case with the cylindrical bars. If the ε value is too high, it will result in the
fluid being more compressible, which is unwanted. If ε is too low, fluid particles behave chaot-
ically or, worst-case, penetrate through boundary particles. This could be fixed by finding some
equation based on bar size and particle count, but it would require further experimentation.

The narrative visualization aspect of the liquid conductor could also be worked on further. The
application could be extended to improve this aspect, such as showcasing each 3D model before
starting the simulation. This will improve the user’s perception of each 3D model before liq-
uidizing them. Some multi-stage animation could be implemented without altering the existing
source code.

Changing the fluid rendering technique could improve the graphical quality, such as using a
particle splatting method [1] or combining splatting and ray tracing [51]. Changing the ren-
dering technique could improve accuracy when reading bar chart values, such as the recent
work by Xu et al. [52] applies anisotropic transformations to the fluid particle spheres based
on particle distribution to render more realistic fluid edges.

47

Chapter 8

Conclusions

In this thesis, we presented a novel approach to creating animated transitions from 3D models
to 2D bar charts using fluid simulation. Our method uses morphological dilation to create a
fluid container around the 3D model. Then seed fluid particles within it create a fluid-filled
container, which can be poured into a bar chart during the transition. We demonstrated the
effectiveness of our approach through several examples.

Our method provides several advantages over traditional techniques for creating animated tran-
sitions. By using fluid simulation, we can create realistic and visually appealing transitions
without requiring the tedious manipulation of keyframes that traditional methods often demand.
Our approach also reduces the time and effort required to create high-quality data visualizations
while maintaining traditional techniques’ effectiveness.

We also addressed several key challenges when creating animated transitions, such as the need
for context retention, the problems of occlusion in 3D, and the limitations of using volume as
a channel for encoding magnitude. Our approach overcomes these challenges and produces
informative and engaging transitions.

Overall, our method represents a significant contribution to the field of data visualization and
has the potential to enable a wide range of applications in industry, education, and research.
Our approach will interest researchers and practitioners in computer graphics, visualization,
and related fields. We look forward to seeing how it will be further developed and applied.

48

Glossary

compute shader a program run on the GPU, but is run outside the rendering pipeline.

ComputeBuffer Unity class for creation of GPU data buffers, to be used in Compute Shaders.

equatorial radius The radius of a planetary body at its equator.

mesh Part of a 3D model which contains vertex, triangle, and normal vector data.

RenderTexture Unity class, a texture that can be rendered to.

surface shader a program run on the GPU, that calculates the appropriate color and light for
each point on a surface.

voxel Volume element, a single unit of space in a three-dimensional regular grid.

voxelization Process of converting a continuous mesh into a set of voxels of a set size.

49

List of Acronyms and Abbreviations

CAD Computer Assisted Drawing.

CPU Central Processing Unit.

GPU Graphics Processing Unit.

PBD Position-Based Dynamics.

PBF Position-Based Fluid.

SDF Signed Distance Function/Field.

SPH Smoothed Particle Hydrodynamics.

UML Unified Modeling Language.

50

Bibliography

[1] Bart Adams, Philip Dutré, and Toon Lenaert. Particle splatting: Interactive rendering of
particle-based simulation data. 2006.

[2] Christian Basch. Animated transitions across multiple dimensions for volumetric data.
na, 2011.

[3] Kenneth E Batcher. Sorting networks and their applications. In Proceedings of the April

30–May 2, 1968, spring joint computer conference, pages 307–314, 1968.

[4] Markus Becker and Matthias Teschner. Weakly compressible sph for free surface flows.
In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer an-

imation, pages 209–217, 2007.

[5] Richard A Becker and William S Cleveland. Brushing scatterplots. Technometrics, 29(2):
127–142, 1987.

[6] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents. IEEE

transactions on visualization and computer graphics, 17(12):2301–2309, 2011.

[7] Richard Brath. 3d infovis is here to stay: Deal with it. In 2014 IEEE VIS International

Workshop on 3DVis (3DVis), pages 25–31. IEEE, 2014.

[8] Robert Bridson. Fluid simulation for computer graphics. CRC press, 2015.

[9] Andy Cockburn and Bruce McKenzie. An evaluation of cone trees. In People and Com-

puters XIV—Usability or Else! Proceedings of HCI 2000, pages 425–436. Springer, 2000.

[10] Andy Cockburn and Bruce McKenzie. 3d or not 3d? evaluating the effect of the third
dimension in a document management system. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 434–441, 2001.

