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Abstract

Functional magnetic resonance imaging (fMRI) studies have often recorded robust

univariate group effects in the amygdala of subjects exposed to emotional stimuli.

Yet it is unclear to what extent this effect also holds true when multi-voxel pattern

analysis (MVPA) is applied at the level of the individual participant. Here we sought

to answer this question. To this end, we combined fMRI data from two prior studies

(N = 112). For each participant, a linear support vector machine was trained to

decode the valence of emotional pictures (negative, neutral, positive) based on brain

activity patterns in either the amygdala (primary region-of-interest analysis) or the

whole-brain (secondary exploratory analysis). The accuracy score of the amygdala-

based pattern classifications was statistically significant for only a handful of partici-

pants (4.5%) with a mean and standard deviation of 37% ± 5% across all subjects

(range: 28–58%; chance-level: 33%). In contrast, the accuracy score of the whole-

brain pattern classifications was statistically significant in roughly half of the partici-

pants (50.9%), and had an across-subjects mean and standard deviation of 49% ± 6%

(range: 33–62%). The current results suggest that the information conveyed by the

emotional pictures was encoded by spatially distributed parts of the brain, rather

than by the amygdala alone, and may be of particular relevance to studies that seek

to target the amygdala in the treatment of emotion regulation problems, for example

via real-time fMRI neurofeedback training.
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1 | INTRODUCTION

Traditional views on the neural basis of emotion often ascribe a cen-

tral role to the amygdala (Phelps & LeDoux, 2005). In many such

views, the amygdala is considered the key component of the neural

apparatus responsible for the generation and expression of affect

(LeDoux, 2003; Murray, 2007). The core premise behind this frame-

work is straightforward: When an emotional stimulus is encountered

by an individual, an amygdala response ensues—one that can be mea-

sured under experimental conditions with functional magnetic reso-

nance imaging (fMRI). If that response is disproportionate—as is the

case in individuals with affect regulation problems—emotions like fear
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and anger have the opportunity to run rampant. These ideas have per-

meated the neuroscientific landscape to such an extent that they have

become textbook knowledge (e.g., see Lane & Nadel, 2002).

Over the last few decades, a multitude of fMRI tasks have been

developed to help researchers induce an emotional state in partici-

pants (see Phan et al., 2002 for a review). Many of these tasks assume

that a neural response can be evoked in the amygdala when partici-

pants are exposed to emotional pictures (see Costafreda et al., 2008

for an overview). For example, in the ‘Hariri hammer task’—a task

named after its renowned ability to induce amygdala activation at a

group-level—pictures of human faces that bear an emotional expres-

sion are shown to participants (Hariri et al., 2000). In our own work,

we have often employed the emotional processing task by Van Buu-

ren et al. (2011), which instead utilizes photographs of objects or

scenes to evoke an emotional state in study participants; this task too

has been shown to elicit robust activation of the amygdala when mea-

sured across subjects (Heesink et al., 2018; Van Buuren et al., 2011;

Van Rooij et al., 2014).

While many of the emotion provocation tasks that are used today

can indeed induce a response inside the amygdala that is robust

across participants, recent evidence suggests that the reproducibility

of such task effects may actually be quite low at the single-subject

level (Elliott et al., 2020; Nord et al., 2017). This calls into question the

utility and suitability of task-evoked amygdala activation as an inter-

individual biomarker of emotion-related processing—a notion that

may have far-reaching consequences for the validity of targeted inter-

vention strategies, such as real-time fMRI neurofeedback training

(e.g., see Nicholson et al., 2017; Young et al., 2014 and; see also

Linhartová et al., 2019 for a review). In fact, many of the fMRI tasks

commonly used to target the amygdala can trace their origins to a

branch of experimental research that focuses on the discovery of

average group effects, rather than differences between individuals.

The statistical practices put in place to analyse such data tend to be

somewhat ill-suited to uncover task effects that occur at the level of

the individual participant (Infantolino et al., 2018). This lack of intra-

subject sensitivity can be explained—at least in part—by the fact that

many of these methods are unable to model the covariance that may

exist between (adjacent) voxels; that is, they can only measure task

effects circumscribed to isolated voxels (Mahmoudi et al., 2012).

Multi-voxel pattern analysis (MVPA) offers a viable alternative to

these standard mass-univariate statistics—one that more readily

allows for inferences to be made at the single-subject level, due to its

ability to capture spatially distributed patterns of brain activity

(e.g., see Arbabshirani et al., 2017 for a review). Here, we sought to

apply MVPA in order to determine whether the patterns of BOLD

activity inside a participant's amygdala can be used to predict the

valence categories (negative, neutral, or positive) of affective pictures

during an emotional processing task. To achieve this goal, we com-

bined the fMRI measurements from two prior studies (total N = 112)

(Heesink et al., 2018; Van Rooij et al., 2014), and—for each

participant—trained a linear support vector machine (SVM) to classify

the valence of emotional pictures based on patterns of brain activa-

tion both inside the amygdala (primary region-of-interest [ROI]

analysis) and within the whole-brain (secondary exploratory analysis).

We hypothesized that classification based on the amygdala alone

would already be conducive to predict the valence category of emo-

tional pictures, but that performance would improve when regions

other than the amygdala were added. Indeed, such results would align

with previous works that have explored the use of MVPA for emotion

classification (Baucom et al., 2012; Bush et al., 2018; Habes

et al., 2013; Saarimäki et al., 2016; Yuen et al., 2012). Although previ-

ous studies have reported significant increases in task-induced amyg-

dala activation in veterans with emotion dysregulation problems

(i.e., relative to healthy controls), such as posttraumatic stress disorder

(PTSD) (Bryant et al., 2008; Shin et al., 2006) or intermittent explosive

disorder (IED) (Coccaro et al., 2007; McCloskey et al., 2016), no such

group effects could be recorded by Heesink et al. (2018) and Van

Rooij et al. (2014)—the two studies from which we drew our study

sample and data. We therefore did not expect to find any significant

effects of psychiatric diagnosis here.

