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Abstract. In this paper we consider a generalized equation that is mainly characterized by a
cone-valued mapping. It is well known that optimality conditions for different classes of optimization
problems can be formulated as such a generalized equation. Moreover, we generalize Kojima's concept
of strong stability and introduce appropriate constraint qualifications. We discuss corresponding
properties between strong stability and these constraint qualifications. Finally, we apply these results
to the particular class of mathematical programs with complementarity constraints and to that of
mathematical programs with abstract constraints.
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1. Introduction. In this paper we consider the problem of finding a solution of
a given generalized equation:

(1.1) \scrP \Theta (f,F ) : Find x\in \BbbR n such that Dxf(x)\in [\Theta (F (x))]tDxF (x),

where f \in \scrC 2(\BbbR n,\BbbR ), F \in \scrC 2(\BbbR n,\BbbR m), and \Theta : \BbbR m \rightrightarrows \BbbR m is a cone-valued mapping;
here, \scrP \Theta (f,F ) can be rewritten as

Find x\in \BbbR n such that Dxf(x) = \theta tDxF (x) for some \theta \in \Theta (F (x)).

Example 1.1. Consider a standard nonlinear program (NLP):

(1.2) minf(x) s.t. hi(x) = 0, i\in I, gj(x)\geq 0, j \in J,

where I, J are finite index sets and all describing functions belong to \scrC 2(\BbbR n,\BbbR ). The
problem of finding a stationary point of NLP can be written as in (1.1) by letting

F (x) =

\biggl( 
hi(x), i\in I
gj(x), j \in J

\biggr) 
,

\Theta (yh, yg) =

\Biggl\{ 
\BbbR | I| \times (\BbbR | J| 

+ \cap \{ yg\} \bot ) if yhi = 0, i\in I, ygj \geq 0, j \in J,
\emptyset otherwise,

where yh \in \BbbR | I| and yg \in \BbbR | J| .

This generalized equation appears as optimality (KKT-type) conditions for a
broad family of optimization problems; see, e.g., [2, 5, 25]. However, we do not assume
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 951

that the point under consideration is an optimal solution of a certain optimization
problem; our focus lies on stability properties of a given solution of (1.1), which we
call a stationary point.

When stationarity is motivated by optimality, \Theta (F (x)) is often a regular or a lim-
iting normal cone; see, e.g., [27, Chapter 6]. However, considering other cone-valued
mappings with (perhaps) larger graphs is also relevant. For instance, in mathematical
programs with complementarity constraints, C-stationarity plays a crucial role in the
description of topological changes of the feasible sublevel sets via Morse theory, which
has applications in global optimization and homotopy methods; see [16].

In this paper, we consider certain constraint qualifications. Roughly speaking, we
say that a constraint qualification is stronger than another one if it is always the case
that the fulfillment of the former implies that of the latter. In the forthcoming Defini-
tion 3.9, \Theta (F (x)) is used to define the generalized Mangasarian--Fromovitz constraint
qualification (GMFCQ). Here again, an argument could be made in favor of consid-
ering at most limiting normal cones: a larger \Theta (F (x)) results in a stronger constraint
qualification. Note that the tradeoff is worth it when considering, for instance, the
local stability of feasible sets; see, e.g., [17]. In our view, our general setting regard-
ing GMFCQ and strong stability is a preliminary step for the study of the interplay
between different stability concepts.

For a stationary point, we will generalize the concept of strong stability which was
introduced by Kojima [21] for standard nonlinear programs. This concept refers to the
local existence, uniqueness, and continuity of a stationary point for each sufficiently
small perturbed problem. Here, the values of perturbations and their derivatives up
to second order are taken into consideration. However, they do not necessarily depend
on real parameters. In particular, many results about strong stability can be applied
whenever only sufficiently small linear and quadratic perturbations are allowed; see,
e.g., [21, Corollary 4.3]. We refer to several papers which are related to strong stability
[4, 9, 15, 18, 28].

We will also introduce another stability concept, called weak stability , which, in
general, is weaker than strong stability. However, it turns out that both concepts are
equivalent in many cases.

Besides dealing with strong stability, we generalize two constraint qualifications
that appeared in the context of mathematical programs with disjunctive constraints:
the generalized linear independence constraint qualification (GLICQ) (cf. [23, Def-
inition 3.1]); and the GMFCQ; cf. [5, Definition 4]. For (1.1), it is not necessarily
the case that GLICQ still holds after a sufficiently small perturbation. Thus, to
strengthen GLICQ, we define the closed linear independence constraint qualification
(CLICQ). If CLICQ holds at a point \=x, then it also holds in a neighborhood of \=x.
Furthermore, strong stability and CLICQ imply the existence and uniqueness of a
Lagrange vector for any sufficiently small perturbed problem. For NLP, GLICQ and
CLICQ are identical, and GLICQ and GMFCQ are the well-known LICQ and MFCQ,
respectively.

Another difference between the problems (1.1) and (1.2) is that for the former
GMFCQ need not be a necessary condition for strong stability. This situation with
corresponding properties is discussed in the forthcoming Theorem 3.25.

The so-obtained general results on strong stability and constraint qualifications
for (1.1) will be applied to the important classes of mathematical programs with com-
plementarity constraints (MPCC); see, e.g., [18, 19, 22], and mathematical programs
with abstract constraints; see, e.g., [1]. In particular, we will show that for cer-
tain stationary points for these classes, GMFCQ is a necessary condition for strong
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952 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

stability. Note that for the class of problems with abstract constraints, GMFCQ and
the Robinson Constraint Qualification [24] are equivalent.

Summarizing, the goal of this paper is threefold:
\bullet To extend Kojima's concept of strong stability for the family of generalized

equations (1.1).
\bullet To introduce appropriate constraint qualifications and show their relation to

strong stability.
\bullet To discuss these results for MPCC, here the concepts of M- and S-stationarity

are considered, and for mathematical programs with abstract constraints.
This paper is organized as follows. In section 2 we present basic notation and

some auxiliary results. Section 3 starts with a generalization of some well-known ter-
minology related to stationarity. Moreover, the concepts of weak and strong stability
as well as appropriate constraints qualifications are presented. Then, section 4 mainly
discusses the interplay between both weak and strong stability, and these constraint
qualifications, whenever \Theta is outer semicontinuous. In sections 5 and 6 we apply the
results from sections 3 and 4 to the particular classes of MPCC and mathematical
programs with abstract constraint, respectively.

2. Some basic notation and auxiliary results. The first part of this section
is mainly taken from [12]. For w \in \BbbR n let wi, i= 1, . . . , n denote its components and
define the index sets

I0(w) = \{ i\in \{ 1, . . . , n\} | wi = 0\} ,
I\ast (w) = \{ i\in \{ 1, . . . , n\} | wi \not = 0\} .

Given \=x,x\in \BbbR n, let \langle \=x,x\rangle denote the scalar product of the vectors \=x and x. As usual,
here \| x\| stands for the Euclidean norm of x, that is, \| x\| =

\sqrt{} 
\langle x,x\rangle . Furthermore,

for \delta > 0 let

Bn(\=x, \delta ) = \{ x\in \BbbR n| \| x - \=x\| \leq \delta \} ,
Sn(\=x, \delta ) = \{ x\in \BbbR n| \| x - \=x\| = \delta \} .

We abbreviate the sentence ``V is a neighborhood of \=x"" by letting \scrV (\=x) be the set of
all neighborhoods of \=x and write then the aforementioned statement as ``V \in \scrV (\=x).""

Let \scrC k(\BbbR n,\BbbR m) be the space of k - times continuously differentiable mappings
with domain \BbbR n and codomain \BbbR m. For f \in \scrC 2(\BbbR n,\BbbR ) denote the partial derivative

of f at \=x \in \BbbR n with respect to xi by
\partial f(\=x)
\partial xi

, i = 1, . . . , n. In addition, Dxf(\=x) stands

for its gradient taken as a row vector and D2
xf(\=x) for its Hessian at \=x. Moreover,

for F \in \scrC 2(\BbbR n,\BbbR m) let DxF (\=x) \in \BbbR m\times n be its Jacobian at \=x. By \BbbR n
+ we denote the

n-dimensional nonnegative orthant.
For applying the concept of strong stability we need a seminorm for functions.

Let V \in \scrV (\=x) and \=G\in \scrC 2(\BbbR n,\BbbR m). Following [21], denote
(2.1)

\| \=G\| V =max

\biggl\{ 
sup
x\in V

max
i

\bigl\{ 
| \=Gi(x)| 

\bigr\} 
, sup
x\in V

max
i,j

\biggl\{ \bigm| \bigm| \bigm| \bigm| \partial \=Gi(x)

\partial xj

\bigm| \bigm| \bigm| \bigm| \biggr\} , sup
x\in V

max
i,j,k

\biggl\{ \bigm| \bigm| \bigm| \bigm| \partial 2 \=Gi(x)

\partial xj\partial xk

\bigm| \bigm| \bigm| \bigm| \biggr\} \biggr\} 
,

where the indices i and j, k are varying in the sets \{ 1, . . . ,m\} and \{ 1, . . . , n\} , respec-
tively. The set of all neighborhoods of \=G with respect to the seminorm induced by
V \in \scrV (\=x) is denoted by \scrU V ( \=G).

Let O \subset \BbbR n. Throughout this paper, intO and clO denote the interior and
the closure of O, respectively. Moreover, Oc and O\bot stand for its complement and
its orthogonal complement , respectively. Furthermore, affO and spanO denote the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 953

smallest affine set and the smallest subspace containing O; those are the so-called
affine hull and the linear hull of O, respectively. The relative interior and the relative
boundary of O are defined as follows:

rel intO=

\biggl\{ 
x\in O

\bigm| \bigm| \bigm| \bigm| there exists \delta > 0 with
Bn(x, \delta )\cap affO\subset O

\biggr\} 
,

rel bdO= clO \setminus rel intO;

see, e.g., [26]. For \lambda \in \BbbR and \=x\in \BbbR n let

O+ \=x= \{ x+ \=x| x\in O\} ,
\lambda O= \{ \lambda x| x\in O\} .

Identifying \BbbR n with \BbbR n\times 1 we define the transpose of O as the set

Ot = \{ xt| x\in O\} ,

where xt denotes the transpose of the column vector x. For O1,O2 \subset \BbbR n recall that
the Minkowski sum is

O1 +O2 = \{ x1 + x2| x1 \in O1, x2 \in O2\} .

