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Atom and, more recently, molecule interferometers are used in fundamental research and industrial applica-
tions. Most atom interferometers rely on gratings made from laser beams, which can provide high precision,
but cannot reach very short wavelengths and require complex laser systems to function. Contrary to this, simple
monolithic interferometers cut from single crystals offer (sub) nanometer wavelengths with an extreme level of
stability and robustness. Such devices were conceived and demonstrated several decades ago for neutrons and
electrons. Here, we propose a monolithic design for a thermal-beam molecule interferometer based on (quantum)
reflection. We show, as an example, how a reflective, monolithic interferometer (Mach-Zehnder type) can be
realized for a helium beam using Si(111)-H(1 × 1) surfaces, which have previously been demonstrated to act as
very robust and stable diffractive mirrors for neutral helium atoms.
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I. INTRODUCTION

The field of atom interferometry has expanded enormously
over the last few decades. Atom interferometers are used
in various applications, from magnetic and gravity sensing
[1,2], quantum metrology [3], to atomic clocks [4]. They
may even be used as dark matter and gravitational wave
detectors [5] also in space [6,7]. Compact, portable atom
gravimeters for prospecting, oil survey, and geophysical in-
vestigations have recently become commercially available [8].
Atom interferometers will also be useful as accelerometers for
subsea navigation in submarines, and more recently, under-
water drones [2,9]. This, however, will require very compact
solutions, which are not presently available.

Atom interferometers use either cold atoms (including
Bose-Einstein condensates) [10] or thermal atoms beams [11],
and more recently, hot thermal vapors [12]. Most optical
interferometers have, by now, been realized as atom inter-
ferometers, including Young’s double slit, Mach-Zehnder,
Talbot-Lau, Ramsey-Bordé, and Sagnac interferometers.

Historically, Young’s double slit makes the simplest atom
interferometer. The beam is split into two paths by passing
through a double slit and the interference pattern is observed
on a screen further down the beam path. It was realized for
atoms for the first time in 1991 using metastable helium atoms
passing through a thin gold foil [13].

The simplest split-path atom interferometer is arguably
the Mach-Zehnder interferometer. It exploits the de Broglie
wavelength of the atoms in a diffraction grating configuration
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with split beam paths. The first Mach-Zehnder atom inter-
ferometer was realized in 1991 [11] using a sodium beam
and solid transmission diffraction gratings. Later in 1995, it
was developed further by using metastable neon and argon
and transmission diffraction gratings made of standing light
waves [14,15], in 2002 using ground-state lithium also with
light-wave gratings [16] and later again using neutral helium
with solid gratings. Results from the last-mentioned instru-
ment were never published, but it was mentioned in a review
paper from 2009 [17].

In the Talbot-Lau interferometer, the self-imaging property
of a grating is exploited in near-field diffraction. The atom
paths are not truly separated; therefore, this type of interfer-
ometer has been used extensively for experiments with heavy
molecules where the de Broglie wavelength is very small.
The first Talbot-Lau atom interferometer was realized in
1994 [18].

Where the Mach-Zehnder interferometer and the Talbot-
Lau interferometers are adapted from light optics, the
Ramsey-Bordé interferometer, first realized in 1949 by Ram-
sey [19], can only be used for atoms: the principle is
diffraction by absorption of a single photon on a weakly
allowed transition to split the wave package. In the 1980th,
this interferometer was further developed by Bordé by using
atomic recoil to create a beam splitter [20]. This inter-
ferometer type is currently the standard for high-precision
measurements, such as atomic clocks.

In light optics, the Sagnac interferometer, also called ring
interferometer, relies on a beamsplitter mirror to create two
beams that travel equidistant paths in opposite directions
through a ring structure guided by reflective mirrors. The two
beams meet at the starting point, where they interfere and are
made to exit the ring. The first atom interferometer using the
Sagnac effect was realized in 1991 using a Ramsey-Bordé
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FIG. 1. Sketch of the optical paths within a monolithic, reflection
interferometer: the beam is reflected three times between the surfaces
of two parallel slabs (gray area) separated by the distance s. The
incoming beam is reflected at point A with an incidence angle α. Two
different diffraction orders are selected: Reflection towards point B
with diffraction angle β and reflection towards B′ with diffraction
angle γ . At point B, the incidence angle is the same as the out-
going angle in point A: β. Part of this beam is reflected towards
point C with diffraction angle δ. At point B′, the incidence angle
is given by γ due to the reflection at point A and reflected at the
diffraction angle ε. In point C, the incoming waves with incidence
angles δ and ε are recombined, leaving the slab with a reflection
angle ζ

configuration of a state-labeled atom interferometer based on
single-photon transitions, with a beam of atoms traversing two
pairs of traveling wave fields. The laser fields within each
pair are separated by a distance D, while the two pairs are
separated by d and are counterpropagating with respect to
each other [21]. By rotating the interferometer, the counter-
propagating beams collect different phases along their optical
paths leading to an interference pattern on the screen. Such a
configuration provides an absolute measurement of the rota-
tional speed.

