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A B S T R A C T

This paper studies the Feeder Network Design Problem (FNDP), which considers the design of
a minimum cost liner shipping network for the transportation of cargo (containers) between
a given hub port and a set of feeder ports. In addition to determining the services to operate
(i.e., the routes), the FNDP deals with deciding the fleet of vessels to deploy on these services.
In contrast to most FNDPs previously studied in the literature, the feeder network can, if found
beneficial, be a hub-and-spoke system where cargo can be transshipped at any feeder ports.
Thus, we denote our problem as the Feeder Network Design with Optional Transshipment
(FND-OT). To solve the FND-OT, we propose a novel adaptive Heuristic with a special data
structure for solution representation, which gives significant speed-ups. Furthermore, a new
escape algorithm is used to escape from local optima. We show that the adaptive heuristic
outperforms an existing solution algorithm in the literature on a set of realistic test instances. We
also present results for a new set of instances adapted from a previously published benchmark
suite (LINER-LIB) and show that including the possibility of having cargo transshipment in the
FNDP can give significant benefits and reduced costs.

. Introduction

Maritime transportation is a key element for the current world trade growth. With more than 200 countries open to container
hips, connection between continents, countries and markets is made possible at a scale not previously seen. Container ships have
he capacity to carry thousands of twenty-foot equivalent container units (TEUs) containers, e.g., the capacity of a Triple E class
essel is more than 18 000 TEUs. This large capacity and economies of scale make container shipping attractive for transporting
oods in terms of costs. In addition to that, large ships are more energy-efficient and have a lesser impact on the environment than
ther modes of transportation. All these factors have contributed to establishing maritime transportation as the most important
ransportation mode for global trade, accounting for around 80% in terms of volume and 70% in terms of value. The container liner
hipping industry is particularly important with a value of more than four trillion USD, accounting for around two-thirds of the
orld’s maritime trade (World Shipping Council, 2020).

The container liner shipping sector is characterized by regular scheduled services that cover several geographical regions. A
articular service represents a single trade route formed by a sequence of ports visited in the same order. It is a common practice in
iner shipping to have weekly visits of each port of a service. The shipping companies announce their services and schedules several
eeks to months in advance, which offers predictability for customers. Also, the regularity of port visits simplifies the transit of
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Table 1
Summary of the literature on Feeder Network Design problems. For the cargo type, ‘‘P&D‘‘ refers to pickup and delivery from and to the hub port, and ‘‘Rejection’’
designates the possibility of cargo rejection.

Paper Main problem characteristics Approach

Fleet Cargo Time window Speed Transshipment

Fagerholt (1999) Homogeneous MILP
Sambracos et al. (2004) Homogeneous Metaheuristic
Fagerholt (2004) Heterogeneous MILP
Karlaftis et al. (2009) Heterogeneous P&D ✓ Hybrid GA
Santini et al. (2018) Heterogeneous P&D ✓ Branch-and-Price
Holm et al. (2018) Mother & Daughter P&D Specific locations at sea MILP,
Medbøen et al. (2020) Mother & Daughter P&D Specific locations at sea Simulation-Optimization
Akbar et al. (2020) Mother & daughter P&D Specific local ports MILP
Msakni et al. (2020) Heterogeneous P&D Any local port MILP
Hellsten et al. (2021) Heterogeneous P&D ; Rejection Branch-and-Price
Jin et al. (2021) Heterogeneous P&D ✓ ✓ Synchronization with Branch-and-price

long haul services
This work Mother & daughter P&D Any local port Adaptive heuristic

containers between services until they reach their final destinations. According to World Shipping Council (2020), there are around
500 liner shipping services operated around the world by more than 6,000 ships.

The problem of creating services or shipping routes is known in the literature as the liner shipping network design problem
LSNDP), which is known to be a very complex planning problem. The LSNDP involves high operational costs, including vessel
osts (i.e., time charter costs) and variable sailing costs, such as fuel costs, port costs, and other cargo handling costs. The objective
f the LSNDP is to satisfy customer demands at competitive prices. Hence, achieving high capacity utilization for the deployed ships
s crucial for liner shipping companies.

There exist several studies on developing operations research and optimization models and methods for different versions of the
SNDP, e.g., Agarwal and Ergun (2008), Álvarez (2009), Wang and Meng (2014), Zheng et al. (2015), Thun et al. (2017), Karsten
t al. (2017), Balakrishnan and Karsten (2017), Koza et al. (2020), and Ameln et al. (2021). In particular, Brouer et al. (2014) present
real case of the LSNDP based on the largest liner shipping company in the world, from which a set of benchmark instances, called
INER-LIB, is derived.

This paper presents an LSNDP for a feeder network where the cargo (i.e., containers) is to be transported from the hub to the feeder
ports and vice versa. This network structure gives a particular case of the LSNDP known as the Feeder Network Design Problem
(FNDP). The objective is, as for the LSNDP, to establish routes and assign vessels (number of each ship type) to deploy on these
routes so that the weekly demand of all ports is satisfied while minimizing the operational costs. Typically, the FNDP is designed to
transport goods between a major hub port and local ports in a restricted geographical area, e.g., between the port of Rotterdam to
ports along the Norwegian coast. A common assumption in the FNDP is that the cargoes are directly transported between the hub
and the feeder ports with no possibility of transshipment at feeder ports (Meng et al., 2014). However, a recent study by Msakni
et al. (2020) shows that allowing transshipment at any feeder port and relaying the shipping system with even smaller vessels to
serve local ports can reduce total operational costs.

Table 1 gives an overview of the literature in the FNDP. One of the first studies to address this problem is the one by Fagerholt
(1999), where the objective is to find weekly route services at minimum operational costs. Fagerholt (2004) includes the possibility
to deploy a heterogeneous fleet of vessels that can run at different speeds. Karlaftis et al. (2009) consider a feeder network with no
service frequency and time deadlines in ship arrivals. The problem is formulated as a variant of the vehicle routing problem with
pickups and deliveries. Santini et al. (2018) develop a branch-and-price algorithm to solve the FNDP. The results are reported for
instances derived from LINER-LIB. A recent contribution is by Hellsten et al. (2021), who consider the FNDP for a weekly shipping
system with cargo rejection at a penalty cost. The problem is solved using a branch-and-price framework, which can solve instances
with up to 12 ports to proven optimality, as well as the BALTIC instance from LINER-LIB. To reduce the cargo transit time, Jin et al.
(2021) considers synchronizing feeder vessel schedules at the hub port with the schedules of the long-haul services. Specifically,
the arrival time of a shipment at the hub port from a feeder port must fall within a predefined time slot.

There are also a few recent studies of the FNDP, which also include the option of having transshipment of cargo at feeder ports,
resulting in a possible hub-and-spoke feeder system. Holm et al. (2018) study a particular case of such an FNDP, in which the liner
shipping network is composed of mother ships that sail a single mother route serving main (hub) ports only, while daughter ships can
visit small (spoke) ports as well as the main ports not visited by the mother route. This system has the peculiarity of transshipping
cargo between mother and daughter ships at sea and not at regular ports. A critical operation to consider while creating the routes
is that synchronization has to be ensured to guarantee that both mother and daughter ships meet at the same location at the same
time at sea for the transshipment. This problem was later extended by Medbøen et al. (2020) with a simulation engine embedded
within the optimization algorithm to handle uncertainty in sailing times. A similar study is performed by Akbar et al. (2020) with
the same mother and daughter route structure. However, daughter routes are sailed by autonomous ships, and the transshipment
is done at regular ports. The aim was to study the economic impact of introducing autonomous ships in a short-sea feeder shipping
network.
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Msakni et al. (2020) examine a case study of a Norwegian liner shipping company operating a feeder network. The paper proposes
model to select the best alternative between an FNDP and a hub-and-spoke network where transshipments can take place at any

eeder port. The objective is to examine which alternative between the two types of network, as well as simple and butterfly route
tructures, perform better for the liner shipping company. In addition, the shipping system allows for splitting up deliveries and
ickups. Msakni et al. (2020) formulate the underlying problem using a mathematical model and derive from it a simple heuristic
hat is shown to provide good results for the case study, which has a special geographical structure where the ports are located
ore or less along a coastline.