The set O1  - O2 is analogously defined.
The set K \subset \BbbR m is called a cone if \lambda K \subset K for each \lambda > 0. Note that in this

paper it might happen that 0 \not \in K, whereas other authors would not call a set a cone
if it does not contain the origin. Regardless, it is always the case that 0 \in clK. The
conic hull of O is the smallest cone containing O and it is denoted by coneO. The
set

K\ast = \{ z \in \BbbR m| \langle z, \theta \rangle \geq 0 for all \theta \in K\} 

is called the dual cone of K. The lineality space of a convex cone K, denoted by
linK, is the largest subspace contained in K, that is, linK =K \cap ( - K). If K is also
closed, then linK = [K\ast ]\bot ; see, e.g., [2]. The following two results play a crucial role
in section 6.

Lemma 2.1.
(i) If K \subset \BbbR m is a convex cone, then rel intK +K = rel intK.
(ii) If C \subset \BbbR m is a convex set, then

\lambda rel bdC + (1 - \lambda ) rel intC \subset Cc

for all \lambda > 1.

Proof. Both conditions follow immediately from [26, Theorem 6.1].

Theorem 2.2 (see [26, Theorem 11.3]). Let C1,C2 \subset \BbbR m be nonempty convex
sets. The following two conditions are equivalent:

(i) rel intC1 \cap rel intC2 = \emptyset .
(ii) There exist \omega \in \BbbR m and \nu \in \BbbR such that

\langle \omega ,y1\rangle \leq \nu \leq \langle \omega ,y2\rangle , y1 \in C1, y2 \in C2.

Moreover, for some i= 1,2 and some \=yi \in Ci, it holds that \langle \omega , \=yi\rangle \not = \nu .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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954 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Let A\in \BbbR m\times n. The rank of A is denoted by rankA and its transpose by At. The
linear subspaces

imA= \{ y \in \BbbR m| y=Ax, x\in \BbbR n\} ,
kerA= \{ x\in \BbbR n| Ax= 0\} 

are the image and the kernel of A, respectively. These subspaces fulfill the properties

imA= [kerAt]\bot , kerA= [imAt]\bot ;

see, e.g., [3, section 2.5]. Let
AO= \{ Ax| x\in O\} 

be the set OtA\prime is analogously defined for A\prime \in \BbbR n\times m.
Let E \subset \BbbR m be a linear subspace. The projection of y \in \BbbR m onto E is denoted

by projE(y). The dimension of E is denoted by dimE.
Next, we present some concepts related to set-valued mappings. Let Z and Z \prime be

two seminormed spaces, and let \Psi : Z\rightrightarrows Z \prime be a set-valued mapping. The inverse of
\Psi is the set-valued mapping \Psi  - 1 : Z \prime \rightrightarrows Z given by

\Psi  - 1(\psi ) = \{ z \in Z| \psi \in \Psi (z)\} .

For V \subset Z let
\Psi (V ) =

\bigcup 
z\in V

\Psi (z).

The sets dom\Psi = \{ z \in Z| \Psi (z) \not = \emptyset \} and im\Psi =\Psi (Z) are the domain and the image
of \Psi , respectively. The set

gr \Psi = \{ (z,\Psi (z))| z \in dom\Psi \} 

is called the graph of \Phi . If the set gr\Psi is closed, then \Phi is said to be a closed set-valued
mapping. The following definitions are adaptations of those in [27, p. 152]. There,
the spaces under consideration are \BbbR n and \BbbR m, whereas in this paper the definitions
are given for two seminormed spaces.

Definition 2.3.
(i) The outer limit and the inner limit of \Psi at \=z are given by

limsup
z\rightarrow \=z

\Psi (z) =

\biggl\{ 
\psi \in Z \prime 

\bigm| \bigm| \bigm| \bigm| there exist sequences zk \rightarrow \=z
and \psi k \rightarrow \psi with \psi k \in \Psi (zk)

\biggr\} 
and

lim inf
z\rightarrow \=z

\Psi (z) =

\left\{   \psi \in Z \prime 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
for each sequence zk \rightarrow \=z there
exists \psi k \rightarrow \psi and k0 \in \BbbN 
with \psi k \in \Psi (zk), k\geq k0

\right\}   ,

respectively. The index k used for describing a sequence is always varying
over \BbbN .

(ii) \Psi is called outer semicontinuous (osc) at \=z \in Z if

limsup
z\rightarrow \=z

\Psi (z) =\Psi (\=z),

and inner semicontinuous (isc) at \=z \in Z if

lim inf
z\rightarrow \=z

\Psi (z) =\Psi (\=z).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 955

Moreover, it is continuous at \=z \in Z if

lim inf
z\rightarrow \=z

\Psi (z) = limsup
z\rightarrow \=z

\Psi (z) =\Psi (\=z).

(iii) \Psi is called locally bounded at \=z if there exists V \in \scrV (\=z) such that \Psi (V ) is
bounded.

In particular, Definition 2.3 implies that

lim inf
z\rightarrow \=z

\Psi (z)\subset \Psi (\=z)\subset limsup
z\rightarrow \=z

\Psi (z);

see [27, p. 152]. We end this section by recalling an auxiliary result from topology
and presenting two lemmas about \| \cdot \| V .

Lemma 2.4 (see [14, Lemma 2.2.2a]). Let V 1 \subset \BbbR n be a closed subset, and let V 2

be an open neighborhood of V 1. Then, there exists a function \xi \in \scrC 2(\BbbR n,\BbbR ) such that
(i) 0\leq \xi (x)\leq 1 for all x\in \BbbR n.
(ii) \xi (x) = 1 on some neighborhood of V 1.
(iii) supp \xi \subset V 2, where supp \xi = cl\{ x\in \BbbR n| \xi (x) \not = 0\} .
Lemma 2.5. Let \=x \in \BbbR n, f \in \scrC 2(\BbbR n,\BbbR ), F \in \scrC 2(\BbbR n,\BbbR m), and V \in \scrV (\=x). Then,

it holds that
\| f \cdot F\| V \leq 4\| f\| V \| F\| V .

Proof. The proof is an immediate consequence of the product rule for
derivatives.

Lemma 2.6. Let V 1, V 2, and \xi be given as in Lemma 2.4. Assume that for
F k \in \scrC 2(\BbbR n,\BbbR m), k \in \BbbN , it holds that \| F k  - \=F\| V 2 \rightarrow 0 and define

F \xi ,k(x) = \xi (x)F k(x) + (1 - \xi (x)) \=F (x).

Then, the following conditions hold:
(i) F \xi ,k(x) = F k(x) for all x\in V 1.
(ii) \| F \xi ,k  - \=F\| V 3 \rightarrow 0 for all V 3 \in \scrV (\=x) with V 2 \subset V 3.

Proof. (i) The proof easily follows by observing that \xi (x) = 1 for all x\in V 1.
(ii) Note that

\| F \xi ,k  - \=F\| V
3

= \| F \xi ,k  - \=F\| V
2

= \| \xi \cdot (F k  - \=F )\| V
2

.

Hence, an application of Lemma 2.5 yields the desired result.

3. Strong stability and constraint qualifications. In this section we con-
sider the problem P = \scrP \Theta (f,F ) as given in (1.1). Recall that \Theta is a cone-valued
mapping, which means that the set \Theta (y) is a cone for each y \in dom\Theta . The first part
of this section is devoted to the generalization of well-known stationarity concepts
mainly related to optimality conditions and also to other aspects of Optimization and
Numerical Analysis; see Remark 3.2.

Definition 3.1.
(i) A point \=x\in dom\Theta \circ F is called a feasible point for F .
(ii) A point \=x\in \BbbR n is called a Fritz John point for P if

\theta 0Dxf(\=x) = \theta tDxF (\=x)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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956 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

for some (\theta 0, \theta )\in [\BbbR +\times \Theta (F (\=x))] \setminus \{ 0\} . The set of Fritz John points for P is
denoted by \Sigma F (P ).

(iii) A point \=x \in \BbbR n that solves P is called a stationary point for P . The set of
stationary points for P is denoted by \Sigma (P ).

Obviously, we have

(3.1) \Sigma (P )\subset \Sigma F (P )\subset dom\Theta \circ F.

Define for x\in \BbbR n the set of Lagrange vectors as

\scrL (P,x) =
\bigl\{ 
\theta \in \Theta (F (x))| Dxf(x) = \theta tDxF (x)

\bigr\} 
.

In particular, it holds that x\in \Sigma (P ) if and only if \scrL (P,x) \not = \emptyset .
Remark 3.2. As mentioned in section 1, the concepts given in Definition 3.1 are

mainly related to certain normal cones, whenever optimality conditions are considered.
The generality in Definition 3.1 allows the consideration of other cones and stationarity
concepts as well, e.g., those related to the topology of the feasible sublevel sets; see
[16]. The forthcoming Remark 4.4 presents such a cone.

For the following it is important to mention that P =\scrP \Theta (f,F ) is more than just a
notation. Given \Theta as in (1.1), we define the mapping \scrC 2(\BbbR n,\BbbR m+1)\rightarrow \scrC 2(\BbbR n,\BbbR m+1)\times 
\{ \Theta \} by the expression

\scrP \Theta (f,F ) = (f,F,\Theta ).

Obviously, the mapping \scrP \Theta is a bijection and, thus, it naturally provides the set
\scrC 2(\BbbR n,\BbbR m+1)\times \{ \Theta \} with the same structure as that of \scrC 2(\BbbR n,\BbbR m+1). In particular,
given \=x\in \BbbR n, V \in \scrV (\=x), and P =\scrP \Theta (f,F ), we can define

\| P\| V = \| (f,F )\| V ,

where the right-hand side is obtained from (2.1) by choosing \=G= (f,F ). Furthermore,
for \delta > 0 define

BV ( \=P , \delta ) = \{ P | \| P  - \=P\| V \leq \delta \} ,

and let \scrW V ( \=P ) denote the set of all neighborhoods of \=P .
In the remainder of this section, let \=P =\scrP \Theta ( \=f, \=F ) and \=x\in \BbbR n be the problem and

the point under consideration, respectively. Next, we generalize Kojima's definition
of a strongly stable stationary point [21].

Definition 3.3. A point \=x \in \Sigma ( \=P ) is called strongly stable if there exists a real
number \=\delta > 0 such that for each \delta \in (0, \=\delta ] there exists a real number \varepsilon > 0 such that
for every P \in BBn(\=x,\=\delta )( \=P , \varepsilon ) it holds that

| \Sigma (P )\cap Bn(\=x, \=\delta )| = | \Sigma (P )\cap Bn(\=x, \delta )| = 1.