The atomic structure of a single crystal offers a simple
periodic diffractive grating. Thus, it could produce many
different types of interferometers, where the monolithic con-
struction guarantees extreme stability. Interferometers based
on transmission through solid slabs of material have been
demonstrated, e.g., x-rays [22,23], neutrons [24], and elec-
trons [25]. Unfortunately, these techniques are inapplicable to
atoms, which interact too strongly with any solid material they
travel through. Monolithic atom interferometers have been
used widely in neutron scattering experiments observing grav-
itationally induced interference (in transmission) [26] and the
quantised states of neutrons in the presence of gravitational
fields with perfectly reflecting mirrors [27]. Neutrons are sen-
sitive to external forces, and thus, are suitable candidates for
quantum sensing. However, such experiments require an ex-
tensive, costly infrastructure to create, control, and detect the
neutron beam. This also applies to cold atom interferometers.
Thermal atom beams are easier to create and couple more
robust to external fields due to the higher mass of the atoms.
A further advantage of thermal atom interferometers is that
they can operate continuously, dramatically decreasing the
temporal resolutions.

Here, we propose an interferometer based on the reflection
of atoms on monolithic single-crystal structures. The basic
operation principle is depicted in Fig. 1: an incident beam of
atoms is reflected by the crystal lattice (A) into two compo-
nents, which impinge onto a second mirror and recombine on
the third reflection.

In the past, atoms had been neglected largely because
the atoms most commonly used in interferometry (Rb [28];
Cs [29]; Ar [30]; Na [11]; K [18]) will stick to sur-
faces under most conditions. Similarly, metastable atoms,
which have also been used for interferometry (Ar [31];
He [13]), will decay upon impingement. A further prac-
tical challenge for a reflection-based interferometer is the
contamination of the reflecting surface, which distorts the
diffraction. For example, all metal surfaces will be covered
in physisorbed molecules within hours, even in an ultrahigh
vacuum [32–34].

Noble gasses, including ground-state helium, H2, HCl, and
other molecules are known to scatter from various surfaces
over a broad temperature range without sticking to them
[35–37]. Over the last years, focusing mirrors for neutral,
ground-state helium have been developed for neutral helium
microscopes [38]. An important requirement for these mirrors
is that they must remain stable in a vacuum for months. One
of the solutions implemented was Si(111)-H(1 × 1) [39]. De-
tailed experiments on He and H2 scattering were performed
[40,41] and the interaction potential between helium and
Si(111)-H(1 × 1) calculated [41]. This interaction potential
was then used to obtain the intensity of the different diffrac-
tion peaks for a range of conditions [42].

The advantage of the Si(111)-H(1 × 1) surface from an
experimental point of view is that it can be prepared chem-
ically by dipping the Si(111) crystal in an HF solution [43].
This means a monolithic configuration with two reflecting
surfaces facing each other can be fabricated at any spacing.
The additional advantage of using the Si(111)-H(1 × 1) sur-
face is the small lattice constant of aS = 3.383 Å [40], which,
together with the wavelength of, as an example, helium atoms
in a room temperature beam λdB = 0.55 Å, ensures a very
big wave-package separation. Recent matter-wave interferom-
eters typically split the wave package over a few milliradian
[31,44–46]. In contrast, using the room-temperature helium
beam described above, the proposed interferometer splits the
matter wave over 0.5 radians.

The atom interferometer we introduce here uses reflective
atom-surface diffraction as a beam splitter. Further reflections
from a parallel surface yield the recombination of the wave
and thus the interference; see Fig. 1. We present a theoreti-
cal model determining the expected interference patterns and
apply the model to the interference of helium atoms using
Si(111)-H(1 × 1) surfaces, where we concentrate on describ-
ing the general principles by describing an ideal system with
a perfectly coherent and monochromatic beam and an exper-
imentally based model for the diffraction probabilities. We
chose an experimentally realizable parameter set providing all
possible superpositions occurring in such an interferometer:
single-path transmission, double-path superposition with van-
ishing phases, and multipath interference. Finally, we discuss
how a reflective interferometer based on quantum reflection
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can be addressed. The paper finishes with a conclusion and
outlook on future work.

