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Abstract

The Flexible Traveling Repairman Problem with Drones (FTRPD) is a combinatorial

optimization problem concerned with optimizing delivery routes in a multi-modal system

combining a truck and Unmanned Aerial Vehicle (UAV) operations. In this system, a

truck and UAV operations are synchronized, i.e., one or more UAV travel on a truck, which

serves as a mobile depot. Deliveries can be made by both UAVs and the truck. While the

truck follows a multi-stop route, each UAV delivers a single shipment per dispatch. This

is a practical problem with direct applications in the logistics industry, particularly for

last-mile delivery. In this thesis, we implement and apply two fundamental techniques

- metaheuristics and reinforcement learning - to the FTRPD. The Truck and Drone

Routing Algorithm (TDRA) is a metaheuristic algorithm inspired by Adaptive Large

Neighborhood Search (ALNS). Deep Reinforcement Learning Hyperheuristic (DRLH) is

a general framework for heuristic selection based on Deep Reinforcement Learning (DRL),

replacing the adaptive layer of ALNS. The goal is to compare how the heuristic selection

of the approaches affects performance. The approaches are evaluated across two baseline

sets with problem sizes 10, 20, and 50. Our results show that DRLH becomes increasingly

effective over TDRA as the problem size increases. Furthermore, DRLH performs more

consistently and, in terms of average objective, converges in fewer iterations than TDRA.
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Chapter 1

Introduction

1.1 Motivation

Combinatorial optimization is an intricate field of study that requires robust and adapt-

able algorithms to solve its diverse range of problems. This thesis focuses on applying

two fundamental techniques – metaheuristics and reinforcement learning – in the context

of the Flexible Traveling Repairman Problem with Drones (FTRPD).

Metaheuristics are high-level strategies that have proven useful in a variety of opti-

mization problems across different fields, including logistics (Moshref-Javadi et al., 2020),

telecommunications (Alvarez et al., 2018), and computational biology (Shukla et al.,

2020). Meanwhile, reinforcement learning, a subset of machine learning, offers an ap-

proach to learning decision-making processes based on reward feedback and has shown

potential in complex, sequential decision-making scenarios. In this thesis, we focus on two

specific methods, Truck and Drone Routing Algorithm (TDRA) and Deep Reinforcement

Learning Hyperheuristic (DRLH), both of which derive their inspiration from Adaptive

Large Neighborhood Search (ALNS). TDRA is an adaptation of ALNS explicitly designed

for the FTRPD, while DRLH is a deep reinforcement learning agent devised to replace

the adaptive layer of ALNS.

We focus on the Flexible Traveling Repairman Problem with Drones (FTRPD), an

instance of a combinatorial optimization problem. This problem is centered on finding

an efficient route for a vehicle and its accompanying drones to deliver packages. This

is a practical challenge with direct applications in the logistics industry, particularly in

last-mile deliveries.
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Our goal is to compare the effectiveness of TDRA and DRLH when applied to the

FTRPD. In addition, we aim to gain insights into each method’s advantages and potential

limitations. This is achieved through careful experimentation and assessment of the

method’s performance across various established metrics.

1.2 Thesis Outline

The outline of the rest of the thesis is as follows.

Chapter 2 – Background gives the theoretical background related to combinatorial

optimization, metaheuristics, and reinforcement learning required for this thesis. It also

covers related work on last-mile delivery with autonomous assistants, hyperheuristics,

and solving combinatorial optimization problems using deep reinforcement learning.

Chapter 3 – Flexible Traveling Repairman Problem with Drones describes

the dynamics of the FTRPD and the Truck and Drone Routing Algorithm (TDRA).

Chapter 4 – Deep Reinforcement Learning Hyperheuristic describes the dy-

namics of the DRLH framework.

Chapter 5 – Experimental Setup contains how the experiments were conducted.

This includes hardware to run the experiments, information about baseline methods,

parameters, and training set generation.

Chapter 6 – Results describe the findings of the experiments and discuss their

relevance and significance.

Chapter 7 – Conclusion and Future Work summarizes and concludes the thesis

and looks at potential future work related to the thesis.

2



Chapter 2

Background and Related Work

2.1 Combinatorial Optimization Problems

Combinatorial optimization problems are a class of mathematical problems that involve

finding the best arrangement or selection of discrete objects from a finite set, subject to

certain constraints Schrijver (2003). The goal is to optimize some objective function that

measures the quality of the chosen arrangement or selection. Combinatorial optimiza-

tion problems arise in several fields, including computer science, engineering, economics,

and operations research. Some classic examples of combinatorial optimization problems

include the Traveling Salesman Problem (TSP), where one seeks the shortest possible

route that visits a set of cities exactly once, and the knapsack problem, where one seeks

the most valuable set of items that can fit in a limited-capacity container. Combinato-

rial optimization problems can be extremely challenging to solve, and various techniques

such as heuristics, exact algorithms, and approximation algorithms have been developed

to tackle them.

One of the reasons they can be difficult to solve is the many possible combinations

that must be explored to find the optimal solution. This is especially true for problems of

larger sizes, where it might be infeasible to enumerate all possible solutions and select the

best one. Moreover, many combinatorial optimization problems are NP-hard, meaning

no known algorithm can solve them in polynomial time. This implies that the best-

known algorithms for solving these problems require time that grows exponentially with

the size of the problem instance in the worst case. While many heuristic and approxima-

tion algorithms have been developed to find high-quality solutions to many combinatorial
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optimization problems in a reasonable time, no general algorithm can solve all such prob-

lems efficiently. As a result, solving combinatorial optimization problems often requires

a combination of algorithmic ingenuity, domain-specific knowledge, and careful modeling

of the problem.

2.2 Solution Methods

Various solution methods for combinatorial optimization problems can be employed based

on the specific problem instance and the desired solution quality. Exact methods, heuris-

tic methods, and metaheuristics are three broad categories of solution methods used to

tackle combinatorial optimization problems. Exact methods provide optimality guaran-

tees but may be computationally expensive, while heuristic methods trade optimality for

speed and can be helpful in large-scale problems. Metaheuristics offer a middle ground

between exact and heuristic methods, using high-level strategies to guide the search for

good solutions. Each of these solution methods has its advantages and disadvantages, and

the choice of method will depend on the specific problem instance and the requirements

of the problem at hand.

2.2.1 Exact Methods

Exact methods are algorithms guaranteed to find the optimal solution to a problem.

Unfortunately, they are often computationally expensive and impractical for large-scale

problems. This is because a sizable portion of the solution space must be explored.

In addition, exact methods are often hard to use on real-life problems due to many

constraints and large instance sizes. Some examples of exact methods include branch-

and-bound, Dynamic Programming, and Integer Programming.

2.2.2 Heuristic Methods

Heuristic methods are a family of optimization algorithms that aim to find good solu-

tions to combinatorial optimization problems in a reasonable amount of time. Unlike

exact methods, which guarantee to find the optimal solution but can be computationally

expensive, heuristic methods provide an approximate solution that may not be optimal
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but is often good enough for practical purposes. Heuristic methods can be broadly classi-

fied into constructive and perturbative heuristics. Constructive heuristics build a solution

step-by-step, starting with an empty solution and adding elements. Meanwhile, pertur-

bative heuristics begin with an initial solution and make minor random modifications to

it. Heuristic methods are often used when the instance size or complexity is too large for

exact methods to handle or when the exact solution is unnecessary.

Constructive Heuristics

Constructive heuristics build a solution step-by-step, starting from an empty solution

and adding elements until a complete solution is obtained. Although these algorithms

are often simple and easy to implement, they can provide good solutions for small and

medium-sized instances. Because of this, perturbative heuristics often use a constructive

heuristic to build an initial, feasible solution. An example of a constructive heuristic is

greedy constructive. This method selects the best option at each step according to some

criterion, such as minimizing the cost or maximizing the profit.

Perturbative Heuristics

Perturbative heuristics start with an initial solution and make minor random modifica-

tions to it to explore new regions of the search space. These algorithms are often more

complex and computationally intensive than constructive heuristics, but they can provide

better solutions for larger and more complex problems.

An essential aspect of perturbative heuristics is neighborhoods. The neighborhood of

a given solution is a set of all the solutions that can be obtained by applying a small

modification to the original solution. To avoid getting stuck in a local optimum, the size

of the neighborhood should be large enough to explore a wide range of solutions but small

enough to avoid excessive computation. A large neighborhood can be achieved by having

a good mix of diversification and intensification. Diversification involves exploring various

solutions to avoid getting stuck in a local optimum. This might worsen the immediate

objective in hopes of finding a better solution shortly. Intensification, conversely, refers to

exploiting the current solution by focusing the search on a promising region of the search

space. This will strictly improve the objective. It is essential to balance diversification and

intensification to get the best possible final objective. An example of a framework that

employs large neighborhoods is Adaptive Large Neighborhood Search (ALNS) (Pisinger

and Ropke, 2007). ALNS uses destroy and repair pairs on the solution, guided by a

dynamic selection mechanism that adapts to the search history.
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2.2.3 Metaheuristics

A metaheuristic is a high-level problem-independent algorithmic framework that pro-

vides guidelines or strategies to develop heuristic optimization algorithms (Sörensen and

Glover, 2013). Metaheuristics are problem-independent because they can be applied to

various optimization problems without requiring specific knowledge about the problem

or structure. This is because metaheuristics are based on general-purpose search and

optimization techniques that can be applied to any optimization problem. While they

are problem-independent, they still require a good understanding of the specific problem

to design an appropriate search strategy and choose the algorithm’s parameters and set-

tings. Problem-specific heuristics can also help get better results. Metaheuristics aims to

find a good, but only sometimes the optimal, solution in a reasonable time. They iter-

atively explore the solution space by making minor adjustments to the current solution

and gradually improve it until a satisfactory solution is found. Some of the most widely

used metaheuristics, such as Simulated Annealing (SA), Genetic Algorithms (GA), and

ALNS, are designed for perturbative heuristics.

2.3 Hyperheuristics

A hyperheuristic is an automated methodology for selecting or generating heuristics to

solve hard computational search problems (Burke et al., 2019). In combinatorial opti-

mization, they have been defined as a heuristic to choose heuristics. Many hyperheuristics

use high-level methodologies together with a set of low-level heuristics. Because of this,

they are often problem-independent. Construction and perturbation can be used to refer

to these low-level heuristics.

Hyperheuristics can be broadly classified into heuristic selection and heuristic gener-

ation (Drake et al., 2020). Heuristic selection works by selecting the most appropriate

heuristic from a predefined set based on the current problem instance or situation. The

selection is often guided by performance metrics or learning mechanisms that are aimed

at maximizing the effectiveness of the chosen heuristic for the problem at hand. Heuristic

generation generates new heuristics or modifies existing ones. This can be done through

various methods, including genetic programming or machine learning techniques. The

goal is to generate a heuristic well-suited to the current problem instance and potentially

improve upon the performance of pre-existing heuristics. This thesis focuses on heuristic
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selection, and later I will elaborate on a deep reinforcement learning agent used for this

purpose.

A hyperheuristic can be considered a learning algorithm when it uses some feedback

from the search process. Not getting this feedback is called a non-learning hyperheuristic.

We can categorize learning into two types: online and offline learning. Online learning

occurs during the problem-solving process while the algorithm is running. Conversely,

offline learning involves collecting rules or programs from a set of training instances, which

hopefully generalize to solving unseen instances. A large part of this thesis is the Deep

Reinforcement Learning Hyperheuristic (DRLH), which guides the selection of heuristics

using deep reinforcement learning.

The main advantages of hyperheuristics include their generality (they can be applied

to a wide variety of problems), simplicity (once the hyperheuristic is designed, it can

be used with minimal adjustments), and adaptability (they can learn to improve over

time). However, they may not always provide the optimal solution, especially for complex

problems where a problem-specific heuristic might perform better.

2.4 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) extends the Large Neighborhood Search

(LNS) framework of Shaw (1998). The problem-solving approach is similar to the ruin-

and-recreate principle by Schrimpf et al. (2000). ALNS iteratively destroys part of the

solution and recreates it differently, hoping to find a better solution according to some

criterion. In general, there are several destroy and several recreate heuristics. One destroy,

and one recreate operation are chosen and applied to the current solution. In LNS, they

are chosen randomly, while in ALNS, they are selected using adaptive weights.

In traditional LNS, destroy-recreate pairs make minor changes to the current solution.

Ropke and Pisinger (2006) suggest using large moves that can rearrange up to 30-40%

of the solution. They reason that minor changes might have difficulties moving from

one promising area of the solution space to another. By making large changes to the

incumbent, meaning current, ALNS can move to a new region of the search space far

away from the incumbent solution, potentially leading to better solutions. In contrast,

minor changes that only make small adjustments to the incumbent solution are more likely

to keep the algorithm trapped in a local optimum. Another advantage of using big moves
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is that they can help to diversify the search by creating more diverse solutions. However,

it is important to note that big moves must be balanced with local search methods,

for example, Simulated Annealing (SA), that can refine the solutions and improve their

quality.

2.4.1 Simulated Annealing

Simulated Annealing (SA) is a metaheuristic optimization algorithm inspired by the an-

nealing process in metallurgy. It is commonly used to solve combinatorial optimization

problems. SA begins with an initial solution and a temperature parameter. It iteratively

explores the solution space by making small random changes to the current solution,

similar to local search methods. What sets SA apart is its ability to accept worse solu-

tions occasionally. This feature allows the algorithm to escape local optima and continue

searching for potentially better solutions.

The acceptance of worse solutions in SA is determined by a probabilistic acceptance

criterion (Kirkpatrick et al., 1983). This criterion considers the difference in objective

function values between the incumbent and new solutions and the current temperature.

Higher temperatures result in a higher probability of accepting worse solutions, enabling

a broader exploration of the solution space. Therefore, the temperature gradually reduces

as the algorithm progresses according to a predefined cooling schedule.