2 | MATERIALS AND METHODS

2.1 | Participants

Neuroimaging data from two prior studies at our department were

combined in the present work: (1) the Biological Effects of Traumatic

Experiences, Treatment, and Recovery study (BETTER; Van Rooij

et al., 2014), and (2) the Military Aggression Regulation Study (MARS;

Heesink et al., 2018). Both studies were approved by the Medical Eth-

ical Review Board of the University Medical Centre Utrecht in the

Netherlands. Both research projects were in accordance with the

Declaration of Helsinki. The original aim of the BETTER study was to

identify possible biomarkers of treatment response in military vet-

erans suffering from PTSD. In the BETTER study, functional MR

images were acquired both before and 6–8 months after PTSD treat-

ment, however, only the pre-treatment data were used here; for an

in-depth description of the treatment response findings, see Van Rooij

et al. (2015). The main goal of the MARS study was to identify poten-

tial biomarkers of impulsive aggression problems in a veteran sample.

A total of 57 veterans with a primary diagnosis of PTSD were

recruited in the BETTER project, along with 29 veterans that had no

history of mental health issues. Another 29 veterans with impulsive

aggression problems were included in the MARS study, as well as

30 non-aggressive veteran controls. One participant was enrolled in

both studies and was therefore excluded from the BETTER dataset.

Of the remaining 144 participants eligible for inclusion in the current

work, one individual was excluded on account of her being the only

woman in the combined dataset, three participants had to be excluded

because of missing scan data, nine participants were excluded due to

large artefacts in the raw MR images, eight participants were excluded

because of bad placement of the field-of-view (FOV), six individuals

were excluded due to unreliable registration of the behavioural emo-

tional processing task scan data, and two participants were excluded

because they gave too many incongruent responses during the
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emotional processing task, which we defined as >75% incongruent

responses for any stimulus category. Finally, three participants were

excluded after quality control of the pre-processed scan data (see

Section 2.4 for further details). Thus, a total of 112 participants were

included in this study.

2.2 | Data acquisition

All MR imaging data of both the BETTER and MARS protocols were col-

lected on the same 3 Tesla Philips Achieva system (Phillips Medical Sys-

tems, Best, the Netherlands) using the same acquisition parameters.

Functional image runs consisted of 322 T2*-weighted echo planar images

that were acquired interleaved with the following settings:

TR = 1600 ms; TE = 23 ms; FA = 72.5�; FOV = 256 � 208 � 120 mm;

30 transverse slices; matrix = 64 � 64; voxel size = 4 � 4 � 3.60 mm,

0.4 mm gap. Due to the tilted angle of the FOV placement of these

images, some parts of the occipital cortex and most of the cerebellum

could not be imaged (see Supplementary Figure S1). A high-resolution 3D

sensitivity encoded (SENSE) T1-weighted anatomical image was collected

to facilitate spatial normalization and localization: TR = 10 ms;

TE = 4.6 ms; FA = 8�; FOV = 240 � 240 � 160; 200 sagittal slices;

matrix = 304 � 299.

2.3 | Experimental paradigm

A total of 96 pictures were taken from the International Affective Pic-

ture System (IAPS) and incorporated into the emotional processing

task (Lang et al., 1997). Thirty-two pictures of each of the valence cat-

egories neutral, negative, and positive were extracted from the IAPS

database. Each trial consisted of a single stimulus presented for a

duration of 2 s, followed by an evaluation screen asking the partici-

pant to rate the picture as neutral, negative, or positive by pressing

one of three buttons with the thumb of their right hand. The response

period had a maximum duration of 2 s; if a response was given prior

to the full elapse of this interval, a fixation cross was shown for the

remainder of that interval. The task consisted of four blocks of 24 pic-

tures presented in pseudorandomized order, with each block contain-

ing 8 pictures per valence category. Each block of pictures was

followed by a 32 s rest period during which a fixation cross was

shown to the participant. Figure 1a displays a schematic overview of

the emotional processing task, which is identical to the one detailed

previously by Heesink et al. (2018), Van Buuren et al. (2011), Van

Rooij et al. (2014, 2015), and Vink et al. (2014). These studies all

observed robust group-level amygdala activation in both civilian and

military samples.

2.4 | Image pre-processing

The functional images were slice-time corrected and re-aligned. The

anatomical image was segmented and co-registered to the mean

functional image in order to transform the grey matter, white matter,

and cerebrospinal fluid (CSF) maps to native space. All pre-processing

steps were performed in SPM12 (Wellcome Trust Centre for Neuro-

imaging, London, UK) with default settings unless otherwise specified.

Jenkinson's algorithm was used to calculate framewise displacement

(FD) of the head (Jenkinson et al., 2002), and in-house software writ-

ten in MATLAB 9.5 (The MathWorks Inc., Natick, MA, 2018) was used

to first binarize the white-matter and CSF segmentation masks at an

(inclusive) probability threshold of >80%, and subsequently erode

each of these two masks by 1 voxel in each of the cardinal dimensions

x, y, and z in order to avoid partial volume sharing with grey matter

(Chai et al., 2012; as in Varkevisser et al., 2017). Quality control of the

pre-processed data led to the exclusion of one participant due to an

unresolved artefact that arose during segmentation. In addition, two

participants had to be excluded due to excessive head motion, which

we defined as more than 25% of scan volumes with an FD above

0.5 mm (Siegel et al., 2014).

2.5 | Trial pattern estimation (feature extraction)

Brain activation patterns for each of the 96 picture trials in a partici-

pant's task run were estimated in SPM12 by using the least-squares

separate (LS-S) method of Mumford et al. (2012). This technique

enables one to disentangle the task activation patterns of single adja-

cent trials in a fast-event related design. The LS-S approach fits one

general linear model (GLM) for each trial in a task run, all the while

controlling for the combined effect of all other trials in the time-series

for any given model (Mumford et al., 2012; see also Figure 1b). Trans-

lated to the current situation, the LS-S approach was implemented by

creating a single GLM for each trial in a participant's task run. The

stimulus onset and duration were modelled as predictor-of-interest,

alongside a second regressor that simultaneously modelled the onsets

and durations of all other remaining trials in the task run. The white

matter and CSF signals—calculated by taking the average of all voxels

in the corresponding segmentation mask for each of the 322 scan

volumes—and the six motion realignment parameters (RPs) were

added as additional covariates. To further limit possible confounding

that may be introduced by in-scanner head motion, we also added the

temporal derivatives of the six RPs (calculated using the backward-

shifted method) as well as their quadratic terms, and the quadratic

terms of the derivatives to the individual models (Friston et al., 1996).

