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Abstract: Background: Minimal change disease (MCD), a major cause of nephrotic syndrome, is usu-
ally treated by corticosteroid administration. MCD unresponsiveness to therapy and recurrences are
nonetheless frequently observed, particularly in adults. To explore MCD-related pathogenetic mecha-
nisms and to identify novel drug targets ultimately contributing to novel therapeutic avenues with a
certain specificity for MCD, we compared glomerular transcriptomes from MCD with membranous
nephropathy (MN) patients and healthy controls. Methods: Renal biopsies from adult patients with
MCD (n = 14) or MN (n = 12), and non-diseased controls (n = 8) were selected from the Norwegian
Kidney Biopsy Registry. RNA for 75 base-pair paired-end RNASeq were obtained from laser capture
micro-dissected (LCM) glomeruli from FFPE sections. Transcriptional landscapes were computed by
combining pathway-centered analyses and network science methodologies that integrate multiple
bioinformatics resources. Results: Compared to normal glomeruli, cells from MCD displayed an
inflammatory signature apparently governed by the IL1 and IL7 systems. While enrichment of IL1
production and secretion was a shared feature of MCD and MN compared to normal tissue, responses
involving IL7 pathway activation were unique to MCD. Indeed, IL7R expressed by glomeruli was
the most upregulated gene of the interleukin family in MCD versus normal controls. IL7 pathway
activation was paralleled by significant enrichment in adaptive immune system processes and tran-
scriptional regulation and depletion in pathways related to energy metabolism and transcription.
Downregulation of these organ function-related themes again occurred predominately in MCD and
was significantly less pronounced in MN. Immunofluorescence and immunohistochemistry, respec-
tively, confirmed the expression of phosphorylated IL-7 receptor alpha (IL7RA, CD127) and IL12
receptor beta 1 (IL12RB1) proteins. Conclusions: Gene expression profiling of archival FFPE-biopsies
identifies MCD-specific signatures with IL7RA and IL12RB1 as novel targets for MCD treatment.

Keywords: minimal change disease; membranous nephropathy; transcriptome; IL-7; IL-12

1. Introduction

Minimal change disease (MCD) reflects a very common cause of idiopathic nephrotic
syndrome (INS). It usually presents with proteinuria, hyperlipidemia, edema and hypoal-
buminemia as the most common symptoms, and it accounts for 70–90% of all cases of INS
in children >1 year old and for 10–15% in adults [1]. Frequent relapses will eventually lead
to decreasing kidney function.
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Response to steroid treatment represents a central prognostic factor, as unrespon-
sive patients will eventually evolve towards chronic kidney disease (CKD). Unlike other
glomerular diseases, MCD is usually characterized by a responsiveness with complete
remission of proteinuria following the initiation of corticosteroid treatment [2,3]. However,
previous studies [2,3] have underlined that response in children is faster than in adults and
that adults have a higher probability of relapse than children.

Although pathogenetic mechanisms of MCD are still, by and large, unclear, a num-
ber of studies consistently indicate that immune system dysregulation(s) do play a major
role [1]. This may be particularly relevant regarding the induction of podocyte alterations af-
fecting glomerular filtration. Early studies suggested a T-cell involvement based on clinical
observations [4], such as measles-induced remission of MCD, and the association of relapse
with decreased levels of regulatory T-cells [5]. Moreover, a role of B-cells has emerged,
especially related to the reported effectiveness of rituximab in MCD treatment [6,7].

On the other hand, intriguingly, a higher frequency of MCD has been observed in
patients with hematologic malignancies and, in particular, Hodgkin’s lymphoma [8].

In the past, it has been proposed that ill-defined glomerular permeability factor(s)
produced by B- or T-cells might be involved in MCD pathogenesis [9] and different cy-
tokines have been suggested to play this role. Interleukin 13 (IL-13) was shown to stimulate
podocyte protein trafficking and proteolysis in vitro [10], and overexpression of IL-13 in
rats was found to induce an MCD-like nephropathy [11]. However, other cytokines, such
as IL-2, IL-4, IL-8, IL-18, and TNF-α, have also been suggested as possible driving forces in
MCD pathogenesis [12,13]. In particular, expression of IL-7 receptor (IL-7R) was reported
to be induced in murine podocytes in adriamycin (ADR)-induced mouse nephropathy [14].
Notably, however, data regarding human disease is scarce.