The cooling schedule is a critical factor in SA’s performance. It controls the rate

at which the temperature decreases over time. A well-designed cooling schedule strikes

a balance between exploration and exploitation, gradually reducing the temperature to

favor the selection of better solutions. Combining random moves with the ability to

accept worse solutions at the beginning and progressively becoming more selective, SA

can effectively explore the search space and converge towards an optimal or near-optimal

solution.

2.4.2 Acceptance Criterion

The acceptance criterion is crucial to the ALNS algorithm because it determines whether

a candidate solution should be accepted or rejected. The acceptance criterion plays

an essential role in balancing the exploration of the search space and the exploitation of

promising areas of the search space. Several acceptance criteria can be used in ALNS, each
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with advantages and disadvantages. The most straightforward acceptance criterion is to

accept all candidate solutions. This approach can lead to rapid search space exploration

but may result in poor-quality solutions.

Using the SA acceptance criterion in ALNS is common. This criterion states that

a new solution should be accepted if it is better than the current solution or with a

certain probability if it is worse. This probability is based on the Boltzmann probability

function; see equation 2.1. The likelihood of accepting a worse solution is determined

by a parameter called temperature, which gradually decreases over the course of the

algorithm. This allows for exploration of the search space early in the algorithm, when

the temperature is high, and exploitation of promising areas later in the algorithm, when

the temperature is low. The rate at which the temperature decreases determines the

balance between exploration and exploitation and can significantly impact the algorithm’s

performance.

The Boltzmann probability function used in SA. f(s) is cost of the incumbent solution,

f(s′) is the cost of the next solution, and T is the current temperature.

e−
f(s)−f(s′)

T (2.1)

2.4.3 Adaptive Weight Adjustment

ALNS uses adaptive weight adjustment to track how each heuristic performs. The entire

search is divided into segments. At the start of each segment, each heuristic is given

a score of zero. Then, each time a heuristic is used, points are added to the score to

indicate how the heuristic performed. The idea behind this is to reward heuristics that

find better solutions. However, diversification is essential to search a large part of the

solution space. Therefore, heuristics that find a new, unseen solution are rewarded.

The destroy and recreate operators are equally rewarded when used together. This is

because it is hard to know which operator caused the success (Ropke and Pisinger, 2006).

The adaptive weight adjustment helps ALNS balance intensification and diversification

throughout the search, increasing its effectiveness in finding high-quality solutions to

complex optimization problems.

The weight adjustment mechanism in ALNS is typically based on a reinforcement

learning approach, where the weights of the heuristics are updated based on the reward

signal received in each iteration. The reward signal is based on improving the objective
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value. Heuristics that lead to a better objective function value are given a higher reward,

and their weights are increased accordingly. On the other hand, heuristics that lead to a

worse objective function value are given a lower reward, and their weights are decreased

accordingly.

Typically, there are three ways to gain a reward. Find a new global best solution. This

usually gives the highest reward. Find a solution better than the incumbent solution.

This usually gives a medium reward. Find a new, unseen solution. This usually gives the

smallest reward. Otherwise, zero points are given as reward. These rewards are passed

as parameters to ALNS, see Table 2.1.

Score Description

σ1 The last remove-insert operation resulted in a new global best solution.
Usually gives the highest reward.

σ2 The last remove-insert operation resulted in a solution that has not
been accepted before. The cost of the new solution is better than the
cost of the incumbent solution. Usually gives a medium reward.

σ3 The last remove-insert operation resulted in a solution that has not
been accepted before. The cost of the new solution is worse than the
cost of the current solution, but the solution was accepted. Usually
gives the lowest reward.

Table 2.1: Score parameters in ALNS. Table from Ropke and Pisinger (2006).

2.4.4 Parameter Tuning

ALNS involves various design choices and parameter settings Burke et al. (2013). These

parameters govern the exploration and exploitation trade-off, the search strategies, and

the balance between diversification and intensification. Different parameter values can

lead to different search behaviors and can significantly impact the algorithm’s perfor-

mance, convergence rate, and solution quality.

Since ALNS aims to balance exploration and exploitation, determining the appropriate

values for its parameters often requires experimentation and fine-tuning. These param-

eters may include acceptance criteria, perturbation strength, solution destruction and

repair strategies, diversification mechanisms, intensification strategies, and neighborhood

structures. By carefully adjusting these parameters based on problem characteristics,

problem instances, and domain knowledge, practitioners can guide ALNS toward better

performance and improve its ability to find high-quality solutions.
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2.5 Reinforcement Learning

Machine Learning can be split into three subcategories: supervised learning, unsupervised

learning, and reinforcement learning. In supervised learning, the learning algorithm is

provided with labeled training data consisting of input-output pairs. The goal is to learn

a mapping from inputs to outputs such that the model can make accurate predictions on

new, unseen data. Supervised learning is generally used for tasks such as classification

(e.g., identifying whether an email is spam) and regression (e.g., predicting house prices

based on features). In unsupervised learning, the learning algorithm is provided with

unlabeled data containing input features but no target outputs. The goal is to discover

hidden patterns, relationships, or structures within the data. Unsupervised learning is

used for tasks such as clustering (e.g., grouping customers based on purchase behavior)

and dimensionality reduction (e.g., reducing the number of features while preserving

important information).

2.5.1 Introduction to Reinforcement Learning

Reinforcement Learning is a type of machine learning that involves an agent interacting

with an environment to learn how to make decisions. Unlike other machine learning

approaches, reinforcement learning is based on trial and error. The agent acts in the

environment, and the environment provides feedback through rewards or penalties. The

agent aims to learn a policy that maximizes its cumulative reward, also called return.

This approach is beneficial when there is no pre-existing labeled dataset, or the problem

is too complex to be solved through traditional programming methods. Reinforcement

learning has been used to solve a wide range of problems, from game playing and robotics

to healthcare and finance.

Figure 2.1 shows how an agent interacts with an environment. At each time step t,

the agent observes the current state St of the environment and selects an action At based

on its current policy. The action taken by the agent causes the environment to transition

to a new state St+1, and the agent receives a reward rt+1 . The reward signal indicates

how well the agent performs at the current time step and is used to guide the agent’s

learning process. The agent’s ultimate goal is to learn a policy that maximizes its return.

Overall, figure 2.1 provides a high-level overview of the interaction between an agent and

an environment in the context of reinforcement learning.
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Figure 2.1: Agent and environment interaction. Figure from Sutton and Barto (2018).

2.5.2 Policy

A policy is a mapping from states to actions. It specifies what action an agent should take

in a given state of the environment. The policy is the core component of a reinforcement

learning algorithm because it determines the agent’s behavior. There are two main types

of policies in reinforcement learning: deterministic and stochastic. A deterministic policy

specifies a single action for each state. Given a state s, the policy π(s) returns a single

action a. On the other hand, a stochastic policy returns a probability distribution over

actions for each state. Given a state s, the policy π(s) returns a probability distribution

over the possible actions.

2.5.3 Reward function

A reward function is a function that maps a state-action pair to a numerical value that

represents the desirability of taking that action in that state. The reward function is a

critical component of a reinforcement learning algorithm because it guides the agent’s

behavior by providing feedback about the desirability of its actions. The reward function

is specified by the designer of the reinforcement learning algorithm and depends on the

task being solved. The reward function is typically designed to encourage the agent to take

actions that lead to desirable outcomes and discourage actions that lead to undesirable

results. For example, in a chess game, the reward function might give a positive reward

for winning and a negative reward for losing the game.

The reward function can be designed to incentivize the agent to behave in a certain

way. However, there is a risk that the agent may exploit the reward function to achieve

its goals in unintended ways. For example, if the reward function for a cleaning robot is

based on how clean the floor is, the robot may learn to spread dirt around to maximize
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its return. This phenomenon is known as reward hacking or reward engineering, and it is

a significant challenge in reinforcement learning research (Hadfield-Menell et al., 2020).

Designing a good reward function is challenging because it requires carefully balancing

the competing goals of encouraging the agent to explore the environment and exploiting

the agent’s current knowledge. If the reward function is too sparse or dense, the agent may

become stuck in local optima or fail to explore the environment effectively. Therefore,

designing a good reward function is often an iterative process that involves testing and

refining different reward functions until the desired behavior is achieved.

2.5.4 Value functions

A value function is a function that estimates the expected return of being in a given state

or taking a particular action in a given state. The value function is a critical component

of many reinforcement learning algorithms because it provides a way to evaluate the

quality of different policies and to update the policy iteratively to find the optimal one.

There are two main types of value functions in reinforcement learning: state-value and

action-value functions. A state-value function estimates the expected return of being

in a given state and following a particular policy. It represents the value of being in a

particular state, regardless of the action taken. The state-value function is denoted as

V(s) and is defined as the expected return starting from state s and following policy π.

An action-value function, on the other hand, estimates the expected return of taking a

particular action in a given state and following a particular policy. It represents the value

of taking a particular action in a particular state. The action-value function is denoted

as Q(s, a) and is defined as the expected return starting from state s, taking action a,

and following policy π.

State-value and action-value functions can be estimated using iterative methods, such

as dynamic programming, Monte Carlo methods, and temporal-difference learning. These

methods use different techniques to update the value function based on the observed

rewards and state transitions.

The value function plays a crucial role in reinforcement learning because it provides a

way to evaluate different policies and update the policy iteratively to find the optimal one.

The optimal policy is the one that maximizes the expected return over time. Sometimes,

the value function can derive the optimal policy directly without requiring an iterative

search.
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2.5.5 Approaches

There are several approaches to finding an optimal policy that maximizes the expected

return. The three most common approaches are value-based, policy-based, and actor-

critic methods (Sutton and Barto, 2018).

Value-based methods learn the value function of each state or state-action pair and use

it to derive an optimal policy. The most common value-based method is Q-learning, which

learns the action-value function directly. Q-learning updates the Q-values iteratively

based on the observed rewards and state transitions and uses a greedy policy to choose the

action that maximizes the Q-value for a given state. Value-based methods are beneficial

when the action space is significant, as they can scale well to high-dimensional problems.

Policy-based methods learn the policy directly without explicitly estimating the value

function. The most common policy-based method is the policy gradient method, which

iteratively updates the policy in the direction of the gradient of the expected return with

respect to the policy parameters. Policy-based methods are beneficial when the action

space is small and discrete, as they can handle both deterministic and stochastic policies.

Actor-Critic methods combine the advantages of value-based and policy-based meth-

ods by learning the value function and the policy. Actor-critic methods consist of two

components: an actor that learns the policy and a critic that learns the value function.

The critic provides feedback to the actor about the quality of its policy, and the actor

updates the policy based on this feedback. Actor-critic methods are beneficial when the

action space is large and continuous, as they can handle both deterministic and stochastic

policies.

2.6 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) combines deep neural networks with reinforcement

learning to enable artificial agents to learn complex behaviors and decision-making skills

in dynamic environments. Deep neural networks are often used as function approximators

to represent the value function or policy. By using deep neural networks to approximate

value functions and policies, DRL can address problems with large or continuous state

and action spaces, making it applicable to a wide range of complex tasks.
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Value function approximation: Instead of maintaining a lookup table for value func-

tions, which is infeasible for high-dimensional state spaces, deep neural networks are used

to approximate the value functions. Given an input state or state-action pair, the network

learns to output the corresponding estimated value. The most common architecture for

approximating the action-value function is the Deep Q-Network (DQN), which combines

Q-learning with deep learning.

Policy approximation: In policy-based DRL methods, a deep neural network repre-

sents the policy directly. The input to the network is the state, and the output represents

the probability distribution over possible actions or the deterministic action to be taken.

Policy gradient methods, like REINFORCE, and advanced algorithms, such as Proximal

Policy Optimization (PPO) and Actor-Critic Methods (ACM), are commonly used for

policy approximation. Policy gradient methods aim to maximize the expected return by

directly optimizing the policy parameters. First, the gradient of the objective function

is estimated using the log probability of the chosen action and the return (or advantage

function). The policy parameters are then updated using gradient ascent.

2.6.1 Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a policy gradient-based reinforcement learning

algorithm developed by OpenAI. It aims to address the challenges of sample efficiency and

stability in training by maintaining a balance between exploration and exploitation. PPO

improves the stability of the learning process by ensuring that the updated policy does

not deviate too far from the old policy. This is achieved using a trust region optimization

technique, which constrains the updates to the policy. PPO has been successfully applied

to various tasks, including robotics, game playing, and continuous control problems.

The main idea behind PPO is to update the policy by taking multiple steps using the

same set of collected trajectories (i.e., state, action, and reward sequences) while ensuring

that the policy does not change too drastically. To achieve this, PPO introduces a clipped

function that penalizes the policy update if the new policy moves too far from the old

policy (Schulman et al., 2017).

Another critical aspect of PPO is using a value function to estimate the expected

return of a given state or action. By learning both a policy and value function simulta-

neously, PPO can leverage both sources of information to improve performance. Addi-

tionally, PPO uses a trust region approach to ensure that policy updates stay within a
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specific range, allowing the algorithm to achieve better sample efficiency and convergence

compared to other reinforcement learning methods (Schulman et al., 2017).

While PPO has been successful in various domains, the algorithm still has some

limitations. One of the main challenges is the selection of hyperparameters, which can

significantly impact the algorithm’s performance (Schulman et al., 2017). Additionally,

PPO may struggle with tasks that require long-term planning or complex reasoning, as

the algorithm relies on a relatively simple policy function that may not be able to capture

the nuances of these tasks.