II. REFLECTIVE INTERFEROMETER

A. Geometric arrangement

The general arrangement of a monolithic reflection inter-
ferometer is depicted in Fig. 1. A slab is cut into a U-shaped
monolith to form two parallel planar surfaces with a distance
s being sufficiently large to achieve propagating waves inside
the interferometer. A particle beam will be diffracted mini-
mally three times at points A, B, and C. The beam will be
split at point A, and each part will be reflected at point B and
recombined in point C, where they interfere.

In more detail, a particle beam is sent via an incidence
angle α towards one surface. It is reflectively split in point A
into a range of diffraction orders determined by the incident
beam angle α, the periodic surface structure described by
the lattice spacing aS, and the beam wavelength λ through
the well-known reciprocal lattice equation [47]. We pick two
orders, the first one with the reflection angle β

sin β = sin α + n1λ

aS
, (1)

with an integer ni ∈ Z (numerating the diffraction order) and
the second one with reflection angle γ

sin γ = sin α + n1′λ

aS
. (2)

At point A, the two selected diffraction orders propagate
towards points B and B′, where they are reflected towards
point C and recombine. Point B denotes the reflection point
one diffraction order from point A; thus, the corresponding
incidence angle is β. To satisfy the recombination of the beam,
the reflection angle δ has to be of a nonzeroth diffraction order
expressed as

sin δ = sin β + n2λ

aS
= sin α + (n1 + n2)λ

aS
. (3)

Analogously, the reflection at point B′ can be determined by

sin ε = sin γ + n2′λ

aS
= cos α + (n1′ + n2′ )λ

aS
. (4)

To satisfy the recombination of the beam at point C, the
diffraction of the incoming beams need to occur under the
same diffraction angle, which can be described mathemati-
cally by the relation

sin ζ = sin δ + n3λ

aS
= sin α + (n1 + n2 + n3)λ

aS
, (5)

and

sin ζ = sin ε + n3′λ

aS
= sin α + (n1′ + n2′ + n3′ )λ

aS
. (6)

These equations yield a constrain for the diffraction orders

n3′ = n1 + n2 + n3 − n1′ − n2′ . (7)

In addition to this angular dependence, the distance between
points A and C needs to be the same for both paths to sat-
isfy the recombination of the beams. Figure 1 illustrates this

condition: the blue and red beamlines need to recombine in
the same point C. Otherwise, they would be reflected without
any spatial overlap to interfere directly. If they are reflected
into parallel beams from different spots, they will interfere
in the far field with a phase shift proportional to the spatial
difference between both points. To achieve interference also
in the optical near-field regime for the entire interferometer,
the condition reads

tan β + tan δ = tan γ + tan ε . (8)

Finally, we sum up six parameters characterizing a reflec-
tive atom interferometer which have to satisfy the con-
ditions (7) and (8). These conditions can either be used
for determining the incidence angle α or by rewriting the
equation

tan (c + N1) + tan (c + N1 + N2)

− tan (c + N1′ ) − tan (c + N1′ + N2′ ) = 0 , (9)

with c = cos α and Ni = niλ/aS; one finds the following con-
ditions leading to an α-independent solution:

n1 = n1′ + n2′ ∧ n1′ = n1 + n2 . (10)

The interference pattern is due to the phase shift along the
different optical paths ABC and AB′C. The path lengths
can be determined via these angles for the path along
point B

b = s

(
1

cos β
+ 1

cos δ

)
, (11)

and along the point B′

b′ = s

(
1

cos γ
+ 1

cos ε

)
. (12)

The interference occurs via the superposition of two waves
with the same wave vector k, but are phase shifted with respect
to the respective path lengths b − b′. Hence, the phase shifts
between the different paths are given by

ϕ = k(b − b′). (13)

It can be observed in Eqs. (11) and (12) that the path lengths
are proportional to the slab separation s and, thus, s should be
tuned with respect to the wave vector to maximize the phase
shift between both interfering beams.