Omics-related technologies are providing novel insights into the pathogenetic back-
ground of human disease. Most importantly, their high potential for the analysis of kidney
diseases is emerging [15]. However, there is a paucity of clinical studies [16–18], and in
particular, MCD has not been investigated to a great extent. To fill this knowledge gap,
here we investigated transcriptional profiles of microdissected glomeruli from kidney
biopsies from patients with MCD by RNA sequencing (RNASeq) and compared them with
those obtained from non-diseased controls and primary membraneous nephropathy (MN)
patients. For our studies, we have used archival, formalin-fixed and paraffin-embedded
(FFPE) kidney biopsies. Although FFPE material is not ideal compared to fresh tissues, we
have previously demonstrated a close concordance of RNAseq data between FFPE and
fresh kidney tissues [19]. Establishing and refining such methodology is indeed key to
enabling FFPE material, often representing invaluable disease phenotypes and decades of
documented treatment responses observed in clinics, to be used in studies in the field of
enabling precision medicine based on omics technologies.

2. Patients, Materials and Methods
2.1. Patients

Renal biopsies from largely untreated adult patients with MCD (n = 14, females n = 6,
males n = 8; age: 50 ± 16 years; eGFR 90 ± 29 mL/min/1.73 m2; proteinuria 8.7 ± 3.7 g/d),
with primary membranous nephropathy (MN; PLA2R positive: n = 6, females n = 2, males
n = 4, age 58 ± 16, eGFR 90 ± 14 mL/min/1.73 m2, proteinuria 3.4 ± 4.4 g/d; and PLA2R
negative: n = 6, females n = 4, males n = 2, age 53 ± 18, eGFR 85 ± 18 mL/min/1.73 m2,
proteinuria 2.4 ± 2.6 g/d), as well as with normal kidney histology (N_CTRL; n = 8, fe-
males n = 4, males n = 4, age 27 ± 11 years, eGFR 113 ± 25 mL/min/1.73 m2, proteinuria
0.2 ± 0.2 g/d), were selected from the Norwegian Kidney Biopsy Registry. Other primary
or systemic kidney diseases, such as diabetic and/or hypertensive nephropathy or vasculi-
tis were exclusion criteria. Among the MN patient group, 1/12 had concurrent diabetes
type 2, 10/12 subjects displayed coexisting, largely ACEI or ARB (angiotensin receptor
blocker) treated, hypertension, and 3/12 had already received corticosteroid-based im-
munosuppression. Among the MCD subjects, 3/14 had untreated hypertension, and none
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were on documented immunosuppressive treatment at the time of biopsy, respectively;
2/14 had a history of smoking, and none had diabetes. All controls were untreated.

Due to the paucity of non-diseased kidney biopsies, control samples from patients
younger on average than those with MCD and MN had to be used. In all cases, informed
consent was provided.

2.2. RNA Purification and Sequencing

Formalin-fixed and paraffin-embedded (FFPE) sections of stored kidney biopsy tissue
were microdissected, as previously reported [16], to obtain glomerular cross-sections. RNA
was extracted and purified from enzymatically digested specimens using the High Pure
FFPE RNA Isolation Kit® (Roche Molecular Systems, Inc., Pleasanton, CA, USA) according
to previously described techniques [20]. RNA libraries were generated using the TruSeq
RNA Access kit (Illumina Inc.,San Diego, CA, USA) and sequenced (75 base-pair paired-end
RNAseq) according to protocols previously utilized by our group [21,22]. Gene expression
data are available in the GEO repository through accession number GSE216841.

2.3. Processing Gene Expression Data Prior to Mapping Transcriptional Landscapes

Based on unsupervised clustering and PCA correlation analysis, potential batch effects
within the RNASeq data were mitigated using Surrogate Variable Analysis (SVA) correction
in combination with counts per million (CPM) normalization. Subsequently, using a
standard DESeq2 workflow, including shrinkage of log2 fold changes (slfc) via the adaptive
shrinkage estimator from the ashr package, differential gene expression was computed to
compare all groups [23]. The resulting lists comprising 17,561 genes passing all criteria set
by the analyses described below were subsequently ranked based on slfc.