2.7 Related work

2.7.1 Vehicle Routing Problem with Autonomous Assistants

Chen et al. (2021) solved a Vehicle Routing Problem with Time Windows and Delivery

Robots (VRPTWDR) using ALNS. They found high-quality solutions on up to 200-node

instances. Furthermore, they found that adding delivery robots decreases the objective

function dramatically. Moshref-Javadi et al. (2020) found similar results when applying

an ALNS inspired algorithm on different versions of the Traveling Repairman Problem

with Drones. They reported significant improvement when using drones in combination

with a truck compared to using only the truck. Ottomanelli et al. (2017) also used a

heuristic approach and were able to beat baseline instances of Traveling Salesman Problem

(TSP) when introducing drones. Although there are some differences between drones and

robots, the conclusion remains the same. Using autonomous delivery assistants for last-

mile delivery can significantly improve solutions for various Vehicle Routing Problems.

2.7.2 Hyperheuristics

Zhang et al. (2022) proposed a deep reinforcement-based hyperheuristic framework to

deal with uncertainties encountered in real-life problems. The proposed approach used

a Double Deep Q-learning network. It was assessed on two combinatorial optimization

problems, a real-world container terminal truck routing problem with uncertain service

times and the online 2D strip packing problem. Zhang et al. (2022) used manual heuristics

for baseline performance evaluations. However, they noted that manual heuristics for
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performance evaluations are often far from optimal. Their results demonstrated superior

performance compared to existing solution methods for these problems.

Lu et al. (2020) proposed using a Deep Reinforcement Learning (DRL) agent to select

the optimal low-level heuristic at each stage when dealing with the Capacitated Vehicle

Routing Problem (CVRP). Their approach struggled with transferability to other opti-

mization challenges because the components of the DRL agent were uniquely tailored

to the CVRP. In their design, the agent’s training was primarily geared towards inten-

sification, sidelining diversification. A rule-based escape method was enforced instead

of allowing the RL agent to find a balance between intensification and diversification.

Letting the agent learn this balance could potentially lead to better results. Kallestad

et al. (2023) introduced Deep Reinforcement Learning Hyperheuristic (DRLH), a general

selection hyperheuristic framework that can generalize to various optimization problems.

This framework can be read about in Chapter 4.
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Chapter 3

Flexible Traveling Repairman

Problem with Drones

The Flexible Traveling Repairman Problem with Drones (FTRPD) is an extension of

the Traveling Repairman Problem (TRP). TRP, also known as the Minimum Latency

Problem, is a basic routing problem that determines the sequence of visits of a single

vehicle to a given set of customer locations in an attempt to minimize the sum of waiting

times of all customers (Moshref-Javadi et al., 2020). In the FTRPD, the truck is combined

with multiple Unmanned Aerial Vehicle (UAV) operations. The truck serves as a mobile

depot for the UAVs, also called drones. Deliveries can be made by both truck and drone.

While the truck follows a multi-stop route, each drone delivers a single shipment per

dispatch. The apparent advantage is that UAVs can travel flexibly in three dimensions.

This makes delivering easier since a discrete set of static roadways does not restrict the

UAVs.

UAVs suffer from two significant limitations. First, today’s battery technology limits

the flight time of a UAV and, in turn, its geographical reach. In recent surveys, the

available flight time for freight-bearing UAVs ranges from 30 to 40 minutes (Kolodny,

2016; Lardinois, 2016; Levine, 2016). Second, their physical carrying capacity is limited

regarding package size and weight. Typically, UAVs used for urban logistics are limited

to one package per dispatch. The FTRPD considers these two limitations by introducing

a drone limit and restricting drones to one package per dispatch.

The drone limit signifies the maximum distance a drone can travel before needing a

recharge, and its influenced by the coverage percentage. This percentage indicates the
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proportion of feasible unique drone routes. A drone route involves three steps: launching

from the launch node, delivering to the delivery node, and returning to the reconvene

node. The total travel time of a route must be lower than or equal to the drone limit

for a route to be feasible. A coverage percentage of 25% means that 25% of all unique

drone routes in an instance should be feasible. A higher coverage percentage will mean a

higher drone limit since it implies that a larger fraction of unique drone routes needs to

be feasible.

A UAV can deliver one package per dispatch and must reconvene with the truck

before picking up another package. Likewise, drones must be launched and reconvened

at customer locations. In the FTRPD, drones can be reconvened at the node they are

launched from. However, if a customer location is a reconvene node, the truck must wait

for the drone(s) to arrive before it can drive to the next customer node. Likewise, the

UAVs must wait for the truck if they arrive at a reconvene node first. This waiting time

is included in the total travel time of a drone route. Meaning, that if the waiting time

makes the total travel time exceed the drone limit, this delivery will be infeasible.

3.1 Truck and Drone Routing Algorithm

Truck and Drone Routing Algorithm (TDRA) was proposed by Moshref-Javadi et al.

(2020) to solve different versions of the Traveling Repairman Problem with Drones

(TRPD). It is an extension of ALNS Pisinger and Ropke (2007). The main difference is

using a Shake heuristic after ξ ∗ c number of non-improving iterations. See Algorithm 1

for TDRA pseudocode and Table 3.1 for an explanation of the parameters.
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Algorithm 1 TDRA Pseudocode (Moshref-Javadi et al., 2020)

Inputs: (dij, d̂ij, U, C0, c, ξ, Rmax, T0, βTDRA)
Generate an initial solution, s, to the FTRPD based on a Simulated Annealing ap-
proach
sbest ← s, f(sbest)← f(s), iter ← 0, T ← T0

while iter ̸= Rmax do
Select a heuristic from the list of heuristics using the selection method
Apply the selected heuristic to s′

Save the new solution as s′

if f(s′) < f(sbest) then
sbest ← s′, f(sbest)← f(s′)

end if
if s′ is accepted as the new solution based on the Boltzmann probability function

with current temperature T then
s← s′

end if
Update weights of heuristics
Change search neighborhood using Shake heuristic after ξc non-improving iterations
iter ← iter + 1
T ← βTDRAT

end while
return sbest, f(sbest)

Parameter Description

dij Travel time between node i and j by truck.

d̂ij Travel time between node i and j by UAV.

U Set of UAVs.

C0 Set of customers and the depot as starting location. C0 =
0, 1, 2, ..., c.

c Number of customers.

ξ Shake heuristic coefficient.

Rmax Maximum number of iterations.

T0 Initial temperature.

βTDRA Temperature coefficient.

Table 3.1: Explanation of TDRA parameters.
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3.2 Initial solution

TDRA begins with an initial feasible solution. This solution is generated by assigning

all customers randomly to the truck route. Afterward, a Simulated Annealing (SA)

algorithm improves the generated solution. The SA starts with an initial temperature

T0 and is decreased by factor βSA each iteration. The SA acceptance criterion is used as

the acceptance function. The SA algorithm uses two-opt and three-opt to find a better

solution. The heuristics are only used on the truck route, meaning the output is a TRP

solution since all customers are assigned to the truck. See Figure 3.1 for an example TRP

solution.

The output of SA is then given to the Elliptical Customer Assignment (ECA) heuristic.

ECA assigns some customers from the TRP solution to the drones. The Least-Squares

criterion estimates the best ellipse fit to the given set of customers and depot locations.

Next, ECA tries to assign the customers furthest away from the ellipse to the drones. The

distance is calculated using the Euclidean distance between the ellipse and the customer

node. See algorithm 2 for pseudocode.

Algorithm 2 ECA Pseudocode

Inputs: sin ← TRP solution from SA, C0

sout ← sin, f(sout)← f(sin)
Fit an ellipse to C0 according to Gander et al. (1994)
Make a List of all customers, sorted in descending order of their distance from the ellipse
while No feasible position is available for customers in the List for re-insertion in UAV routes
do

j ← index of ith customer in the List
Select the customer cj in the List and remove it from the truck route
for all potential positions in all UAV and truck routes in sout to insert customer cj do

Re-insert customer cj in the current position and save the new solution as s’
if (s’ is feasible) and (f(s’) ¡ f(sout) then

sout ← s’
f(sout)← f(s’)

end if
end for
Remove the assigned customers from the List

end while
return sbest, f(sbest)
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Figure 3.1: Solution Representation before the ECA heuristic is applied. See figure 3.2
for a solution representation where the ECA heuristic has been applied. Figure from
Moshref-Javadi et al. (2020)

3.3 Solution Representation

The solution representation is made up of 4 parts. Part 1 is the truck route. The truck

starts and stops at the depot, which is noted as 0. Part 2 denotes customers assigned

to UAVs and the sequence of visits. “X” differentiates the UAV routes. Parts 3 and 4

represent the launch and reconvene locations for each UAV. Parts 3 and 4 refer to cell

numbers in Part 1. For instance, number 1 in Part 3 means a drone is launched from the

depot because the depot is the first cell in Part 1. Figure 3.2 is an example of a solution

representation with ten customers and two UAVs.

3.4 Objective

The MinSum objective, also known as the minimum sum objective, is used to determine

the cost of a solution. The goal is to minimize the waiting times of all customers. Many

retailers compete for consumer demand and loyalty, and as noted by Jacobs et al. (2019),

fast and frequent deliveries have emerged as a crucial factor for differentiation. Therefore,

the MinSum objective is a logical choice for the FTRPD.

3.5 Heuristics

This is the heuristic set used by Moshref-Javadi et al. (2020). It is a combination of

general- and problem-specific heuristics. There are general operators such as Two-opt
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Figure 3.2: Solution Representation of the FTRPD. Figure from Moshref-Javadi et al.
(2020)

.

and Three-opt. Furthermore, general principles such as greedy- and random re-insert are

used. However, these principles have been combined with problem-specific knowledge.

E.g., Origin-destination relocation greedily re-inserts a customer used as a rendezvous

location. Finally, some operators are problem-specific, such as the Drone Planner.

Two-opt

This operator considers parts 1 and 2 of the solution representation as a single vector.

It selects two random customers and swaps them. If the solution is infeasible, the drone

planner heuristic is applied in hopes of finding a feasible solution. The original solution

is returned if the operator cannot find a new, feasible solution.

Three-opt

Three-opt works similarly to two-opt. It considers parts 1 and 2 of the solution repre-

sentation as a single vector. It selects three random customers and swaps them. If the

solution is infeasible, the drone planner heuristic is applied in hopes of finding a feasible

solution. The original solution is returned if the operator cannot find a new, feasible

solution.
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Greedy assignment

Greedy assignment selects a random customer, not used as a rendezvous location, from

parts 1 or 2 of the solution representation. A rendezvous location means a drone is

launched from or reconvened at this customer. The reason rendezvous locations are

not considered is because special operators are used for rendezvous locations. Then, the

customer is removed from the solution and re-inserted at the most advantageous position.

All truck and drone positions are considered, including all combinations of launch and

reconvene locations. The original solution is returned if the operator cannot find a new,

feasible solution.

Origin-destination relocation

This heuristic complements the greedy assignment heuristic by considering customers

used as rendezvous locations. A random customer is selected, removed from the solu-

tion, and re-inserted at the most advantageous position. Switching around rendezvous

locations may result in infeasible solutions. Therefore, the drone planner heuristic is ap-

plied to ensure a higher possibility of finding a feasible solution. The original solution is

returned if the operator cannot find a new, feasible solution.

General Assignment

This heuristic works similarly to the greedy assignment heuristic. However, it selects

2-5 random customers not used as rendezvous locations. Then, each customer is removed

from the solution and re-inserted at the most advantageous position. The original solution

is returned if the heuristic cannot find a feasible solution with all customers re-inserted.

Drone Planner

The drone planner heuristic considers parts 3 and 4 of the solution representation. It goes

through every customer assigned to drones and tries to find a launch and reconvene pair

that gives a better objective. Note that since part 2 of the solution remains unchanged, the

assignment of customers to UAVs remains unchanged. The original solution is returned

if the heuristic cannot find a feasible solution with all customers re-inserted.
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Wild change

Wild change selects 2 to 5 customers and randomly re-inserts them in the truck or drone.

This may cause the new solution to be infeasible. Therefore, the drone planner heuristic

is used to increase the chances of finding a feasible solution. The original solution is

returned if the heuristic cannot find a feasible solution with all customers re-inserted.

3.6 Acceptance Criterion

The SA acceptance criterion, introduced in Kirkpatrick et al. (1983), is used as the ac-

ceptance criterion. A new solution is accepted if it is better than the incumbent solution.

Otherwise, a temperature parameter and the Boltzmann probability function decide if

a solution should be accepted. The temperature decreases throughout the search. This

allows for exploring an extensive range of potential solutions at the start of a search and

exploiting the most promising neighborhoods during the final stages of a search.

3.7 Heuristic Selection and Adaptive Weight Adjust-

ment

Heuristics are chosen based on the roulette wheel. Each heuristic has a probability of

being chosen. Initially, all heuristics have an equal chance of being selected. The entire

search comprises Rmax iterations. These iterations are divided into several segments.

During a segment, the points and number of uses are tracked for each heuristic. 2

points are gained when improving the global best solution, and 1 point is achieved when

improving the incumbent solution. The weights are updated at the end of each segment.

The heuristics that performed well in the last segment will more likely be selected in

the next segment. The hyperparameter γ ∈ [0.0, 1.0] decides how much the weights are

adjusted. It is essential to balance γ so the TDRA uses the best heuristics in each search

segment. Heuristics that do well in a specific segment should be used more. However,

heuristics that have performed well throughout the search should also be used.
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3.8 Shake heuristic

The Shake Heuristic is used after ξ ∗ c number of non-improving iterations. ξ is a tunable

parameter that decides when the shake heuristic is applied, and c is the number of

customers. The shake heuristic should not be used too early because the operators

should be given a chance to find a better solution. However, the shake heuristic should

not be applied too late because many iterations might be wasted due to being stuck

in a local minimum. The shake heuristic is designed to drastically change the solution

search space to escape local minima. General Assignment and Wild Change are used in

the shake heuristic since these operators are best at diversifying (Moshref-Javadi et al.,

2020). These are applied to the incumbent solution n times. n is a tunable parameter.

This parameter should be high enough so that the shake heuristic can escape local minima.