An intercept term was also included in the GLMs. A high-pass filter

with a cut-off frequency of 1/128 Hz was applied to the data in order

to adjust for low-frequency scanner drift. The trial-wise subject-level

beta-weight maps yielded by the LS-S method were converted into t-

statistic maps by dividing each element by its own standard error

(Misaki et al., 2010). Importantly, only those trials for which the partic-

ipant's response was congruent with the original neutral, positive, or

negative IAPS rating were included in the LS-S extraction process; all

incongruent trials were excluded from the MVPAs. Note that this led

to a variable number of trials per valence category for each partici-

pant. All participants with >75% incongruent responses for any
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F IGURE 1 Schematic overview of the participant-level analysis pipeline. (a) Overview of the emotional processing task. (b) Trial pattern
estimation strategy. The LS-S method was used to fit one GLM for each trial in a participant's task run (Mumford et al., 2012). Per GLM, the
stimulus onset and duration of the trial in question were modelled as predictor-of-interest, alongside a second regressor that simultaneously
modelled the onsets and durations of all other remaining trials in the task run. The white matter and CSF signals, the six RPs, as well as their
expansion terms (i.e., temporal derivatives, quadratic terms, and quadratic terms of derivatives) were added as additional covariates-of-no-
interest. An intercept term was also added to each trial's GLM. (c) Feature selection or ROI extraction. As part of the whole-brain analyses, data
reduction was applied via a combination of univariate feature selection and recursive feature elimination (see main text for further details). For
the ROI-analyses, no additional data reduction steps were applied besides selecting only those voxels within the amygdala ROI mask. (d) MVPA.
The pattern classifier was embedded in a repeated stratified k-fold cross-validation scheme that randomly shuffled the temporal arrangement of
all trials within a participant's task run a total of ten times and conducted an eight-fold cross-validation for each repeat (or shuffle). Permutations
testing was conducted to assess the statistical significance of the classifier's performance (200 permutations). GLM, general linear model; LS-S,
least-squares separate; MVPA, multi-voxel pattern analysis; ROI, region-of-interest
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stimulus category were excluded from analysis. Crucially, this thresh-

old translates to a minimum of eight congruent trials per picture cate-

gory, which is the minimum number of examples required to have at

least one unique trial pattern per category, in each data-split of our

stratified eight-fold cross-validation scheme (see Section 2.8 for fur-

ther details).

2.6 | Amygdala ROI definition

The primary goal of the current study was to determine the extent to

which patterns of BOLD activation in the amygdala can be used to

predict the valence categories of a single participant's picture trials

(neutral, negative, positive) during an emotional processing task. Our

ROI—the amygdala—was defined based on probabilistic maps of the

basolateral, centromedial, and superficial sub-nuclei obtained from the

Anatomy toolbox of SPM12 (Amunts et al., 2005; Eickhoff

et al., 2005). The sum of these probabilistic maps was binarized at a

threshold of ≥0.5 to generate a mask for the whole amygdala. The

resulting binary mask was then resliced to the same reference space

and resolution as the pre-processed functional images of each partici-

pant, by using the deformation fields generated during segmentation.

All classification analyses were carried out in native space. The amyg-

dala mask had a mean and standard deviation of 68 ± 6 voxels across

all participants (range: 55–85 voxels). No additional feature selection

was conducted for the ROI-based MVPAs (see also Figure 1c).

2.7 | Whole brain feature selection

The secondary aim of the current study was to determine the extent

to which patterns of BOLD activation inside the whole-brain can be

used to predict the valence categories of a single participant's picture

trials (neutral, negative, positive) during the emotional processing task.

To accomplish this goal, feature selection was conducted to prevent

overfitting our pattern classifier due to the large number of voxels

included in the participant-level grey matter masks (see Figure 1c)

(Pereira et al., 2009). We applied a two-step feature reduction strat-

egy that combined an initial crude selection based on univariate t-

testing (Habes et al., 2013; see also Yuen et al., 2012), followed by a

more fine-grained selection of the remaining voxels via recursive fea-

ture elimination (RFE; De Martino et al., 2008). In the first step, (one

sample) t-values were computed in order to quantify the level of acti-

vation of each voxel across all trials belonging to a given valence cate-

gory (e.g., neutral). Note that three of these t-values were thus

calculated for each voxel: one for each of the three valence catego-

ries. For each valence category, we then selected the top 50% of the

voxels with the highest t-values (Habes et al., 2013; Yuen

et al., 2012). The union of these three voxel selections constituted the

initial set of selected features and represented the collection of voxels

that were activated most by the task across all stimulus categories

(Van den Boom et al., 2019). This initial set of features was subjected

to a second round of more fine-grained data reduction that selected

the top 5% of the remaining voxels via RFE (De Martino et al., 2008).

At each iteration of the RFE, 20% of the feature set were removed by

the algorithm. Thus, while many features were rejected at the first

iteration, in a relative sense, progressively fewer and fewer features

were removed at all subsequent iterations as the algorithm honed

down on its pre-set target of 5% of all voxels in the grey matter mask.

By setting the step size of the RFE to 20%, we were able to limit com-

putational resources—which were quite substantial when combined

with our permutation testing strategy (see Section 2.9 for further

details). The value of 20% was chosen based on prior work by

Wottschel et al. (2019), who found this step size to be an agreeable

compromise between computation time and classification perfor-

mance. Across all participants, a mean of 623 grey matter voxels

remained after feature selection (standard deviation [SD]: 56 voxels;

range: 503–814 voxels).

