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Abstract: Purpose: Residual adrenocortical function, RAF, has recently been demonstrated in one-
third of patients with autoimmune Addison’s disease (AAD). Here, we set out to explore any
influence of RAF on the levels of plasma metanephrines and any changes following stimulation
with cosyntropin. Methods: We included 50 patients with verified RAF and 20 patients without
RAF who served as controls upon cosyntropin stimulation testing. The patients had abstained from
glucocorticoid and fludrocortisone replacement > 18 and 24 h, respectively, prior to morning blood
sampling. The samples were obtained before and 30 and 60 min after cosyntropin stimulation and
analyzed for serum cortisol, plasma metanephrine (MN), and normetanephrine (NMN) by liquid-
chromatography tandem-mass pectrometry (LC-MS/MS). Results: Among the 70 patients with
AAD, MN was detectable in 33%, 25%, and 26% at baseline, 30 min, and 60 min after cosyntropin
stimulation, respectively. Patients with RAF were more likely to have detectable MN at baseline
(p = 0.035) and at the time of 60 min (p = 0.048) compared to patients without RAF. There was a
positive correlation between detectable MN and the level of cortisol at all time points (p = 0.02,
p = 0.04, p < 0.001). No difference was noted for NMN levels, which remained within the normal
reference ranges. Conclusion: Even very small amounts of endogenous cortisol production affect MN
levels in patients with AAD.
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1. Introduction

The adrenal glands are vital for the regulation of both the endocrine stress response
and body homeostasis, mediated by adrenocortical steroids from the outer cortex and
catecholamines from the inner medulla. Although the cortex and the medulla originate
from different embryological tissues, their anatomical proximity is not at random, as normal
functions in both layers are interdependent [1–4]. For instance, cortisol from the adrenal
cortex is important for adrenomedullary organogenesis and catecholamine synthesis, i.e.,
epinephrine and norepinephrine [5–7]. Regulation of steroidogenesis is in turn dependent
on catecholamines [8]. When exposed to stress, concomitant secretion of glucocorticoids
(GCs) from the adrenal cortex and epinephrine from the adrenal medulla occur through the
bidirectional regulation of production and release. In this process, phenyl ethanolamine-N-
methyltransferase (PNMT) is the key enzyme responsible for the synthesis of epinephrine
from norepinephrine, and PNMT levels and activity are dependent on the local production
of GCs in the adrenal cortex [7,9–11]. Metanephrine (MN) and normetanephrine (NMN)
are metabolites of catecholamines. While most plasma MN is produced in the adrenal
medulla, the same is true for only about 20 percent of plasma NMN. Instead, most plasma
NMN originates from norepinephrine released by sympathetic nerves or the extraneuronal
metabolism of norepinephrine [12].

Primary adrenocortical insufficiency provides an opportunity to further explore
adrenomedullary function in a low or GC-depleted state. In congenital adrenal hyperplasia
(CAH), low levels of epinephrine are reported from birth through adulthood [13,14], and
patients also show significantly lower epinephrine response during moderate–intense phys-
ical activity [15]. Similarly, impaired epinephrine secretion in response to hypoglycemia has
been described in patients with secondary adrenal insufficiency [16–18]. Zuckerman-Levin
et al. studied individuals with isolated GC deficiency due to adrenocorticotropic hormone
(ACTH) unresponsiveness, suggesting lower physical performance in these patients due to
altered levels of epinephrine and norepinephrine [16–19]. Patients with autoimmune Addi-
son’s disease (AAD) [20–22] are reported to have lower levels of epinephrine during rest as
well as after strenuous physical activity and a reduced capacity for exercise compared to
healthy individuals [23]. The limitation in physical capacity might partly be caused by the
impaired epinephrine production. GC replacement therapy does not seem to normalize
catecholamine levels [24].

Until recently, it was assumed that all patients with AAD over time develop total
loss of adrenocortical function. In a recent study, we showed that one third of patients
with AAD produce low levels of GCs even years after diagnosis [25], as indicated also
by others [26,27]. Whether this residual adrenocortical function [28] is of significance for
adrenomedullary function is currently unknown.