This paper studies a similar version of the FNDP as Msakni et al. (2020), and does as such explore the possibility of including
argo transshipment at feeder ports, resulting in a hub-and-spoke network, if found beneficial. We, therefore, denote this problem
eeder Network Design with Optional Transshipment (FND-OT). In addition to having routes that carry cargo directly between the

hub and the feeder ports with mother ships, transshipment can take place at intermediate feeder ports using daughter ships. The
possibility of including transshipment and daughter ships is optional and will only be used if it reduces the total costs.

The main contributions of this paper can be summarized as follows:

• We propose a novel adaptive heuristic for the FND-OT. The heuristic exploits an efficient data structure for representing
the solutions in order to reduce the number of calculations at each iteration of the algorithm. With the proposed solution
representation, modifying the solutions becomes easier and more efficient. Our proposed algorithm also uses a random restart
mechanism to escape from local optima.

• We show in the computational study that the proposed heuristic outperforms the previous algorithm by Msakni et al. (2020)
on the real test instances from that paper as well as on a set of adapted test instances from the LINER-LIB benchmark suite.

• Finally, the most important point is that we show that allowing transshipment at any feeder port might potentially result in
significant cost reductions for liner shipping companies when designing feeder networks. We also show that this is independent
of the geographical structure of the problem instance.

The outline of the remainder of this paper is as follows. Section 2 describes in more detail the FND-OT. The proposed adaptive
heuristic is presented in Section 3. Section 4 shows the computational study, while Section 5 concludes the paper.

2. Problem description

In FNDP, all cargoes (i.e., containers) are to be transported between a given hub port and a given set of feeder ports. The problem
is to design a network of routes that ensures that the given weekly demand of all ports is transported, as well as to determine the fleet
of vessels to service these routes. In traditional feeder networks, there is no transshipment, meaning that the cargo is transported
between any two ports using a single vessel. Any route in the feeder network begins and ends at the hub port and can serve all or
a subset of the feeder ports. We denote these routes for mother routes, and the vessels deployed on these routes are called mother
vessels. Since the weekly demand is assumed to be known, the amount of cargo transported along any such mother route can be
computed so that the vessel capacity required to sail this route can be derived. Also, the number of mother vessels to deploy on
a route can be derived from its duration, which consists of sailing and port times along the route. So to ensure a weekly visit of
all served ports, the number of deployed vessels must be equal to the number of weeks to sail the route rounded up to the nearest
integer. For example, if two different mother routes last for six and 19 days, one and three mother vessels are deployed on the first
and second routes, respectively. We assume that it is possible to deploy a heterogeneous fleet of vessels, meaning that two different
mother routes can be serviced by two different vessel types. However, when there are two or more vessels sailing the same route,
these vessels must have the same capacity because they visit the same ports with the same demand.

In contrast to the traditional FNDP, we allow for the possibility of having a hub-and-spoke structure within the feeder network,
where cargo can be transshipped between two routes at any feeder port. We denote the routes that are connected to a mother route
through the chosen transshipment (feeder) ports for daughter routes, where each daughter route connects a subset of feeder ports
to only one mother route. As such, the daughter routes become feeder routes within the feeder liner shipping network. The vessels
deployed to these routes are called daughter vessels.

The possibility of transshipping cargo is optional and incurs extra costs in the transshipment ports, i.e., cargo handling between
mother and daughter vessels, as well as additional port visit fees for the daughter vessels. This means that having transshipment by
including daughter routes is optional, i.e., it is done only when found beneficial in terms of operational costs. Therefore, we denote
this version of the problem as the Feeder Network Design with Optional Transshipment (FND-OT). In fact, daughter routes are sailed
by small vessels (e.g., with a capacity of only a few hundred TEUs) that have lower weekly charter costs and fuel consumption
compared to mother vessels. Since it is rarely beneficial to have long daughter routes due to their low capacity, we assume that the
maximum total duration of a daughter route is one week to ensure a weekly visit for the serviced ports. This also means that each
daughter route can be serviced by one daughter vessel. In addition, we assume that each daughter route has only one transshipment
port, i.e., it can only be connected to one mother route.

Fig. 1 illustrates an example of FNDP with one hub port and six feeder ports. While conventional feeder networks consist only of
mother routes, as shown in the leftmost part of the figure, the rightmost part illustrates a possible solution to the FND-OT consisting
of a hub-and-spoke structure with both mother and daughter routes.

We consider two types of daughter route structures. The first type starts from the transshipment port, services a set of feeder
ports, and ends at the transshipment port, resulting in a simple cycle route. The second type of daughter route is the so-called butterfly
3
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Fig. 1. Illustration of a traditional feeder network with only mother routes (to the left) and a solution with hub-and-spoke structure in the case when transshipment
is allowed as for the FND-OT (to the right).

type, the transshipment port is visited twice and may have the advantage of better usage of vessel capacity. In the rightmost part
of Fig. 1, an example of both a simple cycle and a butterfly route is shown.

To summarize: the FND-OT consists of determining (1) a set of mother and daughter routes, (2) which feeder port(s) to use as
transshipment port(s) (if any at all), as well as (3) the fleet of mother and daughter vessels deployed to these routes, so that all
cargo demand between the hub port and the feeder ports is satisfied and the total operational cost is minimized. A mathematical
formulation of the problem is provided in Appendix A.

3. Adaptive heuristic

As shown by Msakni et al. (2020), a commercial MIP solver can solve only relatively small instances of the problem using the
model presented in Appendix A, mainly due to the large number of possible non-dominated routes (and hence variables). Even the
heuristic proposed in Msakni et al. (2020), which is derived from the mathematical model, is limited since it is tailored to problem
instances with a specific geographical structure, where ports are located along a coastline.

In this study, we propose an adaptive heuristic to solve the FND-OT for a problem with a general geographical structure. The
adaptive heuristic includes various heuristics to diversify the type of solutions explored and to make it more reliable to variations
between instances.

3.1. Overview of the adaptive heuristic

The pseudo-code of the adaptive heuristic is given in Algorithm 1. The algorithm starts by generating an initial solution 𝑠 using
the nearest neighbor algorithm explained in Section 3.3. Then, it moves into a loop block (Lines 5 to 21) that aims to improve the
current solution by applying different heuristics. For each iteration, Line 12 generates a new solution from the current one. If the
objective function value of the solution 𝑠′ is better than the value of the current best one 𝑠𝑏𝑒𝑠𝑡, the best solution is updated, as stated
in Line 18. The new generated solution can replace the current solution based on the acceptance criteria described in Section 3.7.
The algorithm terminates when the stop condition is reached. To diversify the search space, an Escape algorithm is applied at the
beginning of the loop block after checking an escape condition (Line 6). The details of this algorithm are described in Section 3.8.

The following sections explain in detail each part of the adaptive heuristic.

3.2. Solution representation

A major feature of the proposed adaptive heuristic is the way to represent a solution. As will be seen in the subsequent sections,
this representation makes it easier to generate a new solution while verifying the decisions mentioned above. Mainly, a solution (a
complete network with a fleet of vessels) can be coded using two vectors: a main vector and a transshipment vector.