Figure 2 illustrates the positions of the different diffraction
for different incidence angles α for a particular interferom-
eter configuration. It can be seen that the diffraction orders
are strongly separated. All lines are discontinued due to the
finite length of the interferometer, which leads to some beams
escaping the interferometer. These particles will likely hit the
surface and fall into the interferometer; thus, they will not
affect the interference patterns.

B. Reflection coefficients for the different beam
paths inside the interferometer

In the last section, the conditions for interference were
obtained. We now consider the intensity distribution in the

023306-3



FIEDLER, LEFMANN, VON KLITZING, AND HOLST PHYSICAL REVIEW A 108, 023306 (2023)

FIG. 2. Distribution of the diffraction orders on the screen ϕ

depending on the incidence angle α for a monolithic atom interfer-
ometer built of silicon with hydrogen-passivized surfaces, which are
separated by 5 mm and have an extension of 50 mm. The considered
wavelength was λ = 0.55 Å. The purple area describes the dark
regions where no particle will appear. For each incidence angle α,
the maximum population of the diffraction order is marked in yellow.
The remaining peak intensities are plotted relative to the maximum
intensity according to the color scale.

interference signal, described via a reflection function. This
reflection function depends on the incidence and diffraction
angle ϑ1 and ϑ2, respectively. We model the reflected beam via
a Gaussian intensity distribution. Consequently, each diffrac-
tion order has a Gaussian profile which we normalize to the
real-valued probability of each diffraction order ρn

r(ϑ1, ϑ2) =
∑

n

ρne
− (ϑ2−θn )2

2σ2
n , (14)

with the width of the diffracted signal σn and the position of
the diffracted beam θn determined by Eq. (1). The widths de-
pend on the incidence angle and wavelength σn = σn(λ, ϑ1).
These impacts are negligible for surface diffraction, the pa-
per’s content, due to the overall weak reflection signal [41].
The reflection coefficient (14) only includes the inelastic scat-
tering, that the wavelength of the outgoing wave is the same as
that of the incoming wave λinc = λout. Thus, the total reflected
signal is smaller than 1,

∫
dϑ2 r(ϑ1, ϑ2) < 1.

In general, there are five lengths involved in such an in-
terferometer: the wavelength (λdB), the dimensions of the
interferometer (length d and slap separation s), and the free-
space propagation lengths (source to interferometer L1 and
interferometer to detector L2). Typically, these dimensions are
on different length scales λdB � d, s < L1, L2. This consider-
ation allows for the separation of length scales. Consequently,
each particle will only interfere with itself inside the same
optical path in the interferometer. Thus, we can treat each path
inside the interferometer separately, and the collected diffrac-
tion image will follow from the Gaussian beam envelope. The
partial waves will experience a different phase shift due to
the optical path (13). Thus, we can describe the reflection
properties of the entire interferometer with a single modified

TABLE I. Overview of beams expected from an 83◦ incidence
angle reflected into the diffraction angle ϕ with the diffraction orders
n1, n2, and n3 with the first diffraction angle β in radians. The last
columns describe the optical path length b and amplitudes a being
the ratio of transmitted atoms into each diffraction channel (%).

Angle ϕ (deg) n1 β(n1) n2 n3 Path b (cm) Ampl. a (%)

30.32 0 1.4486 −1 −2 5.00 0.0270
41.87 −1 0.9791 1 −2 5.00 0.0135
41.87 0 1.4486 −1 −1 5.00 0.0540
56.10 −2 0.7307 2 −1 4.77 0.0068
56.10 0 1.4486 −2 1 4.77 0.0270
56.10 −1 0.9791 1 −1 5.00 0.0270
56.10 0 1.4486 −1 0 5.00 0.1080
83.00 −2 0.7307 1 1 1.57 0.0135
83.00 −2 0.7307 2 0 4.77 0.0135
83.00 0 1.4486 −2 2 4.77 0.0135
83.00 −1 0.9791 0 1 1.79 0.0540
83.00 −1 0.9791 1 0 5.00 0.0540
83.00 0 1.4486 −1 1 5.00 0.0540
83.00 −1 0.9791 −1 2 1.57 0.0135

reflection coefficient

rinter (ϑ1, ϑ2) =
∑

n1n2n3

ρn1ρn2ρn3 fn1n2n3 eikbn1n2 e− [ϑ2−θn1n2n3 (ϑ1 )]2

2σ2 ,

(15)

with the wave vector of the matter wave k = 2π/λ and the
indicator function fn1n2n3 factoring in the interferometer’s ge-
ometry (which determines whether the beam can pass through
the interferometer or not). The beam spread of all diffraction
orders will usually be the same for a monochromatic wave,
σ = σn for all diffraction orders n. Due to the tilted reflective
surfaces with respect to the beam incidence, the detected spots
will be slightly asymmetric, which we neglect for considera-
tion in this paper. The position of the diffraction order is given
by θn1n2n3 (ϑ1), which is the three-times composition of Eq. (1)
simplifying to