[11] Andy Cockburn and Bruce McKenzie. Evaluating the effectiveness of spatial memory in
2d and 3d physical and virtual environments. In Proceedings of the SIGCHI conference

on Human factors in computing systems, pages 203–210, 2002.

51

[12] Andrea Colagrossi and Maurizio Landrini. Numerical simulation of interfacial flows by
smoothed particle hydrodynamics. Journal of computational physics, 191(2):448–475,
2003.

[13] Pierre Dragicevic, Anastasia Bezerianos, Waqas Javed, Niklas Elmqvist, and Jean-Daniel
Fekete. Temporal distortion for animated transitions. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 2009–2018, 2011.

[14] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3d occlusion management for
visualization. IEEE transactions on visualization and computer graphics, 14(5):1095–
1109, 2008.

[15] Blender Foundation. Blender, 2023.
URL: https://www.blender.org/.

[16] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and Design Patterns. Ele-
ments of reusable object-oriented software. Design Patterns, 1995.

[17] Sarah FF Gibson. Using distance maps for accurate surface representation in sampled
volumes. In Proceedings of the 1998 IEEE symposium on Volume visualization, pages
23–30, 1998.

[18] Robert M Haralick, Stanley R Sternberg, and Xinhua Zhuang. Image analysis using math-
ematical morphology. IEEE transactions on pattern analysis and machine intelligence,
(4):532–550, 1987.

[19] John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of implicit
surfaces. The Visual Computer, 12(10):527–545, 1996.

[20] Jeffrey Heer and George Robertson. Animated transitions in statistical data graphics.
IEEE transactions on visualization and computer graphics, 13(6):1240–1247, 2007.

[21] Jian Huang, Roni Yagel, Vassily Filippov, and Yair Kurzion. An accurate method for
voxelizing polygon meshes. In IEEE symposium on volume visualization (Cat. No.

989EX300), pages 119–126. Ieee, 1998.

[22] Jessica Hullman, Steven Drucker, Nathalie Henry Riche, Bongshin Lee, Danyel Fisher,
and Eytan Adar. A deeper understanding of sequence in narrative visualization. IEEE

Transactions on visualization and computer graphics, 19(12):2406–2415, 2013.

[23] Autodesk Inc. Maya software, 2023.
URL: https://www.autodesk.com/products/maya/overview.

52

https://www.blender.org/
https://www.autodesk.com/products/maya/overview

[24] Mihai F Ionescu and Klaus E Schauser. Optimizing parallel bitonic sort. In Proceedings

11th International Parallel Processing Symposium, pages 303–309. IEEE, 1997.

[25] Younghoon Kim and Jeffrey Heer. Gemini: A grammar and recommender system for
animated transitions in statistical graphics. IEEE Transactions on Visualization and Com-

puter Graphics, 27(2):485–494, 2020.

[26] Younghoon Kim, Michael Correll, and Jeffrey Heer. Designing animated transitions to
convey aggregate operations. In Computer Graphics Forum, volume 38, pages 541–551.
Wiley Online Library, 2019.

[27] Marián Kireš. Archimedes’ principle in action. Physics education, 42(5):484, 2007.

[28] Robert Kosara. Presentation-oriented visualization techniques. IEEE computer graphics

and applications, 36(1):80–85, 2016.

[29] Markos Kyritsis, Stephen R Gulliver, Sonali Morar, and Robert Stevens. Issues and ben-
efits of using 3d interfaces: visual and verbal tasks. In Proceedings of the Fifth Inter-

national Conference on Management of Emergent Digital EcoSystems, pages 241–245,
2013.

[30] Miles Macklin and Matthias Müller. Position based fluids. ACM Transactions on Graph-

ics (TOG), 32(4):1–12, 2013.

[31] Andrian Marcus, Louis Feng, and Jonathan I Maletic. 3d representations for software
visualization. In Proceedings of the 2003 ACM symposium on Software visualization,
pages 27–ff, 2003.

[32] Andrew Vande Moere and Helen Purchase. On the role of design in information visual-
ization. Information Visualization, 10(4):356–371, 2011.

[33] Joe J Monaghan. Smoothed particle hydrodynamics. Annual review of astronomy and

astrophysics, 30(1):543–574, 1992.

[34] Joe J Monaghan and Jules B Kajtar. Sph particle boundary forces for arbitrary boundaries.
Computer physics communications, 180(10):1811–1820, 2009.

[35] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. Position based
dynamics. Journal of Visual Communication and Image Representation, 18(2):109–118,
2007.

[36] Tamara Munzner. Visualization analysis and design. CRC press, 2014.

53

[37] Rick Parent. Computer animation: algorithms and techniques. Newnes, 2012.