2.8 | Multi-voxel pattern analysis

MVPA was performed by training an SVM with a linear kernel to clas-

sify the valence categories (negative, neutral, or positive) of individual

trials within a participant's task run, based on the associated patterns

of BOLD activation inside the amygdala or whole-brain. To this end,

we implemented the ‘SVC’ module from scikit-learn using in-house

code written in Python 3.7 (Pedregosa et al., 2011; Van Rossum &

Drake Jr, 1995). The regularization parameter of the support vector

classifier was fixed to C = 1 and was set to adjust for possible class

imbalance. This adjustment was necessary as only congruent trials

were included in the classification process, meaning that the number of

instances could, in theory (and did in practice), differ between classes

for any given participant. The decision function of the algorithm was

set to one-versus-rest (‘ovr’) in order to accommodate for the multi-

class nature of our situation. The pattern classifier was embedded in a

repeated stratified k-fold cross-validation scheme that (1) randomly

shuffled the temporal arrangement of all trials within a participant's

task run a total of ten times, all the while maintaining the correspon-

dence between class labels and trial patterns, and (2) conducted an

eight-fold cross-validation strategy for each of these ten repeats (com-

pare middle and bottom panels of Figure 1d) (Varoquaux et al., 2017).

Data-splits were stratified to ensure the overall percentage of

instances per class was maintained within each cross-validation fold.

Performance metrics were computed at each iteration of the repeated

stratified cross-validation scheme (10 repeats � 8 cross-validations)

and consisted of a balanced accuracy score—a measure of overall per-

formance, accounting for possible class imbalances—and a confusion

matrix to provide an indication of prediction accuracy (sensitivity) per

valence category. The performance metrics were averaged over itera-

tions to yield a single accuracy score (or confusion matrix) per partici-

pant. The mean performance (balanced accuracy or confusion matrix)

of valence classification across individuals was also calculated by aver-

aging over all participants. Feature weights were extracted at each iter-

ation and were averaged per class to produce three classifier weight

maps for each participant (see also Section 2.12).
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2.9 | Statistical testing

Permutation tests were conducted to assess the statistical significance

of the subject-level accuracy scores. To this end, class labels were ran-

domly shuffled across the trial patterns at each permutation (see

outer/top panel of Figure 1d). Accuracy scores were computed at

each permutation and pooled to provide a null-distribution against

which the significance of each participant's true accuracy score could

be determined; the α-level against which this true accuracy score was

evaluated was adjusted for the number of participants—in our case

equal to the number of conducted tests—via Bonferroni correction

(i.e., αcorrected = .05 /112). A total of 200 permutations were con-

ducted per participant (Habes et al., 2013; see also Yuen et al., 2012).

A grand null-distribution in which all 200 permutations of all 112 par-

ticipants were pooled was also computed in order to assess the statis-

tical significance of the mean accuracy score across all participants

(again at an α-level of 5%).

2.10 | Sensitivity analyses

In order to assess the possible influence of class imbalance and

response congruency on classification performance, the main analyses

were repeated twice; once by setting the number of instances in each

class equal to that of the smallest category, randomly sampling

instances from the larger available subset for the non-smallest classes,

and once by entering the patterns of all trial responses—both the con-

gruent and incongruent ones—into the MVPA of each participant.

2.11 | Motion correction benchmarks

Spearman correlation coefficients were computed between the accu-

racy scores (amygdala ROI-based or whole-brain) and average FD

across all individuals to quantify the extent to which in-scanner head

motion was able to confound classification performance in spite of

our motion correction and nuisance regression pipeline.

2.12 | Group-level feature weight maps

Exploratory group maps were computed by first normalizing the

subject-level feature weight maps and then calculating the average

weight across participants at each coordinate of standard MNI space.

Normalization of the subject-level feature weight maps was per-

formed by applying the deformation fields yielded earlier during the

segmentation step of the pre-processing pipeline. No further statisti-

cal testing was performed on the group-level feature weight maps.

These images were included as a rough indication of localisation and

to provide a comparison to the overall patterns of activation obtained

via standard univariate group-analysis of task reactivity (see

Section 2.13).

2.13 | Univariate analysis

Univariate analyses of the task fMRI data were performed in order

to produce group activation maps that could be compared to—and

help to facilitate the interpretation of—the group-level feature

weight maps yielded by the whole-brain MVPA. All univariate

(group) analyses of the task fMRI data were conducted in SPM12

with default settings unless otherwise specified. In brief, the pre-

processed functional scans were first normalized to standard MNI

space by using the deformation fields created during segmentation.

First-level GLM regression analyses were then conducted in order to

estimate, for each participant separately, task reactivity on a voxel-

by-voxel basis. For each participant, a GLM was specified that mod-

elled the stimulus onsets and durations of the three valence catego-

ries (negative, neutral, positive) as separate predictors-of-interest

(2 s boxcar) alongside the pre-processed BOLD signal as outcome

variable. Only those trials for which the participant's response was

congruent with the original IAPS rating were entered into these

models. The white matter and CSF signals—obtained by calculating

the average over all voxels in the corresponding segmentation

masks, separately for each scan volume—as well as the six RPs, were

additionally added to the GLMs as covariates-of-no-interest. A high-

pass filter with a cut-off frequency of 1/128 Hz was applied to the

data in the model in order to adjust for low-frequency scanner drift.

As we used a one-versus-rest decision function for our main MVPAs

(e.g., negative versus neutral and positive; see Section 2.8), it was

important that we defined our univariate contrasts in such a way

that the generated group activation (t-)maps could readily be com-

pared to the group-level feature weight maps—the main output of

the classification analyses. For each participant, contrast maps were

therefore generated for the following first-level contrasts:

(1) negative > positive + neutral, (2) positive > negative + neutral.

Second-level analyses were then conducted for each of these con-

trasts (separately) via one-sample t tests. The threshold of signifi-

cance for the group activation (t-) maps was adjusted for multiple

comparisons by applying a familywise error rate (FWER) correcting

threshold of p < .05 at the voxel-level.

3 | RESULTS

3.1 | Demographics

Demographic information of the 112 participants included in the final

sample is presented in Table 1. About half of the participants (n = 64)

had a diagnosis for one or more Axis I psychiatric disorders, the most

frequently recorded of which was PTSD (n = 47), followed by mood

disorders (n = 32), IED (n = 20), and anxiety disorders (n = 18).