The set of strongly stable stationary points for \=P is denoted by \Sigma S( \=P ).

Kojima [21] defined strong stability with respect to a family of functions. Here,
we focus on the case where such family is the whole space of twice continuously
differentiable functions. In the following we present another stability concept which
relaxes Definition 3.3. In the forthcoming Theorem 4.6, we prove that both stability
concepts are equivalent whenever \Theta is osc.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 957

Definition 3.4. A point \=x \in \Sigma ( \=P ) is called weakly stable if there exist real
numbers \=\delta > 0 and \=\varepsilon > 0 such that for every P \in BBn(\=x,\=\delta )( \=P , \=\varepsilon ) it holds that

| \Sigma (P )\cap Bn(\=x, \=\delta )| = 1.

The set of weakly stable stationary points for \=P is denoted by \Sigma S
0 (

\=P ).

Now, we turn our attention to a set-valued mapping that can be osc regardless of
strong stability.

Definition 3.5. Let V \in \scrV (\=x). The set-valued mapping \widehat \scrL V : \scrC 2(\BbbR n,\BbbR m+1) \times 
\{ \Theta \} \rightrightarrows \BbbR m given by \widehat \scrL V (P ) =

\bigcup 
x\in V

\scrL (P,x)

represents the union of Lagrange vectors for all x\in V .

Lemma 3.6. If V \in \scrV (\=x) is compact and \Theta is osc, then \widehat \scrL V (\cdot ) is osc.

Proof. The proof follows immediately from a continuity argument.

The next example illustrates that strong stability does not imply the continuity
of \widehat \scrL V (\cdot ).

Example 3.7. Let n= 1, \=x= 0, and consider the standard nonlinear program

\=P : minx s.t. x\geq 0, x\geq 0.

According to [21, Theorem 7.2], it holds that 0 \in \Sigma S( \=P ). Fix V \in \scrV (0) sufficiently
small and consider the two sequences of problems given by

P 1,k : minx s.t. x+
1

k
\geq 0, x\geq 0

and

P 2,k : minx s.t. x\geq 0, x+
1

k
\geq 0.

Obviously, it holds that
lim
k\rightarrow \infty 

P 1,k = lim
k\rightarrow \infty 

P 2,k = \=P .

However, we have \widehat \scrL V (P 1,k) = \{ (0,1)t\} and \widehat \scrL V (P 2,k) = \{ (1,0)t\} , which implies that

lim inf
P\rightarrow \=P

\widehat \scrL V (P ) = \emptyset .

Thus, strong stability does not imply that \widehat \scrL V (\cdot ) is isc and, thus, continuous at \=P .

Next, we generalize the two most well-known constraint qualifications in nonlinear
programming.

Definition 3.8. We say that the GLICQ holds at \=x for \=F if

kerDx
\=F (\=x)t \cap span\Theta ( \=F (\=x)) = \{ 0\} .

Definition 3.9. We say that the GMFCQ holds at \=x for \=F if

kerDx
\=F (\=x)t \cap \Theta ( \=F (\=x))\subset \{ 0\} .

The set of points for \=P at which GMFCQ does not hold is denoted by \Sigma F
0 (

\=P ).
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958 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Remark 3.10. If we consider NLP, which is described in (1.2), then GLICQ and
GMFCQ are equivalent to the (standard) LICQ and MFCQ whose definition we recall
in the following. We say that LICQ holds at \=x if the vectors

Dxhi(\=x), i\in I, Dxgj(\=x), j \in I0(g(\=x))

are linearly independent. We say that MFCQ holds at \=x if the following two conditions
are fulfilled:

(i) The vectors Dxhi(\=x), i\in I are linearly independent.
(ii) There exists u\in \BbbR n with Dxhi(\=x)u= 0, i\in I and Dxgj(\=x)u> 0, j \in I0(g(\=x)).
Remark 3.11. Let \Theta 1,\Theta 2 : \BbbR m \rightrightarrows \BbbR m be two cone-valued mappings with gr\Theta 1 \subset 

gr\Theta 2. Obviously, we have

kerDx
\=F (\=x)t \cap \Theta 1( \=F (\=x))\subset kerDx

\=F (\=x)t \cap \Theta 2( \=F (\=x)).

Therefore, according to Definition 3.9, GMFCQ with respect to \Theta 2 is stronger than
GMFCQ with respect to \Theta 1. Stronger constraint qualifications are more restrictive
and, thus, cone-valued mappings with smaller graphs are more desirable. However,
as mentioned in section 1, the tradeoff of having larger graphs is worth it when
considering certain stability properties; see, e.g., [17].

Remark 3.12. If we consider mathematical programs with abstract constraints, as
in the forthcoming section 6, then Definition 3.8 is analogous to that of nondegeneracy
in [2, Definition 4.70]. Moreover, note that Definitions 3.8 and 3.9 generalize [23,
Definition 3.1] and [5, Definition 4], respectively.

Obviously, if \=x is not feasible, then GLICQ holds at \=x. Moreover, GLICQ implies
GMFCQ and also that | \scrL ( \=P , \=x)| \leq 1. By Definition 3.9, we have

\Sigma F ( \=P ) =\Sigma F
0 ( \=P )\cup \Sigma ( \=P ).

Lemma 3.13. Assume that for \=\eta \in \Theta ( \=F (\=x)) \cap Sm(0,1), it holds that
\=\eta tDx

\=F (\=x) = 0. Furthermore, for k \in \BbbN define

F k(x) = \=F (x) + k - 1\=\eta Dx
\=f(\=x)(x - \=x),

and let P k =\scrP \Theta ( \=f,F k). Then, k\=\eta \in \scrL (P k, \=x) for all k \in \BbbN .

Proof. Fix k \in \BbbN . Since \Theta ( \=F (\=x)) is a cone, we have k\=\eta \in \Theta ( \=F (\=x)). Moreover, it
is F k(\=x) = \=F (\=x) and, therefore, k\=\eta \in \Theta (F k(\=x)). Furthermore, it holds that

k\=\eta tDxF
k(\=x) = k\=\eta tDx

\=F (\=x) + k\=\eta tk - 1\=\eta Dx
\=f(\=x) =Dx

\=f(\=x),

which completes the proof.

Remark 3.14. Analogously to [9, Remark 3.1], the perturbation described in
Lemma 3.13 can be refined by means of a bump function to get a problem P k,\xi whose
describing functions coincide with those of P k inside a given ball Bn(\=x, \=\delta ) and with
those of \=P outside Bn(\=x,2\=\delta ) for certain \=\delta > 0. To see this, apply Lemma 2.6 with
V 1 =Bn(\=x, \=\delta ) and V 2 = intBn(\=x,2\=\delta ) to the functions describing P k and \=P .

Proposition 3.15. If \scrL ( \=P , \=x) is a nonempty compact set and \Theta ( \=F (\=x)) is convex,
then GMFCQ holds at \=x for \=F .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

1/
23

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 959

Proof. Let \=\theta \in \scrL ( \=P , \=x) and suppose contrarily that \=\eta tDx
\=F (\=x) = 0 for some \=\eta \in 

\Theta ( \=F (\=x))\setminus \{ 0\} . The convexity of the cone \Theta ( \=F (\=x)) yields \=\theta + t\=\eta \in \scrL ( \=P , \=x) for all t\geq 0,
which contradicts the compactness of \scrL ( \=P , \=x).

The following stationarity concept plays a crucial role in a necessary condition
for the weak stability of stationary points at which GMFCQ does not hold.

Definition 3.16. A point \=x\in \BbbR n is called an inner stationary point for \=P if

Dx
\=f(\=x)\in int [\Theta ( \=F (\=x))tDx

\=F (\=x)].

The set of inner stationary points for \=P is denoted by \Sigma in( \=P ).

For standard nonlinear programs, a property analogous to Definition 3.16 is
a sufficient condition for a point to be a local minimizer of order one; see [31,
Remark 3.6].

Lemma 3.17. If \=x\in \Sigma in( \=P ), then the following conditions hold:
(i) Dx

\=F (\=x)u \not \in \Theta ( \=F (\=x))\bot for all u\in Sn(0,1).
(ii) imDx

\=F (\=x)\cap \Theta ( \=F (\=x))\bot = \{ 0\} .
(iii) m>n and rankDx

\=F (\=x) = n, that is, kerDx
\=F (\=x) = \{ 0\} .

Proof. We prove (i). Conditions (ii) and (iii) easily follow from (i). Suppose
contrarily that Dx

\=F (\=x)\=u \in \Theta ( \=F (\=x))\bot for some \=u \in Sn(0,1). Since \=x \in \Sigma in( \=P ), for all
\varepsilon > 0 sufficiently small, there exists \theta \varepsilon \in \Theta ( \=F (\=x)) such that

(3.2) Dx
\=f(\=x) + \varepsilon \=ut = [\theta \varepsilon ]tDx

\=F (\=x).

Multiplying by \=u, we obtain \varepsilon = - Dx
\=f(\=x)\=u which is a contradiction since (3.2) holds

for all \varepsilon > 0 sufficiently small.

Corollary 3.18. If \=x\in \Sigma in( \=P ) and

(3.3) span\Theta ( \=F (\=x)) =
\bigl\{ 
\theta \in \BbbR m| \theta i \cdot \=Fi(\=x) = 0, i\in \{ 1, . . . ,m\} 

\bigr\} 
,

then | I0( \=F (\=x))| \geq n and n of the following vectors:

Dx
\=Fi(\=x), i\in I0( \=F (\=x))

are linearly independent.

Proof. By (3.3), we have

\Theta ( \=F (\=x))\bot = [span\Theta ( \=F (\=x))]\bot =
\bigl\{ 
\theta \in \BbbR m| I0( \=F (\=x))\subset I0(\theta )

\bigr\} 
.

Hence, we have

Dx
\=F (\=x)u\in \Theta ( \=F (\=x))\bot 

for some u\in \BbbR n if and only if

Dx
\=Fi(\=x)u= 0, i\in I0( \=F (\=x)).

Thus, by Lemma 3.17 (i), the only possible solution to the previous system of equations
is u= 0, which yields the desired result.