The main vector uses the symbols ‘‘M’’(mother), ‘‘D’’(daughter) and ‘‘L’’(loop) to separate routes from each other. ‘‘M’’ indicates
the start of a new mother route, ‘‘D’’ the start of a new daughter route, and ‘‘L’’ the start of a new loop within a butterfly route. The
main vector is composed of two parts. The first part, denoted hereafter by Part 1, is delimited by the first ‘‘D’’. The second part,
4

denoted by Part 2, is what comes after the first ‘‘D’’.
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Algorithm 1 Adaptive Heuristic
1: Inputs: a set of heuristics H ⊳ Section 3.4
2: Generate an initial solution, 𝑠 ⊳ Section 3.3
3: 𝑠𝑏𝑒𝑠𝑡 ← 𝑠
4: 𝑖 ← 0
5: repeat
6: if Escape_Condition(i, m) then
7: Escape_Algorithm(𝑠, 𝑠𝑏𝑒𝑠𝑡) ⊳ Section 3.8
8: 𝑖 ← 0
9: end if

10: 𝑠′ ← 𝑠
11: select ℎ ∈ H based on selection parameters ⊳ Section 3.5
12: apply heuristic ℎ to 𝑠′

13: if 𝑓 (𝑠′) < 𝑓 (𝑠𝑏𝑒𝑠𝑡) then
14: 𝑠𝑏𝑒𝑠𝑡 ← 𝑠′

15: 𝑖 ← 0
16: end if
17: if 𝑎𝑐𝑐𝑒𝑝𝑡(𝑠′, 𝑠) then, ⊳ Section 3.7
18: 𝑠 ← 𝑠′

19: end if
20: update selection parameters and 𝑖 ← 𝑖 + 1 ⊳ Section 3.6
21: until stop condition
22: return 𝑠𝑏𝑒𝑠𝑡

Part 1 represents the sequence of ports visited by the mother routes (one or many). The port sequence does not include the hub
port as any mother route departs and arrives at this port.

Part 2 is the remaining part of the main vector. If it exists, Part 2 represents the daughter routes (separated by ‘‘D’’s) connected
to the mother routes defined in Part 1. The order of ports between two ‘‘D’’s corresponds to port visits of the corresponding
daughter route. The transshipment port from which the daughter route starts and ends is not included in this sub-sequence
but is part of the transshipment vector. Moreover, the sub-sequence of ports indicates whether the daughter route has a simple
or a butterfly structure. If there is a ‘‘L’’ tag in the sub-sequence, the route is a butterfly route, in which the ‘‘L’’ separates
between the first and the second loop.

Transshipment vector denotes the transshipment port for each daughter route included in Part 2. The transshipment vector’s
length corresponds to the number of daughter routes. Each element of this vector indicates the index of the transshipment
port in Part 1, based on the order of the daughter routes in Part 2.

An example of the solution representation is given in Appendix B.

3.3. Initial solution

The proposed heuristic starts with an initial feasible solution. It is advantageous for the algorithm if the initial solution contains
both mother and daughter routes. To this end, we use the nearest neighbor approach to create a solution that contains mother routes
and possibly daughter routes. The closest feeder port to the hub port is placed in a mother route. Then, the port closest to the most
recently added port is selected and is inserted in one of four ways:

1. at the end of an existing daughter route
2. as a new daughter route
3. at the end of an existing mother route
4. as a new mother route

The above insertion methods are ranked to their order of execution. First, the initial solution procedure tries Option 1. If it fails
to produce a feasible solution, it moves to Option 2, then Option 3, and finally Option 4. For the first three options, the capacities
of the concerned routes are updated, and the smallest vessels are assigned to them. If an option yields an infeasible solution, its
related solution is discarded. However, the last option is always possible and generates a feasible solution because it is assumed that
any port demand can be handled by at least the largest mother ship. In general, it is easier to insert a selected port into an existing
or new mother route than into a daughter route, which means that in most cases, an initial solution will not contain any daughter
5

routes.
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3.4. Heuristics

In this section, we describe various heuristics that are called in Line 11 of Algorithm 1. Each heuristic operates differently
nd targets part of the solution representation. When combined, the heuristics ensure a good balance between intensification and
iversification during the search. We point out that the list of developed heuristics is not limited to the ones presented in this section.
e have implemented other heuristics that we have not included in this paper because, according to preliminary results, they do

ot significantly improve the performance of the adaptive algorithm.

.4.1. Mother route to daughter route
In this heuristic, we randomly select a port from the mother route (Part 1) and move it to a daughter route (Part 2). This operation

ight alter the indices of the transshipment vector. For this step, any entry in the transshipment vector having a value greater than
r equal to the index of the selected port in Part 1 must be decremented. For the insertion of the selected port in Part 2, all possible
ositions are tested to retain the one offering the best operational cost. The possibility of making a new daughter route with only
he selected port is also considered in this step. In the case where no feasible solution could be obtained from all possible positions,
he heuristic returns the input solution without any change.

.4.2. Mother route to mother route
This heuristic randomly selects a port from Part 1 and inserts it in a different position in the same part. This results in one of the

ollowing: (i) a change in the order of visits of the concerned mother route, (ii) a transfer of the selected port from one to another
other route, or (iii) a creation of a new mother route visiting only the selected port. Indeed, Part 1 can represent more than one
other route. This is made possible by introducing a cell with the ‘‘M’’ tag to indicate that the ports’ sequence belongs to separate
other routes. In a case where all possible re-insertions of the selected port produce infeasible solutions, the heuristic keeps the

nitial solution.
Obviously, the transshipment vector may require an adjustment to make the port re-insertion correct. The adjustment is made in

wo steps. The first step decrements any value in the transshipment vector that is greater than or equal to the removed port index.
he second step increments the values of the transshipment port that are greater than or equal to the new index of the re-inserted
ort. By doing so, daughter routes keep the same transshipment ports. This step is followed by the ‘‘New transshipment’’ heuristic,
escribed in Section 3.4.5, which aims at optimizing a particular transshipment vector.

.4.3. Swap in the mother route
This heuristic randomly swaps two ports of Part 1. The transshipment vector is still valid as the number of ports in Part 1 remains

he same. The new solution may be infeasible. In this case, the heuristic goes back to the initial solution.

.4.4. Daughter route to mother route
This heuristic transfers a port from a daughter route to a mother route, i.e., a randomly selected port from Part 2 is removed and

nserted in Part 1. Two particular cases can hold. If the daughter route serves only the chosen port, this route is removed, and its
orresponding entry in the transshipment vector is also removed. The second case is when the related daughter route is a butterfly
oute, and one loop contains only the selected port. In this case, this daughter route becomes a simple cycle, i.e., the tag ‘‘L’’ is
emoved from the corresponding sub-sequence in Part 2.

All possible insertions in Part 1 are tested, including creating a new mother route with only the selected port, and the best
easible insertion is retained. The transshipment vector is updated in a similar way, as described in Section 3.4.2.

.4.5. New transshipment
This heuristic randomly selects a cell in the transshipment vector and tries to find a better transshipment alternative in terms of

perational costs for the corresponding daughter route.

.4.6. Daughter route to daughter route
This heuristic randomly moves a port from one daughter route to another daughter route. All possible insertions are tested to

eep the best option, including having a new daughter route. If the selected port is the only port in the original daughter route,
his route is removed, and its corresponding transshipment entry is also removed. If the original daughter route is a butterfly and
as only the selected port in one of its loops, this route is converted to a simple daughter route. For the case where a new daughter
oute is created, the heuristic described in Section 3.4.5 assigns a transshipment port for it.

.4.7. Several ports from mother route to daughter route
This heuristics is similar to the mother route to daughter route heuristic, with the difference that several ports are involved at the

same time. The selected ports are inserted one by one following the same procedure explained in Section 3.4.1.

3.4.8. Make butterfly
This heuristic converts a daughter route from a simple to a butterfly structure. More precisely, a daughter route with more than

one port visited is split into two loops. i.e., by inserting the tag ‘‘𝐿’’. This heuristic tries all possibilities to consider the best split. It
is clear that the transshipment vector does not require any adjustment.
6
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Fig. 2. An illustration of the development of the heuristics weight probability when running the adaptive algorithm. The 𝑥-axis represents segments and the
𝑦-axis represents the probability of selecting a heuristic.