Twenty-two participants were being treated with one or more psy-

chotropic drugs at the time of inclusion; the most frequently recorded

drug classes were selective serotonin reuptake inhibitors (SSRI)

(n = 13) and benzodiazepines (n = 11).
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3.2 | Behavioural data

The number of responses that were congruent with the original IAPS

rating of the initial 96 picture trials had a mean and standard deviation

of 79.81 ± 8.03 across all 112 participants (range: 55–94). The num-

ber of congruent responses had a median of 30 responses (interquar-

tile range [IQR] = 3) for the negative stimulus class, 26.5 responses

(IQR = 6) for the neutral class, and 26 responses (IQR = 7) for the

positive valence category (range: 10–32 for all three classes). The

number of congruent responses was found to differ significantly

across the three stimulus classes (Friedman's analysis of variance

[ANOVA]: χ2(2) = 47.07, p < .001), where negative responses were

given slightly but significantly more often than neutral (Wilcoxon

signed-rank test: z = �5.182, p < .001) or positive (z = �6.293,

p < .001) responses; no significant difference was found between the

number of positive and neutral responses (z = �0.612, p = .541). This

slight but significant difference in the number of responses per stimu-

lus category could bias the performance of pattern classification

towards the prediction of the largest, in our case, negative picture

class—a point we will address further in the sections devoted to the

main results of the MVPAs (see Section 3.4).

3.3 | Motion correction benchmarks

No significant correlation was recorded between the balanced accu-

racy scores and average FD data across all 112 participants for the

amygdala ROI-based (r = �.045, p = .641) or whole-brain (r = �.154,

p = .105) MVPAs. These results suggest that the combination of

motion correction and nuisance regression was relatively successful in

mitigating the possible confounding of in-scanner head motion.

3.4 | Multi-voxel pattern analysis

3.4.1 | Amygdala ROI-based classification

Only 5 out of 112 participants (4.5%) had a classification accuracy that

was statistically significant (Bonferonni-corrected) when only those

voxels that reside within the amygdala were used to predict the

valence categories (negative, neutral, positive) of emotional pictures

from an individual's trial patterns. Spearman's rank correlation indi-

cated no significant correlation between the number of voxels and

amygdala-based classification accuracy across all 112 participants

(r = .007, p = .937). The mean accuracy of valence classification

across all participants was 37%—a score that lies only slightly above

chance level (i.e., 33%)—and had a standard deviation of 5% (range:

28–58%; see Figure 2a). When tested against the permutation distri-

bution across all participants, this mean accuracy of valence classifica-

tion was found to be non-significant (p = .211). Independent samples

t tests1 showed that there were no significant group differences when

the classification accuracies of participants with a diagnosis of PTSD (t

(93) = �0.205, p = .838), IED (t(25.08) = 0.343, p = .735), a mood

disorder (t(78) = �0.367, p = .714), or an anxiety disorder (t(24.75)

= �0.347, p = .732) (see Supplementary Figure S2)—the four most

frequent forms of psychopathology listed in Table 1—were compared

to the accuracy scores of the subsample of participants who were

medication- and diagnosis-free. Furthermore, there were no signifi-

cant group differences when the classification accuracies of partici-

pants who were taking SSRI's (t(14.09) = 0.781, p = .448) or

benzodiazepines (t(57) = �0.682, p = .498) were compared to the

TABLE 1 Demographic and clinical information of the study
sample.

Demographic

Participants

(N = 112)

Age (median, IQR [years]) 36 (13.5)

Gender (no. [m/f]) 112/0

Handedness (no. [left/right/ambidextrous])a 7/90/14

Education level (no. [ISCED: 0/1/2/3/5])a 0/1/14/71/25

Psychiatric diagnosis (no.)b

None 48

PTSD 47

IEDc 20

Mood disorders 32

Schizophrenia and other psychotic

disorders

0

Substance-related disorders 4

Anxiety disorders 18

Somatoform disorders 3

ADHD 0

Medication use (no.)d

None 90

SSRI 13

Benzodiazepines 11

SARI 2

Antipsychotics 3

β-blockers 1

Ritalin 1

Melatonin 1

Abbreviations: ADHD, attention deficit hyperactivity disorder; IED,

intermittent explosive disorder; IQR, interquartile range; ISCED,

international scale for education; no, number of; PTSD, posttraumatic

stress disorder; SARI, serotonin antagonist and reuptake inhibitors; SSRI,

selective serotonin reuptake inhibitors.
aOne participant had missing data for these demographics.
bThe structured clinical interview for DSM IV disorders (SCID) was

administered in the BETTER study, while the mini-international

neuropsychiatric interview (MINI) was administered in the MARS study.

Psychiatric co-morbidity is not taken into account by this table.
cIED was ascertained via research diagnostic criteria as published by

Coccaro (2011). This diagnosis was only registered in the MARS study.
dPolypharmacy is not taken into account by this table.

1A regular Student's t test was performed when a non-significant Levene's test indicated that

the assumption of equal variances likely held true, whereas Welch's t test was conducted in

all other cases (i.e., in case Levene's test was shown to be significant).
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accuracy scores of medication- and diagnosis-free participants (see

Supplementary Figure S2).

The average accuracy of valence classification for each of the

three stimulus categories (negative, neutral, positive) across all partici-

pants was examined via a confusion matrix (see Figure 3a). In terms of

sensitivity, only the negative valence category (46%, p = .008) was

found to be significantly decodable after Bonferroni correction

(αBonferroni = .017), whereas the neutral (34%, p = .417) and positive

(31%, p = .651) picture classes were not. In order to evaluate whether

the classification accuracies were affected by the slight but significant

class imbalance (see Section 3.2; see also Section 2.10), we repeated

the above analysis; but—for each participant—set the number of

instances in each class equal to that of the smallest category, ran-

domly sampling instances from the larger available subset for the non-

smallest classes (median number of responses = 23, IQR = 6.75,

range: 10–30). As a result, the sensitivity value of the negative picture

category was slightly lower (i.e., 43%) and rendered non-significant

after adjusting for multiple comparisons (p = .031); otherwise, the

main results remained largely unchanged (see Supplementary

Figure S3). Also, in order to evaluate the impact of response congru-

ency on classification performance (see Section 2.10), we again

repeated the above analysis, but now included the patterns of all trial

responses—both the congruent and incongruent ones—to the MVPA

of each participant; the sensitivity value of the negative picture class

was again slightly lower (i.e., 42%) and rendered non-significant after

adjusting for multiple comparisons (p = .046), but otherwise, the main

results remained largely unchanged (see Supplementary Figure S4).