The next result presents a necessary condition for weak stability.
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960 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Theorem 3.19. If \=x \in \Sigma S
0 (

\=P ), then there exist V \in \scrV (\=x) and W \in \scrW V ( \=P ) such
that

(3.4) \Sigma (P )\cap V =\Sigma F (P )\cap V

and that

(3.5) \Sigma F
0 (P )\cap V \subset \Sigma in(P )

for all P \in W .

Proof. Take V = Bn(\=x, \=\delta ) and W = intBBn(\=x,\=\delta )( \=P , \=\varepsilon ), where the balls are those
given in Definition 3.4. Therefore,

(3.6) | \Sigma (P )\cap V | = 1

for all P \in W . Suppose contrarily that (3.4) does not hold for some P 0 \in W . Hence,
by (3.1), choose

x0 \in [\Sigma F (P 0) \setminus \Sigma (P 0)]\cap V.

By (3.6), let x1 \in \Sigma (P 0) \cap V . Next, fix \delta 0 > 0 such that x1 \not \in Bn(x0,2\delta 0). By
Definitions 3.1 and 3.9 it follows that GMFCQ does not hold at x0 for P 0. After
applying Remark 3.14 with \=P = P 0, \=x= x0, and \=\delta = \delta 0, we obtain P k,\xi \in W for k \in \BbbN 
sufficiently large with

| \Sigma (P k,\xi )\cap V | \geq | \{ x0, x1\} | = 2,

which contradicts (3.6).
Next, suppose contrarily that for some P 0 \in W , with P 0 =\scrP \Theta (f0, F 0), and some

x0 \in \Sigma F
0 (P

0)\cap V , it holds that

Dxf
0(x0) \not \in int [\Theta (F 0(x0))tDxF

0(x0)].

Hence, for some sequence vk \in \BbbR n with vk \rightarrow 0, we have

Dxf
0(x0) + vk \not \in [\Theta (F 0(x0))]tDxF

0(x0).

Define

fk(x) = f0(x) + vk(x - x0)

and P k =\scrP \Theta (fk, F 0). It is easy to see that

(3.7) x0 \in \Sigma F (P k) \setminus \Sigma (P k).

Moreover, for k sufficiently large, we have P k \in W . Consequently, (3.7) yields a
contradiction to (3.4), which completes the proof.

Lemma 3.20. Assume that for some V \in \scrV (\=x) there exists a sequence F k with
\| F k  - \=F\| V \rightarrow 0 and

(3.8) V \cap dom(\Theta \circ F k) = \emptyset .

Then, \=x \not \in \Sigma S( \=P ).
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D
ow

nl
oa

de
d 

08
/1

1/
23

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 961

Proof. Suppose contrarily that \=x \in \Sigma S( \=P ) and fix Bn(\=x, \=\delta ) as in Definition 3.3.
Assume without loss of generality that V is open and that V \subset Bn(\=x, \=\delta ). Choose \delta > 0
with Bn(\=x, \delta )\subset V and apply Lemma 2.6 with V 1 =Bn(\=x, \delta ), V 2 = V , V 3 =Bn(\=x, \=\delta ) to
the functions F k and \=F . The latter yields P k =\scrP \Theta ( \=f,F \xi ,k) with \| P k - \=P\| Bn(\=x,\=\delta ) \rightarrow 0
and

\Sigma (P k)\cap Bn(\=x, \delta ) = \emptyset ,

which contradicts that \=x\in \Sigma S( \=P ).

The next lemma is essentially a restatement of a classic idea: having too many
constraints implies local unfeasibility for sufficiently small perturbations of \=P . Pre-
liminarily, we present two definitions.

Definition 3.21. The family of sets M is called a subpartition of \{ 1, . . . ,m\} if
\emptyset \not \in M and the following conditions hold:

\bullet M \subset \{ 1, . . . ,m\} for all M \in M.
\bullet M1 \cap M2 = \emptyset for all M1,M2 \in M, with M1 \not =M2.

Definition 3.22. Let M be a subpartition of \{ 1, . . . ,m\} . A set I \subset \{ 1, . . . ,m\} is
called a choice of indexes from M if there exists a bijective mapping \phi : I \rightarrow M with
i\in \phi (i) for all i\in I. The set of choices of indexes from M is denoted by \scrI (M).

Roughly speaking, Definition 3.22 means that each choice of indexes I \in \scrI (M) is
obtained by choosing exactly one index from each M \in M.

Lemma 3.23. Let M be a subpartition of \{ 1, . . . ,m\} , and let a1, . . . , am \in \BbbR m be
linearly independent vectors. If | M| >n and for some V \prime \in \scrV ( \=F (\=x)) it holds that

(3.9) V \prime \cap dom\Theta \subset 
\bigcup 

I\in \scrI (M)

\{ y \in \BbbR m| \langle ai, y\rangle = 0, i\in I\} ,

then \=x \not \in \Sigma S( \=P ).

Proof. Let A be the matrix whose rows are (a1)t, . . . , (am)t. Analogously, for
I \in \scrI (M), let AI be the matrix whose rows are (ai)t, i \in I. Since | I| = | M| > n, by
[13, Lemma 1.1, p. 68], for any I \in \scrI (M) the set AI \=F (\BbbR n) has Lebesgue measure
zero on \BbbR | M| . In the remainder of the proof, we use the convention that the rows
of AI are indexed by the elements of M instead of 1, . . . , | M| . Choose a sequence
vk = (vkM )M\in M with vk \rightarrow 0 and

(3.10) vk \not \in 
\bigcup 

I\in \scrI (M)

AI \=F (\BbbR n).

For k \in \BbbN , let the components of \^vk \in \BbbR m be given as follows:

\^vkj =

\Biggl\{ 
vkM if j \in M for some M \in M,

0 otherwise.

It is easy to see that for wk =A - 1\^vk, it holds that wk \rightarrow 0 and that

(3.11) AIwk =AIA - 1\^vk = vk.

Define

F k(x) = \=F (x) - wk.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

1/
23

 to
 1

29
.1

77
.1

69
.2

28
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



962 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

By (3.10) and (3.11), we obtain

0 \not \in 
\bigcup 

I\in \scrI (M)

AIF k(\BbbR n),

and therefore,

(3.12)
\bigcup 

I\in \scrI (M)

\{ y \in \BbbR m| \langle ai, y\rangle = 0, i\in I\} \cap F k(\BbbR n) = \emptyset .

Now, assume without loss of generality that V \prime is open and choose V \in \scrV (\=x) with
cl \=F (V ) \subset V \prime . The latter implies F k(V ) \subset V \prime for k sufficiently large which, together
with (3.9) and (3.12), yields

F k(V )\cap dom\Theta = \emptyset ,

and therefore, we have
V \cap dom(\Theta \circ F k) = \emptyset .

By Lemma 3.20, we get \=x \not \in \Sigma S( \=P ).

The previous result generalizes [10, Lemma 5.2]. In many applications, A is
the identity matrix and the property that defines the class of problems is given by
the subpartition. For instance, [10, Lemma 5.2] follows from Lemma 3.23 by taking
\=F2l - 1(x) = \=rl(x), \=F2l(x) = \=sl(x), and M = \{ \{ 2l  - 1,2l\} , l \in L\} . The following
corollary deals with a case where considering certain A, instead of the identity matrix,
is advantageous.

Corollary 3.24. Let V \prime \in \scrV ( \=F (\=x)). If dim[V \prime \cap dom\Theta ]\bot >n, then \=x \not \in \Sigma S( \=P ).

Proof. Let m0 = dim[V \prime \cap dom\Theta ]\bot and M = \{ \{ 1\} , . . . ,\{ m0\} \} . Choose linearly
independent vectors a1, . . . , am \in \BbbR m such that the first m0 vectors form a basis of
the space [V \prime \cap dom\Theta ]\bot . Note that

V \prime \cap dom\Theta \subset \{ y \in \BbbR m| \langle ai, y\rangle = 0, i= 1, . . . ,m0\} .

Thus, by Lemma 3.23, it follows that \=x \not \in \Sigma S( \=P ).

In general, GMFCQ need not to be a necessary condition of a stationary point. As
an example we refer to [11, section 5], where a C-stationary point for a mathematical
program with complementarity constraints is considered. However, as stated in the
next result, several conditions are necessary for strong stability when GMFCQ does
not hold; cf. [10, section 5].

Theorem 3.25. Assume that \=x \in \Sigma S( \=P ) and that GMFCQ does not hold at \=x
for \=F . Then,

(i) \=x\in \Sigma in( \=P ).
(ii) dim[span\Theta ( \=F (\=x))]>n.
(iii) dimspan [V \prime \cap dom\Theta ]\geq m - n for all V \prime \in \scrV ( \=F (\=x)).
Proof. (i) The proof immediately follows from Lemma 3.19.
(ii) Considering the orthogonal space in Lemma 3.17 (ii), we get

(3.13) kerDx
\=F (\=x)t + span\Theta ( \=F (\=x)) =\BbbR m.

Moreover, since GMFCQ does not hold at \=x for \=F , it follows that

(3.14) kerDx
\=F (\=x)t \cap span\Theta ( \=F (\=x)) \not = \{ 0\} .
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 963

By (3.13) and (3.14), we obtain

dim[span\Theta ( \=F (\=x))]>m - dim[kerDx
\=F (\=x)t],

which, together with Lemma 3.17 (iii), yields (ii).
(iii) Suppose contrarily that

dimspan [V \prime \cap dom\Theta ]<m - n

for some V \prime \in \scrV ( \=F (\=x)). Since

dimspan [V \prime \cap dom\Theta ] + dim[V \prime \cap dom\Theta ]\bot =m,

it follows that
n< dim[V \prime \cap dom\Theta ]\bot .

Thus, by Corollary 3.24, we get a contradiction to \=x\in \Sigma S( \=P ).

4. Strong stability when the cone-valued mapping is osc. Throughout
this section, we assume that \Theta is osc, which implies some interesting properties:

\bullet GMFCQ locally holds after sufficiently small perturbations.
\bullet GMFCQ implies the boundedness of the set of Lagrange vectors.
\bullet Weak stability and strong stability are equivalent properties.

In this section we prove the latter three properties and introduce yet another
constraint qualification.

Lemma 4.1. Assume that GMFCQ holds at \=x for \=F . Then, there exist V \in \scrV (\=x)
and U \in \scrU V ( \=F ) such that for all x\in V and all F \in U the condition GMFCQ holds at
x for F .