θn1n2n3 (ϑ1) = arcsin

[
sin ϑ1 + (n1 + n2 + n3)λ

aS

]
. (16)

C. Monolithic interferometer for He and Si(111)-H(1 × 1)

Let us consider a helium beam with de Broglie wavelength
λdB = 0.55 Å and a beam spread of 1 mrad at a distance
of 1 m from the interferometer (propagation length L1 =
1 m). This corresponds to a 1-mm beam waist (w = 1 mm)
as the beam enters the interferometer. The lattice spacing of
Si(111)-H(1 × 1) is aS = 3.383 Å [40]. We consider an inci-
dence angle of 83◦ and the reflection coefficient (14) with the
amplitudes ρ0 = 0.06, ρ±1 = 0.03, and ρ±2 = 0.015. These
scattering values correspond to the experimentally obtained
data for a beam with a wavelength of 0.6 Å and an inci-
dence angle of 52◦ reported in Ref. [40]. We changed the
incidence angle because the result would be restricted to the
zeroth order; see Fig. 2. Table I shows the ratio of transmitted
atoms into each diffraction channel. The reflection coefficients
influence only the amplitude of the interference patterns, not
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FIG. 3. Optical paths in a monolithic reflective atom interfer-
ometer: a slab cut into a monolithic crystal of length d (50 mm)
and width s (5 mm). A helium beam with an incidence angle of
83◦ (dark blue line) enters the interferometer. It is diffracted at the
hydrogen-passivized surfaces with a lattice constant aS = 3.383 Å.
The diffracted orders are reflected two more times until they leave the
interferometer. It can be seen that the third-order (−3 = n1 + n2 +
n3) diffraction beam will not show any interference (blue dashed
line at 30.32◦), see Table I, the second-order beam at 41.87◦ (or-
ange lines) will not show any interference due to equal optical
path lengths; the diffraction at 56.10◦ (green lines), the zeroth order
at 83.00◦ (red lines) will be measured separately in the near-field
regime, whereas they will interfere in the far-field leading to the
interference patterns depicted in Fig. 4.

the position of the peaks. Thus, the impact of the correct scat-
tering amplitudes is insignificant. We chose the parameters to
demonstrate several effects: the single-beam transmission, the
two-path superposition, and the multipath interference. Here
we restrict our considerations to the zeroth, first, and second
diffraction orders. Furthermore, we consider the reflecting
plates to be 50-mm long and 5-mm separated from each other.
The optical paths for this scenario are depicted in Fig. 3. It
can be seen that the third-order diffraction beam (at 30.32◦,
blue line) consists of a single beam. It thus will not show any
interference; the second-order beam (at 41.87◦, orange line) is
the superposition of two paths, as described in Sec. II A, but
with equal optical paths which again will not interfere; and the
first and zeroth order will show two separate signals each that
will lead to interference in the far field. Due to the separation
of the length scales and the fact that the atoms interfere with
themselves and not with each other, we describe each interfer-
ence pattern via a phase-shifted Gaussian wave in analogy to
the Michelson interferometer. Thus, the interference pattern
is described by the superposition of phase-shifted Gaussian
waves

I (ϕ) ∝
∣∣∣∣∣
∑

n

anei k sin ϕ

2 bn

∣∣∣∣∣
2

e− 2L2
2 sin2 ϕ

w2 , (17)

with the amplitudes an = ρn1ρn2ρn3 and the optical path
lengths bn, which are given in Table I. The widths of the
diffraction orders σ are small compared to the width of
the Gaussian envelope L2 sin σ � w, and, hence, can be ne-
glected. It can be seen in Eq. (17) that the interference fringes
are determined by the wave vector k = 2π/λdB. Thus, in-
creasing the wavelength, either by increasing the particle’s
mass or velocity will reduce the spacing between the inter-
ference fringes. The resulting interference patterns are plotted
in Fig. 4. One can see that the diffraction at 30.32◦ and 41.87◦