2.4. Mapping Transcriptional Landscapes

To avoid introducing arbitrary significance thresholds prior to the contextualization of
changes in gene expression as a whole, a gene set (GS)-based approach to analyzing these
data was chosen [24]. In this context, a GS is an a priori-defined group of genes annotated
to reflect one specific trait that its members share [24].

A total of 26,251 GSs compiled, curated and updated by research consortia, such as the
Gene Ontology project and Reactome were interrogated. The method for assembling this
GS collection is described in [25]. For this study, the resources were compiled on 1 March
2019 and downloaded from http://download.baderlab.org/EM_Genesets/ (accessed on
15 March 2019) were they are archived as well.

Of the 26,251 GSs, 10,325 passed the default size thresholds of >10 and <500 member
genes, therewith mitigating the limitations of gene set enrichment analyses (gsea) with
respect to very small or very large GSs. Subsequently, the ranked lists obtained as described
above were interrogated for significant enrichment or depletion patterns formed by the
10,325 GSs’ member genes. Specifically, fast gene set enrichment analyses (fgsea) [26], a
speed-optimized variant of the original gene set enrichment analysis algorithm [24], were
used for that purpose.

To comprehensively interpret the results generated via fgsea, they were mapped using
concepts and algorithms, as described in detail by us previously [27–30]. Briefly, any GS
yielding a significant enrichment or depletion signal (adjusted p-value < 0.001), with at
least 33.34% of its member genes comprised in its leading edge (LE) when comparing MCD
vs. N_CTRL was mapped as a node within the basic network. The latter is organized by
forces of attraction (edge-weights) proportional to pair-wise overlap in gene set member
genes in case their LEs’ shared at least 5% of their member genes when comparing MCD
vs. N_CTRL.

Markov cluster algorithm (MCL), considering the edge-weights and all other settings
set on default, was applied to identify clusters within the network. In technical terms,
the clusters identified by MCL are identified via simulating the stochastic flow within the
network [31]. The resulting clusters were then interpreted in detail, based on the gene sets’

http://download.baderlab.org/EM_Genesets/
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names, fgsea-related statistics, as well as distribution and function of their LE-genes, to
infer a biological theme from each cluster. The final visualization was achieved using the
yFiles organic layout algorithm in Cytoscape 3.7.1 [32]. Subsequently, results from the other
comparisons relevant here (MCD vs. MN and MN vs. N_CTRL) were also mapped on this
initial network structure.

For individual genes, when members of GSs pass all significance thresholds listed
above, an adjusted p-value of <0.05 and a shrunk fold change criterion of >2 for upregulation
and <−2 for downregulation were required to be considered significant.

2.5. Interleukin Interactome

A comprehensive map of the interleukin ligand/receptor interactome was derived
based on Hugo gene nomenclature committee (HGNC) families 42, 43, 33, 5, on published
literature reviews [33–38], and on String DB interactions for cytokines with no established
binding partners. This interactome was imported into Cytoscape 3.7.1 [32], and a yFiles
orthogonal layout was applied. Subsequently, all cytokine ligand/receptor data were
mapped onto this network for comparative evaluation.

2.6. Immunohistochemistry

To optimize immunohistochemical (IHC) staining protocols, several different antibod-
ies were used on test tissues, and Proteinatlas (Proteinatlas.com) recommendations were
carefully followed. Finally, IHC was used for IL-12 receptor beta 2 (IL12RB2) and human
AXL detection, and immunofluorescence (IF) for IL-7 receptor alpha (CD127).

For IL12RB2, we used an antibody from Sigma Aldrich (Burlington, MA, USA) cat.no
HPA024168 with a dilution of 1:1000 for primary antibody, and an incubation time of 1 h in
a humidity chamber.

For AXL detection, we used an Invitrogen 7E10 monoclonal antibody from Ther-
mofisher (Waltham, MA, USA) cat. no MA5-15504, with a dilution of 1:10,000 and 1 h
incubation time in a humidity chamber.

For the detection of IL-7 receptor alpha (CD127), we used immunofluorescence due to
a lack of signaling by using standard IHC on tonsil test tissues. After additional test-rounds,
we used an antibody from Abcam (Cambridge, UK) cat. no. ab118527 recognizing phospho-
rylated CD127 with a dilution of 1:100 and incubation time of 1 h in a humidity chamber.