3.4.2 | Whole-brain classification

Slightly more than half of the participants (57 out of 112, or 50.9%)

had a classification accuracy that was statistically significant

(Bonferroni-corrected) when those voxels within a person's grey

matter mask that survived feature selection were used to predict the

valence categories (negative, neutral, positive) of emotional pictures

from an individual's trial patterns. The mean accuracy of valence clas-

sification across all participants was 49%—a score that is considerably

higher than what would be expected based on chance (i.e., 33%)—and

had a standard deviation of 6% (range: 33–62%; see Figure 2b).

When tested against the permutation distribution across all partici-

pants, the mean accuracy of valence classification was found to be

statistically significant (p = .004). Independent samples t tests again

showed that there were no significant group differences when the

classification accuracies of participants with a diagnosis of PTSD (t

(93) = �1.259, p = .211), IED (t(60.74) = 1.147, p = .256), a mood

disorder (t(78) = �1.402, p = .165), or an anxiety disorder (t(54.96)

= �0.791, p = .432) (see Supplementary Figure S2) were compared

to the accuracy scores of the participants who were medication- and

diagnosis-free. Again, there were also no significant group differences

when the classification accuracies of participants who were taking

SSRI's (t(52.91) = �1.148, p = .256) or benzodiazepines (t(57)

= �1.376, p = .174) were compared to the accuracy scores of

medication- and diagnosis-free participants (see Supplementary

Figure S2).

The average accuracy of valence classification for each of the

three stimulus categories (negative, neutral, positive) across all partici-

pants was again examined via a confusion matrix (see Figure 3b). In

terms of sensitivity, both the negative (57%, p < .001) and neutral

(48%, p = .005) picture classes were found to be significantly decod-

able after Bonferroni correction (αBonferroni = .017), whereas the posi-

tive (41%, p = .081) valence category was not. In order to evaluate

whether the classification accuracies were affected by the slight but

significant class imbalance (see Section 3.2; see also Section 2.10), we

repeated the above analysis; but—for each participant—set the num-

ber of instances in each class equal to that of the smallest category,

randomly sampling instances from the larger available subset for the

non-smallest classes (median number of responses = 23, IQR = 6.75,

F IGURE 2 Frequency
distributions of the balanced
accuracy scores of the ROI-based
(a) and whole-brain
(b) participant-level
classifications. The mean
accuracy and standard deviation
of valence classification across all
participants (N = 112) are

denoted in the upper right corner
of the histograms in panels
(a) and (b). The dotted vertical
grey line in each panel represents
chance level accuracy (33%).
MVPA, multi-voxel pattern
analysis; ROI, region-of-interest;
Std. Dev, standard deviation.
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range: 10–30). The sensitivity value of the positive picture category

was slightly raised (i.e., 44%) but still did not reach significance after

adjusting for multiple comparisons (p = .038); the rest of the main

results also remained largely unchanged (see Supplementary

Figure S3). Furthermore, in order to evaluate the impact of response

congruency on classification performance (see Section 2.10), we again

repeated the above analysis, but now included the patterns of all trial

responses—both the congruent and incongruent ones—to the MVPA

of each participant; again, the main results remained largely

unchanged (see Supplementary Figure S4).

3.5 | Group-level feature weight maps

Group-level feature weight maps of each of the three valence catego-

ries are presented in Figure 4. For the negative picture class, compara-

tively high positive weights were observed in the middle temporal

gyrus (bilateral), precuneus, medial prefrontal cortex, left precentral

gyrus, and—perhaps most notably—within the amygdala (bilateral),

whereas relatively high negative weights were observed in bilateral

regions of the lateral prefrontal cortex and lateral parietal cortex

(bilateral) (see Figure 4a). For the positive picture class, a similar pat-

tern of feature weights was observed but—in many cases—with the

plus and minus signs reversed, such that comparatively high negative

weights were observed in the middle temporal gyrus (bilateral), precu-

neus, and medial prefrontal cortex, whereas relatively high positive

weights were observed in bilateral regions of the lateral prefrontal

cortex and lateral parietal cortex (bilateral) (see Figure 4b). A notable

exception to this reversal was the amygdala—inside which the magni-

tude of feature weights for the positive (vs. the negative) picture class

seemed to be markedly lower regardless of (plus or minus) sign. The

group-level feature weight map of the neutral picture class appeared

to be a combination of the patterns observed for the negative and

positive picture classes—albeit with markedly lower feature weight

values in an absolute sense (see Figure 4c). Setting the number of

instances per class equal to that of the smallest category did not

overtly change the patterns observed in the group-level feature

weight maps for any of the three picture categories (see Supplemen-

tary Figure S5). Also, repeating the analyses with the trial patterns of

all responses—both the congruent and incongruent ones—as input for

the MVPAs did not overtly change the patterns observed in the

group-level feature weight maps for any of the three picture catego-

ries (see Supplementary Figure S6).