3.4.9. Remove butterfly
Unlike in the ‘‘make butterfly’’ heuristic, the ‘‘remove butterfly’’ heuristic transforms a butterfly route into a simple daughter

route. The heuristic considers this transformation only if it provides better operational costs.

3.5. Choosing a heuristic

Alternating between several types of heuristics allows to have a more robust algorithm (Moshref-Javadi et al., 2020). The
selection of a heuristic in each iteration of Algorithm 1 is made according to the roulette wheel principle where a heuristic ℎ is
selected among the set of all heuristics H, presented in Section 3.4, with a probability of

𝑤ℎ
∑

𝑔∈H 𝑤𝑔
, where 𝑤ℎ is the weight of

heuristic ℎ.
The weights are adjusted automatically as explained in Section 3.6.

3.6. Adaptive weight adjustment

For each iteration of the main loop in Algorithm 1, a heuristic is selected based on its weight (Line 11) to apply to the current
solution (Line 12). The heuristic weights are iteratively adjusted using statistics from earlier iterations (Ropke and Pisinger, 2006).
The basic idea is to keep track of each heuristic performance through a scoring system, where a heuristic is given a higher score for
better performance and a lower score for worse performance. For this purpose, we divide the search process into segments. At the
beginning of the adaptive algorithm, all heuristics are given the same weight, meaning they have an equal probability for selection
during the first segment.

For each iteration of the adaptive heuristic, a reward system is adapted according to the following criteria:

• a heuristic that finds a new global best solution is given a high score,
• a heuristic that finds a better solution than the current solution is given a medium score, and
• a heuristic that finds a new solution that has not been found before is rewarded a small score.

At the end of each segment, the sum of the cumulative scores of each heuristic is used to update the weights. Let 𝑠 be the current
segment, 𝑤ℎ,𝑠 be the weight of heuristic ℎ in 𝑠, 𝜋ℎ be the score of the heuristic ℎ, and 𝜆ℎ be the number of times the heuristic ℎ
was run in 𝑠, the updated weight of ℎ is computed as follows:

𝑤ℎ,𝑠 = 𝑤ℎ,(𝑠−1)𝑟 + (1 − 𝑟)
𝜋ℎ
𝜆ℎ

, (1)

where 𝑟 represents the percentage of the historical weight factor. The weight of the previous segment represents 𝑟 percent of the
current weight, while the remaining (1 − 𝑟) comes from the computed weight of the current segment.

We provide in Appendix C evidence of the importance of including the adaptive mechanism to find better solutions. Furthermore,
we show in Fig. 2 an example of the evolution of the selection probabilities of the nine heuristics proposed for the adaptive algorithm,
where H1 to H9 denote the heuristics presented in Sections 3.4.1 to 3.4.9, respectively. We observe that all heuristics start with the
same probability selection, and after only a few segments, some heuristics obtain higher probabilities while others obtain reduced
7
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ones. In segment 33, H1 generates better solutions and sees its weight increase. This increases the probability selection of H1 and
impacts other probabilities, especially for H2. For this example, we can see that H1, H6, and H7 have lower probabilities due
to normalized scores across all heuristics. However, as supported by additional experiments, the inclusion of these heuristics is
necessary as they generally improve the performance of the adaptive heuristic.

3.7. Acceptance criteria and stopping condition

We use an acceptance criterion in Line 17 of Algorithm 1 whether to accept a new solution or not. A better solution than the
urrent one is always accepted; however, a worse solution is accepted only if it verifies the Boltzmann probability function, which
s defined as 𝑒−|𝑓−𝑓𝑛𝑒𝑤|∕𝑇 , where 𝑇 > 0 is the temperature, 𝑓 is the objective value of the current solution and 𝑓𝑛𝑒𝑤 is the objective

value of the new solution.
Besides, we implement the cooling schedule suggested by Crama and Schyns (2003), which is defined as 𝑇𝑖 = 𝛼𝑇𝑖−1, where 𝑖 is

the iteration and 𝛼 is the cooling factor. The initial temperature, 𝑇0, is calculated as follows:
We run the first 100 iterations with a fixed acceptance rate of 𝑝. We calculate the average of all |𝑓 − 𝑓𝑛𝑒𝑤| for worse solutions

that are accepted over these iterations, 𝑓𝑇
𝑎𝑣𝑔 . Then, we calculate the initial temperature as follows:

𝑇0 =
−𝑓𝑇

𝑎𝑣𝑔

𝑙𝑛(𝑝)
(2)

Algorithm 1 stops after 𝑛 iterations. We use the initial temperature 𝑇0, the final temperature 𝑇𝑓 and 𝑛 to find the cooling factor 𝛼.
We find a value for 𝛼 such that 𝑇𝑓 = 1 is reached in 𝑛 iterations. 𝛼 is calculated as follows:

𝛼 = (
𝑇𝑓
𝑇0

)
1
𝑛 (3)

3.8. Escape algorithm

Although we propose different improving heuristics, it is possible not to obtain any new improved solution after several iterations.
Even with the implementation of the acceptance criterion, the adaptive algorithm can be caught in a local optimum. To escape
from this situation, we have introduced an Escape Algorithm (described in Algorithm 2) that is called when there is no improvement
umber 𝑚 iterations.

Algorithm 2 Escape algorithm procedure
1: procedure Escape_Algorithm(𝑠, 𝑠𝑏𝑒𝑠𝑡: solution)
2: repeat
3: choose a random heuristic ℎ from H ⊳ Section 3.4
4: apply ℎ to 𝑠
5: if 𝑓 (𝑠) < 𝑓 (𝑠𝑏𝑒𝑠𝑡) then
6: 𝑠𝑏𝑒𝑠𝑡 ← 𝑠
7: end if
8: until stop condition met
9: return the modified 𝑠 and 𝑠𝑏𝑒𝑠𝑡

10: end procedure

The Escape algorithm aims to move as far away from the current solution 𝑠. It iteratively applies heuristic ℎ on 𝑠 without checking
he quality of the solution obtained (Lines 3 to 4). The selection of a heuristic is entirely random, without the application of weighted
robability. Once a better solution is found, the procedure updates 𝑠𝑏𝑒𝑠𝑡 that will be later transferred to the adaptive algorithm. The
scape algorithm stops after a number of iterations or if a new 𝑠𝑏𝑒𝑠𝑡 is found. The modified 𝑠 and 𝑠𝑏𝑒𝑠𝑡 are returned.

. Computational experiments

The aim of this section is to assess the performance of the adaptive heuristic for solving the FND-OT. The experiments are based
n instances of Msakni et al. (2020) and adapted instances of the benchmark suite LINER-LIB introduced by Brouer et al. (2014).
he adaptive heuristic was implemented using Kotlin/JVM and compared with the mathematical model (see Section 3) solved using
plex 12.9. Since this model is based on a path-flow formulation, the routes are first pre-generated before calling the solver. Due to

ts exponential nature, the number of generated routes is limited to include only visits to the 𝑘th nearest port from a current port.
his approach was proposed by Msakni et al. (2020) and constitutes a reference to compare with for the adaptive heuristic. The
xperiments with the adaptive heuristics were performed on a late 2013 MacBook Pro with 2 GHz Intel Core i7 and 8 GB of RAM.

The adaptive heuristic includes a number of parameters. Preliminary testing showed that the performance of the heuristic was
elatively stable with respect to the following parameter values:

Initial probability of selecting a worse solution. We set this to 0.8, meaning worse solutions are accepted 80% of the time when
finding the initial temperature.
8
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Table 2
Class A, B and C instances and the adapted LINER-LIB instances.