Proof. First, we show that there exists V \in \scrV (\=x) such that for all x \in V the
condition GMFCQ holds at x for \=F . Suppose contrarily that there are sequences
xk \rightarrow \=x and \eta k \in \Theta ( \=F (xk))\cap Sm(0,1) with

(4.1) [\eta k]tDx
\=F (xk) = 0.

After perhaps reducing to an appropriate subsequence, assume that \eta k \rightarrow \=\eta with \=\eta \in 
Sm(0,1). Since \Theta is closed, by letting k\rightarrow \infty and using (4.1), we obtain \=\eta \in \Theta ( \=F (\=x))
with \=\eta tDx

\=F (\=x) = 0, which is a contradiction since GMFCQ holds at \=x for \=F .
Now, we assume without loss of generality that V is compact and show that there

exists U \in \scrU V ( \=F ) such that for all x \in V and all F \in U the condition GMFCQ holds
at x for F . Suppose contrarily that for some sequences xk \in V , F k \in \scrC 2(\BbbR n,\BbbR m), and
\eta k \in \Theta (F k(xk))\cap Sm(0,1) it holds that \| F k  - \=F\| V \rightarrow 0 and that

(4.2) [\eta k]tDxF
k(xk) = 0.

After perhaps reducing to appropriate subsequences, assume that xk \rightarrow x0 for some
x0 \in V and that \eta k \rightarrow \eta 0. Since \Theta is closed, by letting k \rightarrow \infty and using (4.2), we
obtain \theta 0 \in \Theta ( \=F (x0)) and [\eta 0]tDx

\=F (x0) = 0, which is a contradiction since GMFCQ
holds at x0 for \=F .

Remark 4.2. Note that in the previous proof the existence of V \in \scrV (\=x) and, in
a second step, that of U \in \scrU V ( \=F ) were shown in an analogous way. For the sake of
simplicity, in the remainder of this paper we will often avoid repetition by skipping
the proof of the existence of V such that a certain property holds for the mapping or
problem under consideration on V . As an example, we could have started the previous
proof by saying ``Suppose contrarily that there exist sequences xk \rightarrow \=x, F k \rightarrow \=F . . .
with (4.2)"" and then proceeding with the last three lines of the proof.
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964 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Theorem 4.3. The following three conditions are equivalent:
(i) GMFCQ holds at \=x for \=F .
(ii) There exist V \in \scrV (\=x), W \in \scrW V ( \=P ), and a compact set Q\subset \BbbR m such that

\scrL (P,x)\subset Q

for all x\in V and all P \in W .
(iii) There exists V \in \scrV (\=x) such that \widehat \scrL V is locally bounded at \=P .

Proof. (i) \Rightarrow (ii) Suppose contrarily that there exist sequences xk \rightarrow \=x, P k \rightarrow \=P ,
and \theta k \in \scrL (P k, xk) with \| \theta k\| \rightarrow \infty . By \theta k \in \scrL (P k, xk), it follows that \theta k \in \Theta (F k(xk))
and that

(4.3) Dxf
k(xk) = [\theta k]tDxF

k(xk).

Assume without loss of generality that

\theta k

\| \theta k\| 
\rightarrow \=\eta 

for some \=\eta \in \Theta ( \=F (\=x))\cap Sm(0,1). Since \| \theta k\| \rightarrow \infty and Dxf
k(xk)\rightarrow Dx

\=f(\=x), dividing
by \| \theta k\| and letting k\rightarrow \infty in (4.3) yield a contradiction to (i).

(ii) \Rightarrow (i) Suppose contrarily that for some \=\eta \in \Theta ( \=F (\=x)) \cap Sm(0,1) it holds that
\=\eta tDx

\=F (\=x) = 0. For k \in \BbbN , let P k be given as in Lemma 3.13. Note that for k
sufficiently large, we have P k \in W . By Lemma 3.13 and (ii), we get

(4.4) k\=\eta \in Q,

where Q is a compact set. By letting k\rightarrow \infty in (4.4), we get a contradiction.
(ii) \Rightarrow (iii) It is obvious.
(iii) \Rightarrow (ii) Since \widehat \scrL V is locally bounded at \=P , there exist W \in \scrW V ( \=P ) and a

compact set Q\subset \BbbR m with

(4.5) \widehat \scrL V (W )\subset Q.

By (4.5), for any x\in V and any P \in W it holds that

\scrL (P,x)\subset \widehat \scrL V (P )\subset Q,

which completes the proof.

Remark 4.4. Note that Theorem 4.3 is analogous to that of Gauvin [6] for standard
nonlinear programs. However, in general, the set \scrL ( \=P , \=x) can be compact even when
GMFCQ does not hold at \=x. We refer, e.g., to [10, Remark 1], where L is a finite
index set, \=rl, \=sl \in \scrC 2(\BbbR n,\BbbR ), l \in L, \=F = (\=r, \=s), \theta = (\rho ,\sigma ) \in \BbbR 2| L| , y = (yr, ys) \in \BbbR 2| L| ,
and

(4.6) \Theta (yr, ys) =

\Biggl\{ 
\Xi c(y

r, ys) if min\{ yrl , ysl \} = 0, l \in L,
\emptyset otherwise,

with

\Xi c(y
r, ys) =

\biggl\{ 
(\rho ,\sigma )\in \BbbR 2| L| 

\bigm| \bigm| \bigm| \bigm| yrl \cdot \rho l = ysl \cdot \sigma l = 0, l \in L,
\rho l \cdot \sigma l \geq 0, l \in L

\biggr\} 
.

There, the stationarity concept under consideration is the C-stationarity for mathe-
matical programs with complementarity constraints.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 965

Lemma 4.5. Assume that for all V \in \scrV (\=x) and all W \in \scrW V ( \=P ) there exist x\in V
and P \in W with x\in \Sigma F (P ). Then, it holds that \=x\in \Sigma F ( \=P ).

Proof. If GMFCQ does not hold at \=x for \=F , then \=x \in \Sigma F ( \=P ). Now, assume
that GMFCQ holds at \=x for \=F . By Lemma 4.1, Theorem 4.3 (ii) and a continuity
argument, we get \=x\in \Sigma ( \=P ).

Theorem 4.6. Assume that \=x \in \Sigma ( \=P ). Then, the following three conditions are
equivalent:

(i) \=x\in \Sigma S
0 (

\=P ).
(ii) \=x\in \Sigma S( \=P ).
(iii) There exist V \in \scrV (\=x) and W \in \scrW V ( \=P ) such that for all P \in W the set

\Sigma (P )\cap V contains exactly one element which we denote by \^x(P ). The mapping
W \rightarrow V , P \mapsto \rightarrow \^x(P ) is continuous.

Proof. (i) \Rightarrow (iii) Take V \in \scrV (\=x) and W \in \scrW V ( \=P ) as in Lemma 3.19. Suppose
contrarily that there exist P 0 \in W and a sequence P k \in W with P k \rightarrow P 0 and
\^x(P k) \not \rightarrow \^x(P 0). Since V is compact, assume without loss of generality that \^x(P k)\rightarrow 
x1 with x1 \not = \^x(P 0). By Lemma 4.5, we get x1 \in \Sigma F (P 0). Note that

\Sigma (P 0)\cap V = \{ \^x(P 0)\} \subsetneq \{ \^x(P 0), x1\} \subset \Sigma F (P 0)\cap V.

Consequently, by Lemma 3.19 and, in particular, (3.4), we get a contradiction.
(iii) \Rightarrow (i) By using an analogous argument as in the proof of Lemma 3.19, a

moment of reflection shows that there exists \=\delta > 0 such that

(4.7) \Sigma F ( \=P )\cap Bn(\=x,2\=\delta ) = \{ \=x\} 

and that Bn(\=x,2\=\delta ) \subset V . Now, suppose contrarily that there exists a sequence P k =
(fk, F k) with \| P k  - \=P\| Bn(\=x,2\=\delta ) \rightarrow 0 such that

(4.8) | \Sigma (P k)\cap Bn(\=x,2\=\delta )| \not = 1.

By (4.7) and Lemma 4.5, assume without loss of generality that

(4.9) \Sigma (P k)\cap [Bn(\=x,2\=\delta ) \setminus Bn(\=x, \=\delta )] = \emptyset .

Next, apply Lemma 2.6 with V 1 = Bn(\=x, \=\delta ), V 2 = intBn(\=x,2\=\delta ), and V 3 = V to the
functions describing P k and \=P . From (4.8) and (4.9), we have

(4.10) | \Sigma (P k,\xi )\cap Bn(\=x, \=\delta )| \not = 1.

Moreover, it holds that \| P k,\xi  - \=P\| V \rightarrow 0, which, together with (4.10), yields a con-
tradiction to (iii).

(i) \Rightarrow (ii) It follows analogously to the proof of (i) \Rightarrow (iii) by choosing P 0 = \=P
and noting that \^x(P 0) = \=x.

(ii) \Rightarrow (i) It immediately follows from Definitions 3.3 and 3.4.

Now, we turn our attention to a constraint qualification which is stronger than
GLICQ. First, we define the set-valued mapping

(cs\Theta )(y) = limsup
y
\prime \rightarrow y

span\Theta (y\prime ),

which is osc at each y \in dom\Theta . This notation stands for the closure of the set-valued
mapping span\Theta (\cdot ), we refer to [27, p. 155] for more details about the semicontinuity
of cs\Theta . For simplicity, in what follows we write cs\Theta (y) instead of (cs\Theta )(y).
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966 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Definition 4.7. We say that the closed linear independence constraint qualifi-
cation (CLICQ) holds at \=x for \=F if

kerDx
\=F (\=x)t \cap cs\Theta ( \=F (\=x)) = \{ 0\} .

Note that CLICQ implies GLICQ because of span\Theta ( \=F (\=x))\subset cs\Theta ( \=F (\=x)). More-
over, CLICQ and GLICQ are equivalent whenever the set-valued mapping span\Theta (\cdot )
is osc at \=F (\=x). One might expect that, as it is in the case of LICQ for standard
nonlinear programs, GLICQ holds in a neighborhood of the point at which GLICQ
holds. The following example illustrates that this does not happen in general. The
motivation to consider the stronger constraint qualification CLICQ is that it holds
after sufficiently small perturbations as it is shown in the next lemma.

Example 4.8. Let n = 1, m = 2, \=x = 0, and consider the problem \=P whose
describing functions are

\=f(x) = x, \=F1(x) = x, \=F2(x) = 1,

and its cone-valued mapping is

\Theta (y1, y2) =

\Biggl\{ 
cone\{ (cosy1, siny1)t, (1,0)t\} if y1 \in [0, \pi 2 ],

\emptyset otherwise.