FIG. 4. Far-field diffraction patterns of each spot at 30.32◦ (red
lower line), 41.87◦ (green line), 56.10◦ (orange line), and 83.00◦

(blue upper line) for a helium beam with wavelength λdB = 0.55 Å
with an incidence angle of 83◦.

will not show any interference features due to the equal optical
path lengths of both optical paths. The remaining two spots
will show interference effects with a contrast of 48.5% for
the spot at 56.10◦ and 84.1% for the spot at 83.00◦. The
transmission rates of all channels can be found in Table I:
0.027% of the atoms will be diffracted under the angle of
30.32◦, 0.0675% under 41.87◦, 0.1688% under 56.10◦, and
0.216% under 83◦. The remaining particles will not leave the
interferometer. The intensity of a typical helium beam is so
big [48] that a signal fraction of 10−4 can easily be detected.
The velocity spread will be the limiting quantity to measure
the interference patterns for the helium atom interferometry
configuration depicted in Fig. 4. The velocity spread of a
supersonic helium beam depends on the beam temperature,
the nozzle diameter, and the reservoir pressure. This has
been treated extensively in the literature; see, for example,
Ref. [49]. A velocity spread causes two different effects: (i)
a broadening of the interference fringes and (ii) a spatial
movement of the entire interference pattern, as illustrated in
Fig. 5. Finally, to observe interference, the velocity spread
has to be sufficiently small to not cause a washing out of the
interference fringes. Figure 5 illustrates the positions of the
diffraction order for different wavelengths of the incoming
beam with a fixed incidence angle of 83◦. It can be observed
that the zeroth order will stay constant. The remaining orders
strongly spread out with increasing wavelength. As in Fig. 2,
the lines are not continuous due to the finite size of the in-
terferometer. It can be seen in Table I that the interferometer
splits the wave package at the first diffraction point over
≈0.71 rad.

D. Quantum reflection interferometer

Quantum reflection occurs on the attractive (outer) part
of the atom-surface interaction potential [50] in contrast to
surface scattering, where the reflection occurs on the repulsive
(inner) part of the interaction potential [51,52]. It is called
quantum reflection because, classically, reflection cannot oc-
cur with an attractive force interaction potential. Quantum
reflection has the very big advantage that an extensive range
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FIG. 5. Positions of the diffraction orders [from top to bottom:
zeroth (blue); first (orange); second (yellow); third (purple); fourth
(green); fifth (light blue); sixth (dark red)] for an incidence angle of
83◦ depending on the wavelength of the helium beam. The vertical
black dashed line marks the regime for the considered scenario.

of atoms and small, few-atomic molecules that would stick
under surface diffraction conditions display quantum reflec-
tion. The disadvantage is that quantum reflection requires
small perpendicular wave vectors. This means that, for a given
wavelength, the spatial extension of a reflective interferometer
must be larger than in the surface scattering configuration for
the separated beams to recombine.

Quantum reflection is less sensitive than surface scattering
to defects and surface contamination because it occurs at
larger distances from the surface [53]. Very large specular
reflection coefficients of the order of 50% [54] up to 90%
[55] have been measured. Diffraction via quantum reflection
was recently demonstrated experimentally [56] using helium

dimers and trimers with periodically striped surfaces with
micron-sized structures. The paper includes a comparison of
the experimental result with scattering theory based on the
diffraction angle distribution (1), reported in Ref. [57]. There
is reasonable agreement between theory and experiment.

III. CONCLUSION AND FUTURE WORK

This paper presents the first proposal for a reflective inter-
ferometer for atoms and molecules. We present calculations
for a monolithic configuration based on experimental scat-
tering results for a room-temperature helium beam from
Si(111)-H(1 × 1), showing that a beam splitting of more
than 0.5 radians is achievable. Furthermore, we argue that
quantum reflection diffraction is a viable option for extend-
ing the beams and surfaces that can be used and potentially
increase the signal intensity. The interference of larger and
complex molecules can be achieved by using different inter-
action potentials, such as evanescent fields [51]. A reflective
atom or molecule interferometer, particularly in a monolithic
configuration, opens several possibilities for applications, for
instance, as an accelerometer, in investigating the coherence
of matters near dielectric surfaces, as a continuous velocity
selector, and so on. The next obvious first step is to do a
demonstration experiment of the interferometer with a helium
beam and to do detailed designs of quantum reflection setups.
This last will require the calculation of quantum (diffraction)
reflection coefficients for a range of realistic system configu-
rations.
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