Category # Ports Description Total demands (TEUs)

Class A 10–11 Rotterdam - Norwegian coastline 1070–1579
Class B 15 Rotterdam - Norwegian coastline 1074–1725
Class C 20–22 Rotterdam - Norwegian coastline 1850–4126
BALTIC 12 Bremerhaven - Baltic sea 4904
WAF 20 Algeciras - West Africa 8489
MEDIT1 33 Algeciras - Mediterranean - Canarias 2705
MEDIT2 32 Gioia Tauro - Mediterranean - Canarias 599

𝑛 Number of iterations for the adaptive heuristic, set to 20,000 iterations.

𝑚 Number of iterations without improvement before the Escape algorithm is applied in the adaptive heuristic. This is set to 1000
iterations.

Number of iterations for the Escape Algorithm, set to 20 iterations.

Historical weight factor, which we have set to 80%.

Segment size, set to 200, meaning that the weights are adjusted every 200th iteration.

Section 4.1 describes the test instances used in the computational tests, while Section 4.2 presents the results. Finally, in
ection 4.3, we analyze the value of allowing transshipment in the feeder network. Here, we also randomly generate a number of
dditional test instances with different sizes and geographical structures to provide some additional insights into which situations
t can be beneficial to allow transshipment.

.1. Test instances

The first set of instances was introduced by Msakni et al. (2020). It is based on realistic data from a Norwegian liner shipping
ompany transporting cargo between a hub port in Rotterdam and 21 ports along the Norwegian coastline. From this case, three
lasses denoted A, B, and C, were derived, differing in the number of ports included and the total demand. The class A instances
nclude 10 or 11 ports, while the instances of classes B and C include 15 and 20 to 22 ports, respectively. Each class consists of four
nstances.

The second set of instances is adapted from the publicly available LINER-LIB benchmark suite (Brouer et al., 2014). Originally,
his benchmark was proposed for the general case of the liner shipping network design problem. Considering that our problem is
efined for the FNDP with one hub port that serves many feeder ports, three out of seven instances of LINER-LIB can be retained
or our experiment. The BALTIC instance has Bremerhaven as a hub port and includes 11 ports at the North Sea and Baltic Sea. The
ub port of the WAF instance is Algeciras which serves 19 feeder ports on the coast of West Africa. The Mediterranean instance
f LINER-LIB originally has a multi-hub structure, where the hubs are Algeciras, Tangier, and Gioia Tauro, and serves feeder ports
ainly located in the Mediterranean region. We split this instance up into two instances. Instance MEDIT1 has Gioia Tauro as a
ub, while MEDIT2 groups Algeciras and Tangier in one hub as they are geographically close to each other.

The experiments in this study use the same realistic parameter values as in Msakni et al. (2020), which are gathered from a real
eeder network shipping company. These parameters include the capacities of mother and daughter vessels, charter costs, sailing
peed, bunker costs, cargo handling rates and costs, and port call fees.

Table 2 summarizes the properties of the instances. All instances (including the ones used for the additional tests described in
ection 4.3), as well as the best solutions found, are available on the public repository https://github.com/qez008/FND-OT.

.2. Computational results

For all the experiments, the adaptive heuristic has been run ten times. The average solution time, average objective, and best
ound objective over the ten runs have been reported.

Table 3 compares results from the adaptive heuristic with the best known results from Msakni et al. (2020), while a similar
omparison is made on the adapted LINER-LIB instances in Table 4. Msakni et al. (2020) present two variants of their model for
he FND-OT. One of these is an even more general variant of the FND-OT than we study here, which allows split pickups and
eliveries, where demand to and from a given feeder port can be shared by more than one mother route visiting that port. The
ther variant is the same as our version of the FND-OT and does not include this splitting possibility. It should be noted that the
esults in Msakni et al. (2020) show that one usually obtains the same results for the two variants. In the few cases this does
ot happen, the difference in objective values is only marginal. Here, we compare with the best objective value for each instance
btained by Msakni et al. (2020). In the cases where both variants reach the same objective, we compare with the one with the
9
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Table 3
Comparison of results on the class A, B and C instances.
Instance Best results of Msakni et al. (2020) Adaptive heuristic

Objective Time (s) Average
improvement (%)

Best improvement
(%)

Time (s)

A1 142 160 0.03 0.02 0.02 0.88
A2 161 868 0.03 0.02 0.02 0.91
A3 196 198 3516.70 6.89 6.89 1.83
A4 200 875 3027.50 0.02 0.02 1.07
B1 238 570 9.10 7.21 9.21 1.88
B2 215 098 9.30 12.99 13.08 1.54
B3 158 060 5.60 0.04 0.04 1.16
B4 206 669 10.10 9.44 9.44 1.57
C1 271 451 74.50 0.20 2.76 2.42
C2 294 510 126.30 −1.77 1.07 2.62
C3 344 048 239.70 0.78 0.94 4.08
C4 444 963 1656.90 0.31 1.28 3.08

Average 248 392 788.70 3.28 4.07 2.01

Table 4
Comparison of results on the adapted LINER-LIB instances.
Instance Best results with (Msakni et al., 2020)’s

model (2a and 2b)
Adaptive heuristic

Objective Time (s) Average
improvement (%)

Best improvement
(%)

Time (s)

BALTIC 623 167 91.20 4.49 4.56 1.01
MEDIT1 1 081 721 694.61 12.85 15.89 10.70
MEDIT2 754 840 655.00 21.50 23.22 7.60
WAF 2 817 332 59622.34 1.82 2.69 1.97

Average 1 319 265 15265.79 10.17 11.59 5.32

Table 5
Detailed results on the class A, B and C and the adapted LINER-LIB instances.
Instance Size Average objective Best objective Average time (s) # MR # DR % DR

A1 10 142 130 142 130 0.88 1 0 0.0
A2 10 161 834 161 834 0.91 1 0 0.0
A3 11 182 675 182 672 1.83 1 1 9.1
A4 11 200 840 200 840 1.07 1 1 27.3
B1 15 221 375 216 591 1.88 1 1 33.3
B2 15 187 147 186 964 1.54 1 1 20.0
B3 15 158 000 158 000 1.16 1 0 0.0
B4 15 187 168 187 158 1.57 1 1 13.3
C1 20 270 920 263 948 2.42 2 1 15.0
C2 22 299 717 291 362 2.62 2 1 18.2
C3 22 341 349 340 825 4.08 1 1 18.2
C4 22 443 588 439 255 3.08 2 0 0.0

BALTIC 12 595 216 594 734 1.01 2 0 0.0
MEDIT1 33 942 678 909 865 10.70 3 4 27.3
MEDIT2 32 592 531 579 556 7.60 1 5 43.8
WAF 20 2 766 069 2 741 407 1.97 5 0 0.0

MacBook Pro, while the (Msakni et al., 2020) experiments are performed on a computer cluster. The adaptive heuristic will likely
run even faster on a more powerful machine.

Tables 3 and 4 show the comparison of objective values and solutions for the class A, B, and C instances and the adapted
INER-LIB instances, respectively. It can be noted that the average solution times for the adaptive heuristic are very short compared
ith the algorithm by Msakni et al. (2020), which does not scale well with increased problem size. Also, we can see from the results

n Table 3 that the adaptive heuristic performs 3.28% and 4.07% better on average over these instances in terms of objective value
sing the average and best results of the adaptive heuristic, respectively. This corresponds to significant cost savings for a feeder
iner shipping company. The only exception is for instance C2 where the average objective value found is slightly worse than the
revious best-known solution. Trying to push the results of the adaptive heuristic by increasing the number of iterations does not
elp as the heuristic converges after the specified number of iterations 𝑛. However, since the solution times for the adaptive heuristic
re so low, it is possible to run the heuristic multiple times and pick the best solution. Considering this, we can see that the best
olution after ten runs for C2 is better than the solution reported by Msakni et al. (2020).
10
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Fig. 3. Illustration of the mother and daughter routes of the best obtained solution for MEDIT2.