Here, we aimed to investigate adrenomedullary function in relation to adrenocortical
function. We explored if the degree of residual GC-production correlated with levels of
plasma metanephrines and whether there was a difference in basal and ACTH-stimulated
levels of plasma metanephrines in AAD patients with and without RAF.

2. Materials and Methods
2.1. Patients

The inclusion and exclusion criteria are described in detail elsewhere [25]. In short,
RAF was defined as quantifiable levels of S-cortisol (<0.91 nmol/L) and S-11-deoxycortisol
(0.11 nmol/L). Here, we included all 50 patients with verified RAF as well as 20 patients
without RAF who served as controls upon undertaking a cosyntropin test in the previous
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study, yielding a total of 70 patients with AAD. The basic characteristics are shown in
Table 1.

Table 1. Patient characteristics.

Characteristic without RAF with RAF p-Value

N 20 50
Age (year), median (IQR) 49 (32, 55) 50 (36, 59) 0.62

Female 13 (65%) 23 (46%) 0.15
BMI (kg/m2), mean (SD) 24 (4.2) 26 (4.3) 0.20

Adrenal crisis ever
no 5 (25%) 18 (36%) 0.38
yes 15 (75%) 32 (64%)

Systolic BP (mmHg), median (IQR) 110 (101,120) 121 (116,132) 0.01
Diastolic BP (mmHg), median (IQR) 71 (69, 80) 78 (70, 85) 0.14

PRC. (mIE/L) median (IQR) 71 (17, 192) 91 (27, 206) 0.25
S-DHEAS (nmol/L) median (IQR) <0.62 * (0, 192) 428 (160, 628) <0.001

Abbreviations: BMI; body mass index, BP; blood pressure, IQR; inter-quartile range, S-DHEAS; serum dehy-
droepiandrosterone sulfate, PRC; plasma renin concentration * Lower limit of quantification.

2.2. Cosyntropin Testing and Metanephrine Assay

In short, all of the participants went through a standard 250 ug cosyntropin test, with
samples taken at baseline (0 min) and after 30 and 60 min. Before sampling, the patients
abstained from cortisone acetate or hydrocortisone and fludrocortisone for at least 18
and 24 h, respectively. Analysis of plasma MN and plasma NMN was performed by the
liquid chromatography-tandem mass spectrometry (LC-MS/MS) method [29,30] at the
Hormone Laboratory, Oslo University Hospital, Norway. The normal reference interval
for plasma MN was <0.34 nmol/L and the lower level for detection was ≥0.1 nmol/L
(CV 12% at 0.29 nmol/L). For plasma NMN, the reference intervals were age specific
16–39 years < 0.63 nmol/L, 40–59 years < 0.76 nmol/L, and >60 years < 1.2 nmol/L, and
the lower level for detection was ≥0.2 nmol/L (CV 10% at 0.68 nmol/L). The analytical
CV% was a maximum of 20 at the lower level of detection. Both methods are accredited
according to NS-EN ISO/IEC 17025.

2.3. Statistics

The descriptive statistics are presented as numbers and percentages for categorical
data and as the medians and range (interquartile range, IQR) or the mean with the standard
deviations as appropriate. We compared the characteristics between the groups with and
without RAF. Wilcoxon rank-sum tests or two-sample t-tests were applied to compare
continuous variables, and Pearson’s chi-square test was used to compare the categorical
variables. The correlations between RAF and the probability of detectable MNs at baseline,
30 min, and 60 min were estimated using logistic modelling with a robust measure. All the
statistical analyses were performed in Stata MP 17.1. The alpha value was set to 0.05.

2.4. Ethics

Ethical permission was granted by the Regional Ethical Committee of South-East
Norway (permit no. 2018/751/REK Sør-Øst), of Stockholm, Sweden (permit no. 2018/2247-
32) and the Regional Ethical Committee of Berlin, Germany (permit no. Eth-47/18). Written
informed consent was obtained from all participants.