Note that

span\Theta (y1, y2) =

\left\{     
\BbbR \times \{ 0\} if y1 = 0,

\BbbR 2 if y1 \in (0, \pi 2 ],

(0,0)t otherwise,

whereas

cs\Theta (y1, y2) =

\Biggl\{ 
\BbbR 2 if y1 \in [0, \pi 2 ],

(0,0)t otherwise.

Consequently, GLICQ holds at \=x for \=F , but CLICQ does not. Neither GLICQ nor
CLICQ hold at x for \=F for any x> 0 sufficiently small.

Lemma 4.9. Assume that CLICQ holds at \=x for \=F . Then, there exist V \in \scrV (\=x),
W \in \scrW V ( \=P ) such that CLICQ holds at x for F for all x\in V and all \scrP \Theta (f,F )\in W .

Proof. The proof follows analogously to the proof of Lemma 4.1. Note that if
CLICQ does not hold at xk for P k =\scrP \Theta (fk, F k), then

[\eta k]tDxF
k(xk) = 0

for some \eta k \in [cs\Theta (F k(xk))] \cap Sm(0,1), and recall that cs\Theta is osc at each
y \in dom\Theta .

Theorem 4.10. Assume that CLICQ holds at \=x \in \Sigma S( \=P ). Then, there exist
V \in \scrV (\=x) and W \in \scrW V ( \=P ) such that the following occur:

(i) Condition (iii) in Theorem 4.6 holds.
(ii) For all P \in W the set \scrL (P, \^x(P )) contains exactly one element which we

denote by \^\theta (P ).
(iii) The mapping W \rightarrow \BbbR m, P \mapsto \rightarrow \^\theta (P ) is continuous.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 967

Proof. (i) and (ii). These conditions follow from Lemma 4.9 after perhaps shrink-
ing V and W .

(iii) By (ii), we have \widehat \scrL V (P ) = \{ \^\theta (P )\} . Hence, by Lemma 3.6, Theorem 4.3 and
[27, Corollary 5.20], we get (iii).

Theorem 4.11. If \=x \in \Sigma S( \=P ), then there exist V \in \scrV (\=x) and W \in \scrW V ( \=P ) such
that

\Sigma (P )\cap V =\Sigma F (P )\cap V =\Sigma S(P )\cap V = \{ \^x(P )\} 

for all P \in W , where \^x(P ) is defined as in Theorem 4.6.

Proof. By choosing V \in \scrV (\=x) and W \in \scrW V ( \=P ) as in the proofs of Lemma 3.4 and
Theorem 4.6, we have

(4.11) \Sigma (P )\cap V =\Sigma F (P )\cap V = \{ \^x(P )\} 

for all P \in W . For simplicity of notation denote intV by V and, after perhaps
shrinking W , fix P \in W with \^x(P ) \in V . Note that V \in \scrV (\^x(P )) and W \in \scrW V (P ).
Hence, by Theorem 4.6, we get

(4.12) \^x(P )\in \Sigma S(P ).

Obviously, \Sigma S(P )\subset \Sigma (P ). Thus, by (4.11) and (4.12), the desired result follows.

For several classes of optimization problems, GMFCQ is a necessary condition for
strong stability; we refer, e.g., to NLP [9]. In the following two sections we consider
further two classes where GMFCQ turns out to be a necessary condition for strong
stability.

5. Application to M-stationary and S-stationary points for MPCC. In
this section we consider the following MPCC:

minf(x) s.t. x\in M [r, s]

with

M [r, s] = \{ x\in \BbbR n| min\{ rl(x), sl(x)\} = 0, l \in L\} ,

where L is a finite index set and all describing functions f : \BbbR n \rightarrow \BbbR and rl, sl : \BbbR n \rightarrow 
\BbbR , l \in L, are assumed to be twice continuously differentiable. For the definition as
well as properties and applications of MPCC, we refer, e.g., to [20, 22, 29, 32, 33].
For \=x\in M [r, s] we define the following active index sets:

\=Ir(\=x) = \{ l \in L| rl(\=x) = 0\} ,
\=Is(\=x) = \{ l \in L| sl(\=x) = 0\} ,
Ir(\=x) = \{ l \in L| rl(\=x) = 0, sl(\=x)> 0\} ,
Is(\=x) = \{ l \in L| rl(\=x)> 0, sl(\=x) = 0\} ,
Irs(\=x) = \{ l \in L| rl(\=x) = 0, sl(\=x) = 0\} .

In particular, there are several stationarity concepts for MPCC; see, e.g., [20]. We
consider two of them: M-stationarity and S-stationarity. In both cases the feasible
set is the same. By Lemma 3.23, we can restrict ourselves to the case | L| \leq n. Next,
we recall the definition of an M-stationary point for MPCC.
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968 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Definition 5.1. A point \=x \in M [r, s] is called an M-stationary point for MPCC
if there exists (\rho ,\sigma )\in \BbbR 2| L| such that

DxL
cc(\=x,\rho ,\sigma ) = 0,

\rho l \cdot rl(\=x) = \sigma l \cdot sl(\=x) = 0, l \in L,
\rho l > 0, \sigma l > 0 or \rho l \cdot \sigma l = 0, l \in L,

where

Lcc(x,\rho ,\sigma ) = f(x) - 
\sum 
l\in L

[\rho l \cdot rl(x) + \sigma l \cdot sl(x)]

is the MPCC-Lagrange function.

Having (1.1) in mind, we consider a corresponding generalized equation with
y= (yr, ys)\in \BbbR 2| L| and

(5.1) \Theta (yr, ys) =

\Biggl\{ 
\Xi m(y

r, ys) if min\{ yrl , ysl \} = 0, l \in L,
\emptyset otherwise,

where

\Xi m(y
r, ys) =

\biggl\{ 
(\rho ,\sigma )\in \BbbR 2| L| 

\bigm| \bigm| \bigm| \bigm| yrl \cdot \rho l = ysl \cdot \sigma l = 0, l \in L,
\rho l > 0, \sigma l > 0 or \rho l \cdot \sigma l = 0, l \in L

\biggr\} 
.

For \Theta given in (5.1) and \=F = (\=r, \=s), GMFCQ does not hold at \=x\in M [\=r, \=s] for \=F if
and only of there exists (\alpha ,\beta )\in S2| L| (0,1) with\sum 

l\in L

[\alpha l \cdot Dx\=rl(\=x) + \beta l \cdot Dx\=sl(\=x)] = 0,(5.2)

\alpha l \cdot \=rl(\=x) = \beta l \cdot \=sl(\=x) = 0, l \in L,(5.3)

\alpha l > 0, \beta l > 0 or \alpha l \cdot \beta l = 0, l \in L.

The following theorem shows that GMFCQ is a necessary condition for strong stability
in this context.

Theorem 5.2. Let \Theta be given as in (5.1), \=F = (\=r, \=s) and \=P = \scrP \Theta ( \=f, \=F ). If
\=x\in \Sigma S( \=P ), then GMFCQ holds at \=x for \=F .

Proof. Suppose contrarily that \=x \in \Sigma S( \=P ) and that GMFCQ does not hold at \=x
for (\=r, \=s). Then, there exists (\alpha ,\beta ) \in \Theta (\=r(\=x), \=s(\=x)) \cap S2| L| (0,1) such that (5.2) holds.
For \varepsilon > 0, define

r\varepsilon i (x) = \=ri(x) + \varepsilon , i\in I0(\alpha )\cap I\=r\=s(\=x),
r\varepsilon i (x) = \=ri(x), i\in L \setminus [I0(\alpha )\cap I\=r\=s(\=x)],
s\varepsilon j(x) = \=sj(x) + \varepsilon , j \in [I0(\beta )\cap I\=r\=s(\=x)] \setminus I0(\alpha ),
s\varepsilon j(x) = \=sj(x), j \in L \setminus [[I0(\beta )\cap I\=r\=s(\=x)] \setminus I0(\alpha )],

and P \varepsilon =\scrP \Theta ( \=f, r\varepsilon , s\varepsilon ). It is easy to see that (\alpha ,\beta )\in \Theta (r\varepsilon (\=x), s\varepsilon (\=x)) and that

(5.4)
\sum 
l\in L

[\alpha l \cdot Dxr
\varepsilon 
l (\=x) + \beta l \cdot Dxs

\varepsilon 
l (\=x)] = 0,
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 969

that is, \=x \in \Sigma F (P \varepsilon ). Hence, by Theorem 4.11, it follows that \=x \in \Sigma S(P \varepsilon ). Note that
Ir\varepsilon s\varepsilon (\=x) = I\ast (\alpha )\cap I\ast (\beta ). Since | L| \leq n, by Theorem 3.25 and Corollary 3.18 we have
Ir\varepsilon s\varepsilon (\=x) \not = \emptyset . For k \in \BbbN define

rkl (x) = r\varepsilon l (x) - 
1

k
, l \in Ir\varepsilon s\varepsilon (\=x), rkl (x) = r\varepsilon l (x), l \in L \setminus Ir\varepsilon s\varepsilon (\=x),

skl (x) = s\varepsilon l (x) - 
1

k
, l \in Ir\varepsilon s\varepsilon (\=x), skl (x) = s\varepsilon l (x), l \in L \setminus Ir\varepsilon s\varepsilon (\=x),

and P k =\scrP \Theta ( \=f, rk, sk). By \=x\in \Sigma S(P \varepsilon ), let xk \in \Sigma S(P k). Since

rkl (\=x) = - 1

k
< 0, l \in Ir\varepsilon s\varepsilon (\=x),

it follows that \=x \not = xk. Assume without loss of generality that

xk  - \=x

\| xk  - \=x\| 
\rightarrow u

for some u\in Sn(0,1). Moreover, by xk \in M [rk, sk], we obtain

r\varepsilon l (x
k)\geq 0, l \in Ir\varepsilon s\varepsilon (\=x), r\varepsilon l (x

k) = 0, l \in Ir\varepsilon (\=x),
s\varepsilon l (x

k)\geq 0, l \in Ir\varepsilon s\varepsilon (\=x), s\varepsilon l (x
k) = 0, l \in Is\varepsilon (\=x).