The results for the adapted LINER-LIB instances in Table 4 show even larger differences between the adaptive heuristic and the
algorithm by Msakni et al. (2020), both in terms of solution quality and solution time. Although the algorithm by Msakni et al.
(2020) was run on a computer cluster for this experiment, there is a large difference between the two tested solution approaches
in terms of solution time. There are two major reasons for this difference. First, most of these instances are larger than the class A,
B, and C instances, and second, the adaptive heuristic scales significantly better with problem size. Before considering the solution
quality criterion, we recall that the algorithm by Msakni et al. (2020) was specially developed to utilize the geographical structure
of these particular instances where the feeder ports are located more or less along a single coastline. Since most of the adapted
LINER-LIB instances do not have this structure, we see that the improvements obtained for the adaptive heuristic are even larger
than for the instances in Table 3. One notable exception is the WAF instance, which also has a similar geographical structure as the
class A, B, and C instances, where the feeder ports are located along the coast of West Africa.

Table 5 shows more details for the results obtained by the adaptive heuristic for the class A, B and C, as well as the adapted
LINER-LIB instances. The average and best columns are the average and best objectives found over ten runs. The last three columns
show the structure of the best found solutions, where # MR is the number of mother routes in the solutions, # DR is the number
of daughter routes, and % DR is the percentage of ports served by daughter routes.

As shown in Table 5, the possibility of allowing transshipment by introducing a hub-and-spoke structure seems to be particularly
relevant for the Mediterranean instances. The ports in MEDIT1 and MEDIT2 are somewhat clustered, and it is typical for the solutions
obtained for these instances that the mother routes include one or two ports from each cluster, while daughter routes serve the
remaining ports within each cluster. This can be seen in Fig. 3 showing the best-found solution for the instance MEDIT2. Only one
mother route is necessary to serve all ports to and from the hub port as there are only 599 containers to be transported in MEDIT2.
Hence, the smallest mother vessel with a capacity of 700-TEU can carry out this shipping while the total operational costs are
minimized. This mother route covers almost all ports located in the Mediterranean sea. The daughter routes serve clustered ports,
e.g., in the Black Sea or in the Canary Islands region.

4.3. The effect of allowing transshipment in the feeder network

The last set of experiments studies the economic benefits of including optional transshipment, i.e., treating the problem as the
FND-OT instead of as a conventional feeder network without this possibility. For this purpose, we ran the adaptive heuristic without
including daughter routes — the initial solution generates only mother routes, and all heuristics involving daughter routes are
disabled. The experiment was performed on the A, B and C class instances, as well as the adapted LINER-LIB instances. Each instance
was run ten times, and the best objective value is reported. The obtained results for the adaptive heuristic with and without allowing
transshipment are given in Table 6. The results show that for most test instances, the gain from allowing transshipment is significant.
For six out of the 16 instances, the cost reduction of the feeder network is more than 10%.

A number of additional instances with different sizes and geographical structures were randomly generated to provide more
insight about in which situations it can be beneficial to allow transshipment or not. Four parameters were used when generating
these instances: pattern, clustered, hub location and size. Three different patterns were used for the placement of ports: (1) circle,
(2) field and (3) line. Circle means that the ports are located more or less along a circle, field means that the ports are randomly
located in a given square, while line means the ports are located along a (shore-)line. Fig. 4 provides one example of each of these.
The hub ports were placed in three different locations: (a) in the middle of the other ports, (b) randomly among the other ports,
or (c) isolated away from the other ports. We refer to the different hub port placements as central, local and remote, respectively.
Additionally, the ports were placed clustered or not clustered. This adds up to 18 different combinations. For each combination, an
11
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Fig. 4. Examples of instances with the obtained solutions for (a) Field-30-LocalHub, (b) Circle-60-CentralHub, (c) Line-Cluster-40-RemoteHub. The light blue
solid lines illustrate mother routes, and the red dotted lines represent daughter routes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 6
Results with and without the possibility of transshipment.
Instance Objective w/o

transshipment
Objective with optional
transshipment

Gain from allowing
transshipment (%)

A1 142 130 142 130 0.00
A2 161 834 161 834 0.00
A3 207 060 182 672 11.78
A4 228 380 200 840 12.06
B1 243 968 216 591 11.22
B2 211 080 186 964 11.43
B3 158 000 158 000 0.00
B4 212 210 187 158 11.81
C1 276 633 263 948 4.59
C2 296 670 291 362 1.79
C3 365 288 340 825 6.70
C4 439 930 439 255 0.15

BALTIC 594 734 594 734 0.00
MEDIT1 925 438 909 865 1.68
MEDIT2 645 730 579 556 10.25
WAF 2 741 407 2 741 407 0.00

instance with 10, 20, 30, 40, 50, 60, 100 and 150 ports was generated. This results in 144 randomly generated instances in total.
The naming scheme used for these instances is the following: Pattern-Cluster(Optional)-Size-Hub, such that for example the instance
‘‘Circle-Cluster-50-CentralHub’’ refers to an instance where 50 ports are located in clusters along a circle with the hub located in
the center of the circle.

Table 7 shows the average results for the different geographical structures of the randomly generated test instances. The ‘‘X’’
n the names of the instance types indicates that these are aggregated over all eight instance sizes. The results show that the gains
rom allowing optional transshipment are significant for all these different instance types. However, it is not clear from these results
hether there are certain geographical structures which results in larger gains than others.

Table 8 presents the same results for the different sizes of the randomly generated instances, where each line in this table shows
he average results for all 18 different geographical structures for each instance size. From this table, we can see a trend that the
ains from allowing optional transshipment increase with increased size of the instances. This means that it becomes more beneficial
o consider this possibility when designing large feeder networks than for small ones.

All these results, i.e., both for the real and the randomly generated instances, show that it is worthwhile to include optional
12
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Table 7
Aggregated results differing in geographical structure.
Instance type #MR #DR % DR Gain from OT (%)

Circle-Cluster-X-LocalHub 1.88 2.50 11.50 4.98
Circle-Cluster-X-RemoteHub 1.63 1.88 8.13 6.37
Circle-Cluster-X-CentralHub 1.86 1.86 9.98 6.00

Avg. Circle-Cluster instances 1.79 2.08 9.87 5.78

Circle-X-LocalHub 2.00 0.75 2.08 4.76
Circle-X-RemoteHub 1.50 2.13 9.08 7.39
Circle-X-CentralHub 1.75 1.75 7.13 7.19

Avg. Circle instances 1.75 1.54 6.10 6.45

Line-Cluster-X-LocalHub 2.25 1.38 10.38 7.12
Line-Cluster-X-RemoteHub 1.50 2.88 21.21 6.08
Line-Cluster-X-CentralHub 2.00 1.38 9.33 7.82

Avg. Line-Cluster instances 1.92 1.88 13.64 7.01

Line-X-LocalHub 1.75 1.13 8.08 7.89
Line-X-RemoteHub 1.38 2.00 15.46 6.38
Line-X-CentralHub 1.88 1.13 8.25 10.98

Avg. Line instances 1.67 1.42 10.60 8.42

Field-Cluster-X-LocalHub 2.25 0.50 5.96 8.47
Field-Cluster-X-RemoteHub 1.50 2.88 10.79 6.81
Field-Cluster-X-CentralHub 2.25 2.38 13.98 6.80

Avg. Field-Cluster instances 2.00 1.92 10.24 7.36

Field-X-LocalHub 2.38 1.00 11.25 6.91
Field-X-RemoteHub 1.63 2.50 9.96 3.19
Field-X-CentralHub 2.38 1.25 11.29 4.53