3. Results
3.1. Network-Based Delineation of MCD’s Glomerular Transcriptional Landscape

As shown in Figure 1, the top section shows clusters 1–5; an analysis of the net-
work delineating MCD’s glomerular transcriptional landscape led to the identification
of 51 GSs, e.g., pathways, significantly enriched in MCD compared to normal controls
(N_CTRL). Concurrently, 95 GSs pathways appeared to be significantly depleted (Figure 1;
bottom section, clusters 6–10).

By applying previously described methodologies [27–30], we could resolve redun-
dancy via MCL-clustering and subsequent detailed interpretation of the clustered network
areas considering GSs’ names, fgsea-parameters and the specific genes underlying their
significant enrichment or depletion signal. On this basis, each cluster could be summarized
and annotated with a term denoting the biological theme that the changes as a whole were
associated with (Figures 1–3).

In particular, themes upregulated in MCD vs. N_CTRL (Figure 1) did delineate a
significant inflammatory component comprising activation of the pathways associated with
response to IL-7 (Figure 1; Cluster 1), IL-12 and IFN-gamma (Figure 1; Cluster 2), connected
to pathways pertaining to the modulation of adaptive immune responses.
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Figure 1. MCD’s glomerular transcriptional landscape delineating contextualized alterations in gene
expression between MCD and N_CTRL. Any GS passing the significance thresholds of adjusted
p < 0.001 and with at least 33.34% of its member genes comprised in its leading edge (LE) when
comparing MCD vs. N_CTRL was mapped as a node within the basic network. Onto this scaffold, the
parameters listed in the legend for the comparison of MCD vs. N_CTRL were mapped. By keeping
all mapping parameters constant, this figure is directly comparable with Figures 2 and 3.
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Figure 2. MCD’s glomerular transcriptional landscape delineating contextualized alterations in gene
expression between MCD and MN. Any GS passing the significance thresholds of adjusted p < 0.001
and with at least 33.34% of its member genes comprised in its leading edge (LE) when comparing
MCD vs. N_CTRL was mapped as a node within the basic network. Onto this scaffold, the parameters
listed in the legend for the comparison of MCD vs. MN were mapped. By keeping all mapping
parameters constant, this figure is directly comparable with Figures 1 and 3.
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Figure 3. MCD’s glomerular transcriptional landscape delineating contextualized alterations in
gene expression between MN and N_CTRL. Any GS passing the significance thresholds of adjusted
p < 0.001 and with at least 33.34% of its member genes comprised in its leading edge (LE) when
comparing MCD vs. N_CTRL was mapped as a node within the basic network. Onto this scaffold,
the parameters listed in the legend for the comparison of MN vs. N_CTRL were mapped. By keeping
all mapping parameters constant, this figure is directly comparable with Figures 1 and 2.
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In addition, genes governing IL-1 beta production and secretion formed an additional
theme (Figure 1; Cluster 3), in turn, connected to significantly enriched GS, suggesting
the presence of gene expression patterns specific for granulocyte chemotaxis (Figure 1;
Cluster 4). Despite such signal, however, we could not detect significant amounts of
granulocytes in our kidney biopsies, and in general, there was an expected downstream
effect related to this specific type of immune activation. Lastly, the upregulation of genes
related to vasculature development underlie the only enriched cluster theme apparently
not directly associated with immune system activation (Figure 1; Cluster 5).

Possibly as a consequence of the inflammatory milieu described above, the five bi-
ological themes identified by clustering GSs depleted in MCD vs. N_CTRL (Figure 1;
clusters 6–10) exclusively pertained to GSs associated with glomerular homeostasis and
function. They include themes such as ribosome biogenesis, transcription and translation,
symporter activity, cellular respiration and metabolism.

3.2. Specificity of Alterations Mapped within the MCD vs. N_CTRL-Focused Network

To assess the specificity of the alterations detected in MCD vs. N_CTRL, we explored
the glomerular transcriptome in MN as a secondary reference group. Mapping fgsea
adjusted p-values for MCD vs. MN (Figure 2) within the same network structure derived
from MCD vs. N_CTRL (Figure 1) allowed for a direct comparison.