Hence, by using the mean value theorem and letting k\rightarrow +\infty , we get

Dxr
\varepsilon 
l (\=x)u\geq 0, l \in Ir\varepsilon s\varepsilon (\=x), Dxr

\varepsilon 
l (\=x)u= 0, l \in Ir\varepsilon (\=x),(5.5)

Dxs
\varepsilon 
l (\=x)u\geq 0, l \in Ir\varepsilon s\varepsilon (\=x), Dxs

\varepsilon 
l (\=x)u= 0, l \in Is\varepsilon (\=x).(5.6)

By Corollary 3.18, it follows that there are n linearly independent vectors in the set\bigl\{ 
Dxr

\varepsilon 
l (\=x), l \in \=Ir\varepsilon (\=x), Dxs

\varepsilon 
l (\=x), l \in \=Is\varepsilon (\=x)

\bigr\} 
.

Thus, assume without loss of generality that

(5.7) Dxr
\varepsilon 
l0(\=x)u> 0

for some l0 \in \=Ir\varepsilon s\varepsilon (\=x). By (\alpha ,\beta ) \in \Theta (r\varepsilon (\=x), s\varepsilon (\=x)), multiplying by u in (5.4), using
(5.5) and (5.6), it follows that

0 =
\sum 
l\in L

[\alpha l \cdot Dxr
\varepsilon 
l (\=x)u+ \beta l \cdot Dxs

\varepsilon 
l (\=x)u]

=
\sum 

l\in Ir\varepsilon s\varepsilon (\=x)

[\alpha l \cdot Dxr
\varepsilon 
l (\=x)u+ \beta l \cdot Dxs

\varepsilon 
l (\=x)u]\geq \alpha l0Dxr

\varepsilon 
l0(\=x)u,

which, together with \alpha l0 > 0, yields a contradiction to (5.7). This completes the
proof.

Now, we recall the definition of an S-stationary point for MPCC.
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970 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

Definition 5.3. A point \=x\in M [r, s] is called an S-stationary point for MPCC if
there exists (\rho ,\sigma )\in \BbbR 2| L| such that

DxL
cc(\=x,\rho ,\sigma ) = 0,

\rho l \cdot rl(\=x) = \sigma l \cdot sl(\=x) = 0, l \in L,
\rho l \geq 0, \sigma l \geq 0, l \in Irs(\=x).

Analogously to (5.1), for the S-stationarity we consider a corresponding general-
ized equation with

(5.8) \Theta (yr, ys) =

\Biggl\{ 
\Xi s(y

r, ys) if min\{ yrl , ysl \} = 0, l \in L,
\emptyset otherwise,

where

\Xi s(y
r, ys) =

\biggl\{ 
(\rho ,\sigma )\in \BbbR 2| L| 

\bigm| \bigm| \bigm| \bigm| yrl \cdot \rho l = ysl \cdot \sigma l = 0, l \in L,
\rho l \geq 0, \sigma l \geq 0, l \in I0(yr)\cap I0(ys)

\biggr\} 
.

For \Theta given in (5.8) and \=F = (\=r, \=s), GMFCQ does not hold at \=x\in M [\=r, \=s] for \=F if
and only if there exists (\alpha ,\beta )\in S2| L| (0,1) with (5.2), (5.3), and

\alpha l \geq 0, \beta l \geq 0, l \in I\=r\=s(\=x).

In this context again, GMFCQ is a necessary condition for strong stability. How-
ever, since \Theta is not necessarily closed, the results in section 4 and, particularly,
Theorem 4.11, cannot be applied as in the proof of Theorem 5.2. Instead, we use two
auxiliary results. For simplicity of notation, in the remainder of this section we assume
without loss of generality that I\=r\=s(\=x) = L. Moreover, fix (\alpha ,\beta ) \in \Theta (\=r(\=x), \=s(\=x)) \setminus \{ 0\} 
such that (5.2) holds, and let

I\alpha \beta = I0(\alpha )\cap I0(\beta ),

whenever GMFCQ does not hold at \=x for (\=r, \=s).

Lemma 5.4. Assume that GMFCQ does not hold at \=x for (\=r, \=s). If for some
I \subset I\alpha \beta it holds that

(5.9) dimspan
\bigl\{ 
Dx\=ri(\=x), i\in I\ast (\alpha )\cup I, Dx\=sj(\=x), j \in I\ast (\beta )\cup [I\alpha \beta \setminus I]

\bigr\} 
<n,

then \=x \not \in \Sigma S( \=P ).

Proof. Suppose contrarily that \=x\in \Sigma S( \=P ). For \varepsilon > 0 sufficiently small let

r\varepsilon i (x) = \=ri(x), i\in I\ast (\alpha )\cup I, r\varepsilon i (x) = \=ri(x) + \varepsilon , i\in I0(\alpha ) \setminus I,
s\varepsilon j(x) = \=sj(x), j \in I\ast (\beta )\cup [I\alpha \beta \setminus I], s\varepsilon j(x) = \=sj(x) + \varepsilon , j \in I0(\beta ) \setminus [I\alpha \beta \setminus I],

and P \varepsilon = \scrP ( \=f, r\varepsilon , s\varepsilon ). It is easy to see that \=x \in \Sigma F
0 (P

\varepsilon ). By Theorem 3.19, we get
\=x\in \Sigma in(P \varepsilon ). Hence, by Corollary 3.18, we obtain a contradiction to (5.9).

Lemma 5.5. Assume that GMFCQ does not hold at \=x for (\=r, \=s). Moreover, for
k \in \BbbN and I \subset I\alpha \beta let

M I,k[\=r, \=s] =

\left\{   x\in \BbbR n

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
min\{ \=rl(x), \=sl(x)\} = k - 1, l \in L \setminus I\alpha \beta ,

\=ri(x)= 0, i\in I,
\=sj(x)= 0, j \in I\alpha \beta \setminus I

\right\}   .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 971

If for some I \subset I\alpha \beta it holds that

dimspan
\bigl\{ 
Dx\=ri(\=x), i\in I\ast (\alpha )\cup I, Dx\=sj(\=x), j \in I\ast (\beta )\cup [I\alpha \beta \setminus I]

\bigr\} 
= n.

Then, there exist V I \in \scrV (\=x) and kI \in \BbbN such that

M I,k[\=r, \=s]\cap V I = \emptyset 

for all k\geq kI .

Proof. The proof follows analogously to the part right after taking sequences in
the proof of Theorem 5.2. Note that we mainly use there the feasibility of xk.

Theorem 5.6. Let \Theta be given as in (5.8), \=F = (\=r, \=s), and \=P = \scrP \Theta ( \=f, \=F ). If
\=x\in \Sigma S( \=P ), then GMFCQ holds at \=x for \=F .

Proof. Suppose contrarily that \=x \in \Sigma S( \=P ) and that GMFCQ does not hold at \=x
for \=F . By Lemmas 5.4 and 5.5, there exist V \in \scrV (\=x) and k0 \in \BbbN such that

(5.10)
\bigcup 

I\in I\alpha \beta 

M I,k[\=r, \=s]\cap V = \emptyset 

for all k\geq k0. Let

rkl (x) = \=rl(x) - 
1

k
, l \in L \setminus I\alpha \beta , rkl (x) = \=rl(x), l \in I\alpha \beta ,

skl (x) = \=sl(x) - 
1

k
, l \in L \setminus I\alpha \beta , skl (x) = \=sl(x), l \in I\alpha \beta .

Note that
M [rk, sk]\subset 

\bigcup 
I\in I\alpha \beta 

M I,k[\=r, \=s],

which, together with (5.10), yields

M [rk, sk]\cap V = \emptyset .

By Lemma 3.20, we get a contradiction to \=x\in \Sigma S( \=P ).

We end this section by mentioning the relation between GLICQ and the so-called
MPCC-LICQ; see, e.g., [18]. Note that

span\Xi s(y
r, ys) =

\Bigl\{ 
(\rho ,\sigma )\in \BbbR 2| L| \bigm| \bigm| yrl \cdot \rho l = ysl \cdot \sigma l = 0, l \in L

\Bigr\} 
and that

span\Xi c(y
r, ys) = span\Xi m(y

r, ys) = span\Xi s(y
r, ys).

Hence,

span\Theta (yr, ys) =

\Biggl\{ 
span\Xi s(y

r, ys) if min\{ yrl , ysl \} = 0, l \in L,
\{ 0\} otherwise,

whenever \Theta is given as in (4.6), (5.1), or (5.8). Consequently, in these cases the set-
valued mapping span\Theta is closed, and therefore, GLICQ, CLICQ, and MPCC-LICQ
are equivalent. Thus, by Theorem 4.10, the mapping of Lagrange vectors \^\theta (P ) is well
defined and continuous in a neighborhood of \=P . However, this result has been already
established in [18] for C-stationary points and in [8] for M- and S-stationary points.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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972 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

6. Application to mathematical programs with abstract constraints. In
this section we consider the following mathematical program with abstract constraints:

(6.1) minf(x) s.t. F (x)\in C,

where (f,F ) are defined as in (1.1) and C \subset \BbbR m is a closed and convex set; see, e.g.,
[1]. Recall that the tangent cone and the normal cone of C at y \in C are

TC(y) = cl cone (C  - y),(6.2)

NC(y) = \{ \theta \in \BbbR m| \langle \theta , z  - y\rangle \leq 0, z \in C\} ,

respectively, and that TC(y) =NC(y) = \emptyset , whenever y \not \in C. It is

(6.3) NC(y) = - [TC(y)]
\ast 

and, in particular, TC(y) and NC(y) are closed and convex cones for each y \in C.
We focus on the optimality condition given in [2, section 3.1] which can be written

as

Dxf(\=x) = \theta tDxF (\=x), \theta \in  - NC(F (\=x)).

In particular, we study the strong stability of a stationary point \=x for a problem
\=P =\scrP \Theta ( \=f, \=F ), where \=f , \=F , C are fixed and \Theta (y) = - NC(y). Recall that the Robinson
Constraint Qualification (RCQ) [24] holds at a feasible point \=x for \=F if

(6.4) 0\in int
\bigl[ 
\=F (\=x) +Dx

\=F (\=x)\BbbR n  - C
\bigr] 
.

It is well known that, under the assumptions of this section, RCQ and GMFCQ are
equivalent; see [2, Corollary 2.98].

Lemma 6.1. Let K \subset \BbbR m be a closed and convex cone. Assume that y \in K,
\theta \in K\ast , and that \langle y, \theta \rangle = 0. Then, the following two conditions hold:

(i) y \in rel bdK or \theta \in K\bot .
(ii) \theta \in rel bdK\ast or y \in [K\ast ]\bot .