Avg. Field instances 2.13 1.58 10.83 4.88

Table 8
Aggregated results differing by size.
Instance size (#ports) #MR #DR % DR Gain from OT (%)

10 1.00 0.78 16.11 3.79
20 1.00 1.00 14.72 3.20
30 1.33 0.50 4.45 3.86
40 1.83 1.00 8.61 5.31
50 2.22 0.39 3.44 7.25
60 1.94 1.22 8.61 9.78
100 2.67 4.72 15.94 11.28
150 2.94 4.17 9.26 8.39

hub-and-spoke network than a simple feeder network without transshipment. Another issue is that introducing transshipment will
affect the transit times for the cargo. Whether transshipment will increase or decrease the transit times depend on the instance.
When inspecting the solutions with and without transshipment for the C1–C4 instances and the adjusted LINER-LIB instances in
Table 6, we found that the average transit time increased by 1.7% (averaged over all these instances) when allowing transshipment.
However, this varies from a decrease of the average transit time of 32.6% for instance C1 to an increase of 52.0% for instance C3.
If we look at the worst-case transit times (i.e., the port pairs with the longest transit time), we find that these increase by 7.2% on
average over all these instances when allowing transshipment, ranging from a decrease of 38.5% (MEDIT2) to an increase of 36.6%
(WAF).

5. Conclusion

We studied the Feeder Network Design Problem (FNDP), which considers the design of a minimum cost liner shipping network
or the transportation of cargo (containers) between a given hub port and a set of feeder ports. In addition to determining the services
o operate (i.e., the routes), the FNDP deals with deciding the fleet of vessels to deploy on these services. In contrast to most FNDPs
reviously studied in the literature, we include the possibility of transshipping cargo at any feeder ports if found beneficial in terms
f costs. We denote the derived problem by the Feeder Network Design with Optional Transshipment (FND-OT), for which we
roposed an adaptive heuristic that benefits from a novel data structure for solution representation. The proposed representation
akes it easier to move from one solution to another one. It also reduces the number of calculations and, therefore, significantly

hortens the computational times.
The adaptive heuristic was tested on different sets of instances. The first set includes the same instances as in Msakni et al.

2020), which are related to a real case study for a Norwegian liner shipping company transporting cargo between a hub port
13
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in Rotterdam and 21 ports located along the Norwegian coastline. The instances in the second set have been adapted from the
publicly available LINER-LIB benchmark suite (Brouer et al., 2014). We showed that the adaptive heuristic outperforms the algorithm
proposed by Msakni et al. (2020) both in terms of both quality and solution time.

We also did an experiment to analyze the economic benefits of allowing transshipments in the feeder networks. In addition
o the test instances mentioned above, we also generated a set of random instances (not based on real port data) with different
eographical structures and sizes for this purpose. These tests showed that including the possibility of cargo transshipment in the
NDP can provide significant cost benefits and that these seem to increase with problem size.

We have in this study, based on the real case which motivated this research, assumed a maximum duration of one week for the
aughter routes. This is natural in many feeder networks since the sailing times are usually rather limited, making it impractical
o have longer daughter routes. However, in some applications with longer sailing times, such as MEDIT1 and MEDIT2 from the
INER-LIB instances, it could be beneficial to relax this assumption and consider also longer daughter routes. We leave this as an
nteresting topic for future research. Another relevant topic for future research would be to include transit time requirements for
he cargo.
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ppendix A. Mathematical model

The mathematical model for the FND-OT is based on the work of Msakni et al. (2020).

Sets
 set of available mother vessel types (in TEUs),
 set of candidate mother routes,


𝑝 set of candidate mother routes that include feeder port 𝑝,
 set of candidate daughter routes,


𝑟𝑝 subset of daughter routes that can do transshipment at port 𝑝 with mother route 𝑟,
 set of served feeder ports,
𝑟 set of served feeder ports by mother route 𝑟,
−
𝑟𝑝 set of ports that precede the visit of port 𝑝 in mother route 𝑟,

 set of route pairs, where a pair indicates which daughter route can be connected to which mother route,
i.e.,  = {(𝑟, 𝑑), 𝑟 ∈ , 𝑝 ∈ 𝑟, 𝑑 ∈ 

𝑟𝑝},


𝑝 subset of  for mother and daughter routes pairs that are connected using port 𝑝.
Parameters
𝐶𝑀𝐻
𝑘 weekly time charter cost of a mother vessel of type 𝑘,

𝐶𝑅𝑀
𝑟𝑘 sailing cost of mother route 𝑟 using vessel type 𝑘, composed of port costs, bunker and cargo handling costs,

𝐶𝐷
𝑑 total operational cost of daughter route 𝑑, including weekly time charter cost, sailing costs, port costs, and cargo

handling and transshipment costs,
𝑈𝑘 capacity in TEUs of a mother vessel of type 𝑘,
𝐷𝑝 demand of cargo (number of containers) to deliver to feeder port 𝑝 from the hub port,
𝑃𝑝 demand of cargo (number of containers) to pick up from feeder port 𝑝 for transportation to the hub port,
𝐿−
𝑑 total number of containers to deliver to feeder ports visited by daughter route 𝑑,

𝐿+
𝑑 total number of containers to pick up from feeder ports visited by daughter route 𝑑,

𝐻𝐸 cargo handling rate at the hub port (in TEU per hour),
𝐻𝑝 cargo handling rate at feeder port 𝑝 (in TEU per hour),
𝑆𝑟 sailing time of mother route 𝑟 (in hours),
𝑁 the maximum number of daughter vessels that can do the transshipment at any feeder port.
Decision variables
𝑥𝑟𝑘 takes value 1 if mother route 𝑟 is sailed with vessel of type 𝑘, and 0 otherwise,
𝑦𝑟𝑘 number of mother vessels of type 𝑘 used on mother route 𝑟,
𝑞𝑟 maximum number of containers carried on mother route 𝑟 including containers of daughter routes connected to 𝑟,
𝑡𝑟𝑘 total time (sailing time and cargo handling time) of mother route 𝑟 with vessel type 𝑘,
𝑧𝑟𝑑 takes value 1 if daughter route 𝑑 is selected and connected to an active mother route 𝑟, and 0 otherwise.

The mathematical model of the underlying problem is as follows:

(𝐹2) ∶ min
∑

𝑟∈

∑

𝑘∈

(

𝐶𝑀𝐻
𝑘 𝑦𝑟𝑘 + 𝐶𝑅𝑀

𝑟𝑘 𝑥𝑟𝑘
)

+
∑

(𝑟,𝑑)∈
𝐶𝐷
𝑑 𝑧𝑟𝑑 (A.1)
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∑

𝑘∈
𝑥𝑟𝑘 ≤ 1, 𝑟 ∈ , (A.2)

∑

𝑟∈
𝑝

∑

𝑘∈
𝑥𝑟𝑘 +

∑

(𝑟,𝑑)∈
𝑝

𝑧𝑟𝑑 ≥ 1, 𝑝 ∈  , (A.3)

𝑁
∑

𝑘∈
𝑥𝑟𝑘 ≥

∑

(𝑟,𝑑)∈
𝑧𝑟𝑑 , 𝑟 ∈ , (A.4)

𝑞𝑟 ≥
∑

𝑝′∈𝑟

𝐷𝑝′
∑

𝑘∈
𝑥𝑟𝑘 +

∑

(𝑟,𝑑)∈
𝐿−
𝑑 𝑧𝑟𝑑+

∑

𝑝′∈−
𝑟𝑝

(

(𝑃𝑝′ −𝐷𝑝′ )
∑

𝑘∈
𝑥𝑟𝑘 +

∑

(𝑟,𝑑)∈
𝑝′

(𝐿+
𝑑 − 𝐿−

𝑑 )𝑧𝑟𝑑
)

, 𝑟 ∈ , 𝑝 ∈ 𝑟, (A.5)