3. Results

Plasma MN was detectable, i.e., ≥0.10 nmol/L, in 33% (n = 23) at baseline, 25%
(n = 17) at the time of 30 min, and 26% (n = 18) at the time of 60 min (Table 2). In those
patients, the distribution of MN and cortisol values at the different time points is depicted
in Figure 1a–c. Patients with RAF were more likely to have detectable levels of MN at
baseline (p = 0.056) and at the time of 60 min (p = 0.034) compared to patients without RAF
(model not presented).
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Figure 1. (a) Distribution of cortisol and metanephrine at baseline in patients with detectable MN. 
P-metanephrine and s-cortisol, both in nmol/L; detectable level of MN ≥ 0.1. (b) Distribution of cor-
tisol and metanephrine at 30 min, during the cosyntropin test, in patients with detectable MN. P-
metanephrine and s-cortisol, both in nmol/L; detectable level of MN ≥ 0.1. (c) Distribution of cortisol 

Figure 1. (a) Distribution of cortisol and metanephrine at baseline in patients with detectable MN.
P-metanephrine and s-cortisol, both in nmol/L; detectable level of MN ≥ 0.1. (b) Distribution of
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cortisol and metanephrine at 30 min, during the cosyntropin test, in patients with detectable MN.
P-metanephrine and s-cortisol, both in nmol/L; detectable level of MN ≥ 0.1. (c) Distribution of
cortisol and metanephrine at 60 min, during the cosyntropin test, in patients with detectable MN.
P-metanephrine and s-cortisol, both in nmol/L; detectable level of MN ≥ 0.1.

Table 2. Median and range of cortisol * in patients with and without detectable metanephrine
** levels at 0, 30, and 60 min in patients with and without residual adrenocortical function during the
cosyntropin test.

All Patients Cortisol Without
RAF *** Cortisol With RAF Cortisol

N Median Min-Max N Median Min-Max N Median Min-Max

Time 0 min

MN < 0.1 47 16 <0.91–397 17 <0.91 <0.91–14 30 47 <0.91–397

MN ≥ 0.1 23 70 1–294 3 1.8 1–10 20 104 16–294

Time 30 min

MN < 0.1 52 25 <0.91–399 17 <0.91 <0.91–14 35 67 8–399

MN ≥ 0.1 17 63 1–315 3 8.5 1–11 14 126 24–315

Time 60 min

MN < 0.1 51 18 <0.91–312 19 <0.91 <0.91–2 32 47 5–312

MN ≥ 0.1 18 151 1–418 1 1 1 17 178 24–418

* P-metanephrine and s-cortisol, both in nmol/L ** Detectable level of MN ≥ 0.1, *** RAF = residual adrenocortical
function.

3.1. Comparison of Patients with and without RAF

The patients with RAF had significantly higher systolic blood pressure (BP) (p = 0.001)
and higher levels of DHEAS (p = < 0.001); no other differences in baseline characteristics
were seen (Table 1). The distribution of cortisol and MN in patients with and without RAF
at 0, 30, and 60 min is shown in Figure 2a,b. MN was detectable in 23 of the 50 patients with
RAF. A total of 9 patients had detectable MN at one time point, 3 patients had detectable
MN at two time points, and 12 patients had detectable MN at all three time points. In the
20 patients without RAF, MN was detectable in 4 separate patients. Of these, one patient
had detectable MN at all three time-points, with the highest MN level (0.31 nmol/L) noted
at baseline. There was no increase in MN during the cosyntropin test in patients with RAF
or in patients without RAF.