For the five previously observed inflammation-related GS-clusters (Figures 1 and 2;
clusters 1–5), a dichotomy was apparent. While the expression of the IL-1, chemotaxis and
vasculature-related themes was comparable in MCD and MN (adjusted p-value > 0.05),
clusters associated with response to IL-7 and IL-12, including adaptive immune response
and regulation of effector functions showed a significant enrichment in MCD as compared
to MN (Figure 2; clusters 1 and 2). GS involved at different steps of gene expression regula-
tion and transcription were also found enriched in MCD when compared to MN glomeruli.

Importantly, a comparison of MN vs. N_CTRL transcriptomic profiles further under-
lined this apparent MCD-specificity, since of the 51 GSs enriched in MCD vs. N_CTRL,
only two, namely Regulation of IL-1 Beta Production and Regulation of IL-1 Beta Secretion,
yielded an adjusted p-value < 0.05 when assessed in MN vs. N_CTRL glomeruli. (Figure 3;
clusters 1–5).

Regarding clusters delineating downregulated themes (Figure 1 clusters 6–10), metabolic
reprogramming appeared to represent a particularly prominent feature of MCD as well.
Indeed, the vast majority of these GSs, with special reference to cellular respiration, were
also significantly depleted when comparing MCD with MN while being unchanged in MN
vs. N_CTRL specimens (Figures 2 and 3; Cluster 7).

A more detailed assessment of alterations in biological themes for all comparisons
within the three study groups was obtained by plotting adjusted p-values per theme
(Figure 4), indeed confirming that all GSs comprised in the IL-7 and IL-12-governed clusters
are exclusively enriched in an MCD-context (Figure 4, Response to IL7 and transcriptional
regulation and IL12, IFN and regulation of lymphocyte-mediated immunity). This is in contrast
with other upregulated themes (Figure 4, biological themes 3–5). For GSs depleted in
MCD vs. N_CTRL (Figure 4, biological theme 6–10), significant differential expression with
MCD-specificity was apparent only for cellular respiration (Figure 4, biological theme 7).

Briefly, computation and interpretation of transcriptional landscapes provided a sys-
tematic data-driven framework suggesting that, in contrast to MN, glomerular tissue and
potentially organ function of patients with MCD may be governed to an extent by IL-7
and IL-12.

3.3. IL-7 and IL-12-Mediated Signaling Member Genes

A more detailed assessment of all member genes belonging to the two key pathways
identified via network analyses above is presented in Figure 5. Indeed, coordinated
upregulation of IL-7-mediated signaling distinguished MCD compared to MN (Figure 5A,B)
that, in turn, remained remarkably similar to N_CTRL (Figure 5C). Prominently involved
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genes encode the IL-7 receptor alpha (CD127) and Jak/Stat signal transduction pathway, in
addition to several histones regulating gene expression (Figure 5A).
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Figure 4. Violin plots displaying directional adjusted p-values for all comparisons per biological theme
identified as significantly altered in MCD vs. N_CTRL. Adjusted p-values were log-transformed
(log10), and the algebraic sign was assigned according to positive and negative enrichment signal,
respectively. The dashed black horizontal line corresponds to an adjusted p-value 1, whereas the
dashed grey horizontal lines indicate significance levels of adjusted p-values of 0.05, 0.01 and 0.001
for enrichment and depletion, respectively, as indicated.

Regarding IL-12-signaling, genes significantly upregulated in MCD vs. the reference
groups (Figure 5D–F) included, as expected, those encoding IL-12 receptor alpha and beta
chains but also tyrosine kinase 2, IL-1 beta, and CCL3, a chemokine attracting myeloid cells.
This pattern was absent when comparing MN vs. N_CTRL samples (Figure 5F).

3.4. Mapping Alterations within the Interleukin Interactome

To gain additional insights into the interleukin system as a whole and potentially
activated in MCD glomeruli, we mapped the respective transcriptome data onto a curated
interleukin and interferon interactome (Figure 6A–C).