3.6 | Univariate analyses

The group activation maps yielded by the standard univariate (one

sample) analyses of the task fMRI data are presented in Figure 5

(see also Supplementary Figure S7). The negative > positive

+ neutral contrast indicated strong and statistically significant acti-

vation in the middle temporal gyrus (bilateral), as well as—notably—

within the (bilateral) amygdala, along with weaker, but nevertheless

significant activation in midline brain structures such as the medial

prefrontal cortex and posterior cingulate cortex/precuneus; regions

of significant deactivation included the lateral parietal cortex and

regions of the lateral prefrontal cortex, in both cases, mostly latera-

lized to the right hemisphere. Note that these are essentially the

same brain regions for which high positive and negative feature

weight values were observed earlier (see Figure 4a). For the

positive > negative + neutral contrast, strong and statistically signif-

icant activation was recorded in the medial prefrontal cortex and

posterior cingulate cortex/precuneus, the latter cluster extending

towards the (bilateral) calcarine fissure and lingual gyrus, mirroring

F IGURE 3 Group-level confusion matrices displaying the true (rows) versus predicted (columns) stimulus categorisations of the ROI-based (a,
left) and whole-brain (b, right) MVPAs. All cells are normalized by rows, such that each element shows the percentage relative to the total number
of true responses in that valence category (negative, neutral, or positive). The diagonal elements are framed in red in order to highlight the true
positive (i.e., sensitivity) rates for each of the three stimulus categories. MVPA, multi-voxel pattern analysis; Neg, negative; Neu, neutral; Pos,
positive.; ROI, region-of-interest
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the pattern of high negative feature weight values visible at this

location in Figure 4b. Another small region of significant activation

was recorded in the dorsolateral prefrontal cortex. No regions of

significant deactivation were recorded for the positive > negative

+ neutral contrast.

No significant group differences were recorded for either the

negative > positive + neutral or positive > negative + neutral con-

trasts when participants with a diagnosis of PTSD, IED, a mood disor-

der, or an anxiety disorder were (separately) compared to the subset

of medication- and diagnosis-free participants. Similarly, there were

F IGURE 4 Raw
(unthresholded) group-level
feature weight maps for the
negative (a), positive (b), and
neutral (c) picture classes. In
each panel, sagittal, coronal, and
horizontal slices are presented
in the top, middle, and bottom
rows, respectively, with the

corresponding slice-coordinates
indicated below each subplot.
The column on the far right of
each panel provides a visual
representation of the locations
of each of the slices presented
from right to left in case of the
upper rows (sagittal plane), from
posterior to anterior in case of
the middle rows (coronal plane),
or from inferior to superior in
case of the bottom rows
(horizontal plane). Warm colours
represent positive weights and
cool colours represent negative
weights. Note that as a one-
versus-rest (ovr) decision
function was employed for the
participant-level MVPAs, each
stimulus class was contrasted
against the other two remaining
classes (e.g., negative versus
neutral and positive). The results
are overlaid on an average brain
created from high-resolution
normalizations of the
T1-weighted anatomical images
of all 112 included participants.
MVPA, multi-voxel pattern
analysis.
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no significant group differences for the two contrasts when partici-

pants who were taking SSRI's or benzodiazepines were compared to

medication- and diagnosis-free participants.2

F IGURE 5 Group activation (t-)maps for the (a) negative > positive + neutral and (b) positive > negative + neutral contrasts. In each panel,
sagittal, coronal, and horizontal slices are presented in the top, middle, and bottom rows, respectively, with the corresponding slice-coordinates
indicated below each subplot. The column on the far right of each panel provides a visual representation of the locations of each of the slices

presented from right to left in case of the upper rows (sagittal plane), from posterior to anterior in case of the middle rows (coronal plane), or from
inferior to superior in case of the bottom rows (horizontal plane). Warm colours represent (relative) activation and cool colours deactivation. The
results are overlaid on an average brain created from high-resolution normalizations of the T1-weighted anatomical images of all 112 included
participants. A voxel-wise FWER-corrected threshold of t > 4.76 was applied to each group activation map (corresponding to p < .05).
FWER = familywise error-rate

2Each of these six comparisons was conducted via two-sample t tests at the second-level. A

FWER-correction threshold of p < .05 was applied at the voxel-level, as with the one-sample

univariate analyses.
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4 | DISCUSSION

The main goal of this study was to determine whether the patterns of

BOLD reactivity inside the amygdala can be used to predict the

valence categories (neutral, negative, positive) of emotional stimuli

during a picture presentation task. To this end, we combined the data

from two prior studies (Heesink et al., 2018; Van Rooij et al., 2014),

and—for each participant (N = 112)—tried to decode the valence clas-

ses using the BOLD responses within the amygdala (hypothesis-driven

analyses) and the whole-brain (exploratory analyses). Contrary to our

expectations, classification based on the amygdala alone did not sup-

port an accurate prediction of emotional valence, as we were able to

decode valence classes significantly only in a handful of participants

(less than 5%), with the distribution of accuracy scores centring

(mean = 37%) only a few percent above chance-level (33%). On aver-

age, pattern classification based on whole-brain task reactivity

resulted in roughly half of the participants showing a significant accu-

racy score (50.9%), with an increase in mean prediction accuracy of

about 10% (49%), relative to the aforementioned across-subjects

mean of the amygdala-based MVPAs. Results indicated no significant

group effects of psychiatric diagnosis (PTSD, IED, mood disorder, anx-

iety disorder) and/or medication-status (SSRI or benzodiazepines).

The low accuracy of amygdala-based valence classification is con-

sistent with an earlier report by Saarimäki et al. (2016). In that study, a

linear neural network classifier was trained to decode five emotional

states (disgust, fear, happiness, sadness, or neutral) in 21 healthy vol-

unteers by using the task reactivity patterns inside the amygdala. Sim-

ilar to what we observed here, the mean accuracy across participants

was found to be relatively low although statistically significant

(i.e., approximately 30%, where 20% represented chance-level and

23% the threshold of significance)—a result we could not replicate

here. One factor that may have contributed to this discrepancy in

findings includes the difference in sample size and population

between the study of Saarimäki et al. (2016) (N = 21 volunteers) and

that of ours (N = 112 veterans). Other contributing factors include

the nature and number of the emotional categories being classified;

that is, the five basic emotions, disgust, fear, happiness, sadness, and

neutral in the task of Saarimäki et al. (2016), versus the broad strokes

of the three-class (negative, neutral, positive) emotional valence

model employed here. It is possible that the performance of our classi-

fier would have been higher if a similar, more nuanced categorisation

of affect had been used to train the algorithm. Still another factor that

may have contributed to the discrepancy in findings is the difference

in algorithms used for the classification itself; that is, an SVM in the

current study versus a linear neural network classifier in the study by

Saarimäki et al. (2016). Finally, we draw attention to the task stimuli

and design of Saarimäki et al. (2016)—namely a series of short and

naturalistic (although unstandardized) video fragments—as these were

markedly different from the set of well-validated and standardized

(but possibly less ecologically valid) IAPS photographs employed here.