[38] Inigo Quilez. distance functions, 2023.
URL: https://iquilezles.org/articles/distfunctions/.

[39] Scrawk. Pbd-fluid-in-unity. https://github.com/Scrawk/PBD-Fluid-in-Unity,
2022.

[40] Edward Segel and Jeffrey Heer. Narrative visualization: Telling stories with data. IEEE

transactions on visualization and computer graphics, 16(6):1139–1148, 2010.

[41] P Kenneth Seidelmann, Brent A Archinal, Michael F A’hearn, Al Conrad, Guy J Consol-
magno, Daniel Hestroffer, James L Hilton, GA Krasinsky, G Neumann, Jürgen Oberst,
et al. Report of the iau/iag working group on cartographic coordinates and rotational
elements: 2006. Celestial Mechanics and Dynamical Astronomy, 98:155–180, 2007.

[42] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In Proceedings 1996 IEEE symposium on visual languages, pages 336–
343. IEEE, 1996.

[43] Ben Shneiderman. Why not make interfaces better than 3d reality? IEEE Computer

Graphics and Applications, 23(6):12–15, 2003.

[44] Barbara Solenthaler and Renato Pajarola. Predictive-corrective incompressible sph. In
ACM SIGGRAPH 2009 papers, pages 1–6. 2009.

[45] Johannes Sorger, Peter Mindek, Peter Rautek, Eduard Gröller, Graham Johnson, and
Ivan Viola. Metamorphers: Storytelling templates for illustrative animated transitions
in molecular visualization. In Proceedings of the 33rd Spring Conference on Computer

Graphics, pages 1–10, 2017.

[46] Mark St. John, Michael B Cowen, Harvey S Smallman, and Heather M Oonk. The use
of 2d and 3d displays for shape-understanding versus relative-position tasks. Human

Factors, 43(1):79–98, 2001.

[47] John T Stasko and Joseph F Wehrli. Three-dimensional computation visualization. In
Proceedings 1993 IEEE Symposium on Visual Languages, pages 100–107. IEEE, 1993.

[48] LLC Tableau Software. Tableau: Business intelligence and analytics software, 2023.
URL: https://www.tableau.com.

[49] Unity Technologies. Unity real-time development platform, 2023.
URL: https://unity.com/.

54

https://iquilezles.org/articles/distfunctions/
https://github.com/Scrawk/PBD-Fluid-in-Unity
https://www.tableau.com
https://unity.com/

[50] Alan Watt. Fundamentals of three-dimensional computer graphics. Addison-Wesley
Longman Publishing Co., Inc., 1990.

[51] Xiangyun Xiao, Shuai Zhang, and Xubo Yang. Real-time high-quality surface rendering
for large scale particle-based fluids. In Proceedings of the 21st ACM siggraph symposium

on interactive 3D graphics and games, pages 1–8, 2017.

[52] Yanrui Xu, Yuanmu Xu, Yuege Xiong, Dou Yin, Xiaojuan Ban, Xiaokun Wang, Jian
Chang, and Jian Jun Zhang. Anisotropic screen space rendering for particle-based fluid
simulation. Computers & Graphics, 110:118–124, 2023.

[53] Cha Zhang and Tsuhan Chen. Efficient feature extraction for 2d/3d objects in mesh repre-
sentation. In Proceedings 2001 International Conference on Image Processing (Cat. No.

01CH37205), volume 3, pages 935–938. IEEE, 2001.

55

	Introduction
	Problem Description

	Background
	Presentational and Communicative Visualization
	Narrative Visualization and Storytelling with Data
	Animation in Visualization and Animated Transitions
	The Use of 3D in Visualization
	Fluid Simulation
	Smoothed Particle Hydrodynamics (SPH)
	Position-Based Fluids (PBF)
	Fluid-Solid Interaction

	Related Work
	Methodology
	Initialization Pipeline
	From Volume to Point Cloud
	From Volume to Boundary

	Run Time
	Fluid Solver
	Death Plane
	Split Camera

	Component Recap

	Implementation
	Unity
	Conductor
	Conductor Manager
	Fluid Solver
	Mesh Voxelization
	Filling the Volume With Fluid
	Alleviating Volume Estimation Discrepancy

	Fluid Container
	Bar Chart
	Death Plane
	Split Camera
	Minimizing Seam

	Spill Prevention: Funnel
	Rendering
	Running the Liquid Conductor

	Results
	Use Case: Platonic Solids
	Use Case: Comparing Earth to Its Neighboring Planets
	Performance

	Discussion
	Conclusions
	Glossary
	List of Acronyms and Abbreviations
	Bibliography