However, it should not be too high since shaking too much could lead to exploring less

promising areas of the solution space.
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Chapter 4

Deep Reinforcement Learning

Hyperheuristic

Deep Reinforcement Learning Hyperheuristic (DRLH) was proposed by Kallestad et al.

(2023) as a general framework for solving combinatorial optimization problems. It is

a hyperheuristic approach based on Deep Reinforcement Learning (DRL) and ALNS.

DRLH uses a Reinforcement Learning agent to select heuristics. Kallestad et al. (2023)

showed that DRLH performed better than ALNS on several routing problems, including

Capacitated Vehicle Routing Problem (CVRP), Parallel Job Scheduling Problem (PJSP),

Pickup and Delivery Problem (PDP), and Pickup and Delivery Problem with Time Win-

dows (PDPTW).

DRLH is proposed as a general selection hyperheuristic framework for solving com-

binatorial optimization problems. It uses problem-independent state space, heuristics,

and reward function. This makes it adaptable to many different problems. Later in the

thesis, I will compare TDRA and DRLH on the FTRPD.

4.1 State Space

The state space consists of 13 unique features. General features have been prioritized so

that the state space can be used for many combinatorial optimization problems. Table

4.1 lists all state features and their descriptions.
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Name Description

reduced cost The difference of cost between previous & current solutions.

cost from min The difference of cost between current & best found solutions.

cost The cost of the current solution.

min cost The cost of the best-found solution.

temp The current temperature.

cs The cooling schedule (α).

no improvement The number of iterations since the last improvement.

index step Iteration number.

was changed 1 if the solution was changed from the previous, 0 otherwise.

unseen 1 if the solution has not previously been encountered in the
search, 0 otherwise.

last action sign 1 if the previous step resulted in a better solution, 0 otherwise.

last action The action in the previous iteration encoded in 1-hot.

Table 4.1: State space in DRLH. Table from Kallestad et al. (2023).

4.2 Reward function

DRLH uses the reward function called R5310
t . This reward function rewards a new global

best solution with 5 points. A better solution than the incumbent solution is rewarded

with 3 points, a new unseen solution is given 1 point, and 0 points are given otherwise.

R5310
t takes inspiration from the original reward function used in the adaptive weight

adjustment in ALNS. The goal is to reward the agent when it finds better solutions. The

1 point from new unseen solutions is there to encourage diversification. It is important to

note that the Proximal Policy Optimization (PPO) algorithm considers future rewards,

not only immediate rewards when training the agent. This means that DRLH indirectly

encourages diversification because the agent can learn to take actions that give a smaller

immediate reward in return for a larger reward in the future.

4.3 Acceptance Criterion

The SA acceptance criterion is used as the acceptance criterion. This acceptance criterion

will accept a new solution, provided it outperforms the incumbent one according to a
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specific objective function. Otherwise, the Boltzmann probability function is used to

decide if a solution should be accepted. The difference between the incumbent solution l

and the new solution l’ can be denoted ∆E = f(l′)− f(l). With temperature parameter

T, the new solution is accepted with probability e−|∆E|/T .

4.4 Heuristics

Each heuristic h ∈ H in DRLH combines a removal and an insertion operator. These

are also known as destroy-repair operators. One removes a call from the solution, and

the other inserts the call into a different place. There is also an additional operator

used called ”Find single best”. This operator goes through every element in the current

solution, removes it, and finds the best place to reinsert it. Finally, the reinsert that

achieves the minimum cost is selected as the new solution. The operators are problem-

independent and can be used for many combinatorial optimization problems (Kallestad

et al., 2023).

4.5 Heuristic Selection

DRLH replaces the adaptive layer of ALNS with a deep reinforcement learning agent

trained using PPO. The DRLH training process enables it to adapt to various conditions

and settings and learn effective heuristic selection strategies. ALNS splits its search into

multiple segments, meaning it makes decisions at a macro-level. DRLH is designed to

make micro-level decisions, utilizing current search state information during heuristic

selection. It can adjust its heuristic selection probabilities to the current search state

information. Consequently, it can adapt to new search state information as soon as it

becomes available.

In the usual Reinforcement Learning (RL) scenario, an agent is trained to perfect

a policy π. This policy guides the agent in selecting actions based on its interaction

with the environment. During every timestep t, the agent picks an action At and gets

a numerical reward Rt from the environment. This reward serves as a measure of the

action’s effectiveness. The state St is information the agent gathers from the environment
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at each timestep, dependent on its selected action At from a list of potential actions. The

agent’s stochastic policy π is therefore represented as

π(a|s) = Pr{At = a|St = s}. (4.1)

One particular policy type is a parameterized stochastic policy function. In this

function, the likelihood of choosing an action is influenced by a set of parameters θ ∈ Rd

space. Hence, the earlier equation is reformulated as

π(a|s, θ) = Pr{At = a|St = s, θt = θ}, (4.2)

where θt stands for the parameters at timestep t (Sutton and Barto, 2018).

In DRLH, the policy π is realized through a MultiLayer perceptron (MLP), a type

of nonlinear function approximation (Goodfellow et al., 2016). This situation aims to

approximate the optimal policy π∗ by adjusting θ, symbolizing the weights of the MLP

network.

Training the DRL agent

The training process for the DRL agent is outlined in Algorithm 3. To train the weights of

the MLP, the policy gradient method of Proximal Policy Optimization (PPO), introduced

by Schulman et al. (2017), is followed. To handle different variations of an optimization

problem, the training process involves multiple problem instances or episodes, where each

instance corresponds to a unique set of problem attributes. Each instance is optimized

for a certain number of iterations or time steps. At the end of each episode, the policy

parameters θ are updated until the optimal policy is obtained. Once the training process

is completed, the optimal policy π∗ is used to solve unseen instances in the test sets.

Algorithm 3 Training the Deep RL agent. Algorithm from Kallestad et al. (2023).

Result: π∗ optimal policy
Start with random setting of θ for a random policy π;
for e← 1 to episodes do

Receive initial State S1;
for t← 1 to steps do

Choose and perform action a ∈ At according to π(a|s, θ);
Receive Rt = v and s ∈ S(t+ 1) from the environment

end for
Update the policy parameters θ according to PPO Schulman et al. (2017)

end for
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4.6 Hyperparameter selection

The hyperparameters of DRLH play a crucial role in determining the model’s training

speed, stability, and final performance (Kallestad et al., 2023). A lower learning rate leads

to longer training times but increases the likelihood of achieving better performance once

the model is fully trained. Kallestad et al. (2023) used the same hyperparameters for four

combinatorial optimization problems. Since the hyperparameters for DRLH are related

to the high-level problem of heuristic selection, which stays the same regardless of the

underlying combinatorial optimization problem, Kallestad et al. (2023) speculate that

the selected hyperparameters will work for any underlying combinatorial optimization

problem.
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Chapter 5

Experimental Setup

Our goal is to compare the performance of TDRA and DRLH on the FTRPD.We are most

interested in how the different heuristic selection strategies affect performance. Therefore,

both TDRA and DRLH will use 1000 steps to solve each instance, the SA acceptance

criterion is used as the acceptance criterion for both methods, and both methods will use

the original set of heuristics from Moshref-Javadi et al. (2020). These steps will contribute

to a fair comparison of heuristic selection.

All experiments have been run on an AMD Ryzen 5 2600X Six-Core Processor. DRLH

has been trained on one NVIDIA A100 80GB GPU and an AMD EPYC 7742 64-Core

Processor.

5.1 Baseline Sets

Both sets are in a 100x100 grid. The depot is randomly located within the grid. The

baseline parameters for this thesis are established with the drone speed being 1.5 times

faster than that of the truck and the drone’s coverage to 25%. Remember, this is not 25%

coverage of the total area but 25% coverage of all unique drone routes for an instance.

5.1.1 Set 3

Set 3, as referenced in Moshref-Javadi et al. (2020), is one of the chosen datasets. This is

primarily because it contains 20 instances of sizes 10, 20, 50, and 100. As demonstrated

by Kallestad et al. (2023), the effectiveness of DRLH over ALNS tends to increase as the

problem size increases. I want to see if the same is true for the FTRPD. Therefore, set

3 is a logical choice because it contains small and large problem sizes.
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5.1.2 Test Set

The test set contains 50 instances for sizes 10, 20, and 50. All coordinates have been

randomly generated within a 100x100 grid. The depot has also been randomly generated.

5.2 Initial solution

I’ve chosen to omit the use of SA and ECA when comparing the performance of TDRA

and DRLH. Instead, the initial solution is a TRP solution where customers are visited

in sequential order, i.e., customer one is visited first, customer two is visited second, etc.

This approach is motivated by three key reasons.

Firstly, TDRA and DRLH should start from the same solution to fairly compare the

two methods. Using SA and ECA to find an initial solution will not guarantee that the

same solution is given to both methods. If the ECA heuristic was used alone to find

an initial solution, this problem would be mitigated. However, training a size 50 DRLH

model with the ECA heuristic takes too long.

Secondly, the ECA heuristic is computationally expensive, especially for larger prob-

lem sizes. There are two significant bottlenecks during the training of DRLH models:

ECA and the heuristic set. The heuristic set is an essential part of the experiments, and

in my experience, the ECA heuristic is the biggest bottleneck. Therefore, it makes sense

to omit it so that size 50 DRLH models can be trained in a reasonable time.

Thirdly, DRLH models have been trained to handle scenarios where it starts with a

TRP solution. Therefore, testing it in scenarios where it is given a TRP solution makes

sense. Furthermore, to fairly compare performance, TDRA should start from the same

TRP solutions.

5.3 TDRA

I implemented the FTRPD and TDRA in Python 3.10 according to the pseudocode and

logic by Moshref-Javadi et al. (2020). I used the same solution representation, heuristic

set, and heuristic selection method. Furthermore, I decided to use the MinSum objective
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to measure the cost of a solution. The Euclidean distance between node i and node j is

the truck travel time between these nodes. This also means that the first arrival at node j

is the travel time between node i and node j plus the potential travel time before arriving

at node i. The drone travel time between customer nodes depends on the drone speed.

Truck and drone service times are set to zero. This means that packages are immediately

delivered when the truck or drone arrives at a customer node, and they are immediately

ready to depart. It is also important to note that drones are immediately recharged when

returning to the truck.

5.3.1 Parameter Selection

As noted earlier in the thesis, parameter tuning is essential to balance exploration and

exploitation. I have chosen to use the same score system as Moshref-Javadi et al. (2020).

Furthermore, I have decided to use the same adaptive weight coefficient γ. Given that

TDRA and DRLH will execute for a total of 1000 steps to seek the optimum solution, I

have set Rmax, the maximum iteration parameter, to be 1000. I found inspiration in the

selected parameters of Moshref-Javadi et al. (2020), then tuned them for Rmax = 1000 in

initial experiments. See Table 5.1 for parameters, explanations, and selected values.

Parameter Explanation Value

Rmax Max number of iterations. 1000

Segment size Iterations in each segment. 25

T0 Initial Temperature. 800

βTDRA Temperature Cooling Coefficient. 0.995

η Number of diversification operators applied in the
Shake heuristic.

20

ξ Shake Heuristic Coefficient. 5

High score Given when a new global best solution is found. 2

Medium score Given when the incumbent solution is improved. 1

Low score Given otherwise. 0

γ Adaptive weight coefficient. Used to balance new
and old information when updating the weights.

0.2

Table 5.1: TDRA parameters in experiments.
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5.4 DRLH

I have used the implementation of Kallestad et al. (2023). One of the main benefits of

DRLH is that it can generalize to many combinatorial optimization problems. This is

due to using a general state representation and a general reward function that can be

used for many problems. Therefore, I have chosen to use the same state representation

as Kallestad et al. (2023). Furthermore, I have used the same hyperparameters except

for the learning rate. Table 5.2 shows hyperparameter values.

Hyperparameter Value

Max epochs 5000

Learning rate 2.5e-5

Batch size 64

First hidden layer size 256

Second hidden layer size 256

Discount factor 0.5

Table 5.2: Hyperparameters used in DRLH. Table from Kallestad et al. (2023). Note
that the learning rate is different from the original table. I explain this choice in Section
5.4.3.

5.4.1 Reward Functions

Rnew best
t

I chose the reward function Rnew best
t for problem sizes 10 and 20. This gives a reward

whenever the best global solution is improved. The reward signal equals how much the

new global best solution improved upon the last global best solution. E.g., if the Min-

Sum objective of the new global best is 100 lower than the previous global best, then

the agent is rewarded 100 points. I chose this function because it aligned well with my

goal of minimizing the objective and performed best during initial separate experiments.

I experimented with different reward functions in which I observed a misalignment be-

tween my goal and the agent’s goal of maximizing its return. You can read about the

experiments in Appendix A.
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R
new best/100
t

I chose the reward function R
new best/100
t for size 50. This reward function works the

same as Rnew best
t , but the reward is divided by 100. It performed better than Rnew best

t

in initial experiments for size 50. Engstrom et al. (2020) reported that reward scaling

can significantly affect the performance of PPO. This is probably because rewards that

are too large or too small can lead to numerical instability in the learning algorithm.

For example, huge rewards can cause the gradients of the policy network to explode,

while small rewards can make learning slow or even stall completely. This could be why

R
new best/100
t performs better than Rnew best

t on size 50. The rewards become too large.

This was not the case for sizes 10 and 20, which would explain why Rnew best
t performed

best in these cases.

5.4.2 Entropy Coefficient

In my implementation of PPO, I have incorporated an entropy coefficient into the overall

loss calculation. The entropy of a probability distribution quantifies its uncertainty, and

in the context of reinforcement learning, it describes the randomness of the policy’s action

selection. The entropy coefficient effectively serves as a regularization term, discouraging

the policy from becoming deterministic too quickly (Espeholt et al., 2018).

By introducing this term, the model is urged to maintain a level of stochasticity in

its action probabilities. This will encourage exploration, as it prevents the policy from

focusing narrowly on currently known rewarding states, thereby allowing it to discover

more beneficial actions potentially (Ahmed et al., 2019).