These analyses further support significantly higher expression and specificity of the
IL7R alpha gene and genes encoding for the IL12R heterodimer, i.e., L12RB1 and IL12RB2,
in MCD. Most importantly, neither IL-7 nor IL-12 gene expression was found to be sig-
nificantly upregulated in any of the conditions studied, thus suggesting paracrine or
endocrine pathways or regulatory mechanisms other than transcriptional regulation within
glomerular tissue. Considering interleukin biology, the former appears more likely since
MCD’s pathological hallmarks do not support a significant presence of immune cell subsets
commonly associated with IL-7 and IL-12 production in the target organ.
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On the other hand, significant upregulation of the IL-33/IL-1RL1 ligand/receptor
pair, suggesting possible autocrine activation signals relevant for MCD, was also observed.
Based on the implication of IL-33 in diabetic kidney diseases [39], this observation warrants
the inclusion of the IL-33/IL1RL1 axis in further investigations.

3.5. Immunohistochemistry and Immunofluorescence Staining for IL7R, IL12RB2 and Human
AXL Tyrosine Kinase Receptor

Immunohistochemical and immunofluorescence methods were used to validate at
the protein level and further investigate the observed increased expression of IL7R and
IL12RB2 genes. As an additional protein, the expression of AXL tyrosine kinase, a well-
known marker of renal inflammation [40] was also explored.

Consistent with gene expression data, phosphorylated IL7R alpha and IL12RB2 ex-
pression could be detected at the protein level by immunofluorescence or immunohisto-
chemistry, respectively, in the same 3 of 11 MCD samples, but not in control glomeruli
(Figure 7, panels A–D).

Figure 7. Immunofluorescence of IL7R alpha with normal control and MCD (panels A,B), and
immunohistochemistry of IL12RB2 with normal control and MCD (panels C,D), as well as of AXL
tyrosine kinase receptor normal control and MCD (panels E,F). Red arrows point toward positive
glomerular areas in (B,D,F). MCD panels (B,F) show fine granular positivity along the capillary walls.
Positivity in MCD panel (D) is mostly located in nuclear and perinuclear areas of podocytes. Control
samples are either entirely negative (A,E) or show clearly less and possibly unspecific positivity (C).
Scale bars in all images are 25 µm.

The remaining 7 of 11 MCD patients were negative or only very weakly positive. IL7R
alpha synthesis in MCD was visible mostly along the capillary walls (Figure 7, panel B) and
IL12RB2 production predominantly in podocytes (Figure 7, panel D) but not in controls,
respectively (Figure 7, panels A and C).

AXL protein expression was detectable in 7 of 11 MCD samples along the capillary
walls but not in controls (Figure 7, panels E and F). However, on the mRNA level, Axl was
overabundant only in MN but not in MCD patients (data not shown).

4. Discussion

MCD pathogenesis is unclear. However, current consensus supports the main role
of the immune system, with dysregulation of both T- and B-cells. Moreover, a variety of
interleukins and inflammatory components have been reported to be involved.
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Our study identifies patterns of altered glomerular gene expression shared by MCD
and MN and an MCD-specific transcriptional profile of potential clinical significance.

In particular, we have observed an inflammatory scenario characterized by significant
enrichment of GSs involved in IL-1 production and secretion, vascular cell activation, and,
to some extent, those promoting granulocyte chemotaxis, in both MCD and MN glomeruli.
These data are largely consistent with past studies, showing high expression of IL-1 and
IL-1 receptors by podocytes and endothelial cells in both MN and MCD [41], and validate
the integrity of our experimental technique.

Applying the same methodology, we observed an overexpression of genes associated
with the response to IL-7 and IL-12, which appeared to represent a specific MCD not present
in MN.

IL-7 is known to be produced by a variety of stromal cells and is of essential relevance
in lymphoid cell homeostasis. Importantly, IL-7 production by human cultured podocytes
has previously been reported [42]. Moreover, IL-7 receptor alpha was shown to be expressed
by cultured human renal endothelial cells and in perivascular areas of human lupus
nephritis kidney biopsies [43]. In addition, increased soluble IL-7R alpha in serum has been
reported to reliably mirror the lupus nephritis clinical course [43]. The recent detection of
anti-nephrin autoantibodies in MCD further highlights a possible link between the two
disease entities [44].