∑

𝑘∈
𝑈𝑘𝑥𝑟𝑘 ≥ 𝑞𝑟, 𝑟 ∈ , (A.6)

𝑡𝑟𝑘 ≥ 𝑆𝑟𝑥𝑟𝑘 +
∑

𝑝∈𝑟

(𝑃𝑝 +𝐷𝑝

𝐻𝐸
+

𝑃𝑝 +𝐷𝑝

𝐻𝑝

)

𝑥𝑟𝑘+

∑

𝑝∈𝑟

∑

(𝑟,𝑑)∈
𝑝

(𝐿+
𝑑 + 𝐿−

𝑑
𝐻𝐸

+
𝐿+
𝑑 + 𝐿−

𝑑
𝐻𝑝

)

𝑧𝑟𝑑 , ∈ , 𝑘 ∈ , (A.7)

𝑦𝑟𝑘 ≥
𝑡𝑟𝑘
168

, 𝑟 ∈ , 𝑘 ∈ , (A.8)

𝑥𝑟𝑘 ∈ {0, 1}, 𝑟 ∈ , 𝑘 ∈ , (A.9)

𝑦𝑟𝑘 ∈ N, 𝑟 ∈ , 𝑘 ∈ ,(A.10)

𝑧𝑟𝑑 ∈ {0, 1}, (𝑟, 𝑑) ∈ ,(A.11)

𝑞𝑟 ≥ 0, 𝑟 ∈ ,(A.12)

𝑡𝑟𝑘 ≥ 0, 𝑟 ∈ , 𝑘 ∈ .(A.13)

The objective function (A.1) minimizes the weekly operational costs. The first term computes the weekly cost of selected mother
routes, which is composed of the weekly time charter cost of used mother vessels and the operational costs (port costs, fuel costs, and
cargo handling costs) of the mother route. The second term is related to the total weekly operational cost of the selected daughter
routes, which implicitly includes the transshipment costs. The total cargo to be picked up from the daughter route and delivered to
the transshipment port is known in advance. By adding the port cost, the transshipment cost is part of the total operational cost of
daughter routes.

Constraints (A.2) state that a mother route can be sailed by only one vessel type. Constraints (A.3) ensure that all ports are served,
either by a mother route or a daughter route. A daughter route can only be used when it can be connected to a mother route, as set
by Constraints (A.4). The maximum number of containers transported by a mother route can be computed by Constraints (A.5). This
computation considers the initial containers loaded at the hub port, which is composed of the containers delivered to the different
feeder ports visited by the mother route (the first term of the right-hand side of (A.5)), and the containers delivered to feeder ports
served by daughter routes connected to that mother route (the second term of the right-hand side of (A.5)). Through the visited
ports of mother route 𝑟, 𝑝 ∈ 𝑟, the third term of the right-hand side of (A.5) computes the picked up and delivered number of
containers, including those of the connected daughter routes. By doing so, the maximum number of containers 𝑞𝑟 carried on mother
route 𝑟 is correctly computed. This variable is then used in Constraints (A.6) to determine the appropriate mother vessel size, and
hence the vessel type. Constraints (A.7) compute the total duration of mother routes, which is composed of the pre-computed sailing
time and the cargo handling time to deliver and pick up the containers to and from the visited ports. As stated by Constraints (A.8),
the total duration determines the necessary number of vessels to sail that mother route. Finally, Constraints (A.9)–(A.13) define the
domain of the decision variables.

Appendix B. Example of the solution representation

Fig. B.5 shows an example of a hub and spoke network composed of a mother route and two daughter routes, where the first
daughter route has a simple cycle, and the second route is a butterfly route. With the solution representation proposed in Section 3.2,
these mother and daughter routes are represented with the main and transshipment vectors illustrated in Fig. B.6.

Part 1 of Fig. B.6 corresponds to the sequence of ports visited by the mother route, while Part 2 represents the two daughter
routes. The first daughter route has a butterfly structure, where the first loop serves only port 1, and the second loop visits ports 4
and 3. The second daughter route is simple and serves ports 7 and 8. The corresponding transshipment vector of the two daughter
routes includes two cells. Each one refers to the cell index of Part 1. For the transshipment vector of Fig. B.6, the first cell of the
transshipment vector contains 3, which means that the transshipment port for the first daughter route is the third cell of Part 1,
which is port 2.
15
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Fig. B.5. Illustration of a solution composed of a mother route, a simple (cycle) daughter route, and a butterfly daughter route.

Fig. B.6. The representation of the solution of Fig. B.6 using main and transshipment vectors.

To illustrate how the heuristics described in Section 3.4 operate. Consider the heuristic ‘‘mother route to daughter route’’
operates, and assume that port 6 is randomly selected for the above example. It is possible to insert this port in eight positions
in the two daughter routes. The ninth possibility is related to having a third daughter route visiting only port 6. Assume that
{5, 2, 𝐷, 6, 1, 𝐿, 4, 3, 0, 7, 8} is the selected option, i.e. port 6 will be part of the first daughter route. The transshipment vector requires
to be updated. Since the previous index of port 6 in Part 1 is 1, any cell in the transshipment vector having a value greater or equal
to 1 must be decremented by one. The resulting vector is {2, 0}. As ‘‘0’’ is here meaningless and does not refer to any port in the
mother route, it is replaced with ‘‘1’’ to obtain vector {2, 1}. If, however, the re-insertion results in a new daughter route, so that
the main vector is {5, 2, 𝐷, 1, 𝐿, 4, 3, 𝐷, 7, 8, 𝐷, 6}, a new cell is created in the transshipment vector and assigned to a value computed
by the heuristic described in Section 3.4.5. For this case, the resulting transshipment vector is {2, 1, 1}.

Appendix C. The effect of integrating the adaptive mechanism

A recent meta-analysis by Turkeš et al. (2021) suggests that the adaptive layer of the ALNS framework has little impact on solution
quality in studies that have used this approach. However, we contest this statement and present evidence from our experiments that
16
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Table C.9
Cost increase for the results of the adaptive heuristic without adaptive mechanism. The
average cost increase is over ten runs for each instance.
Class Size Avg. cost Cost increase for the

increase (%) best-found solution (%)

A 10–11 0.00 0.00
B 15 0.10 0.00
C 20–22 1.72 0.27

LINER-LIB 12–33 1.00 0.28

20 0.30 0.00
20 2.16 0.74
30 3.96 5.50

Random 40 4.68 3.72
50 5.46 6.81
60 4.76 7.47
100–150 7.33 4.73

shows the benefits of the adaptive layer in improving solution quality for the FND-OT problem. We emphasize herein that the
effectiveness of the adaptive layer depends strongly on the nature of the problem being addressed and the design of the operators
to solve it.

In our experiment, we compare the results of the adaptive heuristic with and without the adaptive layer. When run without
he adaptive layer, we use a uniform selection method to choose heuristics, whereby all heuristics discussed in Section 3.4 have
n equal chance of being chosen. To make this experiment significant, we carry out tests on a large set of instances that includes
he A, B, C, and the adapted LINER-LIB instances, as well as the randomly generated instances described in Section 4.3. Table C.9
resents a comparison of the results obtained for the adaptive heuristic with and without the adaptive mechanism. The column

‘Avg. cost increase (%)’’ reports the increase in objective value (i.e., costs) over the ten runs without the adaptive layer compared
o the results with. The last column ‘‘Cost increase for the best-found solutions (%)’’ shows the same for the best-obtained solutions
ver ten runs.

It is evident from the results that the adaptive mechanism improves the general performance of the proposed adaptive heuristic,
nd this improvement is more noticeable for larger instances. When each instance is considered separately, there is no case where a
etter solution could be found by a uniform random selection. This demonstrates the importance of including an adaptive selection
f heuristics that rewards those heuristics that perform well in finding good solutions.
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