5.4.3 Learning Rate

I chose to change the learning rate because the learning rate often tends to have a more

direct and substantial impact on the speed and the quality of learning than other hyper-

parameters. The learning rate determines how much the policy is updated in response

to each new batch of experience. Too high a learning rate can lead to unstable learning

or overshooting the optimum, while too low a learning rate can cause slow convergence

or getting stuck in suboptimal policies. Furthermore, tuning the learning rate effectively

can help balance exploration and exploitation, speed up the rate of learning, and enhance
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stability and convergence. A benefit of DRLH is its generalizability. Therefore, using the

same hyperparameters across different combinatorial optimization problems would be

a massive benefit. This would lead to a plug-and-play framework that is easy to use.

Because of this, I want to change as few hyperparameters as possible to see how they

perform on the FTRPD.

I did some separate initial experiments to determine the learning rate. I chose 2.5e−5

because it performed best. I have used the same hyperparameters when training all

models.

5.4.4 Dataset Generation

I generate a distinct training set of 5000 instances of the FTRPD. Instances of sizes

N = 10, N = 20, and N = 50 are generated. All customers are randomly generated

within a 100x100 grid. The depot is also randomly generated. All DRLH models will be

trained with baseline parameters of drone speed = 1.5 and coverage percentage = 25 %.
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Chapter 6

Results

6.1 Results on Set 3

Figure 6.1 shows the average improvement of DRLH over TDRA on Set 3. All instances

have been run 10 times. We see that DRLH outperforms TDRA for all the instance

sizes. Furthermore, we see that DRLH becomes increasingly effective as the problem size

increases. This is the same pattern Kallestad et al. (2023) observed when introducing

DRLH. Detailed numerical results on Set 3 are in Appendix B.1.3.

Figure 6.1: Results of DRLH on Set 3 using TDRA as baseline.

38



Figure 6.2 is a boxplot showing a comparison of the distribution of objective values

obtained by TDRA and DRLH on Set 3. All instances have been run 10 times. The

central lines represent the median values, the box boundaries indicate the interquartile

range (25th and 75th percentiles), and the whiskers extend to the minimum and maximum

values, excluding outliers. We observe similar performance for size 10. For sizes 20 and

50 TDRA exhibits higher variance, occasionally reaching superior objective values. Still,

it generally performs less consistently. DRLH achieves a better median value for size 50,

demonstrating its reliable performance, despite its lower best-case results.

Figure 6.2: Boxplot showing a comparison of the distribution of objective values obtained
by TDRA and DRLH on Set 3.

6.2 Results on the Test Set

Figure 6.3 shows the average improvement of DRLH over TDRA on the test set. All

instances have been run 10 times. We see that TDRA performs better than DRLH on

sizes 10 and 20. However, we see that DRLH significantly outperforms TDRA on size 50.

Again, we see the same pattern, DRLH becomes progressively better as the problem size

increases. Detailed numerical results on the test set are in Appendix B.2.3.
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Figure 6.3: Results of DRLH on the test set using TDRA as baseline.
.

Figure 6.4 is a boxplot showing a comparison of the distribution of objective values

obtained by TDRA and DRLH on the test set. All instances have been run 10 times. The

central lines represent the median values, the box boundaries indicate the interquartile

range (25th and 75th percentiles), and the whiskers extend to the minimum and maximum

values, excluding outliers. We observe the same behavior for the test set and set 3.

TDRA and DRLH perform similarly for size 10. For sizes 20 and 50 DRLH shows a

more consistent performance, despite its lower best-case results. DRLH achieves a better

median value for size 50.
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Figure 6.4: Boxplot showing a comparison of the distribution of objective values obtained
by TDRA and DRLH on the test set.

6.3 Performance Results

Figure 6.5 shows the average minimum costs of all instances in set 3 and the test set.

All instances have been run 10 times. We observe that DRLH converges quicker than

TDRA for all sizes. This trend seems to increase with the problem size. For sizes 10

and 20 DRLH starts stagnating after around 50 iterations. TDRA starts stagnating

around iteration 100 for size 10 and around iteration 150 for size 20. For size 50, DRLH

starts stagnating after about 100 iterations, while TDRA starts stagnating around 250

iterations.

This trend is likely attributed to the micro-level heuristic selection employed by

DRLH. While TDRA needs to explore the different heuristics to identify the best ones,

DRLH leverages the current search state information and selects the most promising

heuristics from the beginning. As a result, DRLH benefits from more effective heuristic

choices early on, leading to quicker improvements in solution quality.
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(a) 10 customer nodes, 1000 iterations

(b) 20 customer nodes, 1000 iterations

(c) 50 customer nodes, 1000 iterations

Figure 6.5: Average performance of TDRA and DRLH on both baseline sets.



6.4 TDRA’s Performance on Small Problem Sizes

TDRA outperforms DRLH on the test set for sizes 10 and 20. There are probably two

main causes for this performance.

Firstly, there is a small set of heuristics. Kallestad et al. (2023) showed that ALNS

performed significantly worse when an extended set of heuristics were in play. This is

probably because there are too many heuristics for ALNS to explore them all accurately

and identify the best ones. TDRA also has this problem since it uses the same adaptive

layer as ALNS. However, the heuristic set for the FTRPD is relatively small, meaning

this problem might be mitigated.

Secondly, smaller problem sizes have smaller solution spaces than larger problems.

This might mean that TDRA does not need micro-level heuristic selection to find good

solutions for these problems. Macro-level heuristic selection might be sufficient for smaller

problems, given that the same number of steps is used for problems of all sizes. Each

heuristic will hold more value in larger problems where there is a vast search space. This

is because more heuristics must be effective to find a good solution. There might be a

higher need for micro-level heuristic selection when the solution space is large. This could

also explain why DRLH becomes better as the problem size increases, as evidenced by

Kallestad et al. (2023), Figure 6.1, and Figure 6.3.
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Chapter 7

Conclusion and Future Work

In this thesis, we applied the Truck and Drone Routing Algorithm (TDRA) and Deep

Reinforcement Learning Hyperheuristic (DRLH) to the Flexible Traveling Repairman

Problem with Drones (FTRPD). The TDRA was implemented within a Python 3.10

environment in line with the methodology proposed by Moshref-Javadi et al. (2020),

while the DRLH framework was adapted from Kallestad et al. (2023). Efforts were made

to retain the original implementation of DRLH to assess its adaptability to a new problem.

This led us to preserve the general state representation and most of the hyperparameters.

Nonetheless, a few modifications were introduced, including an entropy coefficient to the

total loss of the Proximal Policy Optimization (PPO) component and an adjustment

to the learning rate. Additionally, due to the misalignment between our goal of cost

minimization and the agent’s default object of maximizing its return, we experimented

with an alternative reward function. Details can be found in Appendix A.

Our experimental work involved performance comparisons using two baseline sets. In

both instances, a clear pattern emerged with the effectiveness of DRLH increasing as

the problem size increased. This trend reflects the findings of Kallestad et al. (2023),

suggesting that DRLH could apply to larger real-world problems. DRLH was the more

consistent model, and for all problem sizes, DRLH was able to converge in fewer iterations

than TDRA in terms of average objective.

Future research should focus on larger instances of the FTRPD. It would be interesting

to explore whether the performance of DRLH continues to improve over TDRA as the

problem size increases. Kallestad et al. (2023) have trained models for sizes up to 500

for other vehicle routing problems and observed continuous improvements in DRLH over
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Adaptive Large Neighborhood Search (ALNS). It could be a plausible assumption to

expect a similar pattern for the FTRPD. Moreover, exploring the influence of various

parameters – such as the number of drones, the drone speed, and the coverage percentage

– on the performance of both TDRA and DRLH could be insightful. Lastly, it could

be beneficial to train DRLH models using the Elliptical Customer Assignment (ECA)

heuristic, which may help to find better objective values, particularly for larger problem

sizes.
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Glossary

incumbent The current solution in a search.

MinSum Objective function trying to minimize the waiting time of all customers..

non-improving iterations Iterations where the incumbent solution is not improved.
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List of Acronyms and Abbreviations

ALNS Adaptive Large Neighborhood Search.

CVRP Capacitated Vehicle Routing Problem.

DRL Deep Reinforcement Learning.

DRLH Deep Reinforcement Learning Hyperheuristic.

ECA Elliptical Customer Assignment.

FTRPD Flexible Traveling Repairman Problem with Drones.

GA Genetic Algorithms.

LNS Large Neighborhood Search.

MLP MultiLayer perceptron.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

SA Simulated Annealing.

TDRA Truck and Drone Routing Algorithm.

TRP Traveling Repairman Problem.

TRPD Traveling Repairman Problem with Drones.

TSP Traveling Salesman Problem.

UAV Unmanned Aerial Vehicle.

VRPTWDR Vehicle Routing Problem with Time Windows and Delivery Robots.
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Appendix A

A Study of Different Reward Functions

A.1 R5310
t

The reward function, R5310
t , proposed by Kallestad et al. (2023) is designed to incentivize

the agent by awarding five points for improving the global best solution, three points for

enhancing the incumbent solution, a single point for discovering an unseen solution, and

zero points otherwise.

All figures discussed herein have been smoothed to quickly identify data trends, with

the instance number displayed on the y-axis.

Experiments were conducted by training a DRLH agent on 1000 instances of size

10. Figure A.1 demonstrates the gradual improvement in reward during the training

process, with a significant surge between instances 200-400. As anticipated, the agent

successfully learns to maximize its cumulative reward. However, this positive learning

behavior exhibits unintended consequences, as seen in Figure A.2, which depicts the cost

associated with the optimal global solution for each instance. Here, a considerable cost

increase is observed between instances 200-400. This contradicts our goal of minimizing

this cost, revealing a significant discord between our aim and the agent´s objective.

This disconnect could be attributed to various factors. The first of these is the small

size of the problem, size 10. The room for improvement is limited as the initial cost

is relatively close to the optimal global solution. As such, it becomes advantageous

for the agent to incrementally elevate the objective at each step rather than make a

significant leap. Evidence of this behavior can be seen in Figure A.5, where the number

of improvements skyrockets between instances 200-400. Within this timeframe, both the
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Figure A.1: DRLH agent’s return on training set of 1000 instances.

Figure A.2: DRLH agent’s minimum distance on training set of 1000 instances.



return and the minimum distance experience a substantial increase. Furthermore, Figure

A.3 shows a dramatic decline in the number of improvements on the global best solution

within the same period.

From Figure A.4, we can see that the number of seen solutions increases dramatically

in the timeframe 200-400. The agent learns that finding new solutions at almost every step

is more beneficial for its return. This means the agent will focus much more on exploration

than exploitation. As mentioned earlier, it is essential to balance diversification and

intensification to find high-quality solutions in metaheuristics. Focusing too much on

exploration will result in seeing many solutions, but the solutions will be of low quality.

This is one of the reasons the best-found objective increases in the same timeframe as

the number of seen solutions increases.

Figure A.3: DRLH agent’s number of improvements on the global best solution on train-
ing set of 1000 instances.

Figure A.4: DRLH agent’s number of seen solutions on training set of 1000 instances.
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Figure A.5: DRLH agent´s number of improvements on the incumbent solution during
training on 1000 instances.

A.2 RPM
t

As proposed by Kallestad et al. (2023), the RPM
t reward function rewards one point when

the incumbent solution is improved and a penalty of minus one point when it’s not. This

function leans towards intensification, but thanks to the structure of the PPO framework

that relies on future discounted rewards rather than only immediate rewards, RPM
t can

also select heuristics for diversification. The agent may choose a heuristic with a low

immediate reward if it yields a high return in the long run. This function addresses the

issue of an excessive number of seen solutions, a problematic aspect of the R5310
t reward

function.

Nonetheless, the RPM
t reward function has its shortcomings. Similar to the R5310

t

function, it learns to improve the incumbent solution slightly at every step to maximize

its return, which does not align with the goal of minimizing the objective function. Con-

sequently, as the return and number of improvements increase significantly, the minimum

distance also rises. Again, we face a misalignment between our objective of minimizing

the objective and the agent’s aim to maximize its return.

A.3 R210
t

R210
t is the reward function proposed by Moshref-Javadi et al. (2020) for use in the

TDRA. It rewards two points when the global best solution is improved, one point when
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the incumbent solution is improved, and zero points otherwise. Similarly to RPM
t , it

is a reward function that favors intensification and addresses the issue of an excessive

number of seen solutions. This reward function is beneficial because it is used in TDRA.

This would have enabled a fair comparison because you could not argue that one of the

algorithms uses a better reward function.

Nevertheless, the R210
t reward function has limitations, sharing similar issues with

RPM
t and R5310

t . In all these cases, the agent identifies that incremental progress toward

a better objective yields higher returns. A consistent pattern emerges, marked by a

notable upswing in the number of improvements, the returns, and the minimum distance

within the same timeframe.
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Appendix B

Detailed Results on Baseline Sets

B.1 Detailed Results on Set 3

B.1.1 Size 10

Table B.1 gives the detailed numerical results of TDRA on Set 3 instances of size 10.

Column Average Solution reports the average of the best-found objective values for 10

runs on each instance.

Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

TRP-S10-R1 10 FTRPD 1850 1036.2 918 13.3 6 50.38

TRP-S10-R2 10 FTRPD 2937 915.2 836 11.5 4 71.54

TRP-S10-R3 10 FTRPD 3019 955.6 827 11.0 6 72.61

TRP-S10-R4 10 FTRPD 3116 870.7 651 11.7 5 79.11

TRP-S10-R5 10 FTRPD 2561 795.2 628 11.9 5 75.48

TRP-S10-R6 10 FTRPD 3452 1003.8 779 11.2 5 77.43

TRP-S10-R7 10 FTRPD 2074 888.5 832 10.5 3 59.88

TRP-S10-R8 10 FTRPD 2780 910.5 791 7.7 3 71.55

TRP-S10-R9 10 FTRPD 3354 973.9 807 7.8 3 75.94

TRP-S10-R10 10 FTRPD 3263 850.3 628 9.8 4 80.75

TRP-S10-R11 10 FTRPD 3321 904.7 675 10.4 5 79.67

TRP-S10-R12 10 FTRPD 3066 902.2 753 12.0 5 75.44

TRP-S10-R13 10 FTRPD 3123 1059.6 904 11.2 4 71.05

TRP-S10-R14 10 FTRPD 2020 677.2 585 10.5 4 71.04

TRP-S10-R15 10 FTRPD 2240 821.7 708 11.7 5 68.39

TRP-S10-R16 10 FTRPD 2461 857.4 709 9.2 4 71.19

TRP-S10-R17 10 FTRPD 2728 812.9 666 9.6 4 75.59

TRP-S10-R18 10 FTRPD 2407 716.7 672 9.7 5 72.08

TRP-S10-R19 10 FTRPD 3232 925.3 813 11.0 6 74.85

TRP-S10-R20 10 FTRPD 2075 674.7 621 12.5 5 70.07

Table B.1: Set 3 size 10 results for TDRA with baseline parameters of drone speed 1.5
and coverage 25%.
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Table B.2 gives the detailed numerical results of DRLH on Set 3 instances of size 10.

Column Average Solution reports the average of the best-found objective values for 10

runs on each instance.

Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

TRP-S10-R1 10 FTRPD 1850 999.0 915 12.3 6 50.54

TRP-S10-R2 10 FTRPD 2937 883.2 709 12.4 4 75.86

TRP-S10-R3 10 FTRPD 3019 954.8 831 12.2 6 72.47

TRP-S10-R4 10 FTRPD 3116 865.7 776 12.8 5 75.1

TRP-S10-R5 10 FTRPD 2561 827.9 623 12.7 5 75.67

TRP-S10-R6 10 FTRPD 3452 981.0 831 12.2 5 75.93

TRP-S10-R7 10 FTRPD 2074 965.9 858 12.0 3 58.63

TRP-S10-R8 10 FTRPD 2780 900.6 775 12.4 3 72.12

TRP-S10-R9 10 FTRPD 3354 926.0 751 12.5 3 77.61

TRP-S10-R10 10 FTRPD 3263 895.6 772 12.2 4 76.34

TRP-S10-R11 10 FTRPD 3321 836.2 697 12.8 5 79.01

TRP-S10-R12 10 FTRPD 3066 847.2 753 12.4 5 75.44

TRP-S10-R13 10 FTRPD 3123 1013.8 904 12.5 4 71.05

TRP-S10-R14 10 FTRPD 2020 758.8 636 13.5 4 68.51

TRP-S10-R15 10 FTRPD 2240 770.2 750 13.2 5 66.52

TRP-S10-R16 10 FTRPD 2461 875.1 736 12.3 4 70.09

TRP-S10-R17 10 FTRPD 2728 782.1 680 13.2 4 75.07

TRP-S10-R18 10 FTRPD 2407 731.2 657 12.5 5 72.7

TRP-S10-R19 10 FTRPD 3232 897.5 807 11.9 6 75.03

TRP-S10-R20 10 FTRPD 2075 807.9 646 12.9 5 68.87

Table B.2: Set 3 size 10 results for DRLH with baseline parameters of drone speed 1.5
and coverage 25%.

B.1.2 Size 20

Table B.3 gives the detailed numerical results of TDRA on Set 3 instances of size 20.

Column Average Solution reports the average of the best-found objective values for 10

runs on each instance.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

TRP-S20-R1 20 FTRPD 10041 3013.7 2452 34.6 7 75.58

TRP-S20-R2 20 FTRPD 11879 2574.0 2390 36.9 5 79.88

TRP-S20-R3 20 FTRPD 13070 3150.4 2437 31.6 5 81.35

TRP-S20-R4 20 FTRPD 9189 2597.4 1935 38.8 9 78.94

TRP-S20-R5 20 FTRPD 9195 2702.0 2449 32.7 5 73.37

TRP-S20-R6 20 FTRPD 12026 2765.7 2478 29.4 3 79.39

TRP-S20-R7 20 FTRPD 10328 2366.3 2109 31.3 6 79.58

TRP-S20-R8 20 FTRPD 11894 3117.1 2640 38.7 11 77.8

TRP-S20-R9 20 FTRPD 11848 2843.4 2082 32.4 6 82.43

TRP-S20-R10 20 FTRPD 11682 2743.4 2263 38.0 6 80.63

TRP-S20-R11 20 FTRPD 10308 2560.8 2194 31.7 5 78.72

TRP-S20-R12 20 FTRPD 12313 3346.2 2867 39.2 7 76.72

TRP-S20-R13 20 FTRPD 10898 2901.1 2582 35.7 5 76.31

TRP-S20-R14 20 FTRPD 11305 2937.0 2511 28.7 3 77.79

TRP-S20-R15 20 FTRPD 11436 2600.3 2334 38.7 8 79.59

TRP-S20-R16 20 FTRPD 12579 2897.9 2144 36.8 5 82.96

TRP-S20-R17 20 FTRPD 11383 2577.0 2222 35.0 3 80.48

TRP-S20-R18 20 FTRPD 10671 2881.3 2420 25.5 3 77.32

TRP-S20-R19 20 FTRPD 8354 3309.0 2763 37.5 9 66.93

TRP-S20-R20 20 FTRPD 13424 2516.5 2042 32.0 3 84.79

Table B.3: Set 3 size 20 results for TDRA with baseline parameters of drone speed 1.5
and coverage 25%.

Table B.4 gives the detailed numerical results of DRLH on Set 3 instances of size 20.

Column Average Solution reports the average of the best-found objective values for 10

runs on each instance.

Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

TRP-S20-R1 20 FTRPD 10041 2720.3 2408 33.1 8 76.02

TRP-S20-R2 20 FTRPD 11879 2581.0 2227 55.6 10 81.25

TRP-S20-R3 20 FTRPD 13070 2880.4 2497 41.2 5 80.9

TRP-S20-R4 20 FTRPD 9189 2632.8 2168 39.3 7 76.41

TRP-S20-R5 20 FTRPD 9195 2675.4 2468 51.4 8 73.16

TRP-S20-R6 20 FTRPD 12026 2702.0 2429 58.2 5 79.8

TRP-S20-R7 20 FTRPD 10328 2513.3 2296 84.5 4 77.77

TRP-S20-R8 20 FTRPD 11894 2657.9 2250 51.1 6 81.08

TRP-S20-R9 20 FTRPD 11848 3089.0 2760 39.0 3 76.7

TRP-S20-R10 20 FTRPD 11682 2797.3 2421 52.9 8 79.28

TRP-S20-R11 20 FTRPD 10308 2742.5 2275 57.0 6 77.93

TRP-S20-R12 20 FTRPD 12313 3552.0 3002 38.7 2 75.62

TRP-S20-R13 20 FTRPD 10898 3031.6 2301 35.1 4 78.89

TRP-S20-R14 20 FTRPD 11305 2864.0 2590 36.7 3 77.09

TRP-S20-R15 20 FTRPD 11436 2931.0 2731 50.5 3 76.12

TRP-S20-R16 20 FTRPD 12579 2762.2 2427 59.2 5 80.71

TRP-S20-R17 20 FTRPD 10324 2547.0 2432 46.1 2 76.44

TRP-S20-R18 20 FTRPD 10671 2724.6 2462 31.4 3 76.93

TRP-S20-R19 20 FTRPD 8354 3149.4 2886 36.2 3 65.45

TRP-S20-R20 20 FTRPD 13424 2712.4 2332 42.3 4 82.63

Table B.4: Set 3 size 20 results for DRLH with baseline parameters of drone speed 1.5
and coverage 25%.
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B.1.3 Size 50

Table B.5 gives the detailed numerical results of TDRA on Set 3 instances of size 50.

Column Average Solution reports the average of the best-found objective values for 10

runs on each instance.

Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

TRP-S50-R1 50 FTRPD 65755 16047.2 12619 269.5 2 80.81

TRP-S50-R2 50 FTRPD 65060 13861.2 12146 257.1 3 81.33

TRP-S50-R3 50 FTRPD 64643 14763.8 13248 233.0 2 79.51

TRP-S50-R4 50 FTRPD 73502 15911.0 14269 290.3 2 80.59

TRP-S50-R5 50 FTRPD 70964 17057.8 14609 436.3 6 79.41

TRP-S50-R6 50 FTRPD 65328 15405.4 13258 227.1 2 79.71

TRP-S50-R7 50 FTRPD 73339 13338.4 11803 133.5 2 83.91

TRP-S50-R8 50 FTRPD 60746 15322.0 12525 348.5 4 79.38

TRP-S50-R9 50 FTRPD 68202 17847.0 12596 411.9 3 81.53

TRP-S50-R10 50 FTRPD 66125 15934.2 13154 363.7 9 80.11

TRP-S50-R11 50 FTRPD 66880 14537.8 11009 232.4 5 83.54

TRP-S50-R12 50 FTRPD 60286 16473.4 14594 435.9 10 75.79

TRP-S50-R13 50 FTRPD 73468 14663.0 12029 219.2 2 83.63

TRP-S50-R14 50 FTRPD 60412 15155.6 12880 238.4 5 78.68

TRP-S50-R15 50 FTRPD 73136 16770.8 13814 358.5 2 81.11

TRP-S50-R16 50 FTRPD 63651 17167.6 14431 295.0 8 77.33

TRP-S50-R17 50 FTRPD 65751 13051.6 11910 213.3 3 81.89

TRP-S50-R18 50 FTRPD 64581 18726.6 16363 302.7 4 74.66

TRP-S50-R19 50 FTRPD 65089 14686.2 12731 205.9 2 80.44

TRP-S50-R20 50 FTRPD 72786 15124.6 12660 288.5 6 82.61

Table B.5: Set 3 size 50 results for TDRA with baseline parameters of drone speed 1.5
and coverage 25%.

Table B.6 gives the detailed numerical results of DRLH on Set 3 instances of size 50.

Column Average Solution reports the average of the best-found objective values for 10

runs on each instance.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

TRP-S50-R1 50 FTRPD 65755 14825.5 13974 339.5 3 78.75

TRP-S50-R2 50 FTRPD 65060 16842.8 13589 304.7 3 79.11

TRP-S50-R3 50 FTRPD 64643 14147.0 13500 350.5 2 79.12

TRP-S50-R4 50 FTRPD 73502 16142.0 15305 344.5 6 79.18

TRP-S50-R5 50 FTRPD 70964 16716.3 15490 280.7 4 78.17

TRP-S50-R6 50 FTRPD 65328 16298.0 14024 211.4 2 78.53

TRP-S50-R7 50 FTRPD 73339 13698.3 12898 293.5 2 82.41

TRP-S50-R8 50 FTRPD 60746 14916.7 14233 338.1 3 76.57

TRP-S50-R9 50 FTRPD 68202 17644.2 13614 379.7 2 80.04

TRP-S50-R10 50 FTRPD 66125 17075.0 14676 315.9 2 77.81

TRP-S50-R11 50 FTRPD 66880 15609.8 14778 375.3 3 77.90

TRP-S50-R12 50 FTRPD 60286 14625.2 12150 449.6 2 79.85

TRP-S50-R13 50 FTRPD 73468 14173.5 13314 390.6 2 81.88

TRP-S50-R14 50 FTRPD 60412 15448.3 14754 335.2 5 75.58

TRP-S50-R15 50 FTRPD 73136 16304.3 14490 353.0 3 81.11

TRP-S50-R16 50 FTRPD 63651 15860.8 14726 352.6 4 77.33

TRP-S50-R17 50 FTRPD 65751 13669.6 13266 231.4 2 79.82

TRP-S50-R18 50 FTRPD 64581 17191.4 16783 332.4 7 74.01

TRP-S50-R19 50 FTRPD 65089 14441.2 14089 306.1 8 78.35

TRP-S50-R20 50 FTRPD 72786 14356.0 13680 341.8 2 81.21

Table B.6: Set 3 size 50 results for DRLH with baseline parameters of drone speed 1.5
and coverage 25%.

B.2 Detailed Results on the Test Set

B.2.1 Size 10

Table B.7 gives the detailed numerical results of TDRA on the test set instances of size

10. Column Average Solution reports the average of the best-found objective values for

10 runs on each instance.

Table B.8 gives the detailed numerical results of DRLH on the test set instances of

size 10. Column Average Solution reports the average of the best-found objective values

for 10 runs on each instance.

B.2.2 Size 20

Table B.9 gives the detailed numerical results of TDRA on the test set instances of size

20. Column Average Solution reports the average of the best-found objective values for

10 runs on each instance.