More recently, podocytes simulation by IL-7 was shown to impair the glomerular
filtration barrier, thus leading to nephrotic syndrome in adriamycin-treated rats. Moreover,
IL-7 induced podocyte apoptosis with actin cytoskeletal disorganization and suppressed
nephrin activation in experimental models [14].

Glomerular transcriptome data indeed indicate that genes involved in IL-7 receptor
signaling are upregulated in MCD, as compared to MN and control samples. Notably, in a
fraction of samples, expression of activated, e.g., phosphorylated, IL-7R alpha (CD127) pro-
tein was detectable by immunofluorescence staining. However, intriguingly, no evidence
of increased expression of genes governing IL-7 production was observed, suggesting an
ongoing modulation of glomerular responsiveness to a distantly produced cytokine.

IL-12 is classically produced by myeloid cells, including macrophages, dendritic cells
and granulocytes, and plays key roles in Th1 polarization, NK-cell activation and IFN-
gamma production [33,34]. However, IL-12 has previously been shown to be also produced
by murine tubular cells in an autoimmune experimental model [45]. Moreover, in the past,
human mesangial cells were reported to produce IL-12 in vitro [46]. However, similarly to
IL-7, our data appear to suggest that responsiveness to, rather than production of IL-12, is
augmented in MCD glomeruli.

Within this context, although IL-12 beta 1 low-affinity receptor expression in mesangial
cells was previously reported [38], expression of the beta 2 chain, a key component of
the high-affinity receptor, was not described thus far. Our data indicate that IL-12 beta
2 receptor expression is detectable at the gene and protein level in MCD glomeruli.

Two additional important aspects deserve special attention. First, GSs involved in
the adaptive immune response, including its effector phase and somatic recombination
of immune receptors, were significantly enriched in MCD compared to MN samples.
Furthermore, in MCD glomeruli, we observed a concordant decrease in the expression of
genes involved in cellular respiration and oxidative phosphorylation, compared with MN
and control samples. This is typically detectable during active immune responses involving
both the innate and adaptive immune systems characterized by increased engagement of
the glycolytic metabolic pathway [47].

On the other hand, MCD glomeruli presented gene expression patterns resulting in
the enrichment of GSs involved in the control of gene expression at the DNA and RNA
level, as compared to both MN and control samples.

These data suggest that a systemic immune response might be responsible for the
inflammatory scenario emerging from MCD glomerular transcriptome analysis, as further
supported by the expression, at the protein level of AXL, of a typical kidney inflammation
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marker [48]. Notably, on the mRNA level, Axl was overabundant only in MN but not in
MCD patients (data not shown). Nevertheless, on the protein level, Axl was overexpressed
in three subjects of our MCD cohort.

Limitations of our study should be acknowledged. They include a relatively small
number of samples and the use of mRNA from micro-dissected entire glomeruli. Further
studies based on single-cell sequencing allowing the analysis of individual cellular com-
ponents are warranted. However, our data confirm that micro-dissected samples from
archival FFPE kidney tissue biopsies may reliably be used to investigate gene expression in
different kidney disease groups. On the other hand, it has to be acknowledged that archival
FFPE tissue biopsies are difficult to stain by immunofluorescence due to autofluorescence
associated with the fixation process. Nevertheless, IL7RA positivity was clearly detectable
in at least a fraction of MCD samples. Furthermore, subjects of the normal control group
were significantly younger than the respective members of the two studied groups. Thus,
we cannot exclude a confounding effect of age per se and features such as age-related
effects on immune activation, even including increased IL-7 and IL-7R expression with
age [49].

Based on these findings, IL7R and IL-12 antagonists may be of high interest in MCD
therapy [50,51], particularly in adult patients, typically characterized by a delayed re-
sponsiveness to steroid treatment [2,3] and increased recurrency rates. Moreover, these
treatments could likely spare patients the serious metabolic side effects associated with
prolonged but frequently poorly effective steroid administration.

5. Conclusions

Our results demonstrate that archival FFPE-biopsies can be used to generate glomeruli-
specific gene expression profiles suitable for systematic analysis of kidney-associated dis-
ease pathogenesis. Most importantly, they provide a data-driven rationale to experimentally
address these MCD-specific features as biomarkers and novel drug targets. In this context,
inhibiting activation of the IL-7 and the IL-12 pathways appears to be particularly promising.
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