3.2. Metanephrine and Cortisol

In patients with detectable MN, there was a positive correlation with the level of
cortisol at all three time points: baseline (p = 0.02), the time of 30 min (p = 0.04), and at
the time of 60 min (p < 0.001). At baseline, we did not find any difference in age (p = 0.46),
sex (p = 0.15), BMI (p = 0.83), frequency of adrenal crisis (p = 0.81), systolic BP (p = 0.50),
diastolic BP (p = 0.43), or disease duration (p = 0.97) in the patients with detectable MN
compared to those without. However, significantly more men than women had detectable
MN at the times of 30 and 60 min (p = 0.008, p = 0.02).
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Figure 2. (a) Distribution of cortisol levels at 0, 30, and 60 min, during the cosyntropin test, in patients
with and without residual adrenocortical function. (b) Distribution of detectable metanephrine levels
at 0, 30, and 60 min, during the cosyntropin test, in patients with and without residual adrenocortical
function.

3.3. Normetanephrine

NMN was detectable in most patients and no significant differences in NMN levels
were found either between the subgroups at baseline nor after the cosyntropin test. The
NMN levels (0.52, 0.56, and 0.58 nmol/L, median, IQR) were within the normal ranges in
each age group (16–39, 40–59, and > 60 years), respectively.

4. Discussion

This is the first study to report MN and NMN levels in patients with AAD in relation
to RAF [25]. Patients with RAF were more likely to have detectable MN before as well



J. Clin. Med. 2023, 12, 3602 7 of 10

as after the cosyntropin test. Even though the residual production of cortisol in absolute
values was generally very low, a correlation between MN and cortisol was demonstrable.

ACTH is thought to regulate epinephrine synthesis indirectly by inducing GC secretion
from the adrenal cortex. The endogenous GCs in turn stimulate the PNMT activity needed
for norepinephrine conversion to epinephrine, which is then metabolized to MN [31]. We
have previously reported a small increase in GC levels upon completion of the cosyntropin
test in patients with RAF [25]. In the current study, we did not find any significant change in
MN or NMN levels after the cosyntropin test in either group, suggesting that isolated ACTH
stimulation is of little importance to increasing adrenomedullary epinephrine production.
Thus, it is possible that any direct or indirect stimulatory role of ACTH on MN and NMN
levels had already been fully exploited before the cosyntropin test.

Our findings point to the importance of endogenous cortisol/GC for catecholamine
synthesis in the adrenal medulla [5,7], as previously indicated by studies on adrenocortical
and adrenomedullary function in patients with CAH. Patients with CAH and severe salt-
wasting disease have lower levels of both cortisol, epinephrine, and MN compared to
patients with simple virilizing disease as well as healthy controls [32,33]. This is consistent
with our patients who suffer from AAD and have impaired production of MN, which
seems to be related to endogenous GC deficiency. A previous small study on patients with
CAH and healthy controls found a significant increase in both norepinephrine and NMN
after a standardized bicycle exercise, suggesting a preserved ability in CAH to mobilize the
adrenal medulla upon stress [34]. This contrasts to our findings, but then the stressors are
not the same in these studies.

The endogenous GC levels in RAF are generally low [25], and the modest increase
in cortisol upon completion of the cosyntropin test might be too small to facilitate any
increase in MN levels. In all the patients, the NMN levels were within the normal ranges,
but compared to the results in previous studies establishing reference levels for plasma NM,
the median in our study tends to be higher [29]. Increased levels of NMN are also found
in adrenalectomized patients. This effect is thought to be compensatory because of lower
epinephrine levels, leading to changes in norepinephrine production in the sympathetic
nerves [35]. This resembles our patients who have a similar pattern in their catecholamine
production. Analysis of the clinical consequences of impaired MN production was not
included in this study, but it might be part of the explanation for the often-present poor
capacity to manage stress.

In this study, patients with RAF had higher baseline systolic BP compared to patients
without RAF. In our previous study including a larger number of patients without RAF, we
did not detect this difference [25], possibly indicating selection bias in the current study.

To conclude, in patients with AAD, detectable MN is positively correlated to the level
of serum cortisol and is more pronounced in patients with RAF, suggesting that even partly
preserved endogenous production of cortisol is of importance for MN production. Any
clinical implications of this remain to be determined.
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