Table B.10 gives the detailed numerical results of DRLH on the test set instances of

size 20. Column Average Solution reports the average of the best-found objective values

for 10 runs on each instance.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

Test-S10-R1 10 FTRPD 3043 1174.8 929 9.8 6 69.47

Test-S10-R2 10 FTRPD 2653 811.0 715 9.6 4 73.05

Test-S10-R3 10 FTRPD 4002 906.2 751 10.9 4 81.23

Test-S10-R4 10 FTRPD 1994 594.1 459 8.1 4 76.98

Test-S10-R5 10 FTRPD 3187 743.0 642 8.9 4 79.86

Test-S10-R6 10 FTRPD 2456 754.9 638 11.0 5 74.02

Test-S10-R7 10 FTRPD 2331 840.6 764 9.1 5 67.22

Test-S10-R8 10 FTRPD 1849 703.5 592 11.0 5 67.98

Test-S10-R9 10 FTRPD 2055 937.9 906 10.9 4 55.91

Test-S10-R10 10 FTRPD 2604 791.6 657 9.5 6 74.77

Test-S10-R11 10 FTRPD 3031 873.8 765 10.2 5 74.76

Test-S10-R12 10 FTRPD 2937 775.3 626 10.4 5 78.69

Test-S10-R13 10 FTRPD 2563 874.5 756 11.8 6 70.5

Test-S10-R14 10 FTRPD 3579 762.4 673 9.5 4 81.2

Test-S10-R15 10 FTRPD 3054 973.7 860 10.3 5 71.84

Test-S10-R16 10 FTRPD 3498 987.4 789 10.7 7 77.44

Test-S10-R17 10 FTRPD 3842 850.1 778 10.3 5 79.75

Test-S10-R18 10 FTRPD 2417 731.9 702 9.3 5 70.96

Test-S10-R19 10 FTRPD 2855 981.9 908 11.0 6 68.2

Test-S10-R20 10 FTRPD 2801 799.7 711 10.0 5 74.62

Test-S10-R21 10 FTRPD 2364 731.4 635 13.5 6 73.14

Test-S10-R22 10 FTRPD 3056 987.3 769 10.9 4 74.84

Test-S10-R23 10 FTRPD 2412 1113.0 1011 11.1 5 58.08

Test-S10-R24 10 FTRPD 3969 919.0 835 11.5 7 78.96

Test-S10-R25 10 FTRPD 2972 831.7 680 9.8 5 77.12

Test-S10-R26 10 FTRPD 2774 901.6 850 10.4 4 69.36

Test-S10-R27 10 FTRPD 2284 738.9 649 9.3 5 71.58

Test-S10-R28 10 FTRPD 2504 743.7 628 8.6 6 74.92

Test-S10-R29 10 FTRPD 3219 974.6 889 10.5 6 72.38

Test-S10-R30 10 FTRPD 2116 866.2 703 10.1 6 66.78

Test-S10-R31 10 FTRPD 2343 868.9 715 12.1 5 69.48

Test-S10-R32 10 FTRPD 2807 874.7 773 8.9 4 72.46

Test-S10-R33 10 FTRPD 3617 928.2 796 8.6 4 77.99

Test-S10-R34 10 FTRPD 2958 1051.5 969 11.6 5 67.24

Test-S10-R35 10 FTRPD 2427 922.1 807 11.3 6 66.75

Test-S10-R36 10 FTRPD 2348 617.1 444 8.4 4 81.09

Test-S10-R37 10 FTRPD 2582 700.4 647 8.2 3 74.94

Test-S10-R38 10 FTRPD 2783 984.8 892 10.5 5 67.95

Test-S10-R39 10 FTRPD 2322 744.0 650 8.8 4 72.01

Test-S10-R40 10 FTRPD 2167 772.0 684 9.0 5 68.44

Test-S10-R41 10 FTRPD 3231 877.0 727 11.2 5 77.5

Test-S10-R42 10 FTRPD 3876 955.8 838 10.3 6 78.38

Test-S10-R43 10 FTRPD 2383 858.3 828 9.5 5 65.25

Test-S10-R44 10 FTRPD 3336 1066.2 934 10.3 3 72.0

Test-S10-R45 10 FTRPD 2388 615.1 570 9.6 5 76.13

Test-S10-R46 10 FTRPD 2833 553.6 364 8.5 6 87.15

Test-S10-R47 10 FTRPD 3271 1013.8 814 9.6 5 75.11

Test-S10-R48 10 FTRPD 2276 820.3 745 10.7 5 67.27

Test-S10-R49 10 FTRPD 2975 967.3 895 9.8 5 69.92

Test-S10-R50 10 FTRPD 3120 926.1 771 9.0 4 75.29

Table B.7: Test set size 10 results for TDRA with baseline parameters of drone speed 1.5
and coverage 25%.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

Test-S10-R1 10 FTRPD 3043 970.0 932 11.3 5 69.37

Test-S10-R2 10 FTRPD 2653 764.1 688 11.2 4 74.07

Test-S10-R3 10 FTRPD 4002 919.4 772 11.3 6 80.71

Test-S10-R4 10 FTRPD 1994 713.9 559 12.0 4 71.97

Test-S10-R5 10 FTRPD 3187 826.0 669 11.4 3 79.01

Test-S10-R6 10 FTRPD 2456 775.5 756 11.9 5 69.22

Test-S10-R7 10 FTRPD 2331 787.1 656 11.8 5 71.86

Test-S10-R8 10 FTRPD 1849 686.9 632 12.1 4 65.82

Test-S10-R9 10 FTRPD 2055 907.3 906 11.6 4 55.91

Test-S10-R10 10 FTRPD 2604 845.7 709 11.7 5 72.77

Test-S10-R11 10 FTRPD 3031 866.9 765 11.5 5 74.76

Test-S10-R12 10 FTRPD 2937 814.1 745 12.1 5 74.63

Test-S10-R13 10 FTRPD 2563 880.2 806 11.8 6 68.55

Test-S10-R14 10 FTRPD 3579 854.4 734 11.6 4 79.49

Test-S10-R15 10 FTRPD 3054 978.8 889 11.4 4 70.89

Test-S10-R16 10 FTRPD 3498 971.0 923 11.2 5 73.61

Test-S10-R17 10 FTRPD 3842 852.8 790 12.2 5 79.44

Test-S10-R18 10 FTRPD 2417 771.1 725 11.7 4 70.0

Test-S10-R19 10 FTRPD 2855 999.5 908 11.3 6 68.2

Test-S10-R20 10 FTRPD 2801 810.4 735 12.5 5 73.76

Test-S10-R21 10 FTRPD 2364 674.1 613 17.6 7 74.07

Test-S10-R22 10 FTRPD 3056 996.7 859 18.5 3 71.89

Test-S10-R23 10 FTRPD 2412 1177.1 1025 20.8 4 57.5

Test-S10-R24 10 FTRPD 3969 1211.0 850 20.3 6 78.58

Test-S10-R25 10 FTRPD 2972 799.8 605 21.6 5 79.64

Test-S10-R26 10 FTRPD 2774 852.8 814 18.9 6 70.66

Test-S10-R27 10 FTRPD 2284 769.7 649 18.7 5 71.58

Test-S10-R28 10 FTRPD 2504 781.1 694 18.6 4 72.28

Test-S10-R29 10 FTRPD 3219 933.9 835 24.4 7 74.06

Test-S10-R30 10 FTRPD 2116 875.4 683 21.0 6 67.72

Test-S10-R31 10 FTRPD 2343 834.9 699 16.7 5 70.17

Test-S10-R32 10 FTRPD 2807 819.9 757 21.2 5 73.03

Test-S10-R33 10 FTRPD 3617 921.6 728 22.8 4 79.87

Test-S10-R34 10 FTRPD 2958 960.1 925 14.3 5 68.73

Test-S10-R35 10 FTRPD 2427 879.9 769 12.8 6 68.31

Test-S10-R36 10 FTRPD 2348 674.2 529 11.6 5 77.47

Test-S10-R37 10 FTRPD 2582 734.8 692 12.1 4 73.2

Test-S10-R38 10 FTRPD 2783 922.3 881 13.1 5 68.34

Test-S10-R39 10 FTRPD 2322 810.5 734 12.7 5 68.39

Test-S10-R40 10 FTRPD 2167 786.1 679 12.2 4 68.67

Test-S10-R41 10 FTRPD 3231 856.1 786 13.7 6 75.67

Test-S10-R42 10 FTRPD 3876 989.5 889 15.0 5 77.06

Test-S10-R43 10 FTRPD 2383 852.8 779 14.9 7 67.31

Test-S10-R44 10 FTRPD 3336 1033.2 892 15.6 4 73.26

Test-S10-R45 10 FTRPD 2388 631.8 530 14.4 7 77.81

Test-S10-R46 10 FTRPD 2833 700.4 559 15.3 4 80.27

Test-S10-R47 10 FTRPD 3271 995.6 867 16.0 3 73.49

Test-S10-R48 10 FTRPD 2276 836.5 726 15.4 6 68.1

Test-S10-R49 10 FTRPD 2975 927.8 860 15.7 3 71.09

Test-S10-R50 10 FTRPD 3120 876.0 782 13.3 5 74.94

Table B.8: Test set size 10 results for DRLH with baseline parameters of drone speed 1.5
and coverage 25%.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

Test-S20-R1 20 FTRPD 11181 2976.1 2291 29.5 7 79.51

Test-S20-R2 20 FTRPD 12154 3169.2 2485 37.5 6 79.55

Test-S20-R3 20 FTRPD 10483 3028.3 2526 32.8 3 75.9

Test-S20-R4 20 FTRPD 10138 2848.7 2251 31.0 3 77.8

Test-S20-R5 20 FTRPD 10473 2830.7 2399 38.3 6 77.09

Test-S20-R6 20 FTRPD 10645 3138.8 2670 34.2 5 74.92

Test-S20-R7 20 FTRPD 15052 3196.2 2349 39.2 9 84.39

Test-S20-R8 20 FTRPD 11321 3126.5 2413 29.6 3 78.69

Test-S20-R9 20 FTRPD 12434 3059.9 2321 33.9 8 81.33

Test-S20-R10 20 FTRPD 10236 2991.4 2570 31.6 2 74.89

Test-S20-R11 20 FTRPD 9709 2688.6 2361 27.7 4 75.68

Test-S20-R12 20 FTRPD 11976 3025.9 2544 32.5 6 78.76

Test-S20-R13 20 FTRPD 10308 2858.4 2137 27.9 4 79.27

Test-S20-R14 20 FTRPD 8959 2806.8 2090 28.9 8 76.67

Test-S20-R15 20 FTRPD 11224 2410.9 2086 27.4 4 81.41

Test-S20-R16 20 FTRPD 12373 3375.0 2713 36.8 11 78.07

Test-S20-R17 20 FTRPD 10770 3278.1 2744 33.0 3 74.52

Test-S20-R18 20 FTRPD 9404 3113.0 2758 35.8 5 70.67

Test-S20-R19 20 FTRPD 9490 2811.7 2342 34.8 4 75.32

Test-S20-R20 20 FTRPD 13166 3873.3 2994 37.1 9 77.26

Test-S20-R21 20 FTRPD 11909 2610.2 1929 27.5 5 83.8

Test-S20-R22 20 FTRPD 10496 2859.0 2127 31.3 7 79.74

Test-S20-R23 20 FTRPD 12999 2896.0 2477 31.4 3 80.94

Test-S20-R24 20 FTRPD 10257 3035.2 2356 27.8 6 77.03

Test-S20-R25 20 FTRPD 9707 2574.5 2146 31.1 6 77.89

Test-S20-R26 20 FTRPD 10933 3467.0 2494 36.4 6 77.19

Test-S20-R27 20 FTRPD 11823 3401.6 2785 35.3 5 76.44

Test-S20-R28 20 FTRPD 9378 2991.8 2692 34.1 4 71.29

Test-S20-R29 20 FTRPD 9711 3457.8 2920 38.3 11 69.93

Test-S20-R30 20 FTRPD 11069 3228.7 2648 36.8 8 76.08

Test-S20-R31 20 FTRPD 10955 2791.8 2221 24.8 5 79.73

Test-S20-R32 20 FTRPD 10341 3382.1 3034 34.3 4 70.66

Test-S20-R33 20 FTRPD 10096 3086.1 2114 37.2 12 79.06

Test-S20-R34 20 FTRPD 9906 2759.6 2324 30.4 4 76.54

Test-S20-R35 20 FTRPD 10673 2821.2 2564 27.5 4 75.98

Test-S20-R36 20 FTRPD 7697 2647.1 2450 36.0 5 68.17

Test-S20-R37 20 FTRPD 12413 3174.3 2766 38.2 5 77.72

Test-S20-R38 20 FTRPD 15077 3225.8 1995 28.6 7 86.77

Test-S20-R39 20 FTRPD 9608 2774.4 2503 31.0 2 73.95

Test-S20-R40 20 FTRPD 11544 2956.2 2540 31.2 3 78.0

Test-S20-R41 20 FTRPD 11662 3262.9 2353 30.3 5 79.82

Test-S20-R42 20 FTRPD 12364 3181.7 2732 35.2 5 77.9

Test-S20-R43 20 FTRPD 9183 2780.5 1990 39.8 10 78.33

Test-S20-R44 20 FTRPD 8017 2891.5 2272 35.1 10 71.66

Test-S20-R45 20 FTRPD 13224 2942.0 2425 36.1 8 81.66

Test-S20-R46 20 FTRPD 8826 2815.5 2303 37.4 10 73.91

Test-S20-R47 20 FTRPD 10779 3159.2 2486 35.8 7 76.94

Test-S20-R48 20 FTRPD 12605 3250.9 2876 24.9 3 77.18

Test-S20-R49 20 FTRPD 11172 3540.0 2999 35.0 7 73.16

Test-S20-R50 20 FTRPD 12566 3009.9 2583 30.0 3 79.44

Table B.9: Test set size 20 results for TDRA with baseline parameters of drone speed 1.5
and coverage 25%.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