The higher accuracy of whole-brain versus amygdala-based

valence classification seems to be consistent with a number of earlier

reports. In the above-cited work by Saarimäki et al. (2016), for

example, the mean accuracy of whole-brain valence classification

across all 21 participants was 47% (chance-level: 20%; significance

threshold: 23%). This score exceeded the mean accuracy of amygdala-

based valence classification by more than 17%—a somewhat larger

increment than the 11% increase in classification accuracy we

reported here. Similar to our findings (see Figure 4), the group maps

by Saarimäki et al. (2016) also highlighted the influence of midline

brain structures, the middle temporal gyrus, and—most notably—the

amygdala. In the only other work that also utilized a fast event-related

design, Bush et al. (2018) trained a linear SVM to decode the valence

categories (negative, positive) of emotional pictures using whole-brain

BOLD reactivity patterns, and recorded a mean accuracy of 85%

across all participants, with all 19 participants demonstrating a signifi-

cant accuracy score at single-subject level. The group maps by Bush

et al. (2018) again highlighted the importance of midline brain struc-

tures along with the amygdala. In another study, Habes et al. (2013)

used a linear SVM to classify the valence categories of emotional pic-

tures based on whole-brain patterns of BOLD activation in nine

patients suffering from major depression. Statistically significant mean

accuracy scores of 86, 89, and 92% were observed when negative

and neutral, positive and neutral, and negative and positive trials were

contrasted to one another, respectively; all contrasts yielded group

maps that again highlighted the influence of the amygdala. Other rele-

vant works confirm the relatively high intra-subject accuracy of

whole-brain pattern classification of emotional valence, with predica-

tion accuracies ranging between 60 and 92% (Baucom et al., 2012;

Yuen et al., 2012). Taken together, these past and present findings

seem to converge to indicate that task effects of emotion provocation

fMRI can indeed be captured at the level of the individual participant,

but that it requires the information contained by spatially distributed

patterns of brain activation, rather than the reactivity within the

amygdala alone. This notion resonates closely with the idea that com-

plex brain functions can best be understood as emergent properties

of the large-scale interconnected nature of the (human) brain—the

core premise of the field of network neuroscience (e.g., see Bassett &

Sporns, 2017 for an overview). Indeed, the two constellations of brain

regions we recorded here—both of the middle temporal gyri, the pre-

cuneus, and the medial prefrontal cortex on the one hand, versus the

lateral prefrontal and parietal cortices on the other hand—bare a

remarkable degree of similarity to perhaps the two most well-known

large-scale brain networks, namely the default mode network (DMN:

medial prefrontal cortex, posterior cingulate cortex/precuneus, and

lateral temporal cortex/inferior parietal cortex) and the central execu-

tive network (CEN: lateral parietal cortex and dorsolateral prefrontal

cortex), respectively (Fox et al., 2005; Raichle, 2015).

The strength of our work lies in its relatively large sample size

(N = 112) and the clinical diversity of the study sample (see Table 1).

Still, our work was subject to a number of limitations: First, the results

of our work may not be fully generalizable to a non-military and/or

female population, as only male veterans were included in our sample.

Second, the low resolution of our 3 T fMRI data might have limited

decoding performance to a certain degree; it is possible that higher

accuracy scores would have been obtained at a higher resolution
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and/or magnetic field-strength—particularly when considering small

brain regions such as the amygdala (Sladky et al., 2013). Similarly, our

decoding performance might have been undermined by the relatively

low number of available trials per picture category. Third, although

our confound regression strategy was relatively successful in mitigat-

ing the confounding effect of in-scanner head motion on prediction

accuracy, it is possible that the stringency of the model may have led

to some inadvertent filtering out of emotional information as well.

Fourth, our in-scanner task utilized a hybrid block/fast event-related

design. It should be noted, however, that the LS-S technique by Mum-

ford et al. (2012) was specifically designed for feature extraction in

simple fast event-related designs, not hybrid block/fast event-related

designs. Nonetheless, given that prior work by Valente et al. (2019)

has indicated that the LS-S method performs equally well when

extracting individual trial patterns within a single block (i.e., block-wise

LS-S), versus considering all trials across the entire scan run (i.e., run-

wise LS-S)—which is what we did here—we do not expect our diver-

gent task design to have had much of an impact on the main findings.

Fifth, the fast-event related nature of our emotional processing task

may have limited our ability to fully capture the information unique to

each and every trial in a participant's task run. Although the LS-S tech-

nique of Mumford et al. (2012) was indeed specifically designed to

help deal with this issue, the temporally correlated nature of our in-

scanner task—that is to say, its short inter-trial interval—may nonethe-

less have prevented us to fully isolate the signals of adjacent trials in a

participant's time-series—in spite of our use of the method.

4.1 | Conclusions

In conclusion, our findings indicate that pattern classification based on

the amygdala alone is insufficient to provide an accurate prediction of

the valence categories (negative, neutral, positive) of emotional stimuli

at the single-subject level. This outcome may be of particular rele-

vance to studies that seek to target the amygdala in the treatment of

emotion regulation problems, for example via real-time fMRI neuro-

feedback training. Classification of whole-brain BOLD reactivity led to

accuracy scores that were considerably higher—and more often statis-

tically significant—than the amygdala-based MVPAs, suggesting that

the encoded emotional information was contained by spatially distrib-

uted patterns of brain reactivity, rather than being confined to the

amygdala volume. In line with this latter notion, exploratory group

maps pointed towards a set of brain regions commonly associated

with either the DMN or central executive network as playing likely

important—yet seemingly opposing—parts in decoding the valence of

the emotional pictures.
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