Proof. We prove (i). The proof of (ii) runs analogously since K =K\ast \ast . Suppose
contrarily that y \in rel intK and that \theta \not \in K\bot . Hence, for \varepsilon > 0 sufficiently small, it
holds that y - \varepsilon projspanK(\theta )\in K and that

\langle y - \varepsilon projspanK(\theta ), \theta \rangle = - \varepsilon \| projspanK(\theta )\| 2 < 0,

which contradicts that \theta \in K\ast .

The next lemma will be used in the proof of Theorem 6.5, and it is a generalization
of Stiemke's theorem of the alternatives [30].

Lemma 6.2. Let A \in \BbbR m\times n and K \subset \BbbR m be a closed and convex cone. Then,
exactly one of the following two conditions hold:

(i) There exists y \in rel intK with Aty= 0.
(ii) There exists u\in \BbbR n with Au\in K\ast \setminus K\bot .

Proof. First, we show that (i) and (ii) cannot hold both. Suppose contrarily that
there exist y \in rel intK and u \in \BbbR n with Aty = 0 and Au \in K\ast \setminus K\bot , respectively.
Note that

\langle y,Au\rangle = \langle Aty,u\rangle = 0,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 973

which is not possible according to Lemma 6.1 (i). Second, we show that if (i) does
not hold, then (ii) holds. If

kerAt \cap rel intK = \emptyset ,

then, by Theorem 2.2 and by noting that kerAt is a subspace, we obtain \omega \in \BbbR m \setminus \{ 0\} 
with

\langle \omega ,y1\rangle = 0, y1 \in kerAt,(6.5)

\langle \omega ,y2\rangle \geq 0, y2 \in K.(6.6)

By (6.5) and (6.6), we get \omega = Au for some u \in \BbbR n and that \omega \in K\ast , respectively.
Furthermore, according to Theorem 2.2, there exists \=y2 \in K with \langle \omega , \=y2\rangle \not = 0. Thus,
\omega \not \in K\bot , which completes the proof.

Remark 6.3. In Lemma 6.2, if K is a subspace, then (i) is fulfilled with y= 0 and
(ii) cannot hold because of K\ast \setminus K\bot = \emptyset . If we have K =\BbbR m

+ , then Lemma 6.2 yields
Stiemke's theorem of the alternatives [30].

Lemma 6.4. Assume that \=x \in \Sigma ( \=P ) and that GMFCQ does not hold at \=x for \=F .
If \=F (\=x)\in rel intC, then \=x \not \in \Sigma S( \=P ).

Proof. By \=F (\=x)\in rel intC, choose V \prime \in \scrV ( \=F (\=x)) with

V \prime \cap dom\Theta = V \prime \cap C = V \prime \cap spanC.

Moreover, we have TC( \=F (\=x)) = spanC. Hence, by (6.3), we obtain

span\Theta ( \=F (\=x)) =\Theta ( \=F (\=x)) = [TC( \=F (\=x))]
\ast =C\bot .

Thus,

dimspan [V \prime \cap dom\Theta ] + dim[span\Theta ( \=F (\=x))] = dimspanC +dimC\bot =m.

By Theorem 3.25 (ii) and (iii), we get \=x \not \in \Sigma S( \=P ).

The next theorem states that GMFCQ is a necessary condition for strong stability.

Theorem 6.5. If \=x\in \Sigma S( \=P ), then GMFCQ holds at \=x for \=F .

Proof. Fix V \in \scrV (\=x) and W \in \scrW V ( \=P ) as in Theorem 4.6 (iii). Suppose contrarily
that GMFCQ does not hold at \=x for \=F , that is, there exists \=\eta \in NC( \=F (\=x))\cap Sm(0,1)
with

\=\eta tDx
\=F (\=x) = 0.

Since NC( \=F (\=x)) is a nonempty convex set, by [26, Theorem 6.2], it follows that
rel intNC( \=F (\=x)) \not = \emptyset . By Lemma 2.1 (i), fix \eta R \in rel intNC( \=F (\=x)) \cap Sm(0,1) ar-
bitrarily close or perhaps equal to \=\eta . Next, choose a rotation matrix R \in \BbbR m\times m

arbitrarily close or perhaps equal to the identity matrix with \eta R =R\=\eta . Now, define

FR(x) = \=F (x) + (RDx
\=F (\=x) - Dx

\=F (\=x))(x - \=x),

and let PR =\scrP  - NC ( \=f,FR). Note that

(6.7) [\eta R]tDxF
R(\=x) = \=\eta tRtRDx

\=F (\=x) = \=\eta tDx
\=F (\=x) = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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974 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

and that FR(\=x) = \=F (\=x). Hence, \=x \in \Sigma F (PR). By Theorem 4.11, we obtain \=x \in 
\Sigma S(PR). Fix v \in rel intC, and for k \in \BbbN let

\lambda k = 1+
1

k
,

F k(x) = \lambda kFR(x) + (1 - \lambda k)v,

P k =\scrP  - NC ( \=f,F k).

By Lemma 6.4, we have FR(\=x) \in rel bdC. Applying Lemma 2.1 (ii) with \lambda = \lambda k, we
obtain

F k(\=x) = \lambda kFR(\=x) + (1 - \lambda k)v \not \in C,

and, hence, \=x \not \in \Sigma (P k). Let xk \in \Sigma (P k) for k sufficiently large. By the convexity of
C, we get

FR(xk) =
1

\lambda k
F k(xk) +

\biggl( 
1 - 1

\lambda k

\biggr) 
v \in C,

which implies that

(6.8)
FR(xk) - FR(\=x)

\| xk  - \=x\| 
\in TC(FR(\=x)).

By Theorem 4.6, it follows that xk \rightarrow \=x. Assume without loss of generality that

xk  - \=x

\| xk  - \=x\| 
\rightarrow u

for some u\in Sn(0,1). By letting k\rightarrow +\infty in (6.8), we obtain

(6.9) DxF
R(\=x)u\in TC(FR(\=x))

and, by (6.3),

\Theta (FR(\=x)) = - NC(F
R(\=x)) = [TC(F

R(\=x))]\ast .

Therefore, by (6.7), (6.9), and applying Lemma 6.2 with K = \Theta (FR(\=x)), it follows
that

(6.10) DxF
R(\=x)u\in \Theta (FR(\=x))\bot .

By Theorem 3.25 (i) and (6.10), we get a contradiction to \=x \in \Sigma S(PR), which com-
pletes the proof.

The following lemma will be used in the proof of Theorem 6.8 and it is a gener-
alization of Gordan's theorem of the alternatives [7].

Lemma 6.6. Let A \in \BbbR m\times n and K \subset \BbbR m be a closed and convex cone. Then,
exactly one of the following two conditions hold:

(i) There exists y \in K \setminus linK with Aty= 0.
(ii) There exists u\in \BbbR n with Au\in rel intK\ast .

Proof. The proof follows analogously to the proof of Lemma 6.2 by using linK =
[K\ast ]\bot and applying Lemma 6.1 (ii).

Remark 6.7. An application of Lemma 6.6 with K =\BbbR m
+ yields Gordan's theorem

of the alternatives [7].
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STRONGLY STABLE POINTS FOR GENERALIZED EQUATIONS 975

As mentioned above, the constraint qualifications RCQ and GMFCQ are equiva-
lent for the class of problems considered in this section. Several characterizations of
RCQ can be found in [2]. The next theorem presents yet another one. Note that an
analogous characterization holds in the setting of Banach spaces whenever intC \not = \emptyset ;
see [2, Lemma 2.99].

Theorem 6.8. Let \=x be a feasible point for \=F . Then, GMFCQ holds at \=x for \=F
if and only if the following both conditions hold:

(i) kerDx
\=F (\=x)t \cap (C  - \=F (\=x))\bot = \{ 0\} .

(ii) There exists u\in \BbbR n with Dx
\=F (\=x)u+ \=F (\=x)\in rel intC.

Proof. First, we find expressions for the sets linK and rel intK\ast for K =
 - NC( \=F (\=x)). Note that

linK =
\bigl\{ 
\theta \in \BbbR m| \langle \theta , z  - \=F (\=x)\rangle \leq 0\forall z \in C

\bigr\} 
\cap 
\bigl\{ 
\theta \in \BbbR m| \langle \theta , z  - \=F (\=x)\rangle \geq 0\forall z \in C

\bigr\} 
,

which yields
linK = (C  - \=F (\=x))\bot .

Moreover, by (6.2) and (6.3), it holds that

rel intK\ast = rel intTC( \=F (\=x)) = rel int [cl cone (C  - \=F (\=x))].

By consecutively applying [26, Theorem 6.3, Corollaries 6.8.1 and 6.6.2], it follows
that

rel int [cl cone (C  - \=F (\=x))] = rel int [cone (C  - \=F (\=x))]

= cone [rel int (C  - \=F (\=x))]

= cone (rel intC  - \=F (\=x)).

Thus, we have
rel intK\ast = cone (rel intC  - \=F (\=x)).

Second, note that (ii) is equivalent to the existence of u0 \in \BbbR n with

Dx
\=F (\=x)u0 \in cone (rel intC  - \=F (\=x)).

Let A=Dx
\=F (\=x). Now, we show that GMFCQ implies (i) and (ii). If GMFCQ holds

at \=x for \=F , then

(6.11) kerAt \cap K = \{ 0\} ,

which, in particular, implies that

(6.12) kerAt \cap linK = \{ 0\} .

Hence, (i) holds. Moreover, by (6.11) and (6.12), it follows that

kerAt \cap (K \setminus linK) = \emptyset .

Therefore, by Lemma 6.6, we obtain (ii). The proof of that (i) and (ii) together imply
GMFCQ runs analogously.

Remark 6.9. In Theorem 6.8, if C is a closed and convex cone, the condition (i)
can be rewritten as

kerDx
\=F (\=x)t \cap C\bot = \{ 0\} .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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976 G\"UNZEL, ESCOBAR, AND R\"UCKMANN

That is, \=F (\=x) does not play any role in (i). To see this, observe that

spanC = span(C  - \=F (\=x)).

Remark 6.10. For the standard nonlinear program (1.2), the conditions (i) and
(ii) in Theorem 6.8 are equivalent to the conditions (i) and (ii) in MFCQ, respectively;
see Remark 3.10.
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