Test-S20-R1 20 FTRPD 11181 3034.3 2671 36.3 3 76.11

Test-S20-R2 20 FTRPD 12154 3230.1 2963 35.5 4 75.62

Test-S20-R3 20 FTRPD 10483 3202.3 2712 32.1 4 74.13

Test-S20-R4 20 FTRPD 10138 2793.1 2480 49.1 5 75.54

Test-S20-R5 20 FTRPD 10473 2681.8 2406 62.6 4 77.03

Test-S20-R6 20 FTRPD 10645 3047.6 2663 32.8 4 74.98

Test-S20-R7 20 FTRPD 15052 3653.9 3209 33.7 2 78.68

Test-S20-R8 20 FTRPD 11321 2935.3 2799 43.0 2 75.28

Test-S20-R9 20 FTRPD 12434 3190.1 2841 36.6 7 77.15

Test-S20-R10 20 FTRPD 10236 2749,9 2361 47.4 4 76.93

Test-S20-R11 20 FTRPD 9709 2726.8 2476 55.1 4 74.5

Test-S20-R12 20 FTRPD 11976 3082.1 2493 34.5 9 79.18

Test-S20-R13 20 FTRPD 10308 2977.0 2585 47.9 3 74.92

Test-S20-R14 20 FTRPD 8959 3171.9 2509 32.0 3 71.99

Test-S20-R15 20 FTRPD 11224 2624.6 2356 51.9 3 79.01

Test-S20-R16 20 FTRPD 12373 3318.3 3012 31.5 10 75.66

Test-S20-R17 20 FTRPD 10770 3090.0 2510 43.9 6 76.69

Test-S20-R18 20 FTRPD 9404 2961.4 2402 58.2 8 74.46

Test-S20-R19 20 FTRPD 9490 2871.6 2684 49.7 4 71.72

Test-S20-R20 20 FTRPD 13166 3890.8 2954 34.4 12 77.56

Test-S20-R21 20 FTRPD 11909 2576.0 2084 32.9 4 82.5

Test-S20-R22 20 FTRPD 10496 2935.5 2670 48.2 4 74.56

Test-S20-R23 20 FTRPD 12999 2887.9 2792 42.4 2 78.52

Test-S20-R24 20 FTRPD 10257 2859.3 2431 40.2 4 76.3

Test-S20-R25 20 FTRPD 9707 2565.1 2170 45.6 4 77.64

Test-S20-R26 20 FTRPD 10933 2836.3 2409 49.9 2 77.97

Test-S20-R27 20 FTRPD 11823 3310.5 2837 32.6 6 76.0

Test-S20-R28 20 FTRPD 9378 3157.8 2973 43.7 7 68.3

Test-S20-R29 20 FTRPD 9711 3359.2 3093 35.6 12 68.15

Test-S20-R30 20 FTRPD 11069 2779.8 2538 36.5 6 77.07

Test-S20-R31 20 FTRPD 10955 3011.0 2601 50.3 3 76.26

Test-S20-R32 20 FTRPD 10341 3057.6 2345 44.7 6 77.32

Test-S20-R33 20 FTRPD 10096 2902.3 2298 42.3 6 77.24

Test-S20-R34 20 FTRPD 9906 2811.6 2307 50.3 9 76.71

Test-S20-R35 20 FTRPD 10673 2873.9 2588 51.4 3 75.75

Test-S20-R36 20 FTRPD 7697 3247.3 2326 34.1 8 69.78

Test-S20-R37 20 FTRPD 12413 3174.7 2466 37.0 11 80.13

Test-S20-R38 20 FTRPD 15077 3507.1 2975 34.0 3 80.27

Test-S20-R39 20 FTRPD 9608 3200.9 2422 53.1 5 74.79

Test-S20-R40 20 FTRPD 11544 2681.1 2229 50.2 11 80.69

Test-S20-R41 20 FTRPD 11662 3113.8 2877 43.8 5 75.33

Test-S20-R42 20 FTRPD 12364 3129.4 2827 56.3 3 77.14

Test-S20-R43 20 FTRPD 9183 2636.9 2292 72.0 9 75.04

Test-S20-R44 20 FTRPD 8017 2973.1 2355 45.2 11 70.62

Test-S20-R45 20 FTRPD 13224 2959.6 2436 52.2 6 81.58

Test-S20-R46 20 FTRPD 8826 2986.7 2476 47.7 4 71.95

Test-S20-R47 20 FTRPD 10779 3430.1 2878 40.2 9 73.3

Test-S20-R48 20 FTRPD 12605 3358.0 3042 47.3 2 75.87

Test-S20-R49 20 FTRPD 11172 3636.0 3140 40.1 3 71.89

Test-S20-R50 20 FTRPD 12566 3178.0 2853 38.3 4 77.3

Table B.10: Test set size 20 results for DRLH with baseline parameters of drone speed
1.5 and coverage 25%.



B.2.3 Size 50

Table B.11 gives the detailed numerical results of TDRA on the test set instances of size

50. Column Average Solution reports the average of the best-found objective values for

10 runs on each instance.

Table B.12 gives the detailed numerical results of DRLH on the test set instances of

size 50. Column Average Solution reports the average of the best-found objective values

for 10 runs on each instance.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

Test-S50-R1 50 FTRPD 76040 18933.7 13865 310.3 4 81.77

Test-S50-R2 50 FTRPD 71479 20533.7 19717 398.9 9 72.42

Test-S50-R3 50 FTRPD 68991 15415.0 12039 163.6 13 82.55

Test-S50-R4 50 FTRPD 63106 16447.7 13703 309.7 2 78.29

Test-S50-R5 50 FTRPD 64344 18382.7 16665 370.9 8 74.10

Test-S50-R6 50 FTRPD 55808 15482.7 13610 316.1 2 75.61

Test-S50-R7 50 FTRPD 70996 14937.3 14185 179.6 3 80.02

Test-S50-R8 50 FTRPD 67045 15352.3 12189 221.9 2 81.82

Test-S50-R9 50 FTRPD 59370 18436.7 18249 317.6 4 69.26

Test-S50-R10 50 FTRPD 64735 15431.3 13282 203.0 2 79.48

Test-S50-R11 50 FTRPD 58336 13765.3 12392 239.6 5 78.76

Test-S50-R12 50 FTRPD 71199 18961.0 18152 275.0 5 74.51

Test-S50-R13 50 FTRPD 67789 15325.0 13705 191.0 2 79.78

Test-S50-R14 50 FTRPD 56062 17572.3 15582 435.3 6 72.21

Test-S50-R15 50 FTRPD 65911 15299.3 14861 386.6 6 77.45

Test-S50-R16 50 FTRPD 65473 13581.3 10715 311.9 3 83.63

Test-S50-R17 50 FTRPD 65093 21630.7 17632 534.9 31 72.91

Test-S50-R18 50 FTRPD 56543 16802.7 13607 259.9 3 75.94

Test-S50-R19 50 FTRPD 74598 19740.3 18544 349.9 8 75.14

Test-S50-R20 50 FTRPD 63204 16811.7 15705 327.3 3 75.15

Test-S50-R21 10 FTRPD 67226 22635.3 21628 412.8 11 67.83

Test-S50-R22 10 FTRPD 71793 16383.0 13591 279.3 3 81.07

Test-S50-R23 10 FTRPD 70201 13829.3 12645 218.5 2 81.99

Test-S50-R24 10 FTRPD 61947 15006.7 13047 219.1 3 78.94

Test-S50-R25 10 FTRPD 69611 15661.3 12778 231.2 3 81.64

Test-S50-R26 10 FTRPD 60856 17520.0 15805 325.1 6 74.03

Test-S50-R27 10 FTRPD 58800 14893.0 13419 215.0 3 77.18

Test-S50-R28 10 FTRPD 65007 18289.0 16701 352.0 4 74.31

Test-S50-R29 10 FTRPD 65158 17760.3 17262 330.3 5 73.51

Test-S50-R30 10 FTRPD 73556 19000.7 14435 352.1 5 80.38

Test-S50-R31 10 FTRPD 77752 17607.7 16266 284.0 5 79.08

Test-S50-R32 10 FTRPD 62046 15936.7 12639 429.7 10 79.63

Test-S50-R33 10 FTRPD 65750 18995.0 15819 324.3 4 75.94

Test-S50-R34 10 FTRPD 59228 18103.0 15497 277.6 4 73.84

Test-S50-R35 10 FTRPD 70543 19793.7 18361 290.1 3 73.97

Test-S50-R36 10 FTRPD 63075 13761.0 11624 260.9 4 81.57

Test-S50-R37 10 FTRPD 63480 15479.0 14071 333.3 6 77.83

Test-S50-R38 10 FTRPD 79436 17151.0 15006 252.8 5 81.11

Test-S50-R39 10 FTRPD 67564 19722.3 15505 309.8 3 77.05

Test-S50-R40 10 FTRPD 74127 13893.7 11076 294.4 2 85.06

Test-S50-R41 10 FTRPD 62241 19883.0 16016 256.0 3 74.27

Test-S50-R42 10 FTRPD 63729 14176.3 13227 265.9 6 79.24

Test-S50-R43 10 FTRPD 55776 14852.7 14225 297.2 6 74.5

Test-S50-R44 10 FTRPD 72291 15261.7 14426 260.8 2 80.04

Test-S50-R45 10 FTRPD 60357 16808.7 11681 321.6 4 80.65

Test-S50-R46 10 FTRPD 55791 13305.0 12456 145.1 2 77.67

Test-S50-R47 10 FTRPD 63701 16112.0 13123 278.7 3 79.4

Test-S50-R48 10 FTRPD 59799 15152.0 12869 337.5 5 78.48

Test-S50-R49 10 FTRPD 69990 13218.7 12986 162.7 5 81.45

Test-S50-R50 10 FTRPD 69061 12683.3 11958 225.9 3 82.68

Table B.11: Test set size 50 results for TDRA with baseline parameters of drone speed
1.5 and coverage 25%.
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Instance c Model TRP Average
Cost

Best Cost Run Time (sec) Customers
served by UAVs

∆(%)

Test-S50-R1 50 FTRPD 76040 16797.8 13769 237.4 2 81.89

Test-S50-R2 50 FTRPD 71479 19148.0 15856 346.4 4 77.82

Test-S50-R3 50 FTRPD 68991 16689.0 12909 321.5 2 81.29

Test-S50-R4 50 FTRPD 63106 14761.8 13446 336.6 2 78.69

Test-S50-R5 50 FTRPD 64344 16855.8 13836 390.5 4 78.50

Test-S50-R6 50 FTRPD 55808 16039.5 14410 265.1 2 74.18

Test-S50-R7 50 FTRPD 70996 16840.0 15287 281.3 3 78.47

Test-S50-R8 50 FTRPD 67045 13910.0 13286 194.4 2 80.18

Test-S50-R9 50 FTRPD 59370 17897.0 16757 338.5 7 71.78

Test-S50-R10 50 FTRPD 64735 14479.8 14270 369.5 2 77.96

Test-S50-R11 50 FTRPD 58336 14675.3 13683 348.6 2 76.54

Test-S50-R12 50 FTRPD 71199 15867.5 14433 315.0 4 79.73

Test-S50-R13 50 FTRPD 67789 15839.5 15402 331.3 5 79.78

Test-S50-R14 50 FTRPD 56062 15628.8 14031 435.3 6 74.97

Test-S50-R15 50 FTRPD 65911 16792.0 13956 297.6 2 78.83

Test-S50-R16 50 FTRPD 65473 16441.3 10715 404.9 3 83.63

Test-S50-R17 50 FTRPD 65093 20502.5 18962 386.4 7 70.87

Test-S50-R18 50 FTRPD 56543 14973.0 14124 336.5 3 75.02

Test-S50-R19 50 FTRPD 74598 15632.8 14461 196.4 2 80.61

Test-S50-R20 50 FTRPD 63204 16431.5 13760 280.8 2 78.23

Test-S50-R21 50 FTRPD 67226 17725.4 15363 331.9 3 77.15

Test-S50-R22 50 FTRPD 71793 16049.6 14343 297.1 2 80.02

Test-S50-R23 50 FTRPD 70201 16956.0 15316 264.9 3 78.18

Test-S50-R24 50 FTRPD 61947 16064.0 15415 319.1 6 75.12

Test-S50-R25 50 FTRPD 69611 16159.2 15136 397.2 3 78.26

Test-S50-R26 50 FTRPD 60856 17729.7 16259 364.9 7 73.28

Test-S50-R27 50 FTRPD 58800 15694.2 13956 473.4 6 76.27

Test-S50-R28 50 FTRPD 65007 17102.0 15304 391.6 4 76.46

Test-S50-R29 50 FTRPD 65158 16810.4 14988 344.8 2 77.00

Test-S50-R30 50 FTRPD 73556 15815.2 13826 537.3 2 81.20

Test-S50-R31 50 FTRPD 77752 15837.6 14821 321.9 2 80.94

Test-S50-R32 50 FTRPD 62046 15476.0 14393 493.7 2 76.80

Test-S50-R33 50 FTRPD 65750 17253.2 14606 452.1 5 77.79

Test-S50-R34 50 FTRPD 59228 14623.2 13921 451.8 2 76.50

Test-S50-R35 50 FTRPD 70543 18341.0 16787 316.2 3 76.20

Test-S50-R36 50 FTRPD 63075 15187.8 13840 418.2 2 78.06

Test-S50-R37 50 FTRPD 63480 15938.2 14437 530.6 2 77.26

Test-S50-R38 50 FTRPD 79436 16685.8 15910 475.3 7 79.97

Test-S50-R39 50 FTRPD 67564 17202.8 14510 322.1 2 78.52

Test-S50-R40 50 FTRPD 74127 16699.5 15528 545.3 5 79.05

Test-S50-R41 50 FTRPD 63729 14813.0 14267 458.4 2 77.61

Test-S50-R42 50 FTRPD 63729 14871.5 14267 458.4 2 77.61

Test-S50-R43 50 FTRPD 55776 18252.6 13971 497.7 5 74.95

Test-S50-R44 50 FTRPD 72291 16086.0 15319 343.4 2 78.81

Test-S50-R45 50 FTRPD 60357 14365.2 13815 424.6 2 77.11

Test-S50-R46 50 FTRPD 55791 15738.3 14134 410.1 2 74.67

Test-S50-R47 50 FTRPD 63701 15413.8 14124 477.7 2 77.83

Test-S50-R48 50 FTRPD 59799 15250.0 13823 375.5 2 76.88

Test-S50-R49 50 FTRPD 69990 17357.3 15266 389.5 5 78.19

Test-S50-R50 50 FTRPD 69061 16148.8 14455 536.3 2 79.07

Table B.12: Test set size 50 results for DRLH with baseline parameters of drone speed
1.5 and coverage